MAML and ANIL Provably Learn Representations

Liam Collins! Aryan Mokhtari! Sewoong Oh? Sanjay Shakkottai '

Abstract

Recent empirical evidence has driven conven-
tional wisdom to believe that gradient-based meta-
learning (GBML) methods perform well at few-
shot learning because they learn an expressive
data representation that is shared across tasks.
However, the mechanics of GBML have remained
largely mysterious from a theoretical perspec-
tive. In this paper, we prove that two well-known
GBML methods, MAML and ANIL, as well as
their first-order approximations, are capable of
learning common representation among a set of
given tasks. Specifically, in the well-known multi-
task linear representation learning setting, they
are able to recover the ground-truth representa-
tion at an exponentially fast rate. Moreover, our
analysis illuminates that the driving force caus-
ing MAML and ANIL to recover the underlying
representation is that they adapt the final layer of
their model, which harnesses the underlying task
diversity to improve the representation in all di-
rections of interest. To the best of our knowledge,
these are the first results to show that MAML
and/or ANIL learn expressive representations and
to rigorously explain why they do so.

1. Introduction

A widely popular approach to achieve fast adaptation in
multi-task learning settings is to learn a representation that
extracts the important features shared across tasks (Maurer
et al., 2016). However, our understanding of how multi-
task representation learning should be done and why certain
methods work well is still nascent.

Recently, a paradigm known as mefa-learning has emerged
as a powerful means of learning multi-task representations.
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This was sparked in large part by the introduction of Model-
Agnostic Meta-Learning (MAML) (Finn et al., 2017), which
achieved impressive results in few-shot image classification
and reinforcement learning scenarios, and led to a series
of related gradient-based meta-learning (GBML) methods
(Raghu et al., 2020; Nichol & Schulman, 2018; Antoniou
et al., 2019; Hospedales et al., 2021). Surprisingly, MAML
does not explicitly try to learn a useful representation; in-
stead, it aims to find a good initialization for a small number
of task-specific gradient descent steps, agnostic of whether
the learning model contains a representation. Nevertheless,
Raghu et al. (2020) empirically argued that MAML’s im-
pressive performance on neural networks is likely due to
its tendency to learn a shared representation across tasks.
To make this argument, they noticed that MAML’s repre-
sentation does not change significantly when adapted to
each task. Moreover, they showed that a modified ver-
sion of MAML that freezes the representation during local
adaptation, known as the Almost-No-Inner-Loop algorithm
(ANIL), typically performs at least as well as MAML on
few-shot image classification tasks. Yet it is still not well
understood why these algorithms that search for a good ini-
tialization for gradient descent should find useful a global
representation among tasks. Thus, in this paper, we aim to
address the following questions:

Do MAML and ANIL provably learn high-quality
representations? If so, why?

To answer these questions we consider the multi-task linear
representation learning setting (Maurer et al., 2016; Tripu-
raneni et al., 2021; Du et al., 2020) in which each task is a
noisy linear regression problem in R? with optimal solution
lying in a shared k-dimensional subspace, where k < d.
The learning model is a two-layer linear network consisting
of a representation (the first layer of the model) and head
(the last layer). The goal is to learn a representation that
projects data onto the shared subspace so as to reduce the
number of samples needed to find the optimal regressor for
anew task from Q(d) to Q(k).

Main contributions. We prove, for the first time, that
both MAML and ANIL, as well their first-order approxi-
mations, are capable of representation learning and recover
the ground-truth subspace in this setting. Our analysis re-
veals that MAML and ANIL’s distinctive adaptation updates
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Figure 1. Distance of learned representation from the ground-truth
for ANIL, MAML and average risk minimization run on task pop-
ulation losses in multi-task linear representation learning setting.

for the last layer of the learning model are critical to their
recovery of the ground-truth representation. Figure 1 visual-
izes this observation: all meta-learning approaches (Exact
ANIL, MAML, and their first-order (FO) versions that ig-
nore second-order derivatives) approach the ground truth
exponentially fast, while a non-meta learning baseline of
average loss minimization empirically fails to recover the
ground-truth. We show that the inner loop updates of the
head exploit task diversity to make the outer loop updates
bring the representation closer to the ground-truth. How-
ever, MAML’s inner loop updates for the representation
can inhibit this behavior, thus, our results for MAML re-
quire an initialization with error related to task diversity,
whereas ANIL requires only constant error. We also show
that ANIL learns the ground-truth representation with only
O(% + k%) < d samples per task, demonstrating that
ANIL’s representation learning is sample-efficient.

Related work. Several works have studied why meta-
learning algorithms are effective; please see Appendix A
for a comprehensive discussion. Building off Raghu et al.
(2020), most of these works have studied meta-learning
from a representation learning perspective (Goldblum et al.,
2020; Saunshi et al., 2021; Arnold et al., 2021; Wang et al.,
2021a; Kao et al., 2022). Among these, Ni et al. (2021);
Bouniot et al. (2020); Setlur et al. (2020) and Kumar et al.
(2021) showed mixed empirical impacts of training task
diversity on model performance. Most related to our work
is (Saunshi et al., 2020), which proved that the continuous
version of a first-order GBML method, Reptile (Nichol &
Schulman, 2018), learns a one-dimensional linear repre-
sentation in a two-task setting with a specific initialization,
explicit regularization, and infinite samples per task. Other
works studied multi-task representation learning in the linear
setting we consider from a statistical perspective (Maurer
et al., 2016; Du et al., 2020; Tripuraneni et al., 2021). Fur-
thermore, Collins et al. (2021) and Thekumparampil et al.
(2021) gave optimization results for gradient-based methods
in this setting. However, the algorithms they studied are
customized for the assumed low-dimensional linear repre-

sentation model, which makes it relatively easy to learn the
correct representation efficiently. A more challenging task
is to understand how general purpose and model-agnostic
meta-learning algorithms perform, such as the algorithms
we study.

Notations. We use bold capital letters for matrices and bold
lowercase letters for vectors. We use O¢ ¥ to denote the
set of matrices in R? ¥ with orthonormal columns. A hat
above a matrix, e.g. B, implies the matrix is a member
of O% % We let col(B) denote the column space of B,
and col” (B) denote its orthogonal complement. N (0, 52)
denotes the Gaussian distribution with mean 0 and variance
2. O(-) and ©(-) hide constant factors, and O(-) and €2(-)
hide constant and logarithmic factors.

2. Problem Formulation

We employ the multi-task linear representation learning
framework (Maurer et al., 2016; Du et al., 2020; Tripuraneni
et al., 2021) studied in prior works. Each task in this setting
is a linear regression problem in R?. We index tasks by
(t,1), corresponding to the i-th task sampled on iteration ¢.
The inputs X; ; € R? and labels y;; € R for the (¢,i)-th
task are sampled i.i.d. from a distribution F; ; over R? x R
such that:

Ztq ™ N(O,Uz)a Yti = <

where  ;; € R? is the ground-truth regressor for task
(t,), p is a distribution over R? and 2, ; is white Gaussian
noise with variance o2. Each task has a set of m samples
Dy = {(Xt,i,5,Yt,i,j) } j2[m] drawn i.id. from P, ; avail-
able for training.

Xt ~ D,y i Xea) + Ze

To account for shared information across tasks, we suppose
there exists a matrix B € O% * such that the ground-truth
regressors { ;;}; for all tasks lie in col(B ), so they can
be writtenas  ;; = B w ; forall ¢,7, wherew ,; €
R*. We refer to B as the ground-truth representation and
W ,; as the ground-truth head for task (¢,7). The task
environment consists of B and a distribution v over ground-
truth heads. With knowledge of col (B ), we can reduce the
number of samples needed to solve a task from (d) to (k)
by projecting the task data onto col (B ), then learning a
head in R*. The question becomes how to learn the ground-
truth subspace col (B ).

The learning model consists of a representation B € R? *
and a head w € R¥. We would like the column space of B
to be close to that of B , measured as follows.

Definition 1 (Principle angle distance). Ler B € O *
and B ? € 0% W K denote orthonormal matrices whose
columns span col(B) and col? (B ), respectively. Then the
principle angle distance between B and B is

dist(B,B ) = [|B”,B. (1)
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For shorthand, we denowdist; = dist( B¢;B ). Note that the above Exact MAML update requires expen-
) _ sive second-order derivative computations. In practice, FO-
Notice thatdim(col(B )) = k. Thus, the learned represen- pjaML, which drops the Hessian, is often used, since it

tationB must extrack orthogonal directions belonging to typically achieves similar performance (Finn et al., 2017).
col(B ). As we will show, MAML and ANIL's task-speci ¢

adaptation of the head critically leverages task diversity tf*NIL. Surprisingly, Raghu et al. (2020) noticed that train-
learnk such directions. ing neural nets with a modi ed version of MAML that lacks

inner loop updates for the representation resulted in models
3 Al ith that matched and sometimes even exceeded the performance
- Algorithms of models trained by MAML on few-shot image classi ca-

Here we formally state the implementation of ANIL and tion tasks. This modi ed version is ANIL, and its inner loop
MAML for the problem described above. First, letting UPdates in our linear case are given as follows:

= [w;vec(B)] 2 R4*D Kk denote the vector of model . A (B w. D
parameters, we de ne the population loss for tésk): o= Wi = Wi rwbe (BoweDy)
’ vec(By;i ) vec(B+)

Lei ()= 3B, . o (BW Xy i i)?

)= 2By pa ul Vi) In the outer loop, ANIL again takes a minibatch SGD step

Often we approximate this loss with the nite-sample losswith respect to the loss after the inner loop update. Then,
fora dataseDSi = (Xeiy 3 Yeij )9 2(mo: the outer loop updates for Exact ANIL are given by:

0

X A
Lo (DY) = 555 (BWixgy i Y )™ vt = Au (DR G (DY
j =1 i=1
o where, for Exact ANIL,

MAML. MAML minimizes the average loss across tasks " #
aftera small number of task-spe(_:i ¢ gradient updates. Here, e I r \%K\t;i ( Dgiut 0
we consider that the task-speci ¢ updates are one step d‘lﬁ ti (Buywe;Dgt) = & 1 ( ;D) |
minibatch SGD with batcB® consisting oini i.i.d. sam- @vec(B)@v —H b T L

ples fromPy; . Speci cally, the loss function that MAML 14 56id computing second order derivatives, we can instead

minimizes is treatFl; as the identity operator, in which case we call the
min LMAML( ) = EW . ;Dg} [Lt;i ( r Ii\t;i ( aDt":: )))] algonthm FO-ANIL.

@ 3.1, Role of Adaptat

, : 1. ion

where for ease of notation we have writtep . .p» as 3 ole of Adaptatio
shorthand forg,, . .pn pmm. MAML esseritially Now we present new intuition for MAML and ANIL's rep-
solves(2) with minibatch SGD. At iteratiort, it draws resentation learning ability which motivates our proof struc-
n tasks with ground-truth headsv ; gi,(n; drawn from ~ ture. The key observation is that the outer loop gradients for

, and for each drawn task, draws samples contained the representation asvaluated at the inner loop-adapted
in Dy i.i.d. from Py . MAML then partitionsDy; into parametersthis harnesses the power of task diversity to

Df} andDg" such thatiD{}j = mi, jDA"j = Mo, improve the representational k directions. This is easiest
andmi, + Mgy = M (We assumen;,, < m). For task t0 observe in the FO-ANIL case withi, = Moy = 1.
(t;1), in what is known as the inner loop, MAML takes a !N this case, the update for the representation is given as:
task-speci ¢ stochastic gradient step from the initial model 30 0

(Bt;w¢) using the sampleB{] and step size to obtain B =By Ik =  Wywy +B - W 4wy

the adapted parameters : = ’ ‘

i=1
A . . [in FO-ANIL prior weight FO-ANIL signal weight
= Wi Wi r WLi(Btth,Dt;i) (3)
T

vecBy;i) vec(B) r vec(B)Ii\i (Bt ;Wt;D{;r} )
] o If the “prior weight' is small and the “signal weight' is
Then, in the so-called outer loop, MAML takes a minibatch large, then the update replaces energy famiB ;) with
S_GD step with respect to the loss after task_-speci c adaptaer‘grgy fromcol(B ). Roughly, this is true as long as; =
tion using the sample® £ gi2r) and step size: 17 wgwy is well-conditioned, i.e. thevy's are
0 diverse. Assumingvi W ; for each task, then . is

141 N (I 2% ( ;DY) P (o ;D well-conditioned |f.and_only if the tasks are diverse. This

i1 shows how task diversity causes the column space of the
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representation learned by FO-ANIL to approach the ground4d. Main Results
truth. For FO-MAML, we observe similar behavior, with a

caveat. The representation update is: In this section we formalize our intuition discussed pre-

viously and prove that both MAML and ANIL and their

X0 X rst-order approximations are capable learning the column
(a) > > _ i
Bis1 = B¢ = Bywgwy +B ~ W i Wei space of the ground-truth representation. To do so, we rst
i=1 ’ i=1 ' make the following assumption concerning the diversity of
X the sampled ground-truth heads.
Og, | (I WiW; )= Wy W . . _
K K Nt - t Assumption 1(Task dlveﬁlty) The eigenvalues of the sym-
| {z- "_1 } metric matrix  =(2 L, W W) are uniformly
o FO-MAML prior weight bounded below and above by andL 2, respectively; i.e.,
2 2
B We Wil )W i W I + L4, forallt 2 [T].
|2 {z } The lower bound on the eigenvalues of the matrix;
FO-MAML signal weight ensures that the  k matrix . is full rank and hence

the vectordw .; g, spanRX, therefore they are diverse.
Equation(a) is similar to(3) except that on®. is replaced  However, the diversity level of the tasks is de ned by ratio
by theB ; 's resulting from inner loop adaptation. Expand- of the eigenvalues of the matrix ., i.e., = L f
ing By in (b), we notice that the prior weight is at least thjs ratio is close to 1, then the ground-truth heads are very
as large as if3), since max (Il wiwg) 1 butitcan  diverse and have equal energy in all directions. On the other
still be small as long as they; 's are diverse anwikz is  hand, if is large, then the ground-truth heads are not
small. Thus we conclude that FO-MAML also can learn thevery diverse as their energy is mOSt|y focused in a Speci c
representation, yet its inner loop adaptation complicates itgjrection. Hence, as the following results reveal, smaller
ability to do so. leads to faster convergence for ANIL and MAML.

Comparison with no inner-loop adaptation. Compare  Now we are ready to state our main results for the ANIL

these updates to the case when there is no inner loop adaghd FO-ANIL algorithms in the in nite sample case.

tation, i.e. we run SGD on the non-adaptive objective . -
min Eu ., [Ly ()] instead of (2). In this cas@.; is: Theorem 1. Consider the in nite sample case for ANIL

and FO-ANIL, wheren;, = mqy: = 1 . Further, suppose
the conditions in Assumption 1 hold, the initial weights

Bis1 =Bt Ik wiwy + Bw qwy (4) are selected aw = Ox and B Bg = Ik. Letthe step
p sizes are chosenas= O(1a )and = O( 4) for
wherav . = nl i”:l W . . Observe that the coef cient ANILand = 4min(1; *=2)) for FO-ANIL, where
of B¢ in the update is rank 1, while the coef cient ofB satis esk% in=1 W i ko for all timest 2 [T]
is rank 1. Thusgol(B+1) can approackol(B ) inatmost  almost gprely. If the initial error satis es the condition
one direction on any iteration. Empirically; points in  dist, 0:9, then almost surely for both ANIL and FO-

roughly the same direction throughout training, preventingaNIL we have,

this approach from learningpl(B ) (e.g. see Figure 1). Tl
H . . 2 .

Technical challenges.The intuition on the role of adap- dist(Br:B ) 1 O5E o ' ®)

tation, while appealing, makes strong assumptions; most

—_- fat 2
notably that thew; 's are diverse enough to improve the whereEo = 0:9  dist,.

representation and that the algorithm dynamics are Stabhlc"heorem 1 shows that both FO-ANIL and Exact ANIL learn

To show these points, we observe thai can be written as .
. ! o representation that approaches the ground-truth exponen-
the linear combination of a vector distinct for each task ancf.1 P bp 9 P

. : ) ially fast as long as the initial representati®g is normal-
a vector that is shareq across all '.[aSkS at, tllmSh(_)wmg ized and is a constant distance away from the ground-truth,
that the shared vector is small implies the, 's are diverse,

and we can control the magnitude of the shared vector bwe initial headvo = 0, and the sampled tasks are diverse.
controllingkwik, andkl, B B.kp. Showing that these ote that is larger for ANIL and hence its convergence is

o . i ster, demonstrating the bene t of second-order updates.
guantities are small at all times also ensures the stability oftﬁ 9 P

the algorithms. Meanwhile, we must prove tk3t>;? Bko We could instead assume the ground-truth heads are sub-
anddist, = kB>., Bk, are contracting. It is not obvious gaussian and use standard concentration results show that with

_ i o
that any of these copditior)s holc_i individually; in fact, they ga;nélez;:noﬁég)tgét:g?esgt +0f§(rf)ﬂd trgt(q)r)‘?;ezsg fg' r-;”
require a novel multi-way inductive argument to show thatT jterations with high probability, but instead we assume generic

they hold simultaneously for eath{see Section 5). bounds for simplicity.
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Next, we state our results for FO-MAML and Exact MAML Theorem 3 shows that FO-MAML Ieamgl(B ) aslong as

for the same in nite sample setting. Due to the adaptatiorthe initial principal angle is small ariq% in:1 W i ko =

of both the representation and head, the MAML and FOO(k ¥® 2 ) on all iterations, due to the biased updates.
MAML updates involve third- and fourth-order products Note that the FO-ANIL updates are also biased, but this bias
of the ground-truth heads, unlike the ANIL and FO-ANIL scales wittkl, ~ B7 Bky, which is eventually decreasing
updates which involve at most second-order products. Tquickly enough to make the cumulative error induced by

analyze the higher-order terms, we assume that the energlye bias negligible without any additional conditions. In

in each ground-truth head is balanced. contrastkly ~ B7 Bk; is not guaranteed to decrease for
Assumption 2 (Task incoherence)For all timest p?,[T] FQ-MAML due to the mner'lc.)op adapta.tl.on of the represen-
and tasks 2 [n], we almost surely havav i k, ¢ KL | tation, so we need the additional condition.

wherecis a constant. To the best of our knowledge, the above theorems are the

N di din Section 3.1. MAML' ad . frst results to show that ANIL, MAML, and their rst-
ext, as discussed In Section 3.1, S adaptation Of, e approximations learn representations in any setting.

the representation complicates its ability to learn the groundﬂ/loreover they are the rst to show hotask diversitylays
truth subspace. As a result, we require an additional cory key role in representation learning from an optimization

dition to show that MAML learns the representation: theperspective, to the best of our knowledge. Due the the

distance of the initialization to the ground-truth must Sma"restrictions on and , Theorems 1 and 2 show that the

in the sense that it must .scale.W|.th the task d_|ver5|ty and "Yate of contraction of principal angle distance diminishes
versely withk. We formalize this in the following theorem.

with less task diversity. Thus, the more diverse the tasks, i.e.
Theorem 2. Consider the in nite sample case for MAML, the smaller , the faster that ANIL and MAML learn the
wherem;, = mg, = 1 . Further, suppose the conditions representation. Additionally, the less diverse the tasks, the
in Assumptions 1 and 2 hold, the initial weights are selectednore accurate initialization that MAML requires, and the
aswo = Ox and BgBo = Ik, and the step sizes satisfy tighter that the true heads must be centered around zero to
= Ok #3L T ¥™)and = O( 4. Ifdisto =  control the FO-MAML bias.
O(k %75 1) then almost surely
_ T o1 4.1. Finite-sample results
dist(Bt;B) 1 O5E 4?2 ;
Thus far we have only considered the in nite sample case,
whereEp =0:9 distg. i.e., mp = Mgy = 1, to highlight the reasons that the
adaptation updates in MAML and ANIL are essential for
Theorem 2 shows that the initial representation |earningepresentation learning. Next, we study the nite sample
error for MAML must scale a®(k *7®  1%), which can  setting. Indeed, establishing our results for the nite sample
be much smaller than the constant scaling that is suf cientase is more challenging, but the mechanisms by which
for ANIL to learn the representation (see Theorem 1). NextaANIL and MAML learn representations for niten;, and
we give the main result for FO-MAML, which requires an m,,, are very similar to the in nite-sample case, and the

additional condition that the norm of the average of the nite-sample problem reduces to showing concentration of
ground-truth heads sampled on each iteration is small. Thighe updates to the in nite-sample updates.

condition arises due to the fact that the FO-MAML updates . . . .
are approximations of the exact MAML updates, and thud 0f MAML, this concentration requires assumptions on
have a bias that depends on the average of the ground-truﬁ‘?(th and eighth-order products of the data which arise due

heads. Without control of this bias, the iteraBasandw,  © the inner-loop updates. In light of this, for the sake of
may diverge. readability we only give the nite-sample result for ANIL

. o and FO-ANIL, whose analyses require only standard as-
Theorem 3. Consider the in nite sample case for FO- sumptions on the data, as we state below.
MAML, wheremj, = mqyy = 1 . Further, suppose the ) ] o
conditions in Assumptions 1 and 2 hold, the initial weights”SSumption 3(Sub-gaussian feature distributiorfior x
are selected awo = 0 and B} Bo = I, and the step P E[X] = 0 and Cov(x) = 14. Moreover,x is lq-sub-
sizes satisfy = O(p2—)and = O(  *).Iftheinitial  gaussian in the sense thiafexp(v” x)] exp(5) 8 v.

error satis esdistp = O(k %% 1), argl the average of

the true heads almost surely satiske$ L, w i ko =

Under this assumption, we can show the following.

O(k 1:5 3 ) for all timest, then almost Sure|y Theorem 4 (AN”_ Finite Samples.) Consider the nite-
sample case for ANIL gnd FO-ANIL. Suppose Assumptions
distBr:B) 1 O5E o2 ' ' 1,2and3hold, = O(( kL + ) 1)and ischosenas

in Theorem 1. For some> 0to be de ned later, leEg =
whereEy =0:9 distg. 0:9 distg and assume is lower bounded by a positive
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constant. Suppose the sample sizes satigfy= T Min)  orthogonal to the ground-truth subspace is contributed by
andmgy: = T Mgy ) for some expressiondi, ; Moyt to the previous representation, and this energy is contracting
be de ned later. Then both ANIL and FO-ANIL satisfy: at a rate proportional to the condition number of the matrix
formed by the g¢lapted heads. In particular, if we de ne the

. T 1
dist(Br;B) 1 05 2 +0() matrix = 1 1, wgwg, then we have
where for ANIL, kB”., Bis1 ko = kB”, By(l 1)k
= k34 K. = k2 4 dk+k®.
Min = kp+ S5 Mou = k% + pi ; @ min( ))kB™,Biky;  (6)
= (k24 —+ )kt 2 (pAt p ) _
n Min M out aslongas 1= .. ( .). Therefore, to show that the nor-
nd for FO-ANIL malized energkB>., B .1 k. approaches zero, we aim to
andfo i ' , show: (1) The condition number of ; continues to stay con-
Min = k% Moy = %I trolled and nite, which implies linear convergence of the
= P - lized energy icol(B )? according tq6); and
= 24 4 g% oo dk non-normaliz gy g ’
¢k 27 min )P out (I The minimum singular value of the representati®n;

is staying the same. Otherwise, the energy orthogonal to the
ground-truth subspace could be decreasing, but the repre-
sentation could be becoming singular, which would mean

For ease of presentation, tf notation excludes log fac- e distance to the ground-truth subspace is not decreasing.
tors and all parameters besidesl andn; please refer to

Theorem 8 in Appendix E for the full statement. We focus T0 show (1), note that the adapted heads are given by:
on dimension parameters anchere to highlight the sample

with probability at least. O(Te 90K),

_r __ T
poly('n) poly( min )

. G = + > i
complexity bene ts conferred by ANIL and FO-ANIL com- Wi |_{%’Z} F’t B{ZW it Q)
pared to solving each task separately(1). Theorem 4 non-unique unique
i . = 34 Kd
shows that ANIL requires onlgnin + Moy = T K>+ %) where | = I, B>B.. The vector (w is present

samples per task to reach a neighborhood of the groungs everywy; ,
truth solution. Sincé&  d andn can be large, this sample Wy . On the other hand,B> B w . is the unique part of

complexity is far less than th€ d) required to solve each Wtji . Equation(7) shows that if the’hon-unique part of each
task individually (Hsu et al., 2012). Note that more samplegNt;i is relatively small compared to the unique part, then

so we refer to it as the non-unique part of

are required for Exact ANIL because the second-order up- . 2B>B B> By, meaning thavy; 's are almost
dates involve higher-order products of the data, which have,g diverset as the'ground’-truth heads. So we aim to show
heavier tails than the analogous terms for FO-ANIL. k (ko andkw k, remain small for alt. We speci cally

need to show they are small compared fq, (B7 B ),
5. Proof sketch since this quantity roughly lower bounds the energy in the

) ) diverse part ofv; . One can show thatﬁ1in (Bi B )=
We now discuss how we prove the results in greater d_eta_li. disttz, so we need to use thdist; is decreasing in order
We focus on the.FO-ANIL case becguse the prgsentatlon 1% lower bound the energy in the unique partaf .
simplest yet still illuminates the key ideas used in all proofs.
It is also convenient to track k» in orderF;t(Ehow (1,
5.1. Theorem 1 (FO-ANIL) sincek «1ky " implies min (Bis1)  —F—. Note
Intuition. Our goal is to show that the distance between thenat for (If), we need control dt 141 kp, whereas to show
. o - . () we needed control df k,. This difference in time in-
column spaces d8; andB , i.e. dist; = kB>, Bk is /= : . : .
: . i ; dices is accounted for by the induction we will soon discuss.
converging to zero at a linear rate for allWe will use an in-

ductive argument in which we assume favorable conditionst is now evident why it makes sense to initialize with
to hold up to timet, and will prove they continue to hold at k ok, = 0 andkwk; = 0 (in fact, they do not have
timet+1. To showdist;+; is linearly decaying, itis helpful to be exactly zero; any initialization witkwgk, = O(" )

to rst consider the non-normalized energy in the subspacendk k, = O( 2) would suf ce). However, proving
orthogonal to the ground-truth, naméd@ >;? Bi+1 ko. We  thatk (ko andkwk, remain small is dif cult because the
have observed in equati@8) that if the inner-loop adapted algorithm lacks explicit regularization or a normalization
headswv; attimet are diverse, then the FO-ANIL update step after each round. Empiricallymin (B ) may decrease
of the representation subtracts energy from the previous repndkwk, may increase on any particular round, so it is
resentation and adds energy from the ground-truth represenet clear why i, (Bt) does not go to zero (i.ek k»
tation. Examining3) closer, we notice that the only energy does not go to 1) anklwk, does not blow up. To address
in the column space of the new representation that can biese issues, one could add an explicit regularization term
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to the loss functions or an orthonormalization step to the aMVe also discussed that the diversity of the adapted heads
gorithm, but doing so is empirically unnecessary and woulddepends on the global head being small, the representation
not be consistent with the ANIL formulation or algorithm. being close to a scaled orthonormal matrix, and the repre-
sentation distance being bounded away from 1 at the start
of that iteration. This is ensured by the implication that
the adapted heads are again diverse on iteratiofh, in
particularA(t+1) \ Az(t+1)\ Ag(t+1) =) Ay4(t+1).

1. Ag(t) = fkwiky = o(p “min(1; ;) )g, The other implications in the graph are technical and needed

to controlkwy+1 ko andk 41 ko.

Inductive structure. We overcome the aforementioned
challenges by executing a multi-way induction that involves
the following six inductive hypotheses:

—_ 2 2] 4 dict?
2. A2(t)= k tke ko 2kt O( Lodisty o) Proving the implications. We now formally discuss each

3. Az(t) = k (ko % , implication, starting with the top level. Full proofs are
provided in Appendix C.
4. Au(t) = 09E o Iy ¢ 120 21y,
« A = +1). Thisi i .
5. As(t) = kB, Bk, KB By 1k, . 4(t) =) As(t+1). This is true by equation (6)
h h o Ai(t)\ Ag(t)\ Ag(t) =) Ay(t+1). It can be shown
6. Ag(t) = fdist, = kB~,Bik, ! g, that .y is of the form:

_ _ 2 . T .
where =1 0:5 E o <. Our previous intuition moti 1= ok 2Bt> B «B”B)+N; (8)

verges to zero. More speci callf1(t); Az(t); andAs(t) linear combination ok (k, anddist;. We next use
boundkwk, andk (ky, A4(t) controls the diversity of
the inner loop-adapted heads, akg(t) andAg(t) con rm mn(BfB  4B”By) 2 2. (B{B)

that the learned representation approaches the ground-truth.
We employ two upper bounds én k, because we need to
use thatk (ko0 is both summabléA,(t)) and uniformly
small(Asz(t)) to complete different parts of the induction.
In particular, if true for allt, A,(t) shows thak k, may
initially increase, but eventually linearly converges to zero . L
due to the linear convergence dit;. The initialization  * (\ s=1A2(S)\ Ae(8)) =) As(t+1). This is the most
implies each inductive hypothesis holds at titee1 . We dif cult induction to show. The FO-ANIL dynamlcs are

must show they hold at time+ 1 if they hold up to timet. such thakwk, may increase on every iteration through-
out the entire execution of the algorithm. However, we

To do this, we employ the logic visualized in Figure 2. The  can exploit the fact that the amount that it increases is
top level eventsA (t +1); Az(t +1); As(t + 1)) are most proportional tok k2, which we can show is summable
“immediate” in the sense that they follow direCtly from other due to the linear Convergencedjﬁtt . First, we have
events at all times up to and includingvia the dashed

green arrows). The proofs of all other events at tirmé

require the occurrence of other events at tirrel , with Wit =(lc BBt Jwi+ n (B{B W i
more logical steps needed as one moves down the graph, i=1

and solid red arrows denoting implications from and to time which implies kwk, increases on each iteration by
t + 1. In particular,Az(t + 1) requires the events upto  O(p=k (ky ). Inparticular,

and including time¢ anda top-level event at+ 1, namely

A,(t +1), soitis in the second level. Similarlgg(t + 1) (a)

requires events up to and including titnand the second- kweake (L4 2k cko)kwiko + F—k ke

level event at+1, so it is in the third level, and so on. () X 1 ty 1

B—k sky (1+ 2k ko)

99 2(1 dist?) (9)

where(9) follows by 2, (B> B )=1 dist? andAs(t).
The proof follows by applying\s(t) to control1 dist?.

Recall that our intuition is that diverse adapted heads lead to

. . . . =0 =
contraction of the non-normalized representation distance. ; 1 e X 1
This logic drives the implicatiom(t) =) As(t +1). O e ke 1+ 2k ok
We then reasoned that contraction of the non-normalized <=0 b

distance leads to linear convergence of the distance as long

as the minimum singular value of the representation is con- where(b) follows by recursively applyinga) for t;t
trolled from below. This intuition is captured in the implica- 1, :::. and(c) follows by the AM-GM inequality. Next,
tionAs(t+1) \ Ag(t+1) =) Ag(t+1). for anys 2 [t], recursively apphA,(s),Ax(s 1);::and
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Figure 2.Logical ow of the proof. Note that there are no cycles among the implications frerh tot + 1, so the logic is consistent.

useAg(r) 8r 2 [s] to obtain, for an absolute constant  diversity is needed to learcol(B ). Speci cally, we re-
. . quire a tighter bound d ko, = O( 2), compared to the

‘ <d>c§< Sto2 o agie? ¢ X, 2 4 K tkz = O(1) bound in ANIL, and for FO-MAML, we

sh2 r also require a tighter bound dmwv ks (recall from Section
r=0 r=0 5 that smallek (k, andkwk, improves adapted head

Plugging(d) into (), computing the sum of geometric diversity). Moreover, to obtain tight bognds a1 ko
series, and applying the choice otompletes the proof. We can no longer use thiavi., ko k wk; is controlled by

_ ) ] k k2 due to to additional terms in the outer loop update.
* Ag(t+1) \ As(t) =) As(t+1). Thisfollows straight- 14 gyercome these issues, we must make stricter assump-

forwardly since is chosen suf ciently small. tions on the initial distance, and in the case of FO-MAML,
« Ag(t+1)\ \ I Ag(s) \ Ag(t) =) Ag(t+1).Using onthe average ground-truth head. Please see Appendix D
the de nition of the principal angle distance, the Cauchy-for details.

i i t+1
Schwarz inequality, ands=; As(s), we can show Finally, the proof of Theorem 4 relies on showing concen-

tration of the nite-sample gradients to the population gradi-
ents. The principal challenge is showing this concentration
) i for fourth-order products of the data that arise in the ANIL
from Wh.'c.h the prqpf follows after applyin@s(t+1) updates, since we cannot apply standard methods to these
and the initial conditions. Note that here we have normalhigher-order products while maintainingd) samples per
ized the representation only once at titiel and used 54y |nstead, we leverage the low-rankness of the products
the contraction of the ngn-normglz)ed energy to recursgyy, anplying a truncated version of the concentration re-
fromt+1 to 0, resulting in a—sz="5 scaling error. If gyt for low-rank random matrices from (Magen & Zouzias,
we instead tried to directly show the contraction of dis-2011)_ We also use the L4-L2-hypercontractiveness of the
tance and thereby normaliz%ﬁl analytically on every roundgata to control the bias in these higher-order products. De-
we would obtairdistiy =0 % tdisto, tails are found in Appendix E.

H Qt (Bs) . . .
meaning a” ., —g_y scaling error, which is too

large becausB s is in fact not normalized on every round. 6. Numerical simulations

kB> ,Buskp —m= (PO tdist

distiy min (Bt+1 )

-1
min (Bt+1 )

e Aj(t+1)\ Asz(t+1)\ Ag(t+1) =) Ay(t+1). Inthissection we run numerical simulations to verify our
This follows by expanding each; as in(7), and using theoretical ndings. First, we explore the effect of task di-
similar logic as in (9). versity on MAML's rate of convergence to the ground-truth

representation. In Figure 3, we execute MAML on the task

5.2. Other results — ANIL, FO-MAML, and MAML population lossesnfi, = Mg, = 1) in the multi-task

. . . , . linear representation learning setting. We&etl00 and
For ANIL, the inductive structure is nearly identical. The \ _ 5~ 51 each round. the ground-truth heads are sam-

only meaningful change in the proof is that the second- led i.i.d. fromN (O diag([1: - : - - 1 27)). where 2 < 1
order updates impligw .1 ko k wik, = O(k (k3), which pec1.1.¢. (Ordiag(L;:::; 1 “1)., '
is smaller than th®©(k k;) for FO-ANIL, and thereby
allows to controkw .1 ky with a potentially larger .

We randomly drawB andB g at the start of algorithm exe-
cution. The parameter? controls task diversity, with larger

2 meaning the ground-truth heads are closer to isotropic
For FO-MAML and MAML, recall that the inner loop up- and therefore more diverse. The results show that MAML's
date of the representation weakens the bene t of adaptelinear convergence rate improves with greater task diversity,
head diversity (see Section 3.1). Thus, larger adapted heansistent with Theorem 2.



