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Abstract
Recent empirical evidence has driven conven-
tional wisdom to believe that gradient-based meta-
learning (GBML) methods perform well at few-
shot learning because they learn an expressive
data representation that is shared across tasks.
However, the mechanics of GBML have remained
largely mysterious from a theoretical perspec-
tive. In this paper, we prove that two well-known
GBML methods, MAML and ANIL, as well as
their first-order approximations, are capable of
learning common representation among a set of
given tasks. Specifically, in the well-known multi-
task linear representation learning setting, they
are able to recover the ground-truth representa-
tion at an exponentially fast rate. Moreover, our
analysis illuminates that the driving force caus-
ing MAML and ANIL to recover the underlying
representation is that they adapt the final layer of
their model, which harnesses the underlying task
diversity to improve the representation in all di-
rections of interest. To the best of our knowledge,
these are the first results to show that MAML
and/or ANIL learn expressive representations and
to rigorously explain why they do so.

1. Introduction
A widely popular approach to achieve fast adaptation in
multi-task learning settings is to learn a representation that
extracts the important features shared across tasks (Maurer
et al., 2016). However, our understanding of how multi-
task representation learning should be done and why certain
methods work well is still nascent.

Recently, a paradigm known as meta-learning has emerged
as a powerful means of learning multi-task representations.

1Department of Electrical and Computer Engineering, The
University of Texas at Austin 2School of Computer Science and
Engineering, University of Washington. Correspondence to: Liam
Collins <liamc@utexas.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

This was sparked in large part by the introduction of Model-
Agnostic Meta-Learning (MAML) (Finn et al., 2017), which
achieved impressive results in few-shot image classification
and reinforcement learning scenarios, and led to a series
of related gradient-based meta-learning (GBML) methods
(Raghu et al., 2020; Nichol & Schulman, 2018; Antoniou
et al., 2019; Hospedales et al., 2021). Surprisingly, MAML
does not explicitly try to learn a useful representation; in-
stead, it aims to find a good initialization for a small number
of task-specific gradient descent steps, agnostic of whether
the learning model contains a representation. Nevertheless,
Raghu et al. (2020) empirically argued that MAML’s im-
pressive performance on neural networks is likely due to
its tendency to learn a shared representation across tasks.
To make this argument, they noticed that MAML’s repre-
sentation does not change significantly when adapted to
each task. Moreover, they showed that a modified ver-
sion of MAML that freezes the representation during local
adaptation, known as the Almost-No-Inner-Loop algorithm
(ANIL), typically performs at least as well as MAML on
few-shot image classification tasks. Yet it is still not well
understood why these algorithms that search for a good ini-
tialization for gradient descent should find useful a global
representation among tasks. Thus, in this paper, we aim to
address the following questions:

Do MAML and ANIL provably learn high-quality
representations? If so, why?

To answer these questions we consider the multi-task linear
representation learning setting (Maurer et al., 2016; Tripu-
raneni et al., 2021; Du et al., 2020) in which each task is a
noisy linear regression problem in Rd with optimal solution
lying in a shared k-dimensional subspace, where k � d.
The learning model is a two-layer linear network consisting
of a representation (the first layer of the model) and head
(the last layer). The goal is to learn a representation that
projects data onto the shared subspace so as to reduce the
number of samples needed to find the optimal regressor for
a new task from Ω(d) to Ω(k).

Main contributions. We prove, for the first time, that
both MAML and ANIL, as well their first-order approxi-
mations, are capable of representation learning and recover
the ground-truth subspace in this setting. Our analysis re-
veals that MAML and ANIL’s distinctive adaptation updates
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Figure 1. Distance of learned representation from the ground-truth
for ANIL, MAML and average risk minimization run on task pop-
ulation losses in multi-task linear representation learning setting.

for the last layer of the learning model are critical to their
recovery of the ground-truth representation. Figure 1 visual-
izes this observation: all meta-learning approaches (Exact
ANIL, MAML, and their first-order (FO) versions that ig-
nore second-order derivatives) approach the ground truth
exponentially fast, while a non-meta learning baseline of
average loss minimization empirically fails to recover the
ground-truth. We show that the inner loop updates of the
head exploit task diversity to make the outer loop updates
bring the representation closer to the ground-truth. How-
ever, MAML’s inner loop updates for the representation
can inhibit this behavior, thus, our results for MAML re-
quire an initialization with error related to task diversity,
whereas ANIL requires only constant error. We also show
that ANIL learns the ground-truth representation with only
Õ(k

3d
n + k3) � d samples per task, demonstrating that

ANIL’s representation learning is sample-efficient.

Related work. Several works have studied why meta-
learning algorithms are effective; please see Appendix A
for a comprehensive discussion. Building off Raghu et al.
(2020), most of these works have studied meta-learning
from a representation learning perspective (Goldblum et al.,
2020; Saunshi et al., 2021; Arnold et al., 2021; Wang et al.,
2021a; Kao et al., 2022). Among these, Ni et al. (2021);
Bouniot et al. (2020); Setlur et al. (2020) and Kumar et al.
(2021) showed mixed empirical impacts of training task
diversity on model performance. Most related to our work
is (Saunshi et al., 2020), which proved that the continuous
version of a first-order GBML method, Reptile (Nichol &
Schulman, 2018), learns a one-dimensional linear repre-
sentation in a two-task setting with a specific initialization,
explicit regularization, and infinite samples per task. Other
works studied multi-task representation learning in the linear
setting we consider from a statistical perspective (Maurer
et al., 2016; Du et al., 2020; Tripuraneni et al., 2021). Fur-
thermore, Collins et al. (2021) and Thekumparampil et al.
(2021) gave optimization results for gradient-based methods
in this setting. However, the algorithms they studied are
customized for the assumed low-dimensional linear repre-

sentation model, which makes it relatively easy to learn the
correct representation efficiently. A more challenging task
is to understand how general purpose and model-agnostic
meta-learning algorithms perform, such as the algorithms
we study.

Notations. We use bold capital letters for matrices and bold
lowercase letters for vectors. We use Od�k to denote the
set of matrices in Rd�k with orthonormal columns. A hat
above a matrix, e.g. B̂, implies the matrix is a member
of Od�k. We let col(B) denote the column space of B,
and col?(B) denote its orthogonal complement. N (0, σ2)
denotes the Gaussian distribution with mean 0 and variance
σ2. O(·) and Ω(·) hide constant factors, and Õ(·) and Ω̃(·)
hide constant and logarithmic factors.

2. Problem Formulation
We employ the multi-task linear representation learning
framework (Maurer et al., 2016; Du et al., 2020; Tripuraneni
et al., 2021) studied in prior works. Each task in this setting
is a linear regression problem in Rd. We index tasks by
(t, i), corresponding to the i-th task sampled on iteration t.
The inputs xt,i ∈ Rd and labels yt,i ∈ R for the (t, i)-th
task are sampled i.i.d. from a distribution Pt,i over Rd × R
such that:

xt,i ∼ p, zt,i ∼ N (0, σ2), yt,i = 〈��,t,i,xt,i〉+ zt,i

where ��,t,i ∈ Rd is the ground-truth regressor for task
(t, i), p is a distribution over Rd and zt,i is white Gaussian
noise with variance σ2. Each task has a set of m samples
Dt,i := {(xt,i,j , yt,i,j)}j2[m] drawn i.i.d. from Pt,i avail-
able for training.

To account for shared information across tasks, we suppose
there exists a matrix B� ∈ Od�k such that the ground-truth
regressors {��,t,i}i for all tasks lie in col(B�), so they can
be written as ��,t,i = B�w�,t,i for all t, i, where w�,t,i ∈
Rk. We refer to B� as the ground-truth representation and
w�,t,i as the ground-truth head for task (t, i). The task
environment consists of B� and a distribution ν over ground-
truth heads. With knowledge of col (B�), we can reduce the
number of samples needed to solve a task from Ω(d) to Ω(k)
by projecting the task data onto col (B�), then learning a
head in Rk. The question becomes how to learn the ground-
truth subspace col (B�).

The learning model consists of a representation B∈Rd�k
and a head w∈Rk. We would like the column space of B
to be close to that of B�, measured as follows.
Definition 1 (Principle angle distance). Let B̂ ∈ Od�k
and B̂�,? ∈ Od�(d�k) denote orthonormal matrices whose
columns span col(B) and col?(B�), respectively. Then the
principle angle distance between B and B� is

dist(B,B�) := ‖B̂>�,?B̂‖2. (1)
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For shorthand, we denotedist t := dist( B t ; B � ).

Notice thatdim(col(B � )) = k. Thus, the learned represen-
tationB must extractk orthogonal directions belonging to
col(B � ). As we will show, MAML and ANIL's task-speci�c
adaptation of the head critically leverages task diversity to
learnk such directions.

3. Algorithms

Here we formally state the implementation of ANIL and
MAML for the problem described above. First, letting
� := [ w ; vec(B )] 2 R(d+1) k denote the vector of model
parameters, we de�ne the population loss for task(t; i ):

L t;i (� ) := 1
2 E(x t;i ;y t;i ) � P t;i

�
(hBw ; x t;i i � yt;i )2�

:

Often we approximate this loss with the �nite-sample loss
for a datasetD0

t;i := f (x t;i;j ; yt;i;j )gj 2 [m 0]:

L̂ t;i (� ; D0
t;i ) := 1

2m 0

m 0
X

j =1

(hBw ; x t;i;j i� yt;i;j )2:

MAML. MAML minimizes the average loss across tasks
aftera small number of task-speci�c gradient updates. Here,
we consider that the task-speci�c updates are one step of
minibatch SGD with batchD in

t;i consisting ofmin i.i.d. sam-
ples fromPt;i . Speci�cally, the loss function that MAML
minimizes is

min
�

L MAML(� ) := Ew � ;t;i ;D in
t;i

[L t;i (� � � r � L̂ t;i (� ; D in
t;i )))]

(2)
where for ease of notation we have writtenEw � ;t;i ;D in

t;i
as

shorthand forEw � ;t;i � �; D in
t;i � P m in

t;i
. MAML essentially

solves(2) with minibatch SGD. At iterationt, it draws
n tasks with ground-truth headsf w � ;t;i gi 2 [n ] drawn from
� , and for each drawn task, drawsm samples contained
in Dt;i i.i.d. from Pt;i . MAML then partitionsDt;i into
D in

t;i and Dout
t;i such thatjD in

t;i j = min , jD out
t;i j = mout ,

andmin + mout = m (we assumemin < m ). For task
(t; i ), in what is known as the inner loop, MAML takes a
task-speci�c stochastic gradient step from the initial model
(B t ; w t ) using the samplesD in

t;i and step size� to obtain
the adapted parameters� t;i :

� t;i =
�

w t;i

vec(B t;i )

�
 

"
w t � � r w L̂ i (B t ; w t ; D in

t;i )
vec(B t ) � � r vec( B ) L̂ i (B t ;w t ;D in

t;i )

#

Then, in the so-called outer loop, MAML takes a minibatch
SGD step with respect to the loss after task-speci�c adapta-
tion using the samplesfD out

t;i gi 2 [n ] and step size� :

� t +1  � t � �
n

nX

i =1

(I � � r 2
� L̂ t;i (� t ;Dout

t;i )) r L̂ t;i (� t;i ;Dout
t;i )

Note that the above Exact MAML update requires expen-
sive second-order derivative computations. In practice, FO-
MAML, which drops the Hessian, is often used, since it
typically achieves similar performance (Finn et al., 2017).

ANIL. Surprisingly, Raghu et al. (2020) noticed that train-
ing neural nets with a modi�ed version of MAML that lacks
inner loop updates for the representation resulted in models
that matched and sometimes even exceeded the performance
of models trained by MAML on few-shot image classi�ca-
tion tasks. This modi�ed version is ANIL, and its inner loop
updates in our linear case are given as follows:

� t;i =
�

w t;i

vec(B t;i )

�
=

�
w t � � r w L̂ t;i (B t ; w t ; D in

t;i )
vec(B t )

�
:

In the outer loop, ANIL again takes a minibatch SGD step
with respect to the loss after the inner loop update. Then,
the outer loop updates for Exact ANIL are given by:

� t +1  � t �
�
n

nX

i =1

Ĥ t;i (� t ; Dout
t;i )r � L̂ t;i (� t;i ; Dout

t;i )

where, for Exact ANIL,

Ĥ t;i (B t ; w t ; Dout
t;i ) :=

"
I k � � r 2

w L̂ t;i (� t ; Dout
t;i ) 0

� � @2

@vec( B )@w L̂ t;i (� t ; Dout
t;i ) I

#

To avoid computing second order derivatives, we can instead
treatĤ t;i as the identity operator, in which case we call the
algorithm FO-ANIL.

3.1. Role of Adaptation

Now we present new intuition for MAML and ANIL's rep-
resentation learning ability which motivates our proof struc-
ture. The key observation is that the outer loop gradients for
the representation areevaluated at the inner loop-adapted
parameters; this harnesses the power of task diversity to
improve the representation inall k directions. This is easiest
to observe in the FO-ANIL case withmin = mout = 1 .
In this case, the update for the representation is given as:

B t +1 = B t

�
I k � �

n

nX

i =1

w t;i w >
t;i

| {z }
FO-ANIL prior weight

�
+ B �

�
n

nX

i =1

w � ;t;i w >
t;i

| {z }
FO-ANIL signal weight

(3)

If the `prior weight' is small and the `signal weight' is
large, then the update replaces energy fromcol(B t ) with
energy fromcol(B � ). Roughly, this is true as long as	 t :=
1
n

P n
i =1 w t;i w >

t;i is well-conditioned, i.e. thew t;i 's are
diverse. Assumingw t;i � w � ;t;i for each task, then	 t is
well-conditioned if and only if the tasks are diverse. This
shows how task diversity causes the column space of the
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representation learned by FO-ANIL to approach the ground-
truth. For FO-MAML, we observe similar behavior, with a
caveat. The representation update is:

B t +1
(a)
= B t � �

n

nX

i =1

B t;i w t;i w >
t;i + B �

�
n

nX

i =1

w � ;t;i w >
t;i

(b)
= B t

�
I k � (I k � � w t w >

t ) �
n

nX

i =1

w t;i w >
t;i

| {z }
FO-MAML prior weight

�

+ B �

�
�
n

nX

i =1

(1 � � hw t;i ; w t i )w � ;t;i w >
t;i

| {z }
FO-MAML signal weight

�

Equation(a) is similar to(3) except that oneB t is replaced
by theB t;i 's resulting from inner loop adaptation. Expand-
ing B t;i in (b), we notice that the prior weight is at least
as large as in(3), since� max (I k � � w t w >

t ) � 1, but it can
still be small as long as thew t;i 's are diverse andkw t k2 is
small. Thus we conclude that FO-MAML also can learn the
representation, yet its inner loop adaptation complicates its
ability to do so.

Comparison with no inner-loop adaptation. Compare
these updates to the case when there is no inner loop adap-
tation, i.e. we run SGD on the non-adaptive objective
min � Ew � ;t;i [L t;i (� )] instead of (2). In this case,B t +1 is:

B t +1 = B t
�
I k � � w t w >

t

�
+ � B � �w � ;t w >

t (4)

where�w � ;t := 1
n

P n
i =1 w � ;t;i . Observe that the coef�cient

of B t in the update is rankk� 1, while the coef�cient ofB �

is rank 1. Thus,col(B t +1 ) can approachcol(B � ) in at most
one direction on any iteration. Empirically,w t points in
roughly the same direction throughout training, preventing
this approach from learningcol(B � ) (e.g. see Figure 1).

Technical challenges.The intuition on the role of adap-
tation, while appealing, makes strong assumptions; most
notably that thew t;i 's are diverse enough to improve the
representation and that the algorithm dynamics are stable.
To show these points, we observe thatw t;i can be written as
the linear combination of a vector distinct for each task and
a vector that is shared across all tasks at timet. Showing
that the shared vector is small implies thew t;i 's are diverse,
and we can control the magnitude of the shared vector by
controllingkw t k2 andkI k � � B >

t B t k2. Showing that these
quantities are small at all times also ensures the stability of
the algorithms. Meanwhile, we must prove thatkB >

� ;? B t k2

anddist t = kB̂ >
� ;? B̂ t k2 are contracting. It is not obvious

that any of these conditions hold individually; in fact, they
require a novel multi-way inductive argument to show that
they hold simultaneously for eacht (see Section 5).

4. Main Results

In this section we formalize our intuition discussed pre-
viously and prove that both MAML and ANIL and their
�rst-order approximations are capable learning the column
space of the ground-truth representation. To do so, we �rst
make the following assumption concerning the diversity of
the sampled ground-truth heads.

Assumption 1(Task diversity). The eigenvalues of the sym-
metric matrix	 � ;t := ( 1

n

P n
i =1 w � ;t;i w >

� ;t;i ) are uniformly
bounded below and above by� 2

� andL 2
� , respectively1, i.e.,

� 2
� I � 	 � ;t � L 2

� I , for all t 2 [T].

The lower bound on the eigenvalues of the matrix	 � ;t

ensures that thek � k matrix 	 � ;t is full rank and hence
the vectorsf w � ;t;i gn

i =1 spanRk , therefore they are diverse.
However, the diversity level of the tasks is de�ned by ratio
of the eigenvalues of the matrix	 � ;t , i.e., � � := L �

� �
. If

this ratio is close to 1, then the ground-truth heads are very
diverse and have equal energy in all directions. On the other
hand, if � � is large, then the ground-truth heads are not
very diverse as their energy is mostly focused in a speci�c
direction. Hence, as the following results reveal, smaller� �

leads to faster convergence for ANIL and MAML.

Now we are ready to state our main results for the ANIL
and FO-ANIL algorithms in the in�nite sample case.

Theorem 1. Consider the in�nite sample case for ANIL
and FO-ANIL, wheremin = mout = 1 . Further, suppose
the conditions in Assumption 1 hold, the initial weights
are selected asw0 = 0k and� B >

0 B 0 = I k . Let the step
sizes are chosen as� = O(1=L � ) and � = O(�� � 4

� ) for
ANIL and� = O(�� � 4

� min(1; � 2
� =� 2

� )) for FO-ANIL, where
� � satis�esk 1

n

P n
i =1 w � ;t;i k2 � � � for all timest 2 [T]

almost surely. If the initial error satis�es the condition
dist0 �

p
0:9, then almost surely for both ANIL and FO-

ANIL we have,

dist(B T ; B � ) �
�
1 � 0:5��E 0� 2

�

� T � 1
; (5)

whereE0 := 0 :9 � dist2
0.

Theorem 1 shows that both FO-ANIL and Exact ANIL learn
a representation that approaches the ground-truth exponen-
tially fast as long as the initial representationB 0 is normal-
ized and is a constant distance away from the ground-truth,
the initial headw0 = 0, and the sampled tasks are diverse.
Note that� is larger for ANIL and hence its convergence is
faster, demonstrating the bene�t of second-order updates.

1We could instead assume the ground-truth heads are sub-
gaussian and use standard concentration results show that with
n = 
( k + log( T )) , the set of ground-truth headsf w � ;t;i gn

i =1
sampled on iterationt are(1 + O(1); 1 � O(1)) -diverse for all
T iterations with high probability, but instead we assume generic
bounds for simplicity.
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Next, we state our results for FO-MAML and Exact MAML
for the same in�nite sample setting. Due to the adaptation
of both the representation and head, the MAML and FO-
MAML updates involve third- and fourth-order products
of the ground-truth heads, unlike the ANIL and FO-ANIL
updates which involve at most second-order products. To
analyze the higher-order terms, we assume that the energy
in each ground-truth head is balanced.

Assumption 2 (Task incoherence). For all timest 2 [T]
and tasksi 2 [n], we almost surely havekw � ;t;i k2 � c

p
kL � ,

wherec is a constant.

Next, as discussed in Section 3.1, MAML's adaptation of
the representation complicates its ability to learn the ground-
truth subspace. As a result, we require an additional con-
dition to show that MAML learns the representation: the
distance of the initialization to the ground-truth must small
in the sense that it must scale with the task diversity and in-
versely withk. We formalize this in the following theorem.

Theorem 2. Consider the in�nite sample case for MAML,
wheremin = mout = 1 . Further, suppose the conditions
in Assumptions 1 and 2 hold, the initial weights are selected
asw0 = 0k and� B >

0 B 0 = I k , and the step sizes satisfy
� = O(k� 2=3L � 1

� T � 1=4) and � = O(�� � 4
� ). If dist0 =

O(k� 0:75� � 1:5
� ), then almost surely

dist(B T ; B � ) �
�
1 � 0:5��E 0� 2

�

� T � 1
;

whereE0 := 0 :9 � dist2
0.

Theorem 2 shows that the initial representation learning
error for MAML must scale asO(k� 0:75� � 1:5

� ), which can
be much smaller than the constant scaling that is suf�cient
for ANIL to learn the representation (see Theorem 1). Next
we give the main result for FO-MAML, which requires an
additional condition that the norm of the average of the
ground-truth heads sampled on each iteration is small. This
condition arises due to the fact that the FO-MAML updates
are approximations of the exact MAML updates, and thus
have a bias that depends on the average of the ground-truth
heads. Without control of this bias, the iteratesB t andw t

may diverge.

Theorem 3. Consider the in�nite sample case for FO-
MAML, wheremin = mout = 1 . Further, suppose the
conditions in Assumptions 1 and 2 hold, the initial weights
are selected asw0 = 0k and� B >

0 B 0 = I k , and the step
sizes satisfy� = O( 1p

kL �
) and� = O(�� � 4

� ). If the initial

error satis�esdist0 = O(k� 0:5� � 1
� ), and the average of

the true heads almost surely satis�esk 1
n

P n
i =1 w � ;t;i k2 =

O(k� 1:5� � 3
� � � ) for all timest, then almost surely

dist(B T ; B � ) �
�
1 � 0:5��E 0� 2

�

� T � 1
;

whereE0 := 0 :9 � dist2
0.

Theorem 3 shows that FO-MAML learnscol(B � ) as long as
the initial principal angle is small andk 1

n

P n
i =1 w � ;t;i k2 =

O(k� 1:5� � 3
� � � ) on all iterations, due to the biased updates.

Note that the FO-ANIL updates are also biased, but this bias
scales withkI k � � B >

t B t k2, which is eventually decreasing
quickly enough to make the cumulative error induced by
the bias negligible without any additional conditions. In
contrast,kI k � � B >

t B t k2 is not guaranteed to decrease for
FO-MAML due to the inner loop adaptation of the represen-
tation, so we need the additional condition.

To the best of our knowledge, the above theorems are the
�rst results to show that ANIL, MAML, and their �rst-
order approximations learn representations in any setting.
Moreover, they are the �rst to show howtask diversityplays
a key role in representation learning from an optimization
perspective, to the best of our knowledge. Due the the
restrictions on� and� , Theorems 1 and 2 show that the
rate of contraction of principal angle distance diminishes
with less task diversity. Thus, the more diverse the tasks, i.e.
the smaller� � , the faster that ANIL and MAML learn the
representation. Additionally, the less diverse the tasks, the
more accurate initialization that MAML requires, and the
tighter that the true heads must be centered around zero to
control the FO-MAML bias.

4.1. Finite-sample results

Thus far we have only considered the in�nite sample case,
i.e., min = mout = 1 , to highlight the reasons that the
adaptation updates in MAML and ANIL are essential for
representation learning. Next, we study the �nite sample
setting. Indeed, establishing our results for the �nite sample
case is more challenging, but the mechanisms by which
ANIL and MAML learn representations for �nitemin and
mout are very similar to the in�nite-sample case, and the
�nite-sample problem reduces to showing concentration of
the updates to the in�nite-sample updates.

For MAML, this concentration requires assumptions on
sixth and eighth-order products of the data which arise due
to the inner-loop updates. In light of this, for the sake of
readability we only give the �nite-sample result for ANIL
and FO-ANIL, whose analyses require only standard as-
sumptions on the data, as we state below.

Assumption 3(Sub-gaussian feature distribution). For x �
p, E[x] = 0 and Cov(x) = I d. Moreover,x is I d-sub-

gaussian in the sense thatE[exp(v > x)] � exp(kv k2
2

2 ) 8 v .

Under this assumption, we can show the following.

Theorem 4 (ANIL Finite Samples). Consider the �nite-
sample case for ANIL and FO-ANIL. Suppose Assumptions
1, 2 and 3 hold,� = O((

p
kL � + � ) � 1) and� is chosen as

in Theorem 1. For some� > 0 to be de�ned later, letE0 =
0:9� dist2

0 � � and assumeE0 is lower bounded by a positive



MAML and ANIL Provably Learn Representations

constant. Suppose the sample sizes satisfymin = ~
( M in )
andmout = ~
( M out ) for some expressionsM in ; M out to
be de�ned later. Then both ANIL and FO-ANIL satisfy:

dist(B T ; B � ) �
�
1 � 0:5��� 2

�

� T � 1
+ ~O(� )

where for ANIL,

M in = k3 + k 3 d
n ; M out = k2 + dk + k 3

n ;

� = (
p

k� 2
� + � � �

� �
+ � 2

� 2
�
)(k+

p
dkp
n )( 1p

m in
+ 1p

m out
)

and for FO-ANIL,

M in = k2; M out = dk + k 3

n

� = (
p

k� 2
� + � � �

� �
+ � 2

� 2
�

p
m in

)
p

dkp
nm out

with probability at least1� T
poly( n ) �

T
poly( m in ) � O(Te� 90k ).

For ease of presentation, the~
() notation excludes log fac-
tors and all parameters besidesk; d andn; please refer to
Theorem 8 in Appendix E for the full statement. We focus
on dimension parameters andn here to highlight the sample
complexity bene�ts conferred by ANIL and FO-ANIL com-
pared to solving each task separately (n = 1 ). Theorem 4
shows that ANIL requires onlymin + mout = ~
( k3 + k 3 d

n )
samples per task to reach a neighborhood of the ground-
truth solution. Sincek � d andn can be large, this sample
complexity is far less than the~
( d) required to solve each
task individually (Hsu et al., 2012). Note that more samples
are required for Exact ANIL because the second-order up-
dates involve higher-order products of the data, which have
heavier tails than the analogous terms for FO-ANIL.

5. Proof sketch

We now discuss how we prove the results in greater detail.
We focus on the FO-ANIL case because the presentation is
simplest yet still illuminates the key ideas used in all proofs.

5.1. Theorem 1 (FO-ANIL)

Intuition. Our goal is to show that the distance between the
column spaces ofB t andB � , i.e. dist t := kB̂ >

� ;? B̂ t k2 is
converging to zero at a linear rate for allt . We will use an in-
ductive argument in which we assume favorable conditions
to hold up to timet, and will prove they continue to hold at
timet +1 . To showdist t +1 is linearly decaying, it is helpful
to �rst consider the non-normalized energy in the subspace
orthogonal to the ground-truth, namelykB̂ >

� ;? B t +1 k2. We
have observed in equation(3) that if the inner-loop adapted
headsw t;i at timet are diverse, then the FO-ANIL update
of the representation subtracts energy from the previous rep-
resentation and adds energy from the ground-truth represen-
tation. Examining(3) closer, we notice that the only energy
in the column space of the new representation that can be

orthogonal to the ground-truth subspace is contributed by
the previous representation, and this energy is contracting
at a rate proportional to the condition number of the matrix
formed by the adapted heads. In particular, if we de�ne the
matrix 	 t := 1

n

P n
i =1 w t;i w >

t;i , then we have

kB >
� ;? B t +1 k2 = kB >

� ;? B t (I � � 	 t )k2

� (1 � �� min (	 t ))kB >
� ;? B t k2; (6)

as long as� � 1=� max ( 	 t ). Therefore, to show that the nor-
malized energykB̂ >

� ;? B̂ t +1 k2 approaches zero, we aim to
show: (I) The condition number of	 t continues to stay con-
trolled and �nite, which implies linear convergence of the
non-normalized energy incol(B � )? according to(6); and
(II) The minimum singular value of the representationB t +1

is staying the same. Otherwise, the energy orthogonal to the
ground-truth subspace could be decreasing, but the repre-
sentation could be becoming singular, which would mean
the distance to the ground-truth subspace is not decreasing.

To show (I), note that the adapted heads are given by:

w t;i = � t w t| {z }
non-unique

+ � B >
t B � w � ;t;i| {z }

unique

; (7)

where� t := I k � � B >
t B t . The vector� t w t is present

in everyw t;i , so we refer to it as the non-unique part of
w t;i . On the other hand,� B >

t B � w � ;t;i is the unique part of
w t;i . Equation(7) shows that if the non-unique part of each
w t;i is relatively small compared to the unique part, then
	 t � � 2B >

t B � 	 � ;t B >
� B t , meaning thew t;i 's are almost

as diverse as the ground-truth heads. So we aim to show
k� t k2 andkw t k2 remain small for allt. We speci�cally
need to show they are small compared to� 2

min (B >
t B � ),

since this quantity roughly lower bounds the energy in the
diverse part ofw t;i . One can show that� 2

min (B̂ >
t B � ) =

1� dist2
t , so we need to use thatdist t is decreasing in order

to lower bound the energy in the unique part ofw t;i .

It is also convenient to trackk� t k2 in order to show (II),
sincek� t +1 k2 � " implies � min (B t +1 ) �

p
1� "p

� . Note
that for (II), we need control ofk� t +1 k2, whereas to show
(I) we needed control ofk� t k2. This difference in time in-
dices is accounted for by the induction we will soon discuss.

It is now evident why it makes sense to initialize with
k� 0k2 = 0 and kw t k2 = 0 (in fact, they do not have
to be exactly zero; any initialization withkw0k2 = O(

p
� )

andk� t k2 = O(� 2) would suf�ce). However, proving
thatk� t k2 andkw t k2 remain small is dif�cult because the
algorithm lacks explicit regularization or a normalization
step after each round. Empirically,� min (B t ) may decrease
andkw t k2 may increase on any particular round, so it is
not clear why� min (B t ) does not go to zero (i.e.k� t k2

does not go to 1) andkw t k2 does not blow up. To address
these issues, one could add an explicit regularization term



MAML and ANIL Provably Learn Representations

to the loss functions or an orthonormalization step to the al-
gorithm, but doing so is empirically unnecessary and would
not be consistent with the ANIL formulation or algorithm.

Inductive structure. We overcome the aforementioned
challenges by executing a multi-way induction that involves
the following six inductive hypotheses:

1. A1(t) := fk w t k2 = O(
p

� min(1; � 2
�

� 2
�

)� � )g,

2. A2(t) :=
�

k� t k2 � � k� t � 1k2+ O(� 2� 2L 4
� dist2

t � 1)
	

,

3. A3(t) :=
�

k� t k2 � 1
10

	
,

4. A4(t) :=
�

0:9�E 0� � I k � 	 t � 1:2�L 2
� I k

	
,

5. A5(t) :=
�

kB >
� ;? B t k2 � � kB >

� ;? B t � 1k2
	

,

6. A6(t) := f dist t = kB̂ >
� ;? B̂ t k2 � � t � 1g,

where� = 1 � 0:5��E 0� 2
� . Our previous intuition moti-

vates our choice of inductive hypothesesA1(t); : : : ; A5(t)
as intermediaries to ultimately show thatdist t linearly con-
verges to zero. More speci�cally,A1(t); A2(t); andA3(t)
boundkw t k2 andk� t k2, A4(t) controls the diversity of
the inner loop-adapted heads, andA5(t) andA6(t) con�rm
that the learned representation approaches the ground-truth.
We employ two upper bounds onk� t k2 because we need to
use thatfk � t k2gt is both summable(A2(t)) and uniformly
small(A3(t)) to complete different parts of the induction.
In particular, if true for allt, A2(t) shows thatk� t k2 may
initially increase, but eventually linearly converges to zero
due to the linear convergence ofdist t . The initialization
implies each inductive hypothesis holds at timet = 1 . We
must show they hold at timet + 1 if they hold up to timet.

To do this, we employ the logic visualized in Figure 2. The
top level events (A1(t + 1) ; A2(t + 1) ; A5(t + 1) ) are most
“immediate” in the sense that they follow directly from other
events at all times up to and includingt (via the dashed
green arrows). The proofs of all other events at timet +1
require the occurrence of other events at timet + 1 , with
more logical steps needed as one moves down the graph,
and solid red arrows denoting implications from and to time
t + 1 . In particular,A3(t + 1) requires the events up to
and including timet anda top-level event att + 1 , namely
A2(t + 1) , so it is in the second level. Similarly,A6(t + 1)
requires events up to and including timet and the second-
level event att +1 , so it is in the third level, and so on.

Recall that our intuition is that diverse adapted heads lead to
contraction of the non-normalized representation distance.
This logic drives the implicationA4(t) =) A5(t + 1) .
We then reasoned that contraction of the non-normalized
distance leads to linear convergence of the distance as long
as the minimum singular value of the representation is con-
trolled from below. This intuition is captured in the implica-
tion A5(t + 1) \ A3(t + 1) = ) A6(t + 1) .

We also discussed that the diversity of the adapted heads
depends on the global head being small, the representation
being close to a scaled orthonormal matrix, and the repre-
sentation distance being bounded away from 1 at the start
of that iteration. This is ensured by the implication that
the adapted heads are again diverse on iterationt + 1 , in
particularA1(t +1) \ A3(t +1) \ A6(t +1) = ) A4(t +1) .
The other implications in the graph are technical and needed
to controlkw t +1 k2 andk� t +1 k2.

Proving the implications. We now formally discuss each
implication, starting with the top level. Full proofs are
provided in Appendix C.

• A4(t) =) A5(t +1) . This is true by equation (6).

• A1(t) \ A3(t) \ A6(t) =) A2(t +1) . It can be shown
that� t +1 is of the form:

� t +1 = � t (I k � �� 2B >
t B � 	 � ;t B >

� B t )+ N t (8)

for some matrixN t whose norm is upper bounded by a
linear combination ofk� t k2 anddist t . We next use

� min (B >
t B � 	 � ;t B >

� B t ) � � 2
� � 2

min (B >
t B � )

� 0:9
� � 2

� (1� dist2
t ) (9)

where(9) follows by � 2
min (B̂ >

t B � )=1 � dist2
t andA3(t).

The proof follows by applyingA6(t) to control1� dist2
t .

• (\ t
s=1 A2(s) \ A6(s)) = ) A1(t +1) . This is the most

dif�cult induction to show. The FO-ANIL dynamics are
such thatkw t k2 may increase on every iteration through-
out the entire execution of the algorithm. However, we
can exploit the fact that the amount that it increases is
proportional tok� t k2, which we can show is summable
due to the linear convergence ofdist t . First, we have

w t +1 =( I k � � B >
t B t � t )w t +

�
n

nX

i =1

� t B >
t B � w � ;t;i

which implies kw t k2 increases on each iteration by
O( �p

� k� t k2� � ). In particular,

kw t +1 k2

(a)
� (1 + 2�

� k� t k2)kw t k2 + 2�L �p
� k� t k2

(b)
�

t � 1X

s=0

2�� �p
� k� sk2

t � 1Y

r = s

(1 + 2�
� k� r k2)

(c)
�

t � 1X

s=0

2�� �p
� k� sk2

�
1+ 1

t � s

t � 1X

r = s

2�
� k� r k2

� t � s

where(b) follows by recursively applying(a) for t; t �
1; :::. and(c) follows by the AM-GM inequality. Next,
for anys 2 [t], recursively applyA2(s),A2(s� 1); ::: and
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Figure 2.Logical �ow of the proof. Note that there are no cycles among the implications fromt + 1 to t + 1 , so the logic is consistent.

useA6(r ) 8r 2 [s] to obtain, for an absolute constantc,

k� sk2

(d)
� c

s� 1X

r =0

� s� r � 2� 2L 4
� dist2

r � c� s
s� 1X

r =0

� r � 2� 2L 4
�

Plugging(d) into (c), computing the sum of geometric
series, and applying the choice of� completes the proof.

• A2(t +1) \ A3(t) =) A3(t +1) . This follows straight-
forwardly since� is chosen suf�ciently small.

• A3(t+1) \
�
\ t +1

s=1 A5(s)
�

\ A6(t) =) A6(t+1) . Using
the de�nition of the principal angle distance, the Cauchy-
Schwarz inequality, and\ t +1

s=1 A5(s), we can show

dist t+1 � 1
� min (B t +1 ) kB̂ >

� ;? B t+1 k2 � � max (B 0 )
� min (B t +1 ) � t dist0

from which the proof follows after applyingA3(t +1)
and the initial conditions. Note that here we have normal-
ized the representation only once at timet +1 and used
the contraction of the non-normalized energy to recurse
from t+1 to 0, resulting in a � max (B 0 )

� min (B t +1 ) scaling error. If
we instead tried to directly show the contraction of dis-
tance and thereby normalized analytically on every round,
we would obtaindist t+1 �

� Q t
s=0

� max (B s )
� min (B s +1 )

�
� t dist0,

meaning a
Q t

s=0
� max (B s )

� min (B s +1 ) scaling error, which is too
large becauseB s is in fact not normalized on every round.

• A1(t + 1) \ A3(t + 1) \ A6(t + 1) = ) A4(t + 1) .
This follows by expanding eachw t;i as in(7), and using
similar logic as in (9).

5.2. Other results – ANIL, FO-MAML, and MAML

For ANIL, the inductive structure is nearly identical. The
only meaningful change in the proof is that the second-
order updates implykw t +1 k2�k w t k2 = O(k� t k2

2), which
is smaller than theO(k� t k2) for FO-ANIL, and thereby
allows to controlkw t +1 k2 with a potentially larger� .

For FO-MAML and MAML, recall that the inner loop up-
date of the representation weakens the bene�t of adapted
head diversity (see Section 3.1). Thus, larger adapted head

diversity is needed to learncol(B � ). Speci�cally, we re-
quire a tighter bound ofk� t k2 = O(� 2), compared to the
k� t k2 = O(1) bound in ANIL, and for FO-MAML, we
also require a tighter bound onkw t k2 (recall from Section
5 that smallerk� t k2 andkw t k2 improves adapted head
diversity). Moreover, to obtain tight bounds onkw t +1 k2

we can no longer use thatkw t +1 k2�k w t k2 is controlled by
k� t k2 due to to additional terms in the outer loop update.
To overcome these issues, we must make stricter assump-
tions on the initial distance, and in the case of FO-MAML,
on the average ground-truth head. Please see Appendix D
for details.

Finally, the proof of Theorem 4 relies on showing concen-
tration of the �nite-sample gradients to the population gradi-
ents. The principal challenge is showing this concentration
for fourth-order products of the data that arise in the ANIL
updates, since we cannot apply standard methods to these
higher-order products while maintainingo(d) samples per
task. Instead, we leverage the low-rankness of the products
by applying a truncated version of the concentration re-
sult for low-rank random matrices from (Magen & Zouzias,
2011). We also use the L4-L2-hypercontractiveness of the
data to control the bias in these higher-order products. De-
tails are found in Appendix E.

6. Numerical simulations

In this section we run numerical simulations to verify our
theoretical �ndings. First, we explore the effect of task di-
versity on MAML's rate of convergence to the ground-truth
representation. In Figure 3, we execute MAML on the task
population losses (min = mout = 1 ) in the multi-task
linear representation learning setting. We setd= 100 and
k = n =5 . On each round, the ground-truth heads are sam-
pled i.i.d. fromN (0; diag([1; : : : ; 1; � 2])) , where� 2 < 1.
We randomly drawB � andB 0 at the start of algorithm exe-
cution. The parameter� 2 controls task diversity, with larger
� 2 meaning the ground-truth heads are closer to isotropic
and therefore more diverse. The results show that MAML's
linear convergence rate improves with greater task diversity,
consistent with Theorem 2.


