
One-Pass Diversified Sampling with Application to Terabyte-Scale Genomic
Sequence Streams

Benjamin Coleman * 1 Benito Geordie * 2 Li Chou 3 R. A. Leo Elworth 2 Todd J. Treangen 2

Anshumali Shrivastava 2 4

Abstract
A popular approach to reduce the size of a mas-
sive dataset is to apply efficient online sampling
to the stream of data as it is read or generated.
Online sampling routines are currently restricted
to variations of reservoir sampling, where each
sample is selected uniformly and independently
of other samples. This renders them unsuitable for
large-scale applications in computational biology,
such as metagenomic community profiling and
protein function annotation, which suffer from
severe class imbalance. To maintain a represen-
tative and diverse sample, we must identify and
preferentially select data that are likely to belong
to rare classes. We argue that existing schemes for
diversity sampling have prohibitive overhead for
large-scale problems and high-throughput streams.
We propose an efficient sampling routine that uses
an online representation of the data distribution as
a prefilter to retain elements from rare groups. We
apply this method to several genomic data analy-
sis tasks and demonstrate significant speedup in
downstream analysis without sacrificing the qual-
ity of the results. Because our algorithm is 2x
faster and uses 1000x less memory than coreset,
reservoir and sketch-based alternatives, we antic-
ipate that it will become a useful preprocessing
step for applications with large-scale streaming
data.

Whole-genome shotgun sequencing (WGS) has inspired nu-

*Equal contribution 1Department of Electrical and Computer
Engineering, Rice University, Houston TX, USA 2Department
of Computer Science, Rice University, Houston, TX, USA
3Department of Engineering and Computer Science, West Texas
A&M University, Canyon TX, USA 4Third AI, Houston TX,
USA. Correspondence to: Benjamin Coleman <brc7@rice.edu>,
Benito Geordie <bg31@rice.edu>, Todd J. Treangen <trean-
gen@rice.edu>, Anshumali Shrivastava <anshumali@rice.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

merous breakthroughs over the past decade in large-scale
comparative genomics research. The total amount of WGS
data doubles approximately every seven months (Stephens
et al., 2015), far exceeding even the pace of computing
capabilities predicted by Moore’s law. Genomic data facili-
tates many advances in human health, including pathogen
surveillance (Timme et al., 2019), antibiotic resistance de-
tection (Köser et al., 2014), and cancer genomics (Meyerson
et al., 2010). Labs are thus motivated to sequence as many
organisms as possible, culminating in repositories like the
the European Nucleotide Archive (ENA) (Leinonen et al.,
2010a), which contains one-fifth of a petabyte of bacterial
and viral DNA alone, and the NCBI Short Read Archive
(SRA)(Leinonen et al., 2010b). At the time of writing, the
SRA contains over 43 petabytes of publicly-hosted data on
the AWS cloud. The scale of genomic data rivals that of
the largest web-scale companies and government agencies,
and the data collection rate is likely to increase thanks to
ambitious plans such as the NIH All of Us program (Sankar
& Parker, 2017), which will sequence 1 million human
genomes as part of its personalized medicine initiative. Re-
cent developments in sequencing hardware also threaten to
inflate the exponential growth rate. The PromethION sys-
tem from Oxford Nanopore Technologies has a data rate of
over 4 terabytes per run, with a theoretical maximum yield
of 15 TB.

This ‘data deluge’ requires continued innovation for data
processing and analysis (Schatz & Langmead, 2013). For
example, hardware vendors are actively developing “Read
Until” technology – a real-time selective sequencing ap-
proach that ejects abundant background sequences in favor
of scarce diverse sequences present in a sample (Loose
et al., 2016; Edwards et al., 2019). When run on fast GPUs,
recent base calling algorithms, such as Guppy, can keep
up with a single MinION or PromethION data stream by
offering 1.5-6 Mbps throughput (Wick et al., 2019). How-
ever, it is increasingly challenging to store the data off of
the device on local storage, and many downstream meth-
ods require storing all k-mers from a dataset in memory.
This is untenable for terabyte-scale datasets. To cope with
the onslaught of data, the algorithms community must de-
velop streaming algorithms that can both retain the diversity

One-Pass Diversified Sampling

of data contained in massive genomic and metagenomic
datasets and also keep pace with the sequencing devices.
At this scale, sketching and streaming algorithms are the
only way to process massive sequence datasets without a
corresponding increase in computational resources (Rowe,
2019).

Diversity Sampling: Inspired by these developments, we
consider the streaming diversity sampling problem. In this
problem, we are given a data stream D of elements (or
sequences) x1, x2, . . . , xN , which we see one element at
a time. The task is to construct a diverse sample S of D
while fulfilling three properties. (1) One Pass. Once we
see xi, we must immediately decide whether to accept or
reject it without seeing future samples. (2) Efficient. The
accept/reject decision must be fast enough to keep pace with
the data generation rate. (3) Low-Memory. The memory of
the algorithm should fit into RAM and scale well with N .
These criteria have immediate consequences for algorithm
design. Due to latency and RAM limitations, it is infeasible
to store lookup structures for similarity search. For petabyte-
sized streams with long sequences, it is even difficult to store
buffers of sampled elements. Our aim is to perform diverse
sampling while achieving the above three properties.

Diversity maximization problems have been explored by
the computational geometry community in the context of di-
verse coresets (Indyk et al., 2014) and diverse near-neighbor
search (Abbar et al., 2013b), but diversity is usually defined
geometrically (e.g. the minimum pairwise distance between
the points of the sample set). However, other diversity mea-
sures are more useful and well-known for genomics prob-
lems. In this paper, we focus on biodiversity measures such
as the Simpson index and Shannon index, which roughly
measure the fraction of species (classes) that are represented
in the sample.

Related Work: One can always obtain a random sample
of the dataset via reservoir sampling (Vitter, 1985). Reser-
voir sampling satisfies the three aforementioned properties,
but random selection is undesirable because it may discard
important information. We consider several alternatives.

Composable Coresets: A coreset is a subset of samples
from the dataset D that approximately preserves the prop-
erties of the dataset. Indyk et al. consider composable (or
mergeable) coresets for diversity maximization, under sev-
eral geometric notions of diversity (Indyk et al., 2014). Their
algorithm breaks the stream into buffers of M elements and
constructs a diverse coreset within each buffer. To get the
final sample, we merge the coresets from each buffer. The
method has strong theoretical guarantees and good perfor-
mance on news data (Abbar et al., 2013a).

Buffer algorithms: Algorithms such as deterministic lossy
counting and randomized sticky sampling use a buffer of

samples to identify frequent elements (Manku & Motwani,
2002). Lossy counting records the frequency of the top M
unique items in an array, while sticky sampling allocates a
new counter for every new item seen so far. Both algorithms
periodically purge the buffer of low-count items, to avoid
maintaining counts for infrequent elements.

Sketching Algorithms: The Count-Min sketch (CMS) is
an array of counters that can efficiently approximate how
frequently an element occurs in a data stream (Cormode &
Muthukrishnan, 2005). Diginorm (Brown et al., 2012), Big-
norm (Wedemeyer et al., 2017) and NeatFreq (McCorrison
et al., 2014) are CMS-based sketching algorithms which
attempt to remove redundant, duplicate sequences from the
stream, a process referred to as genetic data normalization.
At a high level, such methods downsample high-frequency
k-mers while attempting to retain rare information.

Why are existing methods insufficient? Two key factors
limit the utility of existing methods for diversity sampling.
First, the focus is often on removing exact duplicates in the
stream, which lacks robustness to the slight perturbations
introduced by hardware-level read errors. A CMS or lossy
counting buffer can answer whether we have previously
seen a particular sequence, but not whether we have seen
a similar one. Second, the memory and computation often
scales poorly with the sample size. Composable coresets
can reject similar sequences, but require costly distance
computations, while the memory of CMS-based methods
scales poorly with the stream size. This is reflected in our
experiments, where Diginorm (Brown et al., 2012) requires
progressively larger amounts of memory for larger datasets
and coresets cannot run on datasets with more than 1 million
reads.

Our Contribution: In this paper, we propose a novel sam-
pling algorithm to select elements from a stream while pre-
serving diversity. Inspired by recent advances in the field of
density estimation and locality-sensitive hashing (LSH), we
use a sketch to quickly estimate the probability of observ-
ing each stream item. This diversity score enables a robust
inverse propensity sampling process that preserves diversity.
The memory depends on the diversity of the stream, rather
than the size, and the algorithm is fast enough to run on
terabyte-scale data.

1. Background
We present a fast diversity sampling routine that handles
high-throughput streams of sequence data. Our method
constructs a diverse sample set by rejecting sequences that
are similar to the samples which have been collected so
far. The critical part of our approach is that we do not
perform pairwise sequence similarity comparisons. Instead,
we estimate the data distribution from the stream, which

One-Pass Diversified Sampling

we use to approximate the likelihood of the current element
given the past stream elements. This likelihood acts as an
inverse diversity score - if the likelihood is low, then the
element does not resemble previous data and should be
included in the sample.

Density Estimation: To model the distribution of elements
in the stream, we require a fast method for density estima-
tion. If the parametric form of the density is known (e.g.
Gaussian mixture), then one can use standard methods to fit
a distribution to the previous stream observations. However,
we often do not know the form of genomics data distribu-
tions. WGS sequence datasets are most naturally modeled
using string distances that make it difficult to construct and
learn a parameterized distribution. Even with an embedding
into a more traditional metric space, it is expensive to fit and
update a distribution each time the stream outputs new data.

Therefore, we use the kernel density estimate (KDE) to
model the streaming distribution. The KDE is a well-
established non-parametric statistical method to estimate
the data distribution from a collection of points. Given a
dataset D, a distance function d(x, q) and a kernel function
κ : d(x, q)→ [0, 1], the radial KDE is the quantity:

KDE(q) =
∑
x∈D

κ(d(x, q))

Although the naive calculation of the KDE is expensive
(O(N)), we leverage recent work towards fast kernel sum
calculations. We introduce these methods below.

Locality-Sensitive Hashing: (LSH) An LSH family (In-
dyk & Motwani, 1998) is a family of functions where simi-
lar points have a high probability of having the same hash
value under the hash mapping.

Definition 1.1. (R, cR, α, β)-sensitive hash family
A familyH is called (R, cR, α, β)-sensitive with respect to
a distance function d(x, y) if the following two properties
hold for any hash function h ∈ H and any points x and y:

d(x, y) ≤ R =⇒ PrH[h(x) = h(y)] ≥ α

d(x, y) ≥ cR =⇒ PrH[h(x) = h(y)] ≤ β

LSH Notation: If two points x and y have the same LSH
function value (h(x) = h(y)), we say that these points col-
lide. We use the notation ρ(x, y) to refer to the collision
probability PrH[h(x) = h(y);x, y]. We may improve the
selectivity of an LSH function through a process known
as concatenation, which packages together several hash
values into one output. Suppose we are given an LSH
family with collision probability ρ, and we compute n
hash functions. The concatenated hash output is the set
[h1(x), h2(x)...hn(x)] ∈ Zn, and the collision probability

of the resulting hash is ρn. To transform the values in Zn to
an integer in the fixed range [1, B], we may rehash the LSH
output using a universal hash function (Carter & Wegman,
1979). The collision probability becomes ρn B−1B + 1

B .

MinHash and Genomics: MinHash is sensitive to the Jac-
card similarity between sets and is widely used in bioinfor-
matics (Broder, 1997b). In genomics, the sets are sequences,
represented as bags of k-mers, and the Jaccard similarity
is related to the average nucleotide identity (ANI) (Ondov
et al., 2016). Figure 1 shows how to hash a sequence with
MinHash.

RACE Sketch: The RACE sketch (Repeated Array of
Count Estimators) is a technique to approximate the KDE
when the kernel κ is the collision probability of an LSH
function (Luo & Shrivastava, 2018; Coleman et al., 2020;
Coleman & Shrivastava, 2020). The sketch consists of a 2D
integer array A ∈ ZB×R that is indexed using an LSH func-
tion. When a new data element x arrives from the stream,
we hash x using R different LSH functions and increment
the counters in A at the corresponding locations. To approx-
imate KDE(q), we take the average of the R count values
at the indices corresponding to h(q).
Theorem 1.2. (Coleman & Shrivastava, 2020) Given a
dataset D and an LSH familyH with collision probability
ρ = κ(d(x, y)), create a RACE array A of the dataset
with R = 1 using an LSH function h(q) sampled uniformly
fromH. Then for any query q, E[A[h(q)]] = KDE(q) with
bounded variance.

var(A[h(q)]) ≤

(∑
x∈D

√
κ(d(x, q))

)2

2. Diversified Sampling via Inverse Propensity
We propose a form of inverse propensity sampling to per-
form diversified sampling on data streams. Inverse propen-
sity sampling is a type of importance sampling where points
are weighted based on the inverse probability of their in-
clusion in the dataset. The technique is a well-established
method to remove selection bias arising from the assignment
of examples to treatment groups in statistical studies (Rosen-
baum & Rubin, 1983).

Intuition: We observe that propensity estimates can be used
to implement diversified sampling. To understand why, con-
sider a mixture model where we first draw a class C with
probability pC from a set of classes and then generate a ran-
dom element x ∈ C. To maximize traditional measures of
biodiversity, we wish to select an equal number of elements
from each class. To de-bias the non-uniform probability of
selecting class C in the first level of the mixture model, we
can use inverse propensity sampling to select elements from
C based on the importance weight p−1C . The result is a set
of samples that are uniformly distributed among the classes.

One-Pass Diversified Sampling

Figure 1. MinHash on gene sequence data. Each k-mer in the se-
quence is hashed using the same universal (random) hash function,
resulting in a set of hash values. The MinHash output value is the
smallest of these hash values, or the minimum hash.

We would like to use this idea to select points from the data
stream, but there are two challenges. First, the propensity
pC is unknown and may even change over time. Second,
there is no fast way to determine the class from which each
stream element was drawn. We use efficient density esti-
mation to address these problems. If we suppose that the
classes are well-separated within the metric space – a rea-
sonable assumption for many metagenomic problems – we
may use the KDE of x as our estimate of pC . If we use
RACE as the density estimator and eliminate the computa-
tional overhead due to probabilistic sampling, we obtain the
sampling method Algorithm 1.

There are several valid string distances (and corresponding
kernels) that are appropriate for this situation, including the
Hamming distance, Jaccard distance, and edit distance (Mc-
Cauley, 2019). We consider the Jaccard kernel because it
can be implemented very efficiently via the MinHash LSH
family (Broder, 1997a) for both genomic and metagenomic
applications (Ondov et al., 2016). However, our results and
algorithms generally apply to any metric space that supports
efficient KDE.

Computation and Memory Cost: Consider the compu-
tation and memory requirements of Algorithm 1. Each
element in the stream requires R MinHash computations,
followed by R counter look-ups in the sketch and R scalar
additions to the count value. Our experiments show that
R can be as small as 10, leading to a negligible compu-
tation cost. Similarly, the memory footprint is also small.
Unlike reservoir sampling, frequency sampling or coresets,
diversified sampling does not use buffers of sequence data.
Instead, we store a B × R array of integers in RAM. We
will later see that the value of B depends on the diversity of
the stream, but even with large and diverse datasets we only
need B ≤ 1M and R = 10, or a few megabytes of RAM.

Algorithm 1 Diversified Sampling
Input: Data stream D, threshold τ , repetitions R, ar-
ray width B, number of LSH concatenations n, size of
sequence k-mers k
Output: Diverse sample S
Initialize: R independent LSH functions {h1, . . . , hR}
with range B and n concatenations
Sample S ← 1 and A← 0B×R

for x ∈ D do
Score s← 0
for r in 1 to R do
s = s+A[r, hr(x)]
Increment A[l, hl(x)]

end for
s = s/R
if s < τ then

Append x to S
end if

end for

3. Theoretical Results
In this section we show that, under reasonable modeling
assumptions, Algorithm 1 maximizes the diversity index
of the sample. It is well-known that inverse propensity
sampling undoes the data generation bias, and there is rich
theory corresponding to the use of estimated propensity
scores. However, Algorithm 1 is a de-randomized version
of the algorithm with approximate scoring, and this requires
a specialized analysis.

Our proof sketch is as follows. We start with the assumption
that the sequence classes are separable. A sequence class
is an abstract term that can refer to a species, Operational
Taxonomic Unit (OTU), protein functional group, or any
other group with unique gene-level information. Using this
assumption, we show that each of the counters within A for
our sample S converges to a constant under Algorithm 1.
That is, if we were to construct a RACE sketch using only
the sequences in our sample, all of the counters in the array
would have the same value. We conclude our analysis with
a proof that if a sample has uniform counters, then it has an
optimal diversity index. We begin by formally defining the
diversity sampling problem.

Definition 3.1. Given a streaming dataset D, consisting of
elements x1, x2, . . . , xN where each element xi belongs to
one of Z different classes C1, C2, . . . , CZ , and a diversity
measure D(S), construct a subset S ⊂ D of M samples,
where M � N , such that D(S) is maximized. Namely,
find

S? = arg max
|S|=M

D(S)

Definition 3.1 is also given in (Indyk et al., 2014) and the
problem has been analyzed for a dozen different diversity

One-Pass Diversified Sampling

measures D(S). However, these measures are low-level
geometric functions that do not consider the class labels,
with the exception of topic diversity, where we wish to solve
a set coverage problem on the topics covered by a sample of
news articles. Hence, we adopt more traditional biodiversity
measures such as the Simpson, Shannon, and Berger–Parker
indices, which demand a subset that has equal representation
of as many classes as possible. In practice, our classes
may be operational taxonomic units (OTU), species, genera,
protein classes, or any other classification unit. We assume
that the classes are ∆-separable, or distinguishable based
on sequence-level features.

Definition 3.2. ∆-separable classes: We say that two
classes C1 and C2 are ∆-separable if d(x, y) ≥ ∆ for all
x ∈ C1 and y ∈ C2

Under this assumption, we can select parameters that force
each labeled class to map to a unique set of counters in the
array because the minimum distance ∆ bounds the collision
probability β from Definition 1.1. Lemma 3.3 is a conse-
quence of standard LSH amplification techniques (Datar
et al., 2004).

Lemma 3.3. Suppose that two classes C1 and C2 are ∆-
separable and that there exists an (R,∆, α, β)-sensitive
hash family H. Then given δ ∈ [0, 1], there exists an LSH
function h(x) such that h(x) 6= h(y) for all x ∈ C1 and
y ∈ C2 with probability 1− δ.

Note that the hash function from Lemma 3.3 sends classes
to distinct buckets with probability 1− δ. To obtain a true
non-colliding hash, we can verify and retry the construction
process if necessary (Las Vegas style). We can also simply
allow our subsequent guarantees to hold with probability
1 − δ. We will assume the former. Now we consider the
discrete set of count values in A. Since the count values are
non-decreasing, it is straightforward to see that Algorithm 1
causes them to converge to dτe.
Lemma 3.4. Construct a single RACE array withB buckets
using an LSH function h(·) on the elements of the sample
set S obtained using Algorithm 1. Then Algorithm 1 causes
each of the RACE counters in this array to converge to dτe.

Diversity Indices: We measure sample diversity using
the Shannon index (1), inverse Simpson index (2), and
Berger–Parker index (3).

H ′ = −
Z∑
i=1

si log zi (1)

λ−1 =

(
Z∑
i=1

z2i

)−1
(2)

DB = max
1≤i≤Z

zi (3)

Z is the number of sequence classes in the sample S. The
proportion zi is the ratio ni/M , where ni is the number
of times that class i appears in the sample and M is the
sample size. Assume the classes are ∆-separable and use
Lemma 3.3 to ensure that each class maps to a unique set of
buckets. We are now ready to express the diversity index in
terms of the count values.

Theorem 3.5. Assume that classes C1, . . . , CS are ∆-
separable and use the hash function from Lemma 3.3 to
construct a count sketch for the output of Algorithm 1. Then
the ratio zi converges to a constant:

zi =
ni
m
→ dτeBi
dτeB

=
Bi
B

Bi is the number of buckets in the hash range of class Ci.

This theorem allows us to prove useful statements about
the diversity index. Consider the simple case where all
Bi are equal. The following statement is a straightforward
consequence of the fact that zi → 1/Z and the observation
that the diversity indices attain their maximum when zi =
1/Z.

Corollary 3.6. Suppose each class maps to exactly k buck-
ets (i.e. Bi = k). With B = Zk buckets, the Shannon,
Simpson, and Berger-Parker diversity measures converge to
their maximum value.

Limitations: In practice, classes do not map to the same
number of buckets. However, a number of useful mixture
models approximately have this property, resulting in a sam-
ple with a diversity index that is approximately optimal. For
instance, consider a dataset where class Ci consists of a
uniform sample on the ball B(ci, ri), which is the set of
all sequences y such that d(y, ci) < ri. If the ball radii
{r1, ...rZ} are all the same, then all the classes map to
approximately the same number of buckets. This model as-
sumes that the sequences in each class are highly similar to
each other, but one can construct other models with the same
convergence behavior that do not require this assumption.

It should also be noted that our assumptions about the class
k-mer distribution are not necessarily required for good
practical performance. Because the diversity index is a
precision metric over all classes, we require an equal number
of samples from each class to guarantee an optimal diversity
index. This leads to the assumptions made by Corollary 3.6.
However, many applications only demand high recall, where
all classes are represented. For this behavior, Definition 3.2
is sufficient. We empirically verify that Definition 3.2 holds
in real datasets in Figure 2.

Practical Implications: Theorem 3.5 indicates that we will
oversample classes with high levels of sequence variation.
For example, species with large pan-genome sizes will cover
a larger number of buckets in the array than those with

One-Pass Diversified Sampling

Figure 2. Values of ∆ for real-world datasets. Note that the sepa-
rability of two classes depends on the k-mer length.

small pan-genomes. This means that diversified sampling
would likely retain many samples belonging to Escherichia
coli bacteria in metagenomics applications, because it has
an open pan-genome with an incredibly high degree of
sequence-level variation (Gordienko et al., 2013). There-
fore, it will cover a larger number of buckets and have a
higher Bi than a species with a smaller, closed pan-genome,
such as Mycobacterium tuberculosis (Kavvas et al., 2018).
The practical takeaway is that we oversample classes based
on the amount of space covered by the class, while other
methods sample classes based on the number of sequences
belonging to the class.

Relationship to k-mer Abundance: Methods such as Dig-
inorm, Bignorm and NeatFreq estimate the redundancy
based on the median abundance of k-mers that appear in
a read (Brown et al., 2012; Wedemeyer et al., 2017; Mc-
Corrison et al., 2014). If we adopt an analysis based on
k-mer abundance rather than class diversity, we can show
that our method estimates the redundancy based on the aver-
age k-mer abundance. Given a read x, let s(x) be the score
assigned by our method to the read. The expected value
E[s(x)] is the average abundance over the k-mers that com-
pose x. Observe that MinHash uniformly selects a random
k-mer from x, which we hash into a count-min sketch to get
s(x). The expectation over MinHash seeds is the average
value of the CMS cells that correspond to the k-mers in
x. With R repetitions, we get a sharp estimate of E[s(x)]
which we compare to a threshold τ .

Memory Performance: Coresets require roughly ML
bytes in RAM, where M is the number of samples and
L the average length of each read. For most applications, M
must increase with the dataset size (N), often growing at the
rate M = O(N). Our method uses RB integers, where R
andB do not depend linearly onN . Diginorm, Bignorm and
NeatFreq also use anR×B integer array, but these methods
require R = O(logN) to accurately estimate individual
k-mer frequencies (to report the median). Because we use

the average instead of the median, we can set R = O(1)
while still maintaining constant error (Theorem 1.2).

4. Experiments
To show that diversified sampling is a viable and efficient
way to downsample sequence datasets, we conducted four
sets of experiments on a broad range of problems. We
downloaded real datasets directly from the SRA, ENA, and
UniRef archives. We briefly describe the tasks here, with a
longer explanation in the appendix.

Terminology: We use the term dataset to refer to a set of
sequences. A read is a sequence of variable length that is
output by the low-level sequencing hardware and basecall-
ing software. Protein sequences describe the structure of a
protein and have an alphabet size of 20 characters, while
DNA sequences have an alphabet of 4 characters {A,T,C,G}.
Metagenomic datasets contain DNA sequences belonging to
multiple organisms, while genomes are full, assembled se-
quences belonging to one species. The Average Nucleotide
Identity (ANI) is a similarity measure that decides whether
two sequences belong to the same species. Table 2 shows
the run accession numbers and properties of the datasets
used in our evaluation.

Species-Preserving Downsampling: In metagenomic
community profiling, we wish to identify low-abundance
classes in a dataset (Qin et al., 2010; Segata et al., 2012).
Thus, our set of samples must represent as many species
as possible if it is to be useful. We evaluate our method by
counting the number of species preserved after downsam-
pling short-read (Illumina) and long-read (PromethION /
GridION) metagenomes. To obtain the ground truth refer-
ence labels, we used the Kraken2 tool (Wood et al., 2019)
to annotate each sequence.

While Kraken2 labels have previously been shown to be
highly accurate, the process can induce bias if applied
to microbiomes with poor representation in the Kraken2
database (Nasko et al., 2018). To address this, we focused
on human-host associated microbiomes from the HMP2
project (Peterson et al., 2009), where we found that over
70-80% of the microbial species in these samples were con-
tained in the database. Before performing the classification
and sub-sampling, we used Trimmomatic (Bolger et al.,
2014) to remove errors in the read data for our short-read
sequences. We did not pre-process the PromethION data.

Accelerating Containment Queries: The containment
problem is to determine whether sequences from a particular
organism are present in a dataset. Containment queries are
crucial for exploratory analysis, but they can take up to an
hour for large datasets, even with efficient techniques based
on MinHash and Bloom filters (Koslicki & Zabeti, 2019).
We measure the end-to-end speedup of Mash Screen (Ondov

One-Pass Diversified Sampling

Figure 3. Sample size vs. species count for short-read Illumina datasets. Up and to the left is better. Note that we were unable to
run coresets on million-read datasets. Also, we were unable to specify the full range of sample sizes with Diginorm due to algorithm
limitations that prevent small outputs. We abbreviate random sampling (RS) and our diversified sampling algorithm (DS).

Figure 4. (A): Sample size vs. species count for long-read PromethION data. Higher is better. (B,C): ANI (roughly corresponds to
similarity) between ground-truth contents of a mock metagenome and downsampled data on long-read (B) PromethION and (C) GridION
datasets. Higher is better. Coresets required excessive resources (> 1 day of computation), as did Diginorm on task (B).

et al., 2019) – a popular containment tool – on downsampled
datasets. We use mock metagenome datasets for which the
true containment status is known (Nicholls et al., 2019).

Protein Cluster Representatives: Gene ontology (GO)
terms are labels that describe the function of proteins. To
avoid processing the full reference archive of 300 million
proteins (UniRef), practitioners often use a downsampled
version that contains representative proteins (Suzek et al.,
2015). We compare our sample against the official cluster-
based samples released by the UniProt consortium (Suzek
et al., 2007).

Algorithm Implementations: We implemented our down-
sampling algorithm in C++, and we compare against our
own baseline C++ implementations of composable coresets
and reservoir sampling. We used the Jaccard distance with
and a window length of 100 sequences for the coreset imple-
mentation. We also compare against the official Diginorm
release with default settings (Crusoe et al., 2015).

Hyperparameters: Our algorithm requires five hyperpa-
rameters: τ , R, B, k, and n. We use R = 10 RACE repeti-
tions for all tasks. We use B = 1M except for on short-read
datasets, where we use B = 100K to allow the sketch to
fit into the L1 CPU cache. For the simple threshold-based
rejection procedure, τ is roughly proportional to the number
of samples in S and the choice of τ directly controls the
sampling rate. k is the length of the k-mers used to vectorize
the sequence. We use k = 8 for UniRef, k = 18 for short-
read metagenomes and k = 22 for long-read metagenomes,
following guidelines from (Ondov et al., 2016) and (Jain
et al., 2018). n is the number of LSH concatenations (see
Section 1); we simply use n = 1.

We sweep across the parameters that determine the sample
rate for all methods. The official Diginorm package exposes
a parameter C (coverage), which directly determines the
downsampling rate, and the memory budget. Diginorm
automatically detects when the memory is too small, so we
set it to the lowest acceptable value. Coresets only set M ,

One-Pass Diversified Sampling

Figure 5. (A): End-to-end speedup vs the recall of all species identified by Mash Screen as having ANI > 97% (multiple datasets). Higher
is better - 1.0 indicates that the subsample contains all relevant information. Timings include the downsampling time as well as the time to
run Mash Screen. (B): Downsampling the UniRef archive while preserving GO terms. Higher is better.

Table 1. Comparison of computational resources on a large-scale
PromethION dataset. We abbreviate random sampling (RS) and
diversified sampling (DS).

Method
Throughput
(Mbp/sec) RAM 99th% Latency

DS 12.11 4 MB 970 µs
RS 1012 1 GB 13.5 µs
Diginorm 4.65 3 GB –
Coresets 0.012 1 GB 1.8 s

the number of samples. We sweep τ from 0.1 to 100, C
from 1 to 20 and M from 1 to the number of reads.

Since τ is similar to a coverage parameter, it can be difficult
to know what value will produce a given sample size M .
This can be addressed in several ways. We can dynamically
adjust τ if the fraction of recently accepted reads is too
large / small. We can also allow τ to weakly depend on
the number t of reads processed so far (i.e. τ = 0.01t)
or progressively increase τ with each rejection. In this
work, we use fixed values and observe that the relationship
between τ and M is roughly logarithmic (τ = 0.01 implies
aggressive 100x downsampling while τ = 100 retains most
samples).

5. Results
Species-Preserving Downsampling: Figure 3 and Figure 4
show the species diversity sampling performance of our
method when applied to Illumina and PromethION datasets,
respectively. We observe that diversified sampling selects
sequences which represent a better-than-random fraction
of the total number of species. While other algorithms
such as coresets and Diginorm occasionally provide samples
with similar or better diversity, they are substantially more
expensive. Table 1 shows that our sketch needs 1000x less

memory than coresets and is 2.6x faster than Diginorm. This
corresponds to a processing time reduction from 8.8 hours
(for Diginorm) to 3.3 hours on the PromethION dataset
with 32 million reads. These trends are consistent for other
datasets and tasks - our method is substantially cheaper than
alternatives with similar diversity-preserving performance.

We also find that diversified sampling consistently preserves
the metagenomic diversity for our two mock metagenomes.
In this task, we downsample metagenomes with known
contents and measure the sample quality by computing the
mean ANI between the ground-truth contents and the down-
sampled sequences. Ideally, the ANI will be large (nearly 1)
because the contents are known to be present in the dataset,
but as the coverage may go down as the algorithm discards
more sequences. Thus, the decrease of ANI is a measure of
information loss. It should be noted that the metagenome
datasets in Figures 4B and 4C have logarithmically dis-
tributed species counts. The only way to perform well in
this setting is to ensure that all species – even the rare ones
– are represented in the sample. Figure 4 clearly shows
that the diversified sampling algorithm selectively retains
sequences from rare organisms.

Containment Queries and Protein Clustering: Figure 5
shows our experiments with containment queries and the
UniRef protein archive. Figure 5A shows the relationship
between information loss and acceleration of Mash Screen.
As the downsampling ratio becomes more aggressive, the
size of the input seen by Mash Screen decreases, leading
to a speedup. However, the sample also progressively loses
information that is relevant to the containment query. We
find that diversified sampling attains a 2x speedup without
changing the output of Mash Screen (7 hours to 3 hours for
large PromethION datasets). Our experiments with UniRef
(Figure 5B) again show that diversified sampling preserves
biologically-relevant information in a dataset. Using less
than 8.5% of the protein sequences, we are able to represent

One-Pass Diversified Sampling

Table 2. Dataset information. We report the run accession, dataset size N , mean sequence length L, number of species / GO terms /
classes in the dataset Z, and a description of the application. We use datasets with Illumina HiSeq 2000 short reads and with PromethION
long reads.

Dataset Type N L Z Description

SRR1565331 Illumina 269k 71.0 1,120 HMP2 sample of anterior nares
SRR1804823 Illumina 9.2M 98.6 6,387 HMP2 sample of supragingival plaque
SRR2175724 Illumina 10.2M 98.4 6,759 HMP2 sample of fecal matter
SRR1804468 Illumina 501k 99.4 3,630 HMP2 sample of buccal mucosa
ERR3152367 PromethION 32M 4,611 11,025 Mock metagenome data (Nicholls et al., 2019)
SRR606249 Illumina 54.8M 101 - Spiked metagenome
UniRef Protein 300M 293 41,910 Protein reference clusters

90% of the GO terms. It should be noted that UniRef clus-
ters are intended to preserve sequence identity rather than
gene ontology terms, but the fact remains that our samples
outperform even the official subsets of UniRef.

6. Discussion
The most exciting feature of our algorithm is the practical
speedup over existing algorithms to preserve diversity in a
stream. In our experiments, diversified sampling processed
32 million PromethION reads at 12 Mbp/second using only
4 MB of RAM. This computational performance is 3x faster
and 1000x more memory efficient than existing algorithms,
and can be easily sustained on next-generation sequencing
platforms such as the Oxford Nanopore MK1C, which has a
6-core ARM processor and 8 GB of RAM. To the best of our
knowledge, no other adaptive downsampling methods can
run in this computational environment. As sequencer data
streams run for longer periods of time and generate more
sequences, Diginorm and related methods will continue to
require 10x memory upgrades. While 3 GB is completely
reasonable, 300 GB pushes the boundaries of many com-
mercial workstations. Our diversified sampling algorithm
can operate on essentially unending streams with negligible
memory increases. Since Algorithm 1 can operate with only
a few megabytes of RAM, it can even be deployed on the
onboard V100 GPUs with which many sequencers come
equipped.

Our method also shows promise for database compression
and data analysis. We were able to quickly compress the
UniRef by more than 90%, while retaining the majority
of gene ontology annotations. We also obtained a 2x end-
to-end speedup for sequence containment queries without
affecting the quality of the output. As a result, we expect our
method to become useful to analysts who wish to perform a
fast first-cut analysis.

Limitations: We believe that diversified sampling is useful
in many contexts, but we only know that our method is effec-
tive for the applications we tested. Because inverse propen-

sity sampling discards the original abundance information,
there are some applications (e.g. differential expression
analyses, relative abundance analyses, and metagenome as-
sembly) where we explicitly do not recommend this prepro-
cessing step. Even within supported applications, diversified
sampling can inadvertently discard sequences that contain
biologically relevant information. Therefore, we caution
against the use of any sampling method in settings where
false negatives could have disastrous consequences, such as
pathogen detection. One practical issue with the algorithm
is that it is difficult to determine how τ translates to the
size of the sample. While this can be partially alleviated by
placing a reservoir sampling buffer after our prefilter, this
behavior has not yet been tested or implemented as part of
our open source downsampling tool.

7. Conclusion
We have presented a fast, versatile and low-memory algo-
rithm for diversified sampling. With advances in long-read
sequencing hardware and the exponential growth of data
archives, our method could play a crucial part in novel bi-
ological discoveries by facilitating real-time analyses on
large datasets with clinical/public health relevance. Given
its compatibility with some of the most ubiquitous tasks
(alpha diversity analyses, microbial presence/absence) and
databases (UniProt) in computational biology, our method
is well positioned to be widely adopted by the large-scale
comparative genomics research community.

References
Abbar, S., Amer-Yahia, S., Indyk, P., and Mahabadi, S. Real-

time recommendation of diverse related articles. In Pro-
ceedings of the 22nd international conference on World
Wide Web, pp. 1–12. ACM, 2013a.

Abbar, S., Amer-Yahia, S., Indyk, P., Mahabadi, S., and
Varadarajan, K. R. Diverse near neighbor problem. In
Proceedings of the 29th Annual Symposium on Computa-
tional Geometry, pp. 207–214. ACM, 2013b.

One-Pass Diversified Sampling

Bolger, A. M., Lohse, M., and Usadel, B. Trimmomatic: a
flexible trimmer for Illumina sequence data. Bioinformat-
ics, 30(15):2114–2120, 2014.

Broder, A. Z. On the resemblance and containment of
documents. In Proceedings of the Compression and Com-
plexity of Sequences, pp. 21–29, 1997a.

Broder, A. Z. On the resemblance and containment of
documents. In Proceedings. Compression and Complexity
of SEQUENCES 1997 (Cat. No. 97TB100171), pp. 21–29.
IEEE, 1997b.

Brown, C. T., Howe, A., Zhang, Q., Pyrkosz, A. B., and
Brom, T. H. A reference-free algorithm for computational
normalization of shotgun sequencing data. arXiv preprint
arXiv:1203.4802, 2012.

Carter, J. L. and Wegman, M. N. Universal classes of hash
functions. Journal of Computer and System Sciences, 18:
143–154, 1979.

Coleman, B. and Shrivastava, A. Sub-linear race sketches
for approximate kernel density estimation on streaming
data. In Proceedings of the 2020 World Wide Web Confer-
ence. International World Wide Web Conferences Steer-
ing Committee, 2020.

Coleman, B., Baraniuk, R., and Shrivastava, A. Sub-linear
memory sketches for near neighbor search on streaming
data. In International Conference on Machine Learning,
pp. 2089–2099. PMLR, 2020.

Cormode, G. and Muthukrishnan, S. An improved data
stream summary: the count-min sketch and its applica-
tions. Journal of Algorithms, 55:58–75, 2005.

Crusoe, M. R., Alameldin, H. F., Awad, S., Boucher, E.,
Caldwell, A., Cartwright, R., Charbonneau, A., Constan-
tinides, B., Edvenson, G., Fay, S., et al. The khmer
software package: enabling efficient nucleotide sequence
analysis. F1000Research, 4, 2015.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In Proceedings of the 20th Annual Symposium
on Computational Geometry, pp. 253–262. ACM, 2004.

Edwards, H. S., Krishnakumar, R., Sinha, A., Bird, S. W.,
Patel, K. D., and Bartsch, M. S. Real-time selective
sequencing with rubric: Read until with basecall and
reference-informed criteria. Scientific reports, 9(1):1–11,
2019.

Gordienko, E. N., Kazanov, M. D., and Gelfand, M. S.
Evolution of pan-genomes of escherichia coli, shigella
spp., and salmonella enterica. Journal of bacteriology,
195(12):2786–2792, 2013.

Indyk, P. and Motwani, R. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Pro-
ceedings of the 30th Annual ACM Symposium on Theory
of Computing, pp. 604–613, 1998.

Indyk, P., Mahabadi, S., Mahdian, M., and Mirrokni, V. S.
Composable core-sets for diversity and coverage maxi-
mization. In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database
Systems, pp. 100–108. ACM, 2014.

Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantini-
dis, K. T., and Aluru, S. High throughput ani analysis
of 90K prokaryotic genomes reveals clear species bound-
aries. Nature Communications, 9(1):5114, 2018.

Kavvas, E. S., Catoiu, E., Mih, N., Yurkovich, J. T., Seif, Y.,
Dillon, N., Heckmann, D., Anand, A., Yang, L., Nizet,
V., et al. Machine learning and structural analysis of my-
cobacterium tuberculosis pan-genome identifies genetic
signatures of antibiotic resistance. Nature communica-
tions, 9(1):1–9, 2018.

Köser, C. U., Ellington, M. J., and Peacock, S. J. Whole-
genome sequencing to control antimicrobial resistance.
Trends in Genetics, 30(9):401–407, 2014.

Koslicki, D. and Zabeti, H. Improving minhash via the con-
tainment index with applications to metagenomic analysis.
Applied Mathematics and Computation, 354:206–215,
2019.

Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-
Tárraga, A., Cheng, Y., Cleland, I., Faruque, N.,
Goodgame, N., Gibson, R., et al. The european nucleotide
archive. Nucleic acids research, 39(suppl 1):D28–D31,
2010a.

Leinonen, R., Sugawara, H., Shumway, M., and Collabora-
tion, I. N. S. D. The sequence read archive. Nucleic acids
research, 39(suppl 1):D19–D21, 2010b.

Loose, M., Malla, S., and Stout, M. Real-time selective
sequencing using nanopore technology. Nature methods,
13(9):751, 2016.

Luo, C. and Shrivastava, A. Arrays of (locality-sensitive)
count estimators (ACE): Anomaly detection on the edge.
In Proceedings of the 2018 World Wide Web Conference,
pp. 1439–1448. International World Wide Web Confer-
ences Steering Committee, 2018.

Manku, G. S. and Motwani, R. Approximate frequency
counts over data streams. In Proceedings of 28th In-
ternational Conference on Very Large Data Bases, pp.
346–357, 2002.

One-Pass Diversified Sampling

McCauley, S. Approximate similarity search under edit
distance using locality-sensitive hashing. arXiv preprint
arXiv:1907.01600, 2019.

McCorrison, J. M., Venepally, P., Singh, I., Fouts, D. E.,
Lasken, R. S., and Methé, B. A. Neatfreq: reference-
free data reduction and coverage normalization for de
novosequence assembly. BMC bioinformatics, 15(1):1–
12, 2014.

Meyerson, M., Gabriel, S., and Getz, G. Advances in un-
derstanding cancer genomes through second-generation
sequencing. Nature Reviews Genetics, 11(10):685, 2010.

Nasko, D. J., Koren, S., Phillippy, A. M., and Treangen, T. J.
RefSeq database growth influences the accuracy of k-
mer-based lowest common ancestor species identification.
Genome Biology, 19(1):165, 2018.

Nicholls, S. M., Quick, J. C., Tang, S., and Loman, N. J.
Ultra-deep, long-read nanopore sequencing of mock mi-
crobial community standards. Gigascience, 8(5):giz043,
2019.

Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B.,
Bergman, N. H., Koren, S., and Phillippy, A. M. Mash:
fast genome and metagenome distance estimation using
minhash. Genome biology, 17(1):132, 2016.

Ondov, B. D., Starrett, G. J., Sappington, A., Kostic, A.,
Koren, S., Buck, C. B., and Phillippy, A. M. Mash
screen: high-throughput sequence containment estima-
tion for genome discovery. Genome biology, 20(1):1–13,
2019.

Peterson, J., Garges, S., Giovanni, M., McInnes, P., Wang,
L., Schloss, J. A., Bonazzi, V., McEwen, J. E., Wetter-
strand, K. A., Deal, C., et al. The NIH human microbiome
project. Genome Research, 19(12):2317–2323, 2009.

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S.,
Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Ya-
mada, T., et al. A human gut microbial gene catalogue
established by metagenomic sequencing. nature, 464
(7285):59–65, 2010.

Rosenbaum, P. R. and Rubin, D. B. The central role of
the propensity score in observational studies for causal
effects. Biometrika, 70(1):41–55, 1983.

Rowe, W. P. When the levee breaks: a practical guide to
sketching algorithms for processing the flood of genomic
data. Genome Biology, 20(199):1–12, 2019.

Sankar, P. L. and Parker, L. S. The precision medicine
initiative’s all of us research program: an agenda for
research on its ethical, legal, and social issues. Genetics
in Medicine, 19(7):743–750, 2017.

Schatz, M. C. and Langmead, B. The dna data deluge: fast,
efficient genome sequencing machines are spewing out
more data than geneticists can analyze. Ieee Spectrum,
50(7):26, 2013.

Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jous-
son, O., and Huttenhower, C. Metagenomic microbial
community profiling using unique clade-specific marker
genes. Nature methods, 9(8):811–814, 2012.

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai,
C., Efron, M. J., Iyer, R., Schatz, M. C., Sinha, S., and
Robinson, G. E. Big data: astronomical or genomical?
PLoS biology, 13(7):e1002195, 2015.

Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R., and
Wu, C. H. Uniref: comprehensive and non-redundant
uniprot reference clusters. Bioinformatics, 23(10):1282–
1288, 2007.

Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu,
C. H., and Consortium, U. Uniref clusters: a comprehen-
sive and scalable alternative for improving sequence sim-
ilarity searches. Bioinformatics, 31(6):926–932, 2015.

Timme, R. E., Leon, M. S., and Allard, M. W. Utilizing
the public genometrakr database for foodborne pathogen
traceback. In Foodborne Bacterial Pathogens, pp. 201–
212. Springer, 2019.

Vitter, J. S. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37–57,
1985.

Wedemeyer, A., Kliemann, L., Srivastav, A., Schielke, C.,
Reusch, T. B., and Rosenstiel, P. An improved filter-
ing algorithm for big read datasets and its application to
single-cell assembly. BMC bioinformatics, 18(1):1–11,
2017.

Wick, R. R., Judd, L. M., and Holt, K. E. Performance
of neural network basecalling tools for oxford nanopore
sequencing. Genome biology, 20(1):129, 2019.

Wood, D. E., Lu, J., and Langmead, B. Improved metage-
nomic analysis with kraken 2. Genome biology, 20(1):
1–13, 2019.

One-Pass Diversified Sampling

A. Running the Code
The diversified sampling algorithm is available as a web app that runs in the browser and as an open-source command line
tool. To avoid violating double-blind review, we have included the repository as a zip file and deployed the web app to the
(anonymous) URL: Lc28kXQtqH.github.io.

B. Experimental Procedures and Datasets
Computational Hardware

Server 1 Server 2

CPU 56 cores Intel Xeon E5-2660 v4 @ 2.00GHz 64 cores Intel Xeon Gold 5218 @ 2.30GHz

GPU ASPEED Graphics Family (rev 30) ASPEED Graphics Family (rev 41)

Memory (GB) 528.27 394.86

Task 1: Species-Preserving Downsampling

We procured short-read sequence datasets from Illumina sequencers and long-read sequence datasets from PromethION
sequencers. These datasets are summarized in table 2. We first annotate each dataset by running it through Kraken2
https://github.com/DerrickWood/kraken2, an open source software that maps sequences to their Taxon IDs.
Concretely, the software outputs a copy of the dataset where each sequence’s Taxon ID is appended to its description line;
the sequences themselves remain unchanged. We then downsample these annotated files with RACE along with Diginorm,
Coresets and random sampling as benchmarks. The output of these algorithms is a downsampled version of the annotated
file; the file format is preserved and each retained entry is identical to the original entry. Each retained sequence has a
corresponding description line with its Taxon ID. Finally, we then run a Python script to count the number of unique Taxon
IDs in the subsamples.

Task 2: Accelerating Containment Queries

Given two sequences A and B which are represented as sets of k-mers, the task is to estimate the containment score
|A∩B|
|A| (Koslicki & Zabeti, 2019). We call A the reference and B the query. Note that the containment score is close to 1

only if most of the elements in A are present in B. Containment queries are important as a first-cut analysis. To understand
why, consider the situation where A is a genome and B is a sequencing run or a metagenome. If the species with genome
A is present in the sample that produced B, then the containment score will be large. The converse statement is not true –
sequences with a large containment score are not necessary present. Even still, containment is still a very useful way to
pre-screen a large dataset to identify species candidates that might be present (Ondov et al., 2019).

The aptly-named Mash Screen tool attempts to provide just that - the ability to quickly identify a small set of genomes
that may be present in a dataset. Mash screen is widely used, but we observe that the tool can take a long time to run on
large datasets. Our goal for this task is to reduce the size of the input to Mash screen (i.e. downsample the query B) while
retaining the ability to compute accurate containment scores.

We use mock metagenome datasets for which the true containment status is known (Nicholls et al., 2019). A mock
metagenome is the result of running a sequencing experiment on a sample with a known, ground-truth metagenome
community profile. Mash Screen returns an identity score, which estimates the number of bases that are shared between the
query and the reference. The identity score is estimated from the containment score, and it is common practice to create a
set of candidate species by cutting off the values at an appropriate score (i.e. identity > 0.97). Therefore, we consider two
measures of quality - the average identity score against the reference genomes of ground-truth species, and the recall of
ground-truth species when using a cutoff of 0.97.

Task 3: Protein Cluster Representatives

UniProt provides a UniRef id-mapping file, which provides a mapping from uniref100 id’s to the corresponding uniref90 and
uniref50 cluster representative ids as well as their gene ontology terms. We ran a python script that takes in the uniref100
fasta file and the idmapping file, creates a hashmap of uniref100id to GO terms, then iterates through the uniref100 file,

Lc28kXQtqH.github.io
https://github.com/DerrickWood/kraken2

One-Pass Diversified Sampling

appending the GO terms to the description line, and writes out the sequence with the new description line to the output
file. Like in the species alpha diversity experiment, this newly annotated file is then downsampled with RACE along with
random sampling as a benchmark. The downsampled files are then run through another Python script that reads description
lines and counts the number of unique gene ontology terms.

We also benchmarked against the number of unique GO terms found in uniref50 and uniref90, which contain representatives
of protein sequences clustered at 90% and 50% sequence identity respectively. To count this, we again used the UniRef
id-mapping. Recall that it maps uniref100 id’s to the corresponding cluster representative id’s in uniref50 and uniref90, in
addition to the gene ontology terms. To count the number of unique GO terms in uniref50, we wrote a python script that
iterates through every entry in id-mapping and only keeps gene ontology terms of an entry only if the uniref100 id matches
the uniref50 cluster representative id, effectively filtering out the entries to just the uniref50 cluster representatives. We
then simply count the number of unique go terms among the kept GO terms. The same goes for counting number of unique
uniref90 GO terms, except now we keep entries where uniref100id matches the uniref90 id.

C. Theoretical Results
In this section, we provide proofs for the theorems.

Lemma 3.3. Suppose that two classes C1 and C2 are ∆-separable and that there exists an (R,∆, α, β)-sensitive hash
familyH. Then given δ ∈ [0, 1], there exists an LSH function h(x) such that h(x) 6= h(y) for all x ∈ C1 and y ∈ C2 with
probability 1− δ.

Proof. Construct a hash function h(x) by concatenating n hash functions sampled from H and note that h(x) is
(R,∆, αn, βn)-sensitive. We want a lower bound on the probability that there are no collisions between x ∈ C1 and
y ∈ C2.

Pr∀x∈C1,
y∈C2

[h(x) 6= h(y)] = 1− Pr
[⋃
x∈C1
y∈C2

Ax,y

]
≥ 1− δ

⇒ Pr
[⋃
x∈C1
y∈C2

Ax,y

]
≤ δ

where Ax,y is the event that h(x) = h(y). Using the union bound and the fact that C1 and C2 are ∆-separable, we have

Pr
[⋃
x∈C1
y∈C2

Ax,y

]
≤
∑
x∈C1

∑
y∈C2

Pr[Ax,y]

=
∑
x∈C1

∑
y∈C2

ρ(x, y)n ≤ |C1||C2|βn

because d(x, y) ≥ ∆ for all x ∈ C1 and y ∈ C2. To get the result, set

n ≥
log δ
|C1||C2|

log β

Now we consider the discrete set of count values in A. Since the count values are non-decreasing, it is straightforward to see
that Algorithm 1 causes them to converge to dτe.
Lemma 3.4. Construct a single RACE array with B buckets using an LSH function h(·) on the elements of the sample set S
obtained using Algorithm 1. Then Algorithm 1 causes each of the RACE counters in this array to converge to dτe.

Proof. Let fD be the underlying probability distribution that generates each element of the data stream D. Restrict the
domain of h(x) to x ∈ supp(fD) and assume without loss of generality that the restricted range of h(x) is the set of integers
{1, . . . , B}.

One-Pass Diversified Sampling

Consider one of the counters in the RACE array. As a sequence of elements x1, x2, ... arrive from the stream, there will be a
sequence of count values n1, n2, ... within this counter. Note that there are B such sequences - one for each counter in the
array that lies in the domain of h(x) when x ∼ fD.

Note that the sequence of counters n1, n2, ... is non-decreasing and bounded above by dτe. Also note that at every time step,
there is a nonzero probability that the counter will be incremented (if it is less than dτe). Therefore, the sequence of count
values converges to dτe. This is true for all the count values, by the same argument.

Diversity Indices: We measure sample diversity using the Shannon index (1), inverse Simpson index (2), and Berger–Parker
index (3).

H ′ = −
Z∑
i=1

zi log zi λ−1 =

(
Z∑
i=1

z2i

)−1
DB = max

1≤i≤Z
zi

Z is the number of sequence classes in the sample S . The proportion zi is the ratio ni/M , where ni is the number of times
that class i appears in the sample and M is the sample size. Assume the classes are ∆-separable and use Lemma 3.3 to
ensure that each class maps to a unique set of buckets in the RACE array. We are now ready to express the diversity index in
terms of the RACE counts.

Theorem 3.5. Assume that classes C1, . . . , CS are ∆-separable and use the hash function from Lemma 3.3 to construct a
count sketch for the output of Algorithm 1. Then the ratio zi converges to a constant:

zi =
ni
m
→ dτeBi
dτeB

=
Bi
B

Bi is the number of buckets in the hash range of class Ci.

Proof. This is a simple consequence of the previous lemmas. Let ni be the number of species from class Ci in the sample.
Because the buckets for the Z classes do not overlap, ni is equal to the sum of count values in the Bi buckets that correspond
to class Ci. By the previous lemma, the count value for each of the Bi different buckets in the domain of Ci converge to
dτe, so we have that ni → dτeBi.

Now consider the value of m, the total number of samples kept by the downsampling algorithm. Because the buckets do
not overlap, the number of samples kept by the algorithm is equal to the sum of all the counters (since each sample that
is retained causes an increment of 1 in the array). There are B buckets, each having (in the limit) dτe counts. Therefore
m→ dτeB, where B =

∑
iBi.

This theorem allows us to prove useful statements about the diversity index. Consider the simple case where all Bi are equal.
The following statement is a straightforward consequence of the fact that zi → 1/Z and the observation that the diversity
indices attain their maximum when zi = 1/Z.

Corollary 3.6. Suppose each class maps to exactly k buckets (i.e. Bi = k). With B = Zk buckets, the Shannon, Simpson,
and Berger-Parker diversity measures converge to their maximum value.

Proof. Under these conditions, zi → 1
Z according to the previous theorem. Observe that the optimal value of the diversity

indices

The Shannon index is equal to the entropy of the empirical distribution across the Z classes, which is maximized when
all classes have the same weight 1

Z . The optimal value of the Simpson index can be found by maximizing the sum
∑
i z

2
i

subject to the simplex constraint
∑
i zi = 1.

A large Berger-Parker index indicates poor diversity, where a single class dominates the profile (i.e. the index is maximized
when a single species is present For this reason, we wish to maximize the inverse Berger-Parker index, or equivalently to
minimize the Berger-Parker index. It is easy to see that zi = 1/Z provides the optimal index value.

One-Pass Diversified Sampling

Acknowledgements
B.C, B.G, L.C and A.S were supported by National Science Foundation IIS-1652131, BIGDATA-1838177, RI-1718478,
AFOSR- YIP FA9550-18-1-0152, Amazon Research Award, and the ONR BRC grant on Randomized Numerical Linear
Algebra. T.T. was supported by by National Science Foundation grant EF-2126387 and National Institute of Allergy and
Infectious Diseases grant P01AI152999. L.E. was supported by NLM Training Program (T15LM007093).

References
Abbar, S., Amer-Yahia, S., Indyk, P., and Mahabadi, S. Real-time recommendation of diverse related articles. In Proceedings

of the 22nd international conference on World Wide Web, pp. 1–12. ACM, 2013a.

Abbar, S., Amer-Yahia, S., Indyk, P., Mahabadi, S., and Varadarajan, K. R. Diverse near neighbor problem. In Proceedings
of the 29th Annual Symposium on Computational Geometry, pp. 207–214. ACM, 2013b.

Bolger, A. M., Lohse, M., and Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30
(15):2114–2120, 2014.

Broder, A. Z. On the resemblance and containment of documents. In Proceedings of the Compression and Complexity of
Sequences, pp. 21–29, 1997a.

Broder, A. Z. On the resemblance and containment of documents. In Proceedings. Compression and Complexity of
SEQUENCES 1997 (Cat. No. 97TB100171), pp. 21–29. IEEE, 1997b.

Brown, C. T., Howe, A., Zhang, Q., Pyrkosz, A. B., and Brom, T. H. A reference-free algorithm for computational
normalization of shotgun sequencing data. arXiv preprint arXiv:1203.4802, 2012.

Carter, J. L. and Wegman, M. N. Universal classes of hash functions. Journal of Computer and System Sciences, 18:
143–154, 1979.

Coleman, B. and Shrivastava, A. Sub-linear race sketches for approximate kernel density estimation on streaming data. In
Proceedings of the 2020 World Wide Web Conference. International World Wide Web Conferences Steering Committee,
2020.

Coleman, B., Baraniuk, R., and Shrivastava, A. Sub-linear memory sketches for near neighbor search on streaming data. In
International Conference on Machine Learning, pp. 2089–2099. PMLR, 2020.

Cormode, G. and Muthukrishnan, S. An improved data stream summary: the count-min sketch and its applications. Journal
of Algorithms, 55:58–75, 2005.

Crusoe, M. R., Alameldin, H. F., Awad, S., Boucher, E., Caldwell, A., Cartwright, R., Charbonneau, A., Constantinides, B.,
Edvenson, G., Fay, S., et al. The khmer software package: enabling efficient nucleotide sequence analysis. F1000Research,
4, 2015.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. Locality-sensitive hashing scheme based on p-stable distributions.
In Proceedings of the 20th Annual Symposium on Computational Geometry, pp. 253–262. ACM, 2004.

Edwards, H. S., Krishnakumar, R., Sinha, A., Bird, S. W., Patel, K. D., and Bartsch, M. S. Real-time selective sequencing
with rubric: Read until with basecall and reference-informed criteria. Scientific reports, 9(1):1–11, 2019.

Gordienko, E. N., Kazanov, M. D., and Gelfand, M. S. Evolution of pan-genomes of escherichia coli, shigella spp., and
salmonella enterica. Journal of bacteriology, 195(12):2786–2792, 2013.

Indyk, P. and Motwani, R. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing, pp. 604–613, 1998.

Indyk, P., Mahabadi, S., Mahdian, M., and Mirrokni, V. S. Composable core-sets for diversity and coverage maximization.
In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 100–108.
ACM, 2014.

One-Pass Diversified Sampling

Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., and Aluru, S. High throughput ani analysis of 90K
prokaryotic genomes reveals clear species boundaries. Nature Communications, 9(1):5114, 2018.

Kavvas, E. S., Catoiu, E., Mih, N., Yurkovich, J. T., Seif, Y., Dillon, N., Heckmann, D., Anand, A., Yang, L., Nizet, V.,
et al. Machine learning and structural analysis of mycobacterium tuberculosis pan-genome identifies genetic signatures of
antibiotic resistance. Nature communications, 9(1):1–9, 2018.

Köser, C. U., Ellington, M. J., and Peacock, S. J. Whole-genome sequencing to control antimicrobial resistance. Trends in
Genetics, 30(9):401–407, 2014.

Koslicki, D. and Zabeti, H. Improving minhash via the containment index with applications to metagenomic analysis.
Applied Mathematics and Computation, 354:206–215, 2019.

Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-Tárraga, A., Cheng, Y., Cleland, I., Faruque, N., Goodgame, N.,
Gibson, R., et al. The european nucleotide archive. Nucleic acids research, 39(suppl 1):D28–D31, 2010a.

Leinonen, R., Sugawara, H., Shumway, M., and Collaboration, I. N. S. D. The sequence read archive. Nucleic acids research,
39(suppl 1):D19–D21, 2010b.

Loose, M., Malla, S., and Stout, M. Real-time selective sequencing using nanopore technology. Nature methods, 13(9):751,
2016.

Luo, C. and Shrivastava, A. Arrays of (locality-sensitive) count estimators (ACE): Anomaly detection on the edge. In
Proceedings of the 2018 World Wide Web Conference, pp. 1439–1448. International World Wide Web Conferences
Steering Committee, 2018.

Manku, G. S. and Motwani, R. Approximate frequency counts over data streams. In Proceedings of 28th International
Conference on Very Large Data Bases, pp. 346–357, 2002.

McCauley, S. Approximate similarity search under edit distance using locality-sensitive hashing. arXiv preprint
arXiv:1907.01600, 2019.

McCorrison, J. M., Venepally, P., Singh, I., Fouts, D. E., Lasken, R. S., and Methé, B. A. Neatfreq: reference-free data
reduction and coverage normalization for de novosequence assembly. BMC bioinformatics, 15(1):1–12, 2014.

Meyerson, M., Gabriel, S., and Getz, G. Advances in understanding cancer genomes through second-generation sequencing.
Nature Reviews Genetics, 11(10):685, 2010.

Nasko, D. J., Koren, S., Phillippy, A. M., and Treangen, T. J. RefSeq database growth influences the accuracy of k-mer-based
lowest common ancestor species identification. Genome Biology, 19(1):165, 2018.

Nicholls, S. M., Quick, J. C., Tang, S., and Loman, N. J. Ultra-deep, long-read nanopore sequencing of mock microbial
community standards. Gigascience, 8(5):giz043, 2019.

Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., and Phillippy, A. M. Mash: fast
genome and metagenome distance estimation using minhash. Genome biology, 17(1):132, 2016.

Ondov, B. D., Starrett, G. J., Sappington, A., Kostic, A., Koren, S., Buck, C. B., and Phillippy, A. M. Mash screen:
high-throughput sequence containment estimation for genome discovery. Genome biology, 20(1):1–13, 2019.

Peterson, J., Garges, S., Giovanni, M., McInnes, P., Wang, L., Schloss, J. A., Bonazzi, V., McEwen, J. E., Wetterstrand,
K. A., Deal, C., et al. The NIH human microbiome project. Genome Research, 19(12):2317–2323, 2009.

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T.,
et al. A human gut microbial gene catalogue established by metagenomic sequencing. nature, 464(7285):59–65, 2010.

Rosenbaum, P. R. and Rubin, D. B. The central role of the propensity score in observational studies for causal effects.
Biometrika, 70(1):41–55, 1983.

Rowe, W. P. When the levee breaks: a practical guide to sketching algorithms for processing the flood of genomic data.
Genome Biology, 20(199):1–12, 2019.

One-Pass Diversified Sampling

Sankar, P. L. and Parker, L. S. The precision medicine initiative’s all of us research program: an agenda for research on its
ethical, legal, and social issues. Genetics in Medicine, 19(7):743–750, 2017.

Schatz, M. C. and Langmead, B. The dna data deluge: fast, efficient genome sequencing machines are spewing out more
data than geneticists can analyze. Ieee Spectrum, 50(7):26, 2013.

Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., and Huttenhower, C. Metagenomic microbial community
profiling using unique clade-specific marker genes. Nature methods, 9(8):811–814, 2012.

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., Iyer, R., Schatz, M. C., Sinha, S., and
Robinson, G. E. Big data: astronomical or genomical? PLoS biology, 13(7):e1002195, 2015.

Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R., and Wu, C. H. Uniref: comprehensive and non-redundant uniprot
reference clusters. Bioinformatics, 23(10):1282–1288, 2007.

Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H., and Consortium, U. Uniref clusters: a comprehensive and
scalable alternative for improving sequence similarity searches. Bioinformatics, 31(6):926–932, 2015.

Timme, R. E., Leon, M. S., and Allard, M. W. Utilizing the public genometrakr database for foodborne pathogen traceback.
In Foodborne Bacterial Pathogens, pp. 201–212. Springer, 2019.

Vitter, J. S. Random sampling with a reservoir. ACM Transactions on Mathematical Software, 11(1):37–57, 1985.

Wedemeyer, A., Kliemann, L., Srivastav, A., Schielke, C., Reusch, T. B., and Rosenstiel, P. An improved filtering algorithm
for big read datasets and its application to single-cell assembly. BMC bioinformatics, 18(1):1–11, 2017.

Wick, R. R., Judd, L. M., and Holt, K. E. Performance of neural network basecalling tools for oxford nanopore sequencing.
Genome biology, 20(1):129, 2019.

Wood, D. E., Lu, J., and Langmead, B. Improved metagenomic analysis with kraken 2. Genome biology, 20(1):1–13, 2019.

