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Abstract

In this paper, we study the non-local convergence
properties of deep linear networks. Specifically,
under the quadratic loss, we consider optimizing
deep linear networks in which there is at least
a layer with only one neuron. We describe the
convergent point of trajectories with an arbitrary
balanced starting point under gradient flow, in-
cluding the paths which converge to one of the
saddle points. We also show specific convergence
rates of trajectories that converge to the global
minimizers by stages. We conclude that the rates
vary from polynomial to linear. As far as we know,
our results are the first to give a non-local analysis
of deep linear neural networks with arbitrary bal-
anced initialization, rather than the lazy training
regime which has dominated the literature of neu-
ral networks or the restricted benign initialization.

1. Introduction
Deep neural networks have been successfully trained with
simple gradient-based methods, which require optimizing
highly non-convex functions. Many properties of the learn-
ing dynamic for deep neural networks are also present in
the idealized and simplified case of deep linear networks. It
is widely believed that deep linear networks could capture
some important aspects of optimization in deep learning
(Saxe et al., 2014). Therefore, many works have tried to
study this issue in recent years (Hardt & Ma, 2017; Arora
et al., 2018a;b; Bartlett et al., 2018; Shamir, 2019; Du & Hu,
2019; Hu et al., 2019; Zou et al., 2019; Eftekhari, 2020; Bah
et al., 2021). However, previous understanding mainly fo-
cuses on local analysis or lazy training (Chizat et al., 2019),
and there are few findings of the non-local analysis, even
for linear networks.
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Local analysis of deep linear networks with quadratic
loss. Several works analyzed linear networks with the
quadratic loss. Bartlett et al. (2018) provided a linear con-
vergence rate of gradient descent with identity initialization
by assuming that the initial loss is small enough or the
target is positive semi-definite. Bartlett et al. (2018) also
showed the necessity of the positive definite target under
identity initialization. Arora et al. (2018a) proved linear
convergence rates of deep linear networks, by assuming
that the initialization has a positive deficiency margin and
is nearly balanced. Later on, a few works follow similar
ideas with the neural tangent kernel (NTK) (Jacot et al.,
2018) or lazy training (Chizat et al., 2019) to establish con-
vergence analysis. Du & Hu (2019) demonstrated that if
the width of hidden layers is all larger than the depth, gradi-
ent descent with Gaussian random initialization could then,
with high probability, converge to a global minimum at a
linear rate. Hu et al. (2019) improved the lower bound of
width to be independent of depth, by utilizing orthogonal
weight initialization but requiring each layer to have the
same width. Moreover, Wu et al. (2019); Zou et al. (2019)
obtained linear convergence for linear ResNet (He et al.,
2016) with zero(-asymmetric) initialization, i.e., deep linear
network with identity initialization. Specifically, Wu et al.
(2019) adopted zero-asymmetric initialization requiring a
zero-initialized output layer and identity initialization for the
other layers. Such asymmetry also leads to a small variation
of weight matrices1, which is similar to local analysis. Zou
et al. (2019) applied identity initialization (for deep linear
networks), but still requiring a small initial loss or a lower
bound for the width2. These works of local analysis have
the feature of consistently bounded variation of weights3

to make the entire trajectory stay in the benign local land-
scape. Additionally, such a small variation of weights can
be satisfied by a slightly large width, a small initial loss, or
a suitable initialization as previous works have shown.

Non-local analysis of deep linear networks with the
quadratic loss. The non-local analysis requires a more
comprehensive understanding. As far as we know, current
works mainly focused on gradient flow, i.e., gradient descent

1See Wu et al. (2019, Eq. (4.7)) for detail.
2See Zou et al. (2019, Theorem 3.1 and Remark 3.2) for detail.
3For more examples, see the definitions of C(t) in Du & Hu

(2019, Section 7) and Hu et al. (2019, Section 4.1).
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with an infinitesimal small learning rate. From the mani-
fold viewpoint, Bah et al. (2021) showed that the gradient
flow always converges to a critical point of the underlying
function. Moreover, they established that, for almost all
initialization, the flow converges to a global minimum on
the manifold of rank-k matrices, where k can be smaller
than the largest possible rank of the induced weight. Hence,
their work only ensured the convergence towards minimiz-
ers in a constrained subset, which is not necessarily the
global minimizer. Additionally, they also provided a con-
crete example to display the existence of such rank unstable
trajectories (see Bah et al. (2021, Remark 42)). Following
Bah et al. (2021), Eftekhari (2020) provided a non-local con-
vergence analysis for deep linear nets with quadratic loss.
By assuming that there is a layer with only one neuron (in-
cluding scalar output case) and the initialization is balanced,
Eftekhari (2020) elaborated that gradient flow converges to
global minimizers starting from a restricted set. Moreover,
Eftekhari (2020) also confirmed that gradient flow could
efficiently solve the problem by showing concrete linear
convergence rates in the restricted set he defined.

In this work, we are interested in the non-local analysis of
deep linear networks with the quadratic loss for arbitrary
balanced initialization. To our knowledge, there was no
non-local convergence analysis of gradient flow for deep
linear nets in such a scheme.

1.1. Our Contributions

In this paper, we analyze gradient flow for deep linear net-
works with quadratic loss following the setting of Eftekhari
(2020). The main contributions of this paper are summa-
rized as follows:

• Convergent result. We first analyze the convergent
behavior of trajectories. Compared to Eftekhari (2020),
we define a more general rank-stable set of initializa-
tion to give almost surely convergence guarantee to
the global minimizer (Theorem 3.4). Moreover, we
also describe a more general global minimizer conver-
gent set to guarantee convergence towards the global
minimizer (Theorem 3.7).

Furthermore, inherited from the above results, we in-
troduce the indicator of arbitrary beginning point to
decide the convergent point of the trajectory (Theorem
3.1). Our analysis is beyond the lazy training scheme,
and does not require the constrained initialization re-
gion mentioned in Eftekhari (2020).

• Convergence rate. We also establish explicit conver-
gence rates of the trajectories converging to the global
minimizer. Our convergence rates are built on the fact
that the singular value of the induced weight matrix
goes through descending and ascending periods. In

the case where the trajectory converges to the global
minimizer, we show that in the worse case, the trajec-
tory can be devided into three stages. The convergence
rates vary from polynomial to linear. Our analysis is
more comprehensive because Eftekhari (2020) only
gave linear convergence rates for the last stage.

• We conduct numerical experiments to verify our find-
ings. Though gradient descent seldom converges to
strict saddle points (Lee et al., 2016), we find that our
analysis of gradient flow reveals the long stuck period
of trajectory under gradient descent in practice and the
transition of the convergence rates for trajectories.

1.2. Additional Related work

Exponentially-tailed loss. There is much literature (Gu-
nasekar et al., 2018; Nacson et al., 2019; Lyu & Li, 2019; Ji
& Telgarsky, 2019; 2020) focusing on classification tasks
under exponentially-tailed loss, such as logit loss or cross-
entropy loss. Specifically, Gunasekar et al. (2018); Nacson
et al. (2019) proved the convergence to a max-margin solu-
tion by assuming the loss converged to global optima. Lyu
& Li (2019); Ji & Telgarsky (2019; 2020) also demonstrated
the convergence to the max-margin solution under weaker
assumptions that the initialization has zero classification
error. These analyses focus on the final phase of training,
which is still not a global analysis. Lin et al. (2021) showed
a global analysis for directional convergence of deep linear
networks. Their results also covered arbitrary initialization,
but they required the spherically symmetric data assump-
tion.

Global landscape analysis. Except for the non-local tra-
jectory analysis, there is another line of works on non-
local landscape analysis (see, e.g., Baldi & Hornik (1989);
Kawaguchi (2016); Lu & Kawaguchi (2017); Safran &
Shamir (2018); Laurent & Brecht (2018); Nguyen et al.
(2018); Liang et al. (2018a;b; 2019); Venturi et al. (2019);
Ding et al. (2019); Zhang (2019); Nouiehed & Razaviyayn
(2021); Li et al. (2021); Achour et al. (2021) and the surveys
(Sun et al., 2020; Sun, 2020)) which analyze the properties
of stationary points, local minima, strict saddle points, etc.
These works draw a whole picture of the benign landscape
of deep networks, which provides a potential guarantee of
the trajectory analysis, and motivates our work.

2. Preliminaries
In this paper, we consider the optimization of deep linear
network under squared loss:

min
W1,...,WN

LN (W1, . . . ,WN ):=
1

2
∥WN · · ·W1X−Y ∥2F ,

where data matrices are X ∈ Rdx×m,Y ∈ Rdy×m, and
weight matrices are Wi ∈ Rdi×di−1 , i ∈ [N ] with d0 =
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dx, dN = dy. The depth N ≥ 2. We denote the induced
weight matrix as W = WN · · ·W1 ∈ Rdy×dx , and WN =
(W1, . . . ,WN ) ∈ Rd1×d0 × · · · × RdN×dN−1 for brevity.

Notation. We denote vectors by lowercase bold letters
(e.g., u,x), and matrices by capital bold letters (e.g., W =
[wij ]). We use (a)i as the i-th entry of vector a, and set
[a : b] = {a, . . . , b}, [a] = [1 : a],∀a, b ∈ N. We denote by
si(Z) the i-th largest singular of Z. We use ∥·∥ as the stan-
dard Euclidean norm for vectors, and ∥·∥F as the Frobenius
norm for matrices. The convergence of vectors and matrices
in this paper is defined under the standard Euclidean norm
and Frobenius norm. We use the standard O(·),Ω(·) and
Θ(·) notation to hide universal constant factors.

We integrate our assumptions in this paper below:

Assumption 2.1. Assume that the data, network, initializa-
tion and target satisfy:

• Data: XX⊤ = Idx
.

• Network: r := minj≤N dj = 1.

• Initialization: WiW
⊤
i = W⊤

i+1Wi+1,∀i ∈ [N − 1].

• Target: Z := Y X⊤ ∈ Rdy×dx has different nonzero
singular values, i.e., s1(Z) > · · · > sd(Z) > 0,
where d = rank(Y X⊤).

The first three assumptions are the same as Eftekhari (2020).
The data assumption shows that the data is statistically
whitened, which is common in the analysis of linear net-
works (Arora et al., 2018a; Bartlett et al., 2018). The net-
work assumption includes the scalar output case. As men-
tioned in Eftekhari (2020), this case is significant as it corre-
sponds to the popular spiked covariance model in statistics
and signal processing (Eftekhari et al., 2019; Johnstone,
2001; Vershynin, 2012; Berthet & Rigollet, 2013; Desh-
pande & Montanari, 2014), to name a few. Moreover, the
case r = 1 appears to be the natural beginning building
block for understanding the behavior of trajectory. Finally,
the third assumption is the common initialization technique
for linear networks, which was used in Bartlett et al. (2018);
Arora et al. (2018a;b; 2019); Eftekhari (2020); Zou et al.
(2019). For the target, it is reasonable to assume different
nonzero singular values in practice, because matrices with
the same singular values have zero Lebesgue measure.

From the data assumption XX⊤ = Idx
, we can simplify

the problem as

min
W1,...,WN

LN (W1, . . . ,WN )

= ∥WN · · ·W1 −Z∥2F + ∥Y ∥2F − ∥Z∥2F .
(1)

Hence, we call Z the target matrix. Moreover, we focus on
the standard gradient flow method for all i ∈ [N ]:

Ẇi(t) :=
dWi(t)

dt
=−∇WiL

N (WN (t)), t ≥ 0. (2)

Under the balanced initialization in Assumption 2.1, i.e.,
WiW

⊤
i = W⊤

i+1Wi+1,∀i ∈ [N−1], we have the induced
weight flow of W (t) := WN (t) · · ·W1(t) following Arora
et al. (2018b, Theorem 1):

Ẇ (t) = −AW (t)(∇L1(W (t)))

= −AW (t)(W (t)−Z),
(3)

where we denote

AW (∆) :=

N∑
j=1

(
WW⊤)N−j

N ∆
(
W⊤W

) j−1
N .

It is known that the induced flow in Eq. (3) admits an an-
alytic singular value decomposition (SVD) (see Lemma
1 and Theorem 3 in Arora et al. (2019) for example).
By rank(W ) ≤ 1 from Assumptions 2.1, we can de-
note the SVD of W (t) as W (t)

SVD
== s(t)u(t)v(t)⊤ if

W (t) ̸= 0. Here, s(t),u(t),v(t) are all analytic functions
of t. Moreover, s(t) ∈ R,u(t) ∈ Rdy ,v(t) ∈ Rdx , and
∥u(t)∥ = ∥v(t)∥ = 1. Previous work has already shown
the dynamics of these terms:

u̇(t) = s(t)1−
2
N

(
Idy − u(t)u(t)⊤

)
Zv(t), (4a)

v̇(t) = s(t)1−
2
N

(
Idx

− v(t)v(t)⊤
)
Z⊤u(t), (4b)

ṡ(t) = Ns(t)2−
2
N

(
u(t)⊤Zv(t)− s(t)

)
. (4c)

Readers can find the derivation of ṡ(t) in Arora et al. (2019,
Theorem 3), and u̇(t), v̇(t) in Eftekhari (2020, Eq. (139))
or Arora et al. (2019, Lemma 2) with some simplification.
We also give the derivation of u̇(t), v̇(t) in Lemma B.7.

To describe the solution obtained by flow, we also
need the full SVD of target as Z = UDV ⊤ =∑d

i=1 siuiv
⊤
i with s1> · · ·>sd>0 by Assumption 2.1, or-

thogonal matrices U = [u1, . . . ,udy
] ∈ Rdy×dy and

V = [v1, . . . ,vdx ] ∈ Rdx×dx , and the rectangular-
diagonal matrix D =

(
diag{s} 0

0 0

)
∈ Rdy×dx , where

s = (s1, . . . , sd)
⊤ ∈ Rd. Thus, the best rank-one ap-

proximation matrix is Z1 = s1u1v
⊤
1 . Note that Z1 is the

unique solution of problem (1), because Z has a nontrivial
spectral gap by Assumption 2.1 (see Golub et al. (1987, Sec-
tion 1)). For brevity, we define sk = 0,∀k > d. We adopt
the projection length of u(t),v(t) to each ui and vi as
ai(t) = u⊤

i u(t),∀i ∈ [dy] and bj(t) = v⊤
j v(t),∀j ∈ [dx].

Leaving the derivation in Appendix A, we have the gradient
flow of each item:

ȧi(t) = s(t)1−
2
N

(
sibi(t)− ai(t)

d∑
k=1

[skak(t)bk(t)]

)
,
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ḃj(t) = s(t)1−
2
N

(
sjaj(t)− bj(t)

d∑
k=1

[skak(t)bk(t)]

)
,

where i ∈ [dy], j ∈ [dx]. Before we provide our results, we
first state several useful invariance during the whole training
dynamic as follows, which is crucial to our proofs.

Proposition 2.2. If not mentioned specifically, we assume
s(0) > 0. We have the following useful properties:

1). If s(0) > 0, then ∀t ≥ 0, s(t) > 0. Otherwise, s(0) = 0,
then ∀t ≥ 0, s(t) = 0 (i.e., W (t) = 0).

2). u(t)⊤Zv(t) is non-decreasing and converges.

3). u(t)⊤Z1v(t) is non-decreasing and converges.

4). For all t ≥ 0, ai(t) + bi(t) has the same sign with
ai(0)+ bi(0), i.e., ai(t)+ bi(t) is identically zero if ai(0)+
bi(0) = 0, is positive if ai(0) + bi(0) > 0, and is negative
if ai(0) + bi(0) < 0,∀i ∈ [d].

5). If for some k ∈ [0 : d − 1], ai(0) + bi(0) = 0,∀i ∈
[k] (if k = 0, then no such assumptions) and ak+1(0) +
bk+1(0) ̸= 0, then |ak+1(t) + bk+1(t)| is non-decreasing,
and limt→+∞ ak+1(t) + bk+1(t) exists.

3. Convergent Behavior of Trajectories
We first give a glance of our main result for all initializa-
tion under Assumption 2.1. Our discovery is an extension
of Eftekhari et al. (2019), since the description covers all
trajectories including the ones converge to saddle points as
well the global minimizers. The main conclusion is that the
convergent point is decided by the indicator of initialization:
ai(0) + bi(0), i ∈ [d].

Theorem 3.1. Under Assumption 2.1, and assume s(0) > 0.
(I) If k ∈ [0 : d− 1], ai(0) + bi(0) = 0,∀i ∈ [k] (if k = 0,
then no such assumptions), and ak+1(0) + bk+1(0) ̸= 0,
then we have W (t) → sk+1uk+1v

⊤
k+1. (II) Otherwise, i.e.,

ai(0) + bi(0) = 0,∀i ∈ [d], then we have W (t) → 0.

We give a roadmap of the proof of Theorem 3.1 in Figure
3. We leave the complete proof in Section 3.3. Before we
provide the details, we list some preparation built on the
work of Eftekhari et al. (2019).

3.1. Rank-stable Set

By Bah et al. (2021, Theorem 5) (i.e., Theorem B.3),
we know that (W1(t), . . . ,WN (t)) always converges to
a critical point of LN as t → +∞. Hence, we can de-
fine W := limt→+∞ W (t), and s̄ := limt→+∞ s(t) =
limt→+∞ ∥W (t)∥F . To specify the convergent point, we
define rank-r set following Eftekhari (2020) as

Mr = {W : rank(W ) = r}.

Furthermore, as mentioned in Eftekhari (2020, Lemma 3.3)
(i.e., Lemma B.1), we have rank(W (t)) = rank(W (0)) =
1,∀t ≥ 0 if W (0) ̸= 0. However, the limit point W (t)
might not belong to M1 because M1 is not closed (see
Eftekhari (2020, Lemma 3.4)). To exclude the zero matrix
(s̄ = 0) as the limit point of gradient flow, Eftekhari (2020)
introduced a restricted initialization set:

Nα(Z) = {W : W
SVD
== u · s · v⊤, s > αs1 − s2 ≥ 0,

u⊤Z1v > αs1}, α ∈ [s2/s1, 1).

While we find another rank-stable set Rb(Z) below with
the similar rank-stable property shown in Lemma 3.2.

Rb(Z)={W :W
SVD
== u ·s ·v⊤, s > b,u⊤Zv > b}, b>0.

Lemma 3.2 (Extension of Lemma 3.7 in Eftekhari (2020)).
Under Assumption 2.1, for gradient flow initialized at
W (0) ∈ Rb(Z), the limit point exists and satisfies W =
limt→+∞ W (t) ∈ M1, i.e., s̄ > 0.

Proof. We only need to prove that W (t) ∈ Rb(Z),∀t ≥ 0.
Suppose s(t0) < b for some t0 > 0. Since W (0) ∈ Rb(Z),
we have s(0) > b. Hence, by intermediate value theorem,
T := sup{t : s(t) = b, 0 ≤ t ≤ t0} > 0. Since s(t) is
analytic, we obtain s(T ) = b. Now we can conclude

s(t) < b,∀T < t < t0, s(T ) = b. (5)

Otherwise, if s(t1) ≥ b for some T < t1 < t0, then by
intermediate value theorem again, we can find a T ′ such that
T < t1 ≤ T ′ < t2, s.t., s(T ′) = b, which is a contradiction
of the definition of T .

Moreover, since W (0) ∈ Rb(Z), then u(0)⊤Zv(0) > b.
Thus, we have u(t)⊤Zv(t) > b,∀t ≥ 0 by 2) in Proposi-
tion 2.2. Since W (0) ∈ Rb(Z), then s(0) > b > 0. Thus,
we have s(T ) > 0 by 1) in Proposition 2.2. Therefore,

ṡ(T )
(4c)
= Ns(T )2−

2
N

(
u(T )⊤Zv(T )− s(T )

)
= Ns(T )2−

2
N

(
u(T )⊤Zv(T )− b

)
> 0,

which is a contradiction with Eq. (5).

Remark 3.3. Indeed, our rank-stable set Rb(Z) is more gen-
eral than Nα(Z). For any α ∈ [s2/s1, 1),W ∈ Nα(Z),
since |u⊤ (Z −Z1)v| ≤ s2, we get u⊤Zv ≥ u⊤Z1v −
s2 > αs1 − s2 ≥ 0. Hence, we can find some b > 0, such
that W ∈ Rb(Z). Moreover, when W = s2u2v

⊤
2 , we can

see W ∈ Rs2/2(Z), but W ̸∈ Nα(Z),∀α ∈ [s2/s1, 1),
because u⊤

2 Z1v2 = 0. Additionally, we will see the neces-
sity of our rank-stable set by showing counterexamples in
Section 3.4.

Applying the same analysis as Eftekhari (2020, Theorem
3.8), we obtain almost surely convergence to the global min-
imizer from the initialization in our rank-stable set Rb(Z).
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Theorem 3.4 (Extension of Theorem 3.8 in Eftekhari
(2020)). Under Assumption 2.1, gradient flow converges
to a global minimizer of the original problem (1) from the
initialization in W (0) ∈ Rb(Z), outside of a subset with
Lebesgue measure zero.

3.2. Global Minimizer Convergent Set

Section 3.1 mainly analyzes the behavior of s(t) to guar-
antee the rank of limit point is not degenerated. Though
Theorem 3.4 ensures the almost surely convergence to the
global minimizer, there are still some bad trajectories which
converge to saddle points, such as siuiv

⊤
i , i ̸= 1. In this

subsection, we move on to give another restricted initial-
ization set to guarantee the global minimizer convergence
without excluding a zero measure set. Our strategy mainly
adopts singular vector analysis. In the following, we always
assume W (0) ̸= 0 to ensure well-defined u(t) and v(t).
Lemma 3.5. There exists a sequence {tn} with tn → +∞,
such that limn→+∞

(
Idy − u(tn)u(tn)

⊤)Zv(tn) = 0,
and limn→+∞

(
Idx

− v(tn)v(tn)
⊤)Z⊤u(tn) = 0. More

specifically, we have

lim
n→+∞

( d∑
k=1

skak(tn)bk(tn)

)
ai(tn)−sibi(tn)=0, (6)

lim
n→+∞

( d∑
k=1

skak(tn)bk(tn)

)
bj(tn)−sjaj(tn)=0, (7)

for all i ∈ [dy] and j ∈ [dx]. Furthermore, if there exists an
i0 ∈ [d], such that limn→+∞ ai0(tn) + bi0(tn) exists and
the limit is not zero, then we could obtain

lim
n→+∞

u(tn)
⊤Zv(tn) = lim

n→+∞

d∑
k=1

skak(tn)bk(tn)=si0 .

(8)
Lemma 3.6. Suppose there exists such a sequence {tn}∞n=0

that tn → +∞, and for some k < d, ai(tn) + bi(tn) =
0,∀i ∈ [k], n ≥ 0 (if k = 0, then no such assumptions).
Then if limn→+∞

∑d
j=1 sjaj(tn)bj(tn) = sk+1, we have

lim
n→+∞

u(tn)v(tn)
⊤ = uk+1v

⊤
k+1.

We underline that the result of Lemma 3.5 is the condition
of Lemma 3.6, and the sub-sequence {tn} is enough to
describe the convergent point because W always exists.

Now we define the global minimizer convergent set as:

Gb(Z)={W :W
SVD
== u ·s ·v⊤, s > b,u⊤Z1v > b}, b>0.

The only difference between Gb(Z) and Rb(Z) is that we
replace target Z with the global minimizer Z1. We invoke
Theorem 3.7 to conclude that the flow initialized from Gb(Z)
could converge to a global minimizer.

Theorem 3.7 (Extension of Theorem 3.8 in Eftekhari
(2020)). Under Assumption 2.1, gradient flow converges
to a global minimizer of the original problem (1) from the
initialization W (0) ∈ Gb(Z).

Proof. Our proof is separated into the following steps.

Step 1. Since W (0) ∈ Gb(Z), we get s1a1(0)b1(0) =
u(0)⊤Z1v(0) > b > 0. Hence, |a1(0) + b1(0)| > 0. Addi-
tionally, by 5) in Proposition 2.2, we get | limt→+∞ a1(t) +
b1(t)| ≥ |a1(0) + b1(0)| > 0. Thus, applying Lemma 3.5
with i0 = 1, Eq. (8) holds, i.e., there exists a sequence
{tn} with tn → +∞, s.t., limn→+∞ u(tn)

⊤Zv(tn) =

limn→+∞
∑d

k=1 skak(tn)bk(tn) = s1.

Step 2. From Step 1, limn→+∞
∑d

k=1 skak(tn)bk(tn) =
s1. Then we can employ Lemma 3.6 with k = 0, showing
that limn→+∞ u(tn)v(tn)

⊤ = u1v
⊤
1 .

Step 3. From Step 1, we get u(tn)⊤Zv(tn) → s1 > 0,
leading to ∃N > 0, u(tN )⊤Zv(tN ) > 0. Moreover, since
W (0) ∈ Gb(Z), we have s(0) > 0. Thus, we have s(tN ) >
0 by 1) in Proposition 2.2. Hence, W (tN ) ∈ Rb(Z) for
some b > 0. Thus, by Lemma 3.2, we have s̄ > 0.

Step 4. Taking tn → +∞ in Eq. (4c), we obtain 0 =
Ns̄2−

2
N (s1 − s̄). While by Step 3, s̄ > 0. Hence, s̄ = s1.

Combining Step 2 and Step 4, we obtain that W (tn)
converges to the global minimizer s1u1v

⊤
1 . Finally, we

note that by Theorem 5 in Bah et al. (2021), W (t) con-
verges. Hence, W (t) → s1u1v

⊤
1 , which is the global

minimizer.

Remark 3.8. We underline that, comparing to Theorem 3.4,
Theorem 3.7 does not require to leave out a zero measure
initialization set. Meanwhile, Gb(Z) is more general than
Nα(Z) as well, since we have less constraint for u⊤Z1v.
Moreover, we will see the necessity of our global minimizer
convergent set by showing counter examples in Section 3.4.

3.3. Convergence Analysis for All Initialization

Now we turn back to the proof of Theorem 3.1.

Proof of Theorem 3.1. (I) For the first conclusion, the proof
is separated into the following steps, which is similar as the
proof of Theorem 3.7.

Step 1. In view of 4) in Proposition 2.2, we get ∀t ≥
0, i ∈ [k], ai(t) + bi(t) = 0 since ai(0) + bi(0) =
0,∀i ∈ [k]. In view of 5) in Proposition 2.2, we could see
| limt→+∞ ak+1(t) + bk+1(t)| ≥ |ak+1(0) + bk+1(0)| >
0,∀t ≥ 0. Thus, applying Lemma 3.5, we obtain
∃{tn} with tn → +∞, s.t., limn→+∞ u(tn)

⊤Zv(tn) =

limn→+∞
∑d

i=1 siai(tn)bi(tn) = sk+1.
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Step 2. By Step 1 and Lemma 3.6, we could obtain
limn→+∞ u(tn)v(tn)

⊤ = uk+1v
⊤
k+1.

Step 3. By Step 1, u(tn)⊤Zv(tn) → sk+1 > 0, leading
to ∃N > 0, u(tN )⊤Zv(tN ) > 0. Moreover, since s(0) >
0, we have s(tN ) > 0 by 1) in Proposition 2.2. Hence,
W (tN ) ∈ Rb(Z) for some b > 0. Thus, by Lemma 3.2,
we have s̄ > 0.

Step 4. Finally, taking tn → +∞ in Eq. (4c), by Step 1, we
obtain 0 = Ns̄2−

2
N (sk+1 − s̄). While by Step 3, we have

s̄ > 0. Hence, s̄ = sk+1.

Combining Step 2 and Step 4, we obtain that W (tn) con-
verges to sk+1uk+1v

⊤
k+1. Finally, we note that by The-

orem 5 in Bah et al. (2021), W (t) converges. Hence,
W (t) → sk+1uk+1v

⊤
k+1.

(II) For the second conclusion, by 4) in Proposition 2.2, we
obtain ai(t) + bi(t) = 0,∀i ∈ [d], t ≥ 0. Hence, we get

u(t)⊤Zv(t)
(13)
=

d∑
j=1

sjaj(t)bj(t) = −
d∑

j=1

sja
2
j (t) ≤ 0,

which yields that

ṡ(t)
(4c)
= Ns(t)2−

2
N

(
u(t)⊤Zv(t)− s(t)

)
≤ −Ns(t)3−

2
N .

By solving the above flow, we derive that

s(t)2−
2
N ≤

[
s(0)

2
N −2 + (2N − 2)t

]−1

.

Thus, s̄ = limt→+∞ s(t) = 0, i.e., W (t) → 0.

Remark 3.9. We note that s(0) = 0 is a trivial case from
1) in Proposition 2.2. Moreover, we also give a conver-
gence rate for the second conclusion, i.e., the rate for the
convergence to the original point.

3.4. Some Intuitive Examples

Previous sections have shown the convergent behavior of
arbitrary initialization. To give a better understanding of our
results, we list some examples below.

Example 1. If W (0) = −s(0)uiv
⊤
i for some i ∈

[min{dy, dx}] and s(0) > 0, we have ∀t ≥ 0, u̇(t) =
0, v̇(t) = 0 and u(t)⊤Zv(t) = −si from Eqs. (4a) and
(4b). Thus, we obtain the ODE of s(t) as follows

ṡ(t)
(4c)
= −Ns(t)2−

2
N (si + s(t)) < 0.

So we could obtain s(t) → 0. We see that W (t) → 0,
which is a rank-unstable trajectory. Thus, the gradient flow
of Eq. (2) does not converge to a global minimizer.

Example 2. Bah et al. (2021, Remark 42): If Z ⪰ 0, and
s(0) > 0,u(0) = −v(0). Then from Eqs. (4a) and (4b),

we obtain u̇(t) = −v̇(t) if u(t) = −v(t). Hence, we get
u(t) = −v(t),∀t ≥ 0. Thus, we obtain ṡ(t) as follows:

ṡ(t)
(4c)
= Ns(t)2−

2
N

(
u(t)⊤Zv(t)− s(t)

)
= Ns(t)2−

2
N

(
−u(t)⊤Zu(t)− s(t)

)
< 0,

leading to s(t) → 0. We could see that W (t) → 0, which
is a rank-unstable trajectory. Thus, the gradient flow of
Eq. (2) does not converge to a global minimizer.

Example 3. If W (0) = s(0)uiv
⊤
i for some i ∈ [d] and

s(0) > 0, then from Eqs. (4a) and (4b), we obtain u̇(t) =
0, v̇(t) = 0 and u(t)⊤Zv(t) = si, ∀t ≥ 0. Thus, we
obtain the ODE of s(t) as follows

ṡ(t)
(4c)
= Ns(t)2−

2
N (si − s(t)) .

Hence, we obtain s(t) → si. Once i ̸= 1, we could see that
W (t) → siuiv

⊤
i , i.e., the gradient flow of Eq. (1) does not

converge to a global minimizer.

Remark 3.10. We note that our Theorem 3.1 covers Exam-
ples 1 and 2 by choosing k = d, and Example 3 by choos-
ing k = i − 1. Moreover, we could not further improve
our definition of Rb(Z) and Gb(Z) based on theses exam-
ples. We briefly show the reason here. Denote R(Z) :=

∪b>0Rb(Z)={W : W
SVD
== u ·s ·v⊤, s > 0,u⊤Zv > 0}.

We obtain R(Z)c := M1\R(Z) = {W : W
SVD
== u · s ·

v⊤, s = 0 or u⊤Zv ≤ 0}. Note that s = 0 in R(Z)c is a
trivial case corresponding to W = 0. While in Example
1, −s(0)uiv

⊤
i ̸∈ R(Z) because −u⊤

i Zvi = −si ≤ 0,
and in Example 2, −s(0)u(0)u(0)⊤ ̸∈ R(Z) because
−u(0)⊤Zu(0) ≤ 0. Hence, through Examples 1 and 2,
we find that certain initialization suv⊤ with u⊤Zv ≤ 0
could indeed cause rank-unstable trajectories. Moreover, the
equality (u⊤Zv = 0) holds if in Example 1, rank(Z) =
d < min{dy, dx} and i > d. Therefore, the initialization
set Rb(Z) could not be improved in the scope of s and
u⊤Zv. Additionally, we can get a similar argument of
Gb(Z) by Example 3 since s(0)uiv

⊤
i ̸∈ Gb(Z),∀i > 1.

Thus, we could not further improve our definition of Gb(Z)
in the scope of s and u⊤Z1v as well.

4. Convergence Rates to Global Minimizers
We briefly show the specific convergence rates in this sec-
tion. We consider the rates to the global minimizers under
Assumption 2.1, which is common in previous works. That
is, from Theorem 3.1, we consider the initialization which
satisfies a1(0) + b1(0) ̸= 0 and s(0) > 0. Typically, for
N ≥ 3, the trajectories can be divided into three stages:

Stage 1. For t ∈ [0, t1], where t1 := inf{t : a1(t)b1(t) ≥
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Figure 1. We choose N = 6, d = 5 with hidden-layer width (dN , . . . , d0) = (5, 4, 1, 10, 5, 3, 8), and set different k ∈ [0 : d] in Theorem
3.1. The transparent horizontal lines are the singular value of Z in order (that we artificially set them to be 5, 4, 3, 2, 1). The learning rate
here is 5× 10−4. Legends present s(t),u(t)⊤Zv(t),u(t)⊤Z1v(t). Here t is the running step in gradient descent.

0} < +∞, we have a1(t)b1(t) ≤ 0, and the rates are

1− a1(t)b1(t) = O([(N − 2)t]−
c1

N−2 ),

s(t) = Ω([(N − 2)t]−
N

N−2 ). [Theorem 4.5]

Stage 2. For t ∈ (t1, t2], where t2 := inf{t :u(t)⊤Zv(t) ≥
s(t)}, we have a1(t)b1(t) > 0, ṡ(t) ≤ 0, and the rates are

1− a1(t)b1(t) = O([(N − 2)t]−
c2

N−2 ),

s(t) = Ω([(N − 2)t]−
N

N−2 ). [Theorem 4.7]

Stage 3. For t ∈(max{t1, t2},+∞), we have a1(t)b1(t) >
0, ṡ(t) ≥ 0, and the rates are

1− a1(t)b1(t) = O
(
e−c5t

)
,

|s(t)− s1| = O(e−min{c5,c6}t). [Theorem 4.9]

Here the cis are constants and will be specified in theorems.
Remark 4.1. Although the rates in Stages 1 and 2 are similar,
we adopt different proof techniques. Moreover, Stage 1 can
be viewed as a warm-up period to enter Gb(Z).

Next we explain other minor cases: 1) If t1 = 0, then
Stage 1 vanishes; 2) If t1 ≥ t2, then Stage 2 vanishes; 3)
If t2 = +∞, then we have similar rates as Stage 3: 1 −
a1(t)b1(t) = O(e−c3t), |s(t)− s1| = O(e−c4t) [Theorem
4.8]. However, this case is not suitable in our framework of
the three stages.

Previous works (Arora et al., 2018a; Hu et al., 2019; Bartlett
et al., 2018; Zou et al., 2019; Wu et al., 2019; Eftekhari,

2020) state linear rates under a local analysis or a restricted
initialization set. However, we show the polynomial rates in
the worse case for optimizing deep linear networks under
arbitrary balanced initialization. Hence, we think that our
results give a more general understanding of the trajectories
optimizing deep linear networks.

4.1. Properties of t1 and t2

Before we give the detail of analysis, we need some prepara-
tion to better understand the choice of t1 and t2 in advance.

Lemma 4.2. Let t1 := inf{t : a1(t)b1(t) ≥ 0}, t2 :=
inf{t : u(t)⊤Zv(t) ≥ s(t)} and c1(t) := a1(t)b1(t).
Then we have (I) t1 < +∞ if a1(0) + b1(0) ̸= 0, and
ċ1(t) ≥ 0 for all t ≥ 0; (II) ṡ(t) ≤ 0 for t ∈ [0, t2), and
ṡ(t) ≥ 0 for t ∈ [t2,+∞).

Remark 4.3. (I) in Lemma 4.2 tells us that the first stage,
if exists, only appears a finite time in the beginning. (II) in
Lemma 4.2 shows the induced weight norm (∥W (t)∥F =
s(t)) goes through descending and ascending periods. If the
initial induced weight norm starts with descending behavior,
then it could descend forever, or it will change to ascending
and continue increasing to s1. If the initial induced weight
norm begins with ascending behavior, then it would increase
to s1 directly. Such induced weight norm behavior also
appears in deep linear networks with the logit loss (Lin
et al., 2021).
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4.2. Convergence Rates of s(t): Stage 1 and Stage 2

In Stages 1 and 2, we have ṡ(t) ≤ 0 from Lemma 4.2.
Now we give global lower bounds for the singular value s(t)
within Stages 1 and 2.
Theorem 4.4. Assuming s(0) > 0, we have 0 < s(t) ≤
s0 := max{s1, s(0)} for all t ≥ 0. Further we have

s(t) ≥ s(0)e−2(s1+s0)t for N = 2, (9a)

s(t) ≥ [(s1+s0)(N−2)t+s(0)
2
N −1]−

N
N−2 for N ≥ 3.

(9b)

We note that different lower bounds of s(t) lead to different
rates for the cases N = 2 and N ≥ 3. For brevity, we only
give the results for N ≥ 3, and leave the simple case N = 2
in Appendix D.

4.3. Convergence Rates of a1(t)b1(t): Stage 1

In the case where a1(0)b1(0) < 0, we prove that the case
will reduce to the case a1(0)b1(0) ≥ 0 in a finite time when
a1(0)+ b1(0) ̸= 0. We further give an upper bound for time
staying in Stage 1 and a positive lower bound of a1(t)b1(t).
Theorem 4.5. Suppose N ≥ 3, s(0) > 0, a1(0)b1(0) < 0
and a1(0) + b1(0) ̸= 0. Then we have

1− a1(t)b1(t) = O([(N − 2)t]−
c1

N−2 ), for 0 ≤ t ≤ t1,

where c1 = 2/(s1 + s0) with s0 = max{s1, s(0)}.

Furthermore, we have t1 ≤ T1 with

T1 =
s(0)

2
N −1

(s1 + s0)(N − 2)
·
(
C

−(s1+s0)(N−2)/2
1 − 1

)
,

(10)
where C1 = |a1(0)+b1(0)

a1(0)−b1(0)
|. Additionally, we could obtain

a1(t)b1(t) = Ω([a1(0) + b1(0)]
2/N), (11)

if t ≥ s(0)2/N−1

(s1+s0)(N−2) · (e · C
−(s1+s0)(N−2)/2
1 − 1).

Remark 4.6. The upper bound of t1 in Theorem 4.5 shows
that if a1(0) + b1(0) ≈ 0, then the Stage 1 would last for
a long time according to Eq. (10). Moreover, Theorem 3.1
has already shown that once a1(0) + b1(0) = 0, the trajec-
tory would not converge to the global minimizer. Hence,
our finding in Theorem 4.5 is consistent with Theorem 3.1.
Additionally, we also give guarantee of the trajectory to
arrive at Gb(Z) for some b > 0 from Eq. (11). That is, the
trajectory enters in our global minimizer convergent set.

4.4. Convergence Rates of a1(t)b1(t): Stage 2

Based on Theorem 4.5, we can see once a1(0) + b1(0) ̸= 0,
then a1(t)b1(t) > 0 after finite time, that is, the trajectory
enters in the global minimizer convergent set Gb(Z). In the
following, we begin with a1(0)b1(0) > 0 for short. We find
a similar polynomial convergence rate in Stage 2.

Theorem 4.7. If N ≥ 3, s(0) > 0 and a1(0)b1(0) > 0,
then we get

1− a1(t)b1(t) = O([(N − 2)t]−
c2

N−2 ),

where c2 = 2(s1−s2)/(s1+s0) with s0 = max{s1, s(0)}.

4.5. Convergence Rates of a1(t)b1(t) and s(t): Stage 3

Before we start our analysis in Stage 3, we need to handle
the minor case t2 := inf{t : u(t)⊤Zv(t) ≥ s(t)} = +∞.

Theorem 4.8. If N ≥ 3, s(0) > 0, a1(0)b1(0) > 0 and
t2 = +∞, then we have

1− a1(t)b1(t) = O
(
e−c3t

)
, |s(t)− s1| = O

(
e−c4t

)
,

where c3 = 2s
1− 2

N
1 (s1 − s2), c4 = Ns

2− 2
N

1 .

Now we turn to the remaining case t2 < +∞. Additionally,
we can assume ṡ(0) ≥ 0 for short in Stage 3 by Lemma 4.2.

Theorem 4.9. If N ≥ 3, s(0) > 0, a1(0)b1(0) > 0 and
ṡ(0) ≥ 0, then we have

1− a1(t)b1(t)=O(e−c5t), |s(t)− s1|=O(e−min{c5,c6}t),

where c5 = 2s(0)1−
2
N (s1 − s2), c6 = Ns(0)2−

2
N .

The difference between the minor case t2 = +∞ and Stage
3 is the constant above the exponent, and the proofs are
similar between these two schemes. Thus, we combine
them in a subsection.
Remark 4.10. Though we don’t provide an upper bound of
t2 here, we still have a slower global convergence guarantee
of u(t),v(t) following Stage 2. Moreover, we discover the
linear rate in Stage 3 only appears in the late training phase
from experiments (see Section 5), and gives high precision
guarantee of solution at last. Furthermore, Eftekhari (2020)
also gave a linear rate in their restricted initialization set
Nα(Z). Thus, we mainly focus on the previous stages to
highlight that our results cover a larger initialization set.

5. Experiments
In this section, we conduct simple numerical experiments
to verify our findings. We first show the trajectories trapped
into a saddle point skukv

⊤
k (or the global minimizer) guided

by Theorem 3.1. Then we give some intuitive observation
of the trajectories converged to the global minimizer.

Trajectories trapped into saddle points. We construct
u(0) = Uα1 and v(0) = V α2, where α1 ∈ Rdy

and α2 ∈ Rdx have the inverse items until the k-th en-
try, i.e., (α1)i + (α2)i = 0,∀i ∈ [k] with k ≤ d and
(α1)k+1 + (α2)k+1 ̸= 0. Then we get ∀i ∈ [k], ai(0) +
bi(0) = u⊤

i u(0) + v⊤
i v(0) = 0 and ak+1(0) + bk+1(0) ̸=
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Figure 2. We choose N = 6, d = 5 with hidden-layer width (dN , . . . , d0) = (5, 4, 1, 10, 5, 3, 8), and set k = 0 in Theorem 3.1, i.e., the
trajectory converges to the global minimizer. Learning rate is 5 × 10−4. Left: Dynamics of s(t),u(t)⊤Zv(t),u(t)⊤Z1v(t) during
the whole optimization. Middle: Polynomial convergence of s(t) and u(t)⊤Z1v(t) in Stages 1 and 2. Here we plot u(t)⊤Z1v(t)−
u(0)⊤Z1v(0) instead of u(t)⊤Z1v(t) to avoid negative values. The red vertical line is the time that the monotonicity of s(t) changes
(ṡ(t) = 0). Right: Linear convergence of s(t) and u(t)⊤Z1v(t) in the final stage. Here t is the running step in gradient descent.

0. After u(0),v(0) decided, we construct Wi(0) =
s(0)1/Nhi+1h

⊤
i with ∥hi∥ = 1,∀i ∈ [N + 1] and h1 =

v(0),hN+1 = u(0) to obtain a balanced initialization
(W1(0), . . . ,WN (0)) and W (0) = s(0)u(0)v(0)⊤. Fi-
nally, we run gradient descent (GD) for the problem (1)
with a small learning rate 5× 10−4, and we artificially set
si = d+ 1− i,∀i ∈ [d].

The simulations are shown in Figure 1. As Figure 1 depicts,
u(t)⊤Zv(t) and u(t)⊤Z1v(t) are non-decreasing as our
Proposition 2.2 shows, and s(t) goes through descending
and ascending periods as Lemma 4.2 mentioned. Addition-
ally, we could see our construction gives a stuck region
around sk+1 according to the choice of k ≤ d. Though our
Theorem 3.1 shows that the gradient flow of W (t) would
finally converge to sk+1uk+1v

⊤
k+1, we find after a period

of (long) time, gradient descent can escape from the sad-
dle point around sk+1uk+1v

⊤
k+1, and finally converges to a

global minimizer. We consider the numerical error during
optimization and unbalanced weight matrix caused by GD
may lead to the inconsistent of gradient flow and its discrete
version GD. Overall, we describe the possible convergence
behavior of all initialization in the ideal setting.

Trajectories converged to the global minimizer. We also
plot the trajectory converging to the global minimizer in
detail shown in Figure 2. To give a more clear variation of
stages, we adopt s(0) = 6 and a negative u(0)⊤Z1v(0). As
the left figure of Figure 2 shows, s(t) first decreases, then
increases. Additionally, the middle figure shows that s(t)
decreases and u(t)⊤Z1v(t) increases with an approximate
polynomial rate (noting the log scale in both x-axis and
y-axis). Moreover, the left and middle figures also show
that once s(t) increases, u(t)⊤Z1v(t) will increase much
faster, and switch to another stage as we prove. Finally,
we observe the final stage, that is, the linear convergence
of both s(t) and u(t)⊤Z1v(t) to s1 in the right graph of
Figure 2. Overall, we conclude that our convergent rates

match with the numerical experiments well4.

6. Conclusion
In this work we have studied the training dynamic of deep
linear networks which have a one-neuron layer. Specifically,
we focus on the gradient flow methods under the quadratic
loss and the balanced initialization. We have shown the
convergent point of an arbitrary balanced starting point.
Moreover, we have described the convergence rates of the
trajectories towards the global minimizers, finding that the
convergence goes through polynomial to linear rates. The
behavior predicted by our theorems is also observed in nu-
merical experiments. Though our analysis mainly focuses
on gradient flow, a recent work (Elkabetz & Cohen, 2021)
gives the conjecture that the theory of gradient flows will
be central to unraveling mysteries behind deep learning,
which makes our effort of flow analysis become practical.
Although Elkabetz & Cohen (2021)’s results are not directly
applicable due to the near-zero initialization assumption,
the curvature analysis of flow trajectory may be a promis-
ing future work. Moreover, the analysis of linear networks
without a one-neuron layer and other scalar-output linear
networks (Woodworth et al., 2020; Yun et al., 2020) re-
main open problems. Overall, we hope that our findings of
training trajectories would bring a better understanding of
(linear) neural networks.
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4Moreover, we also conduct experiments of the minor case
(t2 = +∞) in Appendix E, which match with our findings as well.
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ai(0) + bi(0) = 0,∀i ∈ [k], ak+1(0) + bk+1(0) ̸= 0 and s(0) > 0

| limt→+∞ ak+1(t) + bk+1(t)| > 0∀t ≥ 0, i ∈ [k], ai(t) + bi(t) = 0 ∀t ≥ 0, s(t) > 0

∃{tn}, limn→+∞ u(tn)
⊤Zv(tn) = sk+1

limn→+∞ u(tn)v(tn)
⊤ = uk+1v

⊤
k+1

∃N, b > 0,W (tN ) ∈ Rb(Z)

s̄ = limt→+∞ s(t) = sk+1 > 0

limn→+∞ W (tn) = sk+1uk+1v
⊤
k+1 limt→+∞ W (t) = sk+1uk+1v

⊤
k+1

4) Prop. 2.2 5) Prop. 2.2 1) Prop. 2.2

Lemma 3.4

Lemma 3.5

Lemma 3.5

Lemma 3.1

Theorem 5 in
Bah et al. (2021)

Figure 3. The roadmap of the proof of Theorem 3.1.

A. Missing Derivation in Section 2
We adopt the projection length of u(t),v(t) to each ui and vi as ai(t) = u⊤

i u(t),∀i ∈ [dy] and bj(t) = v⊤
j v(t),∀j ∈ [dx].

So we have

u(t) =

dy∑
i=1

ai(t)ui, v(t) =

dx∑
j=1

bj(t)vj ,

dy∑
i=1

a2i (t) =

dx∑
j=1

b2j (t) = 1. (12)

Then we get

u(t)⊤Zv(t) =

dy∑
i=1

dx∑
j=1

ai(t)bj(t)u
⊤
i Zvj =

d∑
i=j=1

ai(t)bj(t)u
⊤
i Zvj =

d∑
k=1

skak(t)bk(t),

Zv(t) =

dx∑
j=1

bj(t)Zvj =

d∑
j=1

sjbj(t)uj , and Z⊤u(t) =

dy∑
i=1

ai(t)Z
⊤ui =

d∑
i=1

siai(t)vi.

(13)

where we uses the fact that Z⊤ui = 0,∀i > d, Zvj = 0,∀j > d, and u⊤
i Zvj = 0,u⊤

i Zvi = si,∀j ̸= i ≤ d. Hence, we
have the gradient flow of each item:

ȧi(t)
(4a)
= s(t)1−

2
N u⊤

i

(
Idy

− u(t)u(t)⊤
)
Zv(t)

(13)
= s(t)1−

2
N

(
sibi(t)− ai(t)

d∑
k=1

[skak(t)bk(t)]

)
,∀i ∈ [dy].

ḃj(t)
(4b)
= s(t)1−

2
N v⊤

j

(
Idx

− v(t)v(t)⊤
)
Z⊤u(t)

(13)
= s(t)1−

2
N

(
sjaj(t)− bj(t)

d∑
k=1

[skak(t)bk(t)]

)
,∀j ∈ [dx].

(14)

B. Auxiliary Results
B.1. Previous Results

Lemma B.1 (Lemma 3.3 in Eftekhari (2020)). For the induced flow in Eq. (3), we have that rank(W (t)) =
rank(W (0)),∀t ≥ 0, provided that XX⊤ is invertible and the network depth N ≥ 2.
Lemma B.2 (Lemma 4 in Arora et al. (2019)). Let α ≥ 1/2 and g : [0,∞) → R be a continuous function. Consider the
initial value problem:

s(0) = s0, ṡ(t) = (s2(t))α · g(t),∀t ≥ 0,

where s0 ∈ R. Then, as long as it does not diverge to ±∞, the solution to this problem (s(t)) has the same sign as its initial
value (s0). That is, s(t) is identically zero if s0 = 0, is positive if s0 > 0, and is negative if s0 < 0.
Theorem B.3 (Theorem 5 in Bah et al. (2021)). Assume XX⊤ has full rank. Then the flows Wi(t) defined by Eq. (2) and
W (t) given by Eq. (3) are defined and bounded for all t ≥ 0 and (W1(t), . . . ,WN (t)) converges to a critical point of LN

as t → +∞.
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Definition B.4 (Definition 27 in Bah et al. (2021)). Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇
and let f : M → R be a twice continuously differentiable function. A critical point x0 ∈ M, i.e., ∇gf(x0) = 0 is called a
strict saddle point if Hess f(x) has a negative eigenvalue. We denote the set of all strict saddles of f by X = X (f). We say
that f has the strict saddle point property, if all critical points of f that are not local minima are strict saddle points.

The following theorem shows that flows avoid strict saddle points almost surely.

Theorem B.5 (Theorem 28 in Bah et al. (2021)). Let L : M → R be a C2-function on a second countable finite dimensional
Riemannian manifold (M, g), where we assume that M is of class C2 as a manifold and the metric g is of class C1. Assume
that ϕt(x0) exists for all x0 ∈ M and all t ∈ [0,+∞). Then the set

SL := {x0 ∈ M : lim
t→+∞

ϕt(x0) ∈ X = X (L)}

of initial points such that the corresponding flow converges to a strict saddle point of L has measure zero.

Proposition B.6 (Proposition 33 in Bah et al. (2021)). The function L1 on Mk for k ≤ r satisfies the strict saddle point
property. More precisely, all critical points of L1 on Mk except for the global minimizers are strict saddle points.

B.2. Auxiliary Lemmas

Lemma B.7 (Dynamic of s(t),u(t),v(t)). We give the derivation of u̇(t), v̇(t), ṡ(t) shown in the main context in this
lemma:

u̇(t) = s(t)1−
2
N

(
Idy − u(t)u(t)⊤

)
Zv(t),

v̇(t) = s(t)1−
2
N

(
Idx

− v(t)v(t)⊤
)
Z⊤u(t),

ṡ(t) = Ns(t)2−
2
N

(
u(t)⊤Zv(t)− s(t)

)
.

Proof. ṡ(t) directly follows Arora et al. (2019, Theorem 3). As for u̇(t) and v̇(t), we begin with u(t)⊤u(t) = v(t)⊤v(t) =
1. Then by taking the derivative of the identities, we get

u(t)⊤u̇(t) = v(t)⊤v̇(t) = 0,∀t ≥ 0. (15)

By taking derivative of both sides of the SVD: W (t) = s(t)u(t)v(t)⊤, we find that

Ẇ (t) = s(t)u̇(t)v(t)⊤ + s(t)u(t)v̇(t)⊤ + ṡ(t)u(t)v(t)⊤,∀t ≥ 0.

Hence, multiplying Idy − u(t)u(t)⊤ and v(t), we get

s(t)−1
(
Idy

− u(t)u(t)⊤
)
Ẇ (t)v(t) =

(
Idy

− u(t)u(t)⊤
)
u̇(t).

From Eq. (15), we know u̇(t) ⊥ u(t). Therefore, we obtain

u̇(t) = s(t)−1
(
Idy − u(t)u(t)⊤

)
Ẇ (t)v(t). (16)

Similarly, we can find that
v̇(t) = s(t)−1

(
Idx

− v(t)v(t)⊤
)
Ẇ (t)⊤u(t). (17)

Now we replace Ẇ (t) by Eq. (3) and W (t) = s(t)u(t)v(t)⊤:

Ẇ (t)
(3)
= −Ns(t)2−

2
N u(t)u(t)⊤ [W (t)−Z]v(t)v(t)⊤

− s(t)2−
2
N

(
Idy − u(t)u(t)⊤

)
[W (t)−Z]v(t)v(t)⊤

− s(t)2−
2
N u(t)u(t)⊤ [W (t)−Z]

(
Idx

− v(t)v(t)⊤
)

=−Ns(t)1−
2
N

(
s(t)− u(t)⊤Zv(t)

)
W (t)

+ s(t)2−
2
N

(
Idy − u(t)u(t)⊤

)
Zv(t)v(t)⊤

+ s(t)2−
2
N u(t)u(t)⊤Z

(
Idx

− v(t)v(t)⊤
)
.
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Substituting Ẇ (t) back into Eqs. (16) and (17), we reach

u̇(t) = s(t)1−
2
N

(
Idy − u(t)u(t)⊤

)
Zv(t), v̇(t) = s(t)1−

2
N

(
Idx − v(t)v(t)⊤

)
Z⊤u(t).

Proposition B.8 (Stationary Singular Vector). If for time T ≥ 0, s(T ) > 0, u̇(T ) = 0, v̇(T ) = 0, then

u(T ) = ±ui,v(T ) = ±vi, for some i ≤ d, or u(T ) ⊥ ui,v(T ) ⊥ vi,∀i ≤ d.

Moreover, u̇(t) = 0, v̇(t) = 0,∀t ≥ T , that is, u(t) = u(T ),v(t) = v(T ),∀t ≥ T .

Proof. From s(T ) > 0, u̇(T ) = 0, v̇(T ) = 0 and Eqs. (4a) and (4b), we obtain(
Idy

− u(T )u(T )⊤
)
Zv(T ) = 0,

(
Idx

− v(T )v(T )⊤
)
Z⊤u(T ) = 0. (18)

Hence, we could see
Zv(T ) = u(T )⊤Zv(T ) · u(T ), Z⊤u(T ) = v(T )⊤Z⊤u(T ) · v(T ), (19)

showing that Z⊤Zv(T ) =
[
u(T )⊤Zv(T )

]2 ·v(T ), ZZ⊤u(T ) =
[
u(T )⊤Zv(T )

]2 ·u(T ). Thus, we can see u(T ),v(T )
are the eigenvectors of Z⊤Z,ZZ⊤ with the same eigenvalue

[
u(T )⊤Zv(T )

]2
. Therefore, if u(T )⊤Zv(T ) ̸= 0,

we obtain u(T ) = ±ui,v(T ) = ±vi, for some i ∈ [d]. Otherwise, u(T )⊤Zv(T ) = 0. From Eq. (19), we obtain
Zv(T ) = 0,Z⊤u(T ) = 0, showing that u(T ) ⊥ ui,v(T ) ⊥ vi,∀i ∈ [d].

Now we consider a substituted ODE started from T below

˙̃s(t) = Ns̃(t)2−
2
N

(
u(T )⊤Zv(T )− s̃(t)

)
, s̃(T ) = s(T ). (20)

By Picard’s existence and uniqueness theorem, such a solution s̃∗(t) exists and is unique.

Recall the original ODE

u̇(t) = s(t)1−
2
N

(
Idy

− u(t)u(t)⊤
)
Zv(t), (21a)

v̇(t) = s(t)1−
2
N

(
Idx − v(t)v(t)⊤

)
Z⊤u(t), (21b)

ṡ(t) = Ns(t)2−
2
N

(
u(t)⊤Zv(t)− s(t)

)
. (21c)

From Eq. (18), we could see u(t) = u(T ),v(t) = v(T ),∀t ≥ T is a solution of Eqs. (21a) and (21b). Additionally,
u(t)Zv(t) = u(T )Zv(T ),∀t ≥ T . Hence, we can see s(t) = s̃∗(t),u(t) = u(T ),v(t) = v(T ),∀t ≥ T is a solution of
the original ODE. By the Picard’s existence and uniqueness theorem, the solution is unique. i.e., we obtain that

u(t) = u(T ),v(t) = v(T )

holds for all t ≥ T . The proof is finished.

Lemma B.9. If for certain t ≥ 0, u(t)⊤Zv(t) = s(t) > 0, and u̇(t) ̸= 0 or v̇(t) ̸= 0, then we have

d
(
u(t)⊤Zv(t)− s(t)

)
dt

> 0.

Proof. Since u̇(t) ̸= 0 or v̇(t) ̸= 0, and s(t) > 0, by Eqs. (4a) and (4b), we obtain∥∥(Idy − u(t)u(t)⊤
)
Zv(t)

∥∥2
2
+
∥∥(Idx − v(t)v(t)⊤

)
Z⊤u(t)

∥∥2
2
> 0. (22)



On Non-local Convergence Analysis of Deep Linear Networks

From the derivation of d(u(t)⊤Zv(t)− s(t))/dt and ds(t)/dt, we get

d
(
u(t)⊤Zv(t)− s(t)

)
dt

(4c)
(23)
= s(t)1−

2
N

[ ∥∥(Idy
− u(t)u(t)⊤

)
Zv(t)

∥∥2
2
+
∥∥(Idx

− v(t)v(t)⊤
)
Z⊤u(t)

∥∥2
2
−Ns(t)

(
u(t)⊤Zv(t)− s(t)

) ]
= s(t)1−

2
N

[ ∥∥(Idy
− u(t)u(t)⊤

)
Zv(t)

∥∥2
2
+
∥∥(Idx

− v(t)v(t)⊤
)
Z⊤u(t)

∥∥2
2

]
(22)
> 0,

where the second equality uses the assumption u(t)⊤Zv(t) = s(t).

C. Missing Proofs
C.1. Proof of Proposition 2.2

Proof. 1). From Bah et al. (2021, Theorem 5) (i.e., Theorem B.3), we have W (t) converges. Thus s(t) = ∥W (t)∥F also
converges, and not diverges to infinity. Applying Arora et al. (2019, Lemma 4) (i.e., Lemma B.2), we can see s(t) obviously
preserves the sign of its initial value.

2). u(t)⊤Zv(t) is non-decreasing follows

du(t)⊤Zv(t)

dt
=

du(t)⊤

dt
Zv(t) + u(t)⊤Z

dv(t)

dt
(4a),(4b)
= s(t)1−

2
N

[∥∥(Idy − u(t)u(t)⊤
)
Zv(t)

∥∥2
2
+
∥∥(Idx − v(t)v(t)⊤

)
Z⊤u(t)

∥∥2
2

]
≥ 0.

(23)

Additionally, since ∥u(t)∥ = ∥v(t)∥ = 1, we have u(t)⊤Zv(t) ≤ s1. Hence, u(t)⊤Zv(t) converges.

3). Using Eq. (14), we obtain

da1(t)b1(t)

dt
=

da1(t)

dt
· b1(t) + a1(t) ·

db1(t)

dt

(14)
= s(t)1−

2
N

(
s1b

2
1(t) + s1a

2
1(t)− 2a1(t)b1(t)

d∑
j=1

[sjaj(t)bj(t)]

)

≥ s(t)1−
2
N

(
s1b

2
1(t) + s1a

2
1(t)− 2s1|a1(t)b1(t)|

d∑
j=1

|aj(t)bj(t)|
)

≥ s(t)1−
2
N

(
s1b

2
1(t) + s1a

2
1(t)− 2s1|a1(t)b1(t)|

)
= s1s(t)

1− 2
N (|b1(t)| − |a1(t)|)2 ≥ 0,

where the second inequality uses Cauchy inequality:( d∑
j=1

|aj(t)bj(t)|
)2

≤
( d∑

j=1

a2j (t)

)
·
( d∑

j=1

b2j (t)

)
≤
( dy∑

j=1

a2j (t)

)
·
( dx∑

j=1

b2j (t)

)
= 1.

We note that s1a1(t)b1(t) = s1 · u(t)⊤u1 · v⊤
1 v(t) = u(t)⊤

(
s1u1v

⊤
1

)
v(t) = u(t)⊤Z1v(t). Hence, we obtain

u(t)⊤Z1v(t) is non-decreasing. Moreover, since ∥u(t)∥ = ∥v(t)∥ = 1, we have u(t)⊤Z1v(t) ≤ s1. Hence, u(t)⊤Z1v(t)
also converges.

4). Using the derivation in the above, we obtain

d (ai(t) + bi(t))

dt

(14)
= s(t)1−

2
N

[
si (bi(t) + ai(t))− (ai(t) + bi(t))

d∑
j=1

[sjaj(t)bj(t)]

]

= s(t)1−
2
N (ai(t) + bi(t))

(
si −

d∑
j=1

[sjaj(t)bj(t)]

)
.

(24)
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Moreover, |ai(t) + bi(t)| = |v⊤
i u(t) + v⊤

i v(t)| ≤ 2, showing that ai(t) + bi(t) does not diverge to infinity. Hence, by
Arora et al. (2019, Lemma 4), ai(t) + bi(t) obviously preserves the sign of its initial value.

5). Since ai(0) + bi(0) = 0, we get ai(t) + bi(t) = 0 by 4), i.e.,

ai(t) = −bi(t),∀i ∈ [k], t ≥ 0. (25)

Now we can bound

d∑
j=k+1

sjaj(t)bj(t) ≤ sk+1

d∑
j=k+1

|aj(t)bj(t)| ≤ sk+1

√√√√ d∑
j=k+1

a2j (t)

d∑
j=k+1

b2j (t)

≤ sk+1

√√√√(1− k∑
j=1

a2j (t)

)
·
(
1−

k∑
j=1

b2j (t)

)
(25)
= sk+1

(
1−

k∑
j=1

a2j (t)

)
.

(26)

Hence, we obtain

sk+1 −
d∑

j=1

[sjaj(t)bj(t)]
(25)
= sk+1 +

k∑
j=1

sja
2
j (t)−

d∑
j=k+1

[sjaj(t)bj(t)]

(26)
≥ sk+1

(
1 +

k∑
j=1

a2j (t)

)
− sk+1

(
1−

k∑
j=1

a2j (t)

)
= 2sk+1

k∑
j=1

a2j (t) ≥ 0.

(27)

Now we consider the gradient of ak+1(t) + bk+1(t):

d (ak+1(t) + bk+1(t))

dt

(24)
= s(t)1−

2
N (ak+1(t) + bk+1(t))

(
sk+1 −

d∑
j=1

[sjaj(t)bj(t)]

)
. (28)

If ak+1(t) + bk+1(t) > 0, from Eqs. (27) and (28) we can see d (ak+1(t) + bk+1(t)) /dt ≥ 0. Thus, ak+1(t) + bk+1(t) is
non-decreasing. The case of ak+1(t) + bk+1(t) < 0 is similar. Therefore, we get |ak+1(t) + bk+1(t)| is non-decreasing.
Since ∥u(t)∥ = ∥v(t)∥ = 1, we have |ak+1(t) + bk+1(t)| = |v⊤

k+1u(t) + v⊤
k+1v(t)| ≤ 2. Hence, |ak+1(t) + bk+1(t)|

converges. Moreover, we note that from 4), ak+1(t) + bk+1(t) preserves the sign of its initial value, showing that
limt→+∞ ak+1(t) + bk+1(t) exists.

C.2. Proof of Theorem 3.4

Proof. From Lemma 3.2, we already know the convergent point W (t) is still rank-one. Hence, using the facts shown in
Bah et al. (2021, Theorem 28) that gradient flows avoid strict saddle points almost surely, and Bah et al. (2021, Proposition
33) that L1(W ) on M1 satisfies the strict saddle point property, we could see gradient flow of W (t) converges to a global
minimizer almost surely.

C.3. Proof of Lemma 3.5

Proof. From 1) in Proposition 2.2 and s(0) ̸= 0, we obtain s(t) > 0,∀t > 0.

Case 1. If u(t0)⊤Zv(t0) > 0 for some t0 ≥ 0, we get W (t0) ∈ Hb(Z) for some b > 0. Hence, by Lemma 3.2, we obtain
s̄ > 0. From Eq. (4c), we obtain

0 = lim
t→+∞

Ns(t)2−
2
N

(
u(t)⊤Zv(t)− s(t)

)
.

Using s(t) → s̄ > 0 again, we obtain limt→+∞ u(t)⊤Zv(t) exists. Therefore,

0 = lim
t→+∞

du(t)⊤Zv(t)

dt

(23)
= lim

t→+∞
s(t)1−

2
N

[∥∥(Idy − u(t)u(t)⊤
)
Zv(t)

∥∥2
2
+
∥∥(Idx − v(t)v(t)⊤

)
Z⊤u(t)

∥∥2
2

]
.

By s(t) → s̄ > 0, we obtain
(
Idy − u(t)u(t)⊤

)
Zv(t) → 0, and

(
Idx − v(t)v(t)⊤

)
Z⊤u(t) → 0. Thus, we can choose

tn = n for example.
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Case 2. If u(t)⊤Zv(t) ≤ 0,∀t ≥ 0. Then from Eq. (4c), we get ṡ(t) ≤ 0,∀t ≥ 0. Hence, s(t) ≤ s(0). Moreover, by 2) in
Proposition 2.2, we have u(t)⊤Zv(t) ≥ u(0)⊤Zv(0). Therefore,

ṡ(t)
(4c)
= Ns(t)2−

2
N

(
u(t)⊤Zv(t)− s(t)

)
≥ Ns(t)2−

2
N

(
u(0)⊤Zv(0)− s(0)

)
. (29)

Now we denote

C(a) := inf
t≥a

∥∥(Idy
− u(t)u(t)⊤

)
Zv(t)

∥∥2
2
+
∥∥(Idx

− v(t)v(t)⊤
)
Z⊤u(t)

∥∥2
2
≥ 0.

In the following, we show that C(a) = 0,∀a ≥ 0.

1) If N = 2, then we can see ∀t ≥ a, by u(t)⊤Zv(t) ≤ 0,∀t ≥ 0,

− u(a)⊤Zv(a) ≥ u(t)⊤Zv(t)− u(a)⊤Zv(a) =

∫ t

a

du(x)⊤Zv(x)

dx
dx

(23)
=

∫ t

a

[∥∥(Idy
− u(x)u(x)⊤

)
Zv(x)

∥∥2
2
+
∥∥(Idx

− v(x)v(x)⊤
)
Z⊤u(x)

∥∥2
2

]
dx ≥ C(a)(t− a).

Taking t → +∞, we obtain C(a) = 0,∀a ≥ 0.

2) If N > 2, by solving Eq. (29), we get

N

2−N
· s(t) 2

N −1 − N

2−N
· s(0) 2

N −1 ≥ N
(
u(0)⊤Zv(0)− s(0)

)
t.

Therefore, we obtain

s(t)
2
N −1 ≤ (N − 2)

(
s(0)− u(0)⊤Zv(0)

)
t+ s(0)

2
N −1 := A+Bt,A,B > 0. (30)

Then we can see ∀t ≥ a,

−u(a)⊤Zv(a) ≥ u(t)⊤Zv(t)− u(a)⊤Zv(a) =

∫ t

a

du(x)⊤Zv(x)

dx
dx

(23)
=

∫ t

a

s(x)1−
2
N

[∥∥(Idy − u(x)u(x)⊤
)
Zv(x)

∥∥2
2
+
∥∥(Idx − v(x)v(x)⊤

)
Z⊤u(x)

∥∥2
2

]
dx

≥ C(a)

∫ t

a

s(x)1−
2
N dx

(30)
≥ C(a)

∫ t

a

1

A+Bx
dx =

C(a)

B
ln

A+Bt

A+Ba
.

Taking t → +∞, we obtain C(a) = 0,∀a ≥ 0.

Therefore, combining 1) and 2), we conclude C(a) = 0,∀a ≥ 0. Hence, we can find a sequence {tn} with tn → +∞, s.t.,

0 = lim
n→+∞

∥∥(Idy
− u(tn)u(tn)

⊤)Zv(tn)
∥∥2
2
+
∥∥(Idx

− v(tn)v(tn)
⊤)Z⊤u(tn)

∥∥2
2
.

Thus, we have

lim
n→+∞

(
Idy − u(tn)u(tn)

⊤)Zv(tn) = 0, lim
n→+∞

(
Idx − v(tn)v(tn)

⊤)Z⊤u(tn) = 0. (31)

Now we adopt the expansion following Eq. (12): u(t) =
∑dy

i=1 ai(t)ui, v(t) =
∑dx

i=1 bi(t)vi. Thus, we have

u(t)⊤Zv(t)
(13)
=

d∑
k=1

skak(t)bk(t),Zv(t)
(13)
=

d∑
j=1

sjbj(t)uj ,Z
⊤u(t)

(13)
=

d∑
i=1

siai(t)vi.

Therefore, we obtain

(
Idy

− u(tn)u(tn)
⊤)Zv(tn) =

dy∑
i=1

[
sibi(tn)−

( d∑
k=1

skak(tn)bk(tn)

)
ai(tn)

]
ui,
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where we utilize si = 0,∀i > d. Since limn→+∞
(
Idy

− u(tn)u(tn)
⊤)Zv(tn)

(31)
= 0, and uis are orthonormal basis, we

obtain Eq. (6). Similarly, we could obtain Eq. (7) by limn→+∞
(
Idx

− v(tn)v(tn)
⊤)Z⊤u(tn) = 0.

Finally, adding the equation in Eq. (6) and Eq. (7) with i = j ∈ [d], we obtain

lim
n→+∞

( d∑
k=1

skak(tn)bk(tn)− si

)
(ai(tn) + bi(tn)) = 0,∀i ∈ [d].

Since we have for some i0 ∈ [d] that limn→+∞ ai0(tn) + bi0(tn) exists and not zero. Thus we obtain

lim
n→+∞

u(tn)
⊤Zv(tn)

(13)
= lim

n→+∞

d∑
k=1

skak(tn)bk(tn) = si0 .

The proof is finished.

C.4. Proof of Lemma 3.6

Proof. Since ai(tn) + bi(tn) = 0,∀i ∈ [k], n ≥ 0, we obtain

bi(tn) = −ai(tn),∀i ∈ [k], n ≥ 0, (32)

and
d∑

j=1

sjaj(tn)bj(tn) = −
k∑

j=1

sja
2
j (tn) +

d∑
j=k+1

sjaj(tn)bj(tn)
(26)
≤ sk+1

(
1−

k∑
j=1

a2j (tn)

)
.

Taking limit inferior in both sides and noting that limn→+∞
∑d

j=1 sjaj(tn)bj(tn) = sk+1, we get

sk+1 ≤ lim inf
n→+∞

sk+1

1−
k∑

j=1

a2j (tn)

 . (33)

Moreover, naturally we have

lim sup
n→+∞

sk+1

1−
k∑

j=1

a2j (tn)

 ≤ sk+1. (34)

By Eq. (33) and Eq. (34), we obtain limn→+∞
∑k

j=1 a
2
j (tn) = 0, showing that

lim
n→+∞

−bj(tn)
(32)
= lim

n→+∞
aj(tn) = 0,∀j ∈ [k]. (35)

Hence, we derive that

lim
n→+∞

d∑
j=k+1

sjaj(tn)bj(tn) = lim
n→+∞

d∑
j=1

sjaj(tn)bj(tn)− lim
n→+∞

k∑
j=1

sjaj(tn)bj(tn)
(35)
= sk+1. (36)

Using Cauchy inequality, we have d∑
j=k+1

sjaj(tn)bj(tn)

2

≤
d∑

j=k+1

s2ja
2
j (tn) ·

d∑
j=k+1

b2j (tn) ≤

 d∑
j=k+1

s2ja
2
j (tn)

 ·

1−
k∑

j=1

b2j (tn)

 . (37)

Since limn→+∞
∑k

j=1 b
2
j (tn)

(35)
= 0, and

∑dy

j=1 a
2
j (tn)

(12)
= 1, we obtain

lim
n→+∞

dy∑
j=k+1

s2k+1a
2
j (tn)

(35)
= s2k+1

(36)
= lim

n→+∞

 d∑
j=k+1

sjaj(tn)bj(tn)

2

(37)
≤ lim inf

n→+∞

d∑
j=k+1

s2ja
2
j (tn).
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Noting that sj = 0,∀j > d, we get 0 ≤ lim infn→+∞
∑dy

j=k+2(s
2
j − s2k+1)a

2
j (tn).

However, s2j − s2k+1 < 0,∀j ≥ k+2 and a2j (tn) ≥ 0, showing that lim supn→+∞
∑dy

j=k+2(s
2
j − s2k+1)a

2
j (tn) ≤ 0. Hence,

we obtain limn→+∞ aj(tn) = 0,∀j ≥ k + 2. The similar analysis holds for bj(tn). Therefore, we obtain

lim
n→+∞

sk+1ak+1(tn)bk+1(tn) = lim
n→+∞

d∑
j=1

sjaj(tn)bj(tn) = sk+1.

Combining all the results, we derive that

lim
n→+∞

ai(tn) = lim
n→+∞

bj(tn) = 0,∀i ∈ [dy], j ∈ [dx], i, j ̸= k + 1, (38a)

lim
n→+∞

ak+1(tn)bk+1(tn) = 1. (38b)

Finally, we have

uk+1v
⊤
k+1

(38b)
= lim

n→+∞
ak+1(tn)bk+1(tn)uk+1v

⊤
k+1

(38a)
= lim

n→+∞

∑
i,j

ai(tn)bj(tn)uiv
⊤
j

(12)
= lim

n→+∞
u(tn)v(tn)

⊤.

The proof is finished.

C.5. Proof of Lemma 4.2

Proof. (I) The truth that ċ1(t) ≥ 0 is direct from 3) in Proposition 2.2. Moreover, from Theorem 3.1 with k = 0, we have
c1(t) = a1(t)b1(t) → 1. Thus, we obtain t1 < +∞.

(II) As for s(t), if t2 = +∞, then u(t)⊤Zv(t) ≤ s(t),∀t ∈ [0,+∞). Thus by Eq. (4c), ṡ(t) ≤ 0 for all t ≥ 0. Now we
consider the remaining case where t2 < +∞. Since t2 = inf{t : u(t)⊤Zv(t) ≥ s(t)}, we have u(t)⊤Zv(t) ≤ s(t) when
t ∈ [0, t2). Thus

ṡ(t)
(4c)
= Ns(t)2−

2
N

(
u(t)⊤Zv(t)− s(t)

)
≤ 0,∀t ∈ [0, t2).

Now from t2 < +∞, we get u(t2)⊤Zv(t2) = s(t2). We denote T := inf{t : u̇(t) = 0, v̇(t) = 0}.

(i) When T > t2. Then for t ∈ [t2, T ), we have u̇(t) ̸= 0 or v̇(t) ̸= 0. We also have s(t) > 0,∀t ≥ 0 from 1) in Proposition
2.2. Thus, applying Lemma B.9, we have

u(t)⊤Zv(t) = s(t) ⇒ d(u(t)⊤Zv(t)− s(t))/dt > 0,∀t ∈ [t2, T ).

By Lin et al. (2021, Lemma 10), we obtain u(t)⊤Zv(t) ≥ s(t),∀t ∈ [t2, T ). Hence,

ṡ(t) = Ns(t)2−
2
N

(
u(t)⊤Zv(t)− s(t)

)
≥ 0,∀t ∈ [t2, T ).

And for t ≥ T , we get T < +∞. We obtain stationary singular vectors from time T by Proposition B.8. Thus,
u(T )⊤Zv(T ) = c, ∀t ≥ T for a constant c, which reduce the variation of s(t) as

ṡ(t) = Ns(t)2−
2
N (c− s(t)) ,∀t ≥ T.

Moreover, since u(t)⊤Zv(t) ≥ s(t),∀t ∈ [t2, T ), we obtain c = u(T )⊤Zv(T ) ≥ s(T ). Hence, we can see ṡ(t) ≥
0,∀t ≥ T .

(ii) When T ≤ t2, we have T < +∞. We obtain stationary singular vectors from time T by Proposition B.8. Thus,
u(T )⊤Zv(T ) = c, ∀t ≥ T for a constant c, which reduce the variation of s(t) as

ṡ(t) = Ns(t)2−
2
N (c− s(t)) ,∀t ≥ T.

We note that c = u(t2)
⊤Zv(t2) = s(t2). Thus ṡ(t) = 0,∀t ≥ t2.

Combining (i) and (ii), the proof is finished.
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C.6. Proof of Theorem 4.4

Proof. We first consider the upper bound. From s(0) > 0 and 1) in Proposition 2.2, we have s(t) > 0 for all t ≥ 0.
Moreover, we have

ṡ(t)
(4c)
= Ns(t)2−

2
N

 d∑
j=1

sjaj(t)bj(t)− s(t)

 (26)
≤ Ns(t)2−

2
N (s1 − s(t)) . (39)

Let s̃(t) be the solution of the ODE

˙̃s(t) = Ns̃(t)2−
2
N (s1 − s̃(t)) , s̃(0) = s(0).

Then we can see s(t) ≤ s̃(t) from Eq. (39).

If s(0) > s1, then s̃(t) ≤ s̃(0) = s(0), showing that s(t) ≤ s̃(t) ≤ s(0). Otherwise, s(0) ≤ s1, we get s̃(t) ≤ s1, showing
that s(t) ≤ s̃(t) ≤ s1. Therefore, we know s(t) ≤ s0 := max{s1, s(0)} for all t ≥ 0.

Now we consider the lower bound. Note that

d∑
j=2

sjaj(t)bj(t)
(26)
≤ s2

√
(1− a21(t))(1− b21(t)) = s2

√
a21(t)b

2
1(t)− a21(t)− b21(t) + 1

≤ s2

√
a21(t)b

2
1(t)− 2|a1(t)b1(t)|+ 1 = s2 (1− |a1(t)b1(t)|) ,

(40)

where we use |a1(t)b1(t)| = |u⊤
1 u(t) · v⊤

1 v(t)| ≤ 1 in the last equality. Therefore, we derive that

ṡ(t)
(4c)
= Ns(t)2−

2
N

( d∑
j=1

sjaj(t)bj(t)− s(t)

)
(40)
≥ Ns(t)2−

2
N [s1a1(t)b1(t)− s2 (1− |a1(t)b1(t)|)− s(t)]

≥ Ns(t)2−
2
N

[
(s2 − s1) |a1(t)b1(t)| − s2 − s(t)

]
≥ −N(s1 + s(t))s(t)2−

2
N ≥ −N(s1 + s0)s(t)

2− 2
N ,

(41)

where the last inequality uses s(t) ≤ s0 := max{s1, s(0)}, which is proved previously.

When N = 2, we solve Eq. (41) and get

ṡ(t)
(41)
≥ −2(s1 + s0)s(t) ⇒

d (ln s(t))

dt
≥ −2(s1 + s0) ⇒ ln

s(t)

s(0)
≥ −2(s1 + s0)t ⇒ s(t) ≥ s(0)e−2(s1+s0)t.

When N ≥ 3, we solve Eq. (41) and get

N

2−N
·
d
(
s(t)

2
N −1

)
dt

(41)
≥ −N(s1 + s0) ⇒ s(t)

2
N −1 − s(0)

2
N −1 ≤ (s1 + s0)(N − 2)t.

Thus, we finally obtain

s(t) ≥
[
(s1 + s0)(N − 2)t+ s(0)

2
N −1

]− N
N−2

.

The proof of Eqs. (9a) and (9b) is finished.

C.7. Proof of Theorem 4.5

Proof. Since a1(0)b1(0) < 0, a1(0) + b1(0) ̸= 0, without loss of generality, we suppose a1(0) > 0, b1(0) < 0 and
a1(0) + b1(0) > 0. Note that

ȧ1(t)− ḃ1(t)
(14)
= s(t)1−

2
N (b1(t)− a1(t))

(
s1 +

d∑
j=1

[sjaj(t)bj(t)]

)
.
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By Arora et al. (2019, Lemma 4) and |a1(t)− b1(t)| ≤ 2, we get that a1(t)− b1(t) preserves the sign of its initial value:

a1(t)− b1(t) > 0,∀t ≥ 0. (42)

Moreover, from 5) in Proposition 2.2 and a1(0) + b1(0) > 0, we obtain

a1(t) + b1(t) ≥ a1(0) + b1(0) > 0,∀t ≥ 0. (43)

Then we have

a1(t)
(42)
≥ a1(t) + b1(t)

2

(43)
≥ a1(0) + b1(0)

2
> 0,∀t ≥ 0, (44)

and

− a1(t)
(43)
≤ b1(t)

(42)
≤ a1(t),∀t ≥ 0

(44)⇒ −1 <
b1(t)

a1(t)
< 1,∀t ≥ 0. (45)

Furthermore, we can derive that

d

dt

(
b1(t)

a1(t)

)
=

ḃ1(t)a1(t)− ȧ1(t)b1(t)

a21(t)

(14)
= s(t)1−

2
N

(
1−

(
b1(t)

a1(t)

)2
)

(45)
> 0.

Solving the above ODE, we obtain

d

(
ln

√
a1(t) + b1(t)

a1(t)− b1(t)

)
/dt ≥ s(t)1−

2
N

(9b)
≥ 1

(s1 + s0)(N − 2)t+ s(0)
2
N −1

.

Therefore, we obtain

ln

√
a1(t) + b1(t)

a1(t)− b1(t)
− ln

√
a1(0) + b1(0)

a1(0)− b1(0)
≥
∫ t

0

dx

(s1 + s0)(N − 2)x+ s(0)
2
N −1

=
1

(s1 + s0)(N − 2)
ln

[
1 +

(s1 + s0)(N − 2)t

s(0)
2
N −1

]
.

We hide constants related to initialization, and rewrite the inequality as

a1(t) + b1(t)

a1(t)− b1(t)
≥ C1(1 +A1t)

B1 , (46)

where A1 := (s1+s0)(N−2)

s(0)
2
N

−1
, B1 := 2

(s1+s0)(N−2) , 1 > C1 := a1(0)+b1(0)
a1(0)−b1(0)

(45)
> 0. Hence, we obtain

a1(t)b1(t)
(46),(44)
≥ C1(1 +A1t)

B1 − 1

C1(1 +A1t)B1 + 1
· a21(t). (47)

Then we can see a1(t)b1(t) ≥ 0 provided C1(1 +A1t)
B1 > 1, i.e.,

t ≥ T1 =
C

−1/B1

1 − 1

A1
=

s(0)
2
N −1

(s1 + s0)(N − 2)
·

[(
a1(0)− b1(0)

a1(0) + b1(0)

)(s1+s0)(N−2)/2

− 1

]
.

Therefore, we obtain t1 ≤ T1. Moreover, when t ≤ T1, by a21(t) ≤ 1, we have

a1(t)b1(t)
(47)
≥ C1(1 +A1t)

B1 − 1

C1(1 +A1t)B1 + 1
.

That is, 1− a1(t)b1(t) = O((1 +A1t)
−B1) = O([(N − 2)t]−

c1
N−2 ).

Additionally, when A1t ≥ e · C−1/B1

1 − 1, we have

A1t ≥ e · C−1/B1

1 − 1 ≥
(
1 +B1

C1

)1/B1

− 1 ⇒ C1(1 +A1t)
B1 ≥ 1 +B1. (48)

Thus, we get

a1(t)b1(t)
(47)
≥ C1(1 +A1t)

B1 − 1

C1(1 +A1t)B1 + 1
· a21(t)

(44),(48)
≥ B1

2 +B1
· (a1(0) + b1(0))

2

4
= Θ

(
(a1(0) + b1(0))

2

N

)
> 0.
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C.8. Proof of Theorem 4.7

Proof. Since a1(0)b1(0) ≥ 0, then by 3) in Proposition 2.2, we know a1(t)b1(t) ≥ 0 for all t ≥ 0. Now we consider the
flow of a1(t)b1(t).

da1(t)b1(t)

dt

(14)
= s(t)1−

2
N

(
s1b1(t)

2 + s1a1(t)
2 − 2a1(t)b1(t)

d∑
j=1

[sjaj(t)bj(t)]

)
(40)
≥ s(t)1−

2
N

[
2s1a1(t)b1(t)− 2a1(t)b1(t) (s1a1(t)b1(t) + s2 (1− |a1(t)b1(t)|))

]
= 2a1(t)b1(t)s(t)

1− 2
N

[
s1 − s1a1(t)b1(t)− s2 (1− a1(t)b1(t))

]
= 2a1(t)b1(t)s(t)

1− 2
N (s1 − s2) (1− a1(t)b1(t)) .

(49)

By the lower bound of s(t) in Theorem 4.4, we obtain

da1(t)b1(t)

dt

(49)
≥ 2a1(t)b1(t)s(t)

1− 2
N (s1 − s2) (1− a1(t)b1(t))

(9b)
≥ 2a1(t)b1(t) (s1 − s2) (1− a1(t)b1(t))

(s0 + s1)(N − 2)t+ s(0)
2
N −1

.

Denoting c1(t) := a1(t)b1(t) ≤ 1, we get

ln
c1(t)

1− c1(t)
− ln

c1(0)

1− c1(0)
≥ 2(s1 − s2)

(s1 + s0)(N − 2)
ln

(
1 +

(s1 + s0)(N − 2)t

s(0)
2
N −1

)
.

Further we can rewrite the bound as

c1(t) ≥ 1− 1

A(1 +B(N − 2)t)
c2

N−2 + 1
,

where A = c1(0)
1−c1(0)

> 0, B = (s1 + s0)s(0)
1− 2

N > 0, c2 = 2(s1−s2)
s1+s0

> 0. Then we have 1 − a1(t)b1(t) =

O
(
[(N − 2)t]−c2/(N−2)

)
. The proof is finished.

C.9. Proof of Theorem 4.8

Proof. When t2 = +∞, we have u(t)⊤Zv(t) < s(t),∀t ≥ 0. Thus, we obtain

ṡ(t)
(4c)
= Ns(t)2−

2
N

(
u(t)⊤Zv(t)− s(t)

)
≤ 0. (50)

We note that by Theorem 3.1, s(t) → s1. Thus, we conclude

s(t)
(50)
≥ lim

t→+∞
s(t) = s1. (51)

Then we have
da1(t)b1(t)

dt

(49)
≥ 2a1(t)b1(t)s(t)

1− 2
N (s1 − s2) (1− a1(t)b1(t))

(51)
≥ 2a1(t)b1(t)s

1− 2
N

1 (s1 − s2) (1− a1(t)b1(t)) .

Setting c1(t) := a1(t)b1(t) and solving the ODE in the above, we get

ln
c1(t)

1− c1(t)
− ln

c1(0)

1− c1(0)
≥ 2s

1− 2
N

1 (s1 − s2) t.

We rewrite the bound to

1− c1(t) ≤
(
1 +

c1(0)

1− c1(0)
· e2s

1− 2
N

1 (s1−s2)t

)−1

, i.e., 1− c1(t) = O
(
e−c3t

)
.
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To obtain the bound of s(t), we notice that

ṡ(t)
(4c)
= Ns(t)2−

2
N

 d∑
j=1

sjaj(t)bj(t)− s(t)

 (26)
≤ Ns(t)2−

2
N (s1 − s(t)) ≤ Ns

2− 2
N

1 (s1 − s(t)) .

We can obtain the upper bound of the evolution s(t) as

d (ln (s(t)− s1)) /dt ≤ −Ns
2− 2

N
1 ⇒ s(t) ≤ s1 + (s(0)− s1)e

−Ns
2− 2

N
1 t, i.e., s(t)− s1 = O

(
e−c4t

)
.

Finally, noting that s(t)
(51)
≥ s1, we obtain |s(t)− s1| = O (e−c4t). The proof is finished.

C.10. Proof of Theorem 4.9

Proof. By Lemma 4.2, we have ṡ(t) ≥ 0,∀t ≥ 0. Thus, we can lower bound s(t) ≥ s(0) > 0. Then we obtain

da1(t)b1(t)

dt

(49)
≥ 2a1(t)b1(t)s(t)

1− 2
N (s1 − s2) (1− a1(t)b1(t)) ≥ 2a1(t)b1(t)s(0)

1− 2
N (s1 − s2) (1− a1(t)b1(t)) .

Setting c1(t) := a1(t)b1(t) and solving the ODE in the above, we get

1− c1(t) ≤
(
1 +

c1(0)

1− c1(0)
· e2s(0)

1− 2
N (s1−s2)t

)−1

, i.e., 1− c1(t) = O
(
e−c5t

)
. (52)

Next we derive the bound for s(t). We continue from

ṡ(t)
(4c)
= Ns(t)2−

2
N

( d∑
j=1

sjaj(t)bj(t)− s(t)

)
(40)
≥ Ns(t)2−

2
N [s1a1(t)b1(t)− s2 (1− |a1(t)b1(t)|)− s(t)]

≥ Ns(t)2−
2
N [(s1 + s2)a1(t)b1(t)− s2 − s(t)]

(52)
≥ Ns(0)2−

2
N

[
−(s1 + s2)

(
1 +Aec5t

)−1
+ s1 − s(t)

]
,

where A = c1(0)
1−c1(0)

> 0. Solving the above ODE, we arrive at

d(s(t)ec6t)

dt
≥ c6e

c6t
[
s1 − (s1 + s2)

(
1 +Aec5t

)−1
]
.

Hence, we get

s(t)ec6t − s(0) ≥ s1
(
ec6t − 1

)
−
∫ t

0

c6e
c6x(s1 + s2) (1 +Aec5x)

−1
dx

≥ s1
(
ec6t − 1

)
− ec6t

∫ t

0

c6(s1 + s2) (1 +Aec5x)
−1

dx = s1
(
ec6t − 1

)
− (s1 + s2)c6e

c6t

c5
· ln
(
1 +A−1e−c5t

)
≥ s1

(
ec6t − 1

)
− (s1 + s2)c6e

c6t

Ac5
· e−c5t.

Therefore, we obtain

s(t) ≥ s1 − (s(0) + s1)e
−c6t − (s1 + s2)c6

Ac5
· e−c5t.

After hiding the constants and noting that s(t) is non-decreasing, we obtain

s1 − s(t) = O
(
e−min{c5,c6}t

)
.

We note that by Theorem 3.1, s(t) → s1. Since s(t) is non-decreasing, we conclude s(t) ≤ limt→+∞ s(t) = s1. Then we
obtain

|s1 − s(t)| = O
(
e−min{c5,c6}t

)
.

The proof is finished.
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D. Convergence Rates: N = 2

We provide convergence rates of the case N = 2 in this section. Corresponding to the case N ≥ 3, we list the rates of three
stages as below:

Stage 1. For t ∈ [0, t1], where t1 := inf{t : a1(t)b1(t) ≥ 0} < +∞, we have a1(t)b1(t) ≤ 0, and the rates are

1− a1(t)b1(t) = O(e−2t), s(t) = Ω
(
e−2(s1+s0)t

)
.

Stage 2. For t ∈ (t1, t2], where t2 := inf{t : u(t)⊤Zv(t) ≥ s(t)}, we have a1(t)b1(t) > 0, ṡ(t) ≤ 0, and

1− a1(t)b1(t) = O
(
e−2(s1−s2)t

)
, s(t) = Ω

(
e−2(s1+s0)t

)
.

Stage 3. For t ∈ (max{t1, t2},+∞), we have a1(t)b1(t) > 0 and ṡ(t) ≥ 0, and the rates are

1− a1(t)b1(t) = O
(
e−2(s1−s2)t

)
, |s1 − s(t)| = O

(
e−min{2(s1−s2),2s(0)}t

)
.

We have shown that the definitions of the stages are well defined by Lemma 4.2. The convergence rates of s(t), i.e.
s(t) = Ω

(
e−2(s1+s0)t

)
in Stage 1 and Stage 2 are given by Theorem 4.4.

Convergence Rates of a1(t)b1(t): Stage 1

Theorem D.1. Suppose N = 2, s(0) > 0, a1(0)b1(0) < 0 and a1(0) + b1(0) ̸= 0. Then we have

1− a1(t)b1(t) = O(e−2t), 0 ≤ t ≤ t1.

Furthermore, we have the upper bound of t1 below:

t1 ≤ 1

2
ln

∣∣∣∣a1(0)− b1(0)

a1(0) + b1(0)

∣∣∣∣ . (53)

Additionally, we could obtain

a1(t)b1(t) = Ω
(
(a1(0) + b1(0))

2
)
, if t ≥ 1

2
ln

∣∣∣∣2(a1(0)− b1(0))

a1(0) + b1(0)

∣∣∣∣ . (54)

Proof. Since a1(0)b1(0) < 0, a1(0) + b1(0) ̸= 0, without loss of generality, we suppose a1(0) > 0, b1(0) < 0 and
a1(0) + b1(0) > 0. Note that

ȧ1(t)− ḃ1(t)
(14)
= s(t)1−

2
N (b1(t)− a1(t))

(
s1 +

d∑
j=1

[sjaj(t)bj(t)]

)
= (b1(t)− a1(t))

(
s1 +

d∑
j=1

[sjaj(t)bj(t)]

)
.

By Arora et al. (2019, Lemma 4) and |a1(t)− b1(t)| ≤ 2, we get that a1(t)− b1(t) preserves the sign of its initial value:

a1(t)− b1(t) > 0,∀t ≥ 0. (55)

Moreover, from 5) in Proposition 2.2 and a1(0) + b1(0) > 0, we obtain

a1(t) + b1(t) ≥ a1(0) + b1(0) > 0,∀t ≥ 0. (56)

Then we have

a1(t)
(55)
≥ a1(t) + b1(t)

2

(56)
≥ a1(0) + b1(0)

2
> 0,∀t ≥ 0, (57)

and

− a1(t)
(56)
< b1(t)

(55)
< a1(t),∀t ≥ 0

(57)⇒ −1 <
b1(t)

a1(t)
< 1,∀t ≥ 0. (58)



On Non-local Convergence Analysis of Deep Linear Networks

Furthermore, we can derive that

d

dt

(
b1(t)

a1(t)

)
=

ḃ1(t)a1(t)− ȧ1(t)b1(t)

a21(t)

(14)
=

(
1−

(
b1(t)

a1(t)

)2
)

(58)
> 0.

Then we have

d

(
ln

√
a1(t) + b1(t)

a1(t)− b1(t)

)
/dt = 1 ⇒ b1(t)

a1(t)
=

e2t
[
a1(0)+b1(0)
a1(0)−b1(0)

]
− 1

e2t
[
a1(0)+b1(0)
a1(0)−b1(0)

]
+ 1

. (59)

Thus, we get

a1(t)b1(t) = a21(t) ·
b1(t)

a1(t)

(59)
=

A2e
2t − 1

A2e2t + 1
· a21(t), A2 :=

a1(0) + b1(0)

a1(0)− b1(0)
. (60)

Then we can see a1(t)b1(t) ≥ 0 provided A2e
2t ≥ 1, i.e.,

t ≥ T2 :=
1

2
ln

a1(0)− b1(0)

a1(0) + b1(0)
.

Therefore, Eq. (53) is proved. Moreover, when t ≤ T2, by a21(t) ≤ 1, we have

a1(t)b1(t)
(60)
≥ A2e

2t − 1

A2e2t + 1
.

That is, 1− a1(t)b1(t) = O(e−2t).

Additionally, when t ≥ 1
2 ln

2(a1(0)−b1(0))
a1(0)+b1(0)

, we have A2e
2t ≥ 2. Hence, we derive that

a1(t)b1(t)
(60)
=

A2e
2t − 1

A2e2t + 1
· a21(t)

(57)
≥ (a1(0) + b1(0))

2

12
= Θ

(
(a1(0) + b1(0))

2
)
> 0.

Thus, Eq. (54) is proved.

Convergence Rates of a1(t)b1(t): Stage 2 and Stage 3

Theorem D.2. Assume N = 2, s(0) > 0, a1(0)b1(0) > 0. Then we have

1− a1(t)b1(t) = O
(
e−2(s1−s2)t

)
.

Proof. Since a1(0)b1(0) > 0, then by 3) in Proposition 2.2, we know a1(t)b1(t) > 0 for all t ≥ 0. Now we consider the
flow of a1(t)b1(t).

da1(t)b1(t)

dt

(14)
= s(t)1−

2
N

(
s1b1(t)

2 + s1a1(t)
2 − 2a1(t)b1(t)

d∑
j=1

[sjaj(t)bj(t)]

)
(40)
≥ s(t)1−

2
N

[
2s1a1(t)b1(t)− 2a1(t)b1(t) (s1a1(t)b1(t) + s2 (1− |a1(t)b1(t)|))

]
= 2a1(t)b1(t)

[
s1 − s1a1(t)b1(t)− s2 (1− a1(t)b1(t))

]
= 2a1(t)b1(t) (s1 − s2) (1− a1(t)b1(t)) .

(61)

Denoting c1(t) := a1(t)b1(t), by solving the ODE above, we obtain

ln
c1(t)

1− c1(t)
− ln

c1(0)

1− c1(0)

(61)
≥ 2(s1 − s2)t.

Further we can rewrite the bound as
c1(t) ≥ 1− 1

c1(0)
1−c1(0)

e2(s1−s2)t + 1
. (62)

Then we have 1− a1(t)b1(t) = O
(
e−2(s1−s2)t

)
. The proof is finished.
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Convergence Rates of s(t): Stage 3

Similarly, before we start our analysis in Stage 3, we need to handle the minor case t2 := inf{t : u(t)⊤Zv(t) ≥ s(t)} =
+∞.

Theorem D.3. Suppose N = 2, s(0) > 0, a1(0)b1(0) > 0 and t2 = +∞. Then we have

|s(t)− s1| = O
(
e−2s1t

)
.

Proof. When t2 = +∞, by the defination of t2, we have u(t)⊤Zv(t) < s(t),∀t ≥ 0. Thus, we obtain

ṡ(t)
(4c)
= Ns(t)2−

2
N

(
u(t)⊤Zv(t)− s(t)

)
= 2s(t)

(
u(t)⊤Zv(t)− s(t)

)
≤ 0. (63)

We note that by Theorem 3.1, s(t) → s1. Thus, we conclude

s(t)
(63)
≥ lim

t→+∞
s(t) = s1. (64)

To obtain the bound of s(t), we notice that

ṡ(t)
(4c)
= Ns(t)2−

2
N

 d∑
j=1

sjaj(t)bj(t)− s(t)

 (26)
≤ Ns(t)2−

2
N (s1 − s(t))

≤ Ns
2− 2

N
1 (s1 − s(t)) = 2s1 (s1 − s(t)) .

By solving the ODE above, we can obtain the upper bound of the evolution s(t) as

d (ln (s(t)− s1)) /dt ≤ −2s1 ⇒ s(t) ≤ s1 + (s(0)− s1)e
−2s1t, i.e., s(t)− s1 = O

(
e−2s1t

)
.

Finally, noting that s(t)
(64)
≥ s1, we obtain |s(t)− s1| = O

(
e−2s1t

)
. The proof is finished.

Now we turn to the case t2 < +∞. We assume a1(0)b1(0) > 0 and ṡ(0) ≥ 0 for short in Stage 3.

Theorem D.4. Assume N = 2, s(0) > 0, a1(0)b1(0) > 0, and ṡ(0) ≥ 0. Then we have

|s1 − s(t)| = O
(
e−min{2(s1−s2),2s(0)}t

)
.

Proof. By Lemma 4.2, we have ṡ(t) ≥ 0,∀t ≥ 0. Thus, we can lower bound s(t) ≥ s(0) > 0. Furthermore, we have

ṡ(t)
(4c)
= Ns(t)2−

2
N

( d∑
j=1

sjaj(t)bj(t)− s(t)

)
(40)
≥ Ns(t)2−

2
N [s1a1(t)b1(t)− s2 (1− |a1(t)b1(t)|)− s(t)]

≥ Ns(t)2−
2
N [(s1 + s2)a1(t)b1(t)− s2 − s(t)]

(62)
≥ 2s(0)

[
−(s1 + s2)

(
1 +Ae2(s1−s2)t

)−1

+ s1 − s(t)

]
,

where A = c1(0)
1−c1(0)

. By solving the above ODE, we get

d(s(t)e2s(0)t)

dt
≥ 2s(0)e2s(0)t

[
s1 − (s1 + s2)

(
1 +Ae2(s1−s2)t

)−1
]
.



On Non-local Convergence Analysis of Deep Linear Networks

0 100 200 300 400 500 600 700 800
Epoch

5.0

5.2

5.4

5.6

5.8

6.0
s(t)
u(t) Z1v(t)
u(t) Zv(t)

0 100 200 300 400 500 600 700 800
Epoch

10 12

10 9

10 6

10 3

100
s(t) s1

Figure 4. We choose N = 6, d = 5 with hidden-layer width (dN , . . . , d0) = (5, 4, 1, 10, 5, 3, 8), and set k = 0 in Theorem 3.1, i.e., the
trajectory converges to the global minimizer. Learning rate is 5× 10−4. We choose u(0) = u1,v(0) = v1, s(0) = 6 to guarantee the
minor case t2 = +∞. Left: Dynamics of s(t),u(t)⊤Zv(t),u(t)⊤Z1v(t) during the whole optimization. (The lines of u(t)⊤Zv(t)
and u(t)⊤Z1v(t) are totally overlapped.) Right: Linear convergence of s(t)− s1. Here t is the running step in gradient descent.

Hence, we get

s(t)e2s(0)t − s(0) ≥ s1

(
e2s(0)t − 1

)
−
∫ t

0

2s(0)e2s(0)x(s1 + s2)
(
1 +Ae2(s1−s2)x

)−1

dx

≥ s1

(
e2s(0)t − 1

)
− e2s(0)t

∫ t

0

2s(0)(s1 + s2)
(
1 +Ae2(s1−s2)x

)−1

dx

= s1

(
e2s(0)t − 1

)
− 2s(0)(s1 + s2)e

2s(0)t

2(s1 − s2)
· ln
(
1 +A−1e−2(s1−s2)t

)
≥ s1

(
e2s(0)t − 1

)
− s(0)(s1 + s2)e

2s(0)t

A(s1 − s2)
· e−2(s1−s2)t.

Therefore, we obtain

s(t) ≥ s1 − (s(0) + s1)e
−2s(0)t − s(0)(s1 + s2)

A (s1 − s2)
· e−2(s1−s2)t.

After hiding the constants, we obtain

s1 − s(t) = O
(
e−min{2(s1−s2),2s(0)}t

)
.

We note that by Theorem 3.1, s(t) → s1. Since s(t) is non-decreasing, we conclude

s(t) ≤ lim
t→+∞

s(t) = s1.

Then we obtain |s1 − s(t)| = O
(
e−min{2(s1−s2),2s(0)}t

)
. The proof is finished.

E. Missing Experiments
To show the minor case of t2 = +∞ in Theorem 4.8, we adopt u(0) = u1,v(0) = v1, s(0) > s1, which guarantees
u(t) = u1,v(t) = v1,∀t ≥ 0. Thus, we only need to consider the variation of s(t):

ṡ(t)
(4c)
= Ns(t)2−

2
N (s1 − s(t)) .

Then we obtain s(t) > s1,∀t ≥ 0, leading to u(t)Zv(t) = s1 < s(t),∀t ≥ 0. Hence, t2 = +∞. The numerical results are
shown in Figure 4, which match with the linear convergence of s(t)− s1 well.


