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Abstract
Recent empirical evidence has driven conven-
tional wisdom to believe that gradient-based meta-
learning (GBML) methods perform well at few-
shot learning because they learn an expressive
data representation that is shared across tasks.
However, the mechanics of GBML have remained
largely mysterious from a theoretical perspec-
tive. In this paper, we prove that two well-known
GBML methods, MAML and ANIL, as well as
their first-order approximations, are capable of
learning common representation among a set of
given tasks. Specifically, in the well-known multi-
task linear representation learning setting, they
are able to recover the ground-truth representa-
tion at an exponentially fast rate. Moreover, our
analysis illuminates that the driving force caus-
ing MAML and ANIL to recover the underlying
representation is that they adapt the final layer of
their model, which harnesses the underlying task
diversity to improve the representation in all di-
rections of interest. To the best of our knowledge,
these are the first results to show that MAML
and/or ANIL learn expressive representations and
to rigorously explain why they do so.

1. Introduction
A widely popular approach to achieve fast adaptation in
multi-task learning settings is to learn a representation that
extracts the important features shared across tasks (Maurer
et al., 2016). However, our understanding of how multi-
task representation learning should be done and why certain
methods work well is still nascent.

Recently, a paradigm known as meta-learning has emerged
as a powerful means of learning multi-task representations.
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This was sparked in large part by the introduction of Model-
Agnostic Meta-Learning (MAML) (Finn et al., 2017), which
achieved impressive results in few-shot image classification
and reinforcement learning scenarios, and led to a series
of related gradient-based meta-learning (GBML) methods
(Raghu et al., 2020; Nichol & Schulman, 2018; Antoniou
et al., 2019; Hospedales et al., 2021). Surprisingly, MAML
does not explicitly try to learn a useful representation; in-
stead, it aims to find a good initialization for a small number
of task-specific gradient descent steps, agnostic of whether
the learning model contains a representation. Nevertheless,
Raghu et al. (2020) empirically argued that MAML’s im-
pressive performance on neural networks is likely due to
its tendency to learn a shared representation across tasks.
To make this argument, they noticed that MAML’s repre-
sentation does not change significantly when adapted to
each task. Moreover, they showed that a modified ver-
sion of MAML that freezes the representation during local
adaptation, known as the Almost-No-Inner-Loop algorithm
(ANIL), typically performs at least as well as MAML on
few-shot image classification tasks. Yet it is still not well
understood why these algorithms that search for a good ini-
tialization for gradient descent should find useful a global
representation among tasks. Thus, in this paper, we aim to
address the following questions:

Do MAML and ANIL provably learn high-quality
representations? If so, why?

To answer these questions we consider the multi-task linear
representation learning setting (Maurer et al., 2016; Tripu-
raneni et al., 2021; Du et al., 2020) in which each task is a
noisy linear regression problem in Rd with optimal solution
lying in a shared k-dimensional subspace, where k � d.
The learning model is a two-layer linear network consisting
of a representation (the first layer of the model) and head
(the last layer). The goal is to learn a representation that
projects data onto the shared subspace so as to reduce the
number of samples needed to find the optimal regressor for
a new task from Ω(d) to Ω(k).

Main contributions. We prove, for the first time, that
both MAML and ANIL, as well their first-order approxi-
mations, are capable of representation learning and recover
the ground-truth subspace in this setting. Our analysis re-
veals that MAML and ANIL’s distinctive adaptation updates
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Figure 1. Distance of learned representation from the ground-truth
for ANIL, MAML and average risk minimization run on task pop-
ulation losses in multi-task linear representation learning setting.

for the last layer of the learning model are critical to their
recovery of the ground-truth representation. Figure 1 visual-
izes this observation: all meta-learning approaches (Exact
ANIL, MAML, and their first-order (FO) versions that ig-
nore second-order derivatives) approach the ground truth
exponentially fast, while a non-meta learning baseline of
average loss minimization empirically fails to recover the
ground-truth. We show that the inner loop updates of the
head exploit task diversity to make the outer loop updates
bring the representation closer to the ground-truth. How-
ever, MAML’s inner loop updates for the representation
can inhibit this behavior, thus, our results for MAML re-
quire an initialization with error related to task diversity,
whereas ANIL requires only constant error. We also show
that ANIL learns the ground-truth representation with only
Õ(k

3d
n + k3) � d samples per task, demonstrating that

ANIL’s representation learning is sample-efficient.

Related work. Several works have studied why meta-
learning algorithms are effective; please see Appendix A
for a comprehensive discussion. Building off Raghu et al.
(2020), most of these works have studied meta-learning
from a representation learning perspective (Goldblum et al.,
2020; Saunshi et al., 2021; Arnold et al., 2021; Wang et al.,
2021a; Kao et al., 2022). Among these, Ni et al. (2021);
Bouniot et al. (2020); Setlur et al. (2020) and Kumar et al.
(2021) showed mixed empirical impacts of training task
diversity on model performance. Most related to our work
is (Saunshi et al., 2020), which proved that the continuous
version of a first-order GBML method, Reptile (Nichol &
Schulman, 2018), learns a one-dimensional linear repre-
sentation in a two-task setting with a specific initialization,
explicit regularization, and infinite samples per task. Other
works studied multi-task representation learning in the linear
setting we consider from a statistical perspective (Maurer
et al., 2016; Du et al., 2020; Tripuraneni et al., 2021). Fur-
thermore, Collins et al. (2021) and Thekumparampil et al.
(2021) gave optimization results for gradient-based methods
in this setting. However, the algorithms they studied are
customized for the assumed low-dimensional linear repre-

sentation model, which makes it relatively easy to learn the
correct representation efficiently. A more challenging task
is to understand how general purpose and model-agnostic
meta-learning algorithms perform, such as the algorithms
we study.

Notations. We use bold capital letters for matrices and bold
lowercase letters for vectors. We use Od×k to denote the
set of matrices in Rd×k with orthonormal columns. A hat
above a matrix, e.g. B̂, implies the matrix is a member
of Od×k. We let col(B) denote the column space of B,
and col⊥(B) denote its orthogonal complement. N (0, σ2)
denotes the Gaussian distribution with mean 0 and variance
σ2. O(·) and Ω(·) hide constant factors, and Õ(·) and Ω̃(·)
hide constant and logarithmic factors.

2. Problem Formulation
We employ the multi-task linear representation learning
framework (Maurer et al., 2016; Du et al., 2020; Tripuraneni
et al., 2021) studied in prior works. Each task in this setting
is a linear regression problem in Rd. We index tasks by
(t, i), corresponding to the i-th task sampled on iteration t.
The inputs xt,i ∈ Rd and labels yt,i ∈ R for the (t, i)-th
task are sampled i.i.d. from a distribution Pt,i over Rd × R
such that:

xt,i ∼ p, zt,i ∼ N (0, σ2), yt,i = 〈θ∗,t,i,xt,i〉+ zt,i

where θ∗,t,i ∈ Rd is the ground-truth regressor for task
(t, i), p is a distribution over Rd and zt,i is white Gaussian
noise with variance σ2. Each task has a set of m samples
Dt,i := {(xt,i,j , yt,i,j)}j∈[m] drawn i.i.d. from Pt,i avail-
able for training.

To account for shared information across tasks, we suppose
there exists a matrix B∗ ∈ Od×k such that the ground-truth
regressors {θ∗,t,i}i for all tasks lie in col(B∗), so they can
be written as θ∗,t,i = B∗w∗,t,i for all t, i, where w∗,t,i ∈
Rk. We refer to B∗ as the ground-truth representation and
w∗,t,i as the ground-truth head for task (t, i). The task
environment consists of B∗ and a distribution ν over ground-
truth heads. With knowledge of col (B∗), we can reduce the
number of samples needed to solve a task from Ω(d) to Ω(k)
by projecting the task data onto col (B∗), then learning a
head in Rk. The question becomes how to learn the ground-
truth subspace col (B∗).

The learning model consists of a representation B∈Rd×k
and a head w∈Rk. We would like the column space of B
to be close to that of B∗, measured as follows.
Definition 1 (Principle angle distance). Let B̂ ∈ Od×k
and B̂∗,⊥ ∈ Od×(d−k) denote orthonormal matrices whose
columns span col(B) and col⊥(B∗), respectively. Then the
principle angle distance between B and B∗ is

dist(B,B∗) := ‖B̂>∗,⊥B̂‖2. (1)
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For shorthand, we denote distt := dist(Bt,B∗).

Notice that dim(col(B∗)) = k. Thus, the learned represen-
tation B must extract k orthogonal directions belonging to
col(B∗). As we will show, MAML and ANIL’s task-specific
adaptation of the head critically leverages task diversity to
learn k such directions.

3. Algorithms
Here we formally state the implementation of ANIL and
MAML for the problem described above. First, letting
θ := [w; vec(B)] ∈ R(d+1)k denote the vector of model
parameters, we define the population loss for task (t, i):

Lt,i(θ) := 1
2E(xt,i,yt,i)∼Pt,i

[
(〈Bw,xt,i〉 − yt,i)2

]
.

Often we approximate this loss with the finite-sample loss
for a dataset D′t,i := {(xt,i,j , yt,i,j)}j∈[m′]:

L̂t,i(θ;D′t,i) := 1
2m′

m′∑
j=1

(〈Bw,xt,i,j〉−yt,i,j)2.

MAML. MAML minimizes the average loss across tasks
after a small number of task-specific gradient updates. Here,
we consider that the task-specific updates are one step of
minibatch SGD with batchDint,i consisting ofmin i.i.d. sam-
ples from Pt,i. Specifically, the loss function that MAML
minimizes is

min
θ
LMAML(θ) := Ew∗,t,i,Din

t,i
[Lt,i(θ−α∇θL̂t,i(θ;Dint,i)))]

(2)
where for ease of notation we have written Ew∗,t,i,Din

t,i
as

shorthand for Ew∗,t,i∼ν, Din
t,i∼P

min
t,i

. MAML essentially
solves (2) with minibatch SGD. At iteration t, it draws
n tasks with ground-truth heads {w∗,t,i}i∈[n] drawn from
ν, and for each drawn task, draws m samples contained
in Dt,i i.i.d. from Pt,i. MAML then partitions Dt,i into
Dint,i and Doutt,i such that |Dint,i| = min, |Doutt,i | = mout,
and min + mout = m (we assume min < m). For task
(t, i), in what is known as the inner loop, MAML takes a
task-specific stochastic gradient step from the initial model
(Bt,wt) using the samples Dint,i and step size α to obtain
the adapted parameters θt,i:

θt,i=

[
wt,i

vec(Bt,i)

]
←

[
wt − α∇wL̂i(Bt,wt;Dint,i)

vec(Bt)−α∇vec(B)L̂i(Bt,wt;Dint,i)

]
Then, in the so-called outer loop, MAML takes a minibatch
SGD step with respect to the loss after task-specific adapta-
tion using the samples {Doutt,i }i∈[n] and step size β:

θt+1←θt− β
n

n∑
i=1

(I−α∇2
θL̂t,i(θt;Doutt,i ))∇L̂t,i(θt,i;Doutt,i )

Note that the above Exact MAML update requires expen-
sive second-order derivative computations. In practice, FO-
MAML, which drops the Hessian, is often used, since it
typically achieves similar performance (Finn et al., 2017).

ANIL. Surprisingly, Raghu et al. (2020) noticed that train-
ing neural nets with a modified version of MAML that lacks
inner loop updates for the representation resulted in models
that matched and sometimes even exceeded the performance
of models trained by MAML on few-shot image classifica-
tion tasks. This modified version is ANIL, and its inner loop
updates in our linear case are given as follows:

θt,i =

[
wt,i

vec(Bt,i)

]
=

[
wt − α∇wL̂t,i(Bt,wt;Dint,i)

vec(Bt)

]
.

In the outer loop, ANIL again takes a minibatch SGD step
with respect to the loss after the inner loop update. Then,
the outer loop updates for Exact ANIL are given by:

θt+1 ← θt −
β

n

n∑
i=1

Ĥt,i(θt;Doutt,i )∇θL̂t,i(θt,i,Doutt,i )

where, for Exact ANIL,

Ĥt,i(Bt,wt;Doutt,i ) :=

[
Ik − α∇2

wL̂t,i(θt;Doutt,i ) 0

−α ∂2

∂ vec(B)∂w L̂t,i(θt;D
out
t,i ) I

]

To avoid computing second order derivatives, we can instead
treat Ĥt,i as the identity operator, in which case we call the
algorithm FO-ANIL.

3.1. Role of Adaptation

Now we present new intuition for MAML and ANIL’s rep-
resentation learning ability which motivates our proof struc-
ture. The key observation is that the outer loop gradients for
the representation are evaluated at the inner loop-adapted
parameters; this harnesses the power of task diversity to
improve the representation in all k directions. This is easiest
to observe in the FO-ANIL case with min = mout = ∞.
In this case, the update for the representation is given as:

Bt+1 =Bt

(
Ik− β

n

n∑
i=1

wt,iw
>
t,i︸ ︷︷ ︸

FO-ANIL prior weight

)
+B∗

β
n

n∑
i=1

w∗,t,iw
>
t,i︸ ︷︷ ︸

FO-ANIL signal weight

(3)

If the ‘prior weight’ is small and the ‘signal weight’ is
large, then the update replaces energy from col(Bt) with
energy from col(B∗). Roughly, this is true as long as Ψt :=
1
n

∑n
i=1 wt,iw

>
t,i is well-conditioned, i.e. the wt,i’s are

diverse. Assuming wt,i≈w∗,t,i for each task, then Ψt is
well-conditioned if and only if the tasks are diverse. This
shows how task diversity causes the column space of the
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representation learned by FO-ANIL to approach the ground-
truth. For FO-MAML, we observe similar behavior, with a
caveat. The representation update is:

Bt+1
(a)
= Bt− β

n

n∑
i=1

Bt,iwt,iw
>
t,i + B∗

β
n

n∑
i=1

w∗,t,iw
>
t,i

(b)
= Bt

(
Ik−(Ik−αwtw

>
t )βn

n∑
i=1

wt,iw
>
t,i︸ ︷︷ ︸

FO-MAML prior weight

)

+B∗

(
β
n

n∑
i=1

(1− α〈wt,i,wt〉)w∗,t,iw>t,i︸ ︷︷ ︸
FO-MAML signal weight

)

Equation (a) is similar to (3) except that one Bt is replaced
by the Bt,i’s resulting from inner loop adaptation. Expand-
ing Bt,i in (b), we notice that the prior weight is at least
as large as in (3), since λmax(Ik−αwtw

>
t ) ≤ 1, but it can

still be small as long as the wt,i’s are diverse and ‖wt‖2 is
small. Thus we conclude that FO-MAML also can learn the
representation, yet its inner loop adaptation complicates its
ability to do so.

Comparison with no inner-loop adaptation. Compare
these updates to the case when there is no inner loop adap-
tation, i.e. we run SGD on the non-adaptive objective
minθ Ew∗,t,i [Lt,i(θ)] instead of (2). In this case, Bt+1 is:

Bt+1 =Bt

(
Ik−βwtw

>
t

)
+βB∗w̄∗,tw

>
t (4)

where w̄∗,t := 1
n

∑n
i=1 w∗,t,i. Observe that the coefficient

of Bt in the update is rank k−1, while the coefficient of B∗
is rank 1. Thus, col(Bt+1) can approach col(B∗) in at most
one direction on any iteration. Empirically, wt points in
roughly the same direction throughout training, preventing
this approach from learning col(B∗) (e.g. see Figure 1).

Technical challenges. The intuition on the role of adap-
tation, while appealing, makes strong assumptions; most
notably that the wt,i’s are diverse enough to improve the
representation and that the algorithm dynamics are stable.
To show these points, we observe that wt,i can be written as
the linear combination of a vector distinct for each task and
a vector that is shared across all tasks at time t. Showing
that the shared vector is small implies the wt,i’s are diverse,
and we can control the magnitude of the shared vector by
controlling ‖wt‖2 and ‖Ik−αB>t Bt‖2. Showing that these
quantities are small at all times also ensures the stability of
the algorithms. Meanwhile, we must prove that ‖B>∗,⊥Bt‖2
and distt = ‖B̂>∗,⊥B̂t‖2 are contracting. It is not obvious
that any of these conditions hold individually; in fact, they
require a novel multi-way inductive argument to show that
they hold simultaneously for each t (see Section 5).

4. Main Results
In this section we formalize our intuition discussed pre-
viously and prove that both MAML and ANIL and their
first-order approximations are capable learning the column
space of the ground-truth representation. To do so, we first
make the following assumption concerning the diversity of
the sampled ground-truth heads.

Assumption 1 (Task diversity). The eigenvalues of the sym-
metric matrix Ψ∗,t := ( 1

n

∑n
i=1 w∗,t,iw

>
∗,t,i) are uniformly

bounded below and above by µ2
∗ and L2

∗, respectively1, i.e.,
µ2
∗I � Ψ∗,t � L2

∗I, for all t ∈ [T ].

The lower bound on the eigenvalues of the matrix Ψ∗,t
ensures that the k × k matrix Ψ∗,t is full rank and hence
the vectors {w∗,t,i}ni=1 span Rk, therefore they are diverse.
However, the diversity level of the tasks is defined by ratio
of the eigenvalues of the matrix Ψ∗,t, i.e., κ∗ := L∗

µ∗
. If

this ratio is close to 1, then the ground-truth heads are very
diverse and have equal energy in all directions. On the other
hand, if κ∗ is large, then the ground-truth heads are not
very diverse as their energy is mostly focused in a specific
direction. Hence, as the following results reveal, smaller κ∗
leads to faster convergence for ANIL and MAML.

Now we are ready to state our main results for the ANIL
and FO-ANIL algorithms in the infinite sample case.

Theorem 1. Consider the infinite sample case for ANIL
and FO-ANIL, where min =mout =∞. Further, suppose
the conditions in Assumption 1 hold, the initial weights
are selected as w0 = 0k and αB>0 B0 = Ik. Let the step
sizes are chosen as α = O(1/L∗) and β = O(ακ−4

∗ ) for
ANIL and β = O(ακ−4

∗ min(1, µ
2
∗/η2∗)) for FO-ANIL, where

η∗ satisfies ‖ 1
n

∑n
i=1 w∗,t,i‖2 ≤ η∗ for all times t ∈ [T ]

almost surely. If the initial error satisfies the condition
dist0 ≤

√
0.9, then almost surely for both ANIL and FO-

ANIL we have,

dist(BT ,B∗) ≤
(
1− 0.5βαE0µ

2
∗
)T−1

, (5)

where E0 := 0.9− dist2
0.

Theorem 1 shows that both FO-ANIL and Exact ANIL learn
a representation that approaches the ground-truth exponen-
tially fast as long as the initial representation B0 is normal-
ized and is a constant distance away from the ground-truth,
the initial head w0 = 0, and the sampled tasks are diverse.
Note that β is larger for ANIL and hence its convergence is
faster, demonstrating the benefit of second-order updates.

1We could instead assume the ground-truth heads are sub-
gaussian and use standard concentration results show that with
n = Ω(k + log(T )), the set of ground-truth heads {w∗,t,i}ni=1

sampled on iteration t are (1 + O(1), 1 − O(1))-diverse for all
T iterations with high probability, but instead we assume generic
bounds for simplicity.
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Next, we state our results for FO-MAML and Exact MAML
for the same infinite sample setting. Due to the adaptation
of both the representation and head, the MAML and FO-
MAML updates involve third- and fourth-order products
of the ground-truth heads, unlike the ANIL and FO-ANIL
updates which involve at most second-order products. To
analyze the higher-order terms, we assume that the energy
in each ground-truth head is balanced.

Assumption 2 (Task incoherence). For all times t ∈ [T ]
and tasks i ∈ [n], we almost surely have ‖w∗,t,i‖2≤c

√
kL∗,

where c is a constant.

Next, as discussed in Section 3.1, MAML’s adaptation of
the representation complicates its ability to learn the ground-
truth subspace. As a result, we require an additional con-
dition to show that MAML learns the representation: the
distance of the initialization to the ground-truth must small
in the sense that it must scale with the task diversity and in-
versely with k. We formalize this in the following theorem.

Theorem 2. Consider the infinite sample case for MAML,
where min = mout =∞. Further, suppose the conditions
in Assumptions 1 and 2 hold, the initial weights are selected
as w0 = 0k and αB>0 B0 = Ik, and the step sizes satisfy
α = O(k−2/3L−1

∗ T−1/4) and β = O(ακ−4
∗ ). If dist0 =

O(k−0.75κ−1.5
∗ ), then almost surely

dist(BT ,B∗) ≤
(
1− 0.5βαE0µ

2
∗
)T−1

,

where E0 := 0.9− dist2
0.

Theorem 2 shows that the initial representation learning
error for MAML must scale as O(k−0.75κ−1.5

∗ ), which can
be much smaller than the constant scaling that is sufficient
for ANIL to learn the representation (see Theorem 1). Next
we give the main result for FO-MAML, which requires an
additional condition that the norm of the average of the
ground-truth heads sampled on each iteration is small. This
condition arises due to the fact that the FO-MAML updates
are approximations of the exact MAML updates, and thus
have a bias that depends on the average of the ground-truth
heads. Without control of this bias, the iterates Bt and wt

may diverge.

Theorem 3. Consider the infinite sample case for FO-
MAML, where min = mout = ∞. Further, suppose the
conditions in Assumptions 1 and 2 hold, the initial weights
are selected as w0 = 0k and αB>0 B0 = Ik, and the step
sizes satisfy α = O( 1√

kL∗
) and β = O(ακ−4

∗ ). If the initial
error satisfies dist0 = O(k−0.5κ−1

∗ ), and the average of
the true heads almost surely satisfies ‖ 1

n

∑n
i=1 w∗,t,i‖2 =

O(k−1.5κ−3
∗ µ∗) for all times t, then almost surely

dist(BT ,B∗) ≤
(
1− 0.5βαE0µ

2
∗
)T−1

,

where E0 := 0.9− dist2
0.

Theorem 3 shows that FO-MAML learns col(B∗) as long as
the initial principal angle is small and ‖ 1

n

∑n
i=1 w∗,t,i‖2 =

O(k−1.5κ−3
∗ µ∗) on all iterations, due to the biased updates.

Note that the FO-ANIL updates are also biased, but this bias
scales with ‖Ik−αB>t Bt‖2, which is eventually decreasing
quickly enough to make the cumulative error induced by
the bias negligible without any additional conditions. In
contrast, ‖Ik−αB>t Bt‖2 is not guaranteed to decrease for
FO-MAML due to the inner loop adaptation of the represen-
tation, so we need the additional condition.

To the best of our knowledge, the above theorems are the
first results to show that ANIL, MAML, and their first-
order approximations learn representations in any setting.
Moreover, they are the first to show how task diversity plays
a key role in representation learning from an optimization
perspective, to the best of our knowledge. Due the the
restrictions on β and α, Theorems 1 and 2 show that the
rate of contraction of principal angle distance diminishes
with less task diversity. Thus, the more diverse the tasks, i.e.
the smaller κ∗, the faster that ANIL and MAML learn the
representation. Additionally, the less diverse the tasks, the
more accurate initialization that MAML requires, and the
tighter that the true heads must be centered around zero to
control the FO-MAML bias.

4.1. Finite-sample results

Thus far we have only considered the infinite sample case,
i.e., min = mout = ∞, to highlight the reasons that the
adaptation updates in MAML and ANIL are essential for
representation learning. Next, we study the finite sample
setting. Indeed, establishing our results for the finite sample
case is more challenging, but the mechanisms by which
ANIL and MAML learn representations for finite min and
mout are very similar to the infinite-sample case, and the
finite-sample problem reduces to showing concentration of
the updates to the infinite-sample updates.

For MAML, this concentration requires assumptions on
sixth and eighth-order products of the data which arise due
to the inner-loop updates. In light of this, for the sake of
readability we only give the finite-sample result for ANIL
and FO-ANIL, whose analyses require only standard as-
sumptions on the data, as we state below.

Assumption 3 (Sub-gaussian feature distribution). For x ∼
p, E[x] = 0 and Cov(x) = Id. Moreover, x is Id-sub-
gaussian in the sense that E[exp(v>x)]≤exp(

‖v‖22
2 ) ∀ v.

Under this assumption, we can show the following.

Theorem 4 (ANIL Finite Samples). Consider the finite-
sample case for ANIL and FO-ANIL. Suppose Assumptions
1, 2 and 3 hold, α = O((

√
kL∗+ σ)−1) and β is chosen as

in Theorem 1. For some δ>0 to be defined later, let E0 =
0.9−dist2

0−δ and assumeE0 is lower bounded by a positive
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constant. Suppose the sample sizes satisfy min = Ω̃(Min)
and mout = Ω̃(Mout) for some expressions Min,Mout to
be defined later. Then both ANIL and FO-ANIL satisfy:

dist(BT ,B∗) ≤
(
1− 0.5βαµ2

∗
)T−1

+ Õ(δ)

where for ANIL,

Min = k3 + k3d
n , Mout = k2 + dk+k3

n ,

δ = (
√
kκ2
∗ + κ∗σ

µ∗
+ σ2

µ2
∗
)(k+

√
dk√
n

)( 1√
min

+ 1√
mout

)

and for FO-ANIL,

Min = k2, Mout = dk+k3

n

δ = (
√
kκ2
∗ + κ∗σ

µ∗
+ σ2

µ2
∗
√
min

)
√
dk√

nmout

with probability at least 1− T
poly(n)−

T
poly(min)−O(Te−90k).

For ease of presentation, the Ω̃() notation excludes log fac-
tors and all parameters besides k, d and n; please refer to
Theorem 8 in Appendix E for the full statement. We focus
on dimension parameters and n here to highlight the sample
complexity benefits conferred by ANIL and FO-ANIL com-
pared to solving each task separately (n= 1). Theorem 4
shows that ANIL requires only min +mout = Ω̃(k3 + k3d

n )
samples per task to reach a neighborhood of the ground-
truth solution. Since k � d and n can be large, this sample
complexity is far less than the Ω̃(d) required to solve each
task individually (Hsu et al., 2012). Note that more samples
are required for Exact ANIL because the second-order up-
dates involve higher-order products of the data, which have
heavier tails than the analogous terms for FO-ANIL.

5. Proof sketch
We now discuss how we prove the results in greater detail.
We focus on the FO-ANIL case because the presentation is
simplest yet still illuminates the key ideas used in all proofs.

5.1. Theorem 1 (FO-ANIL)

Intuition. Our goal is to show that the distance between the
column spaces of Bt and B∗, i.e. distt := ‖B̂>∗,⊥B̂t‖2 is
converging to zero at a linear rate for all t. We will use an in-
ductive argument in which we assume favorable conditions
to hold up to time t, and will prove they continue to hold at
time t+1. To show distt+1 is linearly decaying, it is helpful
to first consider the non-normalized energy in the subspace
orthogonal to the ground-truth, namely ‖B̂>∗,⊥Bt+1‖2. We
have observed in equation (3) that if the inner-loop adapted
heads wt,i at time t are diverse, then the FO-ANIL update
of the representation subtracts energy from the previous rep-
resentation and adds energy from the ground-truth represen-
tation. Examining (3) closer, we notice that the only energy
in the column space of the new representation that can be

orthogonal to the ground-truth subspace is contributed by
the previous representation, and this energy is contracting
at a rate proportional to the condition number of the matrix
formed by the adapted heads. In particular, if we define the
matrix Ψt := 1

n

∑n
i=1 wt,iw

>
t,i, then we have

‖B>∗,⊥Bt+1‖2 = ‖B>∗,⊥Bt(I− βΨt)‖2
≤ (1− βλmin(Ψt))‖B>∗,⊥Bt‖2, (6)

as long as β ≤ 1/λmax(Ψt). Therefore, to show that the nor-
malized energy ‖B̂>∗,⊥B̂t+1‖2 approaches zero, we aim to
show: (I) The condition number of Ψt continues to stay con-
trolled and finite, which implies linear convergence of the
non-normalized energy in col(B∗)

⊥ according to (6); and
(II) The minimum singular value of the representation Bt+1

is staying the same. Otherwise, the energy orthogonal to the
ground-truth subspace could be decreasing, but the repre-
sentation could be becoming singular, which would mean
the distance to the ground-truth subspace is not decreasing.

To show (I), note that the adapted heads are given by:

wt,i = ∆twt︸ ︷︷ ︸
non-unique

+ αB>t B∗w∗,t,i︸ ︷︷ ︸
unique

, (7)

where ∆t := Ik− αB>t Bt. The vector ∆twt is present
in every wt,i, so we refer to it as the non-unique part of
wt,i. On the other hand, αB>t B∗w∗,t,i is the unique part of
wt,i. Equation (7) shows that if the non-unique part of each
wt,i is relatively small compared to the unique part, then
Ψt ≈ α2B>t B∗Ψ∗,tB

>
∗ Bt, meaning the wt,i’s are almost

as diverse as the ground-truth heads. So we aim to show
‖∆t‖2 and ‖wt‖2 remain small for all t. We specifically
need to show they are small compared to σ2

min(B>t B∗),
since this quantity roughly lower bounds the energy in the
diverse part of wt,i. One can show that σ2

min(B̂>t B∗) =
1−dist2

t , so we need to use that distt is decreasing in order
to lower bound the energy in the unique part of wt,i.

It is also convenient to track ‖∆t‖2 in order to show (II),
since ‖∆t+1‖2 ≤ ε implies σmin(Bt+1) ≥

√
1−ε√
α

. Note
that for (II), we need control of ‖∆t+1‖2, whereas to show
(I) we needed control of ‖∆t‖2. This difference in time in-
dices is accounted for by the induction we will soon discuss.

It is now evident why it makes sense to initialize with
‖∆0‖2 = 0 and ‖wt‖2 = 0 (in fact, they do not have
to be exactly zero; any initialization with ‖w0‖2 = O(

√
α)

and ‖∆t‖2 = O(α2) would suffice). However, proving
that ‖∆t‖2 and ‖wt‖2 remain small is difficult because the
algorithm lacks explicit regularization or a normalization
step after each round. Empirically, σmin(Bt) may decrease
and ‖wt‖2 may increase on any particular round, so it is
not clear why σmin(Bt) does not go to zero (i.e. ‖∆t‖2
does not go to 1) and ‖wt‖2 does not blow up. To address
these issues, one could add an explicit regularization term
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to the loss functions or an orthonormalization step to the al-
gorithm, but doing so is empirically unnecessary and would
not be consistent with the ANIL formulation or algorithm.

Inductive structure. We overcome the aforementioned
challenges by executing a multi-way induction that involves
the following six inductive hypotheses:

1. A1(t) := {‖wt‖2 = O(
√
αmin(1,

µ2
∗
η2∗

)η∗)},

2. A2(t) :=
{
‖∆t‖2≤ρ‖∆t−1‖2+O(β2α2L4

∗ dist2
t−1)

}
,

3. A3(t) :=
{
‖∆t‖2 ≤ 1

10

}
,

4. A4(t) :=
{

0.9αE0µ∗Ik � Ψt � 1.2αL2
∗Ik
}

,

5. A5(t) :=
{
‖B>∗,⊥Bt‖2 ≤ ρ‖B>∗,⊥Bt−1‖2

}
,

6. A6(t) := {distt = ‖B̂>∗,⊥B̂t‖2 ≤ ρt−1},

where ρ = 1 − 0.5βαE0µ
2
∗. Our previous intuition moti-

vates our choice of inductive hypotheses A1(t), . . . , A5(t)
as intermediaries to ultimately show that distt linearly con-
verges to zero. More specifically, A1(t), A2(t), and A3(t)
bound ‖wt‖2 and ‖∆t‖2, A4(t) controls the diversity of
the inner loop-adapted heads, and A5(t) and A6(t) confirm
that the learned representation approaches the ground-truth.
We employ two upper bounds on ‖∆t‖2 because we need to
use that {‖∆t‖2}t is both summable (A2(t)) and uniformly
small (A3(t)) to complete different parts of the induction.
In particular, if true for all t, A2(t) shows that ‖∆t‖2 may
initially increase, but eventually linearly converges to zero
due to the linear convergence of distt. The initialization
implies each inductive hypothesis holds at time t = 1. We
must show they hold at time t+ 1 if they hold up to time t.

To do this, we employ the logic visualized in Figure 2. The
top level events (A1(t+ 1), A2(t+ 1), A5(t+ 1)) are most
“immediate” in the sense that they follow directly from other
events at all times up to and including t (via the dashed
green arrows). The proofs of all other events at time t+1
require the occurrence of other events at time t + 1, with
more logical steps needed as one moves down the graph,
and solid red arrows denoting implications from and to time
t + 1. In particular, A3(t + 1) requires the events up to
and including time t and a top-level event at t+ 1, namely
A2(t+ 1), so it is in the second level. Similarly, A6(t+ 1)
requires events up to and including time t and the second-
level event at t+1, so it is in the third level, and so on.

Recall that our intuition is that diverse adapted heads lead to
contraction of the non-normalized representation distance.
This logic drives the implication A4(t) =⇒ A5(t + 1).
We then reasoned that contraction of the non-normalized
distance leads to linear convergence of the distance as long
as the minimum singular value of the representation is con-
trolled from below. This intuition is captured in the implica-
tion A5(t+ 1) ∩A3(t+ 1) =⇒ A6(t+ 1).

We also discussed that the diversity of the adapted heads
depends on the global head being small, the representation
being close to a scaled orthonormal matrix, and the repre-
sentation distance being bounded away from 1 at the start
of that iteration. This is ensured by the implication that
the adapted heads are again diverse on iteration t + 1, in
particularA1(t+1)∩A3(t+1)∩A6(t+1) =⇒ A4(t+1).
The other implications in the graph are technical and needed
to control ‖wt+1‖2 and ‖∆t+1‖2.

Proving the implications. We now formally discuss each
implication, starting with the top level. Full proofs are
provided in Appendix C.

• A4(t) =⇒ A5(t+1). This is true by equation (6).

• A1(t) ∩ A3(t) ∩ A6(t) =⇒ A2(t+1). It can be shown
that ∆t+1 is of the form:

∆t+1 =∆t(Ik−βα2B>t B∗Ψ∗,tB
>
∗ Bt)+Nt (8)

for some matrix Nt whose norm is upper bounded by a
linear combination of ‖∆t‖2 and distt. We next use

λmin(B>t B∗Ψ∗,tB
>
∗ Bt)≥µ2

∗σ
2
min(B>t B∗)

≥ 0.9
α µ

2
∗(1−dist2

t ) (9)

where (9) follows by σ2
min(B̂>t B∗)=1−dist2

t and A3(t).
The proof follows by applying A6(t) to control 1−dist2

t .

• (∩ts=1A2(s) ∩A6(s)) =⇒ A1(t+1). This is the most
difficult induction to show. The FO-ANIL dynamics are
such that ‖wt‖2 may increase on every iteration through-
out the entire execution of the algorithm. However, we
can exploit the fact that the amount that it increases is
proportional to ‖∆t‖2, which we can show is summable
due to the linear convergence of distt. First, we have

wt+1 =(Ik−βB>t Bt∆t)wt +
β

n

n∑
i=1

∆tB
>
t B∗w∗,t,i

which implies ‖wt‖2 increases on each iteration by
O( β√

α
‖∆t‖2η∗). In particular,

‖wt+1‖2
(a)

≤ (1 + 2β
α ‖∆t‖2)‖wt‖2 + 2βL∗√

α
‖∆t‖2

(b)

≤
t−1∑
s=0

2βη∗√
α
‖∆s‖2

t−1∏
r=s

(1 + 2β
α ‖∆r‖2)

(c)

≤
t−1∑
s=0

2βη∗√
α
‖∆s‖2

(
1+ 1

t−s

t−1∑
r=s

2β
α ‖∆r‖2

)t−s
where (b) follows by recursively applying (a) for t, t−
1, .... and (c) follows by the AM-GM inequality. Next,
for any s ∈ [t], recursively apply A2(s),A2(s−1), ... and
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A6(t) : distt := ∥B̂⊤*,⊥B̂t∥2 ≤ ρt−1

A3(t) : ∥Δt∥2 ≤ 0.1

A2(t) : ∥Δt∥2 ≤ ρ∥Δt−1∥2 + α2β2L4*dist2t−1

A4(t) : 0.9αE0μ2*Ik ⪯ Ψt ⪯ 1.2αL2*Ik

A1(t) : ∥wt∥2 ≤ 0.1 α min(1,μ2* /η2*)η* A5(t) : ∥B̂⊤*,⊥Bt∥2 ≤ ρ∥B̂⊤*,⊥Bt−1∥2

           (Implications up to t)     (t+1) 
            (Implications up to t+1)     (t+1)

Figure 2. Logical flow of the proof. Note that there are no cycles among the implications from t+ 1 to t+ 1, so the logic is consistent.

use A6(r) ∀r ∈ [s] to obtain, for an absolute constant c,

‖∆s‖2
(d)

≤ c
s−1∑
r=0

ρs−rβ2α2L4
∗ dist2

r≤cρs
s−1∑
r=0

ρrβ2α2L4
∗

Plugging (d) into (c), computing the sum of geometric
series, and applying the choice of β completes the proof.

• A2(t+1) ∩A3(t) =⇒ A3(t+1). This follows straight-
forwardly since β is chosen sufficiently small.

• A3(t+1)∩
(
∩t+1
s=1A5(s)

)
∩A6(t) =⇒ A6(t+1). Using

the definition of the principal angle distance, the Cauchy-
Schwarz inequality, and ∩t+1

s=1A5(s), we can show

distt+1≤ 1
σmin(Bt+1)‖B̂

>
∗,⊥Bt+1‖2≤ σmax(B0)

σmin(Bt+1)ρ
t dist0

from which the proof follows after applying A3(t+1)
and the initial conditions. Note that here we have normal-
ized the representation only once at time t+1 and used
the contraction of the non-normalized energy to recurse
from t+1 to 0, resulting in a σmax(B0)

σmin(Bt+1) scaling error. If
we instead tried to directly show the contraction of dis-
tance and thereby normalized analytically on every round,
we would obtain distt+1 ≤

(∏t
s=0

σmax(Bs)
σmin(Bs+1)

)
ρt dist0,

meaning a
∏t
s=0

σmax(Bs)
σmin(Bs+1) scaling error, which is too

large because Bs is in fact not normalized on every round.

• A1(t + 1) ∩ A3(t + 1) ∩ A6(t + 1) =⇒ A4(t + 1).
This follows by expanding each wt,i as in (7), and using
similar logic as in (9).

5.2. Other results – ANIL, FO-MAML, and MAML

For ANIL, the inductive structure is nearly identical. The
only meaningful change in the proof is that the second-
order updates imply ‖wt+1‖2−‖wt‖2 = O(‖∆t‖22), which
is smaller than the O(‖∆t‖2) for FO-ANIL, and thereby
allows to control ‖wt+1‖2 with a potentially larger β.

For FO-MAML and MAML, recall that the inner loop up-
date of the representation weakens the benefit of adapted
head diversity (see Section 3.1). Thus, larger adapted head

diversity is needed to learn col(B∗). Specifically, we re-
quire a tighter bound of ‖∆t‖2 = O(α2), compared to the
‖∆t‖2 = O(1) bound in ANIL, and for FO-MAML, we
also require a tighter bound on ‖wt‖2 (recall from Section
5 that smaller ‖∆t‖2 and ‖wt‖2 improves adapted head
diversity). Moreover, to obtain tight bounds on ‖wt+1‖2
we can no longer use that ‖wt+1‖2−‖wt‖2 is controlled by
‖∆t‖2 due to to additional terms in the outer loop update.
To overcome these issues, we must make stricter assump-
tions on the initial distance, and in the case of FO-MAML,
on the average ground-truth head. Please see Appendix D
for details.

Finally, the proof of Theorem 4 relies on showing concen-
tration of the finite-sample gradients to the population gradi-
ents. The principal challenge is showing this concentration
for fourth-order products of the data that arise in the ANIL
updates, since we cannot apply standard methods to these
higher-order products while maintaining o(d) samples per
task. Instead, we leverage the low-rankness of the products
by applying a truncated version of the concentration re-
sult for low-rank random matrices from (Magen & Zouzias,
2011). We also use the L4-L2-hypercontractiveness of the
data to control the bias in these higher-order products. De-
tails are found in Appendix E.

6. Numerical simulations
In this section we run numerical simulations to verify our
theoretical findings. First, we explore the effect of task di-
versity on MAML’s rate of convergence to the ground-truth
representation. In Figure 3, we execute MAML on the task
population losses (min = mout = ∞) in the multi-task
linear representation learning setting. We set d= 100 and
k=n=5. On each round, the ground-truth heads are sam-
pled i.i.d. from N (0, diag([1, . . . , 1, µ2])), where µ2 < 1.
We randomly draw B∗ and B0 at the start of algorithm exe-
cution. The parameter µ2 controls task diversity, with larger
µ2 meaning the ground-truth heads are closer to isotropic
and therefore more diverse. The results show that MAML’s
linear convergence rate improves with greater task diversity,
consistent with Theorem 2.
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Figure 3. Task diversity improves convergence rate. Principal
angle distance vs number of iterations for MAML with varying
ground-truth head distributions. The larger value of µ2, the more
diverse ground-truth heads.
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Figure 4. MAML and FO-MAML initialization and ground-
truth mean conditions are empirically necessary. (Left) Ran-
dom B0. (Right) Methodical B0. In both cases, the mean ground-
truth head is far from zero.

Next, we show that the additional conditions relative to
ANIL and FO-ANIL required for MAML and FO-MAML
to learn the ground-truth representation are empirically nec-
essary. That is, (i) MAML and FO-MAML require a good
initialization relative to the underlying task diversity, and
(ii) FO-MAML further requires the ground-truth heads to
be concentrated around zero. To test these conditions, we
set d = 20, n = k = 3, randomly draw B∗, and use the
task population losses. The ground-truth heads are drawn
as w∗,t,i∼N (101k, Ik). Ground-truth task diversity is thus
low, since most of the energy points in the direction 1k. In
Figure 4 (left), we use a random Gaussian initialization of
B0, which has dist0 ≈ 0.99. In Figure 4 (right), we initial-
ize with a noisy version of B∗ satisfying dist0 ∈ [0.65, 0.7].
The plots show that in this low-diversity setting, MAML
requires good initialization to achieve linear convergence,
whereas FO-MAML cannot obtain it even with good ini-
tialization, as ‖E[w∗,t,i]‖ � 0. Lastly, note that Figure 1
employs the same setting as Figure 4 (left), except that the
mean of the ground-truth heads is zero in the former case,
which leads to all four GBML approaches learning col(B∗).

7. Conclusion
Our analysis reveals that ANIL, MAML, and their first-order
approximations exploit task diversity via inner adaptation
steps of the head to recover the ground-truth representa-
tion in the multi-task linear representation learning setting.
Further, task diversity helps these algorithms exhibit an im-
plicit regularization that keeps the learned representation
well-conditioned. However, the inner adaptation of the rep-
resentation plays a restrictive role, inhibiting MAML and
FO-MAML from achieving global convergence. To the best
of our knowledge, these are the first results showing that
GBML algorithms can learn a low-dimensional subspace.
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A. Additional Related Work
Meta-learning background. Multi-task representation learning and meta-learning have been of theoretical interest for
many years (Schmidhuber, 1987; Caruana, 1997; Baxter, 2000). Recently, meta-learning methods have garnered much
attention due to successful implementations in few-shot learning scenarios with deep networks. These modern approaches
are roughly grouped into three categories: model-based (Ravi & Larochelle, 2016), metric-based (Snell et al., 2017; Vinyals
et al., 2016), and gradient-based (Finn et al., 2017). In this paper we focus on gradient-based methods.

Gradient-based meta-learning and MAML. The practicality and simplicity of model-agnostic meta-learning (MAML)
(Finn et al., 2017) has led to many experimental and theoretical studies of gradient-based meta-learning in addition to those
mentioned in Section 1. There have been numerous algorithms proposed as extensions of MAML (Li et al., 2017; Finn
et al., 2018; Yoon et al., 2018; Antoniou et al., 2019; Nichol & Schulman, 2018; Rajeswaran et al., 2019; Zhou et al., 2019;
Raghu et al., 2020; Zintgraf et al., 2019), and MAML has been applied to online (Finn et al., 2019) and federated (Fallah
et al., 2020b; Jiang et al., 2019) learning settings. Theoretical analyses of MAML and related methods have included sample
complexity guarantees in online settings (Balcan et al., 2019; Denevi et al., 2018), general convergence guarantees (Fallah
et al., 2020a; Ji et al., 2020b;a), and landscape analysis (Wang et al., 2020; Collins et al., 2022). Other works have studied
the choice of inner loop step size (Wang et al., 2021b; Bernacchia, 2020) and generalization (Chen et al., 2020; Fallah et al.,
2021), all without splitting model parameters.

Gradient-based meta-learning and representation learning. A growing line of research has endeavored to develop
and understand gradient-based meta-learning with a representation learning perspective. Besides ANIL, multiple other
meta-learning methods fix the representation in the inner loop (Lee et al., 2019; Bertinetto et al., 2018). Goldblum et al.
(2020) showed that these meta-learners learn representations that empirically exhibit the desirable behavior of clustering
features by class. However, they also gave evidence suggesting this is not true for MAML since it adapts the feature extractor
during the inner loop. Meanwhile, other works have argued for the benefits of adapting the representation in the inner loop
both experimentally, when the head is fixed (Oh et al., 2020), and theoretically, when the task optimal solutions may not
share a representation (Chua et al., 2021).

Two recent works have argued that ANIL behaves similarly to empirically successful approaches for representation learning.
Wang et al. (2021a) showed that the models learned by ANIL and multi-task learning with a shared representation and
unique heads are close in function space for sufficiently wide and deep ReLU networks, when the inner loop learning rate
and number of inner adaptation steps for ANIL is small. Kao et al. (2022) noticed that ANIL with the global head initialized
at zero at the start of each round is a “noisy contrastive learner” in the sense that outer loop update for the representation is a
gradient step with respect to a contrastive loss, which suggests that ANIL should learn quality representations. Moreover,
they showed that zeroing the global head at the start of each round empirically improves the performance of both ANIL and
MAML. However, neither work shows that ANIL, let alone MAML, can in fact learn expressive representations. Additionally,
our analysis rigorously explains the observation from Kao et al. (2022) that having small ‖wt‖2 aids representation learning.

Meta-learning and task diversity. Initial efforts to empirically understand the effects of meta-training task diversity on
meta-learning performance with neural networks have shown a promising connection between the two, although the picture
is not yet clear. Ni et al. (2021) and Bouniot et al. (2020) made modifications to the the meta-training task distribution and the
meta-learning objective, respectively, to improve the effective task diversity, and both resulted in significant improvements in
performance for a range of meta-learners. On the other hand, Setlur et al. (2020) and Kumar et al. (2021) empirically argued
that reducing the overall diversity of the meta-training dataset does not restrict meta-learning. However, Setlur et al. (2020)
only considered reducing intra-task data diversity, not the diversity of the tasks themselves (as no classes were dropped from
the meta-training dataset), and the results due to Kumar et al. (2021) showed that reducing the overall number of tasks seen
during meta-training hurts performance for most meta-learners, including MAML.

Multi-task linear representation learning. Several works have studied a similar multi-task linear representation learning
setting as ours (Saunshi et al., 2021; Thekumparampil et al., 2021; Collins et al., 2021; Du et al., 2020; Tripuraneni et al.,
2021; Bullins et al., 2019; Maurer et al., 2016; McNamara & Balcan, 2017), but did not analyze MAML or ANIL. Moreover,
multiple works have shown that task diversity is necessary to learn generalizable representations from a statistical perspective
(Du et al., 2020; Tripuraneni et al., 2020; Xu & Tewari, 2021; Tripuraneni et al., 2021). Our work complements these by
showing the benefit of task diversity to gradient-based meta-learning methods from an optimization perspective.
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B. General Lemmas
First we define the following notations used throughout the proofs.

Notation Definition
∆t Ik − αB>t Bt

∆̄t Id − αBtB
>
t

L∗ maxt∈[T ] σ
0.5
max

(
1
n

∑n
i=1 w∗,t,iw

>
∗,t,i
)
≤ L∗

µ∗ 0 < µ∗ ≤ mint∈[T ] σ
0.5
min

(
1
n

∑n
i=1 w∗,t,iw

>
∗,t,i
)

η∗ maxt∈[T ]

∥∥ 1
n

∑n
i=1 w∗,t,i

∥∥
2
≤ η∗ ≤ L∗

Lmax maxt∈[T ],i∈[n] ‖w∗,t,i‖2 ≤ Lmax ≤ c
√
kL∗ for constant c

κ∗ L∗/µ∗
κ∗,max

Lmax/µ∗

Now we have the following general lemmas.

Lemma 1. Suppose Assumption 1 holds and for some t, dist2
t ≤ 1

1−τ dist2
0. Also, suppose ‖∆s‖2 ≤ τ for all s ∈ [t]. Then,

for E0 := 1− τ − dist2
0,

σmin

(
1
n

n∑
i=1

B>t B∗w∗,t,iw
>
∗,t,iB

>
∗ Bt

)
≥ E0µ

2
∗

α
(10)

Proof. First note that since σmin(A1A2) ≥ σmin(A1)σmin(A2) for any two square matrices A1, A2, we have

σmin

(
B>t B∗

1
n

n∑
i=1

w∗,t,iw
>
∗,t,iB

>
∗ Bt

)
≥ σ2

min(B>∗ Bt)σmin

(
1
n

n∑
i=1

w∗,t,iw
>
∗,t,i

)
≥ σ2

min(B>∗ Bt)µ
2
∗

≥ σ2
min(B>∗ B̂t)σ

2
min(Rt)µ

2
∗

≥ σ2
min(B>∗ B̂t)

1−τ
α µ2

∗ (11)

where Bt = B̂tRt is the QR-factorization of Bt. Next, observe that

dist2
t := ‖B>∗,⊥B̂t‖22 = ‖(Id −B∗B

>
∗ )B̂t‖22

= max
u∈Rk:‖u‖2=1

u>B̂>t (Id −B∗B
>
∗ )(Id −B∗B

>
∗ )B̂tu

= max
u∈Rk:‖u‖2=1

u>B̂>t (Id −B∗B
>
∗ )B̂tu

= max
u∈Rk:‖u‖2=1

u>(Ik − B̂>t B∗B
>
∗ B̂t)u

= 1− σ2
min(B>∗ B̂t)

=⇒ σ2
min(B>∗ B̂t) = 1− dist2

t

≥ 1− 1
1−τ dist2

0 . (12)

which gives the result after combining with (11).

Note that all four algorithms considered (FO-ANIL, Exact ANIL, FO-MAML, Exact MAML) execute the same inner loop
update procedure for the head. The following lemma characterizes the diversity of the inner loop-updated heads for all four
algorithms, under some assumptions on the behavior of distt and ‖∆t‖2 which we will show are indeed satisfied later.

Lemma 2. Suppose Assumption 1 holds and that on some iteration t, FO-ANIL, Exact ANIL, FO-MAML, and Exact MAML
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satisfy dist2
t ≤ 1

1−τ dist2
0 and ‖∆s‖2 ≤ τ for all s ∈ [t]. Then the inner loop-updated heads on iteration t satisfy:

σmin

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≥ αE0µ

2
∗ − 2(1 + ‖∆t‖2)

√
α‖∆t‖2‖wt‖2η∗ (13)

and σmax

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≤ (‖∆t‖2‖wt‖2 +

√
α(1 + ‖∆t‖2)L∗)

2. (14)

Proof. We first lower bound the minimum singular value. Observe that 1−‖∆t‖2
α ≤ σ2

min(Bt) ≤ σ2
max(Bt) ≤ 1+‖∆t‖2

α by
Weyl’s inequality. Next, we have

σmin

(
1

n

n∑
i=1

wt,iw
>
t,i

)
= σmin

(
1

n

n∑
i=1

(Ik − αB>t Bt)wtw
>
t (Ik − αB>t Bt)

+ α(Ik − αB>t Bt)wtw∗,t,iB
>
∗ Bt + αB>t B∗w∗,t,iw

>
t (Ik − αB>t Bt)

+ α2B>t B∗w∗,t,iw∗,t,iB
>
∗ Bt

)

≥ σmin

(
1

n

n∑
i=1

α2B>t B∗w∗,t,iw∗,t,iB
>
∗ Bt

)
− 2α

∥∥∥∥∥∆twt
1

n

n∑
i=1

w∗,t,iB
>
∗ Bt

∥∥∥∥∥
2

(15)

≥ αE0µ
2
∗ − 2α

∥∥∥∥∥∆twt
1

n

n∑
i=1

w∗,t,iB
>
∗ Bt

∥∥∥∥∥
2

(16)

≥ αE0µ
2
∗ − 2(1 + ‖∆t‖2)

√
α‖∆t‖2‖wt‖2η∗ (17)

where (15) follows by Weyl’s inequality and the fact that B>t Btwtw
>
t B>t Bt � 0, (16) follows by Lemma 1, and (17)

follows by the Cauchy-Schwarz inequality.

Now we upper bound the maximum singular value of 1
n

∑n
i=1 wt,iw

>
t,i. We have

σmax

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≤
∥∥(Ik − αB>t Bt)wtw

>
t (Ik − αB>t Bt)

∥∥
2

+ 2α
∥∥(Ik − αB>t Bt)wt

∥∥
2

∥∥∥∥∥ 1

n

n∑
i=1

B>t B∗w∗,t,i

∥∥∥∥∥
2

+ α2

∥∥∥∥∥ 1

n

n∑
i=1

B>t B∗w∗,t,i

∥∥∥∥∥
2

2

≤ ‖∆t‖22‖wt‖22 + 2‖∆t‖2‖wt‖2
√
α(1 + ‖∆t‖2)η∗ + α(1 + ‖∆t‖2)L2

∗

≤ (‖∆t‖2‖wt‖2 +
√
α(1 + ‖∆t‖2)L∗)

2. (18)

Lemma 3. Suppose the sequence {ws}t+1
s=0 satisfies:

‖w0‖2 = 0,

‖ws+1‖2 ≤ (1 + ξ1,s)‖ws‖2 + ξ2,s (19)

where ξ1,s ≥ 0, ξ2,s ≥ 0 for all s ∈ [t] and
∑t
s=1 ξ1,s ≤ 1. Then:

‖wt+1‖2 ≤
t∑

s=1

ξ2,s

(
1 + 2

t∑
r=s

ξ1,r

)
(20)
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Proof. We have

‖wt+1‖2 ≤ (1 + ξ1,t)‖wt‖2 + ξ2,t

≤ (1 + ξ1,t)
2‖wt−1‖2 + ξ2,t(1− ξ1,t) + ξ2,t

...

≤ ‖w0‖2
t∏

s=1

(1 + ξ1,s) +

t∑
s=1

ξ2,s

t−1∏
r=s

(1 + ξ1,r)

=

t∑
s=1

ξ2,s

t−1∏
r=s

(1 + ξ1,r) (21)

≤
t∑

s=1

ξ2,s

(
1 +

1

t− s

t∑
r=s

ξ1,r

)t−s
(22)

where (21) is due to ‖w0‖2 = 0 and (22) follows from the AM-GM inequality. Next, note that
(

1 + 1
t−s

∑t
r=s ξ1,r

)t−s
is

of the form
(
1 + a

x

)x
, where x = t− s and a =

∑t
r=s ξ1,r. Since

(
1 + a

x

)x
is an increasing function of x, we can upper

bound it by its limit as x→∞, which is ea. Thus we have

‖wt+1‖2 ≤
t∑

s=1

ξ2,s exp

(
t∑

r=s

ξ1,r

)

≤
t∑

s=1

ξ2,s

(
1 + 2

t∑
r=s

ξ1,r

)
(23)

where (23) follows from the numerical inequality exp(x) ≤ 1 + 2x for all x ∈ [0, 1].

Lemma 4. Suppose that Bt+1 = Bt − βGt and

Gt = −∆̄tStBt − χStBt∆t + Nt (24)

for Nt ∈ Rd×k and a positive semi-definite matrix St ∈ Rk×k. Then

‖∆t+1‖2 ≤ ‖∆t‖2
(
1− (1 + χ)βασmin(B>t StBt)

)
+ 2βα‖B>t Nt‖2 + β2α‖Gt‖22 (25)

Proof. By expanding ∆t+1, Bt+1, and Gt, we obtain

∆t+1 = I− αB>t+1Bt+1

= I− αB>t Bt + βαB>Gt + βαG>t Bt − β2αG>t Gt

= ∆t − βα∆tB
>
t StBt − χβαB>t StBt∆t + βαB>t Nt

− χβαB>t StBt∆t − βα∆tB
>
t StBt + βαN>t Bt − β2αG>t Gt (26)

= 1
2∆t

(
Ik − (1 + χ)βαB>t StBt

)
+ 1

2

(
Ik − (1 + χ)βαB>t StBt

)
∆t + βα(B>t Nt + N>t Bt)− β2αG>t Gt (27)

Therefore,

‖∆t+1‖2 ≤ ‖∆t‖2
∥∥Ik − (1 + χ)βαB>t StBt

∥∥
2

+ 2βα‖B>t Nt‖2 + β2α‖Gt‖22
≤ ‖∆t‖2

(
1− (1 + χ)βασmin(B>t StBt)

)
+ 2βα‖B>t Nt‖2 + β2α‖Gt‖22 (28)

where the last inequality follows by the triangle and Weyl inequalities.
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C. ANIL Infinite Samples
We start by considering the infinite sample case, wherein min=mout=∞. Let E0 := 0.9− dist2

0. We restate Theorem 1
here with full constants.

Theorem 5 (ANIL Infinite Samples). Let min=mout=∞ and define E0 :=0.9−dist2
0. Suppose Assumption 1 holds and

dist0 ≤
√

0.9. Let α < 1
L∗

, αB>0 B0 = Ik and wt = 0. Then FO-ANIL with β ≤ αE3
0µ∗

180κ4
∗

min(1,
µ2
∗
η2∗

) and Exact ANIL with

β ≤ αE2
0

40κ4
∗

both satisfy that after T iterations,

dist(BT ,B∗) ≤
(
1− 0.5βαE0µ

2
∗
)T−1

(29)

Proof. The proof uses an inductive argument with the following six inductive hypotheses:

1. A1(t) := {‖wt‖2 ≤
√
αE0

10 min(1,
µ2
∗
η2∗

)η∗}

2. A2(t) := {‖∆t‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆t−1‖2 + 5

4α
2β2L4

∗ dist2
t−1},

3. A3(t) := {‖∆t‖2 ≤ 1
10},

4. A4(t) := {0.9αE0µ
2
∗Ik � 1

n

∑n
i=1 wt,iw

>
t,i � 1.2αL2

∗Ik},

5. A5(t) := {‖B>∗,⊥Bt‖2 ≤
(
1− 0.5βαE0µ

2
∗
)
‖B>∗,⊥Bt−1‖2},

6. A6(t) := {distt ≤
(
1− 0.5βαE0µ

2
∗
)t}.

These conditions hold for iteration t = 0 due to the choice of initialization (B0,w0) satisfying Ik − αB>0 B0 = 0 and
w0 = 0. We will show that if they hold for all iterations up to and including iteration t for an arbitrary t, then they hold at
iteration t+ 1.

1.
⋂t
s=0{A2(s) ∩A6(s)} =⇒ A1(t+ 1). This is Lemma 5 for FO-ANIL and Lemma 9 for Exact ANIL.

2. A1(t) ∩A3(t) ∩A5(t) =⇒ A2(t+ 1). This is Lemma 6 for FO-ANIL and Lemma 10 for Exact ANIL.

3. A2(t+1) ∩A3(t) =⇒ A3(t+ 1). This is Corollary 1 for FO-ANIL and Corollary 2 for Exact ANIL.

4. A1(t+ 1) ∩A3(t+ 1) ∩A6(t+ 1) =⇒ A4(t+ 1). This is Lemma 7 for FO-ANIL and Lemma 12 for Exact ANIL.

5. FO-ANIL: A4(t) =⇒ A5(t+ 1). This is Lemma 8.

Exact ANIL:A1(t)∩A3(t)∩A4(t) =⇒ A5(t+1). This is Lemma 11. The slight discrepancy here in the implications
is due to the extra terms in the outer loop representation update for Exact ANIL.

6. A3(t+1) ∩
{⋂t+1

s=0A5(s)
}

=⇒ A6(t+ 1). Recall distt+1 = ‖B>∗,⊥B̂t+1‖2 where B̂t+1 is the orthogonal matrix
resulting from the QR factorization of Bt+1, i.e. Bt+1 = B̂t+1Rt+1 for an upper triangular matrix Rt+1. ByA3(t+1)
and ∩t+1

s=0A5(s) we have
√

1−‖∆t+1‖2√
α

distt+1 =

√
1−‖∆t+1‖2√

α
‖B>∗,⊥Bt+1‖2

≤ σmin(Bt+1)‖B>∗,⊥Bt+1‖2
≤ ‖B>∗,⊥Bt+1‖2
≤
(
1− 0.5βαE0µ

2
∗
)t ‖B>∗,⊥B0‖2

≤ 1√
α

(
1− 0.5βαE0µ

2
∗
)t ‖B>∗,⊥B0‖2

= 1√
α

(
1− 0.5βαE0µ

2
∗
)t

dist0 .
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Dividing both sides by
√

1−‖∆t+1‖2√
α

and using the facts that dist0 ≤ 3√
10

and ‖∆t+1‖2 ≤ 1
10 yields

distt+1 ≤ 1√
1−‖∆t+1‖2

(
1− 0.5βαE0µ

2
∗
)t

dist0

≤
√

10
3

(
1− 0.5βαE0µ

2
∗
)t

dist0

≤
(
1− 0.5βαE0µ

2
∗
)t
, (30)

as desired.

C.1. FO-ANIL

First note that the inner loop updates for FO-ANIL can be written as:

wt,i = wt − α∇wLt,i(Bt,wt)

= (Ik − αB>t Bt)wt + αB>t B∗w∗,t,i, (31)

while the outer loop updates for the head and representation are:

wt+1 = wt −
β

n

n∑
i=1

∇wLt,i(Bt,wt,i)

= wt −
β

n

n∑
i=1

B>t Btwt,i +
β

n

n∑
i=1

B>t B∗w∗,t,i (32)

Bt+1 = Bt −
β

n

n∑
i=1

∇BLt,i(Bt,wt,i)

= Bt −
β

n

n∑
i=1

Btwt,iw
>
t,i +

β

n

n∑
i=1

B∗w∗,t,iw
>
t,i (33)

= Bt − β(Id − αBtB
>
t )

1

n

n∑
i=1

(Btwt −B∗w∗,t,i)w
>
t,i (34)

Lemma 5 (FO-ANIL A1(t+ 1)). Suppose we are in the setting of Theorem 1, and that the events A2(s) and A6(s) hold
for all s ∈ [t]. Then

‖wt+1‖2 ≤ 1
10

√
αE0 min(1,

µ2
∗
η2∗

)η∗. (35)

Proof. For all s = 1, . . . , t, the outer loop updates for FO-ANIL can be written as:

ws+1 = ws −
β

n

n∑
i=1

∇wLs,i(Bs,ws,i) = ws −
β

n

n∑
i=1

B>s Bsws,i +
β

n

n∑
i=1

B>s B∗w∗,s,i (36)

Substituting the definition of ws,i, we have

ws+1 = ws−βB>s Bs(I− αB>s Bs)ws −
αβ

n

n∑
i=1

B>s BsB
>
s B∗w∗,s,i +

β

n

n∑
i=1

B>s B∗w∗,s,i

= (Ik−β(I− αB>s Bs)B
>
s Bs)ws + β(I− αB>s Bs)B

>
s B∗

1

n

n∑
i=1

w∗,s,i (37)

Note that
⋃t
s=0A3(s) implies σmax(B>s Bs) ≤ 1+‖∆s‖2

α < 1.1
α for all s ∈ {0, . . . , t+ 1}. Let c := 1.1. Using

σmax(B>s Bs) ≤ c
α with (37), we obtain

‖ws+1‖2 ≤ (1 + cβ
α ‖∆s‖2)‖ws‖2 + cβ√

α
‖∆s‖2η∗ (38)
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for all s ∈ {0, . . . , t}. Therefore, by applying Lemma 3 with ξ1,s = cβ
α ‖∆s‖2 and ξ2,s = cβ√

α
‖∆s‖2η∗, we have

‖wt+1‖2 ≤
t∑

s=1

cβ√
α
‖∆s‖2η∗

(
1 + 2c

t∑
r=s

β
α‖∆r‖2

)
(39)

Next, let ρ := 1− 0.5βαE0µ
2
∗. By

⋃t
s=0A2(s), we have for any s ∈ [t]

‖∆s‖2 ≤ ρ‖∆s−1‖2 + 5
4α

2β2L4
∗ dist2

s−1

≤ ρ2‖∆s−2‖2 + 5
4α

2β2ρL4
∗ dist2

s−2 + 5
4α

2β2L4
∗ dist2

s−1

...

≤ ρs‖∆0‖2 + 5
4α

2β2L4
∗

s−1∑
r=0

ρs−1−r dist2
r

= 5
4α

2β2L4
∗

s−1∑
r=0

ρs−1−r dist2
r (40)

since ‖∆0‖2 = 0 by choice of initialization. Next, we have that dists ≤ ρs for all s ∈ {0, ..., t} by
⋃t
s=0A5(s). Thus, for

any s ∈ {0, ..., t}, we can further bound ‖∆s‖2 as

‖∆s‖2 ≤ 5
4α

2β2L4
∗

s−1∑
r=0

ρs−1−rρ2r

= 5
4α

2β2L4
∗ρ
s−1

s−1∑
r=0

ρr

≤ ρs−1 5α2β2L4
∗

4(1−ρ)

≤ ρs−1 5βαL4
∗

2E0µ2
∗
, (41)

which means that

‖wt+1‖2 ≤
t∑

s=1

cβ√
α
ρs−1 5βαL4

∗
2E0µ2

∗
η∗

(
1 + 2c

t∑
r=s

β
αρ

r−1 5βαL4
∗

2E0µ2
∗

)

≤ 2.5cβ2
√
α
L4
∗η∗

E0µ2
∗

t∑
s=1

ρs−1

(
1 + 5cβ2 L4

∗
E0µ2

∗

t∑
r=s

ρr−1

)

≤ 2.5cβ2
√
α
L4
∗η∗

E0µ2
∗

t∑
s=1

ρs−1

(
1 + 6β2 L4

∗ρ
s

E0µ2
∗(1− ρ)

)

≤ 3β2
√
α
L4
∗η∗

E0µ2
∗

t∑
s=1

ρs−1

(
1 + 12

βL4
∗

αE2
0µ

4
∗

)

≤ 6β2
√
α
L4
∗η∗

E0µ2
∗

t∑
s=1

1.5ρs−1 (42)

≤ 18
βκ4
∗η∗√
αE2

0

≤ 1
10

√
αE0 min(1,

µ2
∗
η2∗

)η∗ (43)

where (42) and (43) follow since β ≤ αE3
0

180κ4
∗

min(1,
µ2
∗
η2∗

)η∗.

Remark 1. As referred to in Section 5, it is not necessary to start with ‖w0‖2 and ‖∆0‖2 strictly equal to zero. Precisely, it
can be shown that the above lemma still holds with ‖w0‖2 ≤ c

√
αE0 min(1,

µ2
∗
η2∗

)η∗ and ‖∆0‖2 ≤ cβαL
4
∗

E0µ2
∗

for a sufficiently
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small absolute constant c. Inductive hypothesis A6(t + 1) would also continue to hold under this initialization, with a
slightly different constant. These are the only times we use ‖w0‖2 = ‖∆0‖2 = 0, so the rest of the proof would hold.
Similar statements can be made regarding the rest of the algorithms.
Lemma 6 (FO-ANIL A2(t + 1)). Suppose we are in the setting of Theorem 1 and that A1(t), A3(t), A6(t) hold. Then
A2(t+ 1) holds, i.e.

‖∆t+1‖2 ≤
(
1− 0.5βαE0µ

2
∗
)
‖∆t‖2 + 5

4β
2α2L4

∗ dist2
t . (44)

Proof. Let Gt be the outer loop gradient for the representation, i.e. Gt = 1
β (Bt −Bt+1). We aim to apply Lemma 4, we

write Gt as −∆̄tStBt + Nt, for some positive definite matrix St and another matrix Nt. We have

Gt =
1

n

n∑
i=1

(Btwt,i −B∗w∗,t,i)w
>
t,i

=
1

n

n∑
i=1

(Bt∆twt + αBtB
>
t B∗w∗,t,i −B∗w∗,t,i)w

>
t,i

=
1

n

n∑
i=1

∆̄t(Btwt −B∗w∗,t,i)w
>
t,i

= −α∆̄tB∗

(
1

n

n∑
i=1

w∗,t,iw
>
∗,t,i

)
B>∗ Bt +

1

n

n∑
i=1

∆̄tBtwtw
>
t,i −

1

n

n∑
i=1

∆̄tB∗w∗,t,iw
>
t ∆t (45)

= −∆̄tStBt + Nt

where (45) follows by expanding wt,i, and St = αB∗
(

1
n

∑n
i=1 w∗,t,iw

>
∗,t,i
)
B>∗ and

Nt = 1
n

∑n
i=1 ∆̄tBtwtw

>
t,i − 1

n

∑n
i=1 ∆̄tB∗w∗,t,iw

>
t ∆t. Since σmin(B>t StBt) ≥ E0µ

2
∗ (by Lemma 1), we have by

Lemma 4

‖∆t+1‖2 ≤ (1− βαE0µ
2
∗)‖∆t‖2 + 2βα‖B>t Nt‖2 + β2α‖Gt‖22 (46)

To bound ‖B>t Nt‖2, we have

‖B>t Nt‖2 =

∥∥∥∥∥ 1

n

n∑
i=1

∆tB
>
t Btwtw

>
t,i −

1

n

n∑
i=1

∆tB
>
t B∗w∗,t,iw

>
t ∆t

∥∥∥∥∥
2

≤
∥∥∆tB

>
t Btwtw

>
t ∆t

∥∥
2

+ α

∥∥∥∥∥ 1

n

n∑
i=1

∆tB
>
t Btwtw

>
∗,t,iB

>
∗ Bt

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

∆tB
>
t B∗w∗,t,iw

>
t ∆t

∥∥∥∥∥
2

≤ c
α‖∆t‖22‖wt‖22 + c√

α
(‖∆t‖2 + ‖∆t‖22)‖wt‖2η∗

≤ cE0µ
2
∗

1000κ4
∗
‖∆t‖2 + 11

100cE0µ
2
∗‖∆t‖2

≤ 1
8µ

2
∗‖∆t‖2 (47)

where we have used A1(t) and A3(t) and the fact that min(1,
µ2
∗
η2∗

)η2
∗ ≤ µ2

∗. To bound ‖Gt‖22 we have

‖Gt‖2 ≤ ‖∆̄tStBt‖2 + ‖Nt‖2

≤ c
√
αL2
∗(‖∆t‖2 + distt) +

∥∥∥∥∥ 1

n

n∑
i=1

∆̄tBtwtw
>
t,i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

∆̄tB∗w∗,t,iw
>
t ∆t

∥∥∥∥∥
2

≤ c
√
αL2
∗(‖∆t‖2 + distt) + c√

α
‖∆t‖22 ‖wt‖22 + 2c‖∆t‖2‖wt‖2η∗ + ‖∆t‖2 ‖wt‖η∗ distt

≤ c
√
αL2
∗‖∆t‖2 + c

√
αL2
∗ distt + c

1000

√
αµ2
∗‖∆t‖2 + 3c

10

√
αL∗η∗‖∆t‖2

≤ 1.5
√
αL2
∗‖∆t‖2 + 1.1

√
αL2
∗ distt (48)
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where (48) follows since η∗ ≤ L∗. Therefore

‖Gt‖22 ≤ αL4
∗(2.5‖∆t‖22 + 3.3‖∆t‖2 + 5

4 dist2
t )

≤ 4αL4
∗‖∆t‖2 + 5

4αL
4
∗ dist2

t

and

‖∆t+1‖2 ≤
(
1− βαE0µ

2
∗ + 0.25βαE0µ

2
∗ + 4β2α2L4

∗
)
‖∆t‖2 + 5

4β
2α2L4

∗ dist2
t

≤
(
1− 0.5βαE0µ

2
∗
)
‖∆t‖2 + 5

4β
2α2L4

∗ dist2
t (49)

where in (49) we have used β ≤ αE3
0

180κ4
∗

, α ≤ 1
L∗

, and E0 ≤ 1.

Corollary 1 (FO-ANIL A3(t + 1)). Suppose we are in the setting of Theorem 1. If inductive hypotheses A2(t + 1) and
A3(t) hold, then A3(t+ 1) holds, i.e.

‖∆t+1‖2 ≤ 1
10 (50)

Proof. Note that according to equation (49), we have

‖∆t+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + 5

4β
2α2L4

∗

≤ (1− 0.5βαE0µ
2
∗)

1
10 + 5

720E0βαµ
2
∗ (51)

≤ 1
10

where equation (51) is satisfied by our choice of β ≤ αE3
0

180κ4
∗

and α ≤ 1
L∗

and inductive hypothesis A3(t).

Lemma 7 (FO-ANIL A4(t+ 1)). Suppose the conditions of Theorem 1 are satisfied and inductive hypotheses A1(t), A3(t)
and A6(t) hold. Then A4(t+ 1) holds, i.e.

σmin

(
1

n

n∑
i=1

wt+1,iw
>
t+1,i

)
≥ 0.9αE0µ

2
∗

and σmax

(
1

n

n∑
i=1

wt+1,iw
>
t+1,i

)
≤ 1.2αL2

∗

Proof. By Lemma 2 and inductive hypotheses A1(t), A3(t) and A6(t), we have

σmin

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≥ αE0µ

2
∗ − 0.022αE0µ

2
∗ ≥ 0.9αE0µ

2
∗

σmax

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≤ ( 1

100

√
αE0κ

−1
∗ +

√
1.1αL∗)

2 ≤ 1.2αL2
∗ (52)

where we have used the fact that min(1,
µ2
∗
η2∗

)η2
∗ ≤ µ2

∗ to lower bound the minimum singular value.

Lemma 8 (FO-ANIL A5(t+ 1)). Suppose the conditions of Theorem 1 are satisfied. If inductive hypotheses A4(t) holds,
then A5(t+ 1) holds, i.e.

‖B>∗,⊥Bt+1‖2 ≤
(
1− 0.5βαE0µ

2
∗
)
‖B>∗,⊥Bt‖2. (53)

Proof. Note from A4(t + 1) that
(
σmax

(
1
n

∑n
i=1 wt,iw

>
t,i

)
)
)−1 ≥ 1

αL2
∗
≥ 1

L∗
. Thus, since β ≤ αE3

0

180κ4
∗
≤ 1

L∗
≤(

σmax

(
1
n

∑n
i=1 wt,iw

>
t,i

)
)
)−1

, we have by Weyl’s inequality that

‖B>∗,⊥Bt+1‖2 ≤ ‖B>∗,⊥Bt‖2

∥∥∥∥∥Ik − β

n

n∑
i=1

wt,iw
>
t,i

∥∥∥∥∥
2

≤ ‖B>∗,⊥Bt‖2

(
1− βσmin

(
1
n

n∑
i=1

wt,iw
>
t,i

))
≤ ‖B>∗,⊥Bt‖2

(
1− 0.5βαE0µ

2
∗
)
.
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C.2. Exact ANIL

To study Exact ANIL, first note that the inner loop updates are identical to those for FO-MAML. However, the outer loop
updates are different. Here, we have

wt+1 = wt −
β

n

n∑
i=1

∇wFt,i(Bt,wt)

Bt+1 = Bt −
β

n

n∑
i=1

∇BFt,i(Bt,wt)

where for all t, i:

Ft,i(Bt,wt) := Lt,i(Bt,wt − α∇wLt,i(Bt,wt)) := 1
2‖vt,i‖

2
2 (54)

and

vt,i := Bt∆twt + αBtB
>
t B∗w∗,t,i −B∗w∗,t,i = ∆̄t(Btwt −B∗w∗,t,i) (55)

Therefore,

∇wFt,i(Bt,wt) = B>t ∆̄tvt,i (56)

∇BFt,i(Bt,wt) = vt,iw
>
t ∆t + αvt,iw

>
∗,t,iB

>
∗ Bt − αBtwtv

>
t,iBt − αBtB

>
t vt,iw

>
t + αB∗w∗,t,iv

>
t,iBt (57)

One can observe that for w, the outer loop gradient is the same as in the FO-ANIL case but with an extra αB>t ∆̄t factor.
Meanwhile, the first two terms in the outer loop gradient for B compose the outer loop gradient in the FO-ANIL case, while
the other three terms are new. We deal with these differences in the following lemmas.

Lemma 9 (Exact ANIL A1(t+ 1)). Suppose the conditions of Theorem 1 are satisfied and A2(s) and A6(s) hold for all
s ∈ [t], then A1(t+ 1) holds, i.e.

‖wt+1‖2 ≤ 1
10

√
αE0 min(1,

µ2
∗
η2∗

)η∗. (58)

Proof. Similarly to the FO-ANIL case, we can show that for any s ∈ [t],

ws+1 = ws −
β

n

n∑
i=1

∇wFs,i(Bs,ws) = (Ik − β∆sB
>
s Bs∆s)ws + β∆2

sB
>
s B∗

1

n

n∑
i=1

w∗,s,i (59)

Note that
⋃t
s=0A3(s) implies σmax(B>s Bs) ≤ 1+‖∆s‖2

α < 1.1
α for all s ∈ {0, . . . , t+1}. Let c := 1.1.

Unlike in the first-order case, the coefficient of ws in (59) is the identity matrix minus a positive semi-definite matrix, so
this coefficient has spectral norm at most 1 (as β is sufficiently small). So,we can bound ‖ws+1‖2 as:

‖ws+1‖2 ≤ ‖ws‖2 +
cβ√
α
‖∆s‖22η∗ (60)

which allows us to apply Lemma 3 with ξ1,s = 0 and ξ2,s = cβ√
α
‖∆s‖22η∗ for all s ∈ [t]. This results in:

‖wt+1‖2 ≤
t∑

s=1

cβ√
α
‖∆s‖22η∗.
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Next, note that

‖∆s‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆s−1‖2 + 5

4β
2α2L4

∗ dist2
s−1

...

≤
s−1∑
r=1

(1− 0.5βαE0µ
2
∗)
s−1−r( 5

4β
2α2L4

∗ dist2
r)

≤ 5
4L

4
∗β

2α2(1− 0.5βαE0µ
2
∗)
s−1

s−1∑
r=1

(1− 0.5βαE0µ
2
∗)
r

≤ 5βαL4
∗

2E0µ2
∗

(1− 0.5βαE0µ
2
∗)
s−1 (61)

therefore

‖wt+1‖2 ≤
t∑

s=1

c
25β3α1.5L8

∗
4E2

0µ
4
∗

(1− 0.5βαE0µ
2
∗)

2s−2η∗

≤ 14β2
√
αL8
∗

E3
0µ

6
∗

η∗

≤
√
αE0

10κ2
∗
η∗ (62)

≤
√
αE0

10
min(1,

µ2
∗
η2∗

)η∗. (63)

where (62) follows by choice of β ≤ αE2
0

40κ4
∗

and α ≤ 1/L∗, and (63) follows since η∗ ≤ L∗.

Lemma 10 (Exact ANIL A2(t+ 1)). Suppose the conditions of Theorem 1 are satisfied and A1(t), A3(t) and A5(t) hold,
then A2(t+ 1) holds, i.e.

‖∆t+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + 5

4β
2α2L4

∗ dist2
t . (64)

Proof. Let Gt := 1
n

∑n
i=1∇BFt,i(Bt,wt) = 1

β (Bt−Bt+1) again be the outer loop gradient for the representation, where
∇BFt,i(Bt,wt) is written in (57). Note that Gt can be re-written as:

Gt = −∆̄tStBt − StBt∆t + Nt (65)

where St := αB∗
(

1
n

∑n
i=1 w∗,t,iw

>
∗,t,i
)
B>∗ and

Nt := 1
n

n∑
i=1

(
vt,iw

>
t ∆t + α∆̄tBtwtw

>
∗,t,iB

>
∗ Bt − αBtwtv

>
t,iBt − αBtB

>
t vt,iw

>
t

+ αB∗w∗,t,iw
>
t B>t Bt∆t

)
(66)

Since Lemma 1 shows that σmin(B>t StBt) ≥ E0µ
2
∗, Lemma 4 (with χ = 1) implies that

‖∆t+1‖2 ≤ (1− 2βαE0µ
2
∗)‖∆t‖2 + 2βα‖B>t Nt‖2 + β2α2‖Gt‖22 (67)
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It remains to control ‖B>t Nt‖2 and ‖Gt‖2. Note that

‖B>t Nt‖2 ≤

∥∥∥∥∥ 1

n

n∑
i=1

B>t vt,iw
>
t ∆t

∥∥∥∥∥
2

+ α

∥∥∥∥∥ 1

n

n∑
i=1

B>t ∆̄tBtwtw
>
∗,t,iB

>
∗ Bt

∥∥∥∥∥
2

+ α

∥∥∥∥∥ 1

n

n∑
i=1

B>t Btwtv
>
t,iBt

∥∥∥∥∥
2

+ α

∥∥∥∥∥ 1

n

n∑
i=1

B>t BtB
>
t vt,iw

>
t

∥∥∥∥∥
2

+ α

∥∥∥∥∥ 1

n

n∑
i=1

B>t B∗w∗,t,iw
>
t B>t Bt∆t

∥∥∥∥∥
2

≤ c√
α
‖wt‖2‖∆t‖22

(
c√
α
‖wt‖2 + η∗

)
+ 2 c√

α
‖wt‖2‖∆t‖2η∗

+ 2 c√
α
‖wt‖2‖∆t‖2

(
c√
α
‖wt‖2 + η∗

)
≤ 5√

α
‖wt‖2‖∆t‖2η∗ + 3

α‖wt‖22‖∆t‖2
≤ 0.6E0µ

2
∗‖∆t‖2 (68)

by inductive hypotheses A1(t) and A3(t) and the fact that min(1,
µ2
∗
η2∗

)η2
∗ ≤ µ2

∗. Next,

‖Gt‖2 ≤ ‖∆̄tStBt‖2 + ‖StBt∆t‖2 + ‖Nt‖2
≤ c
√
α(2‖∆t‖2 + distt)L

2
∗ + ‖Nt‖2

≤ c
√
α(2‖∆t‖2 + distt)L

2
∗ + ‖wt‖2‖∆t‖2

(
c√
α
‖wt‖2‖∆t‖2 + (‖∆t‖2 + distt)η∗

)
+ 4c‖wt‖2‖∆t‖2η∗ + 2 c2√

α
‖wt‖22‖∆t‖2

≤ c
√
α(2‖∆t‖2 + distt)L

2
∗ + 6‖wt‖2‖∆t‖2η∗ + 3√

α
‖wt‖22‖∆t‖2

≤ 3
√
αL2
∗‖∆t‖2 + c

√
αL2
∗ distt

=⇒ ‖Gt‖22 ≤ αL4
∗(9‖∆t‖22 + 7‖∆t‖2 + 5

4 dist2
t )

≤ αL4
∗(8‖∆t‖2 + 5

4 dist2
t ) (69)

Combining (67), (68) and (69) yields

‖∆t+1‖2 ≤ (1− 2βαE0µ
2
∗)‖∆t‖2 + 2βα‖B>t Nt‖2 + β2α‖Gt‖22

≤ (1− 2βαE0µ
2
∗ + 1.2βαE0µ

2
∗ + 8β2α2L4

∗)‖∆t‖2 + 5
4β

2α4 dist2
t

≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + 5

4β
2α4 dist2

t (70)

where the last inequality follows since β ≤ αE2
0

40κ4
∗

and α ≤ 1/L∗.

Corollary 2 (Exact ANIL A3(t + 1)). Suppose the conditions of Theorem 1 are satisfied. If A2(t + 1) and A3(t) hold.
Then A3(t+ 1) holds, i.e.

‖∆t+1‖2 ≤ 1
10 (71)

Proof. Note that according to equation (70), we have

‖∆t+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + 5

4β
2α2L4

∗

≤ (1− 0.5βαE0µ
2
∗)

1
10 + 5

4E0βαµ
2
∗ (72)

≤ 1
10

where equation (72) is satisfied by the choice of β ≤ αE2
0

40κ4
∗

. and inductive hypothesis A3(t).
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Lemma 11 (Exact-ANIL A4(t + 1)). Suppose the conditions of Theorem 1 are satisfied and that inductive hypotheses
A1(t), A3(t) and A6(t) hold. Then A4(t+ 1) holds, i.e.

σmin

(
1

n

n∑
i=1

wt+1,iw
>
t+1,i

)
≥ 0.9αE0µ

2
∗

and σmax

(
1

n

n∑
i=1

wt+1,iw
>
t+1,i

)
≤ 1.2αL2

∗

Proof. The proof is identical to that of Lemma 7.

Lemma 12 (Exact ANIL A5(t+ 1)). Suppose the conditions of Theorem 1 are satisfied. If inductive hypothesis A4(t) holds,
then A5(t+ 1) holds, that is

‖B>∗,⊥Bt+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖B>∗,⊥Bt‖2

Proof. Note that from (57), the outer loop gradient for the (t, i)-th task can be re-written as:

∇BFt,i(Bt,wt) = vt,iw
>
t ∆t + αvt,iw

>
∗,t,iB

>
∗ Bt − αBtwtv

>
t,iBt − αBtB

>
t vt,iw

>
t + αB∗w∗,t,iv

>
t,iBt

= Btwt,iw
>
t,i −B∗w∗,t,iw

>
t,i − αBtwtv

>
t,iBt − αBtB

>
t vt,iw

>
t + αB∗w∗,t,iv

>
t,iBt

Therefore, noting Gt = 1
n

∑n
i=1∇BFt,i(Bt,wt), and using B>∗,⊥B∗ = 0, we have

‖B>∗,⊥Bt+1‖2 = ‖B>∗,⊥(Bt − βGt)‖2

≤
∥∥∥∥B>∗,⊥Bt

(
Ik − β

n

n∑
i=1

wt,iw
>
t,i + βα

n

n∑
i=1

(wtv
>
t,iBt + B>t vt,iw

>
t )

)∥∥∥∥
2

≤
∥∥∥∥B>∗,⊥Bt

(
Ik − β

n

n∑
i=1

wt,iw
>
t,i

)∥∥∥∥
2

+ 2βα‖B>∗,⊥Bt‖2
∥∥∥∥ 1
n

n∑
i=1

wtv
>
t,iBt

∥∥∥∥
2

≤ ‖B>∗,⊥Bt‖2
(

1− 0.9βαE0µ
2
∗ + βα 3E0

100 min(1,
µ2
∗
η2∗

)η2
∗

)
(73)

≤ ‖B>∗,⊥Bt‖2(1− 0.5βαE0µ
2
∗)

where (73) follows by inductive hypotheses A1(t), A3(t), and A4(t), and A3(t) and the fact that min(1,
µ2
∗
η2∗

)η2
∗ ≤ µ2

∗.

D. MAML Infnite Samples
D.1. FO-MAML

We consider FO-MAML when min = mout =∞. In this case, the inner loop updates are:

wt,i = wt − α∇wLt,i(Bt,wt)

= (Id − αB>t Bt)wt + αB>t B̂∗w∗,t,i

Bt,i = Bt − α∇BLt,i(Bt,wt)

= Bt(Ik − αwtw
>
t ) + αB∗w∗,t,iw

>
t (74)

The outer loop updates are:

wt+1 = wt −
β

n

n∑
i=1

∇wLt,i(Bt,i,wt,i) = wt −
β

n

n∑
i=1

B>t,i(Bt,iwt,i −B∗w∗,t,i)

Bt+1 = Bt −
β

n

n∑
i=1

∇BLt,i(Bt,i,wt,i) = Bt −
β

n

n∑
i=1

(Bt,iwt,i −B∗w∗,t,i)w
>
t,i (75)
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Now we state the main result for Exact MAML in the infinite sample case. Due to third and higher-order products of the
ground-truth heads that arise in the FO-MAML and MAML updates, we require an upper bound on the maximum w∗,t,i.
We define the parameter Lmax as follows.

Assumption 4. There exists Lmax <∞ such that almost surely for all t ∈ [T ], we have

max
i∈[n]
‖w∗,t,i‖2 ≤ Lmax (76)

Note that if Assumption 2 holds, we have Lmax = O(
√
kL∗). Here we prove a slightly more general version of Theorem 3

in which we allow for arbitrary finite Lmax. Note that Theorem 6 immediately implies Theorem 2 after applying Assumption
2. First we state the following assumption, then we prove the theorem.

Assumption 5 (Initialization and small average ground-truth heads). The following holds almost surely:

dist0 ≤
4µ∗

5Lmax
and, for all t ∈ [T ],

∥∥∥∥∥ 1
n

n∑
i=1

w∗,t,i

∥∥∥∥∥
2

≤ η∗ ≤
2E2

0µ
4
∗

L3
max

. (77)

Theorem 6 (FO-MAML Infinite Samples). Let min = mout =∞ and define E0 := 0.9− dist2
0. Suppose that α ≤ 1

4Lmax
,

β ≤ αE2
0

60κ4
∗

, αB>t Bt = Ik, w0 = 0 and Assumptions 1, 4 and 5 hold. Then FO-MAML satisfies that for all T ∈ Z+,

dist(BT ,B∗) ≤ (1− 0.5βαE0µ
2
∗)
T−1. (78)

Proof. The proof follows by showing that the following inductive hypotheses hold for all t ∈ [T ]:

1. A1(t) := {‖wt‖2 ≤ E2
0

10

√
αµ∗κ

−3
∗,max}

2. A2(t) := {‖∆t‖2 ≤ E0

10 α
2µ2
∗}

3. A3(t) := {‖B>∗,⊥Bt‖2 ≤ (1− 0.5βαE0µ
2
∗)‖B>∗,⊥Bt−1‖2}

4. A4(t) := {distt ≤
√

10
3 (1− 0.5βαE0µ

2
∗)
t−1 dist0}

5. A5(t) := {distt ≤ (1− 0.5βαE0µ
2
∗)
t−1}

These conditions hold for iteration t = 0 due to the choice of initialization. Now, assuming they hold for arbitrary t, we will
show they hold at t+ 1.

1. A1(t) ∩A2(t) ∩A4(t) =⇒ A1(t+ 1). This is Lemma 13.

2. A1(t) ∩A2(t) ∩A4(t) =⇒ A2(t+ 1). This is Lemma 14.

3. A1(t) ∩A2(t) ∩A4(t) =⇒ A3(t+ 1). This is Lemma 15.

4. A2(t+ 1) ∩
⋂t+1
s=1A3(s) =⇒ A4(t+ 1) ∩A5(t+ 1). Note that A2(t+ 1) ∩

⋂t+1
s=1A3(s) implies

√
1−‖∆t+1‖2√

α
distt+1 =

√
1−‖∆t+1‖2√

α
‖B>∗,⊥Bt+1‖2

≤ σmin(Bt+1)‖B>∗,⊥Bt+1‖2
≤ ‖B>∗,⊥Bt+1‖2
≤
(
1− 0.5βαE0µ

2
∗
)t ‖B>∗,⊥B0‖2

≤ 1√
α

(
1− 0.5βαE0µ

2
∗
)t ‖B>∗,⊥B0‖2

= 1√
α

(
1− 0.5βαE0µ

2
∗
)t

dist0 .
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Dividing both sides by
√

1−‖∆t+1‖2√
α

and using the facts that dist0 ≤ 3√
10

and ‖∆t+1‖2 ≤ 1
10 yields

distt+1 ≤ 1√
1−‖∆t+1‖2

(
1− 0.5βαE0µ

2
∗
)t

dist0

≤
√

10
3

(
1− 0.5βαE0µ

2
∗
)t

dist0

≤
(
1− 0.5βαE0µ

2
∗
)t
, (79)

as desired.

Lemma 13 (FO-MAML A1(t+ 1). Suppose the conditions of Theorem 6 are satisfied and A1(t),A2(t) and A4(t) hold.
Then A1(t+ 1) holds, i.e.

‖wt+1‖2 ≤ E2
0

10

√
αµ∗κ

−3
∗,max. (80)

Proof. Let Gt,i be the inner loop gradient for the representation for the (t, i)-th task, in particular Gt,i = Btwtw
>
t −

B∗w∗,t,iw
>
t . By expanding the outer loop update for the head, we obtain:

wt+1 =
1

n

n∑
i=1

(Ik−βB>t,iBt,i(I− αB>t Bt))wt + β
1

n

n∑
i=1

B>t,i(I− αBt,iB
>
t )B∗w∗,t,i

=
1

n

n∑
i=1

(Ik−βB>t,iBt,i(I− αB>t Bt))wt + βα2 1

n

n∑
i=1

B>t Gt,iB
>
t B∗w∗,t,i

+ β
1

n

n∑
i=1

B>t,i(I− αBtB
>
t )B∗w∗,t,i − βα3 1

n

n∑
i=1

G>t,iGt,iB
>
t B∗w∗,t,i

=
1

n

n∑
i=1

(Ik−βB>t,iBt,i(I− αB>t Bt))wt

+ βα2 1

n

n∑
i=1

B>t (Btwtw
>
t −B∗w∗,t,iw

>
t )B>t B∗w∗,t,i

+ β
1

n

n∑
i=1

B>t,i(I− αBtB
>
t )B∗w∗,t,i − βα3 1

n

n∑
i=1

G>t,iGt,iB
>
t B∗w∗,t,i

=
1

n

n∑
i=1

(Ik−βB>t,iBt,i(I− αB>t Bt))wt − βα2B>t B∗

(
1

n

n∑
i=1

w∗,t,iw
>
∗,t,i

)
B>∗ Btwt

+ βα2B>t Btwtw
>
t B>t B∗

(
1

n

n∑
i=1

w∗,t,i

)

+ β
1

n

n∑
i=1

B>t,i(I− αBtB
>
t )B∗w∗,t,i − βα3 1

n

n∑
i=1

G>t,iGt,iB
>
t B∗w∗,t,i

=

(
Ik− βα2B>t B∗

(
1

n

n∑
i=1

w∗,t,iw
>
∗,t,i

)
B>∗ Bt

)
wt + Nt (81)

where Nt := −β 1
n

∑n
i=1 B>t,iBt,i∆twt + βα2B>t Btwtw

>
t B>t B∗

1
n

∑n
i=1 w∗,t,i + β 1

n

∑n
i=1 B>t,i∆̄tB∗w∗,t,i −

βα3 1
n

∑n
i=1 G>t,iGt,iB

>
t B∗w∗,t,i. Since σmin(B>t B∗

(
1
n

∑n
i=1 w∗,t,iw

>
∗,t,i
)
B>∗ Bt) ≥ 1

αE0µ
2
∗ by Lemma 1, and

β ≤ 1
2αL2

∗
, we have

‖wt+1‖2 ≤

∥∥∥∥∥Ik− βα2B>t B∗

(
1

n

n∑
i=1

w∗,t,iw
>
∗,t,i

)
B>∗ Bt

∥∥∥∥∥
2

‖wt‖2 + ‖Nt‖2

≤ (1− βαE0µ
2
∗)‖wt‖2 + ‖Nt‖2 (82)
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The remainder of the proof deals with bounding ‖Nt‖2. First note that
⋃t
s=0A2(s) with α ≤ 1/(4Lmax) implies

σmax(B>s Bs) ≤ 1+‖∆s‖2
α < 1.12/3

α for all s ∈ {0, . . . , t+1}. In turn, this means that α1.5‖Bs‖32 ≤ 1.1 Let c := 1.1.

We consider each of the four terms in Nt separately. Using
√
α‖Bt‖2, α1.5‖Bt‖32 ≤ c and the Cauchy-Schwarz and triangle

inequalities, we have

β

∥∥∥∥∥
(

1

n

n∑
i=1

B>t,iBt,i

)
∆twt

∥∥∥∥∥
2

≤ β
(
‖Bt‖22+2α‖Bt‖2

∥∥∥∥ 1
n

n∑
i=1

w∗,t,i

∥∥∥∥
2

‖wt‖2

+ α2
∥∥ 1
n

n∑
i=1

w∗,t,iw
>
∗,t,i
∥∥

2
‖wt‖22

)
‖∆t‖2‖wt‖2

≤ β( cα + 2c
√
α‖wt‖2η∗ + α2L2

∗‖wt‖22)‖∆t‖2

βα2

∥∥∥∥∥B>t Btwtw
>
t B>t B∗

1

n

n∑
i=1

w∗,t,i

∥∥∥∥∥
2

≤ cβ
√
αη∗‖wt‖22

β

∥∥∥∥∥ 1

n

n∑
i=1

B>t,i∆̄tB∗w∗,t,i

∥∥∥∥∥
2

≤ cβ√
α
‖∆t‖2η∗ + βαL2

max‖wt‖2‖∆t‖2 + βαL2
max‖wt‖2 dist2

t (83)

βα3

∥∥∥∥∥ 1

n

n∑
i=1

G>t,iGt,iB
>
t B∗w∗,t,i

∥∥∥∥∥
2

≤ cβα2.5
(
c‖wt‖22
α η∗ +

2c‖wt‖2L2
∗√

α
+ L3

max

)
‖wt‖22. (84)

Note that the dist2
t in (83) is due to the fact that ‖B>∗ (Ik − B̂tB̂

>
t )B∗‖2 = ‖B>∗ (Ik − B̂tB̂

>
t )(Ik − B̂tB̂

>
t )B∗‖2 ≤ dist2

t .
Combining these bounds and applying inductive hypotheses A2(t) and A3(t) yields

‖Nt‖2 ≤ β

∥∥∥∥∥
(

1

n

n∑
i=1

B>t,iBt,i

)
∆twt

∥∥∥∥∥
2

+ βα2

∥∥∥∥∥B>t Btwtw
>
t B>t B∗

1

n

n∑
i=1

w∗,t,i

∥∥∥∥∥
2

+ β

∥∥∥∥∥ 1

n

n∑
i=1

B>t,i∆̄tB∗w∗,t,i

∥∥∥∥∥
2

+ βα3

∥∥∥∥∥ 1

n

n∑
i=1

G>t,iGt,iB
>
t B∗w∗,t,i

∥∥∥∥∥
2

≤ β( cα + 2c
√
α‖wt‖2η∗ + α2L2

∗‖wt‖22)‖∆t‖2‖wt‖2 + cβ
√
αη∗‖wt‖22 + cβ√

α
‖∆t‖2η∗

+ βαL2
max‖wt‖2‖∆t‖2 + βαL2

max‖wt‖2 dist2
t +cβα2.5

(
c‖wt‖22
α η∗ +

2c‖wt‖2L2
∗√

α
+ L3

max

)
‖wt‖22

≤ 2c
100βα

1.5µ3
∗κ
−3
∗,maxE

3
0 + 2c

10βα
1.5µ2

∗η∗E0 + 1
10βα

1.5µ3
∗κ∗,maxE

2
0 dist2

t

Thus we have

‖wt+1‖2 ≤
(
1− βαE0µ

2
∗
)
‖wt‖2 + 2c

100βα
1.5µ3

∗κ
−3
∗,maxE

3
0 + 2c

10βα
1.5µ2

∗η∗E0 + 1
10βα

1.5µ3
∗κ∗,maxE

2
0 dist2

t

≤ 1
10E

2
0

√
αµ∗κ

−1
∗,max − 1

10βα
1.5E3

0µ
3
∗κ
−1
∗,max + 2c

100βα
1.5µ3

∗κ
−3
∗,maxE

3
0 + 2c

10βα
1.5µ2

∗η∗E0

+ 1
10βα

1.5µ3
∗κ∗,maxE

2
0 dist2

0

≤ 1
10E

2
0

√
αµ∗κ

−1
∗,max (85)

where (85) follows by Assumption 5, namely:

η∗ ≤
2E2

0µ
4
∗

L3
max

and dist0 ≤
4µ∗

5Lmax
. (86)

Lemma 14 (FO-MAML A2(t+ 1)). Suppose the conditions of Theorem 6 are satisfied and A1(t),A2(t) and A4(t) hold.
Then A2(t+ 1) holds almost surely, i.e.

‖∆t‖2 ≤ E0

10 α
2µ2
∗. (87)
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Proof. We will employ Lemma (4), which requires writing the outer loop gradient for the representation, i.e. Gt :=
1
β (Bt −Bt+1), as Gt = −∆̄tStBt − χBtSt∆t + Nt, for some positive definite matrix St and a matrix Nt (note that this
Nt is different from the Nt from that was used in the previous lemma). To this end, we expand the outer loop gradient:

Gt :=
1

n

n∑
i=1

Bt,iwt,iw
>
t,i −B∗w∗,t,iw

>
t,i

=
1

n

n∑
i=1

(Bt,i(Ik − αB>t Bt)wt − (Id − αBt,iB
>
t )B∗w∗,t,i)w

>
t,i

=
1

n

n∑
i=1

Bt,i∆twtw
>
t,i − ∆̄tB∗w∗,t,iw

>
t,i + α2Btwtw

>
t B>t B∗w∗,t,iw

>
t,i

− α2B∗w∗,t,iw
>
t B>t B∗w∗,t,iw

>
t,i

= −∆̄tB∗

(
α

1

n

n∑
i=1

w∗,t,iw
>
∗,t,i

)
B>∗ Bt +

1

n

n∑
i=1

(
Bt,i∆twtw

>
t,i − ∆̄tB∗w∗,t,iw

>
t ∆t

+ α2Btwtw
>
t B>t B∗w∗,t,iw

>
t,i − α2B∗w∗,t,iw

>
t B>t B∗w∗,t,iw

>
t,i

)
= −∆̄tStBt + Nt (88)

where St := B∗
(
α 1
n

∑n
i=1 w∗,t,iw

>
∗,t,i
)
B>∗ ,

Nt :=
1

n

n∑
i=1

(
Bt,i∆twtw

>
t,i − ∆̄tB∗w∗,t,iw

>
t ∆t + α2Btwtw

>
t B>t B∗w∗,t,iw

>
t,i

− α2B∗w∗,t,iw
>
t B>t B∗w∗,t,iw

>
t,i

)
, (89)

and χ = 0. Since σmin(B>t StBt) ≥ E0µ
2
∗ (by Lemma 1), Lemma 4 shows

‖∆t+1‖2 ≤ (1− βαE0µ
2
∗)‖∆t‖2 + 2βα‖B>t Nt‖2 + β2α‖Gt‖22 (90)

So, the remainder of the proof is to bound ‖B>t Nt‖2 and ‖Gt‖22. First we deal with ‖B>t Nt‖2. We have

‖B>t Nt‖2 ≤

∥∥∥∥∥ 1

n

n∑
i=1

B>t Bt,i∆twtw
>
t,i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

B>t ∆̄tB∗w∗,t,iw
>
t ∆t

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

α2B>t Btwtw
>
t B>t B∗w∗,t,iw

>
t,i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

α2B>t B∗w∗,t,iw
>
t B>t B∗w∗,t,iw

>
t,i

∥∥∥∥∥
2

(91)
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We consider each of the four terms in (91) separately.∥∥∥∥∥ 1

n

n∑
i=1

B>t Bt,i∆twtw
>
t,i

∥∥∥∥∥
2

≤
∥∥∥B>t BtΛt∆twtwt∆

>
t

∥∥∥
2

+ α

∥∥∥∥∥ 1

n

n∑
i=1

B>t BtΛt∆twtw
>
∗,t,iB

>
∗ Bt

∥∥∥∥∥
2

+ α

∥∥∥∥∥ 1

n

n∑
i=1

B>t B∗w∗,t,iw
>
t ∆twtwt∆

>
t

∥∥∥∥∥
2

+ α2

∥∥∥∥∥ 1

n

n∑
i=1

B>t B∗w∗,t,iw
>
t ∆twtw

>
∗,t,iB

>
∗ Bt

∥∥∥∥∥
2

≤ c
α‖∆t‖22‖wt‖22 + c√

α
‖∆t‖2‖wt‖2η∗

+ c
√
α‖∆t‖22‖wt‖32η∗ + cα‖∆t‖2‖wt‖22L2

∗∥∥∥∥∥ 1

n

n∑
i=1

B>t ∆̄tB∗w∗,t,iw
>
t ∆t

∥∥∥∥∥
2

≤ c√
α
‖∆t‖22‖wt‖2η∗∥∥∥∥∥ 1

n

n∑
i=1

α2B>t Btwtw
>
t B>t B∗w∗,t,iw

>
t,i

∥∥∥∥∥
2

≤ c
√
α‖wt‖22(‖∆t‖2‖wt‖2η∗ +

√
αL2
∗)∥∥∥∥∥ 1

n

n∑
i=1

α2B>t B∗w∗,t,iw
>
t B>t B∗w∗,t,iw

>
t,i

∥∥∥∥∥
2

≤ cα‖wt‖2(‖∆t‖2‖wt‖2L2
∗ +
√
αL3

max)

Therefore, after applying inductive hypotheses A1(t) and A2(t), we obtain

‖B>t Nt‖2 ≤ 2c
E2

0

10 α
2µ4
∗.

Next we bound ‖Gt‖22. Note that ‖Gt‖2 ≤ ‖∆̄tStBt‖2 + ‖Nt‖2, and

‖∆̄tStBt‖2 ≤ c
√
αL2
∗(‖∆t‖2 + distt)

≤ c
√
αL2
∗(α

2µ2
∗E0 + distt).

Moreover,

‖Nt‖2 ≤

∥∥∥∥∥ 1

n

n∑
i=1

Bt,i∆twtw
>
t,i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

∆̄tB∗w∗,t,iw
>
t ∆t

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

α2Btwtw
>
t B>t B∗w∗,t,iw

>
t,i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

α2B∗w∗,t,iw
>
t B>t B∗w∗,t,iw

>
t,i

∥∥∥∥∥
2

≤ 3cE0

10 α2.5µ4
∗

thus

‖Gt‖22 ≤
(
c
√
αL2
∗(α

2µ2
∗ + distt) + 3cE0

10 α2.5µ4
∗
)2

≤ 3c2α5L4
∗µ

4
∗ + 2c2αL4

∗ dist2
t

≤ 3αL4
∗ (92)

which means that

‖∆t+1‖2 ≤ (1− βαE0µ
2
∗)‖∆t‖2 +

2cE2
0

10 βα3µ4
∗ + 3β2α2L4

∗

≤ 1
10α

2E0µ
2
∗ − 1

10βα
3E2

0µ
4
∗ +

2cE2
0

10 βα3µ4
∗ + 3β2α2L4

∗

≤ 1
10α

2E0µ
2
∗ (93)

where (93) follows by choice of β ≤ αE2
0

60κ4
∗

.
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Lemma 15 (FO-MAML A3(t+ 1)). Suppose the conditions of Theorem 6 are satisfied and A1(t), A2(t), and A4(t) hold.
Then A3(t+ 1) holds almost surely, i.e.

‖B>∗,⊥Bt+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖B>∗,⊥Bt‖2.

Proof. Recalling the definition of Bt+1 from (75) and noting that B>∗,⊥B∗ = 0, we obtain

B>∗,⊥Bt+1 = B>∗,⊥Bt

(
Ik − β(Ik − αwtw

>
t )

1

n

n∑
i=1

wt,iw
>
t,i

)
(94)

Next, using the triangle and Cauchy-Schwarz inequalities, we obtain∥∥∥∥∥Ik − β (Ik − αwtw
>
t

) 1

n

n∑
i=1

wt,iw
>
t,i

∥∥∥∥∥
2

≤

∥∥∥∥∥Ik − β

n

n∑
i=1

wt,iw
>
t,i

∥∥∥∥∥+ βα

∥∥∥∥∥wtw
>
t

1

n

n∑
i=1

wt,iw
>
t,i

∥∥∥∥∥
2

≤ 1− βσmin

(
1

n

n∑
i=1

wt,iw
>
t,i

)
+ βα‖wt‖22

∥∥∥∥∥ 1

n

n∑
i=1

wt,iw
>
t,i

∥∥∥∥∥
2

≤ 1− β
(
αE0µ

2
∗ − cη∗

√
α‖wt‖2‖∆t‖2

)
(95)

+ cβα‖wt‖22
(
‖wt‖2‖∆t‖22 + η∗

√
α‖wt‖2‖∆t‖2 + αL2

∗
)

≤ 1− βαE0µ
2
∗ + 2

E2
0

100βα
3µ3
∗η∗κ

−3
max,∗ + c

E4
0

100βα
3µ2
∗L

2
∗κ
−6
∗,max

≤ 1− 0.5βαE0µ
2
∗ (96)

where (95) follows by the diversity of the inner loop-updated heads (Lemma 2) and (96) follows from α ≤ 1/(4Lmax).

D.2. Exact MAML

The first step in the analysis is to compute the second-order outer loop updates for Exact MAML. To do so, we must compute
the loss on task i at iteration t after one step of gradient descent for both the representation and head. Let Λt := Ik−αwtw

>
t ,

∆t := Ik − αB>t Bt, and ∆̄t := Id − αBtB
>
t . Note that

Ft,i(Bt,wt) := Lt,i(Bt − α∇BLt,i(Bt,wt),wt − α∇wLt,i(Bt,wt)) = 1
2‖vt,i‖

2
2 (97)

where

vt,i = BtΛt∆twt + αBtΛtB
>
t B∗w∗,t,i + αB∗w∗,t,iw

>
t ∆twt + α2B∗w∗,t,iw

>
t B>t B∗w∗,t,i −B∗w∗,t,i

= ∆̄t(Btwt −B∗w∗,t,i)− α(Btwt −B∗w∗,t,i)w
>
t ∆twt − α2Btwtw

>
t B>t B∗w∗,t,i

+ α2B∗w∗,t,iw
>
∗,t,iB

>
∗ Btwt

= (∆̄t − (αωt + α2at,i)Id)(Btwt −B∗w∗,t,i) (98)

where at,i := w>∗,t,iB
>
∗ Btwt ∀t, i and ωt := w>t ∆twt ∀t. The outer loop updates for Exact MAML are given by:

wt+1 = wt −
β

n

n∑
i=1

∇wFt,i(Bt,wt)

Bt+1 = Bt −
β

n

n∑
i=1

∇BFt,i(Bt,wt)

Again, we prove a more general version of Theorem 2 in which we allow for general Lmax. First we make the following
assumption.

Assumption 6 (Exact MAML Initialization). The distance of the initial representation to the ground-truth representation
satisfies:

dist0 ≤ 1
17κ
−1.5
∗,max. (99)
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Theorem 7 (Exact MAML Infinite Samples). Let min = mout = ∞ and define E0 := 0.9 − dist2
0. Suppose that

α ≤ E
1/4
0 κ3/4

∗ (L∗/Lmax)1/4

4LmaxT 1/4 and β ≤ E0α
10κ4
∗

, αB>0 B0 = Ik, w0 = 0 and Assumptions 1, 6, and 4 hold. Then Exact MAML
satisfies

distT ≤ (1− 0.5βαE0µ
2
∗)
T−1 (100)

Proof. The proof follows by showing that the following inductive hypotheses hold for all t ∈ [T ]:

1. A1(t) := {‖wt‖2 ≤ ‖wt−1‖2 + 16βα3.5L5
maxt+ 3βα1.5L3

max dist2
t}

2. A2(t) := {‖wt‖2 ≤ E0

20

√
αµ∗}.

3. A3(t) := ‖∆t‖2 ≤ α2L2
max

4. A4(t) := {‖B>∗,⊥Bt‖2 ≤ (1− 0.5βαE0µ
2
∗)‖B>∗,⊥Bt−1‖2}

5. A5(t) := {distt ≤
√

10
3 (1− 0.5βαE0µ

2
∗)
t−1 dist0}

6. A6(t) := {distt ≤ (1− 0.5βαE0µ
2
∗)
t−1}

These conditions hold for iteration t = 0 due to the choice of initialization. Now, assuming they hold for arbitrary t, we will
show they hold at t+ 1.

1. A2(t) ∩A3(t) =⇒ A1(t+ 1). This is Lemma 16.

2.
⋂t
s=1{A1(s) ∩A5(s)} =⇒ A2(t+ 1). This is Lemma 17.

3. A2(t) ∩A3(t) ∩A5(t) =⇒ A3(t+ 1). This is Lemma 18.

4. A2(t) ∩A3(t) ∩A5(t) =⇒ A4(t+ 1). This is Lemma 19.

5. A3(t+ 1)∩
⋂t+1
s=1A4(s) =⇒ A5(t+ 1)∩A6(t+ 1). Note that A3(t+ 1)∩

⋂t+1
s=1A4(s) and α ≤ 1/(4Lmax) implies

√
1−0.1√
α

distt+1 =
√

1−0.1√
α
‖B>∗,⊥B̂t+1‖2

≤ σmin(Bt+1)‖B>∗,⊥B̂t+1‖2
≤ ‖B>∗,⊥Bt+1‖2
≤
(
1− 0.5βαE0µ

2
∗
)t ‖B>∗,⊥B0‖2

≤ 1√
α

(
1− 0.5βαE0µ

2
∗
)t ‖B>∗,⊥B̂0‖2 (101)

= 1√
α

(
1− 0.5βαE0µ

2
∗
)t

dist0,

where (101) follows due to initialization ‖B0‖2 = 1√
α

. This implies

distt+1 ≤
√

10
3

(
1− 0.5βαE0µ

2
∗
)t

dist0 ≤
(
1− 0.5βαE0µ

2
∗
)t

(102)

since α ≤ 1/(4Lmax) and dist0 ≤ 3√
10

by Assumption 6.

Next, we complete the proof of Theorem 7 by proving the following lemmas.

Lemma 16 (Exact MAML A1(t)). Suppose Assumptions 1 and 6 hold, and A2(t) and A3(t) hold. Then

‖wt+1‖2 ≤ ‖wt‖2 + 16α3.5L5
max + 3α1.5L3

max dist2
t (103)
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Proof. Using (98) and the chain rule (while noting that at,i is a function of wt), we find that for all i ∈ [n], the gradient of
Ft,i(Bt,wt) with respect to wt is:

∇wFt,i(Bt,wt) = (Bt∆t − αωtBt − α2at,iBt)
>(Bt∆t − αωtBt − α2at,iBt)wt

−B>t (∆̄t − αωtId − α2at,iId)
2B∗w∗,t,i

− 2α∆twt(Btwt −B∗w∗,t,i)
>vt,i − α2B>t B∗w∗,t,i(Btwt −B∗w∗,t,i)

>vt,i

= (Bt∆t − αωtBt − α2at,iBt)
>(Bt∆t − αωtBt − α2at,iBt)wt + Nt,i (104)

where Nt,i := −B>t (∆̄t − αωtId − α2at,iId)
2B∗w∗,t,i − 2α∆twt(Btwt −B∗w∗,t,i)

>vt,i
− α2B>t B∗w∗,t,i(Btwt −B∗w∗,t,i)

>vt,i. Thus,

wt+1 = wt −
β

n

n∑
i=1

∇wFt,i(Bt,wt)

=

(
Ik −

β

n

n∑
i=1

(Bt∆t − αωtBt − α2at,iBt)
>(Bt∆t − αωtBt − α2at,iBt)

)
wt −

β

n

n∑
i=1

Nt,i (105)

which implies that

‖wt+1‖2 ≤

∥∥∥∥∥Ik − β

n

n∑
i=1

(Bt∆t − αωtBt − α2at,iBt)
>(Bt∆t − αωtBt − α2at,iBt)

∥∥∥∥∥
2

‖wt‖2

+ β

∥∥∥∥∥ 1

n

n∑
i=1

Nt,i

∥∥∥∥∥
2

≤ ‖wt‖2 + β

∥∥∥∥∥ 1

n

n∑
i=1

Nt,i

∥∥∥∥∥
2

(106)

where (106) follows since 1
n

∑n
i=1(Bt∆t−αωtBt−α2at,iBt)

>(Bt∆t−αωtBt−α2at,iBt) is PSD and β is sufficiently
small. Next, we upper bound

∥∥ 1
n

∑n
i=1 Nt,i

∥∥
2
, and to do so, we first use the triangle inequality to write∥∥∥∥∥ 1

n

n∑
i=1

Nt,i

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

B>t (∆̄t − αωtId − α2at,iId)
2B∗w∗,t,i

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

α∆twt(Btwt −B∗w∗,t,i)
>vt,i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

α2B>t B∗w∗,t,i(Btwt −B∗w∗,t,i)
>vt,i

∥∥∥∥∥
2

(107)

We will bound each of the three terms above shortly. First, note that A4(t) and α ≤ 1/(4Lmax) implies

15/16

α
≤ 1− α2L2

max

α
≤ σ2

min(Bt) ≤ σ2
max(Bt) ≤

1 + α2L2
max

α
≤

17/16

α
. (108)

In turn, this implies that ‖Bt‖32 ≤ 1.1. Let c := 1.1. Also, note that B>t ∆̄t = ∆tB
>
t and

‖B>∗ ∆̄tB∗‖2 = ‖B>∗ (Id − αBtB
>
t )B∗‖2

≤ ‖B>∗ (Id − B̂tB̂
>
t )B∗‖2 + ‖B>∗ (B̂tB̂

>
t − αBtB

>
t )B∗‖2

≤ ‖B>∗ (Id − B̂tB̂
>
t )‖‖(Id − B̂tB̂

>
t )B∗‖2 + ‖B̂tB̂

>
t − αBtB

>
t ‖2

= dist2
t +‖B̂t(Ik − αRtR

>
t )B̂>t ‖2

≤ dist2
t +‖∆t‖2 (109)
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where Rt ∈ Rk×k is the upper triangular matrix resulting from the QR decomposition of Bt. We will use these observations
along with inductive hypotheses A2(t) and A3(t) and the Cauchy-Schwarz and triangle inequalities to separately bound
each of the terms from (107) as follows. Let c2 := E0/20. Then we have:

∥∥∥∥ 1

n

n∑
i=1

B>t (∆̄t − (αωt + α2at,i)Id)
2B∗w∗,t,i

∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

∆2
tB
>
t B∗w∗,t,i

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

αωt∆tB
>
t B∗w∗,t,i

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

α2at,i∆tB
>
t B∗w∗,t,i

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

α3ωtat,iB
>
t B∗w∗,t,i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

α2ω2
tB
>
t B∗w∗,t,i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

α4a2
t,iB

>
t B∗w∗,t,i

∥∥∥∥∥
2

≤ cα3.5L4
maxη∗ + 2cα4.5L4

maxη∗‖wt‖22 + 2cα3L2
maxL

2
∗‖wt‖2

+ 2cα4L2
maxL

2
∗‖wt‖32 + cα3.5L4

maxη∗‖wt‖42 + cα2.5L3
max‖wt‖22

≤ cα3.5L4
maxη∗ + 2cc22α

5.5L4
maxη∗µ

2
∗κ
−2
∗,max + 2cc2α

3.5L2
maxL

2
∗µ∗κ

−1
∗,max

+ 2cc32α
5.5L2

maxL
2
∗µ

3
∗κ
−3
∗,max + cc42α

5.5L4
maxη∗µ

4
∗κ
−4
∗,max + cc22α

3.5L3
maxµ

2
∗κ
−2
∗,max

≤ 4cα3.5L4
max(η∗ + µ∗) (110)

∥∥∥∥ 1

n

n∑
i=1

α∆twt(Btwt −B∗w∗,t,i)
>vt,i

∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

α∆twtw
>
t B>t (∆̄t − αωtId − α2at,iId)(Btwt −B∗w∗,t,i)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

α∆twtw
>
∗,t,iB

>
∗ (∆̄t − αωtId − α2at,iId)(Btwt −B∗w∗,t,i)

∥∥∥∥∥
2

≤ cα4L4
max‖wt‖32 + 2cα4.5L4

maxη∗‖wt‖22 + cα5L4
max‖wt‖52 + 2cα5.5L4

maxη∗‖wt‖42
+ cα3.5L2

maxη∗‖wt‖42 + 2cα4L2
maxL

2
∗‖wt‖32 + cα5L6

max‖wt‖32
+ cα4.5L5

max‖wt‖22 + cα5L6
max‖wt‖2 + cα3L4

max dist2
t ‖wt‖2

≤ cc32α5.5L4
maxµ

3
∗κ
−3
∗,max + 2cc22α

5.5L4
maxη∗µ

2
∗κ
−2
∗,max + cc52α

7.5L4
maxµ

5
∗κ
−5
∗,max

+ 2cc42α
7.5L4

maxη∗µ
4
∗κ
−4
∗,max + cc42α

5.5L2
maxη∗µ

4
∗κ
−4
∗,max + 2cc32α

5.5L2
maxL

2
∗µ

3
∗κ
−3
∗,max

+ cc32α
7.5L6

maxµ
3
∗κ
−3
∗,max + cc22α

5.5L5
maxµ

2
∗κ
−2
∗,max + cc2α

5.5L6
maxµ∗κ

−1
∗,max

+ cc2α
3.5L4

maxµ∗κ
−1
∗,max dist2

t

≤ 9cc2α
5.5L5

maxµ
2
∗ + cc2α

3.5L3
maxµ

2
∗ dist2

t (111)
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∥∥∥∥ 1

n

n∑
i=1

α2B>t B∗w∗,t,i(Btwt −B∗w∗,t,i)
>vt,i

∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

α2B>t B∗w∗,t,iw
>
t B>t (∆̄t − αωtId − α2at,iId)(Btwt −B∗w∗,t,i)

∥∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

α2B>t B∗w∗,t,iw
>
∗,t,iB

>
∗ (∆̄t − αωtId − α2at,iId)(Btwt −B∗w∗,t,i)

∥∥∥∥
2

≤ cα2.5L2
maxη∗‖wt‖22 + cα3L2

maxL
2
∗‖wt‖2 + cα3.5L2

maxη∗‖wt‖42
+ cα2.5L3

max‖wt‖22 + cα4L2
maxL

2
∗‖wt‖32 + cα2L2

∗‖wt‖32
+ cα3L2

maxL
2
∗‖wt‖2 + cα2.5L3

max‖wt‖22
+ cα3.5L2

maxL
3
max + cα1.5L3

max dist2
t +cα3L4

max‖wt‖2
+ cα4.5L5

max‖wt‖22 + cα4L2
maxL

2
∗η∗‖wt‖32

≤ cc22α3.5L2
maxη∗µ

2
∗κ
−2
∗,max + cc2α

3.5L2
maxL

2
∗µ∗κ

−1
∗,max + cc42α

5.5L2
maxη∗µ

4
∗κ
−4
∗,max

+ cc22α
3.5L3

maxµ
2
∗κ
−2
∗,max + cc32α

5.5L2
maxL

2
∗µ

3
∗κ
−3
∗,max + cc32α

3.5L2
∗µ

3
∗κ
−3
∗,max

+ cc2α
3.5L2

maxL
2
∗µ∗κ

−1
∗,max + cc22α

3.5L3
maxµ

2
∗κ
−2
∗,max

+ cα3.5L2
maxL

3
max + cα1.5L3

max dist2
t +cc2α

3.5L4
maxµ∗κ

−1
∗,max

+ cc22α
5.5L5

maxµ
2
∗κ
−2
∗,max + cα5.5L2

maxL
2
∗η∗µ

3
∗κ
−3
∗,max

≤ 9cα3.5L5
max + cα1.5L3

max dist2
t (112)

where we have used c2 = E0/20 and α ≤ 1/(4Lmax) to reduce terms. Next, combining the above bounds with (107) yields:∥∥∥∥∥ 1

n

n∑
i=1

Nt,i

∥∥∥∥∥
2

≤ 14cα3.5L5
max + 2cα1.5L3

max dist2
t (113)

Applying c = 1.1 yields the result.

Lemma 17 (Exact MAML A2(t + 1)). Suppose the conditions of Theorem 7 are satisfied, and
⋂t
s=1{A1(s) ∩ A5(s)}.

Then

‖wt+1‖2 ≤ E0

20

√
αµ∗. (114)

Proof. By inductive hypotheses A1(1), . . . , A1(t), we have ‖ws+1‖2 ≤ ‖ws‖2 + 16βα3.5L5
max + 3βα1.5L3

max dist2
s for

all s ∈ [t], so we can invoke Lemma 3 with ξ1,s = 0 ∀s ∈ [t] and ξ2,s = 16βα3.5L5
max + 3βα1.5L3

max dist2
s. This results in

‖wt+1‖2 ≤
t∑

s=1

16βα3.5L5
max + 3βα1.5L3

max dist2
s (115)

Next, we invoke inductive hypotheses A6(1), . . . , A6(t) to obtain dist2
s ≤ 10

9 (1− 0.5βαE0µ
2
∗)

2(s−1) dist2
0 for all s ∈ [t].

Therefore

‖wt+1‖2 ≤
t∑

s=1

16βα3.5L5
max + 3βα1.5L3

maxγ
2(s−1)

≤ 16βα3.5L5
maxt+ 3βα1.5L3

max

t∑
s=1

10
9 (1− 0.5βαE0µ

2
∗)

2(s−1) dist2
0

≤ 16βα3.5L5
maxt+ 10

3 βα
1.5L3

max
dist20

0.5βαE0µ2
∗

(116)

≤ 16βα3.5L5
maxt+ 20

3

√
αL3

max
dist20
E0µ2

∗

≤ E0

20

√
αµ∗ (117)
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where (116) is due to the sum of a geometric series and (117) follows since β ≤ α
10κ4
∗
≤ E0µ∗

640α3L5
maxT

(as α is sufficiently
small) and the initial representation satisfies

20
3

√
αL3

max

dist2
0

E0µ2
∗
≤ E0

20

√
αµ∗/2

⇐⇒ 0 ≤ µ3
∗ − ( 800

3 L3
max + 2µ3

∗)dist2
0 + µ3

∗ dist4
0

which is implied by

dist0 ≤ 1
17κ
−1.5
∗,max (118)

Lemma 18 (Exact MAML A3(t+ 1)). Suppose the conditions of Theorem 7 are satisfied and A2(t), A3(t) and A5(t) hold.
Then A3(t+ 1) holds, namely

‖∆t+1‖2 ≤ α2L2
max (119)

Proof. According to Lemma 4, we can control ∆t+1 by controlling Gt, recalling that Gt = 1
β (Bt −Bt+1) ∈ Rd×k is

the outer loop gradient with respect to the representation at time t. Before studying Gt, we must compute the outer loop
gradient with respect to the representation for task i. Again we use the fact that Ft,i(Bt,wt) = 1

2‖vt,i‖
2
2 and apply the

chain rule to obtain:

∇BFt,i(Bt,wt) = vt,iw
>
t ∆tΛt − αBt(wtv

>
t,iBtΛt + ΛtB

>
t vt,iw

>
t )

+ α(vt,iw
>
∗,t,iB

>
∗ + B∗w∗,t,iv

>
t,i)BtΛt

− 2α2(w>∗,t,iB
>
∗ vt,i)Btwtw

>
t + α2B∗w∗,t,iv

>
t,iB∗w∗,t,iw

>
t (120)

Note that Gt = 1
n

∑n
i=1∇BFt,i(Bt,wt). We aim to write Gt as Gt = −∆̄tStBt − StBt∆t + Nt for some positive

definite S so that we can apply Lemma 4. It turns out that of the five terms in (120), the only one with ‘sub’-terms that
contribute to St is the third term. To see this, note that

α(vt,iw
>
∗,t,iB

>
∗ + B∗w∗,t,iv

>
t,i)BtΛt = −α(∆̄tB∗w∗,t,iw

>
∗,t,iB

>
∗ Bt + B∗w∗,t,iw

>
∗,t,iB

>
∗ Bt∆t)

+ α((vt,i + ∆̄tB∗w∗,t,i)w
>
∗,t,iB

>
∗

+ B∗w∗,t,i(vt,i + w>∗,t,iB
>
∗ ∆̄t))BtΛt

+ α2∆̄tB∗w∗,t,iw
>
∗,t,iB

>
∗ Bt + B∗w∗,t,iw

>
∗,t,iB

>
∗ Bt∆t)wtw

>
t

= −(∆̄tStBt + StBt∆t)

+ α((vt,i + ∆̄tB∗w∗,t,i)w
>
∗,t,iB

>
∗

+ B∗w∗,t,i(vt,i + w>∗,t,iB
>
∗ ∆̄t))BtΛt

+ α2∆̄tB∗w∗,t,iw
>
∗,t,iB

>
∗ Bt + B∗w∗,t,iw

>
∗,t,iB

>
∗ Bt∆t)wtw

>
t .

where St := α 1
n

∑n
i=1 B∗w∗,t,iw

>
∗,t,iB

>
∗ . Thus we can write

Gt = −∆̄tStBt − StBt∆t + Nt (121)

where

Nt :=
1

n

n∑
i=1

vt,iw
>
t ∆tΛt −

1

n

n∑
i=1

α2Btwtw
>
∗,t,iB

>
∗ vt,iw

>
t +

1

n

n∑
i=1

α2B∗w∗,t,iw
>
∗,t,iB

>
∗ vt,iw

>
t

− 1

n

n∑
i=1

αBt(wtv
>
t,iBtΛt + ΛtB

>
t vt,iw

>
t ) +

1

n

n∑
i=1

α(vt,i + ∆̄tB∗w∗,t,i)w
>
∗,t,iB

>
∗ BtΛt

+
1

n

n∑
i=1

α∆̄tB∗w∗,t,iw
>
∗,t,iB

>
∗ Btαwtw

>
t (122)
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Note that ‖∆t‖2 ≤ 1
10 due to A3(t) and choice of α ≤ 1

4Lmax
. Therefore, Lemma 1 implies that σmin(B>t StBt) ≥ E0µ

2
∗

where E0 = 1− 1
10 − dist2

0. Thus by Lemma 4 with χ = 1, we have

‖∆t+1‖2 ≤ ‖∆t‖2(1− 2βαE0µ
2
∗) + 2βα‖B>t Nt‖2 + β2α‖Gt‖22 (123)

So it remains to control ‖B>t Nt‖2 and ‖Gt‖22. First we deal with ‖B>t Nt‖2 by upper bounding the norm of B>t times each
of the six terms in (122). As before, we use c = 1.1 as an absolute constant that satisfies σ3

max(Bt) ≤ c/α1.5. We have

∥∥∥∥∥ 1

n

n∑
i=1

B>t vt,iw
>
t ∆tΛt

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

B>t (∆̄t − (αωt + α2at,i)Id)(Btwt −B∗w∗,t,i)w
>
t ∆tΛt

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

∆tB
>
t (Btwt −B∗w∗,t,i)w

>
t ∆tΛt

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

(αωt + α2at,i)B
>
t (Btwt −B∗w∗,t,i)w

>
t ∆tΛt

∥∥∥∥∥
2

≤ c
α‖∆t‖22‖wt‖22 + c√

α
‖∆t‖22‖wt‖2η∗ + c‖∆t‖22‖wt‖42

+ c
√
α‖∆t‖2‖wt‖32η∗ + c

√
α‖∆t‖22‖wt‖32η∗ + cα‖∆t‖2‖wt‖22L2

∗

∥∥∥∥∥ 1

n

n∑
i=1

α2B>t Btwtw
>
∗,t,iB

>
∗ vt,iw

>
t

∥∥∥∥∥
2

≤ c
∥∥∥∥ 1

n

n∑
i=1

αwtw
>
∗,t,iB

>
∗ (∆̄t − (αωt + α2at,i)Id)

× (Btwt −B∗w∗,t,i)w
>
t

∥∥∥∥
2

≤ c
√
α‖∆t‖2‖wt‖32η∗ + cα(‖∆t‖2 + dist2

t )‖wt‖22L2
max

+ cα1.5‖∆t‖2‖wt‖52η∗ + cα2‖∆t‖2‖w‖42L2
max

+ cα2‖wt‖42L2
∗ + cα2.5‖wt‖32L3

max∥∥∥∥∥ 1

n

n∑
i=1

α2B>t B∗w∗,t,iw
>
∗,t,iB

>
∗ vt,iw

>
t

∥∥∥∥∥
2

≤ cα‖∆t‖2‖wt‖22L2
∗ + cα1.5(‖∆t‖2 + dist2

t )‖wt‖2L3
max

+ cα2‖∆t‖2‖wt‖42L2
∗ + cα2.5‖∆t‖2‖w‖32L3

max

+ cα2.5‖wt‖32L3
max + cα3‖wt‖22L4

max
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n

n∑
i=1

αB>t Bt(wtv
>
t,iBtΛt + ΛtB

>
t vt,iw

>
t )

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1

n

n∑
i=1

αB>t Btwtv
>
t,iBtΛt

∥∥∥∥∥
2

≤ 2c

∥∥∥∥ 1

n

n∑
i=1

wt(Btwt −B∗w∗,t,i)
>

× (∆̄t − (αωt + α2at,i)Id)BtΛt

∥∥∥∥
2

≤ 2c
α ‖∆t‖‖wt‖22 + 2c√

α
‖∆t‖2‖wt‖2η∗

+ 2c‖∆t‖2‖wt‖42 + 2c
√
α‖∆t‖2‖wt‖32η∗

+ 2c
√
α‖wt‖32η∗ + 2cα‖wt‖22L2

∗∥∥∥∥∥ 1

n

n∑
i=1

αB>t (vt,i + ∆̄tB∗w∗,t,i)w
>
∗,t,iB

>
∗ BtΛt

∥∥∥∥∥
2

≤ c√
α
‖∆t‖2‖wt‖2η∗ + c

√
α‖∆t‖2‖wt‖32η∗

+ cα‖∆t‖2‖wt‖22L2
∗ + cα‖wt‖22L2

∗

+ cα3/2‖wt‖2L3
max∥∥∥∥∥ 1

n

n∑
i=1

αB>t ∆̄tB∗w∗,t,iw
>
∗,t,iB

>
∗ Btαwtw

>
t

∥∥∥∥∥
2

≤ α‖∆t‖2‖wt‖22L2
∗

Let c2 := E0/20. We can combine the above bounds and use inductive hypotheses A2(t) and A3(t) to obtain the following
bound on ‖B>t Nt‖2:

‖B>t Nt‖2 ≤ 2cc22α
4L4
∗µ

2
∗κ
−2
∗,max + cc2α

4L4
∗η∗µ∗κ

−1
∗,max + 4cc42α

6L4µ4
∗κ
−4
∗,max + 4cc32α

4L2
maxη∗µ

3
∗κ
−3
∗,max

+ cc32α
6L4
∗η∗µ

3
∗κ
−3
∗,max + 3cc22α

4L2
∗L

3
maxµ∗κ

−1
∗,max + 3cc22α

2L3
maxµ∗κ

−1
∗,max dist2

t

+ cc52α
6L2
∗η∗µ

5
∗κ
−5
∗,max + 2cc32α

4µ3
∗L

3
maxκ

−3
∗,max + 2cc32α

6µ3
∗L

3
maxL

2
∗κ
−3
∗,max

+ cc22α
4L4

maxµ
2
∗κ
−2
∗,max + 2cc22α

2L2
maxµ

2
∗κ
−2
∗,max

+ 3cc2α
2L2

maxη∗µ∗κ
−1
∗,max + 2cc42α

4L2
maxµ

4
∗κ
−4
∗,max + 2cc32α

2η∗µ
3
∗κ
−3
∗,max

+ 4cc2α
2L3

maxµ∗κ
−1
∗,max + 2cc2α

4L2
maxL

2
∗µ

2
∗κ
−2
∗,max

≤ 21cc2α
4(L4
∗η∗ + L3

maxL
2
∗)µ∗κ

−1
∗,max + 3cc22α

2L3
maxµ∗κ

−1
∗,max dist2

t

+ 4cc2α
2(L3

max + L2
max(η∗ + µ∗))µ∗κ

−1
∗,max

≤ 10cc2α
2L2

maxµ
2
∗ + 3cc22α

2L2
maxµ

2
∗ dist2

t

≤ 13cc2α
2L2

maxµ
2
∗

≤ 15c2α
2L2

maxµ
2
∗ (124)

using that α ≤ 1/L∗, c = 1.1 and combining like terms. We have not optimized constants. Next we bound ‖Gt‖22. First, by
(121) and the triangle and Cauchy-Schwarz inequalities,

‖Gt‖2 ≤ ‖∆̄tSt‖2‖Bt‖2 + ‖St‖2‖Bt‖2‖∆t‖2 + ‖Nt‖2
≤ c
√
α(distt +2‖∆t‖2)L2

∗ + ‖Nt‖2. (125)

We have already bounded ‖B>t Nt‖ by separately bounding B>t times each of the six terms in Nt. We obtain a similar
bound on ‖Nt‖2 by separately considering each of the six terms in Nt (see equation (122)). Of these terms, all but the first
and last can be easily bounded by multiplying our previous bounds by

√
α (to account for no Bt). The other two terms

are more complicated because we have previously made the reduction ‖B>t ∆̄t‖2 = ‖∆tB
>
t ‖2 ≤ c√

α
‖∆t‖2, but now that

there is no B>t to multiply with ∆̄t, we must control ∆̄t via ‖∆̄tB∗‖2 ≤ ‖∆t‖2 + distt. Specifically, for the easy four
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terms we have

∥∥∥∥∥ 1

n

n∑
i=1

α2Btwtw
>
∗,t,iB

>
∗ vt,iw

>
t

∥∥∥∥∥
2

≤ cα‖∆t‖2‖wt‖32η∗ + cα1.5(‖∆t‖2 + dist2
t )‖wt‖22L2

max

+ cα2‖∆t‖2‖wt‖52η∗ + cα2.5‖∆t‖2‖w‖42L2
max

+ cα2.5‖wt‖42L2
∗ + cα3‖wt‖32L3

max∥∥∥∥∥ 1

n

n∑
i=1

α2B∗w∗,t,iw
>
∗,t,iB

>
∗ vt,iw

>
t

∥∥∥∥∥
2

≤ cα1.5‖∆t‖2‖wt‖22L2
∗ + cα2(‖∆t‖2 + dist2

t )‖wt‖2L3
max

+ cα2.5‖∆t‖2‖wt‖42L2
∗ + cα3‖∆t‖2‖w‖32L3

max

+ cα3‖wt‖32L3
max + cα3.5‖wt‖22L4

max

∥∥∥∥∥ 1

n

n∑
i=1

αBt(wtv
>
t,iBtΛt + ΛtB

>
t vt,iw

>
t )

∥∥∥∥∥
2

≤ 2c√
α
‖∆t‖‖wt‖22 + 2c‖∆t‖2‖wt‖2η∗

+ 2c
√
α‖∆t‖2‖wt‖42 + 2cα‖∆t‖2‖wt‖32η∗

+ 2cα‖wt‖32η∗ + 2cα1.5‖wt‖22L2
∗∥∥∥∥∥ 1

n

n∑
i=1

α(vt,i + ∆̄tB∗w∗,t,i)w
>
∗,t,iB

>
∗ BtΛt

∥∥∥∥∥
2

≤ c‖∆t‖2‖wt‖2η∗ + cα‖∆t‖2‖wt‖32η∗

+ cα1.5‖∆t‖2‖wt‖22L2
∗ + cα1.5‖wt‖22L2

∗

+ cα2‖wt‖2L3
max

and for the first and last term from (122), we have

∥∥∥∥∥ 1

n

n∑
i=1

vt,iw
>
t ∆tΛt

∥∥∥∥∥
2

≤ c√
α
‖∆t‖22‖wt‖22 + c‖∆t‖2(‖∆t‖2 + distt)‖wt‖2η∗

+ c
√
α‖∆t‖22‖wt‖42 + cα‖∆t‖2‖wt‖32η∗

+ cα‖∆t‖22‖wt‖32η∗ + cα1.5‖∆t‖2‖wt‖22L2
∗∥∥∥∥∥ 1

n

n∑
i=1

α∆̄tB∗w∗,t,iw
>
∗,t,iB

>
∗ Btαwtw

>
t

∥∥∥∥∥
2

≤ α1.5(‖∆t‖2 + distt)‖wt‖22L2
∗
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Combining these bounds and applying inductive hypotheses A2(t) and A3(t) yields

‖Nt‖2 ≤ cc32α4.5L2
maxη∗µ

3
∗κ
−3
∗,max + cc22α

4.5L2
∗L

2
maxµ

2
∗κ
−2
∗,max + cc22α

2.5L2
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2
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t
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5
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4
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4.5L2
∗µ

4
∗κ
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4.5L3

maxµ
3
∗κ
−3
∗,max

+ cc22α
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2
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2
maxµ∗κ
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∗,max + cc2α

2.5L3
maxµ∗κ

−1
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t
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6.5L2
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2
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4
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∗,max + cc32α
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3
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2
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4.5L4µ4

∗κ
−4
∗,max

+ cc32α
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2
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2
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∗µ
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2
maxµ

2
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∗ + 3cc2α
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2
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8cc2
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∗ (126)

using α ≤ 1/(4Lmax), distt ≤ 1, and again, c2 = E0/20. Thus,

‖Gt‖22 ≤
(
c
√
α(distt +2‖∆t‖2)L2

∗ + 9
8cc2
√
αµ2
∗
)2

≤
(

9
8c
√
αL2
∗ + 9

8cc2
√
αµ2
∗
)2

≤ 3
2α
(
L2
∗ + c2µ

2
∗
)2

(127)

≤ 3αL4
∗

using c = 1.1 in (127). Returning to (123) and applying our bounds on ‖B>t Nt‖2 and ‖Gt‖22, along with inductive
hypothesis A3(t), yields

‖∆t+1‖2 = ‖∆t‖2(1− 2βαE0µ
2
∗) + 30c2βα

3L2
maxµ

2
∗ + 3β2α2L4

∗
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∗
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∗ + 3β2α2L4

∗

≤ α2L2
max (128)

where the last inequality follows due to β ≤ E0α
10κ4
∗
≤ αE0L

2
maxµ

2
∗

6L4
∗

and c2 = E0/20.
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Lemma 19 (Exact MAML A4(t+ 1)). Suppose the conditions of Theorem 7 are satisfied and A2(t), A3(t) and A5(t) hold.
Then A4(t+ 1) holds, i.e.

‖B>∗,⊥Bt+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖B>∗,⊥Bt‖2. (129)

Proof. Recall from (121) that the outer loop gradient for the representation satisfies

Gt = −∆̄tStBt − StBt∆t + Nt (130)

where St := α 1
n

∑n
i=1 B∗w∗,t,iw

>
∗,t,iB

>
∗ and ‖Nt‖2 ≤ 9

8cc2
√
αµ2
∗, where c2 := E0/20. As a result,

‖B>∗,⊥Bt+1‖2 = ‖B>∗,⊥(Bt − β(−∆̄tStBt − StBt∆t + Nt))‖2
= ‖B>∗,⊥(Bt + βStBt − βαBtB

>
t StBt + βStBt − βαStBtB

>
t Bt − βNt‖2

= ‖B>∗,⊥Bt(Ik − βαB>t StBt)− βB>∗,⊥Nt‖2
≤ ‖B>∗,⊥Bt‖2‖Ik − βαB>t StBt‖2 + β‖B>∗,⊥Nt‖2 (131)

where the last equality follows because B>∗,⊥St = α 1
n

∑n
i=1 B>∗,⊥B∗w∗,t,iw

>
∗,t,iB

>
∗ = 0. Note that due to Lemma 1 and

‖∆t‖2 ≤ 1
10 , σmin(B>t StBt) ≥ E0µ

2
∗ where E0 = 1− 1

10 − dist2
0. Therefore, by Weyl’s inequality,

‖Ik − βαB>t StBt‖2 ≤ 1− βαE0µ
2
∗. (132)

Furthermore, from (126), we have

‖B>∗,⊥Nt‖2 ≤ ‖Nt‖2 ≤ 9
8cc2
√
αµ2
∗ ≤ 5

4c2
√
αµ2
∗

=⇒ ‖B>∗,⊥Bt+1‖2 ≤ ‖B>∗,⊥Bt‖2(1− βαE0µ
2
∗) + 5

4c2
√
αµ2
∗ (133)

Next, recall that ‖B>∗,⊥Bt‖2 ≥ σmin(B>∗,⊥Bt) ≥
√

9
10σmin(B>∗,⊥B̂t)/

√
α =

√
9
10

√
1−dist2

t/
√
α ≥√

9
10

√
1− 10

9 dist2
0/
√
α =

√
E0/
√
α due to inductive hypotheses A3(t) and A4(t) and E0 := 0.9 − dist2

0. Therefore,

using c2 ≤ 2E
3/2
0 /5, we obtain

5
4c2
√
αµ2
∗ ≤ 0.5

√
αE

3/2
0 µ2

∗ ≤ 0.5αE0µ
2
∗‖B>∗,⊥Bt‖2

=⇒ ‖B>∗,⊥Bt+1‖2 ≤ ‖B>∗,⊥Bt‖2(1− 0.5βαE0µ
2
∗) (134)

E. ANIL Finite Samples
First we define the following notations for the finite-sample case.

The inner loop update for the head of the i-th task on iteration t is given by:

wt,i = wt − α∇wL̂i(Bt,wt,Dini )

= (Ik − αB>t Σin
t,iBt)wt + αB>t Σin

t,iB∗w∗,t,i + α
min

B>t (Xin
t,i)
>zint,i. (135)
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Notation Explanation
Xin
t,i := [xint,i,1, . . . ,x

in
t,n,min

]> Data for inner loop gradient
Σin
t,i := 1

min

∑min

j=1 xint,i,j(x
in
t,i,j)

> Empirical covariance matrix for inner loop gradient
zint,i := [zt,i,1, . . . , zt,i,min

] Additive noise for samples for inner loop gradient
∆in
t,i := Ik − αB>t Σin

t,iBt Finite-sample analogues of ∆t

∆̄
in
t,i := Id − αBtB

>
t Σin

t,i Finite-sample analogues of ∆̄t

Xout
t,i := [xoutt,i,1, . . . ,x

out
t,i,mout

]> Data for outer loop gradient
Σout
t,i := 1

mout

∑mout

j=1 xoutt,i,j(x
out
t,i,j)

> Empirical covariance matrix for outer loop gradient
zoutt,i := [zt,i,1, . . . , zt,i,mout ] Additive noise for samples for outer loop gradient

δm,d1 :=
√
d1+10

√
log(n)√

m
Local concentration parameter

δ̄m,d2 := 10
√
d2√

nm
Global concentration parameter

For Exact ANIL, the finite-sample loss after the inner loop update is given by:

F̂t,i(Bt,wt;Dint,i,Doutt,i )

:= L̂t,i(Bt,wt − α∇wL̂t,i(Bt,wt;Dint,i);Doutt,i )

= 1
2mout

mout∑
j=1

(x>t,i,jBt(wt − αB>t Σin
t,iBtwt + αB>t Σin

t,iB∗w∗,t,i − α
min

B>t (Xin
t,i)
>zint,i)

− x>t,i,jB∗w∗,t,i)− zoutt,i,j)
2

= 1
2mout

mout∑
j=1

(x>t,i,j∆̄
in
t,i(Btwt −B∗w∗,t,i) + α

min
x>t,i,jBtB

>
t (Xin

t,i)
>zint,i − zt,i,j)2

= 1
2mout

‖v̂t,i‖22
v̂t,i := Xout

t,i ∆̄
in
t,i(Btwt −B∗w∗,t,i) + α

min
Xout
t,i BtB

>
t (Xin

t,i)
>zint,i − zoutt,i

Therefore, using the chain rule, the exact outer loop gradients for the i-th task are:

∇BF̂t,i(Bt,wt;Dint,i,Dint,i) = (∆̄
in
t,i)
> 1
mout

(Xout
t,i )>v̂t,iw

>
t − α 1

mout
(Xout

t,i )>v̂t,iw
>
t B>t Σin

t,iBt

+ α 1
mout

(Xout
t,i )>v̂t,iw

>
∗,t,iB

>
∗ Σin

t,iBt

− αΣin
t,iBtwtv̂

>
t,i

1
mout

Xout
t,i Bt + αΣin

t,iB∗w∗,t,iv̂
>
t,i

1
mout

Xout
t,i Bt

+ α2

minmout
(Xout

t,i )>v̂t,i(z
in
t,i)
>Xin

t,iBt + α2

minmout
(Xin

t,i)
>zint,iv̂

>
t,iX

out
t,i Bt

∇wF̂t,i(Bt,wt;Dint,i,Doutt,i ) = B>t (∆̄
in
t,i)
> 1
mout

(Xout
t,i )>v̂t,i − α

mout
B>t (Xout

t,i )>zoutt,i

Meanwhile, the first-order outer loop gradients for the i-th task are

∇BL̂t,i(Bt,wt,i;Dint,i,Doutt,i )

= B>t Σout
t,i Btwt,i −B>t Σout

t,i B∗w∗,t,i

= Σout
t,i (Btwt,i −B∗w∗,t,i)w

>
t,i − α

mout
(Xout

t,i )>zoutt,i w>t,i

= Σout
t,i (Bt(∆

in
t,iwt + αB>t Σin

t,iB∗w∗,t,i)−B∗w∗,t,i)(∆
in
t,iwt + αB>t Σin

t,iB∗w∗,t,i)
>

− α
mout

(Xout
t,i )>zoutt,i w>t,i

= Σout
t,i ∆̄

in
t,i(Btwt −B∗w∗,t,i)(∆

in
t,iwt + αB>t Σin

t,iB∗w∗,t,i)
> − α

mout
(Xout

t,i )>zoutt,i w>t,i

∇wL̂t,i(Bt,wt,i;Dint,i,Doutt,i ) = B>t Σout
t,i ∆̄

in
t,i(Btwt −B∗w∗,t,i)− α

mout
B>t (Xout

t,i )>zoutt,i
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Define

ĜB,t :=
1

n

n∑
i=1

∇BF̂t,i(Bt,wt), GB,t :=
1

n

n∑
i=1

∇BFt,i(Bt,wt)

Ĝw,t :=
1

n

n∑
i=1

∇wF̂t,i(Bt,wt), Gw,t :=
1

n

n∑
i=1

∇wF̂t,i(Bt,wt)

Now we are ready to state the result.

Theorem 8 (ANIL Finite Samples). Suppose Assumptions 1, 2 and 3 hold. Let E0 :=0.9−dist2
0−δ for some δ ∈ (0, 1)

to be defined shortly and assume E0 is a positive constant. Suppose the initialization further satisfies αB>0 B0 = Ik and

w0 = 0, and let the step sizes be chosen as α ≤ c′√
kL∗+σ

, and β ≤ c′αE2
0

κ4
∗

for ANIL and β ≤ c′αE3
0µ∗

κ4
∗

min
(

1,
µ2
∗
η2∗

)
for

FO-ANIL, for some absolute constant c′. Then there exists a constant c > 0 such that, for ANIL, if

mout ≥ cT 2 k
2(L∗+σ)2

nη2∗κ
8
∗

+ cT
k3κ2
∗(κ

2
∗+σ

2/µ2
∗)

n + c
√
T (k + kd

n + log(n))κ−2
∗ ( σ

2

L2
∗

+ k) + ck + c log(n)

min ≥ cT 2(k2 + k log(n)) (L∗+σ)2

η2∗κ
8
∗

+ cT (k3 + k log(n))(κ4
∗ + σ4

µ4
∗
) + c

√
T k3d log(nmin)

n κ−2
∗ ( σ

2

L2
∗

+ 1) (136)

and for FO-ANIL, if

mout ≥ cTdknκ2
∗

+ cTdkσ
2

nL2
∗κ

2
∗

+ c
T 2k3κ4

∗
n + cT

2k3σ4

nµ4
∗

+ c
kµ2
∗

η2∗κ
6
∗

+ c kσ
2

η2∗κ
8
∗

min ≥ cT (k + log(n))(kκ2
∗ + σ2

µ2
∗
) + c

T 2k3κ4
∗

n + c
T 2k2κ2

∗σ
2

µ2
∗n

+ c
T 2k2(L2

∗+σ
2)

η2∗κ
8
∗n

then both ANIL and FO-ANIL satisfy that after T iterations,

dist(BT ,B∗) ≤
(
1− 0.5βαE0µ

2
∗
)T−1

+O(δ) (137)

with probability at least 1−O(T exp(−90k))− T
poly(n) −

T
poly(min) , where for ANIL,

δ = 1
min

(√
k + σ

L∗

)
+ 1√

min

(
(kκ2
∗ +
√
kκ∗σ/µ∗)(

√
k +

√
log(n))

)
+ 1√

mout

(
(kκ2
∗ +
√
kκ∗σ/µ∗)(

√
k +

√
log(n))

)
+ 1√

nmin

(
(kκ2
∗ +
√
kκ∗σ/µ∗)(k

√
d log(nmin) + k log(nmin) +

√
d log1.5(nmin) + log2(nmin))

+ σ2

µ2
∗
(
√
kd+

√
d log(nmin) + log1.5(nmin)) + (kκ2

∗ +
√
kκ∗σ/µ∗)

√
d

)
+ 1√

nmout

(
(kκ2
∗ +
√
kκ∗σ/µ∗)

√
d+ σ2

µ2
∗
(
√
d√
min

+
√
k)

)
and for FO-ANIL,

δ = (
√
kκ2
∗ + κ∗σ

µ∗
+ σ2

µ2
∗
√
min

)
√
dk√

nmout
(138)

Proof. The proof uses an inductive argument with the following five inductive hypotheses:

1. A1(t) := {‖wt‖2 ≤
√
αE0

10 min(1,
µ2
∗
η2∗

)η∗}

2. A2(t) := {‖∆t‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆t−1‖2 + 5

4α
2β2L4

∗ dist2
t−1 +βαζ2},

3. A3(t) := {‖∆t‖2 ≤ 1
10},

4. A4(t) := {‖B>∗,⊥Bt‖2 ≤
(
1− 0.5βαE0µ

2
∗
)
‖B>∗,⊥Bt−1‖2 + β

√
αζ4},
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5. A5(t) := {distt ≤
√

10
3

(
1− 0.5βαE0µ

2
∗
)t

dist0 +δ}.

where ζ2 is defined separately for ANIL and FO-ANIL in Lemmas 34 and 28, respectively, and ζ4 is defined separately for
ANIL and FO-ANIL in Lemmas 35 and 29, respectively. These conditions hold for iteration t = 0 due to the choice of
initialization (B0,w0). We will show that if they hold for all iterations up to and including iteration t for an arbitrary t, then
they hold at iteration t+ 1 with probability at least 1− 1

poly(n) −
1

poly(min) −O(exp(−90k)).

1.
⋂t
s=0{A2(s) ∩A6(s)} =⇒ A1(t+ 1). This is Lemma 27 for FO-ANIL and Lemma 33 for Exact ANIL.

2. A1(t) ∩A3(t) ∩A5(t) =⇒ A2(t+ 1). This is Lemma 28 for FO-ANIL and Lemma 34 for Exact ANIL.

3. A1(t)∩A2(t+1)∩A3(t)∩A5(t) =⇒ A3(t+ 1). This is Corollary 3 for FO-ANIL and Corollary 4 for Exact ANIL.

4. A1(t) ∩A3(t) ∩A5(t) =⇒ A4(t+ 1). This is Lemma 29 for FO-ANIL and Lemma 35 for Exact ANIL.

5. A3(t+1) ∩
(
∩t+1
s=1A4(s)

)
=⇒ A5(t+ 1). By A3(t+ 1) and A4(t+ 1) we have:

‖B>∗,⊥Bt+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖B>∗,⊥Bt‖2 + β

√
αζ4

≤ (1− 0.5βαE0µ
2
∗)

2‖B>∗,⊥Bt−1‖2 + (1− 0.5βαE0µ
2
∗)β
√
αζ4 + β

√
αζ4

...

≤ (1− 0.5βαE0µ
2
∗)
t‖B>∗,⊥B0‖2 + β

√
αζ4

t∑
s=0

(1− 0.5βαE0µ
2
∗)
s

≤ (1− 0.5βαE0µ
2
∗)
t‖B>∗,⊥B0‖2 +

β
√
αζ4

1− (1− 0.5βαE0µ2
∗)

= (1− 0.5βαE0µ
2
∗)
t‖B>∗,⊥B0‖2 +

2ζ4√
αE0µ2

∗
. (139)

Now we orthogonalize Bt and B0 via the QR-factorization, writing Bt = B̂tRt and B0 = B̂0R0. By inductive
hypothesis A3(t+ 1), we have σmin(Bt+1) ≥

√
0.9√
α

, and by the initialization we have σmax(B0) ≤ 1√
α

. Thus, using
(139) and the definition of the principal angle distance, we have

dist(Bt+1,B∗) ≤
(

(1− 0.5βαE0µ
2
∗)
t dist(B0,B∗)‖R0‖2 +

2ζ4√
αE0µ2

∗

)
‖R−1

t+1‖2

≤
√

10

3
(1− 0.5βαE0µ

2
∗)
t dist(B0,B∗) +

3ζ4
E0µ2

∗
(140)

≤ (1− 0.5βαE0µ
2
∗)
t + δ (141)

where ε = O( ζ4µ2
∗
).

After T rounds, we have that the inductive hypotheses hold on every round with probability at least

(1− 1
poly(n) −

1
poly(min) −O(exp(−90k)))T ≥ 1−O(T exp(−90k))− T

poly(n) −
T

poly(min) (142)

where the inequality follows by the Weierstrass Inequality, completing the proof.

Throughout the proof we will re-use c, c′, c′′, etc. to denote absolute constants.

E.1. General Concentration Lemmas

We start with generic concentration results for random matrices and vectors that will be used throughout the proof.

We use χE to denote the indicator random variable for the event E , i.e. χE = 1 if E holds and χE = 0 otherwise.
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Lemma 20. Let X1 = [x1,1, . . . ,x1,m1
]> ∈ Rm1×d have rows which are i.i.d. samples from a mean-zero, Id-sub-gaussian

distribution, and let X1,1, . . . ,X1,n be independent copies of X1. Likewise, let X2 = [x2,1, . . . ,x2,m2 ]> ∈ Rm2×d have
rows which are i.i.d. samples from a mean-zero, Id-sub-gaussian distribution, and let X2,1, . . . ,X2,n be independent copies
of X2 (and independent of X1,1, . . . ,X1,n). Define Σ1,i := 1

m1
X>1,iX1,i and Σ2,i := 1

m2
X>2,iX2,i for all i ∈ [n]. Let the

elements of z1 ∈ Rm1 and z2 ∈ Rm2 be i.i.d. samples fromN (0, σ2). Further, let C`,i ∈ Rd×db`/2c for ` = 1, . . . , 6 be fixed

matrices for i ∈ [n], and let c` := maxi∈[n] ‖C`,i‖2 for ` = 1, . . . , 6. Let δm,dl := c
√
dl+10

√
log(n)√

m
and δ̄m,dl := c 10

√
dl√

nm

for some absolute constant c. Assume that in all cases below, each δ and δ̄ is less than 1. Then the following hold:

1. P
(∥∥ 1

n

∑n
i=1 C>1,iΣ1,iC2,i −C>1,iC2,i

∥∥
2
≥ c1c2δ̄m1,d0+d1

)
≤ 2e−90(d0+d1)

2. P
(∥∥ 1

n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,iΣ2,iC4,i −C>1,iC2,iC

>
3,iC4,i

∥∥
2

≥ σc1c2c3c4
(
(1 + δm2,d1+d2)δ̄m1,d0+d2 + δ̄m2,d0+d2

)
≤ 2e−90(d0+d2) + 2n−99

3. P
(∥∥ 1

n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,iΣ2,iC4,i −C>1,iC2,iC

>
3,iC4,i

∥∥
2

≥ σc1c2c3c4
(
(1 + δm2,d1+d2)δ̄m1,d0+d2 + δm2,d1+d2

)
≤ 2e−90(d0+d2) + 2n−99

4. P
(∥∥ 1

n

∑n
i=1 C>1,iX

>
1,iz1,i

∥∥
2
≥ σc1δ̄m1,d0

)
≤ 2e−90d0

5. P
(∥∥∥ 1

n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,i

1
m2

X>2,iz2,i

∥∥∥
2
≥ c1c2c3(1+δ̄m1,d0)δm2,d1

)
≤ 2e−90d1 + 2n−99

6. P
(∥∥∥ 1

n

∑n
i=1 C>1,i

1
m1

X>1,iz1,ic
>
2,iΣ2,iC3,i

∥∥∥
2
≥ σc1c2c3(1 + δm2,d1)δ̄m1,d0

)
≤ 2e−90d0 + 2n−99

7. P
(∥∥∥ 1

n

∑n
i=1 C>1,i

1
m1

X>1,iz1,i
1
m2

z>2,iX2,iC2,i

∥∥∥
2
≥ σ2c1c2δ̄m1,d0δm2,d1

)
≤ 2e−90d0 + 2e−90d1

8. P
(∥∥ 1

n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,iΣ2,iC4,iC

>
5,iΣ2,iC6,i −C>1,iC2,iC

>
3,iC4,iC

>
5,iC6,i

∥∥
2

≥ c1c2c3c4c5c6
(
(1 + δm2,d1+d2)(1 + δm2,d2+d3)δ̄m1,d0+d3 + δm2,d2+d3 + (1 + δm2,d2+d3)δm2,d1+d2

))
≤ 2e−90(d0+d3) + 4n−99

9. P
(∥∥ 1

n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,iΣ2,iC4,iC

>
5,iΣ1,iC6,i −C>1,iC2,iC

>
3,iC4,iC

>
5,iC6,i

∥∥
2

≥ c1c2c3c4c5c6
(
(1 + δm1,d0+d1)(1 + δm1,d2+d3)δ̄m2,d1+d2 + δ̄m1,d0+d3 + (1 + δm1,d2+d3)δm1,d0+d1

))
≤ 2e−90(d0+d3) + 4n−99

10. P
(∥∥ 1

n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,iX

>
2,iz2,ic

>
4,iC

>
5,iΣ2,iC6,i

∥∥
2

≥ σc1c2c3c4c5c6
(
1 + δ̄m1,d0+d1

)
(1+δm2,d3) δm2,d1

)
≤ 2e−90d1 + 4n−99

11. P
(∥∥ 1

n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,iΣ2,iC4,iC

>
5,iX

>
1,iz1,i

∥∥
2

≥ σc1c2c3c4c5c6 (1 + δm1,d0+d1)
(
1+δ̄m2,d1+d2

)
δm1,d2

)
≤ 2e−90d2 + 4n−99

12. P
(∥∥ 1

n

∑n
i=1 C>1,iX

>
1,iz1,ic

>
2,iC

>
3,iΣ1,iC4,iC

>
5,iΣ2,iC6,i

∥∥
2

≥ σc1c2c3c4c5c6 (1 + δm2,d2+d3) (1+δm2,d1+d2) δm1,d0

)
≤ 2e−90d0 + 6n−99
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13. P
(∥∥ 1

n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,iX

>
2,iz2,iz

>
2,iX2,iC4,i

∥∥
2

≥ σ2c1c2c3c4c5δm2,d1δm2,d2

(
1+δ̄m1,d0+d2

))
≤ 2e−90d1 + 2e−90d2 + 4n−99

Proof. We give the proofs for (1), (2), and (8) since the rest of the proofs follow using analogous arguments. In all cases,
the proofs are standard applications of Bernstein’s inequality.

1. For any fixed unit vector u ∈ Rd0 , ru,i,j := u>C>1,iw1,i,j is sub-gaussian with sub-gaussian norm at most c‖C1,i‖2.
Likewise, for any fixed unit vector v ∈ Rd1 , rv,i,j := v>C>2,ix2,i,j is sub-gaussian with norm at most c‖C2,i‖2 for an
absolute constant c. Furthermore, E[rv,i,jru,i,j ] = u>C>1,ix1,i,jx

>
1,i,jC2,iv = u>C>1,iC2,iv. Therefore,

v>

(
1

n

n∑
i=1

C>1,iΣ1,iC2,i −C>1,iC2,i

)
u =

1

nm1

n∑
i=1

m1∑
j=1

(rv,i,jru,i,j − E[rv,i,jru,i,j ]) (143)

is the sum of nm1 independent, mean-zero, sub-exponential random variables with norm O(‖C1,i‖2‖C2,i‖2). By
Bernstein’s inequality we have∣∣∣∣∣∣ 1

nm1

n∑
i=1

m1∑
j=1

(E[rv,i,jru,i,j ]− rv,i,jru,i,j)

∣∣∣∣∣∣ ≤ cmax
i∈[n]
‖C1,i‖2‖C2,i‖2 max

(√
d0+d1+λ√
nm1

, (
√
d0+d1+λ)2

nm1

)
for some absolute constant c and any λ > 0, with probability at least 1− 2e−λ

2

over the outer loop samples. Let Sd0−1

and Sd1−1 denote the unit spheres in Rd0 and Rk, respectively. From Corollary 4.2.13 in (Vershynin, 2018), we know
that there exists 1

4 -netsM1 andM2 on Sd0−1 and Sd1−1 with cardinalities at most 9d0 and 9d1 , respectively. Thus,
conditioning on using the variational definition of the spectral norm, and taking a union bound over the 1

4 -nets, we have∥∥∥∥∥ 1

n

n∑
i=1

C>1,iΣ1,iC2,i −C>1,iC2,i

∥∥∥∥∥
2

= max
v∈Sd0−1,u∈Sd1−1

∣∣∣∣∣∣ 1

nm1

n∑
i=1

m1∑
j=1

(E[rv,i,jru,i,j ]− rv,i,jru,i,j)

∣∣∣∣∣∣
≤ 2 max

v∈M1,u∈M2

∣∣∣∣∣∣ 1

nmout

n∑
i=1

mout∑
j=1

(E[rv,i,jru,i,j ]− rv,i,jru,i,j)

∣∣∣∣∣∣
≤ c′max

i∈[n]
‖C1,i‖2‖C2,i‖2 max

(√
d0+d1+λ√
nm1

, (
√
d0+d1+λ)2

nm1

)
for some absolute constant c, with probability at least 1 − 2 × 9d0+d1e−λ

2

over the outer loop samples. Choose
λ = 10

√
d and let

√
nm1 ≥ 11

√
d0 + d1 to obtain that,∥∥∥∥∥ 1

n

n∑
i=1

C>1,iΣ1,iC2,i −C>1,iC2,i

∥∥∥∥∥
2

≤ cmax
i∈[n]
‖C1,i‖2‖C2,i‖2δ̄m1,d0+d1 ≤ cc1c2δ̄m1,d0+d1

with probability at least 1− 2e−90(d0+d1).

2. Let E := 1
n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,iΣ2,iC4,i −C>1,iC2,iC

>
3,iC4,i. We have

‖E‖2 ≤
∥∥∥∥ 1

n

n∑
i=1

C>1,iΣ1,iC2,iC
>
3,iΣ2,iC4,i −C>1,iC2,iC

>
3,iC4,i

∥∥∥∥
2

=

∥∥∥∥ 1

n

n∑
i=1

C>1,i(Σ1,i − Id)C2,iC
>
3,iΣ2,iC4,i + C>1,iC2,iC

>
3,iΣ2,iC4,i −C>1,iC2,iC

>
3,iC4,i

∥∥∥∥
2

≤
∥∥∥∥ 1

n

n∑
i=1

C>1,i(Σ1,i − Id)C2,iC
>
3,iΣ2,iC4,i︸ ︷︷ ︸

:=E1

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

C>1,iC2,iC
>
3,i(Σ2,i − Id)C4,i︸ ︷︷ ︸

:=E2

∥∥∥∥
2

(144)
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We first consider ‖E1‖2. For any i ∈ [n], we have by Theorem 4.6.1 in (Vershynin, 2018),∥∥C>3,iΣ2,iC4,i −C>3,iC4,i

∥∥
2
≤ cmax

i∈[n]
‖C3,i‖2‖C4,i‖2δm2,d1+d2 = cc3c4δm2,d1+d2 (145)

with probability at least 1− 2n−100. Union bounding over all i ∈ [n] and using the triangle inequality gives

P
(
A :=

{
{Σ2,i}i∈[n] :

∥∥C>3,iΣ2,iC4,i

∥∥
2
≤ cc3c4(1 + δm2,d1+d2) ∀i ∈ [n]

})
≥ 1− 2n−99. (146)

Next, for any fixed set {Σ2,i}i∈[n] ∈ A, the d2-dimensional random vectors
{x1,i,jC2,iC

>
3,iΣ2,iC4,i}i∈[n],j∈[m] are sub-gaussian with sub-gaussian norms at most c′c2c3c4(1 + δm2,d1+d2).

Likewise, the d0-dimensional random vectors {C>1,ixi,j′}i∈[n],j′∈{2,...,m} are sub-gaussian with norms at most c. Thus
using the same argument as in the proof of (1.), we have

P
(∥∥∥∥ 1

n

n∑
i=1

C>1,i(Σ1,i − Id)C2,iC
>
3,iΣ2,iC4,i

∥∥∥∥
2

(147)

< c′′c1c2c3c4(1 + δm2,d1+d2)δ̄m1,d0+d2

∣∣{Σ2,i}i∈[n], {Σ2,i}i∈[n] ∈ A
)

≥ 1− 2e−90(d0+d2). (148)

for an absolute constant c′′. Integrating over all {Σ2,i}i∈[n] ∈ A and using δm2,d1+d2 ≤ 1 yields

P

(∥∥∥∥ 1

n

n∑
i=1

C>1,i(Σ1,i − Id)C2,iC
>
3,iΣ2,iC4,i

∥∥∥∥
2

< c′′c1c2c3c4δ̄m1,d0+d2

∣∣A) ≥ 1− 2e−90(d0+d2). (149)

Therefore, by the law of total probability and (146), we have

P
(
‖E1‖2 ≤ c′′c1c2c3c4δ̄m1,d0+d2

)
≤ 2e−90(d0+d2) + P(Ac) ≤ 2e−90(d0+d2) + 2n−99. (150)

Next, we have from (1.) that ‖E2‖2 =

∥∥∥∥ 1
n

∑n
i=1 C>1,iC2,iC

>
3,i(Σ2,i − Id)C4,i

∥∥∥∥
2

≤ cc1c2c3c4δ̄m2,d0+d2 with

probability at least 1−2e−90(d0+d2). Finally, combining our bounds on the two terms in (144) via a union bound yields

P
(
‖E‖2 ≤ c′′c1c2c3c4(δ̄m1,d0+d2 + (1 + δm2,d1+d2)δ̄m2,d0+d2)

)
(151)

as desired. Note that we could instead use (146) to bound ‖E2‖2, which would result in the bound (3.).

8. Let E := 1
n

∑n
i=1 C>1,iΣ1,iC2,iC

>
3,iΣ2,iC4,iC

>
5,iΣ2,iC6,i−C>1,iC2,iC

>
3,iC4,iC

>
5,iC6,i. We make a similar argument

as in the proof of (2.) We have

‖E‖2 ≤
∥∥∥∥ 1

n

n∑
i=1

C>1,i(Σ1,i − Id)C2,iC
>
3,iΣ2,iC4,iC

>
5,iΣ2,iC6,i︸ ︷︷ ︸

:=E1

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

C>1,iC2,iC
>
3,i(Σ2,i − Id)C4,iC

>
5,iΣ2,iC6,i︸ ︷︷ ︸

:=E2

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

C>1,iC2,iC
>
3,iC4,iC

>
5,i(Σ2,i − Id)C6,i︸ ︷︷ ︸

:=E3

∥∥∥∥
2

(152)

We know from Theorem 4.6.1 in (Vershynin, 2018) that P(‖C>3,i(Σ2,i − Id)C4,i‖2 ≤ cc3c4δm2,d1+d2)

≥ 1− 2n−100 and P(‖C>5,iΣ2,iC6,i‖2 ≤ cc5c6(1 + δm2,d2+d3)) ≥ 1− 2n−100. Union bounding these events over
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i ∈ [n] gives P(‖E2‖2 ≤ cc1c2c3c4c5c6δm2,d1+d2(1 + δm2,d2+d3)) ≥ 1 − 4e−99. Union bounding over the same
events, we also have P(‖E3‖2 ≤ cc1c2c3c4c5c6δm2,d2+d3) ≥ 1− 2n−99. Next, we make a similar argument as in (2.)
to control ‖E1‖2, except that here A is defined as

A :=

{
{Σ2,i}i∈[n] :

∥∥C>3,iΣ2,iC4,i

∥∥
2
≤ cc3c4(1 + δm2,d1+d2),

∥∥C>5,iΣ2,iC6,i

∥∥
2
≤ cc5c6(1 + δm2,d2+d3) ∀i ∈ [n]

}
, (153)

which occurs with probability at least 1 − 4n−99 (which is implied by our discussion of bounding ‖E3‖2). Thus,
following the logic in (2.), we obtain P(‖E1‖2 ≤ cc1c2c3c4c5c6(1 + δm2,d1+d2)(1 + δm2,d2+d3)δ̄m1,d0+d3) ≥
1− 4n−99 − 2e−90(d0+d3). Combining all bounds yields the desired result.

More generally, we add and subtract terms to show concentration through either a Σ− Id matrix, or an Xz matrix, with off
terms bounded for each i by sub-gaussianity.

Lemma 21. Consider the setting described in Lemma 20. Further, suppose min(d1, d2, d3) = 1 and max(d1, d2, d3) = k.
Then the following events each hold with probability at most c′(e−100 + n−99 +m1

−99) for absolute constants c, c′:

• U1 :=

{∥∥∥∥ 1
n

∑n
i=1 Σ1,iC2,iC

>
3,iΣ2,iC4,iC

>
5,iΣ1,iC6,i−C2,iC

>
3,iΣ2,iC4,iC

>
5,iC6,i

∥∥∥∥
2

≥cc2c3c4c5c6(δ̃+ k
m1

)

}

• U2 :=

{∥∥ 1
n

∑n
i=1 Σ1,iC2,iC

>
3,iΣ2,iC4,iC

>
5,iX

>
1,iz1,i

∥∥
2
≥ cσc2c3c4c5δ̃

}

• U3 :=

{∥∥ 1
n

∑n
i=1 Σ1,ic2,iz

>
1,iX1,iC4,iC

>
5,iΣ2,iC6,i

∥∥
2
≥ cσc2c3c4c5δ̃

}

• U4 :=

{∥∥ 1
n

∑n
i=1 X>1,iz1,ic

>
2,iC

>
3,iΣ1,iC4,iC

>
5,iΣ2,iC6,i

∥∥
2

≥ cσc1c2c3c4c5c6
(
√
kd+
√
d log(nm1)+log(nm1)) log(nm1)

√
nm1

}

• U5 :=

{∥∥ 1
nm2

1

∑n
i=1 X>t,izt,iz

>
t,iXt,iC2,iC

>
3,iΣ2,iC4,i

∥∥
2

≥ cσ2c2c3c4

(
(
√
kd+
√
d log(nm1)+log(nm1))

√
log(nm1)

√
nm1

+ 1
m1

)}
where

δ̃ := (k
√
d log(nm1) + k log(nm1) +

√
d log1.5(nm1) + log2(nm1))/

√
nm1.

Proof. 1. Similarly to previous proofs involving sums of products of independent matrices, the idea is to first use that
one set of matrices is small with high probability, then condition on these sets of matrices being small to isolate the
randomness of the other matrices. Note that matrix C>3,iΣ2,iC4,i has maximum dimension at most k, so by Lemma
20, for any i ∈ [n], {‖C>3,iΣ2,iC4,i‖2 ≥ cc3c4(1 + δm1,k)} holds with probability at most n100. Applying a union
bound over [n] gives thatA := ∩i∈[n]{‖C>3,iΣ2,iC4,i‖2 ≤ cc3c4(1 + δm1,k)} holds with probability at least 1−n−99.
Conditioning on A, and using δm1,k ≤ 1, we can apply Lemma 22 to obtain that∥∥∥∥ 1

n

n∑
i=1

Σ1,iC2,iC
>
3,iΣ2,iC4,iC

>
5,iΣ1,iC6,i−C2,iC

>
3,iΣ2,iC4,iC

>
5,iC6,i

∥∥∥∥
2

≥cc2c3c4c5c6(δ̃+ 1+C2

m1
) (154)

occurs with probability at most . Since P(U1) ≤ P(U1|A) + P(Ac), we obtain the result.

2. We make the same argument as for (1) except that we apply Lemma 23 instead of Lemma 22.
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3. Again, we use Lemma 23 as in (2).

4. Again, we use Lemma 23 as in (2).

5. Here we make the same argument as (1) except that we apply Lemma 24 instead of Lemma 22.

The following is a slightly generalized version of Theorem 1.1 in Magen & Zouzias (2011): here, the random matrices are
not necessarily identically distributed, whereas they are identically distributed in Magen & Zouzias (2011). However, the
proof from (Magen & Zouzias, 2011) does not rely on the matrices being identically distributed, so the same proof from
Magen & Zouzias (2011) holds without modification for the below result.

Theorem 9 (Theorem 1.1 in (Magen & Zouzias, 2011)). Let 0 < ε < 1 and M1, . . . ,MN be a sequence of independent
symmetric random matrices that satisfy ‖ 1

N

∑N
i=1 E[Mi]‖2 ≤ 1 and ‖Mi‖2 ≤ B and rank(Mi) ≤ r almost surely for all

i ∈ [N ]. Set N = Ω(B log(B/ε2)/ε2). If r ≤ N almost surely, then

P

(∥∥∥∥∥ 1

N

N∑
i=1

Mi − E[Mi]

)∥∥∥∥∥
2

≤ 1

poly(N)
(155)

The following lemma again gives generic concentration results but for a more difficult set of matrices. The key technical
contribution is a truncated version of Theorem 9.

Lemma 22. Suppose that x is a random vector with E[x] = 0d, and Cov(x) = Id, and is Id-sub-gaussian. Let
{xi,j}i∈[n],j∈[m] be nm independent copies of x. Further, let C`,i ∈ Rd×db`/2c for ` = 2, 3, 4 be fixed matrices for i ∈ [n],
and let c` := maxi∈[n] ‖C`,i‖2 for ` = 2, 3, 4. Denote Σi = 1

m

∑m
j=1 xi,jx

>
i,j . Then, if m ≥ max(1, C2cc2c3c4d1),

∥∥∥∥∥ 1

n

n∑
i=1

ΣiC2,iC
>
3,iΣiC4,i −

1

n

n∑
i=1

C2,iC
>
3,iC4,i

∥∥∥∥∥
2

≤ c(
√

log(nm) +
√
d1)(

√
log(nm) +

√
d2)
√
d+d2+

√
log(m)√

nm
c2c3c4

+
c√
nm

(
√

log(nm) +
√
d)

(
4∏
`=2

(
√

log(nm) +
√
db`/2c)

)
max(c2c3c4, 1) + cd1m c2c3c4

for an absolute constant c, with probability at least 1− 2m−99 − 1
poly(nm) − 2e−90d1 .

As in previous cases, in this lemma we would like to show concentration of fourth-order products of sub-gaussian random
vectors with only m = poly(k)Õ( dn + 1) samples per task. The issue here, unlike in the cases in Lemma 20, is that the
leading Σi has no dimensionality reduction - there is no product matrix C1,i to bring the d-dimensional random vectors that
compose the leftmost Σi to a lower dimension. Thus, we would need m = Ω(d) samples per task to show concentration of
each Σi (or ΣiC2,i). We must get around this by averaging over n. However, doing so requires dealing with fourth-order
products of random vectors instead of bounding each of the two copies of Σi in the i-th term separately (perhaps along with
their dimensionality-reducing products).

Due to the fourth-order products, we cannot apply standard concentrations based on sub-gaussian and sub-exponential
tails. Instead, we leverage the low rank (at most k) of the matrices involved by applying a truncated version of the of the
concentration result for bounded, low-rank random matrices in (Magen & Zouzias, 2011).

Proof. Throughout the proof we use c as a generic absolute constant. First note that by expanding Σi and the triangle
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inequality, ∥∥∥∥∥ 1

n

n∑
i=1

ΣiC2,iC
>
3,iΣiC4,i −

1

n

n∑
i=1

C2,iC
>
3,iC4,i

∥∥∥∥∥
2

≤
∥∥∥∥ 1

nm2

n∑
i=1

∑
j,j′ 6=j

xi,jx
>
i,jC2,iC

>
3,ixi,j′x

>
i,j′C4,i −

m(m− 1)

nm2

n∑
i=1

C2,iC
>
3,iC4,i

∥∥∥∥
2

+

∥∥∥∥ 1

nm2

n∑
i=1

∑
j

xi,jx
>
i,jC2,iC

>
3,ixi,jx

>
i,jC4,i −

m

nm2

n∑
i=1

C2,iC
>
3,iC4,i

∥∥∥∥
2

=

∥∥∥∥ m− 1

nm

n∑
i=1

1

m

m∑
j=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′

)
C2,iC

>
3,ixi,jx

>
i,jC4,i −

(m− 1)

nm

n∑
i=1

C2,iC
>
3,iC4,i︸ ︷︷ ︸

=:E′

∥∥∥∥
2

+

∥∥∥∥ 1

nm2

n∑
i=1

m∑
j=1

xi,jx
>
i,jC2,iC

>
3,ixi,jx

>
i,jC4,i −

1

nm

n∑
i=1

C2,iC
>
3,iC4,i︸ ︷︷ ︸

=:E′′

∥∥∥∥
2

Note that E′ is unbiased while E′′ is biased due to the fourth-order product. We first bound ‖E′‖2.

Step 1: Bound ‖E′‖2. Add and subtract (m−1)
nm

∑n
i=1

1
m

∑m
j=1 C2,iC

>
3,ixi,jx

>
i,jC4,i to obtain

‖E′‖2 ≤
∥∥∥∥m− 1

nm

n∑
i=1

1

m

m∑
j=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jx

>
i,jC4,i

∥∥∥∥
2

+

∥∥∥∥m− 1

nm

n∑
i=1

C2,iC
>
3,i

(
1
m

m∑
j=1

xi,jx
>
i,j − Id

)
C4,i

∥∥∥∥
2

≤
∥∥∥∥m− 1

nm

n∑
i=1

1

m

m∑
j=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jx

>
i,jC4,i

∥∥∥∥
2

+ cc2c3c4δ̄m,max(d∗,d2) (156)

where (156) follows with probability at least 1− 2e−90(d1+d2) by Lemma 20, and d∗ denotes d if the C2,i’s are distinct,
and denotes d1 otherwise (since if these matrices are equal, they can be factored out of the norm, in which case we show
concentration of d1 × d2-dimensional random matrices). To deal with the first term in (156), note that as mentioned before,
we need to show concentration over i ∈ [n] to avoid requiring m = Ω(d). Ideally, we could also concentrate over j ∈ [m],
but we would lose independence of the summands. Thus, we reorder the sum and use the triangle inequality to write∥∥∥∥m− 1

nm

n∑
i=1

1

m

m∑
j=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jx

>
i,jC4,i

∥∥∥∥
2

=

∥∥∥∥ 1

m

m∑
j=1

m− 1

nm

n∑
i=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jx

>
i,jC4,i

∥∥∥∥
2

≤ 1

m

m∑
j=1

∥∥∥∥ m− 1

nm

n∑
i=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jx

>
i,jC4,i︸ ︷︷ ︸

=:Ej

∥∥∥∥
2

For each j ∈ [m], define Ej as the event {‖C>3,ixi,j‖2 ≤ (γ +
√
d1)c3, ‖C>4,ixi,j‖2 ≤ (γ +

√
d2)c4 ∀i ∈ [n]} for some

γ > 0. Note that xi,j and C>2,ixi,j are d (resp. d2)-dimensional sub-gaussian random vectors with sub-gaussian norm at
most c (resp. cc2). Thus Ej occurs with probability at least 1− 2ne−cγ

2

. Then using the law of total probability, for any
ε > 0, we have

P (‖Ej‖2 ≥ ε) ≤ P (‖Ej‖2 ≥ ε|Ej) + P
(
Ecj
)
≤ P (‖Ej‖2 ≥ ε|Ej) + 2ne−cγ

2

(157)
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Consider E1. For any fixed set {xi,1}i∈[n] ∈ E1, the d2-dimensional random vectors
{xi,j′C2,iC

>
3,ixi,1x

>
i,1C4,i}i∈[n],j′∈{2,...,m} are sub-gaussian with norms at most c′(γ +

√
d1)(γ +

√
d2)c2c3c4. Likewise,

the d-dimensional random vectors {xi,j′}i∈[n],j′∈{2,...,m} are sub-gaussian with norms at most c. Thus using Bernstein’s
inequality, we can bound

P
(
‖E1‖2 < c′′(γ +

√
d1)(γ +

√
d2)c2c3c4 max

(√
d+d2+λ√
n(m−1)

, d+d2+λ2

n(m−1)

) ∣∣{xi,1}i∈[n], {xi,1}i∈[n] ∈ E1
)

≥ 1− 2e−λ
2

. (158)

for λ > 0 and an absolute constant c′′. Integrating over all {xi,1}i∈[n] ∈ E1 yields

P
(
‖E1‖2 < c′′(γ +

√
d1)(γ +

√
d2)c2c3c4 max

(√
d+d2+λ√
n(m−1)

, d+d2+λ2

n(m−1)

) ∣∣E1) ≥ 1− 2e−λ
2

. (159)

Therefore, using (157), we have

P
(
‖E1‖2 ≥ c′′(γ +

√
d1)(γ +

√
d2)c2c3c4 max

(√
d+d2+λ√
n(m−1)

, d+d2+λ2

n(m−1)

))
≤ 2e−λ

2

+ 2ne−cγ
2

. (160)

Repeating the same argument for all j ∈ [m] and applying a union bound gives

P

 1

m

m∑
j=1

‖Ej‖2 ≥ c′′(γ +
√
d1)(γ +

√
d2)c2c3c4 max

(√
d+d2+λ√
n(m−1)

, d+d2+λ2

n(m−1)

)
≤ 2me−λ

2

+ 2mne−cγ
2

. (161)

Choose λ = 10
√

log(m) and γ = 10
√

log(mn), and use
√
n(m− 1) ≥

√
d+ d2 + 10

√
log(m) to obtain

P

 1

m

m∑
j=1

‖Ej‖2 ≥ c′′′c2c3c4(
√

log(nm) +
√
d1)(

√
log(nm) +

√
d2)
√
d+d2+

√
log(m)√

nm


≤ 2m−99 + 2(mn)−99cd1 + 2(mn)−99cd2

=⇒ P
(
‖E′‖2 ≥ c′′c2c3c4(

√
log(nm) +

√
d1)(

√
log(nm) +

√
d2)
√
d+d2+

√
log(m)√

nm

+ cc2c3c4δ̄m,max(d∗,d2)

)
≤ 2m−99 + 2(mn)−99cd1 + 2(mn)−99cd2 + 2e−90(d1+d2) (162)

=⇒ P
(
‖E′‖2 ≥ c′′′c2c3c4(

√
log(nm) +

√
d1)(

√
log(nm) +

√
d2)
√
d+d2+

√
log(m)√

nm

)
≤ 2m−99 + 2(mn)−99cd1 + 2(mn)−99cd2 + 2e−90(d1+d2) (163)

where (162) follows from (156) and (163) follows by the fact that δ̄m,max(d∗,d2) is dominated.

Step 2: Bound ‖E′′‖2. Bounding ‖E′′‖2 is challenging because we must deal with fourth-order products in xi,j , which
may have heavy tails. However, we can leverage the independence and low-rank of the summands, combined with the
sub-gaussian tails of each random vector. Second, we must control the bias in E′, which we achieve by appealing to
C-L4-L2 hypercontractivity. First note that by the triangle inequality

‖E′′‖2 ≤
∥∥∥∥ 1

nm2

n∑
i=1

m∑
j=1

= xi,jx
>
i,jC2,iC

>
3,ixi,jx

>
i,jC4,i

∥∥∥∥
2

+

∥∥∥∥ 1

nm

n∑
i=1

C2,iC
>
3,iC4,i

∥∥∥∥
2

(164)

It remains to control the first norm. To do so, we employ Theorem 9 (a.k.a. Theorem 1.1 from (Magen & Zouzias, 2011))
which characterizes the concentration of low-rank, bounded, symmetric random matrices with small expectation. Thus, in
order to apply this theorem, we must truncate and symmetrize the random matrices, and control their expectation.
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Define E`,i,j := {‖C`,ixi,j‖2 ≤ c(ρ +
√
db`/2c)c`} for some ρ > 0 and ` = 2, 3, 4 and all i, j, and E1,i,j := {‖xi,j‖2 ≤

c(ρ +
√
d)} for some ρ > 0 and ` = 2, 3, 4 and all i, j. Let χE`,i,j be the indicator random variable for the event E`,i,j .

Define the truncated random variables x̄`,i,j := χE`,i,jC`,ixi,j for ` = 2, 3, 4 and all i, j and x̄1,i,j := χE`,i,jxi,j for all
i, j. Let Si,j := xi,jx

>
i,jC2,iC

>
3,ixi,jx

>
i,jC4,i/m and S̄i,j := x̄1,i,jx̄

>
2,i,jx̄3,i,jx̄

>
4,i,j/m for each i, j. Note that due to

sub-gaussianity and earlier arguments, P(∪i,j ∪4
`=1 E`,i,j) ≤ 2mn

∑4
`=1 e

−cρ2 = 8mne−cρ
2

. Thus, for any ε > 0,

P
(∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

Si,j

∥∥∥∥
2

≤ ε
)
≤ P

(∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

S̄i,j

∥∥∥∥
2

≤ ε
)

+ 8nme−cρ
2

(165)

First, form the lifted, symmetric matrices

˜̄Si,j :=

[
0 S̄i,j

S̄>i,j 0

]
(166)

for all i, j, and note that
∥∥∥∑n

i=1

∑m
j=1

˜̄Si,j

∥∥∥
2

= 2
∥∥∥∑n

i=1

∑m
j=1 S̄i,j

∥∥∥
2
. Also note that by definition, ‖˜̄Si,j‖2 ≤ B :=

2(ρ+
√
d)
∏4
`=2(ρ+

√
db`/2c) max(c2c3c4, 1) for all i, j almost surely, and the ˜̄Si,j’s are independent.

We still must control ‖E[˜̄Si,j ]‖2. We have that ‖E[˜̄Si,j ]‖2 = 2‖E[S̄i,j ]‖2. Using Lemma 25 (with C1 = Id), we obtain
m‖E[S̄i,j ]‖2 ≤ mC2‖C2,i‖2‖C3,i‖2‖C4,i‖2 ≤ mC2c2c3c4d1 for all i ∈ [n], j ∈ [m]. Thus, ‖E[˜̄Si,j ]‖2 ≤ 1 for all i, j as
m ≥ 2C2c2c3c4d1.

Next, note that each S̄i,j is rank at most min(d, d1, d2), so ˜̄Si,j is rank at most 2 min(d, d1, d2). Now we are ready to apply
Theorem 9. Doing so, we obtain:

P
(∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

˜̄Si,j −
1

nm

n∑
i=1

m∑
j=1

E[˜̄Si,j ]

∥∥∥∥
2

≥ ε
)
≤ 1

poly(nm)
(167)

as long as nm ≥ cB log(B/ε2)/ε2 and nm ≥ cmin(d, d1, d2). Setting ε = cB√
nm

yields

P
(∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

˜̄Si,j −
1

nm

n∑
i=1

m∑
j=1

E[˜̄Si,j ]

∥∥∥∥
2

≥ B′√
nm

)
≤ 1

poly(nm)
(168)

as long as nm ≤ Bec′B , which always holds since we will soon choose ρ =
√

log(nm) and we have chosenB appropriately.
Therefore, with probability at least 1

poly(nm) , we have

1

2

∥∥∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

˜̄Si,j

∥∥∥∥∥∥
2

≤ 1

2

∥∥∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

˜̄Si,j −
1

nm

n∑
i=1

m∑
j=1

E[˜̄Si,j ]

∥∥∥∥∥∥
2

+
1

2

∥∥∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

E[˜̄Si,j ]

∥∥∥∥∥∥
2

≤ B

2
√
nm

+ C2d1
nm

n∑
i=1

‖C2,i‖2‖C3,i‖2‖C4,i‖2

which implies that

‖E′′‖2 ≤
c√
nm

(ρ+
√
d)

(
4∏
`=2

(ρ+
√
db`/2c)

)
max(c2c3c4, 1) +

(1 + C2)d1

m
c2c3c4 (169)

with probability at least 1− 1
poly(nm) − 8nme−cρ

2

by (164) and (165). Choose ρ = 10
√

log(nm) and recall that C is an
absolute constant to obtain

‖E′′‖2 ≤
c√
nm

(
√

log(nm) +
√
d)

(
4∏
`=2

(
√

log(nm) +
√
db`/2c)

)
max(c2c3c4, 1) + cd1m c2c3c4 (170)
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with probability at least 1− 1
poly(nm) . Combining Steps 1 and 2, we have∥∥∥∥∥ 1

n

n∑
i=1

ΣiC2,iC
>
3,iΣiC4,i −

1

n

n∑
i=1

C2,iC
>
3,iC4,i

∥∥∥∥∥
2

≤ c(
√

log(nm) +
√
d1)(

√
log(nm) +

√
d2)
√
d+d2+

√
log(m)√

nm
c2c3c4

+
c√
nm

(
√

log(nm) +
√
d)

(
4∏
`=2

(
√

log(nm) +
√
db`/2c)

)
max(c2c3c4, 1) + d1

m c2c3c4

for an absolute constant c with probability at least 1− 2m−99 − 1
poly(nm) − 2e−90d1 .

Lemma 23. Suppose that x is a random vector with mean-zero, Id-sub-gaussian distribution over Rd. Let {xi,j}i∈[n],j∈[m]

be nm independent copies of x. Denote Σi = 1
m

∑m
j=1 xi,jx

>
i,j and Xi = [xi,1, . . . ,xi,m]> for all i ∈ [n]. Let

z = [z1, . . . , zm] ∈ Rm be a vector whose elements are i.i.d. draws from N (0, σ2), and let {zi}i∈[n] be n independent
copies of z. Further, let C`,i ∈ Rd×db`/2c for ` = 2, 3, 5 be fixed matrices for i ∈ [n], and let c4,i ∈ Rd. Also define
c` := maxi∈[n] ‖C`,i‖2 for ` = 2, 3, 5, c4 := maxi∈[n] ‖c4,i‖2. Then,

(i)

∥∥∥∥ 1

n

n∑
i=1

ΣiC2,iC
>
3,iXizi

∥∥∥∥
2

≤ cσc2c3(
√
d+
√

log(nm))(d1+log(nm))√
nm

(ii)

∥∥∥∥ 1

n

n∑
i=1

X>i zic
>
4,iΣiC

>
5,i

∥∥∥∥
2

≤ cσc4c5(
√
d+
√

log(mn))(
√
d1+
√

log(nm))log(nm)√
nm

for an absolute constant c, each with probability at least 1− 2m−99 − 1
poly(nm) .

Proof. We only show the proof for (i) as the proof for (ii) follows by similar arguments. We argue similarly to the proof of
Lemma 22. We have∥∥∥∥∥ 1

n

n∑
i=1

ΣiC2,iC
>
3,iXizi

∥∥∥∥∥
2

≤
∥∥∥∥ m− 1

nm

n∑
i=1

1

m

m∑
j=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′

)
C2,iC

>
3,ixi,jzi,j︸ ︷︷ ︸

=:e′

∥∥∥∥
2

+

∥∥∥∥ 1

nm2

n∑
i=1

m∑
j=1

xi,jx
>
i,jC2,iC

>
3,ixi,jzi,j︸ ︷︷ ︸

=:e′′

∥∥∥∥
2

Step 1: ‖e′‖2. Add and subtract m−1
nm

∑n
i=1

1
m

∑m
j=1 C2,iC

>
3,ixi,jzi,j to obtain

‖e′‖2 ≤
∥∥∥∥m− 1

nm

n∑
i=1

1

m

m∑
j=1

C2,iC
>
3,ixi,jzi,j

∥∥∥∥
2

+

∥∥∥∥m− 1

nm

n∑
i=1

1

m

m∑
j=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jzi,j

∥∥∥∥
2

≤ cσc2c3δ̄m,d1 +

∥∥∥∥m− 1

nm

n∑
i=1

1

m

m∑
j=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jzi,j

∥∥∥∥
2

(171)

where the second inequality follows with probability at least 1− e−90d1 by Lemma 20. Next,∥∥∥∥m− 1

nm

n∑
i=1

1

m

m∑
j=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jzi,j

∥∥∥∥
2

≤ 1

m

m∑
j=1

∥∥∥∥m− 1

nm

n∑
i=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jzi,j

∥∥∥∥
2
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By sub-gaussianity, we have that with probability at least 1 − 4(nm)−99, ‖C3,ixi,j‖2 ≤ cc3(
√
d1 +

√
log(nm)) and

‖zi,j‖2 ≤ cσ
√

log(nm) for all i ∈ [n], j ∈ [m]. Thus, as in previous arguments, we have∥∥∥∥m− 1

nm

n∑
i=1

(
1

m−1

∑
j′ 6=j

xi,j′x
>
i,j′ − Id

)
C2,iC

>
3,ixi,jzi,j

∥∥∥∥
2

≤ cσc2c3(
√
d+
√

log(m))(
√
d1+
√

log(nm))
√

log(nm)√
nm

for all j ∈ [m] with probability at least 1− 2m−99 − 4(nm)−99, resulting in

‖e′‖2 ≤ cσc2c3δ̄m,d1 +
cσc2c3(

√
d+

√
log(m))(

√
d1 +

√
log(nm))

√
log(nm)√

nm

≤
c′σc2c3(

√
d+

√
log(m))(

√
d1 +

√
log(nm))

√
log(nm)√

nm
(172)

with probability at least 1− 2m−99 − 4(nm)−99.

Step 2: ‖e′′‖2. For e′′, we again use Theorem 9. Define E`,i,j and x̄`,i,j as in Lemma 22 for ` = 1, 2, 3 and i ∈ [n]

and j ∈ [m]. Define E4,i,j = {|zi,j | ≤ cσ
√

log(nm)} and z̄i,j = χE4,i,jzi,j for all i ∈ [n] and j ∈ [m]. Define
si,j = xi,jx

>
i,jC2,iC

>
3,ixi,jzi,j/m and s̄i,j = x̄1,i,jx̄

>
2,i,jx̄3,i,j z̄i,j/m, then we have si,j = s̄i,j for all i, j with probability

at least 1− 1
poly(nm) . Also, ‖s̄i,j‖ ≤ B := cσc2c3(

√
d+

√
log(nm))(d1 + log(nm))

√
log(nm). Next, by the symmetry

of the Gaussian distribution, E[z̄i,j ] = 0, thus ‖E[̄si,j ]‖2 = 0 by independence. Defining ˜̄si,j as in Lemma 22, we can now
apply Theorem 9 as in Lemma 22 to obtain:

P
(∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

˜̄si,j

∥∥∥∥
2

≥ cσc2c3(
√
d+
√

log(nm))(d1+log(nm))
√

log(nm)√
nm

)
≤ 1

poly(nm) (173)

which, recalling ‖e′′‖2 =

∥∥∥∥ 1
nm

∑n
i=1

∑m
j=1 si,j

∥∥∥∥
2

, implies

P
(
‖e′′‖2 ≥

cσc2c3(
√
d+
√

log(nm))(d1+log(nm))
√

log(nm)√
nm

)
≤ 1

poly(nm) (174)

Combining (172) and (174) completes the proof.

Lemma 24. Suppose that x is a random vector with mean-zero, Id-sub-gaussian distribution over Rd. Let {xi,j}i∈[n],j∈[m]

be nm independent copies of x. Denote Σi = 1
m

∑m
j=1 xi,jx

>
i,j and Xi = [xi,1, . . . ,xi,m]> for all i ∈ [n]. Let

z = [z1, . . . , zm] ∈ Rm be a vector whose elements are i.i.d. draws from N (0, σ2), and let {zi}i∈[n] be n independent
copies of z. Further, let Ci ∈ Rd×d1 be fixed matrices for i ∈ [n], and let c̄ := maxi∈[n] ‖Ci‖2. Then,∥∥∥∥ 1

n

n∑
i=1

X>i ziz
>
i XiCi

∥∥∥∥
2

≤ cσ2c̄(
√
d+
√

log(nm))(
√
d1+
√

log(nm))
√

log(nm)√
nm

+ σ2c̄
m

for an absolute constant c with probability at least 1− 2m−99 − 1
poly(nm) .

Proof. We have ∥∥∥∥∥ 1

n

n∑
i=1

X>i ziz
>
i XiCi

∥∥∥∥∥
2

≤
∥∥∥∥ m− 1

nm

n∑
i=1

1

m

m∑
j=1

(
1

m−1

∑
j′ 6=j

xi,jzi,j

)
zi,jx

>
i,jCi︸ ︷︷ ︸

=:E′

∥∥∥∥
2

+

∥∥∥∥ 1

nm2

n∑
i=1

m∑
j=1

z2
i,jxi,jx

>
i,jCi︸ ︷︷ ︸

=:E′′

∥∥∥∥
2
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Step 1: ‖E′‖2. Note that∥∥∥∥m− 1

nm

n∑
i=1

1

m

m∑
j=1

xi,jzi,j

(
1

m−1

∑
j′ 6=j

zi,j′x
>
i,j′

)
Ci

∥∥∥∥
2

≤ 1

m

m∑
j=1

∥∥∥∥m− 1

nm

n∑
i=1

xi,jzi,j

(
1

m−1

∑
j′ 6=j

zi,j′x
>
i,j′Ci

)∥∥∥∥
2

Next, with probability at least 1 − 4(nm)−99, ‖Cixi,j‖2 ≤ c(
√
d1 +

√
log(nm)) and ‖zi,j‖2 ≤ cσ

√
log(nm) for all

i ∈ [n], j ∈ [m]. Thus, by conditioning on this event as in previous arguments, we can show∥∥∥∥m− 1

nm

n∑
i=1

xi,jzi,j

(
1

m−1

∑
j′ 6=j

zi,j′x
>
i,j′Ci

)∥∥∥∥
2

≤
cσ2c̄(

√
d+

√
log(m))(

√
d1 +

√
log(nm))

√
log(nm)√

nm

for all j ∈ [m] with probability at least 1− 2m−99 − 4(nm)−99, resulting in

‖E′‖2 ≤
cσ2c̄(

√
d+

√
log(m))(

√
d1 +

√
log(nm))

√
log(nm)√

nm
(175)

with probability at least 1− 2m−99 − 4(nm)−99.

Step 2: ‖E′′‖2. Define E1,i,j = {‖xi,j‖ ≤ c(
√
d +

√
log(nm))}, E2,i,j = {‖Cixi,j‖2 ≤ c(

√
d1 +

√
log(nm))} and

E3,i,j = {|zi,j | ≤ cσ
√

log(nm)} for all i ∈ [n], j ∈ [m]. Define x̄1,i,j = χE1,i,jxi,j , x̄2,i,j = χE2,i,jC
>
i xi,j , and

z̄i,j = χE3,i,jzi,j for all i ∈ [n] and j ∈ [m]. Define Si,j = z2
i,jx1,i,jx

>
2,i,jCi/m and S̄i,j = z̄2

i,jx̄1,i,jx̄
>
2,i,j/m, then we

have Si,j = S̄i,j for all i, j with probability at least 1− 1
poly(nm) . Also, ‖S̄i,j‖ ≤ B := cσ2c̄(

√
d +

√
log(nm))(

√
d1 +√

log(nm))
√

log(nm). Note that by the law of total expectation,

‖E[S̄i,j ]‖2 = ‖E[Si,j
∣∣E1,i,j ∩ E2,i,j ∩ E3,i,j ]‖2P(E1,i,j , E2,i,j , E3,i,j)

≤ ‖E[Si,j
∣∣E1,i,j ∩ E2,i,j ∩ E3,i,j ]‖2P(E1,i,j ∩ E2,i,j ∩ E3,i,j)

+ ‖E[Si,j
∣∣Ec1,i,j ∪ Ec2,i,j ∪ Ec3,i,j ]‖2P(Ec1,i,j ∪ Ec2,i,j ∪ E3,i,j)

= ‖E[Si,j ]‖2
= σ2

m ‖Ci‖2

Now, defining ˜̄Si,j as in Lemma 22, we can now apply Theorem 9 as in Lemma 22 to obtain for m ≥ σ2c̄:

P
(∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

˜̄Si,j − E[˜̄Si,j ]

∥∥∥∥
2

≥ cσ2c̄(
√
d+
√

log(nm))(
√
d1+
√

log(nm))
√

log(nm)√
nm

)
≤ 1

poly(nm) (176)

Now, note that ∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

S̄i,j

∥∥∥∥
2

≤
∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

S̄i,j − E[S̄i,j ]

∥∥∥∥
2

+

∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

E[S̄i,j ]

∥∥∥∥
2

≤
∥∥∥∥ 1

nm

n∑
i=1

m∑
j=1

˜̄Si,j − E[˜̄Si,j ]

∥∥∥∥
2

+ σ2c̄
m (177)

Thus, recalling ‖E′′‖2 =

∥∥∥∥ 1
nm

∑n
i=1

∑m
j=1 Si,j

∥∥∥∥
2

, we have

P
(
‖E′′‖2 ≤

cσ2c̄(
√
d+
√

log(nm))(
√
d1+
√

log(nm))
√

log(nm)√
nm

+ σ2c̄
m

)
≤ 1− 1

poly(nm)
(178)

Combining (175) and (178) completes the proof.

Fact 1. Suppose x ∼ p satisfies E[x] = 0, Cov(x) = Id and x is Id-sub-gaussian, as in Assumption 3. Then x is C-L4-L2
hypercontractive for an absolute constant C, that is for any u ∈ Rd : ‖u‖2 = 1,

E[〈u,xi,j〉4] ≤ C2(E[〈u,xi,j〉2])2 (179)
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Lemma 25 (L4-L2 hypercontractive implication). Suppose x ∈ Rd is C-L4-L2 hypercontractive, E[x] = 0, and Cov(x) =
Id. Further, let C` ∈ Rd×db`/2c for ` = 1, 2, 3, 4 be fixed matrices for i ∈ [n], and let c` := maxi∈[n] ‖C`,i‖2 for
` = 1, 2, 3, 4. Given scalar thresholds a` for ` = 1, . . . , 4, form the truncated random vectors x̄` := χ‖C>` x‖2≤a`C`x.
Then,

‖E[x̄1x̄
>
2 x̄3x̄

>
4 ]‖2 ≤ C2‖C1‖2‖C2‖2‖C3‖2‖C4‖2d1. (180)

Proof. First we note that if a random vector x is C-L4-L2 hypercontractive, then for any fixed matrix C ∈ Rd×d1 , then the
random vector C>x ∈ Rd1 is also C-L4-L2 hypercontractive, since for any unit vector u,

1
‖Cu‖42

E[〈u,C>x〉4] = E[〈 Cu
‖Cu‖2 ,x〉

4] ≤ C2(E[〈 Cu
‖Cu‖2 ,x〉

2])2 = 1
‖Cu‖42

C2(E[〈u,C>x〉2])2

=⇒ E[〈u,C>x〉4] ≤ C2(E[〈u,C>x〉2])2

Also, if the random vector x is C-L4-L2 hypercontractive then the truncated random vector x̄ := χ‖x‖2≤a‖x‖2 is also
C-L4-L2 hypercontractive. To see this, observe that by the law of total expectation,

E
[
〈u, x̄〉4

]
= E

[
〈u, χ‖x‖2≤ax〉

4
]

= E
[
〈u,x〉4

∣∣‖x‖2 ≤ a]P(‖x‖2 ≤ a) ≤ E[〈u,x〉4] ≤ C2(E[〈u,x〉2])2 (181)

So we have that the truncated random vectors {x̄h}4h=1 are C-L4-L2 hypercontractive. Next, pick some u ∈ Rd1 : ‖u‖2 ≤ 1
and v ∈ Rd4 : ‖v‖ ≤ 1. By the Cauchy-Schwarz inequality and C-L4-L2 hypercontractivity, we have

E[u>x̄1x̄
>
2 x̄3x̄

>
4 v]

≤ (E[(u>x̄1x̄
>
4 v)2]E[(x̄>2 x̄3)2])1/2

≤ (E[(u>x̄1)4]E[(x̄>4 v)4])1/4(E[Tr(x̄2x̄
>
3 )2])1/2

≤ C(E[(u>x̄1)2]E[(x̄>4 v)2])1/2

(
E
[( d∑

`=1

e>` x̄2x̄
>
3 e`

)2])1/2

≤ C(E[(u>x̄1)2]E[(x̄>4 v)2])1/2

(∑
`,`′

E
[
e>` x̄2x̄

>
3 e`e

>
`′ x̄2x̄

>
3 e`′

])1/2

≤ C(E[(u>x̄1)2]E[(x̄>4 v)2])1/2

(∑
`,`′

(
E
[
(e>` x̄2)4]E[(x̄>3 e`)

4]E[(e>`′ x̄2)4]E[(x̄>3 e`′)
4
] )1/4)1/2

≤ C2(E[(u>x̄1)2]E[(x̄>4 v)2])1/2

×
(∑
`,`′

(
(E[(e>` x̄2)2])2(E[(x̄>3 e`)

2])2(E[(e>`′ x̄2)2])2(E[(x̄>3 e`′)
2])2
)1/4)1/2

(182)

where e` is the `-th standard basis vector in Rd1 . Note that by the law of total expectation and the nonnegativity of
U>C>1 xx>C1U,

E[(x̄>1 u)2] = E
[
u>C>1 xx>C1u

∣∣‖C>1 x‖2 ≤ a
]
P(‖C>1 x‖2 ≤ a)

≤ E[u>C>1 xx>C1u] = u>C>1 C1u ≤ ‖C1‖22

Therefore, applying the same logic for E[(e>` x̄2)2], E[(e>` x̄3)2], and E[(e>` x̄4)2], and using (182), we obtain

E[u>x̄1x̄
>
2 x̄3x̄

>
4 v] ≤ C2‖C1‖2‖C4‖2

(∑
`,`′

‖C2‖22‖C3‖22
)1/2

= C2‖C1‖2‖C2‖2‖C3‖2‖C4‖2d1

Repeating this argument over all unit vectors u,v completes the proof.

Next, we characterize the diversity of the inner loop-updated heads for both ANIL and FO-ANIL. Note that now we are
analyzing ANIL and FO-ANIL specifically rather than studying generic matrix concentration.
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Lemma 26. Let wt,i be the inner loop-updated head for the i-th task at iteration t for ANIL and FO-ANIL for all i ∈ [n].
Define µ2 := σmin

(
1
n

∑n
i=1 wt,iw

>
t,i

)
and L2 := σmax

(
1
n

∑n
i=1 wt,iw

>
t,i

)
. Assume ‖∆t‖2 ≤ 1

10 and Assumption 1, 2,
and 3 hold. Then

σmax

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≤ L2 := 2

(
‖∆t‖2‖wt‖2 +

√
αL∗ + δmin,k(‖wt‖2 +

√
αLmax +

√
ασ)

)2
(183)

σmin

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≥ µ2 := 0.9αE0µ

2
∗ − 2.2

√
α‖wt‖2‖∆t‖2η∗

− 2‖∆t‖2‖wt‖2δ̄min,k(‖wt‖2 +
√
αLmax +

√
ασ)

− 2.2
√
αδ̄min,k(‖wt‖2 +

√
αL∗ +

√
ασ)Lmax (184)

with probability at least 1− 4n−99 − 6e−90k.

Proof. Note that wt,i can be written as:

wt,i = wt − αB>t Σin
t,iBtwt + αB>t Σin

t,iB∗w∗,t,i = r + si + p1,i + p2,i + p3,i (185)

where r = ∆twt, si = αB>t B∗w∗,t,i, p1,i := α(B>t Bt −B>t Σin
t,iBt)wt, p2,i := −α(B>t B∗ −B>t Σin

t,iB∗)w∗,t,i, and
p3,i := α

min
B>t (Xin

t,i)
>zint,i for all i ∈ [n] (for ease of notation we drop the iteration index t). Note that since ‖∆t‖2 ≤ 1

10 ,

‖Bt‖2 ≤
√

11/10√
α

. As a result, for any i ∈ [n], from Lemma 20 we have

‖p1,i‖2 ≤ 1.1‖wt‖2δmin,k, ‖p2,i‖2 ≤
√

1.1αLmaxδmin,k, ‖p3,i‖2 ≤
√

1.1ασδmin,k (186)

each with probability at least 1 − 2n−100. Thus, all of these events happen simultaneously with probabil-
ity at least 1 − 6n−100 via a union bound. Further, a union bound over all i ∈ [n] shows that A :={
∩i∈[n]

{
‖p1,i‖2 ≤ 1.1‖wt‖2δmin,k ∩ ‖p2,i‖2 ≤

√
1.1αLmaxδmin,k ∩ ‖p3,i‖2 ≤

√
1.1ασδmin,k

}}
occurs with proba-

bility at least 1− 6n−99. Thus by the triangle inequality, a

∥∥∥∥∥ 1

n

n∑
i=1

p1,i + p2,i + p3,i

∥∥∥∥∥
2

≤ 1.1δmin,k(‖wt‖2 +
√
αLmax +

√
ασ) (187)

with probability at least 1− 6n−99, and

∥∥∥∥∥ 1

n

n∑
i=1

(r + si)(r + si)
>

∥∥∥∥∥
2

≤ ‖∆t‖22‖wt‖22 + 2.2
√
α‖∆t‖2‖wt‖2η∗ + 1.1αL2

∗ (188)
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So, ∥∥∥∥∥ 1

n

n∑
i=1

wt,iw
>
t,i

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

(r + si)(r + si)
>

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

(r + si)(p1,i + p2,i + p3,i)
>

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

(p1,i + p2,i + p3,i)(p1,i + p2,i + p3,i)
>

∥∥∥∥∥
2

≤ ‖∆t‖22‖wt‖22 + 2.2
√
α‖∆t‖2‖wt‖2η∗ + 1.1αL2

∗ + 2

∥∥∥∥∥ 1

n

n∑
i=1

r(p1,i + p2,i + p3,i)
>

∥∥∥∥∥
2

+ 2α‖B>t B∗‖2

∥∥∥∥∥∥∥∥
1

n
W>
∗,t


...

(p1,i + p2,i + p3,i)
>

...


∥∥∥∥∥∥∥∥

2

+ max
i∈[n]
‖p1,i + p2,i + p3,i‖22 (189)

≤ ‖∆t‖22‖wt‖22 + 2.2
√
α‖∆t‖2‖wt‖2η∗ + 1.1αL2

∗

+ 2.2‖∆t‖22‖wt‖2δmin,k(‖wt‖2 +
√
αLmax +

√
ασ)

+ 2.2
√
αL∗δmin,k(‖wt‖2 +

√
αLmax +

√
ασ) + 1.12(‖wt‖2 +

√
αLmax +

√
ασ)2δ2

min,k

≤ 2
(
‖∆t‖2‖wt‖2 +

√
αL∗ + δmin,k(‖wt‖2 +

√
αLmax +

√
ασ)

)2
(190)

where W∗,t = [w∗,t,1, . . . ,w∗,t,n]>, (189) follows from the triangle inequality, and (190) follows with probability at least
1− 6n−99 from the discussion above.

We make an analogous argument to lower bound σmin

(
1
n

∑n
i=1 wt,iw

>
t,i

)
. This time, we only need to bound first-order

products of the p matrices, which concentrate around zero as n becomes large. So now we are able to obtain finite-sample
dependence on δ̄min,k (which decays with 1√

n
) instead of δmin,k (which does not), as follows.

σmin

(
1

n

n∑
i=1

wt,iw
>
t,i

)
= σmin

(
1

n

n∑
i=1

(r + si)(r + si)
> + (r + si)(p1,i + p2,i + p3,i)

>

+ (p1,i + p2,i + p3,i)(r + si)
>

+ (p1,i + p2,i + p3,i)(p1,i + p2,i + p3,i)
>

)

≥ σmin

(
1

n

n∑
i=1

(r + si)(r + si)
>

)
− 2

∥∥∥∥∥ 1

n

n∑
i=1

(r + si)(p1,i + p2,i + p3,i)
>

∥∥∥∥∥
2

≥ σmin

(
1

n

n∑
i=1

sis
>
i

)
− 2

∥∥∥∥∥ 1

n

n∑
i=1

rs>i

∥∥∥∥∥
2

− 2

∥∥∥∥∥ 1

n

n∑
i=1

(r + si)(p1,i + p2,i + p3,i)
>

∥∥∥∥∥
2

≥ 0.9αE0µ
2
∗ − 2.2

√
α‖wt‖2‖∆t‖2η∗

− 2‖∆t‖2‖wt‖2δ̄min,k(‖wt‖2 +
√
αLmax +

√
ασ)

− 2.2
√
αδ̄min,k(‖wt‖2 +

√
αL∗ +

√
ασ)Lmax

where the last inequality follows with probability at least 1− 6e−90k.

E.2. FO-ANIL

For FO-ANIL, inner loop update for the head of the i-th task on iteration t is given by:

wt,i = wt − α∇wL̂i(Bt,wt,Dini )

= (Ik − αB>t Σin
t,iBt)wt + αB>t Σin

t,iB∗w∗,t,i + α
min

B>t (Xin
t,i)
>zint,i. (191)



MAML and ANIL Provably Learn Representations

The outer loop updates for the head and representation are:

wt+1 = wt −
β

n

n∑
i=1

∇wL̂i(Bt,wt,i,Doutt,i )

= wt −
β

n

n∑
i=1

(
B>t Σout

t,i Btwt,i −B>t Σout
t,i B∗w∗,i − 2

mout
B>t (Xout,g

t,i )>zout,gt,i

)
(192)

Bt+1 = Bt −
β

n

n∑
i=1

∇BL̂i(Bt,wt,i,Doutt,i )

= Bt −
β

n

n∑
i=1

(
Σout
t,i Btwt,iw

>
t,i −Σout

t,i B∗w∗,t,iw
>
t,i − 2

mout
(Xout

t,i )>zoutt,i w>t,i

)
(193)

Lemma 27 (FO-ANIL, Finite samples A1(t+ 1)). For any t, suppose that A2(s), A3(s) and A4(s) occur for all s ∈ [t].
Then

‖wt+1‖2 ≤ 1
10

√
αE0 min(1,

µ2
∗
η2∗

)η∗ (194)

with probability at least 1− 1
poly(n) .

Proof. The proof follows similar structure as in the analogous proof for the infinite-sample case. Recall the outer loop
updates for ANIL (here we replace t with s):

ws+1 = (Ik − βB>s Bs(Ik − αB>s Bs))ws + β(Ik − αB>s Bs)B
>
s B∗

1

n

n∑
i=1

w∗,s,i

+ αβB>s Bs
1

n

n∑
i=1

(
B>s Bs −B>s Σin

s,iBs

)
ws − αβB>s Bs

1

n

n∑
i=1

(B>s B∗ −B>s Σin
s,iB∗)w∗,s,i

+ αβB>s Bs
1

n

n∑
i=1

B>s (Xin
s,i)
>zins,i +

β

n

n∑
i=1

(B>s Bs −B>s Σout
s,i Bs)ws,i

− β

n

n∑
i=1

(B>s B∗ −B>s Σout
s,i B∗)w∗,s,i +

2β

nmout

n∑
i=1

B>s (Xout
s,i )>zouts,i (195)

Note that
⋃t
s=0A3(s) implies σmax(B>s Bs) ≤ 1+‖∆s‖2

α < 1.1
α for all s ∈ {0, . . . , t+1}. Also, we can straightforwardly

use Lemma 20 with the Cauchy-Schwartz inequality to obtain, for some absolute constant c,∥∥∥∥∥αβB>s Bs
1

n

n∑
i=1

(
B>s Bs −B>s Σin

s,iBs

)
wt

∥∥∥∥∥
2

≤ cβα‖ws‖2δ̄min,k∥∥∥∥∥αβB>s Bs
1

n

n∑
i=1

(B>s B∗ −B>t Σin
s,iBs)w∗,s,i

∥∥∥∥∥
2

≤ c β√
α
Lmaxδ̄min,k (196)

∥∥∥∥∥βn
n∑
i=1

(B>s Bs −B>s Σout
s,i Bs)ws,i

∥∥∥∥∥
2

≤ cβα δ̄mout,k max
i∈[n]
‖ws,i‖2

≤ cβα δ̄mout,k(‖∆s‖2‖ws‖2+
√
αLmax + δmin,k‖ws‖2

+
√
αδmin,kLmax +

√
ασδmin,k)

≤ cβα δ̄mout,k(‖∆s‖2‖ws‖2+c′
√
αLmax +

√
ασδmin,k) (197)∥∥∥∥∥βn

n∑
i=1

(B>s B∗ −B>s Σout
s,i B∗)w∗,s,i

∥∥∥∥∥
2

≤ c β√
α
Lmaxδ̄mout,k∥∥∥∥∥ 2β

nmout

n∑
i=1

B>s (Xout
s,i )>zouts,i

∥∥∥∥∥
2

≤ c β√
α
σδ̄mout,k
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using that δmin,k < 1 and ‖ws‖2 ≤ c
√
αη∗ in (197). Thus using (195) and the Cauchy-Schwarz and triangle inequalities,

we have for an absolute constant c:

‖ws+1‖2 ≤ (1 + cβα‖∆s‖2)‖ws‖2 + c β√
α
‖∆s‖2η∗ + cβα‖ws‖2δ̄min,k

+ c β√
α
δ̄min,k(Lmax + σ) + cβα δ̄mout,k

√
αLmax + c β√

α
Lmaxδ̄mout,k + c β√

α
σδ̄mout,k

≤ (1 + cβα‖∆s‖2)‖ws‖2 + t β√
α
‖∆s‖2η∗ + t β√

α
(Lmax + σ) (δ̄min,k + δ̄mout,k)

= (1 + cβα‖∆s‖2)‖ws‖2 + c β√
α
‖∆s‖2η∗ + β√

α
ζ1 (198)

using ‖ws,i‖2 ≤
√
αLmax, where ζ1 = c(Lmax + σ)(δ̄min,k + δ̄mout,k). Thus, by Lemma 3, we have

‖wt+1‖2 ≤ c β√
α

t∑
s=1

(‖∆s‖2η∗ + ζ1)

(
1 + 2

t∑
r=s

β

α
‖∆r‖2

)
(199)

Next, let ρ := 1 − 0.5βαE0µ
2
∗ and ζ2 = O

(
(Lmax + σ)2δ̄mout,k + (L2

max + Lmaxσ)(δ̄min,k + δ2
min,k

) + σ2δ2
min,k

+

βα(Lmax + σ)4δ̄2
mout,d

)
as defined in (219). By

⋃s
r=0A2(r), we have

‖∆s+1‖2 ≤ ρ‖∆s‖2 + cα2β2L4
∗ dist2

s +βαζ2

≤ ρ2‖∆s−1‖2 + ρ(cα2β2 dist2
s−1 +βαζ2) + cα2β2 dist2

s +βαζ2

...

≤ ρs+1‖∆0‖2 +

s∑
r=0

ρs−r(cα2β2L4
∗ dist2

r +βαζ2)

=

s∑
r=0

ρs−r(cα2β2L4
∗ dist2

r +βαζ2) (200)

since ‖I−αB>0 B0‖2 = 0 by choice of initialization. Now, we have that dists ≤ ρs+ε for all s ∈ {0, ..., t} by
⋃t
s=0A5(s).

Thus, for any s ∈ {0, ..., t}, we have

‖∆s+1‖2 ≤
s∑
r=0

ρs−r(cα2β2L4
∗ dist2

r +βαζ2)

≤
s∑
r=0

ρs−r(cα2β2L4
∗(2ρ

2r + 2ε2) + βαζ2)

≤ 2cα2β2L4
∗

s∑
r=0

ρs−rρ2r + 2cα2β2L4
∗

s∑
r=0

ρs−rε2 + βα

s∑
r=0

ρs−rζ2

≤ 2cρs
α2β2L4

∗
1−ρ + (2cα2β2L4

∗ε
2 + βαζ2) 1

1−ρ

≤ 2cρsβαL2
∗κ

2
∗/E0 + 2cε2βαL2

∗κ
2
∗/E0 + ζ2/(E0µ

2
∗)

=: εs (201)

Now, applying equation (199) yields

‖wt+1‖2 ≤
β√
α

t∑
s=1

(εsη∗ + ζ1)

(
1 + 2

t∑
r=s

β

α
εr

)

≤ β√
α

t∑
s=1

(εsη∗ + ζ1)
(
1 + 4cβρsκ4

∗/(αE
2
0) + 4c(t− s)β2ε2κ2

∗L
2
∗/E0 + 2(t− s)βζ2/(αE0µ

2
∗)
)

(202)

≤ β√
α

t∑
s=1

(εsη∗ + ζ1)
(
1 + 4cβκ4

∗/(αE
2
0) + 4cTβ2ε2κ2

∗L
2
∗/E0 + 2Tβζ2/(αE0µ

2
∗)
)

(203)
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where (202) follows by plugging in the definition of εr and using the sum of a geometric series.
In order for the RHS of (203) to be at most 1

10

√
αE0 min(1,

µ2
∗
η2∗

)η∗ as desired, we can ensure that(
4cβκ4

∗/(αE
2
0) + 4cTβ2ε2κ2

∗L
2
∗/E0 + 2Tβζ2/(αE0µ

2
∗)
)

≤ 1 for all s and β√
α

∑t
s=1(εsη∗ + ζ1) ≤

1
10

√
αE0 min(1,

µ2
∗
η2∗

)η∗. To satisfy the first condition, it is sufficient to have

β ≤ c′ αE
2
0

κ4
∗

ε2 ≤ c′ E0

Tβ2κ2
∗L

2
∗

ζ2 ≤ c′ αE0µ
2
∗

Tβ

For the second condition, it is sufficient to have

β ≤ cαE3
0κ
−4
∗ min(1,

µ2
∗
η2∗

)

ζ1 ≤ c′ κ
4
∗η∗
TE2

0

t∑
s=1

εs ≤ c′ κ
4
∗

E2
0

=⇒ ε2 ≤ c′′ 1
Tβαµ2

∗E0

ζ2 ≤ c′′ L
2
∗κ

2
∗

TE0
(204)

However, for Corollary 3, will need a tighter bound on ζ2, namely ζ2 ≤ c′E0µ
2
∗

T . In summary, the tightest bounds are:

β ≤ cαE3
0κ
−4
∗ min(1,

µ2
∗
η2∗

) (205)

ε2 ≤ c 1
Tβαµ2

∗E0
(206)

ζ1 ≤ cκ
4
∗η∗
TE2

0
(207)

ζ2 ≤ cE0µ
2
∗

T (208)

To determine when these conditions hold, we must recall the scaling of ε, ζ1, ζ2.

ε = O(Lmax(Lmax+σ)
µ2
∗

δ̄mout,d)

ζ1 = O((Lmax + σ)(δ̄min,k + δ̄mout,k))

ζ2 = O
( (

(L2
max + Lmaxσ)(δ̄min,k + δ̄mout,k + δ2

min,k) + σ2δ2
min,k

)
+ βαδ̄2

mout,d(Lmax + σ)2(Lmax + σδmin,k)2
)

Thus, in order to satisfy (205)-(208), we can choose:

mout ≥ c′
(
βαdTE0(Lmax+σ)4

nµ2
∗

+
T 2kE2

0L
2
max(Lmax+σ)2

nµ4
∗

+
T 2E4

0k(Lmax+σ)2

nη2∗κ
8
∗

+ βα
TL2

max(Lmax+σ)2E0d
nµ2
∗

)
.

Recalling that Lmax ≤ c
√
kL∗, β ≤ ακ−4

∗ , and α ≤ 1
Lmax+σ , we see that our choice of mout as

mout ≥ c
(
Tdk

nκ2
∗

+
Tdkσ2

nL2
∗κ

2
∗

+
T 2k3κ4

∗
n

+
T 2k3σ4

nµ4
∗

+
kµ2
∗

η2
∗κ

6
∗

+
kσ2

η2
∗κ

8
∗

)
is sufficient, where we have treated E0 as a constant. For min, we can choose:

min ≥ c′
T (k + log(n))E0(Lmax + σ)2

µ2
∗

+ c′
T 2kE2

0L
2
max(Lmax + σ)2

nµ4
∗

+ c′
T 2kE4

0(Lmax + σ)2

nη2
∗κ

8
∗
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which is satisfied by

min ≥ cT (k + log(n))(kκ2
∗ + σ2

µ2
∗
) + c

T 2k3κ4
∗

n + c
T 2k2κ2

∗σ
2

µ2
∗n

+ c
T 2k2(L2

∗+σ
2)

η2∗κ
8
∗n

Since min and mout satisfy these conditions, we have completed the proof.

Lemma 28 (FO-ANIL, Finite samples, A2(t + 1)). Suppose the conditions of Theorem 8 are satisfied and inductive
hypotheses A1(t), A3(t) and A5(t) hold. Then A2(t+ 1) holds with high probability, i.e.

‖∆t+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + cβ2α2L4

∗ dist2
t +βαζ2 (209)

for an absolute constant c and ζ2 = O
(
(Lmax +σ)2δ̄mout,k+(L2

max +Lmaxσ)(δ̄min,k+δ2
min,k

)+σ2δ2
min,k

+βα(Lmax +

σ)4δ̄2
mout,d

)
, with probability at least 1− 1

poly(n) .

Proof. Note that we can write:

Bt+1 = Bt − β∆̄t
1
n

n∑
i=1

(Btwt −B∗w∗,t,i)((Ik − αB>t Bt)wt + αB>t B∗w∗,t,i)
>

+ β∆̄t
1
n

n∑
i=1

(Btwt −B∗w∗,t,i)(α(B>t Bt −B>t Σin
t,iBt)wt + α(B>t B∗ −B>t Σin

t,iB∗)w∗,t,i)
> (210)

+ β∆̄t
1
n

n∑
i=1

(Btwt −B∗w∗,t,i)(αB>t
1

min
(Xin

t,i)
>zt,i)

> (211)

+ β
n

n∑
i=1

(
Id −Σout

t,i

)
(Btwt,i −B∗w∗,t,i) w>t,i + β

nmout

n∑
i=1

(Xout
t,i )>zoutt,i w>t,i (212)

+ βα
n

n∑
i=1

BtB
>
t

(
Id −Σin

t,i

)
(Btwt −B∗w∗,t,i) w>t,i + βα

nmin

n∑
i=1

BtB
>
t (Xin

t,i)
>zint,iw

>
t,i (213)

= Bpop
t+1 + β(E1 + E2 + E3 + E4) (214)

where Bt,pop := Bt− β∆̄t
1
n

∑n
i=1(Btwt−B∗w∗,t,i)(∆twt +αB>t B∗w∗,t,i)

> denotes the update of the representation
in the infinite sample case, and E1,E2,E3 and E4 are the finite-sample error terms in lines (210), (211), (212) and (213),
respectively. From (214) and the triangle inequality, we can compute the final bound.

‖∆t+1‖2 ≤ ‖Ik − αB>t,popBt,pop‖2 + 2βα‖B>t,pop(E1 + E2 + E3 + E4)‖2 + β2α‖E1 + E2 + E3 + E4‖22 (215)

Note that from Corollary 1 and the fact that ‖Bt‖2 ≤ 1.1/
√
α by A3(t), and β, α are sufficiently small, we have that

‖Bpop
t+1‖2 ≤ 1.1√

α
. Also, clearly Bpop

t+1 ∈ Rd×k. Therefore by the concentration results in Lemma 20 and the triangle and
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Cauchy-Schwarz inequalities, we have, for an absolute constant c,

max
i∈[n]
‖wt,i‖2 ≤ ‖∆t‖2‖wt‖2 + c

√
αLmax + δmin,k‖wt‖2 + c

√
ασδmin,k

‖B>t,popE1‖2 ≤ c
α‖∆t‖2‖wt‖22δ̄min,k + c√

α
‖∆t‖2Lmax‖wt‖2δ̄min,k + c√

α
‖∆t‖2‖wt‖2Lmaxδ̄min,k

+ ‖∆t‖2L2
maxδ̄min,k

≤ cL2
maxδ̄min,k

‖B>t,popE2‖2 ≤ c√
α
‖∆t‖2‖wt‖2σδ̄min,k + c‖∆t‖2Lmaxσδ̄min,k ≤ cLmaxσδ̄min,k

‖B>t,popE3‖2 ≤ c
α δ̄mout,k

(
‖∆t‖2‖wt‖2 +

√
αLmax + δmin,k‖wt‖2 +

√
ασδmin,k

)2
+ c√

α
δ̄mout,kLmax

(
‖∆t‖2‖wt‖2 +

√
αLmax + δmin,k‖wt‖2 +

√
ασδmin,k

)
+ c√

α
σδ̄mout,k

(
‖∆t‖2‖wt‖2 +

√
αLmax + δmin,k‖wt‖2 +

√
ασδmin,k

)
≤ cδ̄mout,k(Lmax + σ) (Lmax + σδmin,k)

‖B>t,popE4‖2 ≤ cδmin,k

(
‖wt‖2
α + Lmax√

α

)(
‖∆t‖2‖wt‖2√

n
+ Lmax

√
α√
n

+ δmin,k‖wt‖2 +
√
ασδmin,k

)
+ c√

α
(‖∆t‖2‖wt‖2σδ̄min,k + Lmaxσδ̄min,k + σδ2(min, k)‖wt‖2√

α
+ σ2δ2(min, k))

≤ cδmin,kLmax(Lmax√
n

+ Lmaxδmin,k + σδmin,k)

+ c(Lmaxσδ̄min,k + Lmaxσδ
2(min, k) + σ2δ2(min, k))

≤ cδ̄mout,k(Lmax + σ) (Lmax + σδmin,k) + L2
max(δ2(min, k) + δ̄min,k)

+ cLmaxσ(δ2
min,k + δ̄min,k) + cσ2δ2

min,k (216)

with probability at least 1− 1
poly(n) . Thus

‖B>t,pop(E1 + E2 + E3 + E4)‖2 ≤
cδ̄mout,k√

n
(Lmax + σ) (Lmax + σδmin,k) + c(L2

max + Lmaxσ)
δmin,k√

n

+ L2
maxδ

2
min,k + Lmaxσδ

2
min,k + σ2δ2

min,k (217)

Similarly,

‖E1‖2 ≤ (‖∆t‖2‖wt‖2√
α

+ distt Lmax + ‖∆t‖2Lmax)(δmin,k‖wt‖2 +
√
αδmin,kLmax) 1√

n

≤
√
αL2

max

δmin,k√
n

‖E2‖2 ≤ (‖∆t‖2‖wt‖2√
α

+ distt Lmax + ‖∆t‖2Lmax)
√
ασ

δmin,k√
n

≤
√
αLmaxσ

δmin,k√
n

‖E3‖2 ≤ δ̄mout,d

√
α(Lmax + σ)(Lmax + σδmin,k)

‖E4‖2 ≤
√
α

(
δmin,k

(
‖wt‖2
α + Lmax√

α

) (‖∆t‖2‖wt‖2√
n

+
√
αLmax√
n

+ δmin,k‖wt‖2 +
√
ασδmin,k

)
+
(
‖∆t‖2‖wt‖2σ

δ̄min,k√
α

+ Lmaxσδ̄min,k + σδ2
min,k

‖wt‖2√
α

+ σ2δ2
min,k

))
≤
√
αδmin,kLmax

(
Lmax√
n

+ Lmaxδmin,k + σδmin,k

)
+
√
α
(
Lmaxσ

δmin,k√
n

+ Lmaxσδ
2
min,k + σ2δ2

min,k

)
≤ c
√
αδ̄mout,k(Lmax + σ) (Lmax + σδmin,k) +

√
αL2

max(δ2
min,k + δ̄min,k)

+
√
αLmaxσ(δ2

min,k + δ̄min,k) +
√
ασ2δ2

min,k
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thus

‖E1 + E2 + E3 + E4‖2 ≤
√
α(L2

max + Lmaxσ)(δ̄min,k + δ2
min,k)

+ δ̄mout,d

√
α(Lmax + σ)(Lmax + σδmin,k) +

√
ασ2δ2

min,k

Now, from (215) and the triangle inequality, we can compute the final bound.

‖∆t+1‖2
≤ ‖Ik − αB>t,popBt,pop‖2

+ cβα
(
δ̄mout,k(Lmax + σ) (Lmax + σδmin,k) + (L2

max + Lmaxσ)(δ̄min,k + δ2
min,k) + σ2δ2

min,k

)
+ cβ2α2

(
(L2

max + Lmaxσ)(δ̄min,k + δ2
min,k) + δ̄mout,d(Lmax + σ)(Lmax + σδmin,k) + σ2δ2

min,k

)2
≤ ‖Ik − αB>t,popBt,pop‖2

+ cβα
(
δ̄mout,k(Lmax + σ) (Lmax + σδmin,k) + (L2

max + Lmaxσ)(δ̄min,k + δ2
min,k) + σ2δ2

min,k

)
+ cβ2α2δ̄2

mout,d(Lmax + σ)2(Lmax + σδmin,k)2

= ‖Ik − αB>t,popBt,pop‖2 + βαζ2

≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + cβ2α2L4

∗ dist2
t +βαζ2 (218)

where the last line follows from Lemma 6 (note that all conditions for that lemma are satisfied by ‖Ik − αB>t,popBt,pop‖2),
and

ζ2 = O
(
(Lmax + σ)2δ̄mout,k + (L2

max + Lmaxσ)(δ̄min,k + δ2
min,k) + σ2δ2

min,k + βα(Lmax + σ)4δ̄2
mout,d

)
(219)

Corollary 3 (FO-ANIL, Finite samples A3(t+ 1)). Suppose that A2(t+ 1) and A3(t) hold. Then

‖∆t+1‖2 ≤ 1
10 (220)

Proof. From A2(t+ 1) we have

‖∆t+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + cβ2α2L4

∗ dist2
t +βαζ2

≤ (1− 0.5βαE0µ
2
∗)

1
10 + cβ2α2L4

∗ + βαζ2

≤ 1
10 − 0.25βαE0µ

2
∗ + cβ2α2L4

∗ (221)

≤ 1
10 (222)

where (221) follows as long as ζ2 ≤ 0.25E0µ
2
∗, and (222) follows since β ≤ c′αE3

0κ
−4.

Lemma 29 (FO-ANIL, Finite samples, A4(t+ 1)). Suppose A1(t), A3(t) and A5(t) hold. Then A4(t+ 1) holds, i.e.

‖B>∗,⊥Bt+1‖2 ≤ (1− 0.5βαE0µ
2)‖B>∗,⊥Bt‖2 + β

√
αζ4

where ζ4 = O((Lmax + σ)(Lmax + σδmin,k)δ̄mout,d) with probability at least 1− 1
poly(n) .

Proof. Using (213), we have

B̂>∗,⊥Bt+1 = B̂>∗,⊥Bt

(
Ik −

β

n

n∑
i=1

wt,iw
>
t,i

)

+ β
1

n

n∑
i=1

B>∗,⊥
(
Id −Σout

t,i

)
(Btwt,i −B∗w∗,t,i)w

>
t,i︸ ︷︷ ︸

=:E1

+β
1

nmout

n∑
i=1

B>∗,⊥(Xout
t,i )>zoutt,i w>t,i︸ ︷︷ ︸

=:E2

(223)
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Next, we can use the concentration results in Lemma 20 to show that all of the following inequalities hold with probability
at least 1− 1

poly(n)

max
i∈[n]
‖wt,i‖2 ≤ ‖∆t‖2‖wt‖2 + c

√
αLmax + δmin,k‖wt‖2 + c

√
ασδmin,k ≤ c′

√
αLmax + c

√
ασδmin,k

‖E1‖2 ≤ cLmax max
i∈[n]
‖wt,i‖2δ̄mout,d (224)

‖E2‖2 ≤ cσmax
i∈[n]
‖wt,i‖2δ̄mout,d (225)

Thus we have

‖B̂>∗,⊥Bt+1‖2 ≤
∥∥∥∥B̂>∗,⊥Bt(Ik −

β

n

n∑
i=1

wt,iw
>
t,i)

∥∥∥∥
2

+ β
√
αζ4

where ζ4 = O((Lmax +σ)(Lmax +σδmin,k)δ̄mout,d) with probability at least 1− 1
poly(n) . Next, recall from Lemma 29 that

σmax

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≤ L2 := 2

(
‖∆t‖2‖wt‖2 +

√
αL∗ + δmin,k(‖wt‖2 +

√
αLmax +

√
ασ)

)2
σmin

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≥ µ2 := 0.9αE0µ

2
∗ − 2.2

√
α‖wt‖2‖∆t‖2η∗

− 2‖∆t‖2‖wt‖2δ̄min,k(‖wt‖2 +
√
αLmax +

√
ασ)

− 2.2
√
αδ̄min,k(‖wt‖2 +

√
αL∗ +

√
ασ)Lmax

with probability at least 1− 1
poly(n) . Apply inductive hypotheses A1(t) and A3(t) to obtain

σmax

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≤ 4αL2

∗ + 4α(Lmax + σ)2δ2
min,k ≤ 12αL2

∗

by choice of min = Ω((k + log(n))(Lmax + σ)2) . This means that we have β ≤ σmax

(
1
n

∑n
i=1 wt,iw

>
t,i

)−1
since we

have chosen β = O(ακ−4
∗ ). Also, we have

σmin

(
1

n

n∑
i=1

wt,iw
>
t,i

)
≥ 0.8αE0µ

2
∗ − 2.3αLmax(Lmax + σ)δ̄min,k ≥ 0.5αE0µ

2
∗ (226)

where the last inequality follows since min = Ω
(
k2

n (kκ4
∗ + κ2

∗σ
2µ−2
∗ )
)

, recalling that Lmax ≤ c
√
kL∗. Thus, using the

above and Weyl’s inequality with β ≤ σmax

(
1
n

∑n
i=1 wt,iw

>
t,i

)−1
, we obtain:

‖B̂>∗,⊥Bt+1‖2 ≤
∥∥∥∥B̂>∗,⊥Bt

∥∥∥∥
2

(1− 0.5βαE0α
2) + β

√
αζ4 (227)

E.3. Exact ANIL

Lemma 30 (Exact ANIL FS representation concentration I). For Exact ANIL, consider any t ∈ [T ]. With probability at
least 1− 1

poly(n) −
1

poly(min) − ce
−90k,

‖ĜB,t −GB,t‖2 =
√
αζ2,a, (228)



MAML and ANIL Provably Learn Representations

where

ζ2,a = O

((
1

min

(
(Lmax+σ)L∗

κ2
∗

)
+ 1√

min

(
Lmax(Lmax + σ)(

√
k +

√
log(n))

)
+ 1√

mout

(
Lmax(Lmax + σ)(

√
k +

√
log(n))

)
+ 1√

nmin

(
Lmax(Lmax + σ)(k

√
d log(nmin) + k log(nmin) +

√
d log1.5(nmin) + log2(nmin))

+ σ2(
√
kd+

√
d log(nmin) + log1.5(nmin)) + Lmax(Lmax + σ)

√
d

)
+ 1√

nmout

(
Lmax(Lmax + σ)

√
d+ σ2(

√
d√
min

+
√
k)

)))

Proof. Let qt,i := Btwt −B∗w∗,t,i. First recall that ĜB,t = 1
n

∑n
i=1∇BF̂t,i(Bt,wt), where

∇BF̂t,i(Bt,wt) = (∆̄
in
t,i)
> 1
mout

(Xout
t,i )>v̂t,iw

>
t − α 1

mout
(Xout

t,i )>v̂t,iq
>
t,iΣ

in
t,iBt

− αΣin
t,iqt,iv̂

>
t,i

1
mout

Xout
t,i Bt + α2

minmout
(Xout

t,i )>v̂t,i(z
in
t,i)
>Xin

t,iBt

+ α2

minmout
(Xin

t,i)
>zint,iv̂

>
t,iX

out
t,i Bt

where v̂t,i = Xout
t,i ∆̄

in
t,iqt,i + α

min
Xout
t,i BtB

>
t Xin

t,iz
in
t,i − zoutt,i . Also, GB,t = 1

n

∑n
i=1∇BFt,i(Bt,wt), where

∇BFt,i(Bt,wt) = ∆̄tvt,iw
>
t − αvt,iq

>
t,iBt − αqt,iv

>
t,iBt

and vt,i = ∆̄tqt,i. Thus,

‖ĜB,t −GB,t‖2

≤
∥∥∥∥ 1

n

n∑
i=1

(∆̄
in
t,i)
> 1
mout

X>t,iv̂t,iw
>
t − ∆̄tvt,iw

>
t︸ ︷︷ ︸

=:E1

∥∥∥∥
2

+ α

∥∥∥∥ 1

n

n∑
i=1

1
mout

(Xout
t,i )>v̂t,iq

>
t,iΣ

in
t,iBt − vt,iq

>
t,iBt︸ ︷︷ ︸

=:E2

∥∥∥∥
2

+ α

∥∥∥∥ 1

n

n∑
i=1

Σin
t,iqt,iv̂

>
t,i

1
mout

Xout
t,i Bt − qt,iv

>
t,iBt︸ ︷︷ ︸

=:E3

∥∥∥∥
2

+ α

∥∥∥∥ 1

nminmout

n∑
i=1

(Xout
t,i )>v̂t,i(z

in
t,i)
>Xin

t,iBt︸ ︷︷ ︸
=:E4

∥∥∥∥
2

+ α

∥∥∥∥ 1

nminmout

n∑
i=1

(Xin
t,i)
>zint,iv̂

>
t,iX

out
t,i Bt︸ ︷︷ ︸

=:E5

∥∥∥∥
2

(229)

We will further decompose each of the above terms into terms for which we can apply concentration results from Lemmas
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20 and 21. First we bound ‖E1‖2. We have

‖E1‖2 =

∥∥∥∥ 1

n

n∑
i=1

(∆̄
in
t,i)
> 1
mout

X>t,iv̂t,iw
>
t − ∆̄tvt,iw

>
t

∥∥∥∥
2

=

∥∥∥∥ 1

n

n∑
i=1

(∆̄
in
t,i)
>Σout

t,i ∆̄
in
t,iqt,iw

>
t − ∆̄t∆̄tqt,iw

>
t

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

α

min
(∆̄

in
t,i)
>Σout

t,i BtB
>
t (Xin

t,i)
>zint,iw

>
t

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

(∆̄
in
t,i)
> 1
mout

(Xout
t,i )>zoutt,i w>t

∥∥∥∥
2

≤
∥∥∥∥ 1

n

n∑
i=1

Σout
t,i qt,iw

>
t − qt,iw

>
t︸ ︷︷ ︸

=:E1,1

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

αΣin
t,iBtB

>
t Σout

t,i qt,iw
>
t − αBtB

>
t qt,iw

>
t︸ ︷︷ ︸

=:E1,2

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

αΣout
t,i BtB

>
t Σin

t,iqt,iw
>
t − αBtB

>
t qt,iw

>
t︸ ︷︷ ︸

=:E1,3

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

α2Σin
t,iBtB

>
t Σout

t,i BtB
>
t Σin

t,iqt,iw
>
t − α2BtB

>
t BtB

>
t qt,iw

>
t︸ ︷︷ ︸

=:E1,4

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

α

min
Σout
t,i BtB

>
t (Xin

t,i)
>zint,iw

>
t︸ ︷︷ ︸

=:E1,5

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

α2

min
Σin
t,iBtB

>
t Σout

t,i BtB
>
t (Xin

t,i)
>zint,iw

>
t︸ ︷︷ ︸

=:E1,6

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

1
mout

(Xout
t,i )>zoutt,i w>t︸ ︷︷ ︸

=:E1,7

∥∥∥∥
2

+ α

∥∥∥∥ 1

n

n∑
i=1

Σin
t,iBtB

>
t

1
mout

(Xout
t,i )>zoutt,i w>t︸ ︷︷ ︸

=:E1,8

∥∥∥∥
2

Note that after factoring out trailing wt’s where necessary, each of the above matrices is in the form that is bounded in Lemma
20 or Lemma 21. We apply the bounds from those lemmas and use α‖Bt‖22 = O(1), ‖wt‖2 = O(

√
αmin(1, η2

∗/µ
2
∗)η∗),

and maxi∈[n] ‖qt,i‖2 = O(Lmax) to obtain that each of the following bounds hold with probability at least 1− 1
poly(n) −

1
poly(min) − c

′e−90k, for some absolute constants c, c′.

‖E1,1‖2 ≤ c
√
αLmaxL∗

κ2
∗

δ̄mout,d

‖E1,2‖2 + ‖E1,3‖2 ≤ c
√
αLmaxL∗

κ2
∗

(δ̄mout,d + δ̄min,d)

‖E1,4‖2 ≤ c
√
αLmaxL∗

κ2
∗

(
k
√
d log(nmin)+

√
d log1.5(nmin)+log2(nmin)
√
nmin

+ 1+C2k
min

+ δ̄mout,k

)
‖E1,5‖2 ≤ c

√
ασL∗κ2

∗
δmin,k

‖E1,6‖2 ≤ c
√
ασL∗κ2

∗

(
k
√
d log(nmin)+

√
d log1.5(nmin)+log2(nmin)
√
nmin

+ δ̄mout,k

)
‖E1,7‖2 ≤ c

√
ασL∗κ2

∗
δ̄mout,d

‖E1,8‖2 ≤ c
√
ασL∗κ2

∗
δmout,k (230)
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For ‖E2‖2, we have

‖E2‖2 ≤
∥∥∥∥ 1

n

n∑
i=1

Σout
t,i ∆̄

in
t,iqt,iq

>
t,iΣ

in
t,iBt − ∆̄tqt,iq

>
t,iBt

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

Σout
t,i

α
min

BtB
>
t (Xin

t,i)
>zint,iq

>
t,iΣ

in
t,iBt

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

1
mout

(Xout
t,i )>zoutt,i q>t,iΣ

in
t,iBt

∥∥∥∥
2

≤
∥∥∥∥ 1

n

n∑
i=1

Σout
t,i qt,iq

>
t,iΣ

in
t,iBt − qt,iq

>
t,iBt︸ ︷︷ ︸

=:E2,1

∥∥∥∥
2

+ α

∥∥∥∥ 1

n

n∑
i=1

Σout
t,i BtB

>
t Σin

t,iqt,iq
>
t,iΣ

in
t,iBt −BtB

>
t qt,iq

>
t,iBt︸ ︷︷ ︸

=:E2,2

∥∥∥∥
2

+ α

∥∥∥∥ 1

n

n∑
i=1

Σout
t,i BtB

>
t

1
min

(Xin
t,i)
>zint,iq

>
t,iΣ

in
t,iBt︸ ︷︷ ︸

=:E2,3

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

1
mout

(Xout
t,i )>zoutt,i q>t,iΣ

in
t,iBt︸ ︷︷ ︸

=:E2,4

∥∥∥∥
2

As before, we apply the bounds from Lemmas 20 and 21 and use α‖Bt‖22 = O(1), ‖wt‖2 = O(
√
αη∗/κ

2
∗), and

maxi∈[n] ‖qt,i‖2 = O(Lmax) to obtain that each of the following bounds hold with probability at least 1 − 1
poly(n) −

1
poly(min) − c

′e−90k, for some absolute constants c, c′.

‖E2,1‖2 ≤ cL2
max√
α

(δ̄mout,d + δmin,k)

‖E2,2‖2 ≤ cL2
max√
α

(δ̄mout,d + δmin,k)

‖E2,3‖2 ≤ cLmaxσ√
α

δmin,k

‖E2,4‖2 ≤ cLmaxσ√
α

δ̄mout,d

For ‖E3‖2, we have

‖E3‖2 ≤
∥∥∥∥ 1

n

n∑
i=1

Σin
t,iqt,iq

>
t,i(∆̄

in
t,i)
>Σout

t,i Bt − qt,iq
>
t,i∆̄tBt

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

Σin
t,iqt,i

α
min

(zint,i)
>(Xin

t,i)BtB
>
t Σout

t,i Bt

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

Σin
t,iqt,i

1
mout

(zoutt,i )>Xout
t,i Bt

∥∥∥∥
2

≤
∥∥∥∥ 1

n

n∑
i=1

Σin
t,iqt,iq

>
t,iΣ

out
t,i Bt − qt,iq

>
t,iBt︸ ︷︷ ︸

=:E3,1

∥∥∥∥
2

+

∥∥∥∥ αn
n∑
i=1

Σin
t,iqt,iq

>
t,iΣ

in
t,iBtB

>
t Σout

t,i Bt − qt,iq
>
t,i∆̄tBt︸ ︷︷ ︸

=:E3,2

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

Σin
t,iqt,i

α
min

(zint,i)
>(Xin

t,i)BtB
>
t Σout

t,i Bt︸ ︷︷ ︸
=:E3,3

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

Σin
t,iqt,i

1
mout

(zoutt,i )>Xout
t,i Bt︸ ︷︷ ︸

=:E3,4

∥∥∥∥
2
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Each term is bounded as follows with probability at least 1− 1
poly(n) −

1
poly(min) − c

′e−90k, for some absolute constants
c, c′.

‖E3,1‖2 ≤ cL2
max√
α

(δ̄min,d + δmout,k)

‖E3,2‖2 ≤ cL2
max√
α

(√
kd log(nmin)+

√
k log(nmin)+

√
d log1.5(nmin)+log2(nmin)

√
nmin

+
√
k√

nmout

)
‖E3,3‖2 ≤ cLmaxσ√

α

(
k
√
d log(nmin)+k log(nmin)+

√
d log1.5(nmin)+log2(nmin)

√
nmin

+
√
k√

nmout

)
‖E3,4‖2 ≤ cLmaxσ√

α
δmout,k

For ‖E4‖2, we have

‖E4‖2 ≤
∥∥∥∥ 1

nmin

n∑
i=1

Σout
t,i ∆̄

in
t,iqt,i(z

in
t,i)
>Xin

t,iBt

∥∥∥∥
2

+ α

∥∥∥∥ 1

n

n∑
i=1

Σout
t,i BtB

>
t

1
m2

in
(Xin

t,i)
>zint,i(z

in
t,i)
>Xin

t,iBt

∥∥∥∥
2

+

∥∥∥∥ 1

nminmout

n∑
i=1

(Xout
t,i )>zoutt,i (zint,i)

>Xin
t,iBt

∥∥∥∥
2

≤
∥∥∥∥ 1

nmin

n∑
i=1

Σout
t,i qt,i(z

in
t,i)
>Xin

t,iBt︸ ︷︷ ︸
=:E4,1

∥∥∥∥
2

+ α

∥∥∥∥ 1

nmin

n∑
i=1

Σout
t,i BtB

>
t Σin

t,iqt,i(z
in
t,i)
>Xin

t,iBt︸ ︷︷ ︸
=:E4,2

∥∥∥∥
2

+ α

∥∥∥∥ 1

n

n∑
i=1

Σout
t,i BtB

>
t

1
m2

in
(Xin

t,i)
>zint,i(z

in
t,i)
>Xin

t,iBt︸ ︷︷ ︸
=:E4,3

∥∥∥∥
2

+

∥∥∥∥ 1

nminmout

n∑
i=1

(Xout
t,i )>zoutt,i (zint,i)

>Xin
t,iBt︸ ︷︷ ︸

=:E4,4

∥∥∥∥
2

Each term is bounded as follows with probability at least 1− 1
poly(n) −

1
poly(min) − c

′e−90k, for some absolute constants
c, c′.

‖E4,1‖2 ≤ cLmaxσ√
α

δmin,k

‖E4,2‖2 ≤ cLmaxσ√
α

δmin,k

‖E4,3‖2 ≤ cσ2
√
α
δ2
min,k

‖E4,4‖2 ≤ cσ2
√
α
δ̄mout,dδmin,k

For ‖E5‖2, we have

‖E5‖2 ≤
∥∥∥∥ 1

nmin

n∑
i=1

(Xin
t,i)
>zint,iq

>
t,iΣ

out
t,i Bt︸ ︷︷ ︸

=:E5,1

∥∥∥∥
2

+

∥∥∥∥ α

nmin

n∑
i=1

(Xin
t,i)
>zint,iq

>
t,iΣ

in
t,iBtB

>
t Σout

t,i Bt︸ ︷︷ ︸
=:E5,2

∥∥∥∥
2

+

∥∥∥∥ α

nm2
in

n∑
i=1

(Xin
t,i)
>zint,i(z

in
t,i)
>Xin

t,iBtB
>
t Σout

t,i Bt︸ ︷︷ ︸
=:E5,3

∥∥∥∥
2

+

∥∥∥∥ 1

nminmout

n∑
i=1

(Xin
t,i)
>zint,i(z

out
t,i )>Xout

t,i Bt︸ ︷︷ ︸
=:E5,4

∥∥∥∥
2

Each term is bounded as follows with probability at least 1− 1
poly(n) −

1
poly(min) − c

′e−90k, for some absolute constants
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c, c′.

‖E5,1‖2 ≤ cLmaxσ√
α

δ̄min,d

‖E5,2‖2 ≤ cLmaxσ√
α

(√
kd log(nmin)+

√
d log1.5(nmin)+log2(nmin)√
nmin

+
√
k√

nmout

)
‖E5,3‖2 ≤ cσ2

√
α

(√
kd
√

log(nmin)+
√
d log(nmin)+log1.5(nmin)
√
nmin

+
√
k√

nmout

)
‖E5,4‖2 ≤ cσ2

√
α
δ̄min,dδmout,k

Applying a union bound over these events yields that

‖ĜB,t −GB,t‖2

≤ c
√
α

(
1

min

(
kLmaxL∗

κ2
∗

)
+ 1√

min

(
Lmax(Lmax + σ)(

√
k +

√
log(n))

)
+ 1√

mout

(
Lmax(Lmax + σ)(

√
k +

√
log(n))

)
+ 1√

nmin

(
Lmax(Lmax + σ)(k

√
d log(nmin) + k log(nmin) +

√
d log1.5(nmin) + log2(nmin))

+ σ2(
√
kd+

√
d log(nmin) + log1.5(nmin))

)
+ 1√

nmout

(
Lmax(Lmax + σ)

√
d+ σ2(

√
d√
min

+
√
k)

))
:=
√
αζ2,a

with probability at least 1− 1
poly(n) −

1
poly(min) − c

′e−90k for absolute constants c, c′.

Lemma 31 (Exact ANIL FS representation concentration II). For Exact ANIL, consider any t ∈ [T ]. With probability at
least 1− ce−100k − 1

poly(n) for an absolute constant c:

‖B>t ĜB,t −B>t GB,t‖2 ≤ ζ2,b

where

ζ2,b := O

(√
k+
√

log(n)
√
min

(
Lmax(Lmax + σ) + σ2(

√
k+
√

log(n)
√
min

+
√
k√

nmout
)
)

+
√
k√

nmout

(
Lmax(Lmax + σ)

))
. (231)

Proof. We adapt the proof of Lemma 30. Multiplying ĜB,t−GB,t on the left by B>t serves to reduce the dimensionality
of ĜB,t−GB,t from Rd×k to Rk×k. This means that all of the d dependence in the previous concentration result for
‖ĜB,t−GB,t‖2 is reduced to k. Moreover, we no longer need to apply the complicated bounds on sums of fourth-order
products (Lemma 21) to show concentration at a rate of

√
d√

nmin
, since we can afford to show concentration of each second

order product at a rate
√
k+
√

log(n)
√
min

(see Lemma 20). Finally, we must divide the remaining bound from Lemma 30 by
√
α

since ‖Bt‖2 = Θ( 1√
α

). Making these changes yields the result.

Lemma 32 (Exact ANIL FS head concentration). For Exact ANIL, consider any t ∈ [T ]. With probability at least
1− ce−100k − 1

poly(n) for an absolute constant c, we have

‖Ĝw,t −Gw,t‖2 ≤ 1√
α
ζ1, (232)

where ζ1 = O(
(Lmax+σ)(

√
k+
√

log(n))
√
min

+ (Lmax+σ)
√
k√

nmout
).
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Proof. We have:

‖Ĝw,t −Gw,t‖2 =

∥∥∥∥ 1

n

n∑
i=1

B>t (∆̄
in
t,i)
> 1
mout

(Xout
t,i )>v̂t,i − 1

mout
B>t (Xout

t,i )>zoutt,i −B>t ∆̄t∆̄tqt,i

∥∥∥∥
2

≤
∥∥∥∥ 1

n

n∑
i=1

B>t (∆̄
in
t,i)
>Σout

t,i ∆̄
in
t,iqt,i −∆t∆tB

>
t qt,i

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

1
mout

B>t (Xout
t,i )>zoutt,i

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

α
min

B>t (∆̄
in
t,i)
>Σout

t,i BtB
>
t (Xin

t,i)
>zint,i

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

B>t (∆̄
in
t,i)
> 1
mout

(Xout
t,i )>zoutt,i

∥∥∥∥
2

≤
∥∥∥∥ 1

n

n∑
i=1

∆tB
>
t Σout

t,i ∆̄tqt,i −∆tB
>
t ∆̄tqt,i︸ ︷︷ ︸

=:E1

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

1
mout

B>t (Xout
t,i )>zoutt,i︸ ︷︷ ︸

=:E2

∥∥∥∥
2

+

∥∥∥∥ α2

n

n∑
i=1

B>t Σin
t,iBtB

>
t Σout

t,i BtB
>
t Σin

t,iqt,i −
α2

n

n∑
i=1

B>t BtB
>
t Σout

t,i BtB
>
t qt,i︸ ︷︷ ︸

=:E3

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

α
min

B>t ∆̄tΣ
out
t,i BtB

>
t (Xin

t,i)
>zint,i︸ ︷︷ ︸

=:E4

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

α2

min
B>t Σin

t,iBtB
>
t Σout

t,i BtB
>
t (Xin

t,i)
>zint,i︸ ︷︷ ︸

=:E5

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

α2

min
B>t BtB

>
t Σout

t,i BtB
>
t (Xin

t,i)
>zint,i︸ ︷︷ ︸

=:E6

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

B>t ∆̄ 1
mout

(Xout
t,i )>zoutt,i︸ ︷︷ ︸

=:E7

∥∥∥∥
2

+

∥∥∥∥ αn
n∑
i=1

B>t (Σin
t,i − Id)BtB

>
t

1
mout

(Xout
t,i )>zoutt,i︸ ︷︷ ︸

=:E8

∥∥∥∥
2

By Lemma 20 and the facts that ‖Bt‖2 = 1√
α

, ‖∆t‖2 = O(1), and maxi ‖qt,i‖2 = Lmax we have

P(‖E1‖2 ≥ ‖∆t‖2‖Bt‖2 max
i
‖∆̄tqt,i‖2δ̄mout,k) ≤ 2e−90k

P(‖E2‖2 ≥ σ‖Bt‖2δ̄mout,k) ≤ 2e−90k

P(‖E3‖2 ≥ α2‖Bt‖52 max
i
‖qt,i‖2δmin,k ≤ 8n−99

P(‖E4‖2 ≥ α‖Bt‖32σ‖∆t‖2δ̄min,k) ≤ 4n−99

P(‖E5‖2 ≥ α2‖Bt‖52σδmin,k ≤ 6n−99

P(‖E6‖2 ≥ α2‖Bt‖52σδ̄min,k) ≤ 4n−99

P(‖E7‖2 ≥ ‖Bt‖2σ‖∆t‖2δ̄mout,k) ≤ 2e−90k

P(‖E8‖2 ≥ α‖Bt‖32σδmin,k δ̄mout,k) ≤ 2e−90k + 2n−99

Combining these bounds with a union bound yields:

‖Ĝw,t −Gw,t‖2 ≤ c√
α

(Lmax+σ)(
√
k+
√

log(n))
√
min

+ c√
α

(Lmax+σ)
√
k√

nmout
(233)
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with probability at least 1− c′e−90k − 1
poly(n) for absolute constants c, c′.

Lemma 33 (Exact ANIL, Finite samples, A1(t+ 1)). For Exact ANIL, suppose A2(s) and A5(s) hold for all s ∈ [t]. Then

‖wt+1‖2 ≤ 1
10

√
αE0 min

(
1,

µ2
∗
η2∗

)
η∗ (234)

with probability at least 1− ce−100k − 1
poly(n) for an absolute constant c.

Proof. For any s ∈ [t], we have

‖ws+1‖2 = ‖ws − βGw,s + β(Gw,s − Ĝw,s)‖2
≤ ‖ws − βGw,s‖2 + β‖Gw,s − Ĝw,s‖2
≤ ‖ws‖2 + c β√

α
‖∆s‖22η∗ + β‖Gw,s − Ĝw,s‖2 (235)

≤ ‖ws‖2 + c β√
α
‖∆s‖22η∗ + β√

α
ζ1 (236)

where ζ1 is defined as in Lemma 32, (235) follows from equation (60) and (236) follows from Lemma 32. This will allow
us to apply Lemma 3 with ξ1,s = 0 and ξ2,s = cβ√

α
(‖∆s‖22η∗ + ζ1).

Before doing so, let ζ2 be defined as in Lemma 34 and ζ4 := ζ2,a, corresponding to Lemma 35. Observe that for any s ∈ [t],
we can recursively apply A2(s), A2(s− 1), . . . to obtain

‖∆s‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆s−1‖2 + β2α2L4

∗ dist2
s−1 +βαζ2

...

≤
s−1∑
r=1

(1− 0.5βαE0µ
2
∗)
s−1−r(cβ2α2L4

∗ dist2
r +βαζ2)

≤
s−1∑
r=1

(1− 0.5βαE0µ
2
∗)
s−1−r(cβ2α2L4

∗(2ρ
2r + β2αζ2

4 ) + βαζ2)

≤ c′α2β2L4
∗

s∑
r=1

(1− 0.5βαE0µ
2
∗)
s−1−rρ2r + c′α3β4L4

∗

s−1∑
r=1

(1− 0.5βαE0µ
2
∗)
s−1−rζ2

4

+ βα

s−1∑
r=1

(1− 0.5βαE0µ
2
∗)
s−1−rζ2

≤ c′α2β2L4
∗(1− 0.5βαE0µ

2
∗)
s−1

0.5βαµ2
∗

+
c′α3β4L4

∗ζ
2
4

0.5βαµ2
∗

+
βαζ2

0.5βαµ2
∗

≤ c′′αβκ2
∗L

2
∗(1− 0.5βαE0µ

2
∗)
s−1 + c′′α2β3κ2

∗L
2
∗ζ

2
4 +

ζ2
µ2
∗

(237)

Therefore, via Lemma 3,

‖wt+1‖2 ≤
t∑

s=1

c β√
α
‖∆s‖22η∗ + cβ√

α
ζ1

≤ c′
t∑

s=1

β3α1.5L8
∗

E2
0µ

4
∗

(1− 0.5βαE0µ
2
∗)

2s−2η∗ + tβ7α3.5κ4
∗L

4
∗η∗ζ

4
4 + t β√

α
η∗
µ4
∗
ζ2
2 + t β√

α
ζ1

≤ c′′ β
2√αL8

∗
E3

0µ
6
∗
η∗ + c′′tβ7α3.5κ4

∗L
4
∗η∗ζ

4
4 + c′′t β√

α
η∗
µ4
∗
ζ2
2 + c′′t β√

α
ζ1 (238)

≤ c′′′
√
αE0

κ2
∗

min(1,
µ2
∗
η2∗

)η∗ + tβ7α3.5κ4
∗L

4
∗η∗ζ

4
4 + t

√
αE0

L4
∗

min(1,
µ2
∗
η2∗

)η∗ζ
2
2 + t

√
αE0

κ4
∗

min(1,
µ2
∗
η2∗

)ζ1 (239)

≤ c′′′′
(√αE0

κ2
∗

min(1,
µ2
∗
η2∗

)η∗ + t
√
αE0

L4
∗

min(1,
µ2
∗
η2∗

)η∗ζ
2
2,b + tβ2α2.5E0

L4
∗

min(1,
µ2
∗
η2∗

)η∗ζ
4
2,a

+ t
√
αE0

κ4
∗

min(1,
µ2
∗
η2∗

)ζ1
)

(240)



MAML and ANIL Provably Learn Representations

where (238) follows by the sum of a geometric series and (239) follows by choice of β ≤ c
αE2

0

κ4
∗

for a sufficiently small
constant c, (240) follows by using the definitions of ζ4 and ζ2, the numerical inequality (a+b)2 ≤ 2a2 +2b2, and subsuming
the dominated term.

In order for the RHS (240) to be at most
√
αE0

10 min(1,
µ2
∗
η2∗

)η∗, we require the following:

ζ1 ≤ c
T , ζ2,b ≤ L2

∗√
T
, ζ2,a ≤ L∗√

βαT 0.25 (241)

However, from Corollary 4 we require tighter bounds on ζ2,b and ζ2,a when T is small. Accounting for these, it is sufficient
to choose

ζ1 ≤ cκ4
∗η∗
T

ζ2,b ≤ cE0µ
2
∗√
T
,

ζ2,a ≤ c
√
E0µ∗√
βαT 0.25 (242)

We also require mout ≥ ck + c log(n) so that the concentration results hold. This implies that we need

mout ≥ cT 2 k(Lmax+σ)2

nη2∗κ
8
∗

+ cT
kL2

max(Lmax+σ)2

nE2
0µ

4
∗

+ c
√
T βα
E0µ2

∗
(L2

max(Lmax + σ)2(k + log(n)) + (Lmax + σ)4 d
n )

+ ck + c log(n)

For min, we need

min ≥ cT 2 (Lmax+σ)2(k+log(n))
η2∗κ

8
∗

+ cT (Lmax+σ)4(k+log(n))
E2

0µ
4
∗

+ cT 0.25
√
βαLmaxk√
E0κ∗

+ c
√
T
βαL2

max(Lmax+σ)2(k+log(n))
E0µ2

∗
+ c
√
T βα(Lmax+σ)4k2d log(nmin)

nE0µ2
∗

(243)

under the natural assumption that k = Ω(log(nmin)). Note that if min satisfies the above lower bound, this implies
min >> k + log(n), as needed. Using our upper bounds on β and α, replacing Lmax with

√
kL∗, and treating E0 as a

constant gives the final results:

mout ≥ cT 2 k
2(L∗+σ)2

nη2∗κ
8
∗

+ cT
k3κ2
∗(κ

2
∗+σ

2/µ2
∗)

n + c
√
T (k + kd

n + log(n))κ−2
∗ ( σ

2

L2
∗

+ k) + ck + c log(n)

min ≥ cT 2(k2 + k log(n)) (L∗+σ)2

η2∗κ
8
∗

+ cT (k3 + k log(n))(κ4
∗ + σ4

µ4
∗
) + c

√
T k3d log(nmin)

n κ−2
∗ ( σ

2

L2
∗

+ 1)

Lemma 34 (Exact ANIL Finite samples A2(t+ 1)). Suppose the conditions of Theorem 8 are satisfied and A1(t), A3(t)
and A5(t) hold. Then with probability at least 1− ce−90k − 1

poly(n) −
1

poly(min) for an absolute constant c,

‖∆t+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + 5

4β
2α2L4

∗ dist2
t +βαζ2, (244)

ζ2 := 2ζ2,b + βαζ2
2,a, and ζ2,a and ζ2,b are defined in Lemmas 30 and 31, respectively.

Proof. As in Lemma 28, let Bt+1 = Bpop
t+1 + β(GB,t − ĜB,t), and let ∆pop

t+1 = Ik −α(Bpop
t+1)>Bpop

t+1. Note that the bound
from Lemma 10 applies to ‖∆pop

t+1‖2 This results in

‖∆t+1‖2 = ‖∆pop
t+1 − βαB>t (GB,t − ĜB,t)− βα(GB,t − ĜB,t)

>Bt

+ β2α(GB,t − ĜB,t)
>(GB,t − ĜB,t)‖2

≤ ‖∆pop
t+1‖2 + 2βα‖B>t (GB,t − ĜB,t)‖2 + β2α‖GB,t − ĜB,t)‖22

≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + 5

4β
2α2L4

∗ dist2
t +2βα‖B>t (GB,t − ĜB,t)‖2

+ β2α‖GB,t − ĜB,t‖22 (245)

≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + 5

4β
2α2L4

∗ dist2
t +2βαζ2,b + β2α2ζ2

2,a (246)
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where (245) follows from Lemma 10 and (246) ζ2,a and ζ2,b are defined in Lemmas 30 and 31, respectively. Define
ζ2 := 2ζ2,b + βαζ2

2,a to complete the proof.

Corollary 4 (Exact ANIL, Finite samples, A3(t+ 1)). Suppose the conditions of Theorem 8 are satisfied and A2(t+ 1)
and A3(t) hold. Then

‖∆t+1‖2 ≤ 1
10 (247)

Proof. By A2(t+ 1) and A3(t), we have

‖∆t+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖∆t‖2 + 5

4β
2α2L2

∗ dist2
t +2βαζ2,b + β2α2ζ2

2,a

≤ 1
10 − 0.05βαE0µ

2
∗ + 5

4β
2α2L4

∗ + 2βαζ2,b + β2α2ζ2
2,a

≤ 1
10 − 0.04βαE0µ

2
∗ + 2βαζ2,b + β2α2ζ2

2,a (248)

≤ 1
10 (249)

where (248) follows by choice of β = cαE0

κ4
∗

and (249) follows by ζ2,b ≤ cE0µ
2
∗ and ζ2

2,a ≤ c
E0µ

2
∗

βα for a sufficiently small
constant c.

Lemma 35 (Exact-ANIL, Finite samples, A4(t+ 1)). Suppose the conditions of Theorem 8 are satisfied and A1(t), A3(t)
and A5(t) hold. Then A4(t+ 1) holds with high probability , i.e.

‖B>∗,⊥Bt+1‖2 ≤ (1− 0.5βαE0µ
2
∗)‖B>∗,⊥Bt‖2 + β

√
αζ4 (250)

where ζ4 = ζ2,a where ζ2,a is defined in Lemma 30, with probability at least 1 − ce−90k − 1
poly(n) −

1
poly(min) for an

absolute constant c.

Proof. We have

‖B̂>∗,⊥Bt+1‖2 = ‖B̂>∗,⊥(Bt − βGB,t) + βB̂>∗,⊥(GB,t − ĜB,t)‖2
≤ ‖B̂>∗,⊥(Bt − βGB,t)‖2 + β‖GB,t − ĜB,t‖2
≤ (1− 0.5βαE0µ

2
∗)‖B̂>∗,⊥Bt‖2 + β‖GB,t − ĜB,t‖2 (251)

≤ (1− 0.5βαE0µ
2
∗)‖B̂>∗,⊥Bt‖2 + β

√
αζ2,a (252)

where (251) follows by Lemma 12 (note that all the required conditions are satisfied) and (252) holds with probability at
least 1− ce−90k − 1

poly(n) −
1

poly(min) for an absolute constant c according to Lemma 30, where ζ2,a is defined therein.

F. Additional simulation and details
In all experiments, we generated B∗ by sampling a matrix in Rd×k with i.i.d. standard normal elements, then orthogonalizing
this matrix by computing its QR-factorization. The same procedure was used to generate B0 in cases with random
initialization, except that the result of the QR-factorization was scaled by 1√

α
such that ∆0 = 0, and for the case of

methodical initialization (Figure 4 (right)), we initialized with an orthogonalized and scaled linear combination of Gaussian
noise and B∗ such that dist0 ∈ [0.65, 0.7] and ‖∆0‖ = 0. Meanwhile, we set w0 = 0. We used step sizes β = α = 0.05
in all cases for Figure 4, which were tuned optimally. Figure 1 uses the same setting of d = 20, n = k = 3, and Gaussian
ground-truth heads as in Figure 4, except that the mean of the ground-truth heads is shifted to zero. We are therefore able to
use the larger step sizes of α = β = 0.1 and observe faster convergence in this case, as task diversity is larger since the
ground-truth heads are isotropic, and L∗ and Lmax are smaller. Additionally, in Figure 1, Avg. Risk Min. is the algorithm
that tries to minimize Ew∗,t,i [Lt,i(B,w)] via standard mini-batch SGD. It is equivalent to ANIL and MAML with no inner
loop (α = 0). In Figure 3, we use d=100, k=n=5 and α = β = 0.1. All results are averaged over 5 random trials.


