
Optimization-Induced Graph Implicit Nonlinear Diffusion

Qi Chen 1 Yifei Wang 1 Yisen Wang 2 3 Jiansheng Yang 1 Zhouchen Lin 2 3 4

Abstract
Due to the over-smoothing issue, most existing
graph neural networks can only capture limited de-
pendencies with their inherently finite aggregation
layers. To overcome this limitation, we propose
a new kind of graph convolution, called Graph
Implicit Nonlinear Diffusion (GIND), which im-
plicitly has access to infinite hops of neighbors
while adaptively aggregating features with nonlin-
ear diffusion to prevent over-smoothing. Notably,
we show that the learned representation can be
formalized as the minimizer of an explicit con-
vex optimization objective. With this property,
we can theoretically characterize the equilibrium
of our GIND from an optimization perspective.
More interestingly, we can induce new structural
variants by modifying the corresponding optimiza-
tion objective. To be specific, we can embed prior
properties to the equilibrium, as well as introduc-
ing skip connections to promote training stability.
Extensive experiments show that GIND is good at
capturing long-range dependencies, and performs
well on both homophilic and heterophilic graphs
with nonlinear diffusion. Moreover, we show that
the optimization-induced variants of our models
can boost the performance and improve training
stability and efficiency as well. As a result, our
GIND obtains significant improvements on both
node-level and graph-level tasks.

1. Introduction
In recent years, graph neural networks (GNNs) rise to be the
state-of-the-art models for graph mining (Kipf & Welling,
2016; Veličković et al., 2017; Hamilton et al., 2017; Li et al.,
2022a) and have extended applications in various scenar-

1School of Mathematical Sciences, Peking University, China
2Key Lab. of Machine Perception (MoE), School of Artificial
Intelligence, Peking University, China 3Institute for Artificial Intel-
ligence, Peking University, China 4Peng Cheng Laboratory, China.
Correspondence to: Zhouchen Lin <zlin@pku.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

ios such as biochemical structure discovery (Gilmer et al.,
2017; Wan et al., 2019), recommender systems (Ying et al.,
2018; Fan et al., 2019), natural language processing (Gao
et al., 2019; Zhu et al., 2019), and computer vision (Pang &
Cheung, 2017; Valsesia et al., 2020). Despite the success,
these GNNs typically lack the ability to capture long-range
dependencies. In particular, the common message-passing
GNNs can only aggregate information from T -hop neigh-
bors with T propagation steps. However, existing works
have observed that GNNs often degrade catastrophically
when propagation steps T ≥ 2 (Li et al., 2018), a phe-
nomenon widely characterized as over-smoothing. Several
works try to alleviate it with more expressive aggregations
of higher-order neighbors (Abu-El-Haija et al., 2019; Zhu
et al., 2020). Nevertheless, their ability to capture global
information is inherently limited by the finite propagation
steps.

Recently, implicit GNNs provide a new solution to this prob-
lem by replacing the deeply stacked explicit propagation
layers with an implicit layer, which is equivalent to infi-
nite propagation steps (Gu et al., 2020; Liu et al., 2021a;
Park et al., 2021). Thereby, implicit GNNs could capture
very long range dependencies and benefit from the global
receptive field. Specifically, implicit GNNs achieve this
by regularizing the explicit forward propagation to a root-
finding problem with convergent equilibrium states. They
further adopt implicit differentiation (Krantz & Parks, 2012)
directly through the equilibrium states to avoid long range
back-propagation. As a result, the methods could get rid of
performance degradation caused by explosive variance with
more depth (Zhou et al., 2021) while having constant mem-
ory footprint even with infinite propagation steps. These
advantages indicate that implicit GNNs are promising alter-
natives to existing explicit GNNs.

The performance of implicit GNNs is largely determined by
the design of the implicit layer. However, it is overlooked by
previous works. Their implicit layers are direct adaptations
of recurrent GNNs (Gu et al., 2020) and lack theoretical
justifications of their diffusion properties. Notably, a major
drawback is that their aggregation mechanisms correspond
to a linear isotropic diffusion that treats all neighbors equally.
However, as noted by recent theoretical discussions (Oono
& Suzuki, 2019), this isotropic property is exactly the cause
of the over-smoothing issue. Thus, it is still hard for them

Optimization-Induced Graph Implicit Nonlinear Diffusion

to benefit from long range dependencies. This problem
reveals that the infinite depth itself is inadequate. The design
of the diffusion process, which decides the quality of the
equilibrium states, is also the key to the actual performance
of implicit GNNs.

Motivated by this situation, in this work, we propose a
novel and principled implicit graph diffusion layer, whose
advantages are two folds. First, drawing inspirations from
anisotropic diffusion process like PM diffusion (Perona &
Malik, 1990), we extend the linear isotropic diffusion to
a more expressive nonlinear diffusion mechanism, which
learns nonlinear flux features between node pairs before ag-
gregation. In particular, our design of the nonlinear diffusion
ensures that more information can be aggregated from sim-
ilar neighbors and less from dissimilar neighbors, making
node features less likely to over-smooth. Second, we can
show for the first time that the equilibrium of our implicit
nonlinear diffusion is the solution to a convex optimization
objective. Based on this perspective, we can not only char-
acterize theoretical properties of the equilibrium states, but
also derive new structural variants in a principled way, e.g.,
adding regularization terms to the convex objective.

Based on the above analysis, we propose a model named
Graph Implicit Nonlinear Diffusion (GIND). Several recent
works have tried to connect GNN propagations to struc-
tural optimization objectives (Zhu et al., 2021; Yang et al.,
2021; Ma et al., 2021; Liu et al., 2021b). However, their
frameworks only consider aggregation steps and ignore the
nonlinear transformation of features, which is also crucial in
GNNs. In comparison, our GIND admits a unified objective
of both the nonlinear diffusion step and the transformation
step. Therefore, our framework is more general, as it could
take the interaction between diffusion and transformation
into consideration. Last but not least, compared to previ-
ous optimization-based GNNs whose propagation rule is
inspired by one single optimization step, our GIND directly
models the equilibrium of the implicit layer as a minimizer
of a convex objective (thus we call it optimization-induced).
This shows that our GIND enjoys a much closer connection
to the optimization objective compared to previous works.

We evaluate GIND on a wide range of benchmark datasets,
including both node-level and graph-level classification
tasks. The results demonstrate that our GIND effectively
captures long-range dependencies and outperforms both ex-
plicit and implicit GNN models in most cases. In particular,
on heterophilic graphs, our nonlinear diffusion achieves sig-
nificant improvements over previous implicit GNNs with
isotropic diffusion. We further verify that two structural
variants of GIND induced by principled feature regulariza-
tion can indeed obtain consistent improvements over the
vanilla GIND, which demonstrates the usefulness of our
optimization framework. In summary, our contributions are:

• We develop a new kind of implicit GNNs, GIND,
whose nonlinear diffusion overcomes the limitations
of existing linear isotropic diffusion by adaptively ag-
gregating nonlinear features from neighbors.

• We develop the first optimization framework for an
implicit GNN by showing that the equilibrium states of
GIND correspond to the solution of a convex objective.
Based on this perspective, we derive three principled
structural variants with empirical benefits.

• Extensive experiments on node-level and graph-level
classification tasks show our GIND obtains state-of-
the-art performance among implicit GNNs, and also
compares favorably to explicit GNNs.

2. Preliminaries on Implicit GNNs
Consider a general graph G = (V, E) with node set V
and edge set E , where |V| = n and |E| = m. Denote
node features as x ∈ Rn×p, and the adjacency matrix as
A ∈ Rn×n, where Ai,j = 1 if (i, j) ∈ E and Ai,j = 0
otherwise. Denote the normalized adjacency matrix as
ˆ̃A = D̃−1/2ÃD̃−1/2. Here Ã = A+ I is the augmented
adjacency matrix, and D̃ = diag(d1, . . . , dn) is the degree
matrix of Ã, where dj =

∑
j Ãi,j .

Recently, several works (Gu et al., 2020; Liu et al., 2021a;
Park et al., 2021) have studied implicit GNNs. They are
motivated by recurrent GCNs that employ the same trans-
formation in each layer as follows:

Zk+1 = σ(ˆ̃AZkW + bΩ(X)), k = 1, 2, . . . ,∞, (1)

where W is a weight matrix, bΩ(X) is the embedding of
the input features X through an affine transformation pa-
rameterized by Ω, and σ(·) is an element-wise activation
function. In fact, it models the limiting process when the
above recurrent iteration is applied for infinite times, i.e.,
Z = limk→∞ Zk. As a result, the final equilibrium Z po-
tentially contains global information from all neighbors in
the graph. Different from explicit GNNs, the output features
Z of a general implicit GNN are directly modeled as the
solution of the following equation,

Z = σ(ˆ̃AZW + bΩ(X)). (2)

The prediction is given by Y = gΘ(Z), where gΘ is a
trainable function parameterized by Θ.

In practice, in the forward pass, we can directly find the equi-
librium Z via off-the-shelf black-box solvers like Broyden’s
method (Broyden, 1965). While in the backward pass, one
can also analytically differentiate through the equilibrium
by the implicit function theorem (Krantz & Parks, 2012),
which does not require storing any intermediate activation

Optimization-Induced Graph Implicit Nonlinear Diffusion

values and uses only constant memory (Bai et al., 2019).
Several alternative strategies have also been proposed to
improve its training stability (Geng et al., 2021).

Limitations. As shown above, existing implicit GNN mod-
els adopt the same feature propagation as the canonical
GCN (Kipf & Welling, 2016). As discussed in many pre-
vious works (Oono & Suzuki, 2019), this linear isotropic
propagation matrix ˆ̃A will inevitably lead to feature over-
smoothing after infinite propagation steps. Although this
problem could be partly addressed by the implicit propa-
gation process that admits a meaningful fixed point Z, the
isotropic nature will still degrade the propagation process by
introducing extra feature noises from dissimilar neighbors,
as we elaborate below.

3. Graph Implicit Nonlinear Diffusion
In view of the limitations of existing implicit GNNs based
on linear isotropic diffusion, in this section, we propose
a new nonlinear graph diffusion process for the design of
implicit GNNs. Inspired by anisotropic diffusion, our non-
linear diffusion could adaptively aggregate more features
from similar neighbors while separating dissimilar neigh-
bors. Thus, its equilibrium states will preserve more dis-
criminative features.

3.1. Nonlinear Diffusion Equation

Formulation. Given a general continuous manifold M
where a feature function u resides, along with operators
such as the gradient and divergence that reside on the mani-
fold M, one can model diffusion processes on M (Eliasof
et al., 2021; Chamberlain et al., 2021). In particular, we
consider a nonlinear diffusion at time t:

∂tu = div(K∗σ(K∇u)), (3)

where K is a linear operator, K∗ is its adjoint operator, ∇
is the gradient operator, div is the divergence operator, and
σ(·) is an element-wise transformation. It can be understood
as a composition of two sequential operations, one is the
nonlinear flux j (describing differentials across a geometry)
induced by the gradient ∇u, i.e.,

j = −K∗σ(K∇u), (4)

and the other is the continuity equation satisfying

∂tu = −div j. (5)

Generalization of Isotropic Diffusion. One notable degen-
erated case of the nonlinear diffusion (Equation (3)) is the
linear isotropic diffusion, where we choose σ and K to be
identity mappings as follows:

∂tu = div(∇u) = ∆u. (6)

3 2 1 0 1 2 3

3

2

1

0

1

2

3

 Identity Function
Tanh Function

Input

O
ut

pu
t

Figure 1. Comparison of two activation functions: σ(x) = x and
σ(x) = tanh(x). The nonlinear activation tanh(·) keeps small
values while shrinking large values.

It admits a closed-form solution u(t) = et∆u0 with an
initial value u0 at t = 0, where ∆ is the Laplacian operator.
Wang et al. (2021) recently show that GCN propagation
is equivalent to a time-discretized version of this equation.
From this perspective, our nonlinear diffusion is a nontriv-
ial generalization of isotropic diffusion in two ways: first,
we add a linear operator K inside the Laplacian operator
for flexible parameterization (Nitzberg & Shiota, 1992) to
adapt the diffusion to the initial value, and second, we intro-
duce a nonlinear activation function σ to model nonlinear
flux, which greatly enhances its expressiveness as in neural
networks.

Anisotropic Property. Notably, this generalization enables
us to incorporate anisotropic properties into the graph dif-
fusion through specific choice of the activation function
σ(·). To see this, ignoring K, we have j = −σ(∇u) and the
following relationship on their ℓ2-norms:

∥j∥2 = ∥σ(∇u)∥2 =

(∫
[σ(∇u(x))]

2
dx

)1/2

. (7)

The norm of the flux j describes the magnitude of the in-
formation flow between two nodes. The larger the norm,
the higher the degree of mixing between node pairs. In this
case, comparing σ(x) = x and σ(x) = tanh(x) as in Fig-
ure 1, we can see that the nonlinear activation tanh will keep
small-value gradients while shrinking large-value gradients.
As a result, if the difference between two nodes is large,
we think they are dissimilar, and then restrict the informa-
tion exchange to prevent them from being undistinguished.
Otherwise, if the difference is small, we tend to think they
are similar, and let them exchange information like nor-
mal GCNs. In graph diffusion, this amounts to a desirable
anisotropic-like behavior that adaptively aggregates more
from similar neighbors and less from dissimilar neighbors,

Optimization-Induced Graph Implicit Nonlinear Diffusion

which helps prevent over-smoothing and improves robust-
ness to noisy perturbations. Besides, our graph diffusion
resembles the well-known PM diffusion (Perona & Malik,
1990), which is a well-known adaptive diffusion used in im-
age processing to preserve desired image structures, such as
edges, while blurring others. To achieve this, they manually
design a nonlinear function that approximates an impulse
function close to edges to reweight the differences between
image pixels. Compared with them, our nonlinear diffu-
sion with the linear operator K allows us to parameterize a
flexible and learnable aggregation function.

3.2. Proposed GIND

The discussion above shows that our nonlinear diffusion
is a principled generalization of previous linear isotropic
diffusion with beneficial anisotropic properties. In this part,
we apply it on the graph data and develop the corresponding
implicit graph neural networks.

Nonlinear Diffusion on Graphs. As known in previous
literature (Chung & Graham, 1997), the differential oper-
ators could be instantiated on a discrete graph G with n
nodes and m edges, and each node contains h-dimensional
features. Specifically, let U ∈ Rn×h be the feature matrix,
the gradient operator ∇ corresponds to the incidence matrix
G ∈ Rm×n. It is defined as Gk,i = 1 if edge k enters node
i, −1 if it leaves node i, and 0 otherwise. The divergence
operator, the negative of which is the adjoint of the gradient
operator, now corresponds to −G⊤ ∈ Rn×m. The linear
operator K corresponds to a feature transformation matrix
K ∈ Rh×h, and its adjoint K⋆ becomes K⊤. As a result,
the nonlinear diffusion in Equation (3) has the following
matrix form on graph G,

∂tU = −G⊤σ(GUK⊤)K. (8)

Following the analysis above, we choose the activation func-
tion σ(x) = tanh(x). A more detailed derivation can be
found in Appendix B.

Our Implicit GNNs. By adopting the nonlinear graph diffu-
sion developed above for the implicit graph diffusion mech-
anism, we develop a new implicit GNN, Graph Implicit
Nonlinear Diffusion (GIND), with the following formula-
tion,

Z = −Ĝ⊤σ(Ĝ(Z+ bΩ(X))K⊤)K, (9a)

Ŷ = gΘ(X+ Z), (9b)

where Ĝ = GD̃−1/2/
√
2 is the normalized incidence ma-

trix. Here, we first embed the input feature matrix X with
an affine transformation bΩ(·) with parameters Ω. Then,
the input embedding is injected to the implicit diffusion
layer, whose output Z is the equilibrium of a nonlinear fixed
point equation (Equation (9a)). Afterwards, we use X+ Z,

the sum of the input features (initial value) and the equilib-
rium (the flux), as the final value to predict the labels. The
readout head gΘ can be parametrized by a linear layer or
an MLP. We also provide a row-normalized variant of the
initial formulation (Equation (9a)) in Appendix D.

Notably, in GIND, we design the equilibrium states Z to
be the residual refinement of the input features X through
the diffusion process, a.k.a. the transported mass of X (We-
ickert, 1998). As a result, starting from an initial value, the
estimated transported mass Z could be gradually refined
through the fixed point iteration of our nonlinear diffusion
process. Finally, it will reach a stable equilibrium Z that
cannot be further improved.

As an implicit model, our GIND enjoys the benefits of
general implicit GNNs, including the ability to capture long-
range dependencies as well as constant memory footprint.
With our proposed nonlinear diffusion mechanism, it could
adaptively aggregate useful features from similar neighbors
and filter out noisy ones. Last but not least, as we show in
the next section, the equilibrium states of our GIND can be
formalized as the solution of a convex objective.

4. An Optimization Framework for GIND
In this section, inspired by recent works on optimization-
based implicit models (Xie et al., 2022), we develop the
first optimization framework for an implicit graph neural
network. Specifically, we show that the equilibrium states of
our GIND correspond to the solution of a convex objective.
Based on this property, we show that we can derive princi-
pled variants of GIND through various regularization terms,
which demonstrates a principled way to inject inductive bias
into the model representations.

4.1. Formulation of Structural Objective

Notations. We use ⊗ to represent the Kronecker product,
and use ⊙ to represent element-wise product. For a matrix
W ∈ Rp×q, w = vec(W) represents the vectorized form
of W obtained by stacking its columns. We use ∥·∥2 for
the matrix operator norm and ∥·∥ for the vector ℓ2-norm.
A function f : H → R ∪ {+∞} is proper if the set {x :
f(x) < +∞} is non-empty, where H is the Euclidean
space. For a proper convex function f : H → R ∪ {+∞},
its proximal operator Proxµf (x) is defined as {z ∈ H : z =

argminu
1
2µ ∥u− x∥2 + f(u)}. We omit µ when µ = 1.

For convenience, from now on, we adopt an equivalent
“vectorized” version of the implicit layer (Equation (9a))
using Kronecker product:

z = −(K⊗ Ĝ)⊤σ((K⊗ Ĝ)(z + vec(bΩ(x)))), (10)

where z is the vectorized version of the equilibrium state Z,
and we use f(z) to denote the right-hand side.

Optimization-Induced Graph Implicit Nonlinear Diffusion

The following theorem shows that the equilibrium states of
our GIND correspond to the solution of a convex objective.

Theorem 4.1. Assume that the nonlinear function σ(·) is
monotone and Lσ-Lipschitz, i.e.,

0 ≤ σ(a)− σ(b)

a− b
≤ Lσ,∀ a, b ∈ R, a ̸= b, (11)

and 1 ≥ Lσ

∥∥∥K⊗ Ĝ
∥∥∥2
2
= Lσ ∥K∥22

∥∥∥Ĝ∥∥∥2
2
. Then there

exists a convex function φ(z), such that its minimizer is the
solution to the equilibrium equation z = f(z). Further-
more, we have Proxφ(z) =

1
Lσ+1 (Lσz + f(z)).

With Theorem 4.1, we can easily establish the following
sufficient condition for our model to be well-posed, i.e.,
the existence and uniqueness of its solution, which guaran-
tees the convergence of iterative solvers for reaching the
equilibrium.

Proposition 4.2. Our implicit layer (Equation (10)) is guar-
anteed to be well-posed if ∥K∥2 ∥Ĝ∥2 < 1. Since we al-
ready have ∥Ĝ∥2 ≤ 1, we can fulfill the condition with
∥K∥2 < 1.

4.2. Optimization-Inspired Variants

In previous part, we have established the structural objec-
tive of our proposed GIND. Here, we present an intriguing
application of this perspective, which is to derive struc-
tural variants of our implicit model by injecting inductive
bias in a principled way. Specifically, we study three ex-
amples: skip-connection induced by Moreau envelop (Xie
et al., 2022), and two interpretable feature regularization:
Laplacian smoothing and feature decorrelation.

Optimization-Inspired Skip-Connection. Since the equi-
librium state of our implicit layer is the minimizer of an
objective function φ(·), we can replace it directly with a
new formula Φ(·), as long as it has the same minimizer
as the original one. Specifically, we choose its Moreau
envelope function.

Given a proper closed convex function φ : H → R∪{+∞}
and µ > 0, the Moreau envelope of φ is the function

Mµ
φ (z) = min

u

1

2µ
∥u− z∥2 + φ(u), (12)

which is a smoothed approximate of φ(·) (Attouch & Aze,
1993). Meanwhile, the Moreau envelope function keeps
the same critical points as the original one. Its proximal
operator can be computed as follows:

ProxλMµ
φ
(z) = z +

λ

µ+ λ
(Proxµ+λ

φ (z)− z), (13)

where λ, µ > 0. Letting λ = α and µ = 1 − α, we have
a new implicit layer induced from its proximal operator as

follows:

z = T (z) := (1− α)z + αf(z), (14)

where α ∈ (0, 1]. Empirically, skip-connection improves
stability in the iteration while keeping the equilibrium un-
changed.

Optimization-Inspired Feature Regularization. Regular-
ization has become an important part of modern machine
learning algorithms. Since we know the objective, we can
combine it with regularizers to introduce customized prop-
erties to the equilibrium, which is equivalent to making a
new implicit composite layer by appending one layer before
the original implicit layer (Xie et al., 2022). Formally, if
we modify Φ(z) to Φ(z) + R(z), then the implicit layer
becomes:

z = T (z) ◦ TR, (15)

where TR = ProxR, and ◦ denotes the mapping composi-
tion. When the proximal is hard to calculate, we can use a
gradient descent step as an approximate evaluation, which
is TRz

≈ I − η ∂Rz

∂z . In general, we can instantiate Rz

as any convex function that has the preferred properties
of the equilibrium. Specifically, we consider two kinds of
regularization.

• Laplacian Regularization. The graph Laplacian op-
erator L = D −A is a positive semi-definite matrix
(Chung & Graham, 1997). We use the (symmetric nor-
malized) Laplacian regularization ˆ̃L = I− ˆ̃A to push
the equilibrium of the linked nodes closer in the feature
space. It is defined as follows:

RLap(z) = z⊤D̃− 1
2LD̃− 1

2 z =
∥∥∥Ĝz

∥∥∥2 . (16)

• Feature Decorrelation. We use the feature decorre-
lation regularization to reduce redundant information
between feature dimensions (Rodrı́guez et al., 2017;
Ayinde et al., 2019). It is defined as follows:

RDec(z) =
1

2

∥∥ẑẑ⊤ − I
∥∥2
F
, (17)

where ẑ is the normalized z.

5. Efficient Training of GIND
Training stability has been a widely existing issue for gen-
eral implicit models (Bai et al., 2019; Geng et al., 2021; Li
et al., 2022b) as well as implicit GNNs (Gu et al., 2020). To
train our GIND, we adopt an efficient training strategy that
works effectively in our experiments.

Forward and Backward Computation. Specifically, in
the forward pass, we adopt the fixed point iteration as in

Optimization-Induced Graph Implicit Nonlinear Diffusion

Gu et al. (2020); while in the backward pass, we adopt the
recently developed Phantom Gradient (Geng et al., 2021)
estimation, which enjoys both efficient computation and
stable training dynamics.

Variance Normalization. In previous implicit models (Bai
et al., 2019; 2020), LayerNorm (Ba et al., 2016) is often
applied on the output features to enhance the training sta-
bility of implicit models. Specifically, for GIND, we apply
normalization before the nonlinear activation σ(·) and drop
the mean items to keep it a sign-preserving transformation:

norm(v) =
v√

Var(v) + ε
⊙ γ, (18)

where γ > 0 denotes positive scaling parameters and ε is
a small constant. As discussed in previous works (Zhou
et al., 2021), this could effectively prevent the variance
inflammation issue and help stabilize the training process
with increasing depth.

6. Comparison to Related Work
Here, we highlight the contributions of our proposed GIND
through a detailed comparison to related work, including
implicit GNNs and explicit GNNs.

6.1. Comparison to Implicit GNNs

Diffusion Process. Prior to our work, IGNN (Gu et al.,
2020) and EIGNN (Liu et al., 2021a) adopt the same aggre-
gation mechanism as GCN (Kipf & Welling, 2016), which
is equivalent to an isotropic linear diffusion that is irrelevant
to neighbor features (Wang et al., 2021). CGS (Park et al.,
2021) instead uses a learnable aggregation matrix to replace
the original normalized adjacency matrix. However, the
aggregation matrix is fixed in the implicit layer, thus the
diffusion process still cannot adapt to the iteratively updated
hidden states. In comparison, we design a nonlinear dif-
fusion process with anisotropic properties. As a result, it
is adaptive to the updated features and helps prevent over-
smoothing. An additional advantage of GIND is that we can
deduce its equilibrium states from a convex objective in a
principled way, while in previous works the implicit layers
are usually heuristically designed.

Training. IGNN (Gu et al., 2020) adopts projected gradient
descent to limit the parameters to a restricted space at each
optimization step, which, still occasionally experiences di-
verged iterations. EIGNN (Liu et al., 2021a) and CGS (Park
et al., 2021) resort to linear implicit layers and reparame-
terization tricks to derive a closed-form solution directly,
however, at the cost of degraded expressive power compared
to nonlinear layers. In our GIND, we instead enhance the
model expressiveness with our proposed nonlinear diffusion.
During training, we regularize the forward pass with vari-

ance normalization and adopt the Phantom Gradient (Geng
et al., 2021) to obtain a fast and robust gradient estimate.

6.2. Comparison to Explicit GNNs

Diffusion-Inspired GNNs. Diffusion process has also been
applied to design explicit GNNs. Atwood & Towsley (2016)
design multi-hop representations from a diffusion perspec-
tive. Xhonneux et al. (2020) address continuous message
passing based on a linear diffusion PDE. Wang et al. (2021)
point out the equivalence between GCN propagation and
the numerical discretization of an isotropic diffusion pro-
cess, and achieve better performance by further decoupling
the terminal time and the propagation steps. Chamberlain
et al. (2021) also explore different numerical discretization
schemes. They develop models based on both linear and
nonlinear diffusion equations. However, their nonlinear
counterpart does not outperform the linear one. Eliasof et al.
(2021) resort to alternative dynamics, including a diffusion
process and a hyperbolic process, and design two corre-
sponding models. In comparison, our GIND replaces the
explicit diffusion discretization with an implicit formulation.
The implicit formulation admits an equilibrium that corre-
sponds to infinite diffusion steps, through which we enlarge
the receptive field while being free from manual tuning of
the terminal time and the step size of the diffusion equation.

Optimization-Inspired GNNs. Prior to our work, there
have been many works (Zhu et al., 2021; Yang et al., 2021;
Ma et al., 2021; Liu et al., 2021b) that establish a connection
between different linear propagation schemes and the graph
signal denoising with Laplacian smoothing regularization.
By modifying the objective function, Zhu et al. (2021) intro-
duce adjustable graph kernels with different low-pass and
high-pass filtering capabilities, Ma et al. (2021) introduce
a model that regularizes each node with different regular-
ization strength, and Liu et al. (2021b) enhance the local
smoothness adaptivity of GNNs by replacing the ℓ2 norm by
ℓ1-based graph smoothing. Yang et al. (2021) focus on the
iterative algorithms used to solve the objective, and intro-
duce a model inspired by unfolding optimization iterations
of the objective function. Their discussions are all limited to
explicit layers and ignore the (potentially nonlinear) feature
transformation steps. In comparison, our GIND discusses
implicit layers, and admits a unified objective of both the
nonlinear diffusion step and the transformation step. Be-
sides, optimization-inspired explicit GNNs usually model
a single iteration step, while our implicit model ensures
that the obtained equilibrium is exactly the solution to the
corresponding objective.

7. Experiments
In this section, we conduct a comprehensive analysis on
GIND and compare it against both implicit and explicit

Optimization-Induced Graph Implicit Nonlinear Diffusion

Table 1. Results on heterophilic node classification datasets: mean accuracy (%) ± standard deviation over different data splits.

Type Method Cornell Texas Wisconsin Chameleon Squirrel

GCN 59.19±3.51 64.05±5.28 61.17±4.71 42.34±2.77 29.0±1.10
GAT 59.46±6.94 61.62±5.77 60.78±8.27 46.03±2.51 30.51±1.28
JKNet 58.18±3.87 63.78±6.30 60.98±2.97 44.45±3.17 30.83±1.65

Explicit APPNP 63.78±5.43 64.32±7.03 61.57±3.31 43.85±2.43 30.67±1.06
Geom-GCN 60.81 67.57 64.12 60.9 38.14
GCNII 76.75±5.95 73.51±9.95 78.82±5.74 48.59±1.88 32.20±1.06
H2GCN 82.22±5.67 84.76±5.57 85.88±4.58 60.30±2.31 40.75±1.44

IGNN 61.35±4.84 58.37±5.82 53.53±6.49 41.38±2.53 24.99±2.11
Implicit EIGNN 85.13±5.57 84.60±5.41 86.86±5.54 62.92±1.59 46.37±1.39

GIND (ours) 85.68±3.83 86.22±5.19 88.04±3.97 66.82±2.37 56.71±2.07

Table 2. Results on homophilic node classification datasets: mean
accuracy (%).

Type Method Cora CiteSeer PubMed

GCN 85.77 73.68 88.13
GAT 86.37 74.32 87.62
JKNet 85.25 75.85 88.94

Explicit APPNP 87.87 76.53 89.40
Geom-GCN 85.27 77.99 90.05
GCNII 88.49 77.08 89.57
H2GCN 87.87 77.11 89.49

IGNN* 85.80 75.24 87.66
Implicit EIGNN* 85.89 75.31 87.92

GIND (ours) 88.25 76.81 89.22

GNNs on various problems and datasets. We refer to Ap-
pendix E for the details of the data statistics, network ar-
chitectures and training details. We implement our GIND
based on the PyTorch Geometric library (Fey & Lenssen,
2019). Our code is available at https://github.com/
7qchen/GIND.

7.1. Performance on Node Classification

Datasets. We test GIND against the selected set of baselines
for node classification task. We adopt the 5 heterophilic
datasets: Cornell, Texas, Wisconsin, Chameleon and Squir-
rel (Pei et al., 2019). And for homophilic datasets, we
adopt 3 citation datasets: Cora, CiteSeer and PubMed. We
also evaluate GIND on PPI to show that GIND is appli-
cable to multi-label multi-graph inductive learning. For
other datasets except PPI, we adopt the standard data split
as Pei et al. (2019) and report the average performance
over the 10 random splits. While for PPI, we follow the

Table 3. Results of micro-averaged F1 score on PPI dataset.

Type Method Micro-F1

GCN 59.2
GAT 97.3

Explicit GraphSAGE 78.6
JKNet 97.6
GCNII 99.5

IGNN 97.0
Implicit EIGNN 98.0

GIND (ours) 98.4

train/validation/test split used in GraphSAGE (Hamilton
et al., 2017).

Baselines. Here, we compare our approach against several
representative explicit and implicit methods that also adopt
the same data splits. For explicit models, we select sev-
eral representative baselines to compare, i.e., GCN (Kipf &
Welling, 2016), GAT (Veličković et al., 2017), JKNet (Xu
et al., 2018), APPNP (Klicpera et al., 2018), Geom-GCN
(Pei et al., 2019), GCNII (Chen et al., 2020), and H2GCN
(Zhu et al., 2020). For Geom-GCN, we report the best result
among its three model variants. For implicit methods, we
present the results of IGNN (Gu et al., 2020) and EIGNN
(Liu et al., 2021a). We implement IGNN on citation datasets
with their 1-layer model used for node classification, and im-
plement EIGNN on citation datasets with their model used
for heterophilic datasets. We mark the results implemented
by us with ∗. We do not include CGS (Park et al., 2021), as
they do not introduce a model for node-level tasks.

Results. As shown in Table 1, our model outperforms the
explicit and implicit baselines on all heterophilic datasets
by a significant margin, especially on the larger datasets
Chameleon and Squirrel. In particular, we improve the

https://github.com/7qchen/GIND
https://github.com/7qchen/GIND

Optimization-Induced Graph Implicit Nonlinear Diffusion

Table 4. Results of graph classification: mean accuracy (%) ± standard deviation over 10 random data splits.

Type Method MUTAG PTC COX2 PROTEINS NCI1

WL 84.1±1.9 58.0±2.5 83.2±0.2 74.7±0.5 84.5±0.5
DCNN 67.0 56.6 - 61.3 62.6

Explicit DGCNN 85.8 58.6 - 75.5 74.4
GIN 89.4±5.6 64.6±7.0 - 76.2±2.8 82.7±1.7
FDGNN 88.5±3.8 63.4±5.4 83.3±2.9 76.8±2.9 77.8±1.6

IGNN* 76.0±13.4 60.5±6.4 79.7±3.4 76.5±3.4 73.5±1.9
Implicit CGS 89.4±5.6 64.7±6.4 - 76.3±4.9 77.6±2.0

GIND (ours) 89.3±7.4 66.9±6.6 84.8±4.2 77.2±2.9 78.8±1.7

current state-of-the-art accuracy of EIGNN from 46.37%
to 56.71% on the Squirrel dataset, while the state-of-the-
art explicit model H2GCN only reaches 40.75% accuracy.
Among explicit models, JKNet, APPNP and GCNII are ei-
ther designed to consider a larger range of neighbors or to
mitigate oversmoothing. Despite that they outperform GCN
and GAT, they still perform worse than implicit models on
most datasets. Compared to other implicit models (EIGNN
and IGNN), GIND still shows clear advantages. Conse-
quently, we argue that the success of our network stems not
only from the implicit setting, but also from our nonlinear
diffusion that enhances useful features in aggregation.

Also, our results in Table 2 show that GIND achieves similar
accuracy to the compared methods on 3 citation datasets,
although they may not need as many long-range depen-
dencies as the heterophilic datasets. On the PPI dataset,
as depicted from Table 3, our GIND achieves 98.4 micro-
averaged F1 score, still superior to other implicit methods
and most explicit methods, close to the state-of-the-art mod-
els. Moreover, with a small initialization for the parameters,
all our training processes are empirically stable.

7.2. Performance on Graph Classification

Datasets. For graph classification, we choose a total of 5
bioinformatics benchmarks: MUTAG, PTC, COX2, NCI1
and PROTEINS (Yanardag & Vishwanathan, 2015). Follow-
ing identical settings as Yanardag & Vishwanathan (2015),
we conduct 10-fold cross-validation with LIB-SVM (Chang
& Lin, 2011) and report the average prediction accuracy and
standard deviations in Table 4.

Baselines. Here, we include the baselines that also have
reported results on the chosen datasets. For explicit models,
we choose Weisfeiler-Lehman Kernel (WL) (Shervashidze
et al., 2011), DCNN (Atwood & Towsley, 2016), DGCNN
(Zhang et al., 2018), GIN (Xu et al., 2018) and FDGNN
(Gallicchio & Micheli, 2020). For implicit models, we
reproduce the result of IGNN (Gu et al., 2020) with their
source code for a fair comparison, since it used a different

Table 5. Comparison of different regularization types.

Reg Cora CiteSeer PubMed

None 88.25±1.25 76.81±1.68 89.22±0.40
RLap 88.33±1.15 76.95±1.73 89.42±0.50
RDec 88.29±0.92 76.84±1.70 89.28±0.41

performance metric. We mark the results implemented by
us with ∗. We do not include EIGNN (Liu et al., 2021a), as
they do not introduce a model for graph-level tasks.

Results. In this experiment, GIND achieves the best per-
formance in 3 out of 5 experiments given the competitive
baselines. Such performance further validates GIND’s suc-
cess that it can still capture long-range dependencies when
generalized to unseen testing graphs. Note that GIND also
outperforms both implicit baselines.

7.3. Empirical Understandings of GIND

Feature Regularization. In this experiment, we compare
the performance of two kinds of feature regularization: the
Laplacian regularization RLap and the feature decorrelation
RDec. We use the 3 citation dataset for comparison. We
choose an appropriate regularization coefficient η for each
dataset. As reported in Table 5, Laplacian regularization
improves the performance for the homophilic datasets. We
attribute this to the fact that similarity between nodes is
an appropriate assumption for these datasets. The feature
decorrelation also improves the performance slightly.

Long-Range Dependencies. We follow Gu et al. (2020)
and use the synthetic dataset Chains to evaluate models’
abilities for capturing long-range dependencies. The goal
is to classify nodes in a chain of length l, whose label infor-
mation is only encoded in the starting end node. We use the
same experimental settings as IGNN and EIGNN. We show
in Figure 2 the experimental results with chains of different
lengths. In general, the implicit models all outperform the

Optimization-Induced Graph Implicit Nonlinear Diffusion

Table 6. Comparison of training time on the PubMed dataset.

Method Preprocessing Training Total

IGNN 0 83.67 s 83.67 s
EIGNN 1404.45 s 69.14 s 1473.59 s
CGS 0 118.65 s 118.65 s
GIND (ours) 0 47.31 s 47.31 s

25 50 75 100 125 150 175 200

0.5

0.6

0.7

0.8

0.9

1

GIND
EIGNN
IGNN
GCN
GAT
JKNet
APPNP

Length of a chain

Ac
cu

ra
cy

Figure 2. Average accuracy with respect to the length of chains.

explicit models for longer chains, verifying that they have
advantages for capturing long-range dependencies. GIND
and EIGNN both repetitively maintain 100% test accuracy
with the length of 200. While EIGNN only applies to linear
cases, GIND can apply to more general nonlinear cases.

Training Time. To investigate the training time, we train
the 1-layer models on PubMed dataset for 500 epochs to
compare their efficiency. Since we use gradient estimate
for training, our model can be faster than those implicit
models that compute exact gradients. As shown in Table 6,
our model costs much fewer time (47.31 s) than the three
models that calculate exact gradients. Among the three
models, EIGNN is the most efficient with 69.14 s training
cost, but its pre-processing costs much more than training.

Efficacy of Nonlinear Diffusion. We conduct an ablation
of the proposed nonlinear diffusion by removing the non-
linearity in Equation (9a). From Table 7, we can see that
the nonlinear diffusion has a clear advantage over linear
ones, especially on heterophilic datasets. Meanwhile, the
additional computation overhead brought by the nonlinear
setting is almost neglectable.

Gradient Estimate. In the left plot of Figure 3, we compare
results with different backpropagation steps L of Phantom
Gradient (Geng et al., 2021) along with their corresponding
training time on the Cora dataset. We can see that there is a

Table 7. Comparison of linear and nonlinear diffusion in GIND.

Dataset CiteSeer Cornell Wisconsin

Linear 76.62±1.51 83.24±6.82 84.31±4.30
Nonlinear 76.81±1.68 85.58±3.83 88.04±3.97

Linear 18.60s 19.94s 20.52s
Nonlinear 20.44s 20.21s 21.30s

2 4 6 8
L

87.6

87.8

88

88.2

Ac
c(

%
)

2 4 6 8
L

14

16

18

20

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Figure 3. Left: test accuracy (%) with increasing backpropagation
steps L on Cora. Right: the corresponding training time (s).

tradeoff between different steps, that either too large or too
small an L leads to degraded performance, and the sweet
spot lies in L = 4. The corresponding training time is 15.52
s, which is still preferable to other implicit GNNs (Table 6).

8. Conclusion
In this paper, we develop GIND, an optimization-induced
implicit graph neural network, which has access to infinite
hops of neighbors while adaptively aggregating features
with nonlinear diffusion. We characterize the equilibrium
of our implicit layer from an optimization perspective, and
show that the learned representation can be formalized as
the minimizer of an explicit convex optimization objec-
tive. Benefiting from this, we can embed prior properties to
the equilibrium and introduce skip connections to promote
training stability. Extensive experiments have shown that
compared with previous implicit GNNs, our GIND obtains
state-of-the-art performance on various benchmark datasets.

Acknowledgements
Zhouchen Lin was supported by the major key project
of PCL (grant No. PCL2021A12), the NSF China (No.
61731018), and Project 2020BD006 supported by PKU-
Baidu Fund. Yisen Wang was partially supported by the
NSF China (No. 62006153) and Project 2020BD006 sup-
ported by PKU-Baidu Fund.

Optimization-Induced Graph Implicit Nonlinear Diffusion

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In ICML,
2019.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In SIGKDD, pp. 2623–2631, 2019.

Attouch, H. and Aze, D. Approximation and regularization
of arbitrary functions in hilbert spaces by the lasry-lions
method. Annales de l’Institut Henri Poincaré C, Analyse
non linéaire, 10(3):289–312, 1993.

Atwood, J. and Towsley, D. Diffusion-convolutional neural
networks. In NeurIPS, 2016.

Ayinde, B. O., Inanc, T., and Zurada, J. M. Regularizing
deep neural networks by enhancing diversity in feature
extraction. IEEE Transactions on Neural Networks and
Learning Systems, 30(9):2650–2661, 2019.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. In NeurIPS, 2019.

Bai, S., Koltun, V., and Kolter, J. Z. Multiscale deep equi-
librium models. In NeurIPS, 2020.

Beck, A. First-order methods in optimization. SIAM, 2017.

Broyden, C. G. A class of methods for solving nonlinear
simultaneous equations. Mathematics of Computation,
19(92):577–593, 1965.

Chamberlain, B. P., Rowbottom, J., Goronova, M., Webb,
S., Rossi, E., and Bronstein, M. M. Grand: Graph neural
diffusion. In ICML, 2021.

Chang, C.-C. and Lin, C.-J. LIBSVM: a library for sup-
port vector machines. ACM Transactions on Intelligent
Systems and Technology, 2(3):1–27, 2011.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In ICML, 2020.

Chung, F. R. and Graham, F. C. Spectral graph theory.
American Mathematical Soc., 1997.

Eliasof, M., Haber, E., and Treister, E. PDE-GCN: Novel ar-
chitectures for graph neural networks motivated by partial
differential equations. In NeurIPS, 2021.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin,
D. Graph neural networks for social recommendation. In
WWW, 2019.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Gallicchio, C. and Micheli, A. Fast and deep graph neural
networks. In AAAI, 2020.

Gao, H., Chen, Y., and Ji, S. Learning graph pooling and
hybrid convolutional operations for text representations.
In WWW, 2019.

Geng, Z., Zhang, X.-Y., Bai, S., Wang, Y., and Lin, Z. On
training implicit models. In NeurIPS, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Gribonval, R. and Nikolova, M. A characterization of prox-
imity operators. Journal of Mathematical Imaging and
Vision, 62(6):773–789, 2020.

Gu, F., Chang, H., Zhu, W., Sojoudi, S., and El Ghaoui, L.
Implicit graph neural networks. In NeurIPS, 2020.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In NeurIPS, 2017.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2016.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Combining neural networks with person-
alized pagerank for classification on graphs. In ICLR,
2018.

Krantz, S. G. and Parks, H. R. The implicit function theorem:
history, theory, and applications. Springer Science &
Business Media, 2012.

Li, M., Guo, X., Wang, Y., Wang, Y., and Lin, z. G2cn:
Graph gaussian convolution networks with concentrated
graph filters. In ICML, 2022a.

Li, M., Wang, Y., Xie, X., and Lin, Z. Optimization inspired
multi-branch equilibrium models. In ICLR, 2022b.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
AAAI, 2018.

Liu, J., Kawaguchi, K., Hooi, B., Wang, Y., and Xiao, X.
Eignn: Efficient infinite-depth graph neural networks. In
NeurIPS, 2021a.

Liu, X., Jin, W., Ma, Y., Li, Y., Liu, H., Wang, Y., Yan, M.,
and Tang, J. Elastic graph neural networks. In ICML, pp.
6837–6849, 2021b.

Optimization-Induced Graph Implicit Nonlinear Diffusion

Ma, Y., Liu, X., Zhao, T., Liu, Y., Tang, J., and Shah, N. A
unified view on graph neural networks as graph signal
denoising. In CIKM, pp. 1202–1211, 2021.

Nitzberg, M. and Shiota, T. Nonlinear image filtering with
edge and corner enhancement. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(08):826–
833, 1992.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In
ICLR, 2019.

Pang, J. and Cheung, G. Graph laplacian regularization
for image denoising: Analysis in the continuous domain.
IEEE Transactions on Image Processing, 26(4):1770–
1785, 2017.

Park, J., Choo, J., and Park, J. Convergent graph solvers. In
ICLR, 2021.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks. In
ICLR, 2019.

Perona, P. and Malik, J. Scale-space and edge detection
using anisotropic diffusion. IEEE Transactions on Pat-
tern Aanalysis and Machine Intelligence, 12(7):629–639,
1990.

Rodrı́guez, P., Gonzàlez, J., Cucurull, G., Gonfaus, J. M.,
and Roca, X. Regularizing cnns with locally constrained
decorrelations. In ICLR, 2017.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research,
12:2539–2561, 2011.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Instance nor-
malization: The missing ingredient for fast stylization.
arXiv preprint arXiv:1607.08022, 2016.

Valsesia, D., Fracastoro, G., and Magli, E. Deep graph-
convolutional image denoising. IEEE Transactions on
Image Processing, 29:8226–8237, 2020.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2017.

Wan, F., Hong, L., Xiao, A., Jiang, T., and Zeng, J. Neodti:
neural integration of neighbor information from a hetero-
geneous network for discovering new drug–target interac-
tions. Bioinformatics, 35(1):104–111, 2019.

Wang, Y., Wang, Y., Yang, J., and Lin, Z. Dissecting the
diffusion process in linear graph convolutional networks.
In NeurIPS, 2021.

Weickert, J. Anisotropic diffusion in image processing. Teub-
ner, 1998.

Xhonneux, L.-P., Qu, M., and Tang, J. Continuous graph
neural networks. In ICML, 2020.

Xie, X., Wang, Q., Ling, Z., Li, X., Liu, G., and Lin, Z.
Optimization induced equilibrium networks: An explicit
optimization perspective for understanding equilibrium
models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In ICML, 2018.

Yanardag, P. and Vishwanathan, S. Deep graph kernels. In
SIGKDD, 2015.

Yang, Y., Liu, T., Wang, Y., Zhou, J., Gan, Q., Wei, Z.,
Zhang, Z., Huang, Z., and Wipf, D. Graph neural net-
works inspired by classical iterative algorithms. In ICML,
2021.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In SIGKDD,
2018.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-
end deep learning architecture for graph classification. In
AAAI, 2018.

Zhou, K., Dong, Y., Wang, K., Lee, W. S., Hooi, B., Xu, H.,
and Feng, J. Understanding and resolving performance
degradation in deep graph convolutional networks. In
CIKM, 2021.

Zhu, H., Lin, Y., Liu, Z., Fu, J., Chua, T.-S., and Sun, M.
Graph neural networks with generated parameters for
relation extraction. In ACL, 2019.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. In NeurIPS,
2020.

Zhu, M., Wang, X., Shi, C., Ji, H., and Cui, P. Interpreting
and unifying graph neural networks with an optimization
framework. In WWW, 2021.

Optimization-Induced Graph Implicit Nonlinear Diffusion

A. Kronecker Product
Given two matrices A ∈ Rm×n and B ∈ Rp×q , the Kronecker product A⊗B ∈ Rpm×qn is defined as follows:

A⊗B =

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 . (19)

By definition of the Kronecker product, we have the following important properties of the vectorization with the Kronecker
product:

• ∥A⊗B∥ = ∥A∥ ∥B∥,

• (A⊗B)⊤ = A⊤ ⊗B⊤,

• vec(ABC) = (C⊤ ⊗A)vec(B).

B. Choice of the Nonlinear Transformation σ(·)
Oriented Incidence Matrix on Undirected Graphs. If G is undirected, we randomly assign an orientation for each edge
to construct an oriented incidence matrix G, then it is unique to the obtained directed edge set Ẽ . Given U ∈ Rn×p as
the discrete version of u, the gradient operator (GU)k,· = uj − ui assigns the edge k = (i, j) ∈ Ẽ the difference of its
endpoint features. Similarly, the divergence operator −G⊤ assigns each node the sum of the features of all edges it shares.

To ensure the discretization of the nonlinear diffusion is well-defined for undirected graphs, we need to ensure that randomly
switching the direction of the edge would not influence the output. As a result, we make the following assumption.

Assumption B.1. The nonlinear function σ(·) is odd, i.e., σ(−x) = −σ(x).

Switching the direction of an edge k = (i, j) is equivalent to multiplying a matrix Ek to the left of G, where Ek is obtained
by switching the (k, k)-th element of an identity matrix to −1. If Assumption B.1 holds, we have

∂tU = −(EkG)⊤σ(EkGUK⊤)K (20)

= −G⊤E⊤
k Ekσ(GUK⊤)K (21)

= −G⊤σ(GUK⊤)K. (22)

Consequently, the discretization is well-defined for undirected graphs.

Besides Assumption B.1, as discussed in Theorem 4.1, we need Assumption B.2 holds. Overall, tanh satisfies both
assumptions, and has an effect to keep more small gradients while shrinking large gradients.

Assumption B.2. The nonlinear function σ(·) is monotone and Lσ-Lipschitz, i.e.,

0 ≤ σ(a)− σ(b)

a− b
≤ Lσ,∀a, b ∈ R, a ̸= b. (23)

C. Proofs
C.1. Conditions to be a Proximal Operator

Lemma C.1. (modified version of Prop. 2 in Gribonval & Nikolova (2020)). Consider f : H → H defined everywhere. The
following properties are equivalent:

(i) there is a proper convex l.s.c function φ : H → R ∪ {+∞} s.t. f(z) ∈ Proxφ(z) for each z ∈ H;

(ii) the following conditions hold jointly:

(a) there exists a convex l.s.c function ψ : H → R s.t. ∀y ∈ H, f(y) = ∇ψ(y);

Optimization-Induced Graph Implicit Nonlinear Diffusion

(b) ∥f(y)− f(y′)∥ ≤ ∥y − y′∥ ,∀y,y′ ∈ H.

There exists a choice of φ(·) and ψ(·), satisfying (i) and (ii), such that φ(z) = ψ∗(z)− 1
2 ∥z∥

2.

Proof. (i) ⇒ (ii): Since φ(x) + 1
2 ∥x∥

2 is a proper l.s.c 1-strongly convex function, then by Thm. 5.26 in Beck (2017), its
conjugate function f∗(y) = sup{⟨y,x⟩ − f(x) : x ∈ H} is 1

σ -smooth when f is proper, closed and σ strongly convex and
vice versa. Thus, we have:

ψ(x) := [φ(x) +
1

2
∥x∥2]∗, (24)

is 1-smooth with dom(ψ) = H. Then we get:

f(x) ∈ argmin
u

1

2
∥u− x∥2 + φ(u) = {u : x ∈ ∂φ(u) + u}, (25)

= {u|x ∈ ∂(φ(u) +
1

2
∥u∥2)}, (26)

= {u|u = ∇ψ(x)} = {∇ψ(x)}. (27)

Hence f(x) = ∇ψ(x), and 1-smoothness of ψ implies f is nonexpansive.

(ii) ⇒ (i): Let φ(x) = ψ∗(x) − 1
2 ∥x∥

2. Since ψ(x) is 1-smooth, similarly we can conclude: ψ∗ is 1-strongly convex.
Hence, φ is convex, and:

Proxφ(x) = argmin
u

{1
2
∥u− x∥2 + φ(u)}, (28)

= {u|x ∈ ∂φ(u) + u}, (29)
= {∇ψ(x)} = {f(x)}, (30)

which means f(x) = Proxφ(x).

C.2. Proof of Theorem 4.1

The proof follows the one presented in Xie et al. (2022).

Proof. The equation z = f(z) can be reformulated as

z + Lσz = Lσz + f(z) ⇐⇒ z = g(z) :=
1

Lσ + 1
(Lσz + f(z)). (31)

In the proof, without loss of generality, we let Lσ = 1. Since σ(a) is a single-valued function with slope in [0, 1], the
element-wise defined operator σ(a) is nonexpansive. Combining with

∥∥∥K⊗ Ĝ
∥∥∥ ≤ 1, operator f(z) is nonexpansive, and

g(z) is also nonexpansive by definition.

Let σ̃(a) =
∫ a

0
σ(t)dt be a function applied element-wisely to ∀a ∈ R, and 1 is the all one vector. Since 1⊤σ̃(y) =∑n

i=1 σ̃(yi), we have ∇σ̃(y) = [σ(y1), · · · , σ(yn)]⊤ = σ(y). Let ψ(z) = 1
4 ∥z∥

2 − 1
21

⊤σ̃((K⊗ Ĝ)(z + vec(bΩ(x)))),
by the chain rule, ∇ψ(z) = 1

2z − 1
2 (K ⊗ Ĝ)⊤σ((K ⊗ Ĝ)(z + vec(bΩ(x)))) = g(z). Due to Lemma C.1, we have

g(z) = Proxφ(z), where φ(z) can be chosen as ψ∗(z) − 1
2 ∥z∥

2. As a result, the solution to the equilibrium equation
z = f(z) is the minimizer of the convex function φ(·).

D. Row-Normalization Variant of GIND
Considering numerical stability, we impose the symmetric normalization to the incidence matrix in our implicit layer
(Equation (9a)), which is widely used in GNN models. Alternatively, we provide a row-normalization variant as follows.

Z = −(2D̃)−1G⊤σ(G(Z+ bΩ(X))K⊤)K. (32)

Optimization-Induced Graph Implicit Nonlinear Diffusion

Table 8. Dataset statistics for node classification task.

Dataset Cornell Texas Wisconsin Chameleon Squirrel Cora CiteSeer PubMed

Nodes 1,283 183 251 2,277 5,201 2,708 3,327 19,717
Edges 280 295 466 31,421 198,493 5429 4732 44338
Features 1,703 1,703 1,703 2,325 2,089 1433 3703 500
Classes 5 5 5 5 5 7 6 3

Table 9. Dataset statistics for graph classification task.

Dataset MUTAG PTC COX2 PROTEINS NCI1

graphs 188 344 467 1,113 4,110
Avg # nodes 17.9 25.5 41.2 39.1 29.8
Classes 2 2 2 2 2

Note that the two formulations are equivalent in the sense that Equation (32) can be rewritten as the following formulation:

Z̄ = −Ĝ⊤σ(Ĝ(Z̄+ b̄Ω(X))K⊤)K, (33)

where Z̄ = (2D̃)
1
2Z and b̄Ω(X) = (2D̃)

1
2 bΩ(X). Moreover, without changing the output Y, the row-normalized version

of GIND has the following formulation:

Z̄ = −Ĝ⊤σ(Ĝ(Z̄+ b̄Ω(X))K⊤)K, (34a)

Y = gΘ(X+ (2D̃)−
1
2 Z̄). (34b)

Without loss of generality, all the results can be easily adapted to the row-normalization case.

E. More on Experiments
E.1. Datasets

The statistics for the datasets used in node-level tasks is listed in Table 8. Among heterophilic datasets, Cornell, Texas
and Wisconsin are web-page graphs of the corresponding universities, while Chameleon and Squirrel are web-page graphs
of Wikipedia of the corresponding topic. The node features are bag-of-word representations of informative nouns in the
web-pages. Among homophilic datasets, PPI contains multiple graphs where nodes are proteins and edges are interactions
between proteins. The statistics for the datasets used in graph-level tasks is listed in Table 9. All these datasets consist of
chemical molecules where nodes refer to atoms while edges refer to atomic bonds.

E.2. Model Architectures

In terms of model variants, we use symmetric normalized GIND for the PPI, Chameleon and Squirrel datasets, and row-
normalized GIND for the other datasets. We use a 4-layer model for PPI and a 3-layer model for the two large datasets,
Chameleon and Squirrel, as well as all the datasets used for graph-level tasks. For the rest datasets, we adopt the model with
only one layer. We use linear output function for all the node-level tasks, and MLP for all the graph-level tasks. We adopt
the layer normalization (LN) (Ba et al., 2016) for all the node-level tasks and instance normalization (IN) (Ulyanov et al.,
2016) for all the graph-level tasks. They compute the mean and variance used for normalization on a single training case,
such that they are independent on the mini-batch size.

E.3. Hyperparameters

In terms of hyperparameters, we tune learning rate, weight decay, α and iteration steps through the Tree-structured Parzen
Estimator approach (Akiba et al., 2019). The hyperparameters for other baselines are consistent with those reported in their
papers. Results with identical experimental settings are reused from previous works.

