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Abstract
Vector Quantized-Variational AutoEncoders (VQ-
VAE) are generative models based on discrete la-
tent representations of the data, where inputs are
mapped to a finite set of learned embeddings. To
generate new samples, an autoregressive prior dis-
tribution over the discrete states must be trained
separately. This prior is generally very complex
and leads to slow generation. In this work, we
propose a new model to train the prior and the
encoder/decoder networks simultaneously. We
build a diffusion bridge between a continuous
coded vector and a non-informative prior distri-
bution. The latent discrete states are then given
as random functions of these continuous vectors.
We show that our model is competitive with the
autoregressive prior on the mini-Imagenet and CI-
FAR dataset and is efficient in both optimization
and sampling. Our framework also extends the
standard VQ-VAE and enables end-to-end train-
ing.

1. Introduction
Variational AutoEncoders (VAE) have emerged as impor-
tant generative models based on latent representations of
the data. While the latent states are usually continuous vec-
tors, Vector Quantized Variational AutoEncoders (VQ-VAE)
have demonstrated the usefulness of discrete latent spaces
and have been successfully applied in image and speech
generation (Oord et al., 2017; Esser et al., 2021; Ramesh
et al., 2021).

In a VQ-VAE, the distribution of the inputs is assumed
to depend on a hidden discrete state. Large scale image
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generation VQ-VAEs use for instance multiple discrete la-
tent states, typically organized as 2-dimensional lattices.
In the original VQ-VAE, the authors propose a variational
approach to approximate the posterior distribution of the
discrete states given the observations. The variational dis-
tribution takes as input the observation, which is passed
through an encoder. The discrete latent variable is then
computed by a nearest neighbour procedure that maps the
encoded vector to the nearest discrete embedding.

It has been argued that the success of VQ-VAEs lies in the
fact that they do not suffer from the usual posterior collapse
of VAEs (Oord et al., 2017). However, the implementation
of VQ-VAE involves many practical tricks and still suffers
from several limitations. First, the quantization step leads
the authors to propose a rough approximation of the gra-
dient of the loss function by copying gradients from the
decoder input to the encoder output. Second, the prior dis-
tribution of the discrete variables is initially assumed to be
uniform when training the VQ-VAE. In a second training
step, high-dimensional autoregressive models such as Pixel-
CNN (van den Oord et al., 2016; Salimans et al., 2017; Chen
et al., 2018) and WaveNet (Oord et al., 2016) are estimated
to obtain a complex prior distribution. Joint training of the
prior and the VQ-VAE is a challenging task for which no
satisfactory solutions exist yet. Our work addresses both
problems by introducing a new mathematical framework
that extends and generalizes the standard VQ-VAE. Our
method enables end-to-end training and, in particular, by-
passes the separate training of an autoregressive prior.

An autoregressive pixelCNN prior model has several draw-
backs, which are the same in the pixel space or in the latent
space. The data is assumed to have a fixed sequential or-
der, which forces the generation to start at a certain point,
typically in the upper left corner, and span the image or the 2-
dimensional latent lattice in an arbitrary way. At each step, a
new latent variable is sampled using the previously sampled
pixels or latent variables. Inference may then accumulate
prediction errors, while training provides ground truth at
each step. The runtime process, which depends mainly on
the number of network evaluations, is sequential and de-
pends on the size of the image or the 2-dimensional latent
lattice, which can become very large for high-dimensional
objects.
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The influence of the prior is further explored in (Razavi
et al., 2019), where VQ-VAE is used to sample images
on a larger scale, using two layers of discrete latent vari-
ables, and (Willetts et al., 2021) use hierarchical discrete
VAEs with numerous layers of latent variables. Other works
such as (Esser et al., 2021; Ramesh et al., 2021) have used
Transformers to autoregressively model a sequence of la-
tent variables: while these works benefit from the recent
advances of Transformers for large language models, their
autoregressive process still suffers from the same drawbacks
as pixelCNN-like priors.

The main claim of our paper is that using diffusions in a
continuous space, Rd×N in our setting, is a very efficient
way to learn complex discrete distributions, with support on
a large space (here with cardinality KN ). We only require
an embedded space, an uninformative target distribution
(here a Gaussian law), and use a continuous bridge process
to learn the discrete target distribution. In that direction,
our contribution is inspired by the literature but also signifi-
cantly different. Our procedure departs from the diffusion
probabilistic model approach of (Ho et al., 2020), which
highlights the role of bridge processes in denoising continu-
ous target laws, and from (Hoogeboom et al., 2021), where
multinomial diffusions are used to noise and denoise but pre-
vent the use of the expressiveness of continuous bridges, and
also do not scale well with K as remarked by its authors.
Although we target a discrete distribution, our approach
does not suffer from this limitation.

Our contributions are summarized as follows.

• We propose a new mathematical framework for VQ-
VAEs. We introduce a two-stage prior distribution.
Following the diffusion probabilistic model approach
of (Ho et al., 2020), we consider first a continuous
latent vector parameterized as a Markov chain. The
discrete latent states are defined as random functions
of this Markov chain. The transition kernels of the
continuous latent variables are trained using diffusion
bridges to gradually produce samples that match the
data.

• To our best knowledge, this is the first probabilistic
generative model to use denoising diffusion in discrete
latent space. This framework allows for end-to-end
training of VQ-VAE.

• We focus on VQ-VAE as our framework enables simul-
taneous training of all components of those popular
discrete models which is not straightforward. How-
ever, our methodology is more general and allows the
use of continuous embeddings and diffusion bridges to
sample form any discrete laws.

• We present our method on a toy dataset and then com-
pare its efficiency to the pixelCNN prior of the original

VQ-VAE on the miniImagenet dataset.

Figure 1 describes the complete architecture of our model.

Figure 1. Our proposed architecture, for a prior based on a
Ornstein-Uhlenbeck bridge. The top pathway from input image to
z0e, to z0q , to reconstructed image resembles the original VQ-VAE
model. The vertical pathway from (z0e, z

0
q) to (zTe , z

T
q ) and back-

wards is based on a denoising diffusion process. See Section 3.2
and Algorithm 2 for the corresponding sampling procedure.

2. Related Works
Diffusion Probabilistic Models. A promising class of
models that depart from autoregressive models are Diffu-
sion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) and closely related Score-Matching Generative
Models (Song & Ermon, 2019; De Bortoli et al., 2021). The
general idea is to apply a corrupting Markovian process
on the data through T corrupting steps and learn a neural
network that gradually denoises or reconstructs the original
samples from the noisy data. For example, when sampling
images, an initial sample is drawn from an uninformative
distribution and reconstructed iteratively using the trained
Markov kernel. This process is applied to all pixels simulta-
neously, so no fixed order is required and the sampling time
does not depend on sequential predictions that depend on the
number of pixels, but on the number of steps T . While this
number of steps can be large (T = 1000 is typical), simple
improvements enable to reduce it dramatically and obtain
×50 speedups (Song et al., 2021). These properties have
led diffusion probability models to receive much attention
in the context of continuous input modelling.

From Continuous to Discrete Generative denoising. In
(Hoogeboom et al., 2021), the authors propose multinomial
diffusion to gradually add categorical noise to discrete sam-
ples for which the generative denoising process is learned.
Unlike alternatives such as normalizing flows, the diffusion
proposed by the authors for discrete variables does not re-
quire gradient approximations because the parameter of the
diffusion is fixed.

Such diffusion models are optimized using variational infer-



Diffusion bridges for VQVAE

ence to learn the denoising process, i.e., the bridge that aims
at inverting the multinomial diffusion. In (Hoogeboom et al.,
2021), the authors propose a variational distribution based
on bridge sampling. In (Austin et al., 2021), the authors
improve the idea by modifying the transition matrices of
the corruption scheme with several tricks. The main one is
the addition of absorbing states in the corruption scheme by
replacing a discrete value with a MASK class, inspired by
recent Masked Language Models like BERT. In this way, the
corrupted dimensions can be distinguished from the original
ones instead of being uniformly sampled. One drawback
of their approach, mentioned by the authors, is that the
transition matrix does not scale well for a large number of
embedding vectors, which is typically the case in VQ-VAE.

Compared to discrete generative denoising, our approach
takes advantage of the fact that the discrete distribution
depends solely on a continuous distribution in VQ-VAE. We
derive a novel model based on continuous-discrete diffusion
that we believe is simpler and more scalable than the models
mentioned in this section.

From Data to Latent Generative denoising. Instead of
modelling the data directly, (Vahdat et al., 2021) propose
to perform score matching in a latent space. The authors
propose a complete generative model and are able to train
the encoder/decoder and score matching end-to-end. Their
method also achieve excellent visual patterns and results
but relies on a number of optimization heuristics necessary
for stable training. In (Mittal et al., 2021), the authors
have also applied such an idea in a generative music model.
Instead of working in a continuous latent space, our method
is specifically designed for a discrete latent space as in VQ-
VAEs.

Using Generative denoising in discrete latent space. In
the model proposed by (Gu et al., 2021), the autoregressive
prior is replaced by a discrete generative denoising process,
which is perhaps closer to our idea. However, the authors fo-
cus more on a text-image synthesis task where the generative
denoising model is traine based on an input text: it gener-
ates a set of discrete visual tokens given a sequence of text
tokens. They also consider the VQ-VAE as a trained model
and focus only on the generation of latent variables. This
work focuses instead on deriving a full generative model
with a sound probabilistic interpretation that allows it to be
trained end-to-end.

3. Diffusion bridges VQ-VAE
3.1. Model and loss function

Assume that the distribution of the input x ∈ Rm depends
on a hidden discrete state zq ∈ E = {e1, . . . , eK} with
ek ∈ Rd for all 1 ⩽ k ⩽ K. Let pθ be the joint probability

density of (zq, x)

(zq, x) 7→ pθ(zq, x) = pθ(zq)pθ(x|zq) ,

where θ ∈ Rp are unknown parameters. Consider first an
encoding function fφ and write ze(x) = fφ(x) the encoded
data. In the original VQ-VAE, the authors proposed the
following variational distribution to approximate pθ(zq|x):

qφ(zq|x) = δek∗
x
(zq) ,

where δ is the Dirac mass and

k∗x = argmin1⩽k⩽K {∥ze(x)− ek∥2} ,

where φ ∈ Rr are all the variational parameters.

In this paper, we introduce a diffusion-based generative
VQ-VAE. This model allows to propose a VAE approach
with an efficient joint training of the prior and the variational
approximation. Assume that zq is a sequence, i.e. zq = z0:Tq ,
where the superscript refers to the time in the diffusion
process and for all sequences (au)u⩾0 and all 0 ⩽ s ⩽ t,
as:t stands for (as, . . . , at). Consider the following joint
probability distribution

pθ(z
0:T
q , x) = p

zq
θ (z0:Tq )pxθ (x|z0q) .

The latent discrete state z0q used as input in the decoder is
the final state of the chain (zTq , . . . , z

0
q). We further assume

that pzqθ (z0:Tq ) is the marginal distribution of

pθ(z
0:T
q , z0:Te ) = pzeθ,T (z

T
e )p

zq
θ,T (z

T
q |zTe )

×
T−1∏
t=0

pzeθ,t|t+1(z
t
e|zt+1

e )p
zq
θ,t(z

t
q|zte) .

In this setting, {zte}0⩽t⩽T are continuous latent states in
Rd×N and conditionally on {zte}0⩽t⩽T the {ztq}0⩽t⩽T are
independent with discrete distribution with support EN .
This means that we model jointly N latent states as this
is useful for many applications such as image generation.
The continuous latent state is assumed to be a Markov chain
and at each time step t the discrete variable ztq is a random
function of the corresponding zte. Although the continuous
states are modeled as a Markov chain, the discrete variables
arising therefrom have a more complex statistical structure
(and in particular are not Markovian).

The prior distribution of zTe is assumed to be uninformative
and this is the sequence of denoising transition densities
{pzeθ,t|t+1}0⩽t⩽T−1 which provides the final latent state z0e
which is mapped to the embedding space and used in the
decoder, i.e. the conditional law of the data given the latent
states. The final discrete z0q only depends the continuous
latent variable z0e, similar to the dependency between zq and
ze in the original VQ-VAE.
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Since the conditional law pθ(z
0:T
q , z0:Te |x) is not available

explicitly, this work focuses on variational approaches to
provide an approximation. Then, consider the following
variational family:

qφ(z
0:T
q , z0:Te |x) = δze(x)(z

0
e)q

zq
φ,0(z

0
q|z0e)

×
T∏

t=1

{
qzeφ,t|t−1(z

t
e|zt−1

e )q
zq
φ,t(z

t
q|zte)

}
.

The family {qzeφ,t|t−1}1⩽t⩽T of forward ”noising” transi-
tion densities are chosen to be the transition densities of a
continuous-time process (Zt)t⩾0 with Z0 = ze(x). Sam-
pling the diffusion bridge (Z̃t)t⩾0, i.e. the law of the pro-
cess (Zt)t⩾0 conditioned on Z0 = ze(x) and ZT = zTe is a
challenging problem for general diffusions, see for instance
(Beskos et al., 2008; Lin et al., 2010; Bladt et al., 2016). By
the Markov property, the marginal density at time t of this
conditioned process is given by:

q̃zeφ,t|0,T (z
t
e|z0e, zTe ) =

qzeφ,t|0(z
t
e|z0e)q

ze
φ,T |t(z

T
e |zte)

qzeφ,T |0(z
T
e |z0e)

. (1)

The Evidence Lower BOund (ELBO) is then defined, for all
(θ, φ), as

L(θ, φ) = Eqφ

[
log

pθ(z
0:T
q , z0:Te , x)

qφ(z0:Tq , z0:Te |x)

]
,

where Eqφ is the expectation under qφ(z0:Tq , z0:Te |x).
Lemma 3.1. For all (θ, φ), the ELBO L(θ, φ) is:

L(θ, φ) = Eqφ

[
log pxθ (x|z0q)

]
+

T∑
t=0

Lt(θ, φ)

+

T∑
t=0

Eqφ

[
log

p
zq
θ,t(z

t
q|zte)

q
zq
φ,t(z

t
q|zte)

]
,

where, for 1 ⩽ t ⩽ T − 1,

L0(θ, φ) = Eqφ

[
log pzeθ,0|1(z

0
e|z1e)

]
,

Lt(θ, φ) = Eqφ

[
log

pzeθ,t−1|t(z
t−1
e |zte)

qzeφ,t−1|0,t(z
t−1
e |z0e, zte)

]
,

LT (θ, φ) = Eqφ

[
log

pzeθ,T (z
T
e )

qzeφ,T |0(z
T
e |z0e)

]
.

Proof. The proof is standard and postponed to Appendix A.

The three terms of the objective function can be interpreted
as follows:

L(θ, φ) = Lrec(θ, φ) +

T∑
t=0

Lt(θ, φ) +

T∑
t=0

Lreg
t (θ, φ)

with Lrec = Eqφ [log p
x
θ (x|z0q)] a reconstruction term, Lt

the diffusion term, and an extra term

Lreg
t = Eqφ

[
log

p
zq
θ,t(z

t
q|zte)

q
zq
φ,t(z

t
q|zte)

]
, (2)

which may be seen as a regularization term as discussed in
next sections.

3.2. Application to Ornstein-Uhlenbeck processes

Consider for instance the following Stochastic Differential
Equation (SDE) to add noise to the normalized inputs:

dZt = −ϑ(Zt − z∗)dt+ ηdWt , (3)

where ϑ, η > 0, z∗ ∈ Rd×N is the target state at the end of
the noising process and {Wt}0⩽t⩽T is a standard Brownian
motion in Rd×N . We can define the variational density by
integrating this SDE along small step-sizes. Let δt be the
time step between the two consecutive latent variables zt−1

e

and zte. In this setting, qzeφ,t|t−1(z
t
e|zt−1

e ) is a Gaussian prob-
ability density function with mean z∗ + (zt−1

e − z∗)e
−ϑδt

in Rd×N and covariance matrix (2ϑ)−1η2(1− e−2ϑδt)IdN ,
where for all n ⩾ 1, In is the identity matrix with size n×n.
Asymptotically the process is a Gaussian with mean z∗ and
variance η2(2ϑ)−1IdN .

The denoising process amounts then to sampling from the
bridge associated with the SDE, i.e. sampling zt−1

e given z0e
and zte. The law of this bridge is explicit for the Ornstein-
Uhlenbeck diffusion (3). Using (1),

q̃zeφ,s|0,t(z
s
e|zte, z0e) ∝ qzeφ,s|0(z

t−1
e |z0e)q

ze
φ,t|s(z

t
e|zse) ,

where 0 ⩽ s ⩽ t, so that q̃zeφ,t−1|0,t(z
t−1
e |zte, z0e) is a Gaus-

sian probability density function with mean

µ̃φ,t−1|0,t(z
0
e, z

t
e) =

βt

1− ᾱt

(
z∗ +

√
ᾱt−1(z

0
e − z∗)

)
+

1− ᾱt−1

1− ᾱt

√
αt

(
zte − (1−

√
αt)z∗

)
and covariance matrix

σ̃2
φ,t−1|0,t =

η2

2ϑ

1− ᾱt−1

1− ᾱt
βt IdN ,

where βt = 1 − exp(−2ϑδt), αt = 1 − βt and ᾱt =∏t
s=1 αs. Note that the bridge sampler proposed in (Ho

et al., 2020) is a specific case of this setting with η =
√
2,

z∗ = 0 and ϑ = 1.

Choice of denoising model pθ. Following (Ho
et al., 2020), we propose a Gaussian distribution for
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pzeθ,t−1|t(z
t−1
e |zte) with mean µθ,t−1|t(z

t
e, t) and variance

σ2
θ,t−1|t IdN . In the following, we choose

σ2
θ,t−1|t =

η2

2ϑ

1− ᾱt−1

1− ᾱt
βt

so that the term Lt of Lemma 3.1 writes

2σ2
θ,t−1|tLt(θ, φ)

= −Eqφ

[∥∥µθ,t−1|t(z
t
e, t)− µ̃φ,t−1|0,t(z

0
e, z

t
e)
∥∥2
2

]
.

In addition, under qφ, zte has the same distribution as

hte(z
0
e, εt) = z∗ +

√
ᾱt(z

0
e − z∗) +

√
η2

2ϑ
(1− ᾱt)εt ,

where εt ∼ N (0, IdN ). Then, for instance in the case
z∗ = 0, µ̃φ,t−1|0,t can be reparameterised as follows:

µ̃φ,t−1|0,t(z
0
e, z

t
e) =

1
√
αt

(
hte(z

0
e, εt)−

√
η2

2ϑ(1− ᾱt)
βtεt

)
.

We therefore propose to use

µθ,t−1|t(z
t
e, t) =

1
√
αt

(
zte −

√
η2

2ϑ(1− ᾱt)
βtεθ(z

t
e, t)

)
,

which yields

Lt(θ, φ) =
−βt

2αt(1− ᾱt−1)
E
[∥∥εt − εθ(h

t
e(z

0
e, εt), t)

∥∥2
2

]
.

(4)

Several choices can be proposed to model the function εθ.
The deep learning architectures considered in the numerical
experiments are discussed in Appendix D and E. Similarly
to (Ho et al., 2020), we use a stochastic version of our loss
function: sample t uniformly in {0, . . . , T}, and consider
Lt(θ, φ) instead of the full sum over all t. The final training
algorithm is described in Algorithm 1 and the sampling
procedure in Algorithm 2.

Connections with the VQ-VAE loss function. In the
special case where T = 0, our loss function can be reduced
to a standard VQ-VAE loss function. In that case, write
zq = z0q and ze = z0e, the ELBO then becomes:

L(θ, φ) = Eqφ [log pxθ (x|zq)] + Eqφ

[
log

p
zq
θ (zq|ze)
q
zq
φ (zq|ze)

]
,

Then, if we assume that pzqθ (zq|ze) = Softmax{−∥ze −
ek∥22}1≤k≤K and that qzqφ (zq|ze) is as in (Oord et al., 2017),

i.e. a Dirac mass at ẑq = argmin1≤k≤K∥ze − ek∥22, up
to an additive constant, this yields the following random
estimation of Eqφ [log p

zq
θ (zq|ze)/q

zq
φ (zq|ze)],

L̂reg
zq (θ, φ) = ∥ze − ẑq∥2

+ log

(
K∑

k=1

exp {−∥ze − ek∥2}

)
.

The first term of this loss is the loss proposed in (Oord
et al., 2017) which is then split into two parts using the stop
gradient operator. The last term is simply the additional
normalizing term of pzqθ (zq|ze).

Connecting diffusion and discretisation. Similar to
the VQ-VAE case above, it is possible to consider only
the term Lreg

0 (θ, φ) in the case T > 0. However,
our framework allows for much flexible parameterisa-
tion of p

zq
θ,t(z

t
q|zte) and q

zq
φ,t(z

t
q|zte). For instance, the

Gumbel-Softmax trick provides an efficient and differ-
entiable parameterisation. A sample ztq ∼ p

zq
θ,t(z

t
q|zte)

(resp. ztq ∼ q
zq
φ,t(z

t
q|zte)) can be obtained by sam-

pling with probabilities proportional to {exp{(−∥ze −
ek∥22 + Gk)/τt}}1≤k≤K (resp. {exp{(−∥ze − ek∥22 +

G̃k)/τ}}1≤k≤K), where {(Gk, G̃k)}1≤k≤K are i.i.d. with
distribution Gumbel(0, 1), τ > 0, and {τt}0≤t≤T are pos-
itive time-dependent scaling parameters. In practice, the
third part of the objective function can be computed effi-
ciently, by using a stochastic version of the ELBO, comput-
ing a single Lreg

t (θ, φ) instead of the sum (we use the same
t for both parts of the ELBO). The term reduces to:

Lreg
t (θ, φ) = −KL(qφ(z

t
q|zte)∥pθ(ztq|zte)) . (5)

This terms connects the diffusion and quantization parts as it
creates a gradient pathway through a step t of the diffusion
process, acting as a regularisation on the codebooks and
zte. Intuitively, maximizing Lreg

t (θ, φ) accounts for pushing
codebooks and zte together or apart depending on the choice
of τ, τt. The final end-to-end training algorithm is described
in Algorithm 1, and further considerations are provided in
Appendix C.

4. Experiments
4.1. Toy Experiment

In order to understand the proposed denoising procedure for
VQ-VAE, consider a simple toy setting in which there is no
encoder nor decoder, and the codebooks {ej}0⩽j⩽K−1 are
fixed. In this case, with d = 2 and N = 5, x = z0e ∈ R2×5.
We choose K = 8 and the codebooks ej = µj ∈ R2,
0 ⩽ j ⩽ K−1, are fixed centers at regular angular intervals
in R2 and shown in Figure 2; the latent states (ztq)1≤t≤T
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Algorithm 1 Training procedure
repeat

Compute z0e = fφ(x)
Sample ẑq

0 ∼ qφ(z
0
q|z0e)

Compute L̂rec(θ, φ) = log pxθ (x|ẑq
0)

Sample t ∼ Uniform({0, . . . , T})
Sample εt ∼ N (0, IdN )
Sample zte ∼ qφ(z

t
e|z0e) (using εt)

Compute L̂t(θ, φ) from εθ(z
t
e, t) and εt using (4)

Compute L̂reg
t (θ, φ) from zte (see text)

L̂(θ, φ) = L̂rec(θ, φ) + L̂t(θ, φ) + L̂reg
t (θ, φ)

Perform SGD step on −L̂(θ, φ)
until convergence

Algorithm 2 Sampling procedure (for z∗ = 0)

Sample zTe ∼ N (0, (2ϑ)−1η2IdN )
for t = T to 1 do

Set zt−1
e = α

−1/2
t

(
zte −

√
η2

2ϑ(1−ᾱt)
βtεθ(z

t
e, t)

)
end for
Sample z0q ∼ p

zq
θ,0(z

0
q|z0e) {quantization}

Sample x ∼ pxθ (x|z0q) {decoder}

lie in {e0, . . . , e7}5. Data generation proceeds as follows.
First, sample a sequence of (q1, . . . , q5) in {0, . . . , 7}: q1
has a uniform distribution, and, for s ∈ {0, 1, 2, 3}, qs+1 =
qs+bs mod 8, where bs are independent Bernoulli samples
with parameter 1/2 taking values in {−1, 1}. Conditionally
on (q1, . . . , q5), x is a Gaussian random vector with mean
(eq1 , . . . , eq5) and variance I2×5.

Figure 2. Toy dataset, with K = 8 centroids, and two samples
x = (x1, x2, x3, x4, x5) in R2×5 each displayed as 5 points in R2

(blue and red points), corresponding to the discrete sequences (red)
(6, 5, 4, 3, 2) and (blue) (7, 0, 1, 0, 1).

We train our bridge procedure with T = 50 timesteps,
ϑ = 2, η = 0.1, other architecture details and the neu-
ral network εθ(z

t
e, t) are described in Appendix E. Forward

noise process and denoising using εθ(z
t
e, t) are showcased

in Figure 3, and more illustrations and experiments can be
found in Appendix E.

Figure 3. (Left) Forward noise process for one sample. First, one
data is drawn (z0e(x) = x in the toy example) and then {zte}1≤t≤T

are sampled under qφ and displayed. (Right) Reverse process for
one sample zTe ∼ N (0, (2ϑ)−1η2IdN ). As expected, the last
sample z0e reaches the neighborhood of 5 codebooks.

End-to-end training. Contrary to VQ-VAE procedures in
which the encoder/decoder/codebooks are trained separately
from the prior, we can train the bridge prior alongside the
codebooks. Consider a new setup, in which the K = 8
codebooks are randomly initialized and considered as pa-
rameters of our model (they are no longer fixed to the centers
of the data generation process µj). The first part of our loss
function, in conjunction with the Gumbel-Softmax trick
makes it possible to train all the parameters of the model
end-to-end. Details of the procedure and results are shown
in Appendix E.

4.2. Image Synthesis

In this section, we focus on image synthesis using CIFAR10
and miniImageNet datasets. The goal is to evaluate the effi-
ciency and properties of our model compared to the original
PixelCNN. Note that for fair comparisons, the encoder, de-
coder and codebooks are pretrained and fixed for all models,
only the prior is trained and evaluated here. As our goal is
the comparison of priors, we did not focus on building the
most efficient VQ-VAE, but rather a reasonable model in
terms of size and efficiency.

CIFAR10. The CIFAR dataset consists of inputs x of di-
mensions 32 × 32 with 3 channels. The encoder projects
the input into a grid of continuous values z0e of dimension
8 × 8 × 128. After discretisation, {ztq}0⩽t⩽T are in a dis-
crete latent space induced by the VQ-VAE which consists
of values in {1, . . . ,K}8×8 with K = 256. The pre-trained
VQ-VAE reconstructions can be seen in Figure 13 in Ap-
pendix F.
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miniImageNet. miniImageNet was introduced by
(Vinyals et al., 2016) to offer more complexity than
CIFAR10, while still fitting in memory of modern machines.
600 images were sampled for 100 different classes from
the original ImageNet dataset, then scaled down, to obtain
60,000 images of dimension 84× 84. In our experiments,
we trained a VQVAE model to project those input
images into a grid of continuous values z0e of dimensions
21× 21× 32, see Figure 15 in Appendix F. The associated
codebook contains K = 128 vectors of dimension 32.

Prior models. Once the VQ-VAE is trained on the miniIm-
ageNet and CIFAR datasets, the 84×84×3 and 32×32×3
images respectively are passed to the encoder and result in
21 × 21 and 8 × 8 feature maps respectively. From this
model, we extract the discrete latent states from training
samples to train a PixelCNN prior and the continuous latent
states for our diffusion. Concerning our diffusion prior, we
choose the Ornstein-Uhlenbeck process setting η =

√
2,

z∗ = 0 and ϑ = 1, with T = 1000.

End-to-End Training. As an additional experiment, we
propose an End-to-End training of the VQ-VAE and the
diffusion process. To speed up training, we first start by
pretraining the VQ-VAE, then learn the parameters of our
diffusion prior alongside all the VQ-VAE parameters (en-
coder, decoder and codebooks). Note that in this setup,
we cannot directly compare the NLL to PixelCNN or our
previous diffusion model as the VQ-VAE has changed, but
we can compare image generation metrics such as FID and
sample quality.

4.3. Quantitative results

We benchmarked our model using three metrics, in order to
highlight the performances of the proposed prior, the quality
of produced samples as well as the associated computation
costs. Results are given as a comparison to the original
PixelCNN prior for both the miniImageNet (see Table 2)
and the CIFAR10 (see Table 3) datasets.

Negative Log Likelihood. Unlike most related papers, we
are interested in computing the Negative Log Likelihood
(NLL) directly in the latent space, as to evaluate the capacity
of the priors to generate coherent latent maps. To this end,
we mask a patch of the original latent space, and reconstruct
the missing part, similar to image inpainting, following for
instance (Van Oord et al., 2016). In the case of our prior,
for each sample x, we mask an area of the continuous latent
state z0e, i.e. we mask some components of z0e, and aim at
sampling the missing components given the observed ones
using the prior model. Let zq0 and ze

0 (resp. zq0 and ze
0) be

the masked (resp. observed) discrete and continuous latent

variables. The target conditional likelihood is

pθ(zq
0|ze0) =

∫
pθ(zq

0, ze
0|ze0)dze0 ,

=

∫
pθ(zq

0|ze0)pθ(ze0|ze0)dze0 .

This likelihood is intractable and replaced by a simple
Monte Carlo estimate p̂θ(zq0|ze0) where ze0 ∼ pθ(ze

0|ze0).
Note that conditionally on ze

0 the components of zq0 are
assumed to be independent but ze0 are sampled jointly un-
der pθ(ze0|ze0). As there are no continuous latent data in
PixelCNN, pθ(zq0|zq0) can be directly evaluated.

Fréchet Inception Distance. We report Fréchet Inception
Distance (FID) scores by sampling a latent discrete state
zq ∈ EN from the prior, and computing the associated image
through the VQ-VAE decoder. In order to evaluate each
prior independently from the encoder and decoder networks,
these samples are compared to VQ-VAE reconstructions of
the dataset images.

Kullback-Leibler divergence. In this experiment, we
draw M = 1000 samples from test set and encode them
using the trained VQ-VAE, and then draw as many sam-
ples from the pixelCNN prior, and our diffusion prior. We
propose then to compute the empirical Kullback Leibler
(KL) divergence between original and sampled distribution
at each pixel. Figure 4 highlights that PixelCNN performs
poorly on the latest pixels (at the bottom) while our method
remains consistent. This is explained by our denoising pro-
cess in the continuous space which uses all pixels jointly
while PixelCNN is based on an autoregressive model.

Figure 4. KL Distance between the true empirical distribution and
both prior distributions in the latent space. Darker squares indicates
lower (better) values.

KL

Ours 0.713
PixelCNN 0.809

Table 1. Averaged KL metric on the feature map.
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Table 2. Results on miniImageNet. Metrics are computed on the
validation dataset. The means are displayed along with the standard
deviation in parenthesis.

NLL FID s/sample
PixelCNN (Oord et al., 2017) 1.00 (±0.05) 98 10.6s (±28ms)
Ours 0.94 (±0.02) 99 1.7s (±10ms)

Table 3. Results on CIFAR10. Metrics are computed on the vali-
dation dataset. The means are displayed along with the standard
deviation in parenthesis.

NLL FID s/sample
PixelCNN (Oord et al., 2017) 1.41 (±0.06) 109 0.21 (±0.8ms)
Ours 1.33 (±0.18) 104 0.05s (±0.5ms)
Ours end-to-end 1.59 (±0.27)1 92 0.11s (±0.5ms)

Computation times. We evaluated the computation cost
of sampling a batch of 32 images, on a GTX TITAN Xp
GPU card. Note that the computational bottleneck of our
model consists of the T = 1000 sequential diffusion steps
(rather than the encoder/decoder which are very fast in com-
parison). Therefore, a diffusion speeding technique such as
the one described in (Song et al., 2021) would be straight-
forward to apply and would likely provide a ×50 speedup
as mentioned in the paper.

4.4. Qualitative results

(a) Samples from our diffusion prior.

(b) Samples from the PixelCNN prior.

Figure 5. Comparison between samples from our diffusion-based
prior (top) and PixelCNN prior (bottom).

Sampling from the prior. Samples from the PixelCNN
prior are shown in Figure 5b and samples from our prior
in Figure 5a. Additional samples are given in Appendix F.
Note that contrary to original VQ-VAE prior, the prior is

Figure 6. Sampling denoising chain from t = 500 up to t = 0,
shown at regular intervals, conditioned on the outer part of the
picture. We show only the last 500 steps of this process, as the first
500 steps are not visually informative. The sampling procedure is
described in Appendix B.

Figure 7. Sampling denoising chain from t = 500 up to t = 0,
shown at regular intervals, unconditional. We show only the last
500 steps of this process, as the first 500 steps are not visually
informative. The sampling procedure is described in Algorithm 2

not conditioned on a class, which makes the generation less
specific and more difficult. However, the produced samples
illustrate that our prior can generate a wide variety of images
which show a large-scale spatial coherence in comparison
with samples from PixelCNN.

Conditional sampling. As explained in Section 4.3, for
each sample x, we mask some components of z0e(x), and
aim at sampling the missing components given the observed
ones using the prior models. This conditional denoising pro-
cess is further explained for our model in Appendix B. To
illustrate this setting, we show different conditional samples
for 3 images in Figure 8 and Figure 9 for both the Pixel-
CNN prior and ours. In Figure 8, the mask corresponds to
a 9 × 9 centered square over the 21 × 21 feature map. In
Figure 9, the mask corresponds to a 9 × 9 top left square.
These figures illustrate that our diffusion model is much less
sensitive to the selected masked region than PixelCNN. This
may be explained by the use of our denoising function εθ
which depends on all conditioning pixels while PixelCNN
uses a hierarchy of masked convolutions to enforce a spe-
cific conditioning order. Additional conditional sampling
experiments are given in Appendix F.
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Figure 8. Conditional sampling with centered mask: for each of
the 3 different images, samples from our diffusion are on top and
from PixelCNN on the bottom. For each row: the image on the left
is the VQVAE masked reconstruction, the image on the right is the
full VQ-VAE reconstruction. Images in-between are independent
conditional samples from the models.

Figure 9. Conditional sampling with top left mask: for each of the
3 different images, samples from our diffusion are on top and from
PixelCNN on the bottom. For each row: the image on the left is
the VQVAE masked reconstruction, the image on the right is the
full VQ-VAE reconstruction. Images in-between are independent
conditional samples from the models.

Denoising chain. In addition to the conditional samples,
Figure 6 shows the conditional denoising process at regu-
larly spaced intervals, and Figure 7 shows unconditional
denoising. Each image of the chain is generated by passing
the predicted ztq through the VQ-VAE decoder.

5. Conclusion
This work introduces a new mathematical framework for
VQ-VAEs which includes a diffusion probabilistic model
to learn the dependencies between the continuous latent
variables alongside the encoding and decoding part of the
model. We showed conceptual improvements of our model
over the VQ-VAE prior, as well as first numerical results
on middle scale image generation. We believe that these
first numerical experiments open up many research avenues:
scaling to larger models, optimal scaling of the hyperparame-
ters, including standard tricks from other diffusion methods,
studying the influence of regulazation loss for end-to-end
training, etc. We hope that this framework will serve as
a sound and stable foundation to derive future generative
models.
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A. Details on the loss function
Proof of Lemma 3.1. By definition,

L(θ, φ) = Eqφ

[
log

pθ(z
0:T
q , z0:Te , x)

qφ(z0:Tq , z0:Te |x)

]
,

which yields

L(θ, φ) = Eqφ

[
log pxθ (x|z0q)

]
+ Eqφ

[
log

p
zq
θ (z0:Tq |z0:Te )

q
zq
φ (z0:Tq |z0:Te )

]
+ Eqφ

[
log

pzeθ (z0:Te )

qzeφ (z0:Te |x)

]
.

The last term may be decomposed as

Eqφ

[
log

pzeθ (z0:Te )

qzeφ (z0:Te |x)

]
= Eqφ

[
log pzeθ,T (z

T
e )
]
+

T∑
t=1

Eqφ

[
log

pzeθ,t−1|t(z
t−1
e |zte)

qzeφ,t|t−1(z
t
e|zt−1

e )

]
and

Eqφ

[
log

pzeθ (z0:Te )

qzeφ (z0:Te |x)

]
= Eqφ

[
log pzeθ,T (z

T
e )
]
+ Eqφ

[
log

pzeθ,0|1(z
0
e|z1e)

qzeφ,1|0(z
1
e|z0e)

]
+

T∑
t=2

Eqφ

[
log

pzeθ,t−1|t(z
t−1
e |zte)

qzeφ,t|t−1(z
t
e|zt−1

e )

]
.

By (1),

Eqφ

[
log

pzeθ (z0:Te )

qzeφ (z0:Te |x)

]
= Eqφ

[
log

pzeθ,T (z
T
e )

qzeφ,T |0(z
T
e |z0e)

]
+

T∑
t=2

Eqφ

[
log

pzeθ,t−1|t(z
t−1
e |zte)

qzeφ,t−1|0,t(z
t−1
e |z0e, zte)

]
+ Eqφ

[
log pzeθ,0|1(z

0
e|z1e)

]
,

which concludes the proof.

B. Inpainting diffusion sampling
We consider the case in which we know a sub-part of the picture X , and want to predict the complementary pixels X .
Knowing the corresponding n latent vectors ze0 which result from X through the encoder, we sample N − n ze

T from the
uninformative distribution ze

T ∼ N (0, (2ϑ)−1η2Id×(N−n)). In order to produce the chain of samples zt−1
e from zte we

then follow the following procedure.

• ze
t−1 is predicted from zte using the neural network predictor, similar to the unconditioned case.

• Sample ze
t−1 using the forward bridge noising process.

C. Additional regularisation considerations
We consider here details about the parameterisation of pzqθ (ztq|zte) and q

zq
φ (ztq|zte) in order to compute Lreg

t (θ, φ). Using the
Gumbel-Softmax formulation provides an efficient and differentiable parameterisation.

p
zq
θ,t(z

t
q = ·|zte) = Softmax{(−∥ze − ek∥22 +Gk)/τt}1⩽k⩽K ,

qφ,t(z
t
q = ·|zte) = Softmax{(−∥ze − ek∥22 + G̃k)/τ}1⩽k⩽K ,

where {(Gk, G̃k)}1⩽k⩽K are i.i.d. with distribution Gumbel(0, 1), τ > 0, and {τt}0⩽t⩽T are positive time-dependent
scaling parameters. Then, up to the additive normalizing terms,

Lreg
t (θ, φ) = Eqφ

[
log

p
zq
θ,t(z

t
q|zte)

q
zq
φ,t(z

t
q|zte)

]
=

(
− 1

τt
+

1

τ

)
∥zte − ẑtq∥22 −

G̃k

τ
+

Gk

τt
,

where ẑtq ∼ q
zq
φ,t(z

t
q|zte). Considering only the first term which depend on zte and produce non-zero gradients, we get:

Lreg
t (θ, φ) = γt∥zte − ẑtq∥22

where γt = −1/τt +1/τ drives the behavior of the regulariser. By choosing is γt negative for large t, the regulariser pushes
the codebooks away from zte, which prevents too early specialization, or matching of codebooks with noise, as zt≈T

e is close
to the uninformative distribution. Finally, for small t, choosing γt positive helps matching codebooks with ze when the
corruption is small. In practice τ = 1 and a simple schedule from 10 to 0.1 for τt was considered in this work.
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D. Neural Networks
For εθ(zte, t), we use a U-net like architecture similar to the one mentioned in (Ho et al., 2020). It consists of a deep
convolutional neural network with 57M parameters, which is slightly below the PixelCNN architecture (95.8M parameters).
The VQ-VAE encoder / decoders are also deep convolutional networks totalling 65M parameters.

E. Toy Example Appendix
Parameterisation We consider a neural network to model εθ(zte, t). The network shown in Figure 10 consists of a time
embedding similar to (Ho et al., 2020), as well as a few linear or 1D-convolutional layers, totalling around 5000 parameters.

Figure 10. Graphical representation of the neural network used for the toy dataset.

For the parameterisation of the quantization part, we choose p
zq
θ,t(z

t
q = ej |zte) = Softmax1≤k≤K{−∥ze − ek∥2}j , and the

same parameterisation for qzqφ,t(z
t
q|zte). Therefore our loss simplifies to:

L(θ, φ) = Eqφ

[
log pxθ (x|z0q)

]
+ Lt(θ, φ) ,

where t is sampled uniformly in {0, . . . , T}.

t NN sequence
50 (0, 7, 3, 6, 2)
40 (6, 5, 5, 5, 3)
30 (5, 5, 5, 4, 2)
20 (6, 6, 5, 4, 3)
10 (5, 6, 5, 4, 3)
0 (5, 6, 5, 4, 3)

Table 4. Discrete samples during diffusion process. The discrete sequence is obtained by computing the nearest neighbour centroid µj for
each Xt

s. At t = 0, X0 is sampled from a centered Gaussian distribution with small covariance matrix (2ϑ)−1η2I2×5, resulting in a
uniform discrete sequence, as all centroids have a similar unit norm.

Discrete samples during diffusion process Discrete sequences corresponding to the denoising diffusion process shown
in Figure 3 are shown in Table 4.

End-to-end training In order to train the codebooks alongside the diffusion process, we need to backpropagate the
gradient of the likelihood of the data ze given a z0e reconstructed by the diffusion process (corresponding to Lrec(θ, φ)). We
use the Gumbel-Softmax parameterisation in order to obtain a differentiable process and update the codebooks ej .

In this toy example, the use of the third part of the loss
∑T

t=0 L
reg
t (θ, φ) is not mandatory as we obtain good results with

Lreg
t (θ, φ) = 0, which means parametrising p

zq
θ,t(z

t
q|zte) = q

zq
φ,t(z

t
q|zte). However we noticed that Lreg

t (θ, φ) is useful to
improve the learning of the codebooks. If we choose γt to be decreasing with time t, we have the following. When t is
low, the denoising process is almost over, Lreg

t (θ, φ) pushes ze and the selected zq to close together: ∥ze∥ ∼ 1, then ∥zte∥
will be likely near a specific ej and far from the others; therefore only a single codebook is selected and receives gradient.
When t is high, ∥zte∥ ∼ 0 and the Gumbel-Softmax makes it so that all codebooks are equidistant from ∥zte∥ and receive
non-zero gradient. This naturally solves training problem associated with dead codebooks in VQ-VAEs. Joint training of the
denoising and codebooks yield excellent codebook positionning as shown in Figure 11.
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Figure 11. Left, initial random codebooks positions. Right, after training, position of codebook vectors. Note that the codebook indexes
do not match the indexes of the Gaussians, the model learnt to make the associations between neighboring centroids in a different order.

Toy Diffusion inpainting We consider a case in which we want to reconstruct an x while we only know one (or a few)
dimensions, and sample the others. Consider that x is generated using a sequence q = (q1, q2, q”, q4, q5) where the last one
if fixed q1 = 0, q5 = 4. Then, knowing q1, q5, we sample q2, q3, q4, as shown in Figure 12.

Figure 12. Three independent sampling of X using a trained diffusion bridge, with fixed q1 = 0, q5 = 4. The three corresponding
sequences are (0, 7, 6, 5, 4), (0, 1, 2, 3, 4), (0, 7, 6, 5, 4) all valid sequences.

F. Additional visuals
F.1. Cifar

Figure 13. Reconstruction of the VQVAE model used in the following benchmarks.

F.2. MiniImageNet
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Figure 14. Samples from the PixelCNN prior (left) and from our diffusion prior (right) on CIFAR10.

Figure 15. Reconstruction of the trained VQ-VAE on the miniImageNet dataset. Original images are encoded, discretised, and decoded.

Figure 16. Samples from our model for the miniimagenet dataset
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Figure 17. Conditional sampling: Top: reconstructions from the vqvae of originals images, Middle: conditional sampling with the left
side of the image as condition, for our model. Bottom 1 and 2: conditional sampling in the same context with the PixelCNN prior.

Figure 18. Sampling denoising chain from up to t = 0, shown at regular intervals, conditioned on the left part of the picture. The sampling
procedure is described in Appendix B.
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Figure 19. Conditional sampling with the PixelCNN prior. Left: original images, Right: conditional sampling with the left side of the
image as condition. Each row represents a class of the validation set of the miniImageNet dataset.


