
Flow-based Recurrent Belief State Learning for POMDPs

Xiaoyu Chen 1 Yao Mu 2 Ping Luo 2 Shengbo Eben Li 3 Jianyu Chen 1 4

Abstract
Partially Observable Markov Decision Process
(POMDP) provides a principled and generic
framework to model real world sequential deci-
sion making processes but yet remains unsolved,
especially for high dimensional continuous space
and unknown models. The main challenge lies in
how to accurately obtain the belief state, which is
the probability distribution over the unobservable
environment states given historical information.
Accurately calculating this belief state is a precon-
dition for obtaining an optimal policy of POMDPs.
Recent advances in deep learning techniques show
great potential to learn good belief states. How-
ever, existing methods can only learn approxi-
mated distribution with limited flexibility. In this
paper, we introduce the FlOw-based Recurrent
BElief State model (FORBES), which incorpo-
rates normalizing flows into the variational in-
ference to learn general continuous belief states
for POMDPs. Furthermore, we show that the
learned belief states can be plugged into down-
stream RL algorithms to improve performance.
In experiments, we show that our methods suc-
cessfully capture the complex belief states that
enable multi-modal predictions as well as high
quality reconstructions, and results on challenging
visual-motor control tasks show that our method
achieves superior performance and sample effi-
ciency.

1. Introduction
Partially Observable Markov Decision Process (POMDP)
(Åström, 1965) provides a principled and generic framework
to model real world sequential decision making processes.

1Institute for Interdisciplinary Information Sciences, Tsinghua
University 2Department of Computer Science, The University of
Hong Kong 3School of Vehicle and Mobility, Tsinghua Univer-
sity 4Shanghai Qizhi Institute. Correspondence to: Jianyu Chen
<jianyuchen@tsinghua.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Unlike Markov Decision Process (MDP), the observations
of a POMDP are generally non-Markovian. Therefore, to
make optimal decisions, the agent needs to consider all
historical information, which is usually intractable. One
effective solution is to obtain the belief state. The belief
state is defined as the probability distribution of the unob-
servable environment state conditioned on the past obser-
vations and actions (Kaelbling et al., 1998). Such belief
state accurately summarizes the history. Traditional meth-
ods of calculating belief states (Smallwood & Sondik, 1973;
Sondik, 1971; Kaelbling et al., 1998) assume finite discrete
space with a known model. In many real world problems,
however, the underlying model remains unknown, and the
state space is large and even continuous. To track belief
states in POMDPS with continuous state and action spaces,
another line of works (Thrun, 1999; Silver & Veness, 2010)
uses Monte Carlo algorithms like particle filters to estimate
belief states. Nishiyama et al. (2012) proposes to solve the
POMDP based on models defined in appropriate reproduc-
ing kernel Hilbert spaces (RKHSs). However, this requires
access to samples from hidden states during training.

With the recent advances of deep learning technologies,
recent works mainly focus on POMDPs with unknown mod-
els and continuous state spaces. To capture belief states, a
branch of works including Hausknecht & Stone (2015); Gre-
gor et al. (2019b) uses vector-based representations, namely
scalars, to represent belief states. However, vector-based be-
lief states may fall short in making predictions for multiple
future trajectories (as discussed in Appendix D). Another
line of works proposes to learn belief states by approximat-
ing belief state distributions. The current state-of-the-art
performance on many visual-motor control tasks is also
achieved in this manner by sequentially maximizing the ob-
servation probability at each timestep using the variational
inference (Hafner et al., 2019a; Zhu et al., 2020; Okada et al.,
2020; Ma et al., 2020a; Mu et al., 2021). They approximate
the belief states with distributions like diagonal Gaussians
(Krishnan et al., 2015; Han et al., 2019; Gregor et al., 2019a;
Hafner et al., 2019b;a; Lee et al., 2020), Gaussian mixture
(Tschiatschek et al., 2018), categorical distribution (Hafner
et al., 2021), or particle filters (Ma et al., 2020b; Igl et al.,
2018). However, they still cannot capture general belief
states due to the intractability of complex distributions in
high-dimensional continuous space. They either suffer from

Flow-based Recurrent Belief State Learning for POMDPs

Figure 1: Difference between (a) spherical Gaussian belief
states and (b) true belief states (better viewed in color). The
spherical Gaussian belief states (a) approximate the true
belief states in (b) using Gaussian assuptions, which may
result in intersection (the white triangle) or vacancy (the
gray triangle) points in the state space.

the curse of dimensionality, or instead make some assump-
tions and learn only the approximated distributions. Those
approximation imposes strong restrictions and is problem-
atic.

Taking the Gaussian belief assumption as an example: as
shown in Figure 1, the blue area denotes the unobservable
state space of the POMDP. Given the past information τ , the
agent maintains a prior distribution of the state s, denoted as
p(s|τ) (the distribution in white). Each colored distribution
corresponds to the belief state after receiving a different new
observation o, denoted as the posterior distribution q(s|τ, o).
Consider an example of the true beliefs as shown in Figure
1(b), with their Gaussian approximations shown in Figure
1(a). The approximation error of Gaussian distributions will
easily result in problems of intersecting belief which leads
to a mixed-up state (e.g., the white triangle), and empty
belief, which leads to a meaningless state (e.g., the grey tri-
angle). This also explains the poor reconstruction problems
in interactive environments observed by Okada & Taniguchi
(2021). Furthermore, as mentioned in Hafner et al. (2021),
the Gaussian approximation of belief states also makes it
difficult to predict multi-modal future behaviours. There-
fore, it is preferable to relax the Gaussian assumptions and
use a more flexible family of distributions to learn accurate
belief states as shown in Figure 1(b). For a more detailed
discussion of the related works, please check Section 5 and
Appendix D.

In this paper, we propose a new method called FlOw-based
Recurrent BElief State model (FORBES) that is able to learn
general continuous belief states for POMDPs. FORBES
incorporates Normalizing Flows (Tabak & Turner, 2013;
Rezende & Mohamed, 2015; Dinh et al., 2017) into the
variational inference step to construct flexible belief states.

In experiments, we show that FORBES allows the agent
to maintain flexible belief states, which result in multi-
modal and precise predictions as well as higher quality
reconstructions. We also demonstrate the results combining
FORBES with downstream RL algorithms on challenging
visual-motor control tasks (DeepMind Control Suite, (Tassa
et al., 2018)). The results show the efficacy of FORBES in
terms of improving both performance and sample efficiency.

Our contributions can be summarized as follows:

• We propose FORBES, the first flow-based belief state
learning algorithm that is capable of learning general
continuous belief states for POMDPs.

• We incorporate FORBES into a POMDP RL frame-
work for visual-motor control tasks that can fully ex-
ploit the benefits brought by FORBES.

• Empirically, we show that FORBES allows the agent
to learn flexible belief states that enable multi-modal
predictions as well as high quality reconstructions and
help improve both performance and sample efficiency
for challenging visual-motor control tasks.

2. Preliminaries
2.1. Partially Observable Markov Decision Process

Figure 2: The PGM of POMDP. The grey circle represents
the unobservable hidden states s, while the observations o,
rewards r are observable, and the actions a are determined
by the agent.

Formally, a Partially Observable Markov Decision Process
(POMDP) is a 7-tuple (S,A, T,R,Ω, O, γ), where S is a
set of states, A is a set of actions, T is a set of conditional
transition probabilities between states, R is the reward func-
tion, Ω is a set of observations, O is a set of conditional
observation probabilities, and γ is the discount factor.

At each timestep t − 1, the state of the environment is
st−1 ∈ S. The agent takes an action at−1 ∈ A, which
causes the environment to transit to state st with probability
T (st | st−1, at−1). The agent then receives an observation
ot ∈ Ω which depends on the new state of the environ-
ment st with probability O (ot | st). Finally, the agent re-
ceives a reward rt−1 equal to R(st−1). The agent’s goal is

Flow-based Recurrent Belief State Learning for POMDPs

to maximize the the expected sum of discounted rewards
E [
∑∞
t=0 γ

trt]. Such a POMDP model can also be described
as a probabilistic graphical model (PGM) as shown in Fig-
ure 2. After having taken action at−1 and observing ot, an
agent needs to update its belief state, which is defined as the
probability distribution of the environment state conditioned
on all historical information:

b(st) = p(st | τt, ot) (1)

where τt = {o1, a1, . . . , ot−1, at−1}.

2.2. Normalizing Flow

Instead of using the Gaussian family to approximate the
prior and posterior belief distributions, we believe it is more
desirable to use a family of distributions that is highly flexi-
ble and preferably flexible enough to describe all possible
true belief states. Therefore, we use Normalizing Flows
(Tabak & Turner, 2013; Rezende & Mohamed, 2015) to
parameterize those distributions.

Rather than directly parameterizing statistics of the distribu-
tion itself, Normalizing Flows model the transformations,
or the “flow” progress, needed to derive such a distribution.
More specifically, it describes a sequence of invertible map-
pings that gradually transform a relatively simple probability
density to a more flexible and complex one.

Let fθ : RD → RD to be an invertible and differentiable
mapping in state space parameterized by θ. Given a random
variable x ∈ RD with probability distribution p(x), we can
derive the probability of the transformed random variable
z = fθ(x) by applying the change of variable formula:

p(z) = p(x)

∣∣∣∣det ∂f−1
θ

∂z

∣∣∣∣ (2)

log p(z) = log p(x)− log

∣∣∣∣det ∂fθ∂z
∣∣∣∣ (3)

To construct a highly flexible family of distributions, we can
propagate the random variable at beginning z0 through a
sequence of K mappings and get zK = fθK ◦ fθK−1

◦ · · · ◦
fθ1(z0) with the probability

log pK(zK) = log p(z0)−
K∑
k=1

log

∣∣∣∣det ∂fθk
∂zk−1

∣∣∣∣ (4)

Given a relatively simple distribution of z0, say, Gaussian
distribution, by iteratively applying the transformations, the
flow is capable of representing a highly complex distribution
with the probability that remains tractable. The parameters
θ1, . . . , θK determine the transformations of the flow.

An effective transformation that is widely accepted is affine
coupling layer (Dinh et al., 2017; Kingma & Dhariwal, 2018;
Kingma et al., 2017). Given the input x ∈ RD, let s and

t stand for scale and translation functions which are usu-
ally parameterized by neural networks, where s, t : Rk →
RD−k, k < D. The output, y, can be viewed as a concate-
nation of its first k dimensions y1:k and the remaining part
yk+1:D:

y1:k = x1:k,

yk+1:D = xk+1:D ⊙ exp(s(x1:k)) + t(x1:k) (5)

where ⊙ denotes the element-wise product (see details about
affine coupling layer in Appendix A).

3. Flow-based Recurrent Belief State Learning
3.1. Flow-based Recurrent Belief State model

We propose the FlOw-based Recurrent BElief State model
(FORBES) which learns general continuous belief states
via normalizing flows under the variational inference frame-
work. Specifically, the FORBES model consists of compo-
nents needed to construct the PGM of POMDP as shown in
Figure 2:

State transition model : p(st|st−1, at−1)

Observation model : p(ot|st)
Reward model : p(rt|st)

(6)

In addition, we have a belief inference model q(st|τt, ot)
to approximate the true posterior distribution p(st|τt, ot) as
defined in Equation 1, where τt = {o1, a1, . . . , ot−1, at−1}
is the past information. The above components of FORBES
can be optimized jointly by maximizing the Evidence Lower
BOund (ELBO) (Jordan et al., 1999) or more generally
the variational information bottleneck (Tishby et al., 2000;
Alemi et al., 2016):

log p(o1:T |a1:T)

≥
T∑

t=1

(
Eq(st|o≤t,a<t)[log p(ot|st) + log p(rt|st)]

− E
q(st−1|τt−1,ot−1)

[
DKL(q(st|τt, ot)∥p(st|st−1, at−1)

]
)
)

.
= JModel

(7)

Detailed derivations can be found in Appendix J. In practice,
the state transition model, observation model, reward model,
and belief inference model can be represented by stochastic
deep neural networks parameterized by ψ:

pψ(st|st−1, at−1), pψ(ot|st), pψ(rt|st), qψ(st|τt, ot)

where their outputs usually follow simple distributions such
as diagonal Gaussians. The parameterized belief inference
model qψ(st|τt, ot) acts as an encoder that encodes the his-
torical information using a combination of convolutional
neural networks and recurrent neural networks.

Flow-based Recurrent Belief State Learning for POMDPs

(a) Belief state inference (b) Predictions beginning from different samples

Figure 3: The algorithm framework of FORBES. Figure 3a shows how to calculate prior and posterior belief distribution
given previous information. The blue arrows bring in historical observations and actions, and the green path shows the
evolution of prior belief distribution. The red path takes an additional ot and shows the evolution of posterior belief
distribution. Figure 3b shows the predictions of future trajectories starting from different samples (yellow and purple
triangles) given the future actions.

In FORBES we provide special treatments for the belief
inference model and the state transition model to repre-
sent more complex and flexible posterior and prior dis-
tributions. As shown in Figure 3(a), the input images
o1:t and actions a1:t−1 are encoded with qψ(st|τt, ot) (the
blue and the red path). Then our final inferred belief
is obtained by propagating qψ(st|τt, ot) through a set of
normalizing flow mappings denoted fθK ◦ · · · ◦ fθ1 to
get a representative posterior distribution qψ,θ(st|τt, ot).
For convenience, we denote q0 = qψ and qK = qψ,θ.
On the other hand, o1:t−1 and a1:t−2 are encoded with
qψ(st−1|τt−1, ot−1) (the blue path), then the state transi-
tion model is used to obtain the prior guess of the state
pψ(st | τt) = Eqψ(st−1|τt−1,ot−1) [pψ(st | st−1, at−1)] (the
green path). Then our final prior is obtained by propagating
pψ(st|τt) through another set of normalizing flow mappings
denoted fωK ◦ · · · ◦ fω1

to get a representative prior distribu-
tion pψ,ω(st|τt). For convenience, we denote p0 = pψ and
pK = pψ,ω. Then as shown in Figure 3(b), we can sample
the initial state st (the yellow and purple triangles) from the
belief states qK(st | τt, ot). For each sampled initial state,
we can use the state transition model to predict the future
states ŝt+h given the future actions at:t+h−1, and then use
the observation model to reconstruct the observations ôt+h,
where h is the prediction horizon.

With the above settings, we can substitute the density prob-
ability inside the KL-divergence term in Equation 7 with
Normalizing Flow:

log qK(st|τt, ot) = log q0(st|τt, ot)−
K∑

k=1

log

∣∣∣∣det ∂fθk
∂st,k−1

∣∣∣∣
log pK(st|τt) = log p0(st|τt)−

K∑
k=1

log

∣∣∣∣det ∂fωk
∂st,k−1

∣∣∣∣
(8)

where pK(st | st−1, at−1) = pK(st | τt) given the sam-
pled st−1 from qK(s1:t|τt, ot). st,k is the state variable st
transformed by k layers of normalizing flows, and st,0 = st.

To further demonstrate the properties of FORBES, we pro-
vide the following theorems.

Theorem 3.1. The approximation error of the log-likelihood
when maximizing the JModel (the derived ELBO) defined in
Equation 7 is:

log p(o1:T , r1:T |a1:T)− JModel

= E
qK(s1:T |o1:T ,a1:T−1)

[
ΣTt=1DKL(q(st|τt, ot)∥p(st | τt, ot))

] (9)

where p(st | τt, ot) denotes the true belief states.

Detailed proofs can be found in Appendix.K. Theorem 3.1
suggests that, when the learning algorithm maximizes the
JModel (the derived ELBO), then theDKL terms in the right-
hand side are minimized, which indicate the KL-divergence
between the learned belief states q(st|τt, ot) and the true
belief states p(st | τt, ot). Clearly, if p(st | τt, ot) is a com-
plex distribution and q(st|τt, ot) is chosen from a restricted
distribution class such as diagonal Gaussian, then when the
algorithm maximizes the JModel (the derived ELBO), there
will still be a potentially large KL-divergence between the
learned and the true belief states.

Therefore, naturally there raises the problem that is nor-
malizing flow a universal distributional approximator that is
capable of accurately representing arbitrarily complex belief
states, so the KL-divergence terms in the right-hand side
of Equation (9) can be minimized to approach zero? The
answer is yes for a wide range of normalizing flows. To be
specific, Teshima et al. (2020) provides theoretical results
for the family of the flow used in FORBES.

Flow-based Recurrent Belief State Learning for POMDPs

Figure 4: Predictions on sequential MNIST of two models. This is a digit writing task. The fully written digits are shown in
the leftmost column. We use incomplete writing processes (the first 15 frames, partially shown in the grey column) as the
inputs and let the models predict the complete digit (as shown in the blue/green columns). The results show that FORBES
can make precise yet diverse predictions with less blur and no mode mixup.

Besides the aforementioned affine coupling flow, many
works show the distributional universality of other flows
(Kong & Chaudhuri, 2020; Huang et al., 2018). Ideally,
the universal approximation property of the flow model
qK(st | τt, ot) allows us to approximate the true posterior
p(st | τt, ot) with arbitrary accuracy. Thus, compared to
previous methods, FORBES helps close the gap between the
log-likelihood and the ELBO to obtain a more accurate be-
lief state. Though we usually cannot achieve the ideal zero
KL-divergence in practice, our method can get a smaller
approximation error, equally a higher ELBO than previous
works. We verify this statement in section 4.1.

3.2. POMDP RL framework based on FORBES

To show the advantage of the belief states inferred by
the FORBES model compared to the existing belief infer-
ence method in visual-motor control tasks, we incorporate
FORBES into a flow-based belief reinforcement learning
algorithm for learning the optimal policy in POMDPs. In-
spired by Hafner et al. (2019a), the algorithm follows an
actor-critic framework but is slightly modified to exploit bet-
ter the flexible nature of FORBES: The critic estimates the
accumulated future rewards, and the actor chooses actions
to maximize the estimated cumulated rewards. Instead of
using only one sample, both the actor and critic operate on
top of the samples of belief states learned by FORBES. They
thus benefit from the accurate representations learned by the
FORBES model. Note that this is an approximation of the
true value on belief, which avoids the intractable integration
through observation model.

The critic vξ (sτ) aims to predict the discounted sum of
future rewards that the actor can achieve given an initial state
st, known as the state value E

(∑t+∞
τ=t γ

τ−trτ

)
, where

ξ denote the parameters of the critic network and H is
the prediction horizon. We leverage temporal-difference to
learn this value, where the critic is trained towards a value
target that is constructed from the intermediate reward and
the critic output for the next step’s state. In order to trade-off
the bias and the variance of the state value estimation, we
use the more general TD(λ) target (Sutton & Barto, 2018),
which is a weighted average of n-step returns for different
horizons and is defined as follows:

V λτ
.
= r̂τ+γ̂τ

{
(1− λ)vξ(sτ+1) + λV λτ+1 if τ < t+H,

vξ(st+H) if τ = t+H.

(10)
To better utilize the flexibility belief states from FORBES,
we run the sampling method multiple times to capture the
diverse predictions. Specifically, we sample N states from
the belief state given by FORBES and then rollout trajec-
tories of future states and rewards using the state transition
model and the reward model. Finally, we train the critic to
regress the TD(λ) target return using a mean squared error
loss:

JCritic(ξ) = E
[∑N

i=1

∑t+H
τ=t

1
2

(
vξ(si,τ)− sg(V λi,τ)

)2]
.

(11)
where sg(·) is the stop gradient operation. The actor
aτ ∼ qϕ (aτ | sτ) aims to output actions that maximize the
prediction of long-term future rewards made by the critic
and is trained directly by backpropagating the value gradi-
ents through the sequence of sampled states and actions, i.e.,
maximize:

JActor(ϕ) = E

(
N∑
i=1

t+H∑
τ=t

Vλi,τ

)
(12)

We jointly optimize the model loss JModel with respect to
the model parameters ψ, θ and ω, the critic loss JCritic

Flow-based Recurrent Belief State Learning for POMDPs

Algorithm 1 FORBES Algorithm

Input: buffer B, imagination horizon H , interacting step
T , batch size B, batch length L, number of trajetories N .
Initialize buffer B with S random seed episodes.
while not converged do

for c = 1, . . . , C do
Draw B data sequences {(ot, at, rt)}k+Lt=k from B
Infer belief state qK(st|st−1, at−1, ot).
for i = 1, . . . , N do

Rollout imaginary trajectories {(si,τ , ai,τ)}t+Hτ=t

with belief transition model.
end for
For each si,τ , predict rewards pψ(ri,τ |si,τ) and val-
ues vϕ(si,τ) {Calculate returns}
Update θ, ω, ξ, ϕ, ψ using Equation (7), (8), (11),
(12) and (13) {Optimize parameters}

end for
Reset environment and get o1.
for t = 1, . . . , T do

Compute st ∼ qK(st|st−1, at−1, ot) from history.
Compute at ∼ π(at|st) with action model.
Add exploration noise to action.
Execute at and get ot+1, rt.

end for
Add experience to buffer B = B ∪ {(ot, at, rt)Tt=1}

end while

with respect to the critic parameters ξ and the actor JActor
loss with respect to the actor parameters ϕ using the Adam
optimizer with different learning rates:

min
ψ,ξ,ϕ,θ,ω

α0JCritc(ξ)−α1JActor(ϕ)−α2JModel(ψ, θ, ω)

(13)
where α0, α1, α2 are coefficients for different components,
and we summarize the whole framework of optimizing in
Algorithm 1.

4. Experiments
Our experiments evaluate FORBES on two image-based
tasks. We first demonstrate the belief learning capacity on
a digit writing task in Section 4.1, and show that FORBES
captures beliefs that allow for multi-modal yet precise long-
term predictions as well as higher ELBO. For large-scale
experiments, we test the proposed POMDP RL framework
based on FORBES in Section 4.2. The results of multi-
ple challenging visual-motor control tasks from DeepMind
Control Suite (Tassa et al., 2018) show that FORBES out-
performs baselines in terms of performance and sample
efficiency. In Section 4.3, we further provide ablation stud-
ies of the multiple imagined trajectories technique used in
our method.

4.1. Digit Writing Tasks

In this experiment, we validate the capacity of FORBES
by modelling the partially observable sequence with visual
inputs. We adopt the MNIST Sequence Dataset (D. De Jong,
2016) that consists of sequences of handwriting MNIST
digit stokes. This problem can be viewed as a special case
of POMDP, whose action space is Ø and rewards remain
0. Such a problem setting separates the belief learning and
policy optimizing problem and allows us to concentrate on
the former one in this section. We convert the digit stroke to
a sequence of images of size 28× 28 to simulate the writing
process. At time step t, the agent can observe ot that has
already written t pixels, and we train the agent maximizing
JModel in Equation 7 except for the reward reconstruction
term. As shown in Figure 4, we randomly select three digits

Figure 5: ELBO on digit writing.

as examples (see Appendix L for more results) and show
the inputs as well as the prediction outputs of our model
and the RSSM (Hafner et al., 2019b) baseline, which is
the previous state-of-the-art method for learning continuous
belief states of POMDPs. The leftmost column is the ground
truth of the fully written digits. During the testing, we feed
the initial 15 frames {o1, o2, · · · , o15} to the model, and the
columns in grey exhibit a part of the inputs. Then we sample
several states from the inferred belief state and rollout via
the learned state transition model (Equation (6)) for 15 steps
and show the reconstruction results of the predictions. As
shown in the blue and green columns on the right of Figure 4,
though RSSM can also predict the future strokes in general,
the reconstructions are relatively blurred and mix different
digits up. It also fails to give diverse predictions. However,
FORBES can make precise yet diverse predictions. Each
prediction is clear and distinct from other digits. Given the
beginning of the digit 7, FORBES successfully predicts both
7 and 3 since they have a similar beginning. The results can
be partially explained via the mixed-up belief and the empty
belief as shown in Figure 1, which support the claim that
FORBES can better capture the complex belief states.

We also provide the quantitative results in Figure 5, which
is the ELBO on test digits sequence set that is never seen
during training. The results show that FORBES can achieve

Flow-based Recurrent Belief State Learning for POMDPs

200

400

600

800

Ep
iso

de
 R

et
ur

n
Cartpole Swingup

0

100

200

300

400

500

600

700

Cheetah Run

0

200

400

600

800

1000
Finger Spin

0 100 200 300 400 500
Environment Steps (K)

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

Hopper Stand

0 100 200 300 400 500
Environment Steps (K)

0

100

200

300

400

500

600

Walker Run

FORBES
Dreamer

D4PG (1e9 steps)
A3C (1e9 steps, proprio)

PlaNet (1e6 steps)

0 100 200 300 400 500
Environment Steps (K)

0

200

400

600

800

1000
Walker Walk

Figure 6: Performance on DeepMind Control Suite. The
shaded areas show the standard deviation across 5 seeds.
FORBES achieves better performance and sample efficiency
in various challenging tasks.

a tighter ELBO, which verifies the theoretical results in 3.1.
The details of the implementation can be found in Appendix
B.

4.2. Visual-motor control tasks
We experimentally evaluate the performance of FORBES on
Reinforcement Learning on a variety of visual-motor control
tasks from the DeepMind Control Suite (Tassa et al., 2018),
illustrated in Figure 6. Across all the tasks, the observations
are 64×64×3 images. These environments provide different
challenges. The Cartpole-Swingup task requires a long
planning horizon and memorizing the state of the cart when
it is out of view; Finger-Spinning includes contact dynamics
between the finger and the object; Cheetah-Run exhibits
high-dimensional state and action spaces; the Walker-Walk
and Walker-Run are challenging because the robot has to
learn to first stand up and then walk; Hopper Stand is based
on a single-legged robot, which is sensitive to the reaction
force on the ground and thus needs more accurate control.
As for baselines, we include the scores for A3C Mnih et al.
(2016) with state inputs (1e9 steps), D4PG Barth-Maron
et al. (2018) (1e9 steps), PlaNet (Hafner et al., 2019b) (1e6
steps) and Dreamer Hafner et al. (2019a) with pixel inputs.
All the scores of baselines are aligned with the ones reported
in Hafner et al. (2019a) (see details in Appendix C). We use
N = 4 trajectories. The details of the implementations and
hyperparameters can be found in Appendix B.

Our experiments empirically show that FORBES achieves
superior performance and sample efficiency on challeng-
ing visual-motor control tasks. As illustrated in Figure 6,
FORBES achieves higher scores than Dreamer (Hafner et al.,
2019a) in most of the tasks and achieves better performance
than PlaNet (Hafner et al., 2019b) within much fewer en-
vironment steps. See Appendix G for more results. We
provide some insights into the results. As shown in Section

200

400

600

800

Ep
iso

de
 R

et
ur

n

Cartpole Swingup

0

100

200

300

400

500

600

700

Cheetah Run

0

200

400

600

800

1000
Finger Spin

0 100 200 300 400 500
Environment Steps (K)

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

Hopper Stand

0 100 200 300 400 500
Environment Steps (K)

0

100

200

300

400

500

600

Walker Run

FORBES
Dreamer

Dreamer + Multiple Imagined Trajectories

0 100 200 300 400 500
Environment Steps (K)

0

200

400

600

800

1000
Walker Walk

Figure 7: Comparison of the performance between FORBES
and Dreamer with multiple imagined trajectories.

4.1, baselines with Gaussian assumptions may suffer from
the mixed-up belief and empty belief issues, while FORBES
can better capture the general belief states. Furthermore,
multiple imagined trajectories can better utilize the diversity
in the rollout. Therefore, the inner coherency within the
model components allows the agent a better performance.
See Appendix F for results on more environments. We fur-
ther discuss the role of multiple imagined trajectories and
other components in the next section.

4.3. Ablation Study
In order to verify that the outperformance of FORBES is
not simply due to increasing the number of imagined trajec-
tories, we conducted an ablation study in this section. We
compare FORBES with the “Dreamer + multiple imagined
trajectories” baseline by increasing the number of imagined
trajectories in Dreamer to the same as in FORBES (N = 4).
As shown in Figure 7, no consistent and obvious gain can
be observed after increasing the number of trajectories to
Dreamer. The agent gains slight improvements in two envi-
ronments and suffers from slight performance loss on other
tasks. This result indicates that increasing the number of
imagined trajectories may only be effective when the agent
can make diverse predictions as in FORBES. The Gaus-
sian assumptions lead to the lack of trajectory diversity, so
that increasing the number of imagined trajectories will not
effectively help. Besides, Appendix E compare different
N to illustrate the effect of multiple imagined trajectories.
Appendix H add parameters to baselines to illustrate the
performance gain is not due to more parameters.

4.4. Visual-motor control tasks with multimodal
stochasticity

To better exhibit the advantages of FORBES on challenging
tasks, we further make our environment more stochastic by
extending DMC to multimodal DMC, aiming to solve the

Flow-based Recurrent Belief State Learning for POMDPs

50 100 150 200 250
Environment Steps (K)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n
Walker Walk

50 100 150 200 250
Environment Steps (K)

200

400

600

800

Cartpole Swingup

50 100 150 200 250
Environment Steps (K)

0

100

200

300

400

500

Finger Spin

FORBES c=0.01 Dreamer c=0.01 FORBES c=0.1 Dreamer c=0.1

Figure 8: Comparison of the performance between FORBES
and Dreamer on multimodal DMC with different c.

multimodal beliefs problems.

With the observations left unchanged, we add a random
binary state sm. sm is sampled from {+1,−1} with equal
probability at the beginning of each episode and then stays
fixed. For each t in this episode, we add sm× c to at, where
c is a hyperparameter. This is equal to a piecewise-defined
dynamic function. Since sm is unobservable, this introduces
clear, distinct multimodality to the belief. In this case, the
agent needs to accurately capture the belief distribution in
order to act optimally.

As illustrated in Figure 8, the results show that FORBES
consistently gains significant improvements, which indi-
cates that FORBES can capture the belief more accurately.

5. Related Work
POMDP: POMDP solving approaches can be divided into
two categories based on whether their state, action and ob-
servation spaces are discrete or continuous. Discrete space
POMDP solvers, in general, either approximate the value
function using point-based methods (Kurniawati et al., 2008;
Shani et al., 2013) or using Monte-Carlo sampling in the
belief space (Thrun, 1999; Andrieu & Doucet, 2002; Silver
& Veness, 2010; Kurniawati & Yadav, 2016) to make the
POMDP problem tractable. Monte Carlo algorithms like
particle filters make it possible to handle POMDPs with con-
tinuous state space by maintaining sets of samples drawn
from the belief states. Other continuous space POMDP
solvers often approximate the belief states as a distribution
with few parameters (typically Gaussian) and solve the prob-
lem analytically either using gradients (Van Den Berg et al.,
2012; Indelman et al., 2015) or using random sampling in
the belief space (Agha-Mohammadi et al., 2014; Hollinger
& Sukhatme, 2014). However, most of the classical POMDP
methods mentioned above are based on an accurately known
dynamic model, which is a restricted assumption in many
real world tasks. More recently, Nishiyama et al. (2012)
proposes to solve the POMDP based on models defined in
appropriate RKHSs, which represent probability distribu-
tions as embeddings in RKHSs. However, the embeddings
are learned from training samples, and therefore this method

requires access to samples from hidden states during train-
ing.

MBRL for visual-motor control: Recent researches in
model-based reinforcement learning (MBRL) for visual-
motor control provides promising methods to solve
POMDPs with high-dimensional continuous space and un-
known models since visual-motor control tasks can be nat-
urally modelled as POMDP problems. Learning effective
latent dynamics models to solve challenging visual-motor
control problems is becoming feasible through advances in
deep generative modeling and latent variable models (Kr-
ishnan et al., 2015; Karl et al., 2016; Doerr et al., 2018;
Buesing et al., 2018; Ha & Schmidhuber, 2018; Han et al.,
2019; Hafner et al., 2019b;a). Among which, the recurrent
state-space model (RSSM) based methods (Hafner et al.,
2019b;a) provide a principled way to learn continuous latent
belief states for POMDPs by variational inference and learns
behaviours based on the belief states using model-based re-
inforcement learning, which achieves high performance on
visual-motor control tasks. However, they assume the belief
states obey diagonal Gaussian distributions. Such assump-
tions impose strong restrictions to belief inference and lead
to limitations in practice, including mode collapse, posterior
collapse and object vanishing in reconstruction(Bowman
et al., 2016; Salimans et al., 2015; Okada & Taniguchi,
2020). In addition to the diagonal Gaussian distributions,
(Tschiatschek et al., 2018) uses a Gaussian mixture to ap-
proximate the belief states. More recently, (Hafner et al.,
2021) proposes to approximate the belief states by assum-
ing a discrete latent space and results in superior perfor-
mance. However, our algorithm makes no assumption and
has the capability to approach arbitrary continuous distri-
bution according to the theoretical analysis. Other works
like (Hausknecht & Stone, 2015; Gregor et al., 2019b) use
a vector-based representation of belief states. However,
this deterministic representation prohibits the agent from
consistently forecasting the future since the results of the
reconstructed observation contain multimodality, and one
can hardly keep the samples stay in the same mode across
time. Please check Appendix D for more details. A few
works propose particle filter based methods that use sam-
ples to approximate the belief states (Ma et al., 2020b; Igl
et al., 2018). However, particle filters are reported to expe-
rience the curse of dimensionality(Daum & Huang, 2003;
Bengtsson et al., 2008) and therefore suffer from insufficient
sample efficiency and performance Lee et al. (2020). For a
more detailed discussion of the related works, please refer
to Appendix D.

Normalizing Flows: Normalizing Flows (NF) are a family
of generative models which produce tractable distributions
with analytical density. For a transformation f : RD →
RD, the computational time cost of the log determinant
is O(D3). Thus most previous works choose to make the

Flow-based Recurrent Belief State Learning for POMDPs

computation more tractable. (Rezende & Mohamed, 2015;
van den Berg et al., 2019) propose to use restricted func-
tional form of f . Another choice is to force the Jacobian of
f to be lower triangular by using an autoregressive model
(Kingma et al., 2016; Papamakarios et al., 2018). These
models usually excel at density estimation, but the inverse
computation can be time-consuming. Dinh et al. (2015;
2017); Kingma & Dhariwal (2018) propose the coupling
method to make the Jacobian triangular and ensure the for-
ward and inverse can be computed with a single pass. The
applications of NF include image generation (Ho et al.,
2019; Kingma & Dhariwal, 2018), video generation (Kumar
et al., 2019) and reinforcement learning (Mazoure et al.,
2020; Ward et al., 2019; Touati et al., 2020).

6. Conclusion
General continuous belief states inference is a crucial yet
challenging problem in high-dimensional Partially Observ-
able Markov Decision Process (POMDP) problems. In this
paper, we propose the FlOw-based Recurrent BElief State
model (FORBES) that can learn general continuous belief
states by incorporating normalizing flows into the varia-
tional inference framework and then effectively utilize the
learned belief states in downstream RL tasks. We show that
theoretically, our method can accurately learn the true belief
states and we verify the effectiveness of our method in terms
of both the quality of learned belief states and the final per-
formance of our extended POMDP RL framework on two
visual input environments. The digit writing tasks demon-
strate that our method can learn general belief states that
enable precise and multi-modal predictions and high-quality
reconstructions. General belief inference plays a vital role
in solving the POMDP, and our method paves a way to-
wards it. In the future, we will explore further approaches
to improve the accuracy of belief states inference and infor-
mation seeking, such as combining contrastive learning and
using advanced network architectures such as transformers
to build normalizing flows.

7. Acknowledgment
This work is supported by the Ministry of Science and Tech-
nology of the People’s Republic of China, the 2030 Innova-
tion Megaprojects “Program on New Generation Artificial
Intelligence” (Grant No. 2021AAA0150000), NSF China
with U20A20334 and 52072213.

References
Agha-Mohammadi, A.-A., Chakravorty, S., and Amato,

N. M. Firm: Sampling-based feedback motion-planning
under motion uncertainty and imperfect measurements.
The International Journal of Robotics Research, 33(2):
268–304, 2014.

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K.
Deep variational information bottleneck. arXiv preprint
arXiv:1612.00410, 2016.

Andrieu, C. and Doucet, A. Particle filtering for partially ob-
served gaussian state space models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 64
(4):827–836, 2002.

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney,
W., Horgan, D., TB, D., Muldal, A., Heess, N., and Lil-
licrap, T. Distributed distributional deterministic policy
gradients, 2018.

Bengtsson, T., Bickel, P., and Li, B. Curse-of-dimensionality
revisited: Collapse of the particle filter in very large scale
systems. Probability and Statistics: Essays in Honor of
David A. Freedman, pp. 316–334, 2008. doi: 10.1214/
193940307000000518. URL http://dx.doi.org/
10.1214/193940307000000518.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. Generating sentences from a
continuous space. CONLL, 2016.

Buesing, L., Weber, T., Racaniere, S., Eslami, S., Rezende,
D., Reichert, D. P., Viola, F., Besse, F., Gregor, K.,
Hassabis, D., et al. Learning and querying fast gener-
ative models for reinforcement learning. arXiv preprint
arXiv:1802.03006, 2018.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

D. De Jong, E. The mnist sequence dataset.
https://edwin-de-jong.github.io/blog/
mnist-sequence-data/, 2016. Accessed:
2019-07-07.

Daum, F. and Huang, J. Curse of dimensionality and parti-
cle filters. In 2003 IEEE Aerospace Conference Proceed-
ings (Cat. No. 03TH8652), volume 4, pp. 4 1979–4 1993.
IEEE, 2003.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear
independent components estimation. In ICLR, 2015.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using real nvp, 2017.

Doerr, A., Daniel, C., Schiegg, M., Duy, N.-T., Schaal, S.,
Toussaint, M., and Sebastian, T. Probabilistic recurrent
state-space models. In International Conference on Ma-
chine Learning, pp. 1280–1289. PMLR, 2018.

http://dx.doi.org/10.1214/193940307000000518
http://dx.doi.org/10.1214/193940307000000518
https://edwin-de-jong.github.io/blog/mnist-sequence-data/
https://edwin-de-jong.github.io/blog/mnist-sequence-data/

Flow-based Recurrent Belief State Learning for POMDPs

Gregor, K., Papamakarios, G., Besse, F., Buesing, L., and
Weber, T. Temporal difference variational auto-encoder,
2019a.

Gregor, K., Rezende, D. J., Besse, F., Wu, Y., Merzic,
H., and Oord, A. v. d. Shaping belief states with
generative environment models for rl. arXiv preprint
arXiv:1906.09237, 2019b.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019a.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels, 2019b.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mastering
atari with discrete world models, 2021.

Han, D., Doya, K., and Tani, J. Variational recurrent models
for solving partially observable control tasks, 2019.

Hausknecht, M. and Stone, P. Deep recurrent q-
learning for partially observable mdps. arXiv preprint
arXiv:1507.06527, 2015.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P.
Flow++: Improving flow-based generative models with
variational dequantization and architecture design. In
International Conference on Machine Learning, pp. 2722–
2730. PMLR, 2019.

Hollinger, G. A. and Sukhatme, G. S. Sampling-based
robotic information gathering algorithms. The Interna-
tional Journal of Robotics Research, 33(9):1271–1287,
2014.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A.
Neural autoregressive flows. In ICML, 2018.

Igl, M., Zintgraf, L., Le, T. A., Wood, F., and Whiteson,
S. Deep variational reinforcement learning for pomdps,
2018.

Indelman, V., Carlone, L., and Dellaert, F. Planning in the
continuous domain: A generalized belief space approach
for autonomous navigation in unknown environments.
The International Journal of Robotics Research, 34(7):
849–882, 2015.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. Machine learning, 37(2):183–233, 1999.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 1998.

Karl, M., Soelch, M., Bayer, J., and Van der Smagt, P.
Deep variational bayes filters: Unsupervised learning
of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with
invertible 1x1 convolutions. In NeurIPS, 2018.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, I., and Welling, M. Improved variational infer-
ence with inverse autoregressive flow. In NIPS, 2016.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, I., and Welling, M. Improving variational
inference with inverse autoregressive flow, 2017.

Kong, Z. and Chaudhuri, K. The expressive power of a class
of normalizing flow models, 2020.

Krishnan, R. G., Shalit, U., and Sontag, D. Deep kalman
filters. arXiv preprint arXiv:1511.05121, 2015.

Kumar, M., Babaeizadeh, M., Erhan, D., Finn, C., Levine,
S., Dinh, L., and Kingma, D. Videoflow: A flow-
based generative model for video. arXiv preprint
arXiv:1903.01434, 2(5), 2019.

Kurniawati, H. and Yadav, V. An online pomdp solver
for uncertainty planning in dynamic environment. In
Robotics Research, pp. 611–629. Springer, 2016.

Kurniawati, H., Hsu, D., and Lee, W. S. Sarsop: Efficient
point-based pomdp planning by approximating optimally
reachable belief spaces. In Robotics: Science and systems,
volume 2008. Citeseer, 2008.

Lee, A. X., Nagabandi, A., Abbeel, P., and Levine, S.
Stochastic latent actor-critic: Deep reinforcement learn-
ing with a latent variable model, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Ma, X., Chen, S., Hsu, D., and Lee, W. S. Contrastive varia-
tional reinforcement learning for complex observations,
2020a.

Ma, X., Karkus, P., Hsu, D., and Lee, W. S. Particle fil-
ter recurrent neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 5101–5108, 2020b.

Flow-based Recurrent Belief State Learning for POMDPs

Mazoure, B., Doan, T., Durand, A., Pineau, J., and Hjelm,
R. D. Leveraging exploration in off-policy algorithms via
normalizing flows. In Conference on Robot Learning, pp.
430–444. PMLR, 2020.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning, 2016.

Mu, Y., Zhuang, Y., Wang, B., Zhu, G., Liu, W., Chen,
J., Luo, P., Li, S. E., Zhang, C., and HAO, J. Model-
based reinforcement learning via imagination with de-
rived memory. In Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W. (eds.), Advances in Neural In-
formation Processing Systems, 2021. URL https:
//openreview.net/forum?id=jeATherHHGj.

Nishiyama, Y., Boularias, A., Gretton, A., and Fukumizu,
K. Hilbert space embeddings of pomdps, 2012.

Okada, M. and Taniguchi, T. Dreaming: Model-based rein-
forcement learning by latent imagination without recon-
struction. arXiv preprint arXiv:2007.14535, 2020.

Okada, M. and Taniguchi, T. Dreaming: Model-based rein-
forcement learning by latent imagination without recon-
struction, 2021.

Okada, M., Kosaka, N., and Taniguchi, T. Planet of the
bayesians: Reconsidering and improving deep planning
network by incorporating bayesian inference, 2020.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation, 2018.

Rezende, D. J. and Mohamed, S. Variational inference with
normalizing flows. In ICML, 2015.

Salimans, T., Kingma, D., and Welling, M. Markov chain
monte carlo and variational inference: Bridging the gap.
In International Conference on Machine Learning, pp.
1218–1226. PMLR, 2015.

Shani, G., Pineau, J., and Kaplow, R. A survey of point-
based pomdp solvers. Autonomous Agents and Multi-
Agent Systems, 27(1):1–51, 2013.

Silver, D. and Veness, J. Monte-carlo planning in large
pomdps. Neural Information Processing Systems, 2010.

Smallwood, R. D. and Sondik, E. J. The optimal control
of partially observable markov processes over a finite
horizon. Operations research, 21(5):1071–1088, 1973.

Sondik, E. J. The optimal control of partially observable
Markov processes. Stanford University, 1971.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tabak, E. G. and Turner, C. V. A family of nonparametric
density estimation algorithms. Communications on Pure
and Applied Mathematics, 66(2):145–164, 2013.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y.,
de Las Casas, D., Budden, D., Abdolmaleki, A., Merel, J.,
Lefrancq, A., Lillicrap, T., and Riedmiller, M. Deepmind
control suite, 2018.

Teshima, T., Ishikawa, I., Tojo, K., Oono, K., Ikeda, M., and
Sugiyama, M. Coupling-based invertible neural networks
are universal diffeomorphism approximators, 2020.

Thrun, S. Monte carlo pomdps. In NIPS, volume 12, pp.
1064–1070, 1999.

Tishby, N., Pereira, F. C., and Bialek, W. The informa-
tion bottleneck method. arXiv preprint physics/0004057,
2000.

Touati, A., Satija, H., Romoff, J., Pineau, J., and Vincent, P.
Randomized value functions via multiplicative normal-
izing flows. In Uncertainty in Artificial Intelligence, pp.
422–432. PMLR, 2020.

Tschiatschek, S., Arulkumaran, K., Stühmer, J., and Hof-
mann, K. Variational inference for data-efficient model
learning in pomdps. arXiv preprint arXiv:1805.09281,
2018.

Van Den Berg, J., Patil, S., and Alterovitz, R. Motion plan-
ning under uncertainty using iterative local optimization
in belief space. The International Journal of Robotics
Research, 31(11):1263–1278, 2012.

van den Berg, R., Hasenclever, L., Tomczak, J. M., and
Welling, M. Sylvester normalizing flows for variational
inference, 2019.

Ward, P. N., Smofsky, A., and Bose, A. J. Improving explo-
ration in soft-actor-critic with normalizing flows policies.
arXiv preprint arXiv:1906.02771, 2019.

Zhu, G., Zhang, M., Lee, H., and Zhang, C. Bridging imag-
ination and reality for model-based deep reinforcement
learning, 2020.

Åström, K. Optimal control of markov processes
with incomplete state information. Journal of
Mathematical Analysis and Applications, 10
(1):174–205, 1965. ISSN 0022-247X. doi:
https://doi.org/10.1016/0022-247X(65)90154-X.
URL https://www.sciencedirect.com/
science/article/pii/0022247X6590154X.

https://openreview.net/forum?id=jeATherHHGj
https://openreview.net/forum?id=jeATherHHGj
https://www.sciencedirect.com/science/article/pii/0022247X6590154X
https://www.sciencedirect.com/science/article/pii/0022247X6590154X

Flow-based Recurrent Belief State Learning for POMDPs

A. Details of affine coupling layer for normalizing flow
In this section, we will introduce the details about the affine coupling layer (Dinh et al., 2017).

In the forward function, we split the input x ∈ RD into two parts according to the dimension: x = [x1:k,xk+1:D]. Then,
we let the first part x1:k stay identical, so that the first k dimensions in the output y ∈ RD is y1:k = x1:k. After that,
we use the identical part as the inputs to determine the transform parameters. In our case, we define two neural network
s, t : Rk → RD−k, which stand for scale and translation functions. They receive x1:k as inputs and output the affine
parameters. As in (Dinh et al., 2017), the second part can be derived by:

yk+1:D = xk+1:D ⊙ exp(s(x1:k)) + t(x1k) (14)

Finally, the output, y is the concatenation of the two parts: y = [y1:k,yk+1:D].

The affine coupling layer is an expressive transformation with easily-computed forward and reverse passes. The Jacobian of
affine coupling layer is a triangular matrix, and its log determinant can also be efficiently computed.

B. Hyper Parameters and implementation details
Network Architecture We use the convolutional and deconvolutional networks that are similar to Dreamer(Hafner et al.,
2019a), a GRU (Cho et al., 2014) with 200 units in the dynamics model, and implement all other functions as two fully
connected layers of size 200 with ReLU activations. Base distributions in latent space are 30-dimensional diagonal Gaussians
with predicted mean and standard deviation. As for the parameters network , we use a residual network composed of one
fully connected layer, one residual block, and one fully connected layer. The residual network receives xa and c as input.
The input is first concatenated with the context and passed into the network. The residual block passes the input through two
fully connected layers and returns the sum of the input and the output. Finally the last layer outputs the parameters and we
use 5 layers of affine coupling flows with a LU layer between them.

In our case, we use samples from the belief distribution as the inputs to the actor and value function as an approximation
to the actor and value function with belief distribution as input. Calculating V (b) needs to integrate through both the
observation model and state transition model. Our approximation makes an assumption like in Qmdp, to avoid integrating
through the observation model.

We use a GRU as the recurrent neural network to summary to temporal information. We assume an initial state s0 to be
a zero vector. After taking action at, we concatenate at with the previous state st and pass it through a small MLP to
get yt = f(st, at), and use it as the input to the GRU: ht+1, zt+1 = GRU(ht, yt). We pass zt+1 through an MLP to get
the base prior belief distribution p0 (mean and variance) and then we sample from p0 and pass it through a sequence of
Normalizing Flow to get a sample from pK . For the posterior distribution, we first use a CNN as encoder to encode the
observation ot into the feature xt, and then concatenate zt+1 and xt and pass them through an MLP to get the base posterior
belief distribution q0 and a sequence of Normalizing Flow. Similarly, we finally get a sample st+1 from qK .

Training Details We basically adopt the same data buffer updating strategy as in Dreamer (Hafner et al., 2019a). First, we
use a small amount of S seed episodes (S = 5 in DMC experiments) with random actions to collect data. After that, we
train the model for C update steps (C = 100 in DMC experiment) and conduct one additional episode to collect data with
small Gaussian exploration noise added to the action. Algorithm 1 shows one update step in C update steps. After C update
steps, we conduct one additional episode to collect data (this is not shown in Algorithm 1). When the agent interacts with
the environment, we record the observations, actions, and rewards of the whole trajectory ((ot, at, rt)Tt=1) and add it to data
buffer B.

Hyperparameters For DMControl tasks, we pre-process images by reducing the bit depth to 5 bits and draw batches of
50 sequences of length 50 to train the FORBES model, value model, and action model models using Adam (Kingma & Ba,
2014) with learning rates α0 = 5× 10−4, α1 = 8× 10−5, α2 = 8× 10−5, respectively and scale down gradient norms that
exceed 100. We clip the KL regularizers in JModel below 3.0 free nats as in Dreamer and PlaNet. The imagination horizon
is H = 15 and the same trajectories are used to update both action and value models. We compute the TD-λ targets with
γ = 0.99 and λ = 0.95. As for multiple imagined trajectories, we choose N = 4 across all environments.

For digit writing experiments in Section 4.1, we decrease the GRU hidden size to be 20, let the base distributions be a
2-dimensional diagonal Gaussian and only use 3 layers of affine coupling flows. For the image processing, we simply divide

Flow-based Recurrent Belief State Learning for POMDPs

the raw pixels by 255 and subtract 0.5 to make the inputs lie in [−0.5, 0.5].

C. Extended information of Baselines
For model-free baselines, we compare with D4PG (Barth-Maron et al., 2018), a distributed extension of DDPG, and A3C
(Mnih et al., 2016), the distributed actor-critic approach. D4PG is an improved variant of DDPG (Lillicrap et al., 2015) that
uses distributed collection, distributional Q-learning, multi-step returns, and prioritized replay. We include the scores for
D4PG with pixel inputs and A3C (Mnih et al., 2016) with vector-wise state inputs from DMCcontrol. For model-based
baselines, we use PlaNet (Hafner et al., 2019b) and Dreamer (Hafner et al., 2019a), two state-of-the-art model-based
RL. PlaNet (Hafner et al., 2019b) selects actions via online planning without an action model and drastically improves
over D4PG and A3C in data efficiency. Dreamer (Hafner et al., 2019a) further improve the data efficiency by generating
imaginary rollouts in the latent space.

Flow-based Recurrent Belief State Learning for POMDPs

D. Further Discussion on Related Works
This section further discusses the relationship between our work and some related works Gregor et al. (2019b); Hafner et al.
(2019a; 2021).

Figure 9: Comparation of FORBES and SiMCore

First of all, Gregor et al. (2019b) proposes to use a flexible decoder to learn a compact vector representation of belief state
and has promising results. Though it mentions using Normalizing Flow as a decoder, we believe it is orthogonal to our
research. To summarize, we both aim to solve POMDP problems, hut our method has little in common with (Gregor et al.,
2019b), and our research directions are orthogonal: we use normalizing flows in different components for different purposes,
which makes it unnecessary for citing and comparing with (Gregor et al., 2019b).

Specifically, our main contribution is to use Normalizing Flow to model accurate and flexible belief state distribution, and we
prove its capability from theoretical and empirical perspectives. (Gregor et al., 2019b) did not model belief state distribution.
Instead, they model the belief as a single state vector, and the belief transition is also deterministic. Their Normalizing Flow
is only used on image reconstruction. They use expressive generative models, including normalizing flow, to reconstruct the
images conditioned on the simulated future state. ”Using a convolutional DRAW outperforms flows for learning a model of
complex environment dynamics” is reported in the context of reconstruction.

What’s more, directly modeling the observation model from the belief in the form of a deterministic vector may have the
following deficiencies:

First of all, it seems that SimCore cannot make consistent trajectory predictions by directly modeling the belief observation
model. As shown in Figure 9. For instance, in the sequential MNIST setting, suppose the SimCore(Gregor et al., 2019b) is
well trained, and we feed a beginning sequence which is the same as the last line in our Figure 4 into the SimCore. Assume
it is equally possible to be ‘3’ or ‘7’, and the ConvDRAW will predict ‘3’ and ‘7’ each at 50% probability at every time
step. However, we cannot consistently sample the same category (‘3’ or ‘7’) in the same trajectory when we sample the
future trajectory. However, since we explicitly model the state distribution for FORBES, we can first sample initial states
and then rollout to sample multiple state trajectories, each covering a different category. This allows us to make diverse and
consistent predictions.

Secondly, accurately obtaining the belief state is the main challenge in solving the POMDP. Dreamer (Hafner et al., 2021)
makes a strong isotropic Gaussian assumption to learn a continuous belief distribution, while Dreamer V2 (Hafner et al.,

Flow-based Recurrent Belief State Learning for POMDPs

2021) assumes discrete latent space. However, according to the theoretical analysis, our algorithm makes no assumption
and can approach arbitrary continuous distribution. We believe that our methods can capture more subtle multimodal
patterns without restricting the belief distribution to be discrete. This allows us to learn more general distribution (at least
theoretically) and leaves great potential for future works.

To the best of our knowledge, we are the first to propose a normalizing flow based recurrent belief learning method to obtain
the general continuous belief states in POMDP accurately. We provide theoretical analysis to illustrate that our algorithm
has the potential of learning near perfectly accurate belief states. Through the sequential MNIST experiment, we empirically
show the benefits of learning flexible belief distribution. Our method provides better reconstruction quality and can make
multimodal future predictions. This flexible and accurate belief learning is essential for obtaining optimal solutions for
POMDPs. As for the multiple imagined trajectories, we agree that the unimodal latent space leads to the lack of trajectory
diversity, so that increasing the number of imagined trajectories will not effectively help. Our flexible belief distribution
enables more accurate and multimodal future predictions by combining multiple imagined trajectories.

Therefore, we believe our proposed method is not merely a trivial combination of different components but a new framework
for flexible and accurate belief distribution learning and POMDP RL with clear motivations and theoretical/empirical results.

Flow-based Recurrent Belief State Learning for POMDPs

E. An Ablation Study on the Number of Imagined Trajectories

100 200 300 400 500

200

400

600

800

Ep
iso

de
 R

et
ur

n

Cartpole Swingup

100 200 300 400 500
0

100

200

300

400

500

600

700

800
Cheetah Run

0 100 200 300 400 500
0

200

400

600

800

1000
Finger Spin

0 100 200 300 400 500
Environment Steps (K)

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

Hopper Stand

0 100 200 300 400 500
Environment Steps (K)

0

100

200

300

400

500

600

700
Walker Run

N=1 N=2 N=4

0 100 200 300 400 500
Environment Steps (K)

0

200

400

600

800

1000
Walker Walk

Figure 10: An ablation study on the effect of different N on DMC environments.

To show the effect of N , we adjust the number of imagined trajectories on some DMC environments. We choose N = 1, 2, 4
and run 500K environment steps. We run N = 1, 2 with 3 different seeds, and N = 4 with 5 different seeds (we use the
main DMC experiment results, where N = 4 here). The result shows that, in Finger Spin, the performance gain caused by
multiple imagined trajectories is obvious. In finger spin, there are two objects and their interactions may result in complex
locomotion patterns. When the environmental locomotion pattern itself is complex and flexible enough to incorporate diverse
possibilities, then using FORBES allows the agent to make diverse predictions and using the multiple imagined trajectories
technique will further exploit the advantages of FORBES. However, not all environments can show the advantages of
multiple imaginations. In other environments, where there’s only one agent and its behavior is relatively unimodal, a larger
N does not effectively improve the performance, and different N results in similar performances.

Flow-based Recurrent Belief State Learning for POMDPs

F. Experiment Results on Other DMC Environments

100 200 300 400 500
Environment Steps (K)

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n
Cartpole Balance

FORBES Dreamer

100 200 300 400 500
Environment Steps (K)

0

50

100

150

200
Acrobot Swingup

Figure 11: The training curve on Cartpole Balance and Acrobot Swingup.

We run our algorithm for on two more environments, namely Cartpole Balance and Acrobot Swingup and show the results
in 11. FORBES achieves higher scores than Dreamer.

Flow-based Recurrent Belief State Learning for POMDPs

G. Extended Results on DMC

0.0 0.2 0.4 0.6 0.8 1.0

100

200

300

400

500

600

700

800

900

Ep
iso

de
 R

et
ur

n

Cartpole Swingup

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

700

800
Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000
Finger Spin

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (M)

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

Hopper Stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (M)

0

100

200

300

400

500

600

700

Walker Run

FORBES
Dreamer

D4PG (1e9 steps)
A3C (1e9 steps, proprio)

PlaNet (1e6 steps)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (M)

0

200

400

600

800

1000
Walker Walk

Figure 12: The training curve on DMC environment for 1M environment steps.

We run our algorithm for 1M environment steps and show the curve in Figure 12. We choose 1M environment steps because
most of the curves have converged in most of the environments. FORBES achieves higher scores than Dreamer in most of
the tasks.

Flow-based Recurrent Belief State Learning for POMDPs

H. An Ablation Study on the Model Parameters

100 200 300 400 500
Environment Steps (K)

0

100

200

300

400

500

600

700

Ep
iso

de
 R

et
ur

n

Cheetah Run

0 100 200 300 400 500
Environment Steps (K)

0

200

400

600

800

Finger Spin

Dreamer Dreamer+1L Dreamer+2L

Figure 13: An ablation study on the effect of adding parameters to Dreamer on two DMC environments.

In this section, we show that having a flexible belief state distribution is the key to improving performance, rather than
introducing more parameters. Having more parameters do not necessarily mean better performance. Increasing parameters
may also make it difficult to converge and negatively affect the sample efficiency.

We add an ablation study that adds more parameters to Dreamer to test the effectiveness of having more parameters. We add
1, 2 hidden layer(s) to all the MLP in RSSM, and the result is shown in Figure 13. The results show that simply adding
parameters cannot improve the performance.

Flow-based Recurrent Belief State Learning for POMDPs

I. Comparison of ELBO on FORBES and RSSM on DMC

0 50 100 150 200 250

8

6

4

2

0

Cheetah Run

0 50 100 150 200 250
30

25

20

15

10

Walker Walk

Dreamer FORBES

Figure 14: The ELBO of FORBES and RSSM.

We provide the ELBO in DMC environments and FORBES in Figure 14, and FORBES has higher ELBO.

Flow-based Recurrent Belief State Learning for POMDPs

J. Evidence Lower Bound Derivations
The variational bound for latent dynamics models p (o1:T , s1:T | a1:T) =

∏
t p(st|st−1, at−1)p(ot|st) and a variational

posterior q (s1:T | o1:T , a1:T) =
∏
t q (st | o≤t, a<t) follows from importance weighting and Jensen’s inequality as shown,

log p (o1:T | a1:T) = log Ep(s1:T |a1:T)

[
T∏
t=1

p (ot | st)

]

= log Eq(s1:T |o1:T ,a1:T)

[
T∏
t=1

p (ot | st) p (st | st−1, at−1) /q (st | o≤t, a<t)

]

≥ Eq(s1:T |o1:T ,a1:T)

[
T∑
t=1

log p (ot | st) + log p (st | st−1, at−1)− log q (st | o≤t, a<t)

]
.

(15)

We use the same factorization of q(s1:T |τt, ot) in ELBO derivations and algorithm design as in (Hafner et al., 2019b;a).

Flow-based Recurrent Belief State Learning for POMDPs

K. Proofs of Theorem
Theorem 1:The approximation error of the lower bound is

log p(o1:T , r1:T |a1:T)− JModel = EqK(s1:T |τT ,oT)

[
T∑
t=1

DKL(q(st|τt, ot)∥p(st | τt, ot))

]
where p(st | τt, ot) is the true posterior.

Proof:

DKL(q(st | τt, ot)∥p (st | st−1, at−1, ot)) | a1:T

=

∫
q(st | τt, ot) log

q(st | τt, ot)
p (st | st−1, at−1, ot)

dst

=

∫
q(st | τt, ot) log

q(st | τt, ot)
p(st|st−1,at−1)p(ot|st)

p(ot|a1:T)

dst

=

∫
q(st | τt, ot) log q(st | τt, ot)dst +

∫
q(st | τt, ot) log p(ot | a1:T)dst

−
∫
q(st | τt, ot) log[p(st | st−1, at−1)p(ot | st)]dst

= log p(ot | a1:T) +
∫
q(st | τt, ot) log q(st | τt, ot)dst −

∫
q(st | τt, ot) log[p(st | st−1, at−1)p(ot | st)]dst

= log p(ot | a1:T) +
∫
q(st | τt, ot) log q(st | τt, ot)dst −

∫
q(st | τt, ot) log p(st | st−1, at−1)dst

−
∫
q(st | τt, ot) log p(ot | st)dst

= log p(ot | a1:T) +
∫
q(st | τt, ot) log

q(st | τt, ot)
p(st | st−1, at−1)

dst −
∫
q(st | τt, ot) log p(ot | st)dst

= log p(ot | a1:T) +DKL (q (st | τt, ot) ∥p (st | st−1, at−1, ot))− Eq(s1:t|τt,ot)[log p (ot | st)]

(16)

For a sequence from time 1 to T, we have∑
t

DKL (q (st | τt, ot) ∥p (st | st−1, at−1, ot))

= log p(o1:T | a1:T)− Eq(s1:t|τt,ot)

[
T∑
t=1

(log p(ot|st)−DKL(q(st|τt, ot)∥p(st|st−1, at−1)))

] (17)

Then we can derive the Theorem 1 with (17):

log p(o1:T , r1:T | a1:T)

=EqK(s1:T |τT ,oT)

[∑
t

DKL (q (st | τt, ot) ∥p (st | st−1, at−1, ot))

]

+ Eq(s1:T |τT ,oT)

[
T∑
t=1

(log p(ot|st) + log p(rt|st)−DKL(q(st|τt, ot)∥p(st|st−1, at−1)))

]

=EqK(s1:T |τT ,oT)

[∑
t

DKL (q (st | τt, ot) ∥p (st | st−1, at−1, ot))

]
+ JModel

=EqK(s1:T |τT ,oT)

[∑
t

DKL (q (st | τt, ot) ∥p (st | τt, ot))

]
+ JModel

(18)

where p(st | st−1, at−1, ot) = p(st | τt, ot) given the sampled st−1 from q(s1:t|τt, ot).

Flow-based Recurrent Belief State Learning for POMDPs

L. More Results on Digit Writing Experiments
In this section, we show more results of the predictions on the digit writing experiment in Figure 15.

Figure 15: Additional prediction results on sequential MNIST of two models.

Flow-based Recurrent Belief State Learning for POMDPs

M. Reconstructions of the visual control tasks
In this section, we show the reconstructions of the visual control tasks during the evaluating phase.

For each environment, we use 10 frames. The left one is the original picture for each frame, and the right one is the
reconstruction picture. The following results in Figure 16 show that FORBES can make high-quality reconstructions. The
corresponding videos can be found in the supplementary material.

Flow-based Recurrent Belief State Learning for POMDPs

(a) Cartpole Swing Up

(b) Cheetah Run

(c) Finger Spin

(d) Hopper Stand

(e) Walker Run

(f) Walker Walk

Figure 16: The reconstruction results on of FORBES six environments from DeepMind Control Suite(Tassa et al., 2018).

