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Abstract
Vector Quantized-Variational AutoEncoders (VQ-
VAE) are generative models based on discrete la-
tent representations of the data, where inputs are
mapped to a finite set of learned embeddings. To
generate new samples, an autoregressive prior dis-
tribution over the discrete states must be trained
separately. This prior is generally very complex
and leads to slow generation. In this work, we
propose a new model to train the prior and the
encoder/decoder networks simultaneously. We
build a diffusion bridge between a continuous
coded vector and a non-informative prior distri-
bution. The latent discrete states are then given
as random functions of these continuous vectors.
We show that our model is competitive with the
autoregressive prior on the mini-Imagenet and CI-
FAR dataset and is efficient in both optimization
and sampling. Our framework also extends the
standard VQ-VAE and enables end-to-end train-
ing.

1. Introduction
Variational AutoEncoders (VAE) have emerged as impor-
tant generative models based on latent representations of
the data. While the latent states are usually continuous vec-
tors, Vector Quantized Variational AutoEncoders (VQ-VAE)
have demonstrated the usefulness of discrete latent spaces
and have been successfully applied in image and speech
generation (Oord et al., 2017; Esser et al., 2021; Ramesh
et al., 2021).

In a VQ-VAE, the distribution of the inputs is assumed
to depend on a hidden discrete state. Large scale image
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generation VQ-VAEs use for instance multiple discrete la-
tent states, typically organized as 2-dimensional lattices.
In the original VQ-VAE, the authors propose a variational
approach to approximate the posterior distribution of the
discrete states given the observations. The variational dis-
tribution takes as input the observation, which is passed
through an encoder. The discrete latent variable is then
computed by a nearest neighbour procedure that maps the
encoded vector to the nearest discrete embedding.

It has been argued that the success of VQ-VAEs lies in the
fact that they do not suffer from the usual posterior collapse
of VAEs (Oord et al., 2017). However, the implementation
of VQ-VAE involves many practical tricks and still suffers
from several limitations. First, the quantization step leads
the authors to propose a rough approximation of the gra-
dient of the loss function by copying gradients from the
decoder input to the encoder output. Second, the prior dis-
tribution of the discrete variables is initially assumed to be
uniform when training the VQ-VAE. In a second training
step, high-dimensional autoregressive models such as Pixel-
CNN (van den Oord et al., 2016; Salimans et al., 2017; Chen
et al., 2018) and WaveNet (Oord et al., 2016) are estimated
to obtain a complex prior distribution. Joint training of the
prior and the VQ-VAE is a challenging task for which no
satisfactory solutions exist yet. Our work addresses both
problems by introducing a new mathematical framework
that extends and generalizes the standard VQ-VAE. Our
method enables end-to-end training and, in particular, by-
passes the separate training of an autoregressive prior.

An autoregressive pixelCNN prior model has several draw-
backs, which are the same in the pixel space or in the latent
space. The data is assumed to have a fixed sequential or-
der, which forces the generation to start at a certain point,
typically in the upper left corner, and span the image or the 2-
dimensional latent lattice in an arbitrary way. At each step, a
new latent variable is sampled using the previously sampled
pixels or latent variables. Inference may then accumulate
prediction errors, while training provides ground truth at
each step. The runtime process, which depends mainly on
the number of network evaluations, is sequential and de-
pends on the size of the image or the 2-dimensional latent
lattice, which can become very large for high-dimensional
objects.
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The influence of the prior is further explored in (Razavi
et al., 2019), where VQ-VAE is used to sample images
on a larger scale, using two layers of discrete latent vari-
ables, and (Willetts et al., 2021) use hierarchical discrete
VAEs with numerous layers of latent variables. Other works
such as (Esser et al., 2021; Ramesh et al., 2021) have used
Transformers to autoregressively model a sequence of la-
tent variables: while these works benefit from the recent
advances of Transformers for large language models, their
autoregressive process still suffers from the same drawbacks
as pixelCNN-like priors.

The main claim of our paper is that using diffusions in a
continuous space, Rd�N in our setting, is a very efficient
way to learn complex discrete distributions, with support on
a large space (here with cardinality KN ). We only require
an embedded space, an uninformative target distribution
(here a Gaussian law), and use a continuous bridge process
to learn the discrete target distribution. In that direction,
our contribution is inspired by the literature but also signifi-
cantly different. Our procedure departs from the diffusion
probabilistic model approach of (Ho et al., 2020), which
highlights the role of bridge processes in denoising continu-
ous target laws, and from (Hoogeboom et al., 2021), where
multinomial diffusions are used to noise and denoise but pre-
vent the use of the expressiveness of continuous bridges, and
also do not scale well with K as remarked by its authors.
Although we target a discrete distribution, our approach
does not suffer from this limitation.

Our contributions are summarized as follows.

• We propose a new mathematical framework for VQ-
VAEs. We introduce a two-stage prior distribution.
Following the diffusion probabilistic model approach
of (Ho et al., 2020), we consider first a continuous
latent vector parameterized as a Markov chain. The
discrete latent states are defined as random functions
of this Markov chain. The transition kernels of the
continuous latent variables are trained using diffusion
bridges to gradually produce samples that match the
data.

• To our best knowledge, this is the first probabilistic
generative model to use denoising diffusion in discrete
latent space. This framework allows for end-to-end
training of VQ-VAE.

• We focus on VQ-VAE as our framework enables simul-
taneous training of all components of those popular
discrete models which is not straightforward. How-
ever, our methodology is more general and allows the
use of continuous embeddings and diffusion bridges to
sample form any discrete laws.

• We present our method on a toy dataset and then com-
pare its efficiency to the pixelCNN prior of the original

VQ-VAE on the miniImagenet dataset.

Figure 1 describes the complete architecture of our model.

Figure 1. Our proposed architecture, for a prior based on a
Ornstein-Uhlenbeck bridge. The top pathway from input image to
z0
e, to z0

q , to reconstructed image resembles the original VQ-VAE
model. The vertical pathway from (z0

e, z
0
q) to (zTe , z

T
q ) and back-

wards is based on a denoising diffusion process. See Section 3.2
and Algorithm 2 for the corresponding sampling procedure.

2. Related Works
Diffusion Probabilistic Models. A promising class of
models that depart from autoregressive models are Diffu-
sion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) and closely related Score-Matching Generative
Models (Song & Ermon, 2019; De Bortoli et al., 2021). The
general idea is to apply a corrupting Markovian process
on the data through T corrupting steps and learn a neural
network that gradually denoises or reconstructs the original
samples from the noisy data. For example, when sampling
images, an initial sample is drawn from an uninformative
distribution and reconstructed iteratively using the trained
Markov kernel. This process is applied to all pixels simulta-
neously, so no fixed order is required and the sampling time
does not depend on sequential predictions that depend on the
number of pixels, but on the number of steps T . While this
number of steps can be large (T = 1000 is typical), simple
improvements enable to reduce it dramatically and obtain
�50 speedups (Song et al., 2021). These properties have
led diffusion probability models to receive much attention
in the context of continuous input modelling.

From Continuous to Discrete Generative denoising. In
(Hoogeboom et al., 2021), the authors propose multinomial
diffusion to gradually add categorical noise to discrete sam-
ples for which the generative denoising process is learned.
Unlike alternatives such as normalizing flows, the diffusion
proposed by the authors for discrete variables does not re-
quire gradient approximations because the parameter of the
diffusion is fixed.

Such diffusion models are optimized using variational infer-
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ence to learn the denoising process, i.e., the bridge that aims
at inverting the multinomial diffusion. In (Hoogeboom et al.,
2021), the authors propose a variational distribution based
on bridge sampling. In (Austin et al., 2021), the authors
improve the idea by modifying the transition matrices of
the corruption scheme with several tricks. The main one is
the addition of absorbing states in the corruption scheme by
replacing a discrete value with a MASK class, inspired by
recent Masked Language Models like BERT. In this way, the
corrupted dimensions can be distinguished from the original
ones instead of being uniformly sampled. One drawback
of their approach, mentioned by the authors, is that the
transition matrix does not scale well for a large number of
embedding vectors, which is typically the case in VQ-VAE.

Compared to discrete generative denoising, our approach
takes advantage of the fact that the discrete distribution
depends solely on a continuous distribution in VQ-VAE. We
derive a novel model based on continuous-discrete diffusion
that we believe is simpler and more scalable than the models
mentioned in this section.

From Data to Latent Generative denoising. Instead of
modelling the data directly, (Vahdat et al., 2021) propose
to perform score matching in a latent space. The authors
propose a complete generative model and are able to train
the encoder/decoder and score matching end-to-end. Their
method also achieve excellent visual patterns and results
but relies on a number of optimization heuristics necessary
for stable training. In (Mittal et al., 2021), the authors
have also applied such an idea in a generative music model.
Instead of working in a continuous latent space, our method
is specifically designed for a discrete latent space as in VQ-
VAEs.

Using Generative denoising in discrete latent space. In
the model proposed by (Gu et al., 2021), the autoregressive
prior is replaced by a discrete generative denoising process,
which is perhaps closer to our idea. However, the authors fo-
cus more on a text-image synthesis task where the generative
denoising model is traine based on an input text: it gener-
ates a set of discrete visual tokens given a sequence of text
tokens. They also consider the VQ-VAE as a trained model
and focus only on the generation of latent variables. This
work focuses instead on deriving a full generative model
with a sound probabilistic interpretation that allows it to be
trained end-to-end.

3. Diffusion bridges VQ-VAE
3.1. Model and loss function

Assume that the distribution of the input x 2 Rm depends
on a hidden discrete state zq 2 E = fe1; : : : ; eKg with
ek 2 Rd for all 1 6 k 6 K. Let p� be the joint probability

density of (zq; x)

(zq; x) 7! p�(zq; x) = p�(zq)p�(xjzq) ;

where � 2 Rp are unknown parameters. Consider first an
encoding function f’ and write ze(x) = f’(x) the encoded
data. In the original VQ-VAE, the authors proposed the
following variational distribution to approximate p�(zqjx):

q’(zqjx) = �ek∗
x
(zq) ;

where � is the Dirac mass and

k�x = argmin16k6K fkze(x)� ekk2g ;

where ’ 2 Rr are all the variational parameters.

In this paper, we introduce a diffusion-based generative
VQ-VAE. This model allows to propose a VAE approach
with an efficient joint training of the prior and the variational
approximation. Assume that zq is a sequence, i.e. zq = z0:T

q ,
where the superscript refers to the time in the diffusion
process and for all sequences (au)u>0 and all 0 6 s 6 t,
as:t stands for (as; : : : ; at). Consider the following joint
probability distribution

p�(z
0:T
q ; x) = p

zq

� (z0:T
q )px� (xjz0

q) :

The latent discrete state z0
q used as input in the decoder is

the final state of the chain (zTq ; : : : ; z
0
q). We further assume

that pzq

� (z0:T
q ) is the marginal distribution of

p�(z
0:T
q ; z0:T

e ) = pze

�;T (zTe )p
zq

�;T (zTq jzTe )

�
T�1Y
t=0

pze

�;tjt+1(ztejzt+1
e )p

zq

�;t(z
t
qjzte) :

In this setting, fzteg06t6T are continuous latent states in
Rd�N and conditionally on fzteg06t6T the fztqg06t6T are
independent with discrete distribution with support EN .
This means that we model jointly N latent states as this
is useful for many applications such as image generation.
The continuous latent state is assumed to be a Markov chain
and at each time step t the discrete variable ztq is a random
function of the corresponding zte. Although the continuous
states are modeled as a Markov chain, the discrete variables
arising therefrom have a more complex statistical structure
(and in particular are not Markovian).

The prior distribution of zTe is assumed to be uninformative
and this is the sequence of denoising transition densities
fpze

�;tjt+1g06t6T�1 which provides the final latent state z0
e

which is mapped to the embedding space and used in the
decoder, i.e. the conditional law of the data given the latent
states. The final discrete z0

q only depends the continuous
latent variable z0

e, similar to the dependency between zq and
ze in the original VQ-VAE.
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Since the conditional law p�(z
0:T
q ; z0:T

e jx) is not available
explicitly, this work focuses on variational approaches to
provide an approximation. Then, consider the following
variational family:

q’(z0:T
q ; z0:T

e jx) = �ze(x)(z
0
e)q

zq

’;0(z0
qjz0

e)

�
TY
t=1

n
qze

’;tjt�1(ztejzt�1
e )q

zq

’;t(z
t
qjzte)

o
:

The family fqze

’;tjt�1g16t6T of forward ”noising” transi-
tion densities are chosen to be the transition densities of a
continuous-time process (Zt)t>0 with Z0 = ze(x). Sam-
pling the diffusion bridge ( ~Zt)t>0, i.e. the law of the pro-
cess (Zt)t>0 conditioned on Z0 = ze(x) and ZT = zTe is a
challenging problem for general diffusions, see for instance
(Beskos et al., 2008; Lin et al., 2010; Bladt et al., 2016). By
the Markov property, the marginal density at time t of this
conditioned process is given by:

~qze

’;tj0;T (ztejz0
e; z

T
e ) =

qze

’;tj0(ztejz0
e)q

ze

’;T jt(z
T
e jzte)

qze

’;T j0(zTe jz0
e)

: (1)

The Evidence Lower BOund (ELBO) is then defined, for all
(�; ’), as

L(�; ’) = Eq’

"
log

p�(z
0:T
q ; z0:T

e ; x)

q’(z0:T
q ; z0:T

e jx)

#
;

where Eq’
is the expectation under q’(z0:T

q ; z0:T
e jx).

Lemma 3.1. For all (�; ’), the ELBO L(�; ’) is:

L(�; ’) = Eq’

�
log px� (xjz0

q)
�

+

TX
t=0

Lt(�; ’)

+

TX
t=0

Eq’

"
log

p
zq

�;t(z
t
qjzte)

q
zq

’;t(z
t
qjzte)

#
;

where, for 1 6 t 6 T � 1,

L0(�; ’) = Eq’

h
log pze

�;0j1(z0
ejz1

e)
i
;

Lt(�; ’) = Eq’

"
log

pze

�;t�1jt(z
t�1
e jzte)

qze

’;t�1j0;t(z
t�1
e jz0

e; z
t
e)

#
;

LT (�; ’) = Eq’

"
log

pze

�;T (zTe )

qze

’;T j0(zTe jz0
e)

#
:

Proof. The proof is standard and postponed to Appendix A.

The three terms of the objective function can be interpreted
as follows:

L(�; ’) = Lrec(�; ’) +

TX
t=0

Lt(�; ’) +

TX
t=0

Lregt (�; ’)

with Lrec = Eq’
[log px� (xjz0

q)] a reconstruction term, Lt
the diffusion term, and an extra term

Lregt = Eq’

"
log

p
zq

�;t(z
t
qjzte)

q
zq

’;t(z
t
qjzte)

#
; (2)

which may be seen as a regularization term as discussed in
next sections.

3.2. Application to Ornstein-Uhlenbeck processes

Consider for instance the following Stochastic Differential
Equation (SDE) to add noise to the normalized inputs:

dZt = �#(Zt � z�)dt+ �dWt ; (3)

where #; � > 0, z� 2 Rd�N is the target state at the end of
the noising process and fWtg06t6T is a standard Brownian
motion in Rd�N . We can define the variational density by
integrating this SDE along small step-sizes. Let �t be the
time step between the two consecutive latent variables zt�1

e

and zte. In this setting, qze

’;tjt�1(ztejzt�1
e ) is a Gaussian prob-

ability density function with mean z� + (zt�1
e � z�)e�#�t

in Rd�N and covariance matrix (2#)�1�2(1� e�2#�t)IdN ,
where for all n > 1, In is the identity matrix with size n�n.
Asymptotically the process is a Gaussian with mean z� and
variance �2(2#)�1IdN .

The denoising process amounts then to sampling from the
bridge associated with the SDE, i.e. sampling zt�1

e given z0
e

and zte. The law of this bridge is explicit for the Ornstein-
Uhlenbeck diffusion (3). Using (1),

~qze

’;sj0;t(z
s
ejzte; z0

e) / q
ze

’;sj0(zt�1
e jz0

e)q
ze

’;tjs(z
t
ejzse) ;

where 0 6 s 6 t, so that ~qze

’;t�1j0;t(z
t�1
e jzte; z0

e) is a Gaus-
sian probability density function with mean

~�’;t�1j0;t(z
0
e; z

t
e) =

�t
1� ��t

�
z� +

p
��t�1(z0

e � z�)
�

+
1� ��t�1

1� ��t

p
�t
�
zte � (1�

p
�t)z�

�
and covariance matrix

~�2
’;t�1j0;t =

�2

2#

1� ��t�1

1� ��t
�t IdN ;

where �t = 1 � exp(�2#�t), �t = 1 � �t and ��t =Qt
s=1 �s. Note that the bridge sampler proposed in (Ho

et al., 2020) is a specific case of this setting with � =
p

2,
z� = 0 and # = 1.

Choice of denoising model p�. Following (Ho
et al., 2020), we propose a Gaussian distribution for
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pze
�;t � 1j t (z

t � 1
e jzt

e) with mean� �;t � 1j t (zt
e; t) and variance

� 2
�;t � 1j t I dN . In the following, we choose

� 2
�;t � 1j t =

� 2

2#
1 � �� t � 1

1 � �� t
� t

so that the termL t of Lemma 3.1 writes

2� 2
�;t � 1j t L t (�; ' )

= � Eq'

h


 � �;t � 1j t (z

t
e; t) � ~� ';t � 1j0;t (z

0
e; zt

e)



 2

2

i
:

In addition, underq' , zt
e has the same distribution as

ht
e(z0

e; " t ) = z� +
p

�� t (z0
e � z� ) +

r
� 2

2#
(1 � �� t )" t ;

where" t � N (0; I dN ). Then, for instance in the case
z� = 0 , ~� ';t � 1j0;t can be reparameterised as follows:

~� ';t � 1j0;t (z
0
e; zt

e) =

1
p

� t

 

ht
e(z0

e; " t ) �

s
� 2

2#(1 � �� t )
� t " t

!

:

We therefore propose to use

� �;t � 1j t (z
t
e; t) =

1
p

� t

 

zt
e �

s
� 2

2#(1 � �� t )
� t " � (zt

e; t)

!

;

which yields

L t (�; ' ) =
� � t

2� t (1 � �� t � 1)
E

h


 " t � " � (ht

e(z0
e; " t ); t)




 2

2

i
:

(4)

Several choices can be proposed to model the function" � .
The deep learning architectures considered in the numerical
experiments are discussed in Appendix D and E. Similarly
to (Ho et al., 2020), we use a stochastic version of our loss
function: samplet uniformly in f 0; : : : ; Tg, and consider
L t (�; ' ) instead of the full sum over allt . The �nal training
algorithm is described in Algorithm 1 and the sampling
procedure in Algorithm 2.

Connections with the VQ-VAE loss function. In the
special case whereT = 0 , our loss function can be reduced
to a standard VQ-VAE loss function. In that case, write
zq = z0

q andze = z0
e, the ELBO then becomes:

L (�; ' ) = Eq' [logpx
� (xjzq)] + Eq'

�
log

pzq

� (zqjze)
qzq

' (zqjze)

�
;

Then, if we assume thatpzq

� (zqjze) = Softmax f�k ze �
ek k2

2g1� k � K and thatqzq
' (zqjze) is as in (Oord et al., 2017),

i.e. a Dirac mass atbzq = argmin 1� k � K kze � ek k2
2, up

to an additive constant, this yields the following random
estimation ofEq' [logpzq

� (zqjze)=qzq
' (zqjze)],

bL reg
zq

(�; ' ) = kze � bzqk2

+ log

 
KX

k=1

expf�k ze � ek k2g

!

:

The �rst term of this loss is the loss proposed in (Oord
et al., 2017) which is then split into two parts using the stop
gradient operator. The last term is simply the additional
normalizing term ofpzq

� (zqjze).

Connecting diffusion and discretisation. Similar to
the VQ-VAE case above, it is possible to consider only
the term L reg

0 (�; ' ) in the caseT > 0. However,
our framework allows for much �exible parameterisa-
tion of pzq

�;t (zt
qjzt

e) and qzq
';t (zt

qjzt
e). For instance, the

Gumbel-Softmax trick provides an ef�cient and differ-
entiable parameterisation. A samplezt

q � pzq

�;t (zt
qjzt

e)
(resp. zt

q � qzq
';t (zt

qjzt
e)) can be obtained by sam-

pling with probabilities proportional tof expf (�k ze �
ek k2

2 + Gk )=� t gg1� k � K (resp. f expf (�k ze � ek k2
2 +

~Gk )=� gg1� k � K ), wheref (Gk ; ~Gk )g1� k � K are i.i.d. with
distributionGumbel(0; 1), � > 0, andf � t g0� t � T are pos-
itive time-dependent scaling parameters. In practice, the
third part of the objective function can be computed ef�-
ciently, by using a stochastic version of the ELBO, comput-
ing a singleL reg

t (�; ' ) instead of the sum (we use the same
t for both parts of the ELBO). The term reduces to:

L reg
t (�; ' ) = � KL( q' (zt

qjzt
e)kp� (zt

qjzt
e)) : (5)

This terms connects the diffusion and quantization parts as it
creates a gradient pathway through a stept of the diffusion
process, acting as a regularisation on the codebooks and
zt

e. Intuitively, maximizingL reg
t (�; ' ) accounts for pushing

codebooks andzt
e together or apart depending on the choice

of �; � t . The �nal end-to-end training algorithm is described
in Algorithm 1, and further considerations are provided in
Appendix C.

4. Experiments

4.1. Toy Experiment

In order to understand the proposed denoising procedure for
VQ-VAE, consider a simple toy setting in which there is no
encoder nor decoder, and the codebooksf ej g06 j 6 K � 1 are
�xed. In this case, withd = 2 andN = 5 , x = z0

e 2 R2� 5.
We chooseK = 8 and the codebooksej = � j 2 R2,
0 6 j 6 K � 1, are �xed centers at regular angular intervals
in R2 and shown in Figure 2; the latent states(zt

q)1� t � T
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Algorithm 1 Training procedure

repeat
Computez0

e = f ' (x)
Sampleẑq

0 � q' (z0
qjz0

e)
ComputeL̂ rec (�; ' ) = log px

� (xjẑq
0)

Samplet � Uniform (f 0; : : : ; Tg)
Sample" t � N (0; I dN )
Samplezt

e � q' (zt
ejz0

e) (using" t )
ComputeL̂ t (�; ' ) from " � (zt

e; t) and" t using (4)
ComputeL̂ reg

t (�; ' ) from zt
e (see text)

L̂ (�; ' ) = L̂ rec (�; ' ) + L̂ t (�; ' ) + L̂ reg
t (�; ' )

Perform SGD step on� L̂ (�; ' )
until convergence

Algorithm 2 Sampling procedure (forz� = 0 )

SamplezT
e � N (0; (2#) � 1� 2I dN )

for t = T to 1 do
Setzt � 1

e = � � 1=2
t

�
zt

e �
q

� 2

2# (1 � �� t ) � t " � (zt
e; t)

�

end for
Samplez0

q � pzq

�; 0(z0
qjz0

e) f quantizationg
Samplex � px

� (xjz0
q) f decoderg

lie in f e0; : : : ; e7g5. Data generation proceeds as follows.
First, sample a sequence of(q1; : : : ; q5) in f 0; : : : ; 7g: q1

has a uniform distribution, and, fors 2 f 0; 1; 2; 3g, qs+1 =
qs+ bs mod 8, wherebs are independent Bernoulli samples
with parameter1=2 taking values inf� 1; 1g. Conditionally
on (q1; : : : ; q5), x is a Gaussian random vector with mean
(eq1 ; : : : ; eq5 ) and varianceI 2� 5.

Figure 2.Toy dataset, withK = 8 centroids, and two samples
x = ( x1 ; x2 ; x3 ; x4 ; x5) in R2� 5 each displayed as5 points inR2

(blue and red points), corresponding to the discrete sequences (red)
(6; 5; 4; 3; 2) and (blue)(7; 0; 1; 0; 1).

We train our bridge procedure withT = 50 timesteps,
# = 2 ; � = 0 :1, other architecture details and the neu-
ral network" � (zt

e; t) are described in Appendix E. Forward
noise process and denoising using" � (zt

e; t) are showcased

in Figure 3, and more illustrations and experiments can be
found in Appendix E.

Figure 3.(Left) Forward noise process for one sample. First, one
data is drawn (z0

e(x) = x in the toy example) and thenf zt
eg1� t � T

are sampled underq' and displayed. (Right) Reverse process for
one samplezT

e � N (0; (2#) � 1 � 2 I dN ). As expected, the last
samplez0

e reaches the neighborhood of5 codebooks.

End-to-end training. Contrary to VQ-VAE procedures in
which the encoder/decoder/codebooks are trained separately
from the prior, we can train the bridge prior alongside the
codebooks. Consider a new setup, in which theK = 8
codebooks are randomly initialized and considered as pa-
rameters of our model (they are no longer �xed to the centers
of the data generation process� j ). The �rst part of our loss
function, in conjunction with the Gumbel-Softmax trick
makes it possible to train all the parameters of the model
end-to-end. Details of the procedure and results are shown
in Appendix E.

4.2. Image Synthesis

In this section, we focus on image synthesis using CIFAR10
and miniImageNet datasets. The goal is to evaluate the ef�-
ciency and properties of our model compared to the original
PixelCNN. Note that for fair comparisons, the encoder, de-
coder and codebooks are pretrained and �xed for all models,
only the prior is trained and evaluated here. As our goal is
the comparison of priors, we did not focus on building the
most ef�cient VQ-VAE, but rather a reasonable model in
terms of size and ef�ciency.

CIFAR10. The CIFAR dataset consists of inputsx of di-
mensions32 � 32 with 3 channels. The encoder projects
the input into a grid of continuous valuesz0

e of dimension
8 � 8 � 128. After discretisation,f zt

qg06 t 6 T are in a dis-
crete latent space induced by the VQ-VAE which consists
of values inf 1; : : : ; K g8� 8 with K = 256. The pre-trained
VQ-VAE reconstructions can be seen in Figure 13 in Ap-
pendix F.
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miniImageNet. miniImageNet was introduced by
(Vinyals et al., 2016) to offer more complexity than
CIFAR10, while still �tting in memory of modern machines.
600 images were sampled for 100 different classes from
the original ImageNet dataset, then scaled down, to obtain
60,000 images of dimension84� 84. In our experiments,
we trained a VQVAE model to project those input
images into a grid of continuous valuesz0

e of dimensions
21� 21� 32, see Figure 15 in Appendix F. The associated
codebook containsK = 128 vectors of dimension32.

Prior models. Once the VQ-VAE is trained on the miniIm-
ageNet and CIFAR datasets, the84� 84� 3 and32� 32� 3
images respectively are passed to the encoder and result in
21 � 21 and8 � 8 feature maps respectively. From this
model, we extract the discrete latent states from training
samples to train a PixelCNN prior and the continuous latent
states for our diffusion. Concerning our diffusion prior, we
choose the Ornstein-Uhlenbeck process setting� =

p
2,

z� = 0 and# = 1 , with T = 1000.

End-to-End Training. As an additional experiment, we
propose an End-to-End training of the VQ-VAE and the
diffusion process. To speed up training, we �rst start by
pretraining the VQ-VAE, then learn the parameters of our
diffusion prior alongside all the VQ-VAE parameters (en-
coder, decoder and codebooks). Note that in this setup,
we cannot directly compare the NLL to PixelCNN or our
previous diffusion model as the VQ-VAE has changed, but
we can compare image generation metrics such as FID and
sample quality.

4.3. Quantitative results

We benchmarked our model using three metrics, in order to
highlight the performances of the proposed prior, the quality
of produced samples as well as the associated computation
costs. Results are given as a comparison to the original
PixelCNN prior for both theminiImageNet (see Table 2)
and the CIFAR10 (see Table 3) datasets.

Negative Log Likelihood. Unlike most related papers, we
are interested in computing the Negative Log Likelihood
(NLL) directly in the latent space, as to evaluate the capacity
of the priors to generate coherent latent maps. To this end,
we mask a patch of the original latent space, and reconstruct
the missing part, similar to image inpainting, following for
instance (Van Oord et al., 2016). In the case of our prior,
for each samplex, we mask an area of the continuous latent
statez0

e, i.e. we mask some components ofz0
e, and aim at

sampling the missing components given the observed ones
using the prior model. Letzq

0 andze
0 (resp.zq

0 andze
0) be

the masked (resp. observed) discrete and continuous latent

variables. The target conditional likelihood is

p� (zq
0jze

0) =
Z

p� (zq
0; ze

0jze
0)dze

0 ;

=
Z

p� (zq
0jze

0)p� (ze
0jze

0)dze
0 :

This likelihood is intractable and replaced by a simple
Monte Carlo estimatêp� (zq

0jze
0) whereze

0 � p� (ze
0jze

0).
Note that conditionally onze

0 the components ofzq
0 are

assumed to be independent butze
0 are sampled jointly un-

derp� (ze
0jze

0). As there are no continuous latent data in
PixelCNN,p� (zq

0jzq
0) can be directly evaluated.

Fr échet Inception Distance. We report Fŕechet Inception
Distance (FID) scores by sampling a latent discrete state
zq 2 EN from the prior, and computing the associated image
through the VQ-VAE decoder. In order to evaluate each
prior independently from the encoder and decoder networks,
these samples are compared to VQ-VAE reconstructions of
the dataset images.

Kullback-Leibler divergence. In this experiment, we
draw M = 1000 samples from test set and encode them
using the trained VQ-VAE, and then draw as many sam-
ples from the pixelCNN prior, and our diffusion prior. We
propose then to compute the empirical Kullback Leibler
(KL) divergence between original and sampled distribution
at each pixel. Figure 4 highlights that PixelCNN performs
poorly on the latest pixels (at the bottom) while our method
remains consistent. This is explained by our denoising pro-
cess in the continuous space which uses all pixels jointly
while PixelCNN is based on an autoregressive model.

Figure 4.KL Distance between the true empirical distribution and
both prior distributions in the latent space. Darker squares indicates
lower (better) values.

KL

Ours 0.713
PixelCNN 0.809

Table 1.Averaged KL metric on the feature map.




