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Abstract
In this paper we provide, to the best of our knowl-
edge, the first comprehensive approach for in-
corporating various masking mechanisms into
Transformers architectures in a scalable way. We
show that recent results on linear causal attention
(Choromanski et al., 2021) and log-linear RPE-
attention (Luo et al., 2021) are special cases of this
general mechanism. However by casting the prob-
lem as a topological (graph-based) modulation of
unmasked attention, we obtain several results un-
known before, including efficient d-dimensional
RPE-masking and graph-kernel masking. We
leverage many mathematical techniques ranging
from spectral analysis through dynamic program-
ming and random walks to new algorithms for
solving Markov processes on graphs. We provide
a corresponding empirical evaluation.

1. Introduction & Related Work
Transformers (Vaswani et al., 2017; Brown et al., 2020; De-
vlin et al., 2019) have revolutionized machine learning by
reintroducing an attention mechanism explicitly modeling
complicated relationships between elementary ingredients
of the ML models’ inputs, e.g. words for text data, or
patches/pixels for the image data (Han et al., 2020; Doso-
vitskiy et al., 2021). Crucially, attention quantifies these
relationships via dynamic weights that depend on the input
data. This architectural solution is the strength and at the
same time the weakness of Transformer models. An atten-
tion matrix scales quadratically in the length of the input
sequence, making corresponding computations prohibitively
expensive for longer inputs.
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Several solutions were proposed to address this limitation.
Local attention (Vaswani et al., 2021; Parmar et al., 2019)
explicitly narrows down the attention context to a fixed-size
window, effectively zeroing out most attention weights. In
applications where long-range attention is crucial (e.g. pro-
tein modeling), other techniques were introduced. These
include: (1) pooling mechanisms compressing sequences to
shorter-ones agglomerating multiple-tokens signal (Avsec
et al., 2021; Dai et al., 2020), (2) hashing/clustering methods
sparsifying attention by giving up attention modeling for to-
kens from different learnable hash-buckets/clusters (Kitaev
et al., 2020; Roy et al., 2021), (3) low-rank/kernel-based
methods decomposing the attention matrix (Choromanski
et al., 2020; 2021; Katharopoulos et al., 2020; Peng et al.,
2021; Xiong et al., 2021) and other (Qin et al., 2022).

Masking is a powerful mechanism altering the attention
matrix by incorporating structural inductive bias. Flagship
examples include (1) causal attention, applied in generative
Transformers (Yang et al., 2019), where the arrow of time
induces token-ordering with tokens not attending to their
successors in the sequences, (2) relative positional encoding
(RPE, Shaw et al., 2018) reducing interactions between dis-
tant tokens (but via a much more general mechanism than
local attention) and (3) graph attention incorporating topo-
logical signal from the graph (Ying et al., 2021b; Velickovic
et al., 2018). RPE-mechanisms were shown to significantly
improve speech models (Pham et al., 2020; Zhou et al.,
2019) and masks obtained from shortest-path length matri-
ces were recently demonstrated to close the gap between the
best customized graph neural networks models and Trans-
formers (Ying et al., 2021a). Straightforward application
of the masking mechanism requires materialization of the
attention matrix and consequently - impractical quadratic
time complexity for long input sequences (or large graphs).

In this paper we aim to answer the following question: Un-
der which conditions can masking be incorporated into at-
tention mechanisms in a scalable way, i.e. in sub-quadratic
time complexity in the number of input tokens?

So far this question was answered only partially. Causality
was incorporated in linear time into linear low-rank atten-
tion via the so-called prefix sum mechanism by Choroman-
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Figure 1.RPEs & Beyond: The (i; j )-entry of the regular RPE-mask is a (learnable) functionf of the distancei � j between the
ith and jth token in the input sequence that can be interpreted as a 1d-grid, thus it has the so-calledToeplitzstructure (�rst graph and
colored-matrix in the �gure). The proposedd-dimensional RPE acts on thed-dimensional grid input with the length of the shortest path
d(i; j ) between nodei andj in the gird replacing expressioni � j in the corresponding mask (d = 2 includes image input andd = 3 ,
video input, see: second graph/matrix and third graph/matrix respectively). The corresponding mask is no longer Toeplitz, but isd-level
block-Toeplitz. Interestingly, all these matrix classes support fast matrix-vector multiplication (via Fast Fourier Transform) and thus, based
on our �rst result, corresponding masked low-rank attention can be performed in sub-quadratic time (see Sec. 3.2).

ski et al. (2021). The same was proven recently for the
special class ofstochastic RPEs(Liutkus et al., 2021). Even
more recently, a log-linear algorithm (applying Fast Fourier
Transform) for incorporating general RPEs into low-rank
attention was given by Luo et al. (2021). All these results
leverage low-rank attention since so far that was the only
known scalable mechanism which can approximate in par-
ticular regular dense softmax attention. Hence, the starting
point of our analysis is also a low-rank attention model.

Our contributions in this paper are as follows:

1. We answer the above question in Sec. 3 by providing
a surprisingly simple characterization of the ef�cient
masking mechanisms:as long as the masking-matrix
(element-wise multiplied with the regular attention ma-
trix) supports sub-quadratic matrix-vector multiplica-
tion, the corresponding mechanism can be incorpo-
rated into low-rank attention in sub-quadratic time.
Interestingly, as we explain later, this result includes
all mentioned partial results as special cases.

2. We present multiple consequences, leading in particu-
lar to novel scalabled-dimensional RPE mechanisms
that can be applied in image and video processing (see
Fig. 1 and Sec. 3.2), ef�cient implementations for the
low-rank attention withpaddingandpackingmech-
anisms (in common practical use for regular Trans-
formers) (Sec. 3), and new scalable graph-based atten-
tion masking applying shortest-path signal and graph-
diffusion kernels (Sec. 3.3, Sec. 4).

3. Using our developed theory, we introduce a new
masked-attention ML-model calledgraph kernel at-
tention Transformer(GKAT, Sec. 4.2), and conduct
comprehensive comparisons againstnine other SOTA
graph neural networks (GNNs) in Sec. 5.

We cast the masking problem as a topological (graph-based)
modulation of unmasked attention, and leverage many math-
ematical techniques ranging from spectral analysis through
dynamic programming on trees and random walks to new
algorithms for solving Markov processes on graphs. The
proofs of all the theoretical results are given in the Appendix.

2. Preliminaries

We introduce notation used throughout the paper.

Denote byL the number of input tokens. The attention
used in a regular Transformer linearly projects their repre-
sentations into three learnable matricesQ; K 2 RL � dQK ,
V 2 RL � d calledqueries, keysandvaluesrespectively.

De�nition 2.1 (general masked attention). General masked
softmax attentionis of the following form, whereN 2
RL � L is thelogits-mask, andA 2 RL � L is the so-called
masked attention matrix(MAM):

Att SM (Q; K ; V ; N ) = D � 1AV ;

A = exp( N + QK > =
p

dQK ); D = diag( A1 L ):
(1)

Hereexp(�) is applied element-wise,1L is the all-ones vec-
tor of lengthL , anddiag(�) is a diagonal matrix with the
input vector as the diagonal. The time complexity of com-
puting (1) isO(L 2d). The above is a special instantiation
of thegeneral masked kernel attentionwhich is de�ned as:

Att K (Q; K ; V ; M ) = D � 1AV ;

A = M � K (Q; K ); D = diag( A1 L );
(2)

where� denotes the element-wise (Hadamard) matrix prod-
uct,K : Rd � Rd ! R is some kernel function andK(Q; K )
is a kernel matrix de�ned as:K(Q; K ) i;j = K( q>

i ; k>
j ) for

theith row q i of Q and the jth rowk j of K respectively. We
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call A 0 = K(Q; K ) the unmasked attention matrix (UAM).
The softmax attention can be obtained from the kernel one
by taking:K( x; y ) def= exp( x > yp

dQK
) (the so-calledsoftmax

kernel) andM def= exp( N ) (element-wise exponentiation).

Low-rank attention methods provide (approximate) atten-
tion computation in time linear in the lengthL of the in-
put sequence if no masking is applied (i.e.M is all-ones)
and kernelK admits (at least in expectation) a dot-product
decomposition, i.e.K( x; y ) = E[� (x)> � (y )] for some
(usually randomized) mapping:� : RdQK ! Rm (and
somem > 0). Such a decomposition (in fact more than
one!) exists in particular for the softmax kernel used in most
applications of regular Transformers. We call� (u) a (ran-
dom) feature map(RFM) for u 2 Rd. ForQ0; K 0 2 RL � m

with rows given as� (q>
i )> and� (k>

i )> respectively, RFM-
based kernel linearization leads directly to the ef�cient un-
masked attention mechanism of the form:

[Att K (Q; K ; V ) = bD � 1(Q0((K 0)> V )) ;

bD = diag( Q0((K 0)> 1L )) :
(3)

Here [Att K stands for the approximate attention and brackets
indicate the order of computations. It is easy to see that such
a mechanism is characterized by time complexityO(Lmd)
as opposed toO(L 2d) for regular attention. Ifm � L ,
computational gains are obtained.

3. Fast matrix-vector product is all you need

Our �rst result, a natural extension of the theoretical analysis
by Luo et al. (2021), shows that as long as maskM 2 RL � L

supports sub-quadratic matrix-vector multiplication, it can
be incorporated into low-rank attention in sub-quadratic
time. This is explained in Lemma 3.1.

Algorithm 1 General Ef�cient Low-Rank Masked Attention

Input: Query/key matrices:Q; K 2 RL � dQK , value
matrix V 2 RL � d, mask M 2 RL � L , procedure
FastMult M : RL ! RL calculatingMx (or its ap-
proximation) for the inputx 2 RL , kernel feature map:
� : RdQK ! Rm . vec(�) denotes vectorization.
Output: Masked low-rank attention embeddings using� .
1. Compute matricesV 1 2 RL � (md ) , V 2 2 RL � m with
rows de�ned as:V 1

i : = vec( � (k>
i )v i ), V 2

i : = � (k>
i )> ,

wherek i /v i stands for the ith row ofK /V .
2. Take~D 1 = [FastMult M (V 1

:1); :::; FastMult M (V 1
:md )] 2

RL � md , ~D 2 = [FastMult M (V 2
:1); :::; FastMult M (V 2

:m )] 2
RL � m for V 1=2

:i denoting ith column ofV 1=2.
3. Output the embeddingr i of the ith tokens as:

r i = � (q >
i )> devec( ~D 1

i : )
� (q >

i )> ( ~D 2
i : )

> , whereq i is the ith row ofQ and

devec(�) devectorizes its input back toRm � d.

Lemma 3.1(Tractable Mask Lemma). Assume that mask
M 2 RL � L from De�nition 2.1 supports matrix-vector
multiplication in timeTM (L ). Then the general masked
kernel attention algorithm with maskM can be implemented
in timeO((TM (L ) + L)md).

The algorithm is given in the algorithmic box 1. We analyze
it in the Appendix, but the intuition is that, in the unmasked
low-rank setting, attention embeddings could be obtained
from the action of� (q i ) on the �xed (token-independent)
matrix of shapeRm � d summarizing all the tokens, whereas
in the masked case the matrix depends on each token, but
can be obtained from mask-vector products.

Causal attention: Note that the pre�x-sum algorithm
from (Choromanski et al., 2021) is a special instantiation
of Algorithm 1. Indeed, causality is encoded by the lower-
triangular maskM such that:M i;j = 1 for j � i and
M i;j = 0 otherwise. Every productMx is trivially a vector
of pre�x sums:x1 + ::: + x i for i = 1 ; :::; L and thus can
be computed in timeO(L).

Packing & Padding: Both masking mechanisms are stan-
dard Transformers' techniques used to optimize attention
computation on TPUs. The former packs multiple sequences
in onesuper-sequence. Mask is used here to prevent cross-
sequence attention. The latter addsfaketokens at the end of
the legitimate input sequence (used if input's length varies).
Mask is used here to prevent attention to fake tokens. Both
masksM trivially support linear matrix-vector multiplica-
tion (see: Fig. 2) and thus both packing and padding can be
incorporated into low-rank attention in time linear inL .

Figure 2.Left : Padding with the super-sequence consisting of four
sequences and its corresponding maskM . Right: Packing with
three fake padded tokens and its corresponding maskM . For
both masks, colored entries are equal to one and non-colored are
equal to zero. Both masks trivially support linear matrix-vector
multiplication.

3.1. MaskM as graph topology encoder

From now on we will think about maskM 2 RL � L as a
weighted adjacency matrixAdj( G) of some weighted graph
G = ( V; E; W) with nodes/vertex-setV of sizeL , edge
setE and edge-weight functionW : E ! R. Lemma
3.1 combined with this observation leads to several far-
reaching conclusions regarding ef�cient incorporation of
various masking mechanisms to Transformers, to which we
devote the remaining part of our theoretical analysis.
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3.2.D -dimensional Relative Positional Encodings

We need the following de�nition:

De�nition 3.2 (block-Toeplitz matrices). We say that a ma-
trix M 2 RL � L is Toeplitz (or 1-level block Toeplitz) if
there exists some� : Z ! R such thatM i;j = � (i � j ).
We say thatM 2 RL � L is d-level block-Toeplitz ford � 2
if M = ( B i;j ) consists of block-matricesB i;j taken from
some setf A 1; :::; A r g of (d � 1)-level block-Toeplitz ma-
trices and if each blockB i;j is replaced with the indexk of
its corresponding matrixA k , a Toeplitz matrix is obtained.

Consider the unweighted (i.e. all-one edge-weights) 1d-grid
graphGbase (see: left graph in Fig. 1) and a complete graph
(i.e. with all possible edges)G obtained from it by de�ning
each weight asWi;j = f (distGbase (i; j )) for some (learn-
able) functionf : N ! R and wheredistGbase (i; j ) is the
length of the shortest path betweeni andj in Gbase. If we
de�ne M = Adj( G) then we get the regular RPE mecha-
nism with the 1d-graph interpreted as the input sequence.

Note thatM de�ned in such a way is Toeplitz and thus
supportsO(L log(L )) matrix-vector multiplication via Fast
Fourier Transform (FFT). Thus low-rank RPE-masked at-
tention can be conducted inO(Ldm log(L )) time. This was
the observation of Luo et al. (2021). What if we replace
the 1d-grid with the d-dimensional grid and de�neM in the
analogous way? The idea is to maintain the initial structure
of the topologically more complicated input, e.g. 2d-grid
for images (with nodes as patches or even individual pixels)
or 3d-grid for videos (with 2d-slices as different frames).

There is a particularly elegant answer to this question:

Lemma 3.3 (d-dimensional RPEs). Consider the gener-
alized RPE-mechanism for thed-dimensional grid input
de�ned above. Then there exists an ordering of input nodes
such thatM is a d-level block-Toeplitz matrix (see: Fig. 1).

Sinced-level block-Toeplitz matrices supportO(L log(L ))
matrix-vector multiplication via FFT for any �xed constant
d (see Lee, 1986), Lemma 3.3 immediately leads to ef�cient
corresponding masked attention computation.

3.3. More general graph-masks using shortest-paths

So farGbase was assumed to have a grid structure. What
if we replace it with an arbitrary weighted graph? The
following natural question arises:Which condition does
Gbase and mappingf : R ! R need to satisfy for the

maskM def= [ f (distGbase (i; j ))] i;j =1 ;:::;L to support sub-
quadratic matrix-vector multiplication ?

We call such a pair(Gbase; f ) tractable. From what we
have said so far, we conclude that:

Corollary 3.4. If Gbase is an unweighted grid (of any dimen-
sionality) then(Gbase; f ) is tractable for anyf : R ! R.

In several bioinformatics applications, e.g. molecular as-
sembly trees (Artemova et al., 2011), the underlying input's
topology is a forest (e.g. a tree). We prove the following:

Lemma 3.5. If Gbase is a forest andf (z) = exp( � (z))
for af�ne mapping� , then(Gbase; f ) is tractable and the
related mask supports linear matrix-vector multiplication.

Sketch of the proof:The ef�cient algorithm for comput-
ing w = Mx in this case is an application of the dy-
namic programming method for rooted trees. The algorithm
�rst computes for each nodei the following expression:
si =

P
j 2T i

exp(� (dist( i; j ))) x j , whereTi stands for the
subtree rooted ini (in the bottom-up fashion from leaves to
the �xed root). This is followed by the computation of the
following expression:w i =

P
j 2T exp(� (dist( i; j ))) x j

for every node in the order from the root to the leaves (lever-
aging already computedsi ). Details are given in the Ap-
pendix and computations are illustrated in Fig. 3.

We �nd a comprehensive description of tractable(Gbase; f )
an exciting analytic and combinatorial open problem.

Figure 3.Illustration of sketch of the proof of Lemma 3.5. The
directions of arrows show computation-�ow. In phase I,si -terms
are calculated in bottom-up fashion (from leaves to the root). The
value ofsi involving paths ini -rooted subtrees (red path with
discarded directions) is updated based onsvk -terms involving
paths in subtreesTvk . To complete calculations, in phase II paths
to nodes outside of thei -rooted tree are considered (purple path
with directions discarded). Their contribution is calculated from
the already computedw p( i ) for the parentp(i ) of nodei andsi .

3.4. Low-rank masking

Note that in all previously considered cases, maskM is
in general full-rank. However in several applicationsM
can be assumed to have (at least in expectation) a low-rank
decomposition, i.e.:M = E[M 1M 2] for some (random)
M 1 2 RL � r , M 2 2 Rr � L and some0 < r � L . A �ag-
ship example is thestochastic RPEmechanism presented in
(Liutkus et al., 2021) corresponding to (logits-added) dot-
product maskN translating to the softmax-kernel values
maskM . The latter one can be low-rank decomposed using
any random feature map based softmax-kernel linearization
mechanism, e.g. from (Choromanski et al., 2021). In such
a case, matrix-vector productv = Mx can be computed
(approximately) as:~v = ( M 1(M 2x)) in time O(Lr ), lead-
ing to overall time complexityO(Lmrd ) of the attention
module using maskM .
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4. Masking with graph kernels

Masks de�ned by shortest paths were shown to provide ef-
fective inductive bias for graph data (see Ying et al., 2021b),
yet they cannot be interpreted as applying any valid kernel
function on graph nodes and are very sensitive to small
changes in the graph. A prominent class of kernel-functions
K : V � V ! R de�ned on pairs of graphs nodes is the
family of graph-diffusionor heatkernels (GDKs). Thus it is
natural to identify masksM for input graph dataG with the
graph diffusion kernel matricesKK = [K( i; j )] i;j =1 ;:::;L .
GDK is de�ned, for a hyperparameter� > 0 andX i denot-
ing the ith power of matrixX , as:

KK = exp( � � T ) def=
1X

i =0

(� � ) i T i

i !
; (4)

where either: T = L for the Laplacian matrixL =
D � Adj( G) andD = diag([deg(i )]L

i =1 ); or T = LD � 1

(normalized Laplacian case) orT = � Adj( G).

GDK is related to the diffusion process (Kondor & Lafferty,
2002) which describes in particular heat propagation. In a
vacuum, the solution of the partial differential heat equation
is the Gaussian-kernel, and in graphs it leads to GDK. Nodes
better connected with each other (graph diffusion kernel
quanti�es it via the number of different-length walks with
longer walks exponentially-deprioritized) give rise to larger
kernel values. Finally,t = 1

� can be interpreted as time
when the solution is taken. GDK imprints topological signal
of the propagation medium via left heat-signature. Ast !
1 the kernel “�attens” and the topological signal is lost.

Direct computation of the GDK matrixKK is of O(L 3) time
complexity, thus prohibitively expensive even for sparse
input graphs. However, a key observation is that Lemma 3.1
teaches us that for ef�cient masked low-rank attention we
only need to compute ef�ciently the actionexp(� � T )x of
KK on a givenx 2 RL . This leads to our next result.

Theorem 4.1(scalable Laplacian-GDK masking). Let a
maskM be de�ned asM = exp( � � A ), for A = L
or A = LD � 1, whereL is the Laplacian of the input
graph, andD = diag([deg(i )]L

i =1 ). Then low-rank masked
attention can be computed in time~O(( jE j + L) log(2 +
kA kF )md), where ~O hidespolylog(L ) factors,jE j is the
number of graph edges andk � kF is the Frobenius norm.

The theorem is a consequence of Lemma 3.1 and Theorem
1.2 from (Orecchia et al., 2012). We see that ifjE j = o(L 2),
the masked attention mechanism is sub-quadratic inL .

Low-rank attention & Markov processes with random
initial distributions: As noted by Orecchia et al. (2012),
the heat kernel matrix forT = LD � 1 can be interpreted as
the probability transition matrix of the discrete-time random
walk where �rst the number of stepsi is sampled from

a Poisson distribution with mean� , and theni steps of
the natural random walk are performed onG. Looking at
Algorithm 1, we conclude that here the low-rank structure of
attention enables us to incorporate the GDK mask by solving
that process inmd initial (randomized) distributions over
nodes (randomization coming from mapping� ) rather than
in all L one-hot initial distributions (that would correspond
to the reconstruction of the entire transition matrix).

Remark: The literature on ef�ciently computing the ac-
tions of matrix-exponentials (which is our main focus in this
section) is very rich (Al-Mohy & Higham, 2011), partially
because of straightforward applications in the theory of dif-
ferential equations (Li et al., 2021). In principle, each of
these methods can be used by our algorithm.

4.1. Grid with graph-diffusion kernels

If the underlying graph is ad-dimensional grid, then GDK
with T = L has a closed-form formula. The follow-
ing is true (Kondor & Lafferty, 2002):KGDK (i; j ) /
(tanh� )dist( i;j ) for the hyperbolic tangenttanh. Thus, as
in Sec. 3.2, the corresponding maskM is d-level block-
Toeplitz and grid-induced GDK-masking can be incorpo-
rated into low-rank attention inO(Lmd log(L )) time.

4.2. Low-rank masking strikes back for GDKs

We now propose a proxy of the GDK withT = Adj( G)
such that the corresponding kernel matrix admits (in expec-
tation) low-rank decomposition as in Sec. 3.4. Thus, based
on the theory we developed, the corresponding maskM
can be ef�ciently incorporated into low-rank attention with
no need to call ef�cient solvers for the actions of matrix
exponentials. We call our graph kernel theRandom Walks
Graph-Nodes Kernelor RWGNK.

Intuitively, the value of the RWGNK for two nodes is given
as a dot-product of twofrequency vectorsthat record vis-
its in graph nodes of random walks beginning in the two
nodes of interest. More formally, for the hyperparameters
�; � � 0; and two random walks! (k), ! (l ) with stopping
probability0 � p � 1 (or of a �xed length) starting atk and
l respectively, the RWGNK is given as:

K �;�
p (k; l ) =

E! (k ) [f
! (k ) ;�
k ]

kE! (k ) [f
! (k ) ;�
k ]k�

2

 
E! ( l ) [f

! ( l ) ;�
l ]

kE! ( l ) [f
! ( l ) ;�
l ]k�

2

! >

:

(5)
The (row) frequency vectorf ! (h) ;�

h for h 2 V is given as

f ! (h) ;�
h (i ) def=

P
e2 L ! ( h ) ( i ) � e, whereL ! (h) (i ) is the set of

lengths of thosepre�x sub-walksof a given random walk
! (h) that end ati (where the pre�x sub-walk of the walk
(j 1; :j 2; :::; j t ) is any walk of the form(j 1; :::; j r ) for some
r � t or an empty walk). Note that Eq. 5 leads to the
desired representation ofK �;�

p asK �;�
p (k; l ) = 	( k)	( l )> ,
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Figure 4.From left to right: unweighted graphG, its adjacency matrixAdj(G) , its GDK matrixexp(Adj(G)) and RWGNK-matrix with
walk length of3 and� = 1 . Colored cells measure the relationship among pairs of nodes (darker is stronger). The last two matrices can
be thought of as continuous smoothings ofAdj(G) .

where	( h) is the renormalized expected frequency vector.
In practice, expectations are replaced by Monte Carlo sam-
plings over a few random walks, and vectors	( h) are not
stored explicitly but in the form of weighted lookup tables.

Figure 4 compares RWGNK-induced mask with the regular
GDK-mask and the adjacency matrix mask. We call a Trans-
former applying low-rank masked attention via RWGNK, a
Graph Kernel Attention Transformer(or GKAT).

Next we explore the connection of RWGNKs with GDKs.
We denote bydmax ; dmin the maximum and minimum de-
gree of a vertex inG respectively.

Theorem 4.2 (RWGNKs count discounted numbers of
walks). The following is true for the kernel matrix
K �;�

p (G) = [K �;�
p (k; l )]k;l 2 V(G) of the RWGNK kernel

with 0 � � � 1, � = 0 and0 < p < 1 for a graphG with
vertex setV(G) of sizeN (element-wise matrix inequality):

�
�

�
dmax

Adj(G)
�

� K �;�
p (G) � �

�
�

dmin
Adj(G)

�
;

(6)

where� = (1 � p)� and�( A ) =
P 1

i =0 (i + 1) A i . Us-
ing the fact thatAdj i (G) encodes the number of walks
of length i between pairs of vertices inG, we conclude
that K �; 0

p (k; l ) =
P 1

i =0 ci
k;l r k;l (i ), where: r k;l (i ) is the

number of walks of lengthi between nodes:k and l
and

ip i +1(1 � p) �
dmax

� ck;l �
ip i +1(1 � p) �

dmin
. Note that val-

ues of GDK with parameter� satisfy: GDK � (k; l ) =P 1
i =0 ~ci (k; l )r k;l (i ), where:~c(k; l ) = �

ip i !
. In practice, it

suf�ces to have random walks of �xed length (instead of tak-
ing p > 0) (see: Sec 5). Furthermore, by taking� > 0 (e.g.
� = 1 ) we can guarantee that kernel values are bounded.

5. Experiments

We focus on the GKAT architecture introduced in Sec. 4.2
as a prominent instantiation of the general mechanism pre-
sented in this paper and experiments with 2-level block-
Toeplitz masking mechanisms introduced in Sec. 3.2 for
vision Transformers.

Regarding GKAT, we conducted exhaustive evaluations on

tasks ranging from purely combinatorial to bioinformatics,
and benchmarked10 different methods. All these experi-
ments were run on a single Tesla P100 GPU with 16GB
memory. Experiments with vision Transformers were con-
ducted on the ImageNet dataset.

5.1. Combinatorial Classi�cation
In this section we focus on the problem of detecting local
patterns in graphs. A model takes a graphG as an input
and decides whether it contains some graph from the given
family of graphsH as a subgraph (not necessarily induced)
or is H-free. This benchmark tests the abilities of different
methods to solve purely combinatorial tasks.

Figure 5.Five motifs (patterns) used in the �rst class of combina-
torial classi�cation experiments. For each patternH, an algorithm
is trained to distinguish between graphsG containingH and those
that areH-free. A naive brute-force algorithm for conducting this
has time complexity
( N h ), whereh is the number of nodes of the
motif, prohibitively expensive for all these motifs (sinceh � 9).

5.1.1. ERD �OS-RÉNYI RANDOM GRAPH WITH MOTIFS

Data Generation: Following the procedure from (Nikolent-
zos & Vazirgiannis, 2020), we used �ve binary classi�cation
datasets consisting of random Erd�os-Ŕenyi (ER) graphs con-
nected with motifs (positive example) or other smaller ER
graphs with the same average degree as a motif (negative
example), see Fig. 5 (details in the Appendix, Sec. A.2).
For each dataset we constructedS = 2048 positive andS
negative examples.

Tested Algorithms & Parameter Setting: We tested our
GKAT, graph convolution networks (GCNs, Kipf & Welling,
2017), spectral graph convolution networks (SGCs, Def-
ferrard et al., 2016) and graph attention networks (GATs,
Velickovic et al., 2018). A feature vector in each vertex
was of lengthl = 5 and contained top orderedl degrees
of its neighbors (if there were fewer thanl neighbors, we
padded zeroes). A dataset for each motif was randomly split
into 75%=25%training/validation set. We chose: the num-
ber of epochsE = 500, batch sizeB = 128, used Adam




