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Abstract
Private inference (PI) enables inference directly
on cryptographically secure data. While promis-
ing to address many privacy issues, it has seen
limited use due to extreme runtimes. Unlike
plaintext inference, where latency is dominated
by FLOPs, in PI non-linear functions (namely
ReLU) are the bottleneck. Thus, practical PI
demands novel ReLU-aware optimizations. To
reduce PI latency we propose a gradient-based
algorithm that selectively linearizes ReLUs while
maintaining prediction accuracy. We evaluate
our algorithm on several standard PI bench-
marks. The results demonstrate up to 4.25% more
accuracy (iso-ReLU count at 50K) or 2.2× less la-
tency (iso-accuracy at 70%) than the current state
of the art and advance the Pareto frontier across
the latency-accuracy space. To complement
empirical results, we present a “no free lunch”
theorem that sheds light on how and when net-
work linearization is possible while maintaining
prediction accuracy. Public code is available at
https://github.com/NYU-DICE-Lab/
selective_network_linearization.

1. Introduction
Cloud-based machine learning frameworks motivate the
setting of private inference (PI). At a high level, the vision of
private inference is to enable a user to (efficiently) perform
inference of their data on a model owned by a cloud service
provider. But both parties wish to preserve their privacy and
both the user’s data and the service provider’s model are
encrypted prior to inference using cryptographic techniques.

Curiously, the difficulty in realizing this vision is the nonlin-
ear operations of a deep network. Private execution of the
linear operations in a network using ciphertext can be made
essentially as fast as normal (plaintext) evaluation of the
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Figure 1. Our approach, SNL, achieves the Pareto frontier on
ReLU counts vs. test accuracy for CIFAR-100.

same operations with secret sharing techniques and input
independent preprocessing phases. However, to privately
evaluate ReLUs in the network, some version of Yao’s Gar-
bled Circuits (GC) is necessary, resulting in proportionally
high latency costs and storage overheads. In a nutshell:
standard deep network architectures (such as ResNets) are
ill-suited for efficient PI, since they contain far too many Re-
LUs. See (Mishra et al., 2020; Ghodsi et al., 2020; 2021; Jha
et al., 2021) and a detailed discussion below in Section 2.

Thus, unlocking the full potential of fast, accurate, and
private neural inference require rethinking network design
to have as few ReLUs as possible. Numerous efforts in
this direction have already emerged. Prior work such as
MiniONN (Liu et al., 2017) focus on the security protocols
themselves, while more recent works such as Delphi (Mishra
et al., 2020) or Circa (Ghodsi et al., 2021) propose to replace
ReLUs with other activations. An alternative line of work
designs ReLU-efficient network skeletons using neural ar-
chitecture search (NAS). CryptoNAS (Ghodsi et al., 2020)
uses evolutionary NAS, while Sphynx (Cho et al., 2021a)
uses micro-search NAS.

Our work in this paper pursues a new path, and applies to
several architectures that are used in imaging, computer
vision, or other perception problems (specifically, deep con-
volutional networks with/without residual connections and
ReLU activations). For these networks we study a problem
that we call deep network linearization. This refers to the
process of judiciously picking a subset of neurons in such a
network and eliminating their nonlinearities (i.e., replacing

https://github.com/NYU-DICE-Lab/selective_network_linearization
https://github.com/NYU-DICE-Lab/selective_network_linearization
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their ReLU operation with an identity, or linear, operation)
minimizing tradeoff between overall performance and num-
ber of ReLU operations. Note that via this process, we are
not reducing the number of parameters in the network. Since
ReLU activations are simple scalar operations, in normal
scenarios we are essentially not getting any reduction in
FLOP counts during network training or testing. However,
in the PI setting, a major advantage of linearization is due
to reducing the number of GC computations.

This paper introduces a simple gradient-based algorithm
(that we call Selective Network Linearization, or SNL) to
solve the deep network linearization problem, validates this
algorithm on a variety of standard benchmarks, and provides
theoretical evidence that illuminates its observed behavior.

Currently, the state-of-the-art in private inference is achieved
by DeepReDuce (Jha et al., 2021). The authors introduce
a concept known as ReLU dropping in deep networks that,
at a conceptual level, is equivalent to network linearization.
Their proposed algorithm consists of three stages: ReLU
“culling”, ReLU “thinning”, and ReLU “reshaping”, each
of which requires several manual design choices, involving
several hyper-parameters. The search space of candidate ar-
chitectures is very large; applying DeepReDuce to a ResNet
with D stages would require training Ω(D) different net-
works and picking the one with the best accuracy. Also,
crucially, the keep/drop decisions made by DeepReDuce are
made in stages: either entire ReLU layers are linearized, or
entire ReLU layers are retained as is.

In contrast, our proposed technique, SNL, is highly-
automated, involving very few hyper-parameters. SNL is
implemented using a single gradient-based training proce-
dure (which we describe below in detail) and requires no
searching over multiple network skeletons. Finally, SNL
provides fine-grained control, all the way down to the pixel
feature map level, of which ReLUs to retain or eliminate.

The intuition underlying SNL is simple and applicable to
many deep networks. Consider any standard architecture
(e.g., a ResNet-34), except with a twist. All ReLUs are now
replaced with parametric ReLUs (or pReLUs) (He et al.,
2015) with an independent, trainable slope parameter for
each ReLU in the network. Further, each slope parameter is
further constrained to be binary (0 or 1). Having defined this
network, SNL proceeds to perform standard training (using,
say, SGD or Adam); there is no other manual intervention
necessary.

Some care is needed to make things work. The main chal-
lenges lie in (a) enforcing the binary constraints on the
slopes of the pReLUs, and (b) ensuring that only a small
number of ReLUs are retained, i.e., the vector of slope pa-
rameters is (anti) sparse. Mirroring the approach adopted
by certain network pruning algorithms (Lee et al., 2019;

Cho et al., 2021b), we resolve these difficulties by augment-
ing the standard train error loss with an ℓ1-penalty term
defined over the slope coefficients, decaying the weight of
this penalty on a schedule, and applying a final rounding
step that binarizes the slopes. See Section 3.

We validate SNL on a variety of benchmark datasets com-
monly used in the literature on private image classification,
and show that SNL achieves Pareto dominance over the
entire accuracy-latency tradeoff curve over all existing ap-
proaches. Figure 1 above demonstrates this in the context
of CIFAR-100; we provide several additional results (and
ablation studies) below and also show the same benefits for
CIFAR-10 and Tiny ImageNet. See Section 4 and Appendix.

Probing into the results of SNL reveals curious behavior.
It appears that ReLUs in earlier layers are selectively lin-
earized at a (much) higher rate than ReLUs in later layers;
this aligns with the conclusions arrived at by earlier PI works
such as DeepReDuce (Jha et al., 2021). Could this be indica-
tive of some fundamental property of network learning? In
a step towards rigorously answering this question, we prove
no free lunch theorems showing that linearization comes
at the cost of reducing memorization capacity of 3-layer
networks. Moreover, if the network is contractive, i.e., if the
second layer has fewer neurons than the first layer (typical
in classification-type scenarios), then selective linearization
retains original network capacity only if fewer neurons in
the second layer are linearized. See Section 5.

2. Related Work
Private inference. Prior work on private inference (PI)
have proposed methods that leverage existing cryptographic
primitives for evaluating the output of deep networks. Cryp-
tographic protocols can be categorized by choice of cipher-
text computation used for linear and non-linear operations
in a network. Operations are computed using some combi-
nation of: (1) secret-sharing (SS) under a secure multi-party
computation (MPC) (Shamir, 1979; Goldreich et al., 2019)
model; (2) partial homomorphic encryptions (PHE) (Gentry
& Halevi, 2011), which allow limited ciphertext operations
(e.g. additions and multiplications), and (3) garbled circuits
(GC) (Yao, 1982; 1986) that rely on specialized circuitry.

In this paper, our focus is exclusively on the DELPHI pro-
tocol for private inference1. DELPHI assumes the threat
model that both parties are honest-but-curious. Therefore,
each party strictly follows the protocol, but may try to learn
information about the other party’s input based on the tran-

1We chose DELPHI as a matter of convenience; the general
trends discovered in our work hold regardless of the encryption
protocol. We acknowledge that choosing the “best” protocol is an
important (and fast advancing) area of research, and that better PI
protocols, such as (Rathee et al., 2020), may exist.
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Approach Methods Reduce ReLUs Units that are removed

CryptoNAS (Ghodsi et al., 2020) NAS Yes layers
Sphynx (Cho et al., 2021a) NAS Yes layers
DELPHI (Mishra et al., 2020) NAS + polynomial approx. Yes layers
SAFENet (Lou et al., 2021) NAS + polynomial approx. Yes channels
Unstructured Pruning N/A No not exist
Structured Pruning N/A Yes channels, layers
DeepReDuce(Jha et al., 2021) manual Yes layers
SNL (ours) gradient-based Yes pixels, channels

Table 1. Comparison of various techniques that reduce ReLU operations in deep networks. NAS stands for neural architecture search.
“Pruning” techniques eliminate entire neurons. SNL, our proposed gradient-based network linearization method, achieves the accuracy-
latency Pareto frontier in private inference.

scripts they receive from the protocol. This threat model
is standard in prior PI works, including MiniONN (Liu
et al., 2017), DELPHI, CryptoNAS (Ghodsi et al., 2020),
SAFENet (Lou et al., 2021), and DeepReDuce (Jha et al.,
2021).

DELPHI is a hybrid protocol that combines cryptographic
primitives such as secret sharing (SS) and homomorphic en-
cryptions (HE) for all linear operations, and garbled circuits
(GC) for ReLU operations. DELPHI divides the inference
into two phases to make the private inference happen: the
offline phase and an online phase. DELPHI’s cryptographic
protocol allows for front-loading all input-independent com-
putations to an offline phase. By doing so, this enables
ciphertext linear computations to be as fast as plaintext lin-
ear computations while performing the actual inference.

For non-linear (especially ReLU) operations, all the above
approaches leverage GC’s for secure computation. However,
such circuits cause major latency bottlenecks. Mishra et al.
(2020) show empirical evidence that ReLU computation re-
quires 90% of the overall private inference time for typical
deep networks. As a remedy, DELPHI and SAFENET (Lou
et al., 2021) propose neural architecture search (NAS) to se-
lectively replace ReLUs with polynomial operations. Cryp-
toNAS (Ghodsi et al., 2020), Sphynx (Cho et al., 2021a) and
DeepReDuce (Jha et al., 2021) design new ReLU efficient ar-
chitectures by using macro-search NAS, micro-search NAS
and multi-step optimization respectively.

Network compression. We emphasize that network lin-
earization is distinct from neural network compression,
which fundamentally focuses on reducing the number of
learnable parameters in a deep network. Broadly, network
compression (or pruning) techniques can be divided into
two buckets. Unstructured pruning approaches identify and
remove “unimportant” weights (edges) in a deep network to
reduce model size. Zhu & Gupta (2017); Gale et al. (2019)
retain top-k parameters by measuring the importance of
weight parameters based on their absolute magnitude. Lee
et al. (2019) proposes measuring importance according to

gradient magnitudes. Xiao et al. (2019); Cho et al. (2021b)
trains the network with iterative multi-objective loss func-
tions and reparameterized weights.

In contrast, structured pruning approaches remove entire
channels in convolutional architectures; this has the effect
of eliminating both nodes and edges in the network. Li et al.
(2016) uses a combination of magnitude-pruning and fine-
tuning to prune channels in every layer. He et al. (2020a)
achieves state-of-the-art pruning performance in this direc-
tion. While structured pruning methods do end up reduc-
ing ReLU counts as a by-product, this reduction comes at
the cost of losing expressivity. On the other hand, selec-
tive linearization retains the original number of learnable
parameters while only reducing the number of ReLUs in
the network. Below we show extensive experiments (and
preliminary theory) showing why selective linearization is
superior in the context of private inference.

3. Selective Network Linearization
Notation. We represent matrices and tensors with upper-
case variables unless stated otherwise. Elements of vectors
and matrices are represented using appropriate subscripts.
∥ ·∥0 represents number of non-zeros; ⊙ represents element-
wise products. [d] is the natural number set {1, 2, 3, . . . , d}.
1 is the all-ones vector of the appropriate dimension.

3.1. Setup

Our approach applies to any feed-forward deep network
architecture with d layers and ReLU activations (σ(·)). Let
fW be any such network where W = {W 0,W 1, . . . ,W d}
are the layer weight. Denote the pre-activation outputs of
each linear layer by z1, z2, . . . , zd. Denote x be the input
vector and z1 = W 1x. Let ai = σ(zi) be the outputs after
each layer of ReLUs. Expanding fW(x), we get

fW(x) = W d(σ(W d−1(σ(W d−2(· · ·σ(W 1x) · · · ). (1)



Selective Network Linearization

(a) Visual comparison on SNL and Structured Pruning (b) Visual representation of Equation 2

Figure 2. Visualization of SNL, structured pruning, and Equation 2. (a) Both SNL and structured pruning have two non-linear activations.
While all 55 parameters are on in SNL, the network from structured pruning has only 18 parameters. We note that number of non-linear
activations (especially ReLU) is what matters in PI. (b) Visual representation of the convex combination between x and σ(x). If non-linear
activation σ is ReLU and c ∈ R, then this convex combination is equivalent to PReLU.

We now introduce a set of auxiliary binary vectors C =
{c1, c2, . . . cd}, where for i ∈ [d], we define σci as the para-
metric ReLU (PReLU) activation function (with (left) slope
equal to 1 − ci) defined for every neuron in the network.
Then, the output, σci(·), at the i

th
layer can be formally

expressed as:

aici = σci(z
i) = ci ⊙ σ(zi) + (1− ci)⊙ zi (2)

Notice that according to our definition, aici = ReLU(zi)
for ci = 1, and aici = zi for ci = 0. In essence, we are
re-defining σ to σci for all i ∈ [d] in equation 1, so that now
the feed-forward deep network fW,C is parameterized both
by W and C.

Our goal is to learn a model with high accuracy but with
as few ReLUs as possible. This motivates the following
ℓ0-constrained optimization problem:

min
W,C

L(fW,C(x),y) s.t.
d∑

i=1

∥ci∥0 ≤ B, ci binary.

(3)

In terms of optimization difficulty, the main challenges with
Equation 3 are in enforcing the binary constraints on each
entry of ci, and the overall ℓ0 constraint. Below, we propose
a solution to these challenges.

3.2. The SNL Algorithm

We first drop the binary constraints, and relax the optimiza-
tion problem in Equation 3 to a Lasso-style objective func-
tion (Tibshirani, 1996):

min
W,C

L(fW,C(x),y) + λ

(
d∑

i=1

∥ci∥1

)
. (4)

In principle, both the weights W and the slope parameters
C can be updated via standard gradient iterations over this

Algorithm 1 SNL: Selective Network Linearization
1: Inputs: fW: pre-trained network, λ: Lasso coefficient, κ:

scheduling factor, B: ReLU budget, ϵ: threshold.
2: Set C = 1: same dimensions to all feature maps.
3: W← (W,C)
4: while ReLU Count > B do
5: Update W via ADAM for one epoch.
6: ReLU Count← ∥1(C > ϵ)∥0
7: if ReLU count not decreased then
8: Increment Lasso coefficient λ← κ · λ.
9: end if

10: end while
11: C← 1(C > ϵ)
12: Freeze C and finetune fW.

objective. In practice, to ensure good performance, our
approach requires four steps: (1) Start with a pre-trained
network fW. (2) Update W and C simultaneously by gradi-
ent descent over Equation 4. (3) Binarize elements of C by
rounding to 0 or 1. (4) freeze C and perform final finetuning
of fW.

In Step 2, we first initialize C to all ones in the vector space.
Then, we update W and C simultaneously via standard
backpropagation (using ADAM), until the desired sparsity
level of C is achieved. We monitor the sparsity of C by
computing the quantity ∥1(C > ϵ)∥0, where ϵ is a very
small non-negative hyperparameter. Similar to the technique
of homotopy continuation in Lasso, if the sparsity of C
increases compared to previous epochs we increase λ with
a small multiplicative factor κ and repeat. Once the desired
number of nonzero elements in C reached, we binarize by
thresholding 1(C > ϵ). Finally, we freeze C and fine-
tune the network weights W to boost final performance.
Algorithm 1 provides detailed pseudocode.

3.3. Aside: Linearization versus pruning

Let us pause to highlight the essential diffences of Equa-
tion 3 with unstructured network pruning (Zhu & Gupta,
2017; Lee et al., 2019; Cho et al., 2021b). There, one typi-
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cally chooses a masking parameter for every weight in the
network, and solves a similar looking optimization:

min
w,m

L(f(w ⊙m;x),y) s.t. ∥m∥0 ≤ k (5)

where k is a parameter counting the total number of retained
weights.

But eliminating (individual) edges do not lead to reduction
in ReLU counts; only if all incoming weights to a given
ReLU operation are removed – or if an entire channel is
removed – then one can safely eliminate the correspond-
ing ReLU operation in the feature map. This is akin to
structured pruning, but as we will show below, this leads
to significantly worse performance as well as representa-
tion capacity compared to SNL. Figure 2(a) visualizes the
difference between SNL and structured pruning.

4. Experiments
Architectures, datasets, training. We apply SNL to
the ResNet18/34 architectures(He et al., 2016) and Wide-
ResNet 22-8 (Zagoruyko & Komodakis, 2016) architectures.
As standard in prior work (Jha et al., 2021), we remove the
ReLU layers in the first convolution layer. This layer serves
to raise the input channel dimension from 3 to a higher
number (e.g. 64 for ResNet18/34).

We focus on standard image classification datasets (CIFAR-
10/100 and Tiny ImageNet). The image resolutions on both
CIFAR-10 and CIFAR-100 is 32 × 32; Tiny-ImageNet is
64× 64. CIFAR10 has 10 output classes with 5000 training
images and 1000 test images per class, while CIFAR-100
has 100 output classes with 500 training images and 100
test images per class. TinyImageNet has 200 output classes
with 500 training images and 50 validation images. .

We first pre-train networks on CIFAR-10/100 using SGD
with initial learning rate 0.1 and momentum 0.9, decay
the learning rate at 80 and 120 epochs with 0.1 learning
rate decay factor, 0.0005 weight decay, and use batch-size
256. For Tiny-ImageNet, we use the same hyperparameters,
except that we train for 100 epochs and perform learning
rate decay at 50 and 75 epochs with decay factor 0.1.

For the SNL algorithm, we initialize λ = 0.00001 and in-
crement λ by a multiplicative factor 1.1 if the ReLU count
increases compared to previous epochs. We set the thresh-
olding parameter ϵ = 0.01. We use the ADAM optimizer
with learning rate equual to 0.001. In the finetuning stage,
we update the network parameter W via SGD with a learn-
ing rate of 0.001 and 0.9 momentum for 100 epochs. Finally,
like DeepReDuce, we use knowledge distillation during fine-
tuning (Hinton et al., 2015) with temperature parameter 4
and equal relative weights on both cross-entropy (on the
hard labels) and KL divergence (on the soft labels). We

use the original pretrained model with identical network
topology as the teacher.

Latency estimates for private inference. We report re-
sults both in terms of ReLU counts and wall-clock time for
private inference. Existing open-source implementations of
DELPHI are unfortunately not compatible with networks
with pixel-wise parametric ReLU operations. Therefore,
we propose a method to empirically estimate the online
latency for private inference over such networks per input
data sample. We break down the sources of latency into two
categories: ciphertext linear operations and ciphertext ReLU
operations. Since ciphertext linear operations in DELPHI
are essentially as fast as plaintext linear operations (and
since ReLUs in plaintext are essentially free), we simply
report the latency of ciphertext linear operations as the same
as that for one plaintext network inference. For ciphertext
ReLU operations, we experimentally measure the wall-clock
time for 1000 ReLU operations using DELPHI, resulting in
t = 0.021 seconds per 1000 ReLUs 2.

Pareto analysis and comparisons. Our main result, Fig-
ure 3, shows that SNL achieves the ReLU count-accuracy
Pareto frontier on CIFAR-10, CIFAR-100, as well as Tiny-
ImageNet over all previous competing approaches.

To our knowledge, the previous best approach is due to
DeepReDuce, which (as we discussed in the Introduction)
optimizes networks in three stages, each with a fair bit of
manual intervention. On the other hand, SNL outperforms
DeepReDuce with a fairly straightforward gradient-based
procedure. Furthermore, we used identical hyperparameters
for all target ReLU budgets and base networks, showing
that SNL is capable of giving robust state-of-the-art perfor-
mance without careful hyperpararameter tuning.

We now discuss our results in detail in two regimes of in-
terest: high-ReLU and low-ReLU budgets (Table 2). At a
high-ReLU budget, SNL achieves 76.35% test accuracy with
budget=120K on CIFAR-100, while DeepReDuce achieves
75.50% accuracy given a significantly higher (197K) ReLU
count. Therefore, the network produced by SNL cuts down
latency to 60% of that of DeepReDuce, while achieving
0.85% higher accuracy. In comparison, the network from
CryptoNAS with a comparable performance as SNL re-
quires nearly 3 times the total ReLU counts. Similarly,
the network produced by Sphynx (Cho et al., 2021a) with
achieves 74.93% with ReLU count=230K; SNL matches
this performance with approximately half the ReLU count.

2We verify our estimates with independent prior work. For
example, Table 4 of DeepReDuce (Jha et al., 2021) lists number
of ReLUs and latency for several models. By performing a linear
regression between these covariates and measuring the slope, we
can get an estimate of the online latency per ReLU as t = 0.019
seconds, which is almost exactly what we get.
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Figure 3. SNL achieves Pareto frontiers of ReLU counts versus test accuracy on CIFAR-10, CIFAR-100, and Tiny-ImageNet. SNL
outperforms the state-of-the-art methods (DeepReDuce, SAFENet, and CryptoNAS) in all range of ReLU counts on all three dataset. ℓ1
Filter Pruning (Li et al., 2016) and LFPC (He et al., 2020b) are structured pruning techniques.

On Tiny-ImageNet, SNL produces a network that only uses
55% of ReLUs as that of DeepReduce (500K vs. 917K)
with par accuracy (64.42% vs. 64.66%).

At low-ReLU budgets, the SNL network achieves 73.75%
test accuracy with 49.4K ReLU count on CIFAR-100. Both
DeepReDuce and Sphynx use around 50K ReLU count,
and achieve 69.50% and 69.57% test accuracy respec-
tively. CryptoNAS network with 100K ReLU count reaches
68.75% test accuracy, but SNL beats CryptoNAS by nearly
5% in terms of accuracy with only half its ReLU budget. At
the extreme case, we see that the SNL network with ReLU
count 25K achieves 70.05%, outperforming DeepReDuce
models with 68.68% containing ReLU count 28.6K. On
Tiny-ImageNet, SNL achieves 63.39% with ReLU count
200K, whereas DeepReDuce network reaches 61.65% ac-
curacy with nearly double the ReLU count (400K). Further-
more, Sphynx achieves 4% less accuracy with 3× the ReLU
counts (614K), compared to SNL with ReLU count 200K.

Analysis of networks produced by SNL. In SNL we
only impose a total ReLU budget constraint; the algorithm
automatically decides how it wants to allocate its budget
across different layers. To study the effects of this alloca-
tion, we run SNL on ResNet-18 trained on CIFAR-100 with
various ReLU budgets ranging from 20K to 300K; the base
ResNet-18 requires approximately 492K ReLU operations.
Comparing the blue and the orange bars in Figure 4, we
see that SNL drops earlier ReLUs at a higher rate than later
ReLUs; this indicates that ReLU operations on later layers
are generally more crucial than the earlier layers. Indeed,
the ReLU distribution plots with ReLU budget 100K, 200K,
and 300K show that the ReLU operations in later layers
(13, 14, 15, and 16) are mostly preserved. In contrast, the
ReLUs in the earlier layers (1, 2, 3, 4) are largely eliminated
and replaced with the identity operation. This observation
mirrors the approach in DeepReDuce. There, the authors
discovered by exhaustive manual ablation studies that Re-

LUs in later layers had a more significant effect than earlier
layers, and therefore proposed a “ReLU criticality metric”
to decide whether or not to cull entire layers of ReLUs. In-
terestingly, SNL arrives at a similar strategy without any
manual intervention3. We revisit this in Section 5.

Channel-wise SNL. As described, the SNL algorithm
proposes linearizing ReLUs at the finest (pixel-level) scale.
We can develop “channel-wise” extensions of this method
with a straightforward change-of-variables. Consider a CNN
architecture, where our decision to linearize is at the channel
(filter) scale. In this case, everything is the same as before,
except that C in Algorithm 1 is the same dimension as the
total number of convolution filters. Let xd

i be the feature
map after applying the ith filter in the dth layers. We can
selectively linearize this via:

zdi = cdi ·ReLU(xd
i ) + (1− cdi ) · (xd

i ) (6)

and the rest of the algorithm proceeds identically. We call
this Structured SNL and test this with ResNet-18 and Wide-
ResNet 22-8 on the CIFAR-100 dataset. Table 6 in the
Appendix shows that structured SNL outperforms SAFENet
with 0.7% higher accuracy (68.26% vs. 67.50%), with
11.5× faster online inference time (0.628s vs. 7.20s).

SNL outperforms structured pruning. We also compare
SNL to magnitude-based structured pruning. As discussed
previously, structured pruning methods remove entire filters
(and as a by-product also reduce ReLU counts). However,
the loss of learnable parameters leads to significant losses in
accuracy. We compare SNL, ℓ1-magnitude filter pruning (Li

3It appears that the authors of DeepReDuce measured criticality
in ResNet stages and not individual layers. They found that the
order of ResNet18 stages on CIFAR-100 as S1 < S4 < S2 < S3,
where Si means a group of residual blocks (e.g., S3 includes 9, 10,
11, and 12th layers in ResNet-18)
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ReLU 20K ReLU 30K ReLU 50K

ReLU 100K ReLU 200K ReLU 300K

Figure 4. ReLU distribution on ResNet18 from SNL. Before and After stand for ReLU counts before SNL and after SNL, respectively.
x-axis correpsonds to a layer index of the network. The larger gap between a blue and orange bar means the more ReLU operations
replaced with identity function. Aligning to the theoretical results from Corollary 2, SNL replaces more ReLU operations to identity
function in the earlier layers (1-4) while later layers’ ReLU operations preserved (13-16).

Table 2. CIFAR-100 Comparison

Methods #ReLUs Test Acc. Online Lat. Acc./ReLU(K) (%) (s)

R
eL

U
≤

10
0K

SNL# 12.9 66.53 0.291 5.517
SNL# 15.0 67.17 0.334 4.478
SNL# 24.9 70.05 0.542 2.813
SNL# 49.9 73.75 1.066 1.478

DeepReDuce 12.3 64.97 0.45 5.282
DeepReDuce 28.7 68.68 0.56 2.393
DeepReDuce 49.2 69.50 1.19 1.413

Sphynx 25.6 66.13 0.727 2.583
Sphynx 51.2 69.57 1.335 1.359
Sphynx 102.4 72.90 2.385 0.712

CryptoNAS 100.0 68.5 2.30 0.685

R
eL

U
≤

30
0K

SNL* 120.0 76.35 2.802 0.636
SNL* 150.0 77.35 3.398 0.516
SNL* 180.0 77.65 4.054 0.431

DeepReDuce 197.0 75.51 3.94 0.383
DeepReDuce 229.4 76.22 4.61 0.332
CryptoNAS 344.0 76.0 7.50 0.221

Sphynx 230.0 74.93 5.12 0.326
# Starts with pretrained ResNet18.
* Starts with pretrained Wide-ResNet 22-8.

et al., 2016) and LFPS-filter pruning (He et al., 2019) with
pretrained Resnet-18 networks on CIFAR-10 and CIFAR-
100. The results are available in Fig. 3. SNL outperforms
ℓ1 pruning by a large margin on accuracy for similar ReLU
counts. While LFPS-pruning is more accurate than ℓ1 prun-
ing, SNL is able to achieve the same accuracy while only
requiring ∼ 4× fewer ReLUs. See also Appendix B for
several additional ablation studies.

5. Theoretical analysis
Figure 4 in Section 4 reveals interesting trends. The blue
bars indicate the number of ReLUs in every layer of a (stan-
dard) ResNet-18 model. Since the network is contractive,
this number generally decreases as a function of depth. But
after applying SNL, the red bars indicate that across the
entire range of ReLU target budgets, neurons in earlier lay-
ers are linearized at a far greater rate than later layers.
This aligns well with earlier findings; DeepReDuce (Jha
et al., 2021) also hypothesized that (manually) culling all
ReLUs in the first few layers provides the largest latency
improvement with the smallest accuracy drop.

We now present theoretical evidence as to why this might be
the case. One way to measure the effect of linearizing Re-
LUs in a network is to compare the expressivity of networks
before and after linearization. To measure the expressivity,
we leverage the notion of memorization capacity.

Definition 1 (Yun et al. (2019); Vershynin (2020)). Let fW
be a neural network of a given architecture with learnable
parameters W . The memorization capacity of fW is the
largest N such that the following condition is satisfied: For
all inputs {xi}Ni=1 ⊂ Rdx and for all {yi}Ni=1 ⊂ [−1, 1],
there exists a choice of parameters W such that fW (xi) =
yi for 1 ≤ i ≤ N .

Our main results focus on dense feed-forward neural net-
works (FNN) 4. Under the assumption that the dataset

4Analogous extensions to convolutional networks with/without
residual connections are interesting directions for future work.
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{(xi, yi)}Ni=1 contains distinct data points, (Yun et al., 2019)
provide an upper bound on memorization capacity of FNNs
with 2 hidden layers.

Theorem 1 (Yun et al. (2019)). Consider an FNN fW with
two hidden layers and piecewise linear activation function
σ. Suppose that the hidden layers have width d1 and d2
and that the number of pieces in the activation function is p.
Then, the memorization capacity of fW is no greater than:

p(p− 1)d1d2 + (p− 1)d2 + 2 .

For the case of ReLU networks, p = 2 and the above bound
on the capacity simplifies to 2d1d2 + d2 + 2.

The intuition for this theorem is based on the fact that FNNs
with ReLU activations implement piecewise affine func-
tions; so an upper bound on their capacity can be obtained
by counting the number of “linear pieces” in the range of
the FNN, which can be recursively computed for each layer.
See the appendix of (Yun et al., 2019) for a detailed proof.

Let us now imagine selectively linearizing such an FNN;
more specifically, suppose we only linearize all but a frac-
tion α1 of the neurons in the first layer, and all but a fraction
α2 of the neurons in the second layer. Mirroring the same
counting argument as above, we obtain the following corol-
lary to Theorem 1.

Corollary 1. Consider an FNN fW with 2 hidden layers of
width d1 and d2 respectively, and piecewise linear activation
function σ with p pieces. Let αi ∈ [0, 1], i ∈ {1, 2} be the
fraction of nonlinear activations retained at each layer, i.e.,
without loss of generality the lth layer kth neuron exhibits
the activation:

alk(x) =

{
σ(zlk(x)) if k ∈ [αldl]

zlk(x) if k ∈ [dl] \ [αldl]

Then, the memorization capacity of fW is no greater than:

α1α2d1d2p(p− 1) + α2d2(p− 1)+

α1(1− α2)d1d2(p− 1) + 2 .

For ReLU networks, the above bound simplifies to: α1(1 +
α2)d1d2 + α2d2 + 2.

Corollary 1 shows that the memorization capacity of a selec-
tively linearized network (obtained, say, by applying SNL)
is strictly smaller than the original network whenever α1 or
α2 is smaller than 1.

It is useful to see how selective linearization compares with
(structured) pruning. Suppose that instead of just dropping
the ReLUs activation, we eliminate the entire neuron from
the network, i.e., the network widths now become α1d1 and
α2d2 respectively. The following corollary can be obtained
by directly instantiating these in Theorem 1.

Corollary 2. Consider a 3-layer FNN fW with piecewise
linear activation σ with p pieces. Let α1, α2 ∈ [0, 1] be
the fraction of nonlinear activations retained at the first
and second layers, respectively. Then, the memorization
capacity of fW is no greater than:

α1α2d1d2p(p− 1) + α2d2(p− 1) + 2 < N.

For ReLU networks, the above bound simplifies to
2α1α2d1d2 + α2d2 + 2.

Notice the gap between the capacity upper bounds in Corol-
lary 1 and Corollary 2. Specifically, selective linearization
enjoys an additional additive term:

α1(1− α2)d1d2,

compared to pruning. In fact, equality between the capacity
bounds is achieved when α2 = 1, i.e., when all the neurons
in the second layer are retained.

This observation might indicate that retaining most ReLUs
(i.e., driving α2 → 1 in the second layer is the key. In
fact, we can go further. From Corollary 1, if we fix an
overall ReLU budget for the network, then we can derive
optimal conditions on the fraction parameters α1 and α2 to
maximize memorization capacity. To simplify notation, we
restrict our attention to ReLU activations (i.e., p = 2).

Theorem 2. Consider a 3-layer FNN with ReLU activation.
Let α1, α2 ∈ [0, 1] be the fraction of nonlinear activations
retaiend at the first and second hidden layers, respectively.
Given a ReLU budget B > d2, the choice α1 = B+d2−1

2d1

and α2 = B−d2+1
2d2

maximizes the memorization capacity.

This result confirms that the optimal “retention ratio” for
each network is inversely proportional to its width, and there-
fore in contractive networks (such as those typical in classifi-
cation) where d1 > d2, linearizing a greater number of neu-
rons in the first layer is beneficial. As a concrete example,
consider a 3-layer FNN with d1 = 50000 and d2 = 5000,
and budget B = 10000. Then, the optimal choices are
α1 = 14999/100000 ≈ 0.15 and α2 = 5001/10000 ≈ 0.5.
Therefore, linearizing 42, 500 neurons in the first layer, and
only 7, 500 neurons with ReLU in the second layer gives
the best memorization capacity among all possible choices.

6. Discussion
We have developed a simple method to selectively linearize
deep neural networks with ReLU activations, and using
this method, demonstrated state-of-the-art networks for the
problem of private inference.

Numerous directions for further work remain. Our work
focused on reducing online runtime of private inference; a
more holistic approach would consider both pre-processing
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and online costs. Instead of selectively linearizing certain
ReLUs, replacing with other activations may be beneficial.
Finally, deriving tighter bounds on memorization capacity
for general architectures appears doable.
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A. Proofs
A.1. Proof of Corollary 1

Proof. The proof is based on the idea of counting the number of pieces in the range of networks with piecewise linear
activations. Consider any vector u ∈ Rdx , and define the following dataset: xi = iu, yi = (−1)i, for all i ∈ [N ]. From
(Telgarsky, 2015; Yun et al., 2019) we have:

Lemma 1. If g : R → R and h : R → R are piecewise linear with k and l linear pieces, respectively, then g+h is piecewise
linear with at most k + l − 1 pieces, and g ◦ h is piecewise linear with at most kl pieces.

Fix u and consider the output of layer 1 for input x = tu, where t is a scalar variable: ā1(t) := a1(tu). For each j ∈ [α1d1],
ā1j (·) has at most p pieces. On the other hand, j′ ∈ [d1] \ [[α1d1]], ā1j′(·) is a linear function and has 1 piece. The input to
layer 2 is the weighted sum of ā1j (·)’s and ā1j′(·)’s. Each z̄2k(t) = z2k(tu) has α1d1(p− 1) + 1 pieces. Now α2d2 neurons
after the activation σ have at most α1d1p(p− 1) + p pieces and (1− α2)d2 neurons have at most α1d1(p− 1) + 1 pieces.
Therefore, the maximum number of pieces from the weighted sum of the second hidden layer neurons is calculated as:

α1d1p(p− 1) + p+

α2d2−1∑
i=1

(α1d1p(p− 1) + p− 1) +

(1−α2)d2∑
i=1

(α1d1(p− 1) + 1− 1)

= α1α2d1d2p(p− 1) + α2d2(p− 1) + α1(1− α2)d1d2(p− 1) + 1

This calculation tells that a 3-layer network has at most α1α2d1d2p(p− 1) + α2d2(p− 1) + α1(1− α2)d1d2(p− 1) + 1
pieces. If this number is strictly smaller than N − 1, the network cannot never perfectly fit the given dataset.

A.2. Proof of Corollary 2

Proof. The proof is a direct consequence of Theorem 1 by replacing d1 and d2 with α1d1 and α2d2.

A.3. Proof of Theorem 2

Proof. By setting p = 2, we consider the following optimization problem:

max
α1,α2

α1α2d1d2 + α1d1d2 + α2d2 + 1 ,

s.t. α1d1 + α2d2 = B .

Constructing the Lagrangian,

L(α1, α2, λ) = α1α2d1d2 + α1d1d2 + α2d2 + 1− λ(α1d1 + α2d2 −B).

By checking the first order condition of the Lagrangian, we get

α1 =
B + d2 − 1

2d1
, α2 =

B − d2 + 1

2d2
.

We examine the determinant of the Hessian H which is defined as

H =

 0 d1 d2
d1 0 d1d2
d2 d1d2 0

 .

One can verify that the determinant detH > 0 since d1, d2 > 0 and detH has the sign (−1)2 = (−1)1+1 so the critical
point (B+d2−1

2d1
, B−d2+1

2d2
) from the first order condition is indeed a maximum.
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(a) λ = 10−5 (b) λ = 10−4 (c) λ = 5 · 10−4 (d) λ = 10−3
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Figure 5. Ablation studies on Lasso coefficient λ and learning rate lr. We test on ResNet18 architecture with CIFAR-100. (a)-(d) show
the differences in behavior on test accuracy and ReLU counts with various Lasso coefficient values given the learning rate lr = 0.001
and ADAM optimizer. High initial Lasso coefficients (as shown in (c) and (d)) induces the sparsity on C rapidly and consequently the
architecture’s performance rapidly degrades as well. Small initial lasso coefficients from (a) and (b) gradually induces the sparsity on C
allowing the W to adapt as well in order to maintain the networks’ performance. (e)-(f) tracks the test accuracy and ReLU count given the
Lasso coefficient 10−5. We observe the similar trend in learning rate compared to Lasso coefficients; using a small learning rate ((e), (f))
helps to gradually reduce ReLU counts and maintain the test accuracy.

B. Additional Results
B.1. Ablation Studies on Hyperparameters

We study the ablation studies on the primary hyperparameters: sparsity factor α and learning rate lr. We choose the network
ResNet18 with the CIFAR-100 dataset. We first examine the role of the sparsity factor α. The targeted ReLU budget here
is B = 50000, and the plots show the change of ReLU counts and test accuracy along with the training (corresponds to
Algorithm 1 line 4-8). We use an ADAM optimizer with a learning rate of 0.001.

Along with the simultaneous training on the model parameter W and auxiliary parameter C, the ideal situation will gradually
reduce ReLU counts while maintaining the test accuracy close to the baseline pretrained model. We observe that increasing
α induces the sparsity on C faster; however, the test accuracy rapidly drops. On the other hand, the small α (e.g., first
and second plot) gradually reduces the ReLU count while almost preserving the test accuracy. We heuristically observed
incrementing the Lasso coefficient (line 5-6 in Algorithm 1) allows reaching the desired sparsity level on C with Lasso
coefficients initialized with small values.

We also examine the role of learning rate. We use the equivalent hyperparameters as above but with different targeted ReLU
budget B = 100000 and initial sparsity factor α = 0.00001. We observed that high learning rate such as 0.1 or 0.01 loses
the performance in the beginning of the training and struggles to recover the performance compare to the original baseline
performance (around 76%). Our empirical results show that SNL algorithm works well with lower learning rate such as
0.001 and 0.0001. SNL algorithm with lr = 0.001 terminates the simultaneous training with the test accuracy (before the
finetuning) 75.04% while lr = 0.0001 achieves the 71.55%.

B.2. Ablation Studies on Algorithmic Components

We study the variant of SNL algorithm by changing the algorithmic components. First, we consider zeroing out non-activated
output instead of passing through the pre-activated inputs. In this case, the output, σci(·) at the ith layer, can be expressed as:

aici = ci ⊙ σ(zi) + (1− ci)⊙ 0 (7)

Equation 7 is equivalent to feature map sparsification where feature maps are zeroed out pixel-wise rather than filter-wise.
Second, we perform the SNL algorithm from randomly initialized network (remark: SNL starts from the pretrained network).
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Figure 6. Comparison between SNL and its variants on CIFAR-100. All experiments in this plot uses ResNet18.
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Figure 7. Effect of the Lasso Coefficient on supports of c. We track the number of supports in the auxiliary parameter c for various
Lasso coefficients. See that the magnitude of Lasso coefficient (λ) determines the convergence rate and the support of c.

In Figure 6, “SNL-Zero-Out” and “SNL-Scratch” correspond to feature map sparsification and the SNL network trained
from scratch, respectively. For this comparison, we train a ResNet18 architecture with the CIFAR100 dataset. A black
horizontal line is the reference performance (76.95% test accuracy) of the original ResNet18 network with 490K ReLU.
We observe that the “SNL-Zero-Out” performance degrades heavily in the sparse ReLU regime (< 50K). Interestingly,
“SNL-Scratch” showed a competitive performance to SNL while the original SNL consistently performed better in all cases
except for one data point. Overall, this plot gives further evidence that the current SNL algorithm finds better performing
architectures for a given ReLU budget over the SNL variants suggested by the reviewers. Finally, note that we incorporate
knowledge distillation (KD) during the training, as clearly stated in the main paper (Line 268). We will add these results and
discussion in the final draft.

B.3. Role of the Lasso Coefficient

From our empirical observations, the magnitude of the Lasso coefficient (λ) determines the final (anti) sparsity of the
slope parameters, and the convergence rate. We conduct experiments with a pre-trained ResNet18 architecture trained on
CIFAR-100. We modify the SNL algorithm by removing the “if-else” condition, gradually increasing the Lasso coefficient,
and track ReLU counts given by the auxiliary parameter c until 200 epochs. The other hyperparameters remain the same as
our reported experiments: ADAM, lr = 0.001, weight decay of 0.0005. Figure 7 shows that the magnitude of the Lasso
coefficient directly contributes to the size of the support of c and the convergence rate. These observations motivate Line 6-7
in SNL, which uses homotopy-style optimization to gradually increases the Lasso coefficient to reach the desired sparsity
while ensuring mild accuracy drop (also see Figure 5 in the main paper showing that large λ hurts test accuracy).
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Table 3. CIFAR-10 Comparison.

Methods #ReLUs Test Acc. Acc./ReLU
(K) (%)

R
eL

U
≤

10
0K

SNL# 12.9 88.23 6.840
SNL# 25.0 90.88 3.635
SNL# 60.0 92.63 1.544

DeepReDuce 36.0 88.5 2.458
DeepReDuce 80.0 90.5 1.131
CryptoNAS 86.0 91.28 1.061

≤
40

0K SNL* 240.0 94.24 0.4712
SNL* 300.0 95.06 0.317

CryptoNAS 344.0 94.04 0.273
# Starts with pretrained ResNet18.
* Starts with pretrained Wide-ResNet 22-8.

B.4. Additional PI Results

Table 3 and Table 4 shows the PI comparison on CIFAR-10 and Tiny-ImageNet, respectively. Table 5 includes the additional
PI results with pretrained ResNet34 network. Table 6 contains the SNL results with channel-wise method demonstrated in
Section 4.
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Table 4. Tiny-ImageNet Comparison

Methods #ReLUs Test Acc. Online Lat. Acc./ReLU(K) (%) (s)

R
eL

U
≤

10
0K

SNL# 59.1 54.24 1.265 0.918
SNL# 99.6 58.94 2.117 0.592

DeepReDuce 57.35 53.75 1.85 0.937
DeepReDuce 98.3 55.67 2.64 0.566

Sphynx 102.4 48.44 2.350 0.473

R
eL

U
≤

30
0K

SNL# 198.1 63.39 4.183 0.320
SNL# 298.2 64.04 6.281 0.215

DeepReDuce 196.6 57.51 4.61 0.293
DeepReDuce 393.2 61.65 7.77 0.157

Sphynx 204.8 53.51 4.401 0.261

≤
10

00
K SNL* 488.8 64.42 10.281 0.132

DeepReDuce 917.5 64.66 17.16 0.070
Sphynx 614.4 60.76 12.548 0.099

# Starts with pretrained ResNet18.
* Starts with pretrained Wide-ResNet 22-8.

Table 5. SNL on ResNet34 Networks on CIFAR-100, Tiny-ImageNet

Methods #ReLUs Test Acc. Online Lat. Acc./ReLU(K) (%) (s)

C
IF

A
R

-1
00

SNL 14.9 67.08 0.339 4.502
SNL 25.0 69.68 0.551 2.787
SNL 30.0 70.99 0.656 2.366
SNL 50.0 72.91 1.075 1.458
SNL 80.0 74.19 1.705 0.927
SNL 99.9 74.76 2.122 0.748
SNL 118.0 75.32 2.502 0.638
SNL 197.1 76.03 4.161 0.385

Ti
ny

-I
m

ag
eN

et SNL 200.0 62.49 4.231 0.312
SNL 300.0 63.99 6.329 0.213
SNL 400.0 65.31 8.426 0.163
SNL 500.0 65.34 10.524 0.131

Table 6. CIFAR-100 Results on Channel-wise SNL.

Methods #ReLUs Test Acc. Online Lat. Acc./ReLU(K) (%) (s)

Channel-wise SNL# 29.0 68.26 0.628 2.354
Channel-wise SNL# 39.3 70.52 0.843 1.794
Channel-wise SNL# 49.8 71.56 1.065 1.437
Channel-wise SNL* 77.7 73.47 1.650 0.940
Channel-wise SNL* 117.3 74.33 2.481 0.634
Channel-wise SNL* 200.0 77.45 4.216 0.387

# Starts with pretrained ResNet18.
* Starts with pretrained Wide-ResNet 22-8.


