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Abstract
Electrocardiogram (ECG) is a widely used non-
invasive diagnostic tool for heart diseases. Many
studies have devised ECG analysis models (e.g.,
classifiers) to assist diagnosis. As an upstream
task, researches have built generative models to
synthesize ECG data, which are beneficial to pro-
viding training samples, privacy protection, and
annotation reduction. However, previous genera-
tive methods for ECG often neither synthesized
multi-view data, nor dealt with heart disease con-
ditions. In this paper, we propose a novel disease-
aware generative adversarial network for multi-
view ECG synthesis called ME-GAN, which at-
tains panoptic electrocardio representations con-
ditioned on heart diseases and projects the repre-
sentations onto multiple standard views to yield
ECG signals. Since ECG manifestations of heart
diseases are often localized in specific waveforms,
we propose a new mixup normalization to inject
disease information precisely into suitable loca-
tions. In addition, we propose a view discrimi-
nator to revert disordered ECG views into a pre-
determined order, supervising the generator to
obtain ECG representing correct view characteris-
tics. Besides, a new metric, rFID, is presented to
assess the quality of the synthesized ECG signals.
Comprehensive experiments verify that our ME-
GAN performs well on multi-view ECG signal
synthesis with trusty morbid manifestations.
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1. Introduction
Heart diseases are major threats to global health (Abubakar
et al., 2015; Roth et al., 2018). Electrocardiogram (ECG),
a non-invasive diagnostic tool for heart diseases, is widely-
used in clinical practice (Holst et al., 1999), putting a
heavy burden on cardiologists. To alleviate this stress,
many research efforts were put into developing ECG classi-
fiers (Bian et al., 2022; Golany et al., 2021; Kiranyaz et al.,
2015) for automatic ECG analysis, yielding considerable
performances on limited tests. But, there were still concerns
on developing automatic ECG classifiers, such as patient
privacy protection (Hossain et al., 2021; Hazra & Byun,
2020) and absence of well-annotated ECG signals (Golany
et al., 2020). Thus, a key upstream task (Golany et al., 2020;
Zhang & Babaeizadeh, 2021) is to synthesize ECG signals
in order to increase the diversity and quantity of training
samples, which can also help reduce annotation needs if
ECG signals are synthesized conditioned on heart diseases.

There are two main issues in the known ECG synthesis
methods. (1) Trusty multi-view ECG synthesis. In clinical
practice, ECG signals from different views are clinically
useful (Graybiel et al., 1946; Case et al., 1979), representing
heartbeat signals from various viewpoints (see Fig. 1(a)).
However, previous ECG synthesis models often yielded
single-view ECG (Golany & Radinsky, 2019; Golany et al.,
2020; Hossain et al., 2021; Hazra & Byun, 2020; Zhu et al.,
2019) or independently synthesized different views without
explicitly considering view correlations (Kuznetsov et al.,
2020; McSharry et al., 2003; Thambawita et al., 2021). Such
synthesized ECG signals cannot provide trusty representa-
tions of heartbeats, resulting in limited applications. (2)
ECG synthesis conditioned on heart diseases. Unlike
some global conditions used in image synthesis (Karras
et al., 2019) (e.g., the gender impacts synthesized face pic-
tures globally), ECG manifestations of some heart diseases
are often localized in specific waveforms (Frank, 1956). For
example, the left bundle block abnormality (LBBB) often
presents notches on/near R waves (R wave is a typical wave-
form in ECG signals; see Fig. 1(b)). But, most ECG genera-
tive methods either omitted disease information (Hazra &
Byun, 2020; Zhu et al., 2019) or synthesized ECG with dif-
ferent heart diseases by developing different models (Zhang
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(a) ECG views represent heartbeat signals (i.e., 
vectorcardiogram) from various viewpoints.

(b) Abnormal waveform with LBBB.
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(c) Normal waveform at R peak. 

Figure 1. (a) Illustrating the principle of multi-view ECG signal recording by projecting heartbeat signals along different viewpoints. A
viewpoint is represented by two angles (θ, ϕ) (the polar and azimuthal angles; defined in Sec. 2). Comparing (b) and (c), the waveform
changes caused by diseases can be localized (e.g., left bundle branch block abnormality (LBBB) can lead to notches on R waves).

& Babaeizadeh, 2021; Golany et al., 2020), which do not
address the general heart disease embedding problem.

To address these two issues, this paper develops a novel
GAN for Multi-view ECG synthesis conditioned on heart
diseases called ME-GAN, which consists of a generator,
a major discriminator to distinguish real ECG and to pre-
dict the disease categories, and an auxiliary discriminator
called view discriminator to ensure the synthesized ECG
representing correct view characteristics.

To synthesize highly trusty multi-view ECG signals, we
devise the generator following the principle of ECG signal
recording. As shown in Fig. 1(a), ECG signals in differ-
ent views actually record electrocardio signals (represent-
ing heartbeats) from different viewpoints (Frank, 1956).
A study (Chen et al., 2021) has verified that a neural net-
work can predict ECG views based on electrocardio repre-
sentations with query viewpoints (represented by angles).
Motivated by 3D-aware GANs (Zhou et al., 2021; Tian
et al., 2018), our generator performs in two stages, which
synthesizes new “stereo” electrocardio representations of
heartbeat signals in stage one, and employs the Nef-Net
decoder (Chen et al., 2021) to yield the standard ECG views
based on the synthesized representations in stage two. To
emphasize view correlations among the synthesized views,
we randomly shuffle the view order and utilize a view dis-
criminator to revert the views into the pre-determined order.
Thus, the view discriminator supervises the generator to
synthesize signals representing correct and differentiable
view characteristics.

To inject disease information, we present a novel mixup
normalization layer in the generator to precisely control the
degrees and locations of disease information embedding
in the synthesized signals, since morbid manifestations are
localized in specific waveforms. Different from the self-
modulation (Chen et al., 2019) and AdaIN (Karras et al.,
2019) that provided channel-wise normalization with global
conditions, our mixup normalization seeks the correct lo-

cations and performs length-wise normalization to inject
disease information in the synthesized signals.

In addition, we present a pre-trained 1D Inception (Szegedy
et al., 2016) with a metric called relative Fréchet Inception
Distance (rFID) to assess the quality of synthesized multi-
view ECG signals. The rFID is analogous to the FID metric
for synthesized images (Heusel et al., 2017).

The main contributions of this paper are as follows.

(A) We propose a novel GAN model called ME-GAN, which
is the first model that is able to synthesize standard 12-view
ECG signals and simultaneously considers heart diseases.
Following the 3D-aware GAN strategy, ME-GAN first syn-
thesizes the representations of heartbeat signals and then
projects them into standard views to represent ECG signals.
Our design follows the ECG recording principle and essen-
tially ensures representations of ECG views to be consistent.

(B) We propose a novel mixup normalization to precisely
determine the locations and degrees to inject disease infor-
mation into the synthesized ECG signals, based on the ECG
characteristics of morbid manifestations.

(C) We present a novel view discriminator, which reverts
randomly shuffled ECG views into a pre-determined order,
by processing heavily masked ECG signals. Thus, any
locations on the synthesized ECG signals are ensured to
represent correct view characteristics.

(D) We introduce a pre-trained 1D Inception with a new
metric called rFID to assess the quality of synthesized multi-
view ECG signals. Comprehensive experiments verify that
the synthesized ECG signals by our ME-GAN are highly
trusty and are useful for improving ECG classifiers.

2. Backgrounds
Electrocardiogram (ECG) and ECG GANs. Clinical
studies (Graybiel et al., 1946; Case et al., 1979; Grant,
1950) indicated that single-view ECG signals cannot provide
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enough information for diagnosis and surgery, and ECG
views (12 views as default) essentially represent the pro-
jections of heartbeat signals along various viewpoints (see
Fig. 1(a)). But, most previous ECG synthesis methods (Hos-
sain et al., 2021; Hazra & Byun, 2020; Zhu et al., 2019;
Kuznetsov et al., 2020; Thambawita et al., 2021; Kuznetsov
et al., 2021) either yielded a single ECG view or indepen-
dently synthesized multi-view ECG signals following var-
ious GAN models (Arjovsky et al., 2017) while omitting
view correlations. Besides, most of the known methods (Zhu
et al., 2019; Hazra & Byun, 2020) ignored the presence of
heart diseases, while only a few (Zhang & Babaeizadeh,
2021; Golany et al., 2020) synthesized ECG signals belong-
ing to different diseases using different models.

A Review of Electrocardio Panorama and Nef-Net. It
was empirically proved that multi-view ECG signals are
projections of electrocardio signals along corresponding
viewpoints (Chen et al., 2021). Researchers often used a
spherical coordinate system with the origin point at the cen-
tral electric terminal of the heart, and the x-axis, y-axis, and
z-axis are defined by the anatomical sagittal axis, inverse
frontal axis, and vertical axis, respectively. In the spherical
coordinate system, the viewpoints of ECG views are rep-
resented by two angles, a polar angle θ and an azimuthal
angle ϕ. Based on this system, an auto-encoder, Nef-Net,
was proposed (Chen et al., 2021) in which the encoder pre-
dicts the “stereo” electrocardio representations of a known
ECG case and the decoder yields a new ECG view by pro-
jecting the representations along the query viewpoints. In
this paper, we also utilize the spherical coordinate system
(see Fig. 1(a)), represent viewpoints by (θ, ϕ), and use the
decoder as a part of our generator. Unlike Nef-Net which
synthesizes new ECG views of known cases, our ME-GAN
is developed to synthesize multi-view ECG of new cases.

Related Generative Adversarial Networks. The genera-
tive adversarial network (GAN) (Goodfellow et al., 2014)
was first proposed for image synthesis, and was then applied
in many fields (Sutskever et al., 2014; De Cao & Kipf, 2018).
Various studies (Sutskever et al., 2014; Ramsundar et al.,
2015) showed that the condition information contributed to
synthesis effects. Typically, conditions were provided to
generators by concatenation with random noises (Mirza &
Osindero, 2014). Later, additional supervisions were used
in discriminators to promote the effects of condition embed-
ding (Odena et al., 2017; Chen et al., 2016; Odena, 2016),
which were widely used in medical data synthesis and ob-
tained competitive performance (Yi et al., 2019). Recently,
conditions were also introduced into GANs indirectly, by
style transfer (Huang & Belongie, 2017; Karras et al., 2020),
linear interpolation (Radford et al., 2015), and latent vec-
tor modification (Agrawal et al., 2021). However, these
methods did not give strict definitions and bounds of the
embedded “conditions”, and were not suitable to biomedical

fields. Other related work is on multi-view image synthe-
sis. Following Nerf (Mildenhall et al., 2020; Martin-Brualla
et al., 2021), GANs employed 3D-aware generators to syn-
thesize 3D representations (Zhou et al., 2021; Tian et al.,
2018; Gu et al., 2021; Chan et al., 2021), which were further
projected along query viewpoints into images. These meth-
ods were verified to be efficient to synthesize multi-view
images with consistent 2D representations of 3D objects.

3. Methodology
In this paper, we propose a novel generative adversarial
network (GAN) for Multi-view ECG synthesis conditioned
on heart diseases, called ME-GAN, which is composed
of a two-stage generator and two discriminators (a major
discriminator and a view discriminator). Extending the
idea of 3D-aware generators to ECG synthesis, our gener-
ator processes Gaussian noises z ∈ Rd to synthesize the
“stereo” electrocardio representations conditioned on heart
diseases c ∈ Rk (one of k possible heart disease categories
represented by a one-hot vector), and then employs the Nef-
Net decoder (Chen et al., 2021) to project the synthesized
electrocardio representations into multi-view standard ECG
signals. The major discriminator distinguishes real and syn-
thesized ECG signals, and predicts the disease categories.
The view discriminator learns to revert randomly shuffled
ECG views into a pre-determined order, which supervises
the generator to synthesize ECG views representing proper
view characteristics. Below we present the designs of these
three key components of ME-GAN respectively.

3.1. Generator

THE OVERALL ARCHITECTURE

The generator architecture of ME-GAN has two stages (see
Fig. 2). The first stage synthesizes new “stereo” electrocar-
dio representations using a ladder-shaped model; the second
stage synthesizes multi-view ECG signals with a shallow
1D convolutional decoder of Nef-Net which takes the syn-
thesized panoptic electrocardio representations and query
viewpoint angles as input. Note that the input branch for
deflection representation of the original Nef-Net decoder is
not used here. The generator is performed end-to-end.

The ladder-shaped model of the first stage contains two
model paths and some skip connections. The major path
with 1D convolution blocks (marked in blue) processes and
up-samples Gaussian noises z ∈ Rd in steps, which obtains
latent representations zi ∈ Rdi×li at the i-th level (di and
li denote the feature channel number and feature length,
respectively). All zi were up-sampled to the final resolution
and added together for the Nef-Net decoder. The other path
(marked in orange) and two additional skip connections
(marked by green dashed arrows) jointly yield the location-
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Figure 2. Illustrating the ME-GAN generator (a), in which “M” denotes a Mixup Normalization layer as shown in (b) and the design of
“Conv Block” is shown in (c). “CW-FC” and “LW-FC” denote a “channel-wise fully connected layer” and a “length-wise fully connected
layer”, respectively, and “z” and “c” represent Gaussian noises and disease condition, respectively. Notably, we build four levels in the
first stage in our implementation.

aware disease embedding and inject it into zi via our pro-
posed mixup normalization layers (MixupNorm), since the
manifestations of heart diseases in ECG signals are local-
ized in specific waveforms. Concretely, a disease condition
c ∈ Rk is first embedded into a latent code by a fully con-
nected layer and is further processed and up-sampled by 1D
convolution blocks into latent representations ci ∈ Rki×li

(ki indicates the channel size of ci). Apart from this, two
multi-layer perceptrons (containing four fully connected
layers with ReLU activations in between) respectively trans-
form z ∈ Rd and c ∈ Rk into z′ ∈ Rd′×1 and c′ ∈ Rk′×1

(d′ and k′ indicate the channel sizes of z′ and c′, respec-
tively), and feed them into MixupNorm layers at all levels
(see the green dashed arrows in Fig. 2(a)). MixupNorm uses
zi and ci to compute a spatial attention to determine where
and to what degree the disease condition (from c′) impacts
the representation zi. As shown in Fig. 2(c), a convolution
block in the ladder-shaped model consists of a linear up-
sample layer, a 1D convolution, a 1D batch normalization
layer (Ioffe & Szegedy, 2015), and a ReLU activation.

MIXUP NORMALIZATION OPERATION

Without loss of generality, here we describe the operation of
MixupNorm at the i-th level (see Fig. 2), since the operations
at the other levels are similar. Similar to AdaIN (Karras
et al., 2019) and the self-modulation (Chen et al., 2019),
we inject condition information into the synthesized latent
representation zi by normalization operations.

MixupNorm first concatenates the representation zi ∈
Rdi×li (which conveys the location information of the syn-
thesized waveform) and ci ∈ Rki×li (which conveys dis-
ease information) into a comprehensive representation of
size (di + ki)× li, which is processed to attain an attention
ai ∈ Rda×li (da is the channel size of ai). Intuitively, by
fusing the information of the waveform location and disease
information, the attention ai can specify the degree to in-

ject disease information at each location. Formally, ai is
computed by:

ai = sigmoid(Conv(ReLU(BN(Conv([zi, ci]))))), (1)

where “[·, ·]” denotes channel-wise concatenation, and
“Conv” and “BN” denote a 1D convolution layer and a 1D
batch normalization layer, respectively. On the other hand,
in MixupNorm, the latent representation z′ is transformed by
a channel-wise fully connected layer into z∗i ∈ Rdh×1, and
c′ is transformed into c∗i ∈ Rdh×li by a channel-wise fully
connected layer and a length-wise fully connected layer
(with a ReLU in between), by:

z∗i = z′
T
Ui , c

∗
i = (max(c′Vi + bi, 0))

TWi, (2)

where Ui ∈ Rd′×dh , Vi, bi ∈ R1×li , and Wi ∈ Rk′×dh

are learnable weights, and dh indicates the channel sizes of
z∗i and c∗i . Then, z∗i is extended into size (dh × li) and is
incorporated with c∗i according to attention ai, by:

h∗
i = aic

∗
i + (1− ai)z

∗
i , (3)

where h∗
i ∈ Rdh×li . A channel-wise fully connected layer

then processes the representation h∗
i to synthesize the pa-

rameters αi, βi ∈ R1×li for normalization. Finally, αi and
βi are applied to the representation zi in the major path, by:

z̃i = αi ⊙
zi − µ

σ
+ βi, (4)

where ⊙ denotes point-wise multiplication, and µ ∈ R1×li

and σ ∈ R1×li are the mean and standard deviation of zi.
The output z̃i goes forward to the next level.

Discussion. In MixupNorm, we use attention (in Eq. (1))
to represent the locations and degrees for disease informa-
tion injection. Note that z∗i ∈ Rdh×1 conveys the intrinsic
style of noises similar to the self-modulation (Chen et al.,
2019), but c∗i ∈ Rdh×li represents different values along
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Figure 3. Illustrating the two ME-GAN discriminators. A blue
rectangle denotes a convolution block consisting of a 1D convolu-
tion layer, an instance normalization, and a leaky ReLU. The input
of the major discriminator is a tensor of size n× L containing all
the n ECG views, while the ECG signal input to the view discrimi-
nator is views shuffled and highly masked.

the length dimension. Unlike self-modulation, our Mixup-
Norm focuses on learning different disease embeddings at
different locations in synthesized ECG signals explicitly.

3.2. Discriminators

Our ME-GAN employs two discriminators (see Fig. 3(a)).
The major discriminator takes ECG signals as input to de-
termine whether they are real signals and their disease cate-
gories simultaneously, by employing LSGAN (Mao et al.,
2017) with an auxiliary classifier as in ACGAN (Odena
et al., 2017). The objective of the major discriminator D
and its supervision for generator G are defined by:

min
D

max
G

V(D,G)

=EX∼Pdata [(Dr/f(X)− a)2 + CE(Dc(X), c)]

+ EX∼Pdata;z∼P (z)[(Dr/f(G(z|c))− b)2

+ BCE(Dsu
c (G(z|c)), c)],

(5)

where we set a = 1, b = 0 as default (Mao et al., 2017). Dr/f
indicates the major discriminator with the classifier head
to predict whether the input is real, while Dc indicates the
major discriminator with the auxiliary classifier for disease
classification (the superscript “su” denotes “stop updation”).
In Eq. (5), “BCE” denotes the binary cross-entropy loss
function (since the heart disease classification is often a
multi-class classification task), the tensor X ∈ Rn×L con-
tains ECG signals of length L in all the n views sampled
from a dataset Pdata, and z is sampled from Gaussian distri-
bution Pz(z). The major discriminator is built with three
convolution blocks (see Fig. 3), and each block is built with
a 1D convolution layer, a 1D instance normalization layer,
and a leaky ReLU.

VIEW DISCRIMINATOR

Unlike the major discriminator that takes all the ECG views
organized in a pre-determined order as input, the input of

the auxiliary discriminator (view discriminator) contains all
the ECG views given in a random order. In training, we
randomly sample a permutation order of the views, and shuf-
fle the ECG views and the corresponding target viewpoints
(angles) according to the random order by the function sP :

X ′ = sP (X) = (XTP )T , Θ′ = sP (Θ) = (ΘTP )T , (6)

where the n views in X ∈ Rn×L are organized in a
pre-determined order. The cosines of the correspond-
ing viewpoints are loaded in Θ ∈ Rn×2 by Θ[p, 1] =
cos(θp) ∈ (−1, 1] and Θ[p, 2] = cos(ϕp/2) ∈ (−1, 1]
(p = 1, 2, . . . , n, the polar angle θ ∈ [0, π), and the az-
imuthal angle ϕ ∈ [0, 2π)). The transition matrix P of size
n× n is a random doubly-stochastic matrix whose element
values are 0 or 1. By multiplication with a random P , the
orders of views and viewpoints in X and Θ are shuffled
into X ′ and Θ′. In our setting, the task of the view discrimi-
nator is to take X ′ as input and predict the corresponding
viewpoints Θ′. Since P is random in each training epoch,
correct viewpoint order predictions on synthesized ECG
signals indicate that the synthesized ECG signals follow
proper characteristics of the views. The view discriminator
employs a sub-network to iteratively process ECG signals
in each view and concatenate the obtained representations
to predict 2n values ranged from -1 to 1 (via a “tanh” oper-
ation on top of the model) to estimate the 2n values in Θ′.
Instead of predicting the permutation matrix P directly, we
predict the angle information to avoid iterative processes in
attaining the doubly-stochastic matrix P .

An obvious training strategy for the view discriminator is to
take X ′ as input and predict Θ′ directly. If the view discrim-
inator performs well on both real and synthesize ECG cases
and obtains similar performances, then it means that the
synthesized ECG views contain similar view characteristics
as real ECG views. Yet, we need to further consider two
issues. (1) The classification strategy can only verify that
the view characteristics exist in the ECG views, but cannot
prove that all the locations of the ECG signals represent
correct view characteristics. (2) View characteristics in dif-
ferent locations vary. To address these two issues, we only
feed a piece of ECG signals to the view discriminator, and
compare the predictions on the synthesized ECG signals
and real ECG signals obtained by the view discriminator.
Formally, a piece of signals of a fixed length l (l < L, where
L is the length of the original ECG signals) is selected for
the view discriminator by the function tϵ, as:

X ′
l = tϵ(X

′) = X ′[:, ϵ : ϵ+ l], (7)

where ϵ is randomly selected (subject to ϵ + l < L) in
each epoch, and X ′

l ∈ Rn×l. In addition, we conduct
positional encoding (following the design in (Vaswani et al.,
2017)) on X ′ before it is processed by tϵ. In training the
view discriminator, the view discriminator processes real
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ECG signals X ′
l to predict Θ′ under the guidance of mean

square error (MSE). Meanwhile, it is required to enlarge
the predictions of real and synthesized ECG signals, in
order to push the view discriminator to seek for some “error
view characteristics” in the synthesized ECG views. In
training the generator, the generator learns to reduce the
prediction gap between real and synthesized ECG signals.
The objective function for the view discriminator V and its
supervision for the generator G are defined by:

min
V

max
G

V(V,G)

=EX∼Pdata;z∼Pz(z)[MSE(V (tϵ(sP (X))),Θ′)

− MSE(V (tϵ(sP (X))|c), V (tϵ(sP (G(z|c)))))].

(8)

4. Relative Fréchet Inception Distance
To measure the synthesis quality of GANs for ECG, we
propose a new metric called relative Fréchet Inception Dis-
tance (rFID), inspired by the Fréchet Inception Distance
(FID) (Heusel et al., 2017). The FID metric is used for imag-
ing GANs to compute the distribution distance between a
set of real images and a set of synthesized images, whose
distributions are typically estimated by a pre-trained 2D In-
ception (Szegedy et al., 2016). According to this, we need a
pre-trained model to estimate the distribution of multi-view
ECG signals. A direct solution for this is to train a 1D In-
ception on a large-scale ECG dataset. However, we found
that the open source ECG datasets are not enough to train a
strongly generalized model in terms of the amount of data
and the number of disease categories. For example, the MIT-
BIH arrhythmia dataset has only 4 categories and 2 ECG
views, while the Tianchi ECG dataset1 has 34 categories.

Standard ECG data contain 12 views, and a length of 512
can well represent the waveform details. In this work, we
set n = 12 and L = 512 (X ∈ R12×512) as default, and
use a 1D Inception pre-trained on ImageNet (Deng et al.,
2009). Using the idea of Vision Transformer (Dosovitskiy
et al., 2020), we resize images into 46× 46 and divide each
image into 529 patches of size 2× 2× 3 (3 is the number of
color channels). Thus, an image can be reorganized into size
12×529. Then, we drop the last 17 patches and obtain 12×
512. In building the 1D Inception, we change 2D operations
of the 2D Inception into the corresponding 1D operations.
For a 2D convolution layer, we drop the last dimension
of the kernel size (e.g., replace a 7 × 1 kernel by a 1D
kernel of size 7). After pre-training the 1D Inception on the
images, we use it to process ECG signals and obtain a latent
representation of length 2048 (similar to the design of 2D
Inception). To eliminate the incompatibility caused by using
a model pre-trained on images to access the distribution of

1https://tianchi.aliyun.com/competition/
entrance/231754/introduction

ECG data, we define a relative version of FID (rFID) by:

rFID({G(z)}) = FID({G(z|c)|c ∈ CX}, {X}2)
FID({X}1, {X}2)

, (9)

where the samples in a test set are divided into two groups
{X}1 and {X}2 with identical distributions (e.g., the data
amount of each category is identical), and G is a trained
GAN generator that synthesizes multi-view ECG signals
with z ∼ Pz(z) and query conditions in CX that is identi-
cal to the condition distributions of {X}1 and {X}2. The
denominator FID({X}1, {X}2) is the FID score between
{X}1 and {X}2, which is used to reduce the gap between
images and ECG. The effect of rFID is verified in Sec. 5.6.

5. Experiments
5.1. Experimental Setup

Datasets. We conduct experiments on the Tianchi ECG
dataset and PTB dataset (Bousseljot et al., 1995) to evalu-
ate our proposed ME-GAN. The Tianchi dataset contains
31,779 12-view ECG signals recorded at a frequency of 500
Hertz. The PTB dataset contains 549 12-view ECG signals
recorded at a frequency of 1000 Hertz. On each dataset,
we randomly take 80% of ECG signals for training and the
rest 20% for test. We partition an ECG record into several
cardiac cycles (representing heartbeats) using the partition
annotations provided in (Chen et al., 2021). Since an official
heart disease annotation is for each ECG record containing
several cardiac cycles, we use only some heart diseases that
theoretically are present on all the cardiac cycles if occurred.
Thus, for the Tianchi ECG dataset, we test our ME-GAN
on 3 heart disease categories in two configurations: (1) with
three disease conditions: the left axis deviation (LAD), the
right axis deviation (RAD), and the right bundle branch
block (RBBB); (2) without considering diseases. For the
PTB dataset, we only test without using the heart disease
conditions. Note that we use all the three selected diseases
as conditions simultaneously in the tests on the Tianchi
ECG dataset. For the configuration (1), we also use all the
training data in the training phase, and the ECG data out
of the three disease conditions were synthesized with input
condition as a vector with zeros. All the cardiac cycles
are used as independent samples, which are de-noised with
the Python package (Kachuee et al., 2018), interpolated to
500 Hertz, padded to length of 512, and are linearly scaled
to 0–1 in the pre-processing. We follow the viewpoint an-
gle definitions given in (Chen et al., 2021) (12 views): (θ,
ϕ) ∈ {(π2 ,

π
2 ), (5π6 , π

2 ), (5π6 ,−π
2 ), (π3 ,−

π
2 ), (π3 ,

π
2 ), (π, π

2 ),
(π2 ,−

π
18 ), (π2 ,

π
18 ), ( 19π36 , π

12 ), ( 11π20 , π
6 ), ( 8π15 ,

π
3 ), ( 8π15 ,

π
2 )}.

Implementation. Our method is implemented with PyTorch
1.7 on an RTX2080Ti GPU. In training, the batch size is 16.
For the generator, major discriminator, and view discrimina-
tor, we use the learning rate 10−4 and the Adam optimizer

https://tianchi.aliyun.com/competition/entrance/231754/introduction
https://tianchi.aliyun.com/competition/entrance/231754/introduction


ME-GAN for Multi-view ECG synthesis Conditioned on Heart Diseases

Table 1. Synthesis performances of various GAN models. The lower rFID score is the better, and the accuracy score of 1-NN classifier
(1NNC) is better if it is closer to 0.5. The best performances are marked in bold.

Methods
Tianchi w/ diseases Tianchi w/o diseases PTB w/o diseases

overall LAD RBBB RAD overall overall

1NNC rFID 1NNC rFID 1NNC rFID 1NNC rFID 1NNC rFID 1NNC rFID

WGAN-GP 0.722 7.534 0.697 5.359 0.683 3.509 0.676 6.892 0.640 5.494 0.656 42.046
ACGAN 0.699 15.944 0.668 7.464 0.672 10.942 0.684 13.144 – – – –
LSGAN 0.870 13.427 0.795 6.151 0.676 8.984 0.746 11.367 0.775 17.341 0.673 43.481
CGAN 0.757 12.479 0.585 8.495 0.607 5.489 0.594 10.849 – – – –
SMDCGAN 0.998 38.619 0.934 23.985 0.823 18.370 0.924 31.408 0.617 2.618 0.623 20.182

BC-GAN 0.832 12.701 0.723 8.299 0.617 5.975 0.634 10.685 0.983 42.545 0.997 158.698
CBL-GAN 0.826 6.990 0.673 5.322 0.739 3.471 0.694 5.573 0.611 6.173 0.713 65.750

ME-GAN (Ours) 0.643 3.722 0.567 2.662 0.663 1.491 0.712 3.433 0.582 2.343 0.618 15.282

Table 2. Classification performances of 1D ResNet-34 trained
on augmented training sets.

Method Diseases (PR-AUC)

LAD RBBB RAD Mean

1D ResNet-34 (baseline) 0.925 0.801 0.911 0.879
WGAN-GP 0.916 0.826 0.922 0.889
ACGAN 0.912 0.817 0.913 0.881
LSGAN 0.918 0.858 0.910 0.895
CGAN 0.906 0.867 0.904 0.892
SMDCGAN 0.913 0.832 0.921 0.889

BC-GAN 0.896 0.820 0.898 0.871
CBL-GAN 0.910 0.857 0.896 0.888

ME-GAN (Ours) 0.927 0.870 0.908 0.902

with β1 = 0.5, β2 = 0.999. In the test without disease
conditions, we replace the condition c by a constant vector,
and drop the auxiliary classifier in the major discriminator.

Comparison Baselines. We compare our ME-GAN
with common GAN methods including conditional GAN
(CGAN) (Mirza & Osindero, 2014), WGAN-GP (Gulrajani
et al., 2017), ACGAN (Odena et al., 2017), LSGAN (Mao
et al., 2017), and self-modulation DCGAN (SMDCGAN)
with hinge loss (Chen et al., 2019). Besides, we also com-
pare the performances with state-of-the-art ECG synthesis
methods, including BiLSTM-CNN GAN (BC-GAN) (Zhu
et al., 2019) and CNN-BiLSTM-GAN (CBL-GAN) (De-
laney et al., 2019). We use the GAN implementations in
the projects2,3 with few modifications to fit the data formats
and to directly synthesize 12-view ECG signals. For the
models that do not specify how conditions are used, we

2https://github.com/znxlwm/
pytorch-generative-model-collections

3https://github.com/MikhailMurashov/
ecgGAN

utilize the same strategy as in conditional GAN (Mirza &
Osindero, 2014). For the experimental settings without dis-
ease conditions, the input disease conditions and the related
classifier (if a model has one) are not used. All the methods
are trained in 100,000 iterations.

5.2. Synthesis Performances

To verify the quality of synthesized ECG signals, we report
the rFID scores and 1-NN classifier accuracy scores (1NNC)
of various GAN methods in Table 1. One can see that the
rFID scores of our ME-GAN are much lower than those of
the other methods on the two datasets, no matter with or
without disease conditions. Specifically, comparing the per-
formances of SMDCGAN and our method, ME-GAN out-
performs SMDCGAN just a little if the disease conditions
are not used (on both the Tianchi and PTB datasets). But,
our method outperforms SMDCGAN with a clear margin if
ECG syntheses are conditioned on the heart diseases. This
might be because our proposed MixNorm can better deal
with the heart disease conditions than the self-modulation.
We can also obtain the similar conclusion on 1-NN classifier
accuracy scores.

Further, we evaluate the synthesis quality with classification
performances (based on PR-AUC, i.e., the area under the
precision-recall curve). We train 1D ResNet-34 models on
the training sets augmented by the synthesized ECG signals,
respectively. In training, we add synthesized samples to
the original training set to double the size of the training
data belonging to those three disease categories. The clas-
sification performances are reported in Table 2. One can
see that, compared to the performances obtained by an 1D
ResNet-34 trained on the original training set (see the third
row in Table 2, mean PR-AUC = 0.879), synthesized ECG
signals promote the classification performances except for
BiLSTM-CNN GAN. Among them, the synthesized ECG
signals provided by our ME-GAN promote the classification

https://github.com/znxlwm/pytorch-generative-model-collections
https://github.com/znxlwm/pytorch-generative-model-collections
https://github.com/MikhailMurashov/ecgGAN
https://github.com/MikhailMurashov/ecgGAN
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Table 3. Pairwise distance comparison of view signals within the same ECG cases. For all the methods, 1000 samples were synthesized
for the average pairwise distance computing.

Methods Real ECG (baseline) WGAN-GP AC-GAN LSGAN CGAN SMDCGAN BC-GAN CBL-GAN ME-GAN

Distances 0.259 0.327 0.482 0.435 0.423 0.843 0.405 0.355 0.286

Table 4. Ablation studies for the key components of our proposed ME-GAN.

View Discriminator Condition Injection Auxiliary Classifier Two-Stage Generator PR-AUC rFID

(1) ✓ MixNorm ✓ ✓ 0.902 3.722
(2) ✓ Self-modulation ✓ ✓ 0.858 5.432
(3) MixNorm ✓ ✓ 0.867 5.212
(4) ✓ MixNorm ✓ 0.895 4.580
(5) ✓ MixNorm ✓ 0.884 4.585

performances by the most clear margins.

5.3. Multi-view Consistency Validation

To examine the multi-view consistency of synthesized ECG
views, we compute and compare the pairwise distances of
signals within an ECG case. We first train an 1D ResNet-34
(without the final fully connection layer) on the Tianchi ECG
dataset with disease conditions supervised by the triplet
loss (Schroff et al., 2015), which independently processes
each ECG signal of a view to attain an embedding, and
learns to shorten the pairwise distances of the embedding
from the same ECG case while to enlarge those distances
from different cases. After training, the 1D ResNet is uti-
lized to process each ECG signal on a view independently
and obtains the corresponding embedding. We compute
and report the average pairwise distances within ECG cases
as in Table 3. The average pairwise distance computed on
1000 randomly selected cases from test sets is 0.259, while
our ME-GAN obtains 0.286 which is pretty close to real
ECG data (0.259). The performances of other methods were
worse than ME-GAN, suggesting that ME-GAN can syn-
thesize ECG signals whose waveforms on individual views
were more consistent.

5.4. Ablation Studies

We conduct ablation studies to examine the effects of the key
components of our ME-GAN on the Tianchi ECG dataset
(with disease conditions), including the MixNorm, view
discriminator, the auxiliary classifier used in the major
discriminator, and the two-stage generator (with Nef-Net
decoder). We evaluate MixNorm by replacing it with the
self-modulation (Chen et al., 2019), and evaluate the two-
stage generator by removing the Nef-Net decoder and using
only the first stage part to synthesize 12 ECG views directly.
The performances (based on rFID and PR-AUC) are re-
ported in Table 4, and row (1) is ME-GAN with all the three
components. It is evident that all the components provide
performance gains for ME-GAN, and the view discrimina-
tor, two-stage generator design, and MixNorm are critically

important. Besides, one can see that the performance ranks
according to the mean PR-AUC and rFID are the same,
which suggests that the proposed rFID is reliable.

5.5. Multi-view ECG Synthesis Visualization

To intuitively show the synthesized ECG quality of ME-
GAN, we visualize two cases of 12-view ECG signals condi-
tioned on RBBB, synthesized by ME-GAN and WGAN-GP
for comparison (see Fig. 4). It can be seen that our ME-GAN
can synthesize smooth ECG signals, which represent clear
waveforms (e.g., P, Q, R, S, T waves, as labeled by “view=I”
in Fig. 4(a)). In contrast, the conditional WGAN-GP does
not synthesize clear waveforms, with noisy signals. Similar
performances are seen by the other methods. There are two
key manifestations of RBBB in ECG signals: (1) a notch
around R wave in the “V2” view; (2) the S waves in the “V6”
and “I” views are of great duration, representing “obtuse”
wave shapes (see Fig. 4(a)). The synthesized ECG signals
by our ME-GAN represent the manifestations (marked by
orange circles) of both (1) and (2). While the ECG signals in
the “V2” view synthesized by WGAN-GP (in Fig. 4(b)) rep-
resent a notch around R wave (satisfying (1)), the S waves in
the “V1” and “V6” views are of short duration (representing
“narrow” and “small” S waves), which do not satisfy (2). Be-
sides, we find that the signals in different views synthesized
by conditional WGAN-GP look similar (e.g., in the “V4”,
“V5”, and “V6” views), but similar phenomena do not occur
in the synthesized ECG signals by our ME-GAN. We think
that this might be because our two-stage major generator can
learn the panoptic electrocardio representations for better
multi-view ECG signal synthesis.

5.6. Effects of the Metric rFID

Since the computation of rFID in Eq. (9) needs to divide the
test set into two parts ({X}1, {X}2) with identical distribu-
tion to calculate the denominator (i.e., FID({X}1, {X}2)),
we repeat computing the denominator with 10 different ran-
dom divisions. We find that the values thus obtained are
stable, with a standard deviation of 0.843. The same com-
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（a）ME-GAN （b）Conditional WGAN-gp

P

Q

R

S

T

Figure 4. Visualization comparison of synthesized 12-view ECG signals by ME-GAN and conditional WGAN-GP, conditioned on
the RBBB disease. Orange circles mark some correct morbid manifestations of RBBB, while green circles mark error manifestations.

(a) rFID changes with continuously added noises. (b) rFID changes with ECG signals replaced by line segments. (c) rFID changes with ECG signal blurring.

Figure 5. Illustrating rFID changes during a process in which noise is continually added onto ECG signals. The “V2” view of an
ECG signal is presented for visually showing the signal quality.

putation on the PTB dataset yields a standard deviation of
0.212. This suggests that the denominator of rFID is sta-
ble for a given dataset, and hence it can contribute to the
consistency evaluation of ECG syntheses. Further, we ob-
serve the changes of rFID({Xtrain}), when we use some
normalized real ECG data to replace G(z) in Eq. (9) and
continually add various data perturbation. We test rFID with
three perturbation settings: in each step, (a) we add noise
ε ∼ U(0, 0.0002) onto the real ECG signals (normalized
into 0–1); (b) we randomly erase 30 sequential sampling
points on the ECG signal curves, and connect the onset and
end breakpoints with a line segment; (c) we blur the ECG
signals with an average blurring filter with 2× 2 kernel. As
shown in Fig. 5, rFID scores increase with the perturbations
continually added on, which indicates that rFID is sensitive
in assessing the quality of ECG signals.

6. Conclusions
In this paper, we proposed a novel disease-aware GAN, ME-
GAN, which learns to obtain new panoptic electrocardio
representations for multi-view ECG synthesis, applying the
idea of 3D-aware generator to ECG synthesis and ensuring
representation consistency among synthesized views. To

make the synthesized ECG signals trusty, we also devel-
oped a novel view discriminator which pushes synthesized
views to represent proper view characteristics. A novel
Mixup Normalization layer injects disease information into
synthesized waveforms adaptively, which contributes to syn-
thesizing correct morbid manifestations. Besides, to directly
assess the quality of synthesized ECG signals, we presented
a pre-trained 1D Inception with a new metric rFID. Compre-
hensive experiments showed that our designs are effective
in multi-view ECG synthesis conditioned on heart diseases.
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