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Abstract

In this paper we provide, to the best of our knowl-
edge, the first comprehensive approach for in-
corporating various masking mechanisms into
Transformers architectures in a scalable way. We
show that recent results on linear causal attention
(Choromanski et al., 2021) and log-linear RPE-
attention (Luo et al., 2021) are special cases of this
general mechanism. However by casting the prob-
lem as a topological (graph-based) modulation of
unmasked attention, we obtain several results un-
known before, including efficient d-dimensional
RPE-masking and graph-kernel masking. We
leverage many mathematical techniques ranging
from spectral analysis through dynamic program-
ming and random walks to new algorithms for
solving Markov processes on graphs. We provide
a corresponding empirical evaluation.

1. Introduction & Related Work

Transformers (Vaswani et al., 2017; Brown et al., 2020; De-
vlin et al., 2019) have revolutionized machine learning by
reintroducing an attention mechanism explicitly modeling
complicated relationships between elementary ingredients
of the ML models’ inputs, e.g. words for text data, or
patches/pixels for the image data (Han et al., 2020; Doso-
vitskiy et al., 2021). Crucially, attention quantifies these
relationships via dynamic weights that depend on the input
data. This architectural solution is the strength and at the
same time the weakness of Transformer models. An atten-
tion matrix scales quadratically in the length of the input
sequence, making corresponding computations prohibitively
expensive for longer inputs.
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Several solutions were proposed to address this limitation.
Local attention (Vaswani et al., 2021; Parmar et al., 2019)
explicitly narrows down the attention context to a fixed-size
window, effectively zeroing out most attention weights. In
applications where long-range attention is crucial (e.g. pro-
tein modeling), other techniques were introduced. These
include: (1) pooling mechanisms compressing sequences to
shorter-ones agglomerating multiple-tokens signal (Avsec
etal., 2021; Dai et al., 2020), (2) hashing/clustering methods
sparsifying attention by giving up attention modeling for to-
kens from different learnable hash-buckets/clusters (Kitaev
et al., 2020; Roy et al., 2021), (3) low-rank/kernel-based
methods decomposing the attention matrix (Choromanski
et al., 2020; 2021; Katharopoulos et al., 2020; Peng et al.,
2021; Xiong et al., 2021) and other (Qin et al., 2022).

Masking is a powerful mechanism altering the attention
matrix by incorporating structural inductive bias. Flagship
examples include (1) causal attention, applied in generative
Transformers (Yang et al., 2019), where the arrow of time
induces token-ordering with tokens not attending to their
successors in the sequences, (2) relative positional encoding
(RPE, Shaw et al., 2018) reducing interactions between dis-
tant tokens (but via a much more general mechanism than
local attention) and (3) graph attention incorporating topo-
logical signal from the graph (Ying et al., 2021b; Velickovic
et al., 2018). RPE-mechanisms were shown to significantly
improve speech models (Pham et al., 2020; Zhou et al.,
2019) and masks obtained from shortest-path length matri-
ces were recently demonstrated to close the gap between the
best customized graph neural networks models and Trans-
formers (Ying et al., 2021a). Straightforward application
of the masking mechanism requires materialization of the
attention matrix and consequently - impractical quadratic
time complexity for long input sequences (or large graphs).

In this paper we aim to answer the following question: Un-
der which conditions can masking be incorporated into at-
tention mechanisms in a scalable way, i.e. in sub-quadratic
time complexity in the number of input tokens?

So far this question was answered only partially. Causality
was incorporated in linear time into linear low-rank atten-
tion via the so-called prefix sum mechanism by Choroman-
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Figure 1.RPEs & Beyond: The (i;j )-entry of the regular RPE-mask is a (learnable) funcfioof the distance | between the

ith and jth token in the input sequence that can be interpreted as a 1d-grid, thus it has the steegliezstructure ( rst graph and
colored-matrix in the gure). The proposetddimensional RPE acts on tidedimensional grid input with the length of the shortest path

d(i;j ) between nodeandj in the gird replacing expression | in the corresponding masH € 2 includes image input andi= 3,

video input, see: second graph/matrix and third graph/matrix respectively). The corresponding mask is no longer Toeptitig\mlt is
block-Toeplitz Interestingly, all these matrix classes support fast matrix-vector multiplication (via Fast Fourier Transform) and thus, based
on our rstresult, corresponding masked low-rank attention can be performed in sub-quadratic time (see Sec. 3.2).

ski et al. (2021). The same was proven recently for theNe cast the masking problem as a topological (graph-based)
special class aoftochastic RPE(Liutkus et al., 2021). Even modulation of unmasked attention, and leverage many math-
more recently, a log-linear algorithm (applying Fast Fourierematical techniques ranging from spectral analysis through
Transform) for incorporating general RPEs into low-rankdynamic programming on trees and random walks to new
attention was given by Luo et al. (2021). All these resultsalgorithms for solving Markov processes on graphs. The
leverage low-rank attention since so far that was the onlyroofs of all the theoretical results are given in the Appendix.
known scalable mechanism which can approximate in par-

ticular regular dense softmax attention. Hence, the starting@. Preliminaries

oint of our analysis is also a low-rank attention model. . .
P y We introduce notation used throughout the paper.

Our contributions in this paper are as follows: . .
Denote byL the number of input tokens. The attention

1. We answer the above question in Sec. 3 by providingsed in a regular Transformer linearly projects their repre-
a surprisingly simple characterization of the ef cient sentations into three learnable matri€gsk 2 Rb dox |
masking mechanismsis long as the masking-matrix vv 2 R- 9 calledqueries keysandvaluesrespectively.

Eﬁgtim-\grltsses?gl-“ﬂftfr;\t/;zh;girir?vﬂztroartﬁ:}It?r:i(r:T;-De nition 2.1 (general masked attentionf>eneral masked
PP d P softmax attentions of the following form, whereN 2

tion, the corresponding mechanism can be incorpo, = ¢ thelogits-maskandA 2 Rt b is the so-called
rated into low-rank attention in sub-quadratic time - . i
. . g . masked attention matrigMAM):

Interestingly, as we explain later, this result includes
all mentioned partial results as special cases. Attsm(Q;K;V;N)=D AV ;

2. We present multiple consequences, leading in particu-A = exp(N + QK ~ :p dok ); D =diag(Al,):
lar to novel scalabld-dimensional RPE mechanisms
that can be applied in image and video processing (seklereexp() is applied element-wisd,_ is the all-ones vec-
Fig. 1 and Sec. 3.2), ef cient implementations for the tor of lengthL, anddiag() is a diagonal matrix with the
low-rank attention withpaddingand packingmech-  input vector as the diagonal. The time complexity of com-
anisms (in common practical use for regular TransPuting (1) isO(L2d). The above is a special instantiation
formers) (Sec_ 3), and new scalable graph-based atteﬁf thegeneral masked kernel attentiornich is de ned as:
tipn masking applying shortest-path signal and graph- Atk (Q:K;V:M)= D 1AV
diffusion kernels (Sec. 3.3, Sec. 4). A=M K (Q:K): D =diag(Al,): 2

3. Using our developed theory, we introduce a new
masked-attention ML-model callegtaph kernel at- where denotes the element-wise (Hadamard) matrix prod-
tention Transformef(GKAT, Sec. 4.2), and conduct uct,K: R RY! Rissome kernel function ard(Q; K)
comprehensive comparisons againisie other SOTA  is a kernel matrix de ned ak (Q; K )i =K( g7 ;k;") for
graph neural networks (GNNSs) in Sec. 5. theith rowq; of Q and the jth rowk; of K respectively. We
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call A%= K(Q;K) the unmasked attention matrix (UAM). Lemma 3.1(Tractable Mask Lemma)Assume that mask
The softmax attention can be obtained from the kernel on®& 2 R- ' from De nition 2.1 supports matrix-vector

by taking:K(x;y) def exp( p‘;—L) (the so-callegoftmax
QK
def

multiplication in timeTy (L). Then the general masked
kernel attention algorithm with maskt can be implemented

kerne) andM ="exp(N) (element-wise exponentiation). i timeO((Ty (L) + L)md).

Low-rank attention methods provide (approximate) atten

tion computation in time linear in the lengthof the in-
put sequence if no masking is applied (iM. is all-ones)

and kerneK admits (at least in expectation) a dot-product

decomposition, i.e.K(x;y) = E[ (x)> (y)] for some
(usually randomized) mapping: : RY« | R™ (and

somem > 0). Such a decomposition (in fact more than
one!) exists in particular for the softmax kernel used in mostCausal attention:

applications of regular Transformers. We calu) a (ran-
dom) feature mapRFM) foru 2 RY. ForQ% K2 Rt ™
with rows given as (g7 )> and (k) respectively, RFM-

The algorithm is given in the algorithmic box 1. We analyze

it in the Appendix, but the intuition is that, in the unmasked
low-rank setting, attention embeddings could be obtained
from the action of (qg;) on the xed (token-independent)
matrix of shapR™ ¢ summarizing all the tokens, whereas

in the masked case the matrix depends on each token, but
can be obtained from mask-vector products.

Note that the pre x-sum algorithm
from (Choromanski et al., 2021) is a special instantiation
of Algorithm 1. Indeed, causality is encoded by the lower-
triangular maskM such that:M; = 1 for j i and

based kernel linearization leads directly to the ef cient un-M j; = O otherwise. Every produddlx is trivially a vector

masked attention mechanism of the form:
At (Q:K:V)= B (QAKY V));

3
B = diag(QU(K 9™ 1.)): ©

of pre xsums:x1 + i+ x; fori = 1;:::;L and thus can
be computed in tim©(L).
Packing & Padding: Both masking mechanisms are stan-

dard Transformers' techniques used to optimize attention
computation on TPUs. The former packs multiple sequences

HereAtt « stands for the approximate attention and bracket$n onesuper-sequencévask is used here to prevent cross-
indicate the order of computations. It is easy to see that suckequence attention. The latter adiglsetokens at the end of

a mechanism is characterized by time complegiymd)
as opposed t®(L2d) for regular attention. Iim L,
computational gains are obtained.

3. Fast matrix-vector product is all you need

the legitimate input sequence (used if input's length varies).
Mask is used here to prevent attention to fake tokens. Both
masksM trivially support linear matrix-vector multiplica-
tion (see: Fig. 2) and thus both packing and padding can be
incorporated into low-rank attention in time linearlin

Our rstresult, a natural extension of the theoretical analysis

by Luo et al. (2021), shows that as long as msisk2 R- -

supports sub-quadratic matrix-vector multiplication, it can

be incorporated into low-rank attention in sub-quadratic

time. This is explained in Lemma 3.1.

Algorithm 1 General Ef cient Low-Rank Masked Attention

Input: Query/key matrices:Q;K 2 Rt dox | value
matrix V. 2 R- 9 maskM 2 Rt Y, procedure
FastMulty, : R ! R‘ calculatingMx (or its ap-

proximation) for the inpuk 2 R, kernel feature map:

:RY%x I R™, vec() denotes vectorization.
Output: Masked low-rank attention embeddings using
1. Compute matrice¥ * 2 Rt (M) v2 2 RL ™ with
rows de ned as:V: = vec( (k7)vi), V2 = (k7),
wherek; /v; stands for the ith row oK /V .
2. TakeD'! = [FastMult y (V });:; FastMult y (V2 )] 2
R- M D2 = [FastMult v (V3);::; FastMult v (V2,)] 2
RL ™ for V 1% denoting ith column o¥/ =2,

3. Outpuf the embedding; of the ith tokens as:

(47 )” devec(D})
(@7 ) (D2)>
devec() devectorizes its input back ®™ 9.

ri = , whereq; is the ith row ofQ and

Figure 2.Left: Padding with the super-sequence consisting of four
sequences and its corresponding misiskRight: Packing with
three fake padded tokens and its corresponding riviskFor

both masks, colored entries are equal to one and non-colored are
equal to zero. Both masks trivially support linear matrix-vector
multiplication.

3.1. MaskM as graph topology encoder

From now on we will think about mas 2 Rt - asa
weighted adjacency matrixdj( G) of some weighted graph

G = (V;E; W) with nodes/vertex-sef of sizelL, edge
setE and edge-weight functiow/ : E ! R. Lemma

3.1 combined with this observation leads to several far-
reaching conclusions regarding ef cient incorporation of
various masking mechanisms to Transformers, to which we
devote the remaining part of our theoretical analysis.
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3.2.D-dimensional Relative Positional Encodings In several bioinformatics applications, e.g. molecular as-
sembly trees (Artemova et al., 2011), the underlying input's
topology is a forest (e.g. a tree). We prove the following:

Lemma 3.5. If Gpaee is a forest andf (z) = exp( (2))
for af ne mapping , then(Gpase; f) is tractable and the

We say thaM 2 Rt L is d-level block-Toeplitz ford 2 related mask supports linear matrix-vector multiplication.
if M = (B ) consists of block-matrice8" taken from Sketch of the proofThe ef cient algorithm for comput-
some sefA ;A gof (d  1)-level block-Toeplitz ma- N9 W = Mx in this case is an application of the dy-
trices and if each blocB " is replaced with the indelk of ~ N@mic programming method for rooted trees. The algorithm

its corresponding matriA i, a Toeplitz matrix is obtained. 'St cgmputes for each nodethe following expression:
Si = o7, exp( (dist(i;] )))X;, whereT; stands for the

Consider the unweighted (i.e. all-one edge-weights) 1d-gridsubtree rooted in (in the bottom-up fashion from leaves to
graphGpase (see: left graph in Fig. 1) and a complete graphthe xed root). This is foIIowgd by the computation of the
(i.e. with all possible edges obtained from it by de ning ~ following expression:w; =~ ,; exp( (dist(i;] ))) X
each weight a®;; = f (distg,,., (i;j)) for some (learn- for every node in the order from the root to the leaves (lever-
able) functionf : N! R and wherdlistg,_ (i;j ) isthe aging already computes}). Details are given in the Ap-
length of the shortest path betweeand] in Gpase. If we  pendix and computations are illustrated in Fig. 3.

de ne M = Adj( G) then we get the regular RPE mecha-
nism with the 1d-graph interpreted as the input sequence.

We need the following de nition:

De nition 3.2 (block-Toeplitz matrices) We say that a ma-
trix M 2 Rt L is Toeplitz (or 1-level block Toeplitz) if
there exists some: Z! RsuchthatM;; = (i j).

We nd a comprehensive description of tractali&,ase; f )
an exciting analytic and combinatorial open problem.
Note thatM de ned in such a way is Toeplitz and thus

supportO(L log(L)) matrix-vector multiplication via Fast

Fourier Transform (FFT). Thus low-rank RPE-masked at-

tention can be conducted @(Ldm log(L)) time. This was

the observation of Luo et al. (2021). What if we replace

the 1d-grid with the d-dimensional grid and de i in the

analogous way? The idea is to maintain the initial structure

of the topologically more complicated input, e.g. 2d-grid
for images (with nodes as patches or even individual pixels

or 3d-grid for videos (with 2d-slices as different frames). ?:lgure 3.lllustration of sketch of the proof of Lemma 3.5. The

directions of arrows show computation- ow. In phassikterms
There is a particularly elegant answer to this question: are calculated in bottom-up fashion (from leaves to the root). The

Lemma 3.3 (d-dimensional RPEs)Consider the gener- value ofs; involving paths ini-rooted subtrees (red path with

alized RPE-mechanism for thiedimensional grid input discarded directions) is updated basedsgp-terms involving

. s ) gaths in subtrees,, . To complete calculations, in phase Il paths
de ned above. Then there exists an ordering of input nodes, nodes outside of therooted tree are considered (purple path

such thatM is ad-level block-Toeplitz matrix (see: Fig. 1). with directions discarded). Their contribution is calculated from

. . . the already computed ;) for the parenp(i) of nodei ands;.
Sinced-level block-Toeplitz matrices suppd®(L log(L))

matrix-vector multiplication via FFT for any xed constant 3.4. Low-rank masking
d (see Lee, 1986), Lemma 3.3 immediately leads to ef cient

corresponding masked attention computation. Note that in all previously considered cases, miskks

in general full-rank. However in several applicatidds
can be assumed to have (at least in expectation) a low-rank
decomposition, i.e.M = E[M 1M ;] for some (random)
So farGpase Was assumed to have a grid structure. WhatMi; 2 RS ", M, 2 R" - and somé < r L. A ag-
if we replace it with an arbitrary weighted graph? The ship example is thetochastic RPEnechanism presented in
following natural question arisedVhich condition does (Liutkus et al., 2021) corresponding to (logits-added) dot-
Gpase and mapping® : R ! R need to satisfy for the product maskN translating to the softmax-kernel values
maskM % [f (diste,,., (i;j )]ij =1 - to support sub- maskM . The latter one can be low-rank decomposed using
quadratic matrix-vector multiplication ? any random feature map based softmax-kernel linearization
_ mechanism, e.g. from (Choromanski et al., 2021). In such
We call such a pai(Gpase; f) tractable From what we g case, matrix-vector produet= Mx can be computed
have said so far, we conclude that: (approximately) ase = (M 1(M x)) in time O(Lr ), lead-
Corollary 3.4. If Gpage is an unweighted grid (of any dimen- ing to overall time complexityD(Lmrd ) of the attention
sionality) then(Gpase; f ) is tractable foranyf : R! R. module using mask .

3.3. More general graph-masks using shortest-paths
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4. Masking with graph kernels a Poisson distribution with mean, and theni steps of

i the natural random walk are performed®n Looking at
Masks de ned by shortest paths were shown to provide €fyqqrithm 1, we conclude that here the low-rank structure of
fective inductive bias for graph data (see Ying et al., 2021b)

h be | d Vi id k ttention enables us to incorporate the GDK mask by solving
yett ey cannot be interpreted as applying any valld Kere&nat process imd initial (randomized) distributions over
function on graph nodes and are very sensitive to sma

h i th h ) ! Fk Lfunct odes (randomization coming from mappinprather than
changes in the graph. A prominent class of kemel-functiong, oy | one-hot initial distributions (that would correspond

K: ,V V! R_de r_1ed on pairs of graphs nodes i,S .the to the reconstruction of the entire transition matrix).
family of graph-diffusionor heatkernels (GDKs). Thus it is

natural to identify maskM for input graph dat& with the ) . .
v butgrap Remark: The literature on ef ciently computing the ac-

,,,,, L - . . . L . . .

GDK is de ned, for a hyperparameter 0andX' denot- tlon§ of matrlx-ex.ponentlals (wh|ch is our main focus in this

ing the ith power of matrix , as: section) is very rich (Al-Mohy & Higham, 2011), partially
T because of straightforward applications in the theory of dif-

dot X ( )Th ferential equations (Li et al., 2021). In principle, each of
Ke =exp( T) = T (4)  these methods can be used by our algorithm.
i=0 '
where either: T = L for the Laplacian matrix. = 4.1. Grid with graph-diffusion kernels

D Adj(G) andD = diag([deg(i)]-,); or T = LD 1

(normalized Laplacian case) or=  Adj( G). If the underlying graph is d-dimensional grid, then GDK

with T = L has a closed-form formula. The follow-

GDK is related to the diffusion process (Kondor & Lafferty, ing is true (Kondor & Lafferty, 2002):Kgpk (i;j) /

2002) which describes in particular heat propagation. In &anh )91 ) for the hyperbolic tangertanh. Thus, as

vacuum, the solution of the partial differential heat equationin Sec. 3.2, the corresponding madgk is d-level block-

is the Gaussian-kernel, and in graphs it leads to GDK. NodeFoeplitz and grid-induced GDK-masking can be incorpo-

better connected with each other (graph diffusion kernetated into low-rank attention i@(Lmd log(L)) time.

quanti es it via the number of different-length walks with

longer walks exponentially-deprioritized) give rise to larger 4.2, Low-rank masking strikes back for GDKs

kernel values. Finallyt = 1 can be interpreted as time ] .

when the solution is taken. GDK imprints topological signal VW& Now propose a proxy of the GDK with = Adj( G)

of the propagation medium via left heat-signature t As sugh that the correspondm_g. kernell matrix admits (in expec-

1 the kernel “ attens” and the topological signal is lost. tation) low-rank decomposition as in Sec. 3.4. Thus, based
on the theory we developed, the corresponding nidsk

Direct computation of the GDK matrikk is of O(L®) time  can be ef ciently incorporated into low-rank attention with

complexity, thus prohibitively expensive even for sparseng need to call ef cient solvers for the actions of matrix

input graphs. However, a key observation is that Lemma 3-%xponentials. We call our graph kernel fRandom Walks
teaches us that for ef cient masked low-rank attention wegraph-Nodes Kernesr RWGNK.

only need to compute ef ciently the acti@xp( T)x of N o
Kk onagiverx 2 R-. This leads to our next result. Intuitively, the value of the RWGNK for two nodes is given

as a dot-product of twérequency vectorthat record vis-
its in graph nodes of random walks beginning in the two
nodes of interest. More formally, for the hyperparameters
; 0; and two random walks (k), ! (1) with stopping

Theorem 4.1(scalable Laplacian-GDK masking).et a

maskM be dened asM = exp( A),forA =L

or A = LD 1!, whereL is the Laplacian of the input
— A S\1L _

graph, andD = diag([deg(i)];; ). Then low-rank masked probability0 p 1 (orofa xed length) starting ak and

attention can be computed in tin@®((jEj + L)log(2 + . S .
kA ke )md), whereO hidespolylog(L) factors,jEj is the | respectively, the RWGNK s given as: I

number of graph edges ard kg is the Frobenius norm. Ki () = E, (k)[fli (k); ] E olf I! (); ]
p ’ ' (k); NOF
The theorem is a consequence of Lemma 3.1 and Theorem KEr iolf 7 Tka KB If) 7 Tk,
1.2 from (Orecchia et al., 2012). We see thgEf = o(L?), ! (h): o ®)
the masked attention mechanism is sub-quadratic in The (row) freguency vectdr, '+ forh 2 Vis given as

fr ™) T L g, © wherel! ((i) is the set of
Low-rank attention & Markov processes with random lengths of thosere x sub-walksof a given random walk
initial distributions:  As noted by Orecchia et al. (2012), ! (h) that end ai (where the pre x sub-walk of the walk
the heat kernel matrix fof = LD ! can be interpreted as (j1;:j2;:::;jt) is any walk of the forn(j ¢; :::;j ) for some
the probability transition matrix of the discrete-time randomr t or an empty walk). Note that Eq. 5 leads to the
walk where rst the number of stepsis sampled from  desired representation Kf; asK; (k;1)= ( k) ( )7,
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Figure 4.From left to right: unweighted grapB, its adjacency matriAdj(G) , its GDK matrixexp(Adj(G)) and RWGNK-matrix with
walk length of3and = 1. Colored cells measure the relationship among pairs of nodes (darker is stronger). The last two matrices can
be thought of as continuous smoothingadii(G) .

where ( h) is the renormalized expected frequency vectortasks ranging from purely combinatorial to bioinformatics,
In practice, expectations are replaced by Monte Carlo sanand benchmarketlO different methods. All these experi-

plings over a few random walks, and vectdrsh) are not ments were run on a single Tesla P100 GPU with 16GB
stored explicitly but in the form of weighted lookup tables. memory. Experiments with vision Transformers were con-

Figure 4 compares RWGNK-induced mask with the regulardumed on the ImageNet dataset.

GDK-mask and the adjacency matrix mask. We call a Trans3.1. Combinatorial Classi cation

former applying low-rank masked attention via RWGNK, a In this section we focus on the problem of detecting local
Graph Kernel Attention Transforméor GKAT). patterns in graphs. A model takes a grdplas an input
and decides whether it contains some graph from the given
family of graphsH as a subgraph (not necessarily induced)
or isH-free. This benchmark tests the abilities of different
methods to solve purely combinatorial tasks.

Next we explore the connection of RWGNKs with GDKs.
We denote byax ; dmin the maximum and minimum de-
gree of a vertex ifs respectively.

Theorem 4.2 (RWGNKSs count discounted numbers of
walks) The following is true for the kernel matrix
K (G) = [K; (kiDli2ve of theRWGNK kernel
with 0 1, =0 and0<p< 1lforagraphG with

vertex sel/(G) of sizeN (element-wise matrix inequality): _ ) ) _
Figure 5.Five motifs (patterns) used in the rst class of combina-

torial classi cation experiments. For each pattétnan algorithm
. . . is trained to distinguish between grapgBontainingH and those
@AdJ(G) K p ©) mAdl(G) , that areH-free. A naive brute-force algorithm for conducting this
(6) has time complexity( N "), whereh is the number of nodes of the
motif, prohibitively expensive for all these motifs (since 9).

P _
where = (1 p) and (A)= [ (i+1)A" Us-
ing the fact thatAdj'(G) encodes the number of walks
of lengthi between pairs of vertices i@, we conclude Data Generation: Following the procedure from (Nikolent-

5.1.1. RDOS-RENYI RANDOM GRAPH WITH MOTIFS

that K5 Ok;1) = i1:0 Gy Tk (i), where:ry, (i) is the  zos & Vazirgiannis, 2020), we used ve binary classi cation

num‘t?)tiof walks of length between nodesk and|  datasets consisting of random BsdRenyi (ER) graphs con-

and % G % Note that val- nhected with motifs (positive example) or other smaller ER
os of GlaDK with parameter satisfy: GDK (k:1) = graphs with the same average degree as a motif (negative

example), see Fig. 5 (details in the Appendix, Sec. A.2).
For each dataset we constructed 2048 positive andS
negative examples.

ilzo & (k; Drig (i), where:e(k;1) = = In practice, it
suf ces to have random walks of xed length (instead of tak-
ing p > 0) (see: Sec 5). Furthermore, by taking 0 (e.qg.
= 1) we can guarantee that kernel values are bounded. Tested Algorithms & Parameter Setting: We tested our
] GKAT, graph convolution networks (GCNs, Kipf & Welling,
5. Experiments 2017), spectral graph convolution networks (SGCs, Def-

. . . ferrard et al., 2016) and graph attention networks (GATSs,
We focus on the GKAT architecture introduced in Sec. 4'2\/elickovic et al., 2018). A feature vector in each vertex

as a prominent instantiation of the general mechanism pre- - :
. . . . was of lengthl = 5 and contained top orderédlegrees
sented in this paper and experiments with 2-level block- . : ; ;
. . . . . of its neighbors (if there were fewer thameighbors, we
Toeplitz masking mechanisms introduced in Sec. 3.2 for . .
) padded zeroes). A dataset for each motif was randomly split
vision Transformers.

into 75%=25%training/validation set. We chose: the num-
Regarding GKAT, we conducted exhaustive evaluations oroer of epoch& = 500, batch sizeB = 128, used Adam






