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Abstract
Entropic causal inference is a recent framework
for learning the causal graph between two vari-
ables from observational data by finding the
information-theoretically simplest structural ex-
planation of the data, i.e., the model with smallest
entropy. In our work, we first extend the causal
graph identifiability result in the two-variable set-
ting under relaxed assumptions. We then show
the first identifiability result using the entropic ap-
proach for learning causal graphs with more than
two nodes. Our approach utilizes the property
that ancestrality between a source node and its
descendants can be determined using the bivari-
ate entropic tests. We provide a sound sequential
peeling algorithm for general graphs that relies
on this property. We also propose a heuristic al-
gorithm for small graphs that shows strong em-
pirical performance. We rigorously evaluate the
performance of our algorithms on synthetic data
generated from a variety of models, observing im-
provement over prior work. Finally we test our
algorithms on real-world datasets.

1. Introduction
Causal reasoning is essential for high-quality decision-
making, as, for instance, it improves interpretability and
enables counterfactual reasoning (Athey, 2015; Morgan &
Winship, 2015; Moraffah et al., 2020). By learning the rela-
tionships between causes and effects, we can predict how
various interventions would affect a system. Advances in
causality enable us to better answer questions such as “Why
does this phenomenon occur in the system?” or “What
could happen if the system were perturbed in this particular
way?” Moreover, causal inference methods are being uti-
lized to tackle key challenges for reliability of ML systems,
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such as domain adaptation (Magliacane et al., 2018; Zhang
et al., 2020) and generalization (e.g. via causal transporta-
bility or imputation) (Bareinboim & Pearl, 2012; Pearl &
Bareinboim, 2014; Squires et al., 2020).

Structural causal models (SCMs) represent relationships
in a system of random variables (Pearl, 2009). In particu-
lar, each variable is modeled with a structural equation that
characterizes how the variable is realized. Causal graphs
are directed acyclic graphs (DAGs) that are used to repre-
sent such systems, where nodes and edges correspond to
variables and the causal relations between these variables,
respectively. A variable’s structural equation is a function
of the variable’s corresponding node’s parents in the graph.

Learning such causal graphs can be done through a series of
interventions. However, in many settings it is not possible
to perform such interventions. A large amount of literature
has focused on learning the causal graph from observational
data with additional “faithfulness assumptions” (Spirtes
et al., 2000), though in general it is impossible to fully
learn the causal graph without stronger assumptions on the
generative model. A variety of stronger assumptions and
corresponding methodologies exist in the literature (Shimizu
et al., 2006; Hoyer et al., 2008; Loh & Bühlmann, 2014;
Peters & Bühlmann, 2014). Most of these methods, however,
are limited to continuous variables and thus cannot handle
categorical data, especially in the multivariate setting.

A recent framework explicitly designed to handle cate-
gorical data is entropic causal inference (Kocaoglu et al.,
2017a;b; Compton et al., 2020). At a high level, the un-
derlying assumption of this approach is that true causal
mechanisms in nature are often “simple,” taking inspiration
from the Occam’s razor principle. The authors adopt an
information-theoretic realization of this principle by using
“entropy” to measure the complexity of a causal model. As
we further explore in this work, entropic causal inference
provides a means to measure the amount of randomness
a generative model would require to produce an observed
distribution. As Occam’s razor prefers simpler explana-
tions, entropic causal inference prefers generative models
with small randomness. We do not expect following this
preference to always lead to the discovery of true causal rela-
tionships (just as one does not expect a simpler explanation
to be always be the correct one), but view this as a guiding
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intuition that mirrors nature and experimental observations.
Our experiments on semi-synthetic data demonstrates that
the low-entropy assumption indeed holds in certain settings.

Previously, the framework was applied to discovering the
causal direction between two random variables given that
the amount of randomness in the true causal relationship is
small. We focus on extending this framework to learn larger
causal graphs instead of just cause-effect pairs. Suppose the
observed variables have n states. Our contributions follow:

1. We show pairwise identifiability with strictly relaxed
assumptions compared to the previously known results.
We enable learning the causal graph X → Y from
observational data even when (i) the cause variable X
has low entropy of o(log(n)) and (ii) the exogenous
noise has non-constant entropy, i.e., O(1)≪ H(E) =
o(log log(n)).

2. We show the first identifiability result for causal graphs
with more than two observed variables, with a new
peeling algorithm for general graphs.

3. We propose a heuristic algorithm that searches over all
DAGs and outputs the one that requires the minimum
entropy to fit to the observed distribution.

4. We experimentally evaluate our algorithms and show
that entropic approaches outperform the discrete ad-
ditive noise models in synthetic data. We also apply
our algorithms on semi-synthetic data using the bn-
learn1 repository and demonstrate the applicability of
low-entropy assumptions and the proposed method.

2. Related Work
Learning causal graphs from observational data has been
studied extensively in the case of continuous variables. Loh
& Bühlmann (2014) proposes an algorithm for learning
linear structural causal models when the error variance is
known. Similarly, Peters & Bühlmann (2014) show that
linear models with Gaussian noise become identifiable if the
noise variance is the same for all variables. A more general
modeling assumption is the additive noise model (ANM).
In (Shimizu et al., 2006), the authors show that for almost
all linear causal models, the causal graph is identifiable if
the additive exogenous noise is non-Gaussian.

In the case of discrete and/or categorical variables, causal
discovery literature is much more sparse. (Cai et al., 2018)
introduces a method for categorical cause-effect pairs when
there exists a hidden intermediate representation that is com-
pact. In (Daniusis et al., 2010; Janzing et al., 2015), the
authors propose using an information-geometric approach
called IGCI that is based on independence of cause and the
causal mechanism. However IGCI can provably recover

1https://www.bnlearn.com/bnrepository/

the causal direction only in the case of deterministic rela-
tions. An extension of additive noise models to discrete
data is done in (Peters et al., 2011) where identifiability is
shown between two variables. The authors also propose
using the regression-based algorithm of (Mooij et al., 2009)
(which made continuous domain ANM applicable to ar-
bitrary graphs) for the discrete setting as well. Without
specific assumptions on the graph and the generative mech-
anisms, this is a heuristic algorithm, i.e., identifiability in
polynomial time is not guaranteed by discrete ANM on
graphs with more than two nodes.

One related idea is to use Kolmogorov complexity to de-
termine the simplest causal model (Janzing & Schölkopf,
2010). Minimum-description length has been used as a
substitute for Kolmogorov complexity (which is not com-
putable) in a series of follow-up papers (Budhathoki &
Vreeken, 2017; Marx & Vreeken, 2021). Our extension
of entropic causal inference to graphs can be seen as an
information-theoretic realization of this promise, where the
complexity of the causal model is captured by its entropy.
Other information-theoretic concepts such as interaction
information (Ghassami & Kiyavash, 2017) and directed
information (Etesami & Kiyavash, 2014) have also been
studied in the context of causality.

3. Background and Notation
Causal Graphs and Learning: Consider a causal system
where each variable is generated as a function of a subset
of the rest of the observed variables and some additional
randomness. Such systems are modeled by structural equa-
tions and are called structural causal models (SCMs). Let
X1, X2, . . . , X|V | be the set of observed variables. Accord-
ingly, there exists functions fi and exogenous noise terms
Ei such that Xi = fi(Pai, Ei). This equation in a causal
system should be understood as an assignment operator
since changing Pai affects Xi whereas changing Xi does
not affect Pai. We say the set of variables Pai cause Xi.
A directed acyclic graph (DAG) can be used to summarize
these causal relations, which is called the causal graph. We
denote the causal graph by G = (V, E) where V is the set of
observed nodes and E is the set of directed edges. There are
|V | nodes, X1, X2, . . . , X|V |, where each Xi corresponds
to an observable random variable. Edges are constructed
by adding a directed arrow from every node in the set Pai
to Xi for all i. Pai then becomes the set of parents of Xi

in G. We assume causal sufficiency, i.e., that there are no
unobserved confounders, and that there is no selection bias.
Under these assumptions, Pai ⊥⊥ Ei. Additionally, for sim-
plicity of presentation we denote the number of states of all
variables as n (i.e. |Xi| = n for all i). Note that our proofs
do not require each observed variable to strictly have the
same number of states; we merely need them scale together,

https://www.bnlearn.com/bnrepository/
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i.e. if X1 ∈ [n1] and X2 ∈ [n2] then n1

n2
= Θ(1). All big-o

notation in the paper is relative to n. Our goal is to infer the
directed causal graph from the observed joint distribution
p(X1, X2, . . . , X|V |) using the assumptions of the entropic
causality framework as needed.

Even without making any parametric assumptions, we can
learn some properties of the graph from purely observational
data. Algorithms relying on conditional independence tests
(such as the PC or IC algorithms (Spirtes et al., 2000; Pearl,
2009)) can identify the Markov equivalence class (MEC)
of G, i.e. the set of graphs that produce distributions with
the exact same set of conditional independence relations.
Moreover, a graph’s Markov equivalence class uniquely de-
termines its skeleton (the set of edges, ignoring orientation)
and unshielded colliders (the induced subgraphs of the form
X → Z ← Y ). A Markov equivalence class is summarized
by a mixed graph called the essential graph, which has the
same skeleton and contains a directed edge if all graphs in
the equivalence class orient the edge in the same direction.
All other edges are undirected. The problem of determining
the true causal graph from observational data thus reduces
to orienting these remaining undirected edges, given enough
samples to perform conditional independence tests reliably.

Entropic Causality Framework: Without interventional
data, one needs additional assumptions to refine the graph
structure further than the equivalence class. The key as-
sumption of the entropic causality framework is that, in na-
ture, true causal models are often “simple.” In information-
theoretic terms, this is formalized as the entropy of exoge-
nous variables often being small. Previous work has shown
guarantees for identifying the direction between a causal
pair X,Y where Y = f(X,E), X ⊥⊥ E for some ex-
ogenous variable E from observational data. The work
of (Kocaoglu et al., 2017a) showed that when the support
size of the exogenous variable (i.e. the Renyi-0 entropy
H0(E) = |E|) is small, with probability 1 it is impossible
to factor the model in the reverse direction (as X = g(Y, Ẽ))
with an exogenous variable with small support size (i.e. |Ẽ|
must be large). Thus, one can identify the causal pair direc-
tion by fitting the smallest cardinality exogenous variable
in both directions and checking which direction enables the
smaller cardinality. Kocaoglu et al. (2017a) conjectured that
this approach also would work well for Shannon entropy.
Compton et al. (2020) resolved this conjecture, showing
identifiability for causal pairs under particular generative
assumptions.

Definition 3.1 ((α, β)-support). A discrete random variable
X is said to have (α, β)-support if at least α states of X
have probability of at least β.

(Compton et al., 2020) assumes that the cause variable X
has (Ω(n),Ω( 1n ))-support and that the Shannon entropy of
the exogenous variable (i.e. H(E) = H1(E)) is small. In

this paper, we say an event holds “with high probability”
if the probability of the event not holding is bounded by
O
(

1
nα

)
for any constant α > 0. (Compton et al., 2020)

showed that when H(E) = O(1), H(Ẽ) = Ω(log(log(n)))
with high probability. The high probability statement is with
respect to the selection of the function f , i.e., for all but a
vanishing (in n) fraction of functions f , identifiability holds.
Moreover, they showed that this approach was robust to only
having a polynomial number of samples, whereas the result
of (Kocaoglu et al., 2017a) that assumed small |E| required
knowing the exact joint distribution, e.g. from an oracle or
infinite samples.

Algorithmically, one can provably orient causal pairs un-
der the assumptions of (Compton et al., 2020) by com-
paring the minimum entropy exogenous variable needed
to factor the pair in both directions (i.e. comparing the
minimum H(E) for which there exists a function f and
E ⊥⊥ X such that Y = f(X,E), and the analogous quan-
tity minimizing H(Ẽ)). Finding this minimum entropy
exogenous variable is an optimization problem equivalent
to the minimum-entropy coupling problem for the condi-
tionals, specifically, the minimum H(E) in the direction
X → Y is the same as the minimum-entropy coupling for
[(Y |X = i)],∀i ∈ [n] (Kocaoglu et al., 2017a; Cicalese
et al., 2017; Painsky et al., 2019). Accordingly, we denote
the entropy of the minimum-entropy coupling for a vari-
able X conditioned on a set S as MEC(X|S). Compton
et al. (2020) showed MEC(Y |X) < MEC(X|Y ) with high
probability.

4. Tightening the Entropic Identifiability
Result for Cause-Effect Pairs

In this work, we leverage results for the bivariate entropic
causality setting to learn general graphs. Theorem 1 of
(Compton et al., 2020) provides identifiability guarantees
in the bivariate setting. However, the assumptions of their
theorem are not general enough to imply an identifiability
result on graphs with more than 2 nodes. Specifically, a
fundamental challenge in applying bivariate causality to
discover each edge in a larger graph is confounding due
to the other variables, i.e., when one considers a pair of
variables, the remaining variables act as confounders. These
confounders cannot be controlled for since we do not know
the causal graph and conditioning on other variables un-
knowingly creates additional dependencies. One natural
approach to handle confounding is to recursively discover
source nodes by conditioning on the common causes that
are discovered so far in the graph. This idea will form
the basis for our peeling algorithm to be proposed in Sec-
tion 5.1. We are interested in learning graphs where the
exogenous variable for every node has small entropy (in
particular, H(Ei) = o(log(log(n)))). When conditioning
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on the source nodes, some nodes X (e.g. the children of
the source nodes) will thus have conditional entropies of
order H(X|sources) = o(log(log(n))) since for the chil-
dren of source nodes, the only remaining randomness on
X will be due to the low-entropy exogenous variable. This
creates problems when attempting to orient edges connected
to these variables conditioned on the source nodes. Specifi-
cally, Theorem 1 of Compton et al. (2020) requires the cause
variable X to have (Ω(n),Ω( 1n ))-support which enforces
H(X) = Ω(log(n)) – and this is not satisfied for the above
nodes with o(log(log(n))) entropy.

In the following bivariate result, we instead only require
(Ω(n),Ω( 1

n log(n) ))-support, and simultaneously relax the
exogenous variable constraint from H(E) = O(1) to
H(E) = o(log(log(n))). This condition can be satisfied
for X with H(X) = O(1) as needed.
Theorem 4.1. Consider the SCM Y = f(X,E), X ⊥⊥ E,
where X,Y ∈ [n], E ∈ [m]. Suppose E is any random
variable with entropy H(E) = o(log(log(n))). Let X have
(Ω(n),Ω( 1

n log(n) ))-support. Let f be sampled uniformly
randomly from all mappings f : [n]× [m]→ [n]. Suppose
n is sufficiently large. Then, with high probability, any Ẽ
that satisfies X = g(Y, Ẽ), Ẽ ⊥⊥ Y for some g, entails
H(Ẽ)≥Ω(log(log(n))).

While interesting in its own right, we apply this tightened
bivariate identifiability result to the general graph case in
Section 5. Note that the assumption of a uniformly random
f (also used in (Compton et al., 2020), (Kocaoglu et al.,
2017a)) is not meant as a description of how nature gen-
erates causal functions, but as the least-restrictive option
for putting a measure on the space of possible functions
so that high-probability statements can be made rigorously.
Theorem 4.1 can be immediately adapted to any alternative
distribution on the space of f that does not assign any indi-
vidual value of f probability mass more than nc′ times the
probability mass assigned by the uniform distribution, for
some constant c′.

Proof overview for Theorem 4.1. Here we provide the
intuition behind the proof strategy, the full proof is given in
Appendix A. It is simple to show that the minimum entropy
required to fit the function in the incorrect direction, H(Ẽ),
is lower-bounded as H(Ẽ) ≥ maxy H(X|Y = y). The
overarching goal of our proof method is then to show that
there exists a state y′ of Y such that H(X|Y = y′) =
Ω(log(log(n))).

To accomplish this, we start by showing that the
(Ω(n),Ω( 1

n log(n) ))-support of X implies existence of a
subset S of Ω(n) states of X that each have probability
Ω( 1

n log(n) ) and are all relatively close in probability to each
other. We call this subset S, the plateau states. If one envi-
sions them as adjacent in the PMF of X , these states would

have similar heights and thus look like a plateau.

Now, we conceptualize the realization of f as a balls-and-
bins game, where each element of X×E (a ball) is mapped
i.i.d. uniformly randomly to a state of Y (a bin). Using
balls-and-bins arguments, it is our hope to show that there
is a bin that receives Ω( log(n)

log(log(n)) ) plateau balls of the
form (X ∈ S,E = e1), where e1 is the most probable
state of E, and that this will cause the corresponding con-
ditional distribution to have large entropy. The primary
intuition is that a bin receiving many plateau balls would
cause the corresponding conditional distribution to have
many plateau states that all have near-uniform probabilities,
and this near-uniform subset of the conditional distribution
would contribute a significant fraction of the probability
mass to guarantee that its entropy is large. With the stronger
assumptions on (α, β)-support by (Compton et al., 2020),
this proof method suffices. However, as we are assuming
a weaker notion of (α, β)-support, it is not clear that the
plateau balls would make up a significant fraction of the
conditional’s mass to guarantee large entropy.

In a sense, the plateau balls are probability masses that are
“helping” us make some conditional entropy large. The
proof of (Compton et al., 2020) takes the perspective that all
remaining mass from non-plateau states are “hurting” our
effort to make a conditional distribution with large entropy.
To accommodate our relaxed assumptions, we take a more
nuanced perspective on helpful and hurtful mass. Consider
a non-plateau state x of X that contributes a small amount
of mass towards the conditional distribution corresponding
to a state y of Y . With the perspective of (Compton et al.,
2020), this would be viewed as hurtful mass because it is
from a non-plateau state of X . But intuitively, in terms of
its contribution to H(X|Y = y), it does not matter whether
x is a plateau state or not. Through careful analysis, we
can show that if P (X = x|Y = y) is small then they are
not “too hurtful.” We follow this intuition to make a new
definition of the good mass, where we set a threshold T ,
define the first T mass we receive from a non-plateau state
of X as helpful mass for the state of Y , and the surplus
beyond T from the non-plateau state of X as hurtful mass
for the state of Y . As before, all mass from plateau states
will be helpful. With this new perspective and a careful
analysis, we show that there is a state y′ that receives many
plateau balls, and has much more helpful mass than hurtful
mass. This then enables us to show that H(X|Y = y′) is
large, proving the theorem.

5. Learning Graphs via Entropic Causality
Now, we focus on how to leverage the capability of correctly
orienting causal pairs to learn causal graphs exactly. In com-
parison, traditional structure learning methods only learn the
Markov equivalence class of graphs from observational data.
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For example, given the line graph X → Y → Z, such meth-
ods would deduce the true graph is either X → Y → Z or
X ← Y ← Z, but not that it is exactly X → Y → Z.

As was discussed in Section 3, learning the entire graph can
be reduced to correctly orienting each edge in the skeleton.
However, we cannot naively use a pairwise algorithm, as
the rest of the observed variables can act as confounders.
We examine how different pairwise oracles can enable us to
characterize the value of using minimum entropy couplings
to learn causal graphs. One example of a natural-feeling
oracle is one that can correctly orient any edges that have
no active confounding. Such an oracle enables learning
of directed trees and complete graphs. However, it cannot
be used to learn all general graphs (see Appendix C for
an example). We propose an alternative oracle, that can
distinguish between a source node and any node it can reach:
Definition 5.1 (Source-pathwise oracle). A source-pathwise
oracle for a DAG G always orients A→ B if A is a source
and there exists a directed path from A to B in G.

Let us formalize our entropic method for causal pairs as the
following oracle:
Definition 5.2 (MEC oracle). A minimum entropy cou-
pling (MEC) oracle returns X → Y if MEC(Y |X) <
MEC(X|Y ) and X ← Y otherwise, given the joint dis-
tribution p(X,Y ).

We aim to show that our MEC oracle is a source-pathwise
oracle for graphs with the following assumptions:
Assumption 5.3 (Low-entropy assumption). Consider an
SCM where Xi = fi(Pai, Ei),Pai ⊥⊥ Ei,∀i, where
Xi ∈ [n], Ei ∈ [m]. Suppose |V | = O(1), H(Ei) =
o(log(log(n))) and Ei has (Ω(n),Ω( 1

n log(n) ))-support for
all i, and fi are sampled uniformly randomly from all map-
pings fi : [m]×[n]|Pai|→ [n].

We are now ready to show the main result of our paper.
We show that, under certain generative model assumptions,
applying entropic causality on pairs of observed variables
acts as a source-pathwise oracle for DAGs:
Theorem 5.4. For any SCM under Assumption 5.3, the
MEC oracle is a source-pathwise oracle for the causal graph
with high probability for sufficiently large n.

Characterizing entropic causality as a source-pathwise ora-
cle enables us to identify the true causal graph for general
graphs. We outline the key intuitions of our proof:

Proof overview for Theorem 5.4. Suppose Xsrc is a
source and Y is a node such that there is a path from Xsrc
to Y . To show the MEC oracle is a source-pathwise oracle,
we show that MEC(Xsrc|Y ) > MEC(Y |Xsrc). As in Theo-
rem 4.1, we will accomplish this by showing there is a state
y′ of Y such that H(Xsrc|Y = y′) = Ω(log(log(n))).

We begin by conceptualizing the realization of all fi as
a balls-and-bins game. Every node Xi is a uniformly
random function fi of Pa(Xi) ∪ Ei. Let us define each
ball as the concatenation of X and all Ei other than Esrc.
More formally, we denote each ball as (X = x,E1 =
e1, . . . , Esrc−1 = esrc−1, Esrc+1 = esrc+1, . . . , E|V | =
e|V |), and each ball has a corresponding probability mass
of P (X = x)×Πi ̸=srcP (Ei = ei). To view the realization
of fi as a balls-and-bins game, we consider the nodes in an
arbitrary topological order for the graph. When we process
a node Xi, we group balls according to their configuration
of (Pa(Xi) ∪ Ei). This is because balls with the same con-
figuration correspond to the same cell of the function fi. For
each group of balls that all share the same configuration, we
uniformly randomly sample a state of Xi to assign all the
balls in the group. This is essentially realizing one cell of
fi. Groups are assigned independently of other groups. In
this sense, each realization of fi is a balls-and-bins game
where we group balls by their configuration, and throw them
together into states of Xi (bins).

Let us define plateau balls as those who have a plateau state
of Xsrc and have the most probable state of Ei for every
i ̸= src. As was done in Theorem 4.1, our goal is to show
that there will be a state y′ of Y such that y′ receives many
plateau balls and much more helpful mass than hurtful mass.
However, it is not immediately clear how to show this in the
graph setting. For intuition, we explore two special cases.

Consider the case of a line graph (Figure 1(a)). For simplic-
ity of this proof overview, assume all Xi other than Xsrc are
deterministic functions of their parents (i.e., H(Ei) = 0).
Using techniques similar to Theorem 4.1, we can show there
are many bins of X2 that receive many plateau balls and
much more helpful mass than hurtful mass. Moreover, we
can then use similar techniques to show a non-negligible
proportion of those bins will have their corresponding balls
mapped together to a bin of X3 where it does not encounter
much hurtful mass. We can repeat this argument again to
show some of these desirable bins “survive” from X3 to
Y . While only a scalingly small fraction of these desirable
bins “survive” each level, this still ensures the survival of at
least one bin if the number of vertices is constant. This will
accomplish our goal of having a state y′ of Y with many
plateau balls and much more helpful mass than hurtful mass.

On the other hand, consider the case of a diamond graph
in Figure 1(b). Again, assume for simplicity that all Xi

other than Xsrc are deterministic functions of their parents.
Note that when we realize fY , two balls are always mapped
independently unless they share the same configuration of
Pa(Y ) = {X2, X3}. We observe that X2 and X3 are both
independent deterministic functions of Xsrc. Accordingly,
the probability of two particular states x, x′ ∈ Xsrc sat-
isfying f2(x) = f2(x

′) and f3(x) = f3(x
′) is equal to
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Figure 1. Graphs colored according to the Random Function Graph Decomposition (Definition 5.5) used in the proof of Theorem 5.4.

1
n2 . Therefore, almost all pairs of balls are mapped to
Y from Xsrc independently. Since everything is almost-
independently mapped to Y , we can treat it like a bivariate
problem and use techniques similar to Theorem 4.1.

We are able to prove correctness for both of these graphs,
but we do so in ways that are essentially opposite. For
the line graph, we utilize strong dependence as bins with
desired properties “survive” throughout the graph. For the
diamond graph, we utilize strong independence as balls are
all mapped to Y essentially independently. To combine the
intuitions of these two cases into a more general proof, we
introduce the Random Function Graph Decomposition:

Algorithm 1 Learning general graphs with oracle
1: R← {1, . . . , |V |} {set of remaining nodes}
2: I ← ∅ {set of pairs found to be conditionally independent}
3: T ← [ ] {list of nodes in topological order}
4: while |R| > 0 do
5: N ← ∅ {set of nodes discovered as non-sources}
6: C ← {1, . . . , |V |}\R {condition on previous sources}
7: for all (Xi, Xj) ∈ {R×R} do
8: if Xi /∈ N and Xj /∈ N and (Xi, Xj) /∈ I then
9: if CI(Xi, Xj |C) then

10: I ← I ∪ (Xi, Xj)
11: else if Oracle(Xi, Xj |C) orients Xi → Xj then
12: N ← N ∪ {Xj} {Xj is not a source}
13: else
14: N ← N ∪ {Xi} {Xi is not a source}
15: end if
16: end if
17: end for
18: S ← R\N {the remaining nodes that are a source}
19: R← R\S {remove sources from remaining nodes}
20: for all Xi ∈ S do
21: append Xi to T
22: end for
23: end while{Now, T is a valid topological ordering}
24: for all (i, j) ∈ {1, . . . , |V |}2 where i < j do
25: if CI(T (i), T (j)|{T (1), . . . , T (j − 1)}\T (i)) then
26: no edge between T (i) and T (j)
27: else
28: orient T (i)→ T (j)
29: end if
30: end for

Definition 5.5 (Random Function Graph Decomposition).
Given a DAG and a pair of nodes (Xsrc, Y ), Random Func-
tion Graph Decomposition colors the nodes iteratively fol-

lowing any topological order of the nodes as follows:

1. Color the node with a new color if Xsrc is a parent of
the node or if the node has parents of different colors.

2. Color the node with the color of its parents if all of the
node’s parents have the same color.

Using the Random Function Graph Decomposition, we
claim that when a node is assigned a new color as in step
1, we utilize independence as in the diamond graph (Figure
1(b)), and when a node inherits its color as in step 2 we
utilize dependence as in the line graph in Figure 1(a). We
illustrate Figure 1(c) as an example. With a careful analy-
sis, we utilize these intuitions to prove the MEC oracle is a
source-pathwise oracle with high probability.

5.1. Peeling Algorithm for Learning Graphs

In the previous section, we have shown how entropic causal-
ity can be used as a source-pathwise oracle. Next, we show
how to learn general graphs with a source-pathwise oracle.
Our algorithm will iteratively determine the graph’s sources,
condition on the discovered sources, determine the graph’s
sources after conditioning, and so on. Doing this will en-
able us to find a valid lexicographical ordering of the graph.
Given a lexicographical ordering, we can learn the skeleton
with O(n2) conditional independence tests.

Now, we outline how we iteratively find the sources. In
each stage, we consider all the remaining nodes as candi-
date sources. It is our goal to remove all non-sources from
our set of candidates. To do this, we iterate over all pairs
of candidates and do a conditional independence test con-
ditioned on the sources that are found so far. If the pair is
conditionally independent, we do nothing. We note that this
will never happen for a pair where one node is a true source
and the other node is reachable from the source through a
directed path: Conditioning on previously found sources
cannot d-separate such paths. Otherwise, the pair is condi-
tionally dependent. We then use the source-pathwise oracle
to orient between the two nodes, and eliminate the sink node
of the orientation as a candidate (i.e., if we orient A→ B,
we eliminate B as a candidate source).
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Figure 2. Performance of methods in the unconstrained setting in the triangle graph X → Y → Z,X → Z: 50 datasets are sampled for
each configuration from the unconstrained model X = f(PaX , EX). The x−axis shows entropy of the exogenous noise. The exogenous
noise of the first variable is fixed to be large (≈ 3.3 bits), hence it is a high entropy source (HES). Entropic methods consistently
outperform the ANM algorithm in almost all regimes.

Suppose two nodes are dependent conditioned on the past
sources. Then either the pair contains a source node and
a descendant of the source node, or it contains two non-
source nodes. In the former case when the pair contains a
source node the source-pathwise oracle will always orient
correctly and the non-source node will be eliminated. In
the latter case when the pair are two non-sources we can
safely eliminate either as a source candidate and accordingly
oracle output is irrelevant. By the end of this elimination
process, we can show that only true sources will remain
as candidates in each step, which enables us to obtain a
valid lexicographical ordering, and thus learn the causal
graph. We summarize this procedure as Algorithm 1. The
following theorem shows the correctness of Algorithm 1
given a source-pathwise oracle:

Theorem 5.6. Algorithm 1 learns any faithful causal graph
D = (V,E) withO(|V |2) calls to a source-pathwise oracle
and O(|V |2) conditional independence tests.

Note that Theorem 5.6 relies on a weaker notion of faith-
fulness in the causal graph. In particular, it purely relies on
Xi and Xj being dependent conditioned on some set S, if
there is a directed path from Xi to Xj (or vice versa) and
S forms a topological prefix of the graph. Note that under
Assumption 5.3 this faithfulness property will hold with
very high probability (at least 1−O

(
1/2Ω(n)

)
)2, meaning

it is not positing any assumption beyond Assumption 5.3.

Finally, we show that we can use entropic causality together
with Algorithm 1 for learning general causal graphs:

2Given the (Ω(n),Ω( 1
n log(n)

))-support for Ei, one can show
that Xi will have a support size of at least Ω(n), with probability at
least 1−O(1/2Ω(n)). The probability of any two particular states
of Xi producing the same conditional distribution of Xj |Xi = xi

is at most 1/n (by considering the realization of the last probability
mass from Xi). Accordingly, the probability of this happening for
Ω(n) states of Xi is bounded by 1/nΩ(n).

Corollary 5.7. For any SCM under Assumption 5.3, using
entropic causality for pairwise comparisons in Algorithm 1
learns, with high probability, the causal graph that is im-
plied by the SCM.

6. Experiments
We first introduce a heuristic that we call the entropic enu-
meration algorithm. In this algorithm, we enumerate over all
possible causal graphs consistent with the skeleton and cal-
culate the minimum entropy needed to generate the observed
distribution from the graph with independent noise at each
node. The minimum entropy needed to generate the joint
distribution with some graph D is

∑
Xi

MEC(Xi|PaD(Xi))
where PaD(Xi) denotes the parents of Xi in D. The graph
requiring the least randomness is then selected.

We are not aware of any provably correct method for
causal discovery between categorical variables that are non-
deterministically related. For discrete variables, the only
such method other than entropic causality is the discrete
additive noise model (Peters et al., 2011). We compare en-
tropic causality to discrete ANM for learning causal graphs,
using the graph extension of ANM proposed by Mooij et al.
(2009). To isolate the role of our algorithms in identifying
causal graphs beyond the equivalence class, we support ev-
ery algorithm in our comparisons with the skeleton of the
true graph (obtainable from conditional independence tests
given enough data). We evaluate performance via the struc-
tural Hamming distance (SHD) from the estimated graph to
the true causal graph. See the Appendix for implementation
details.

Performance on Synthetic Data. Figure 2 compares the
performance of entropic peeling, entropic enumeration and
discrete ANM algorithms for the triangle graph, i.e., the
graph with edges X → Y , Y → Z, and X → Z. Every
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Figure 3. Performance of methods on networks from the bnlearn repository with varying samples: 10 datasets are sampled for each
configuration from the bnlearn network. E.g., entropic enumeration exactly recovers Alarm, no algorithm correctly learns half of Sachs.

datapoint is obtained by averaging the SHD to the graph
for 50 instances of structural models. To ensure that the
entropy of the exogenous nodes are close to the value on the
x-axis, their distributions are sampled from a Dirichlet dis-
tribution with a parameter that is obtained through a binary
search. We observe that the entropic methods consistently
outperform the ANM approach. Importantly, we observe
how entropic methods are able to near-perfectly learn the
exact triangle graph in almost all regimes, even though all
triangle graphs are in the same Markov equivalence class
and thus traditional structure learning algorithms like PC

or GES cannot learn anything. With enough samples, en-
tropic enumeration learns the graph near-perfectly until the
exogenous noise nears log(n), exceeding our theoretical
guarantee of o(log(log(n))). In Figure 2, we fix the source
node to have high entropy. Our motivation is that if all nodes
have essentially zero randomness, then we expect the perfor-
mance of any method to degrade as there is no randomness
in samples to observe causality or faithfulness. In Figure 9
in Appendix, we do not fix a high-entropy source and still
observe that entropic methods outperform ANM in almost
all regimes. Experiments with different and larger graphs
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Figure 4. Performance of methods in the ANM setting on the line graph X → Y → Z: 25 datasets are sampled for each configuration
from the ANM model X = f(PaX) +N . The x−axis shows entropy of the additive noise.

can be seen in the Appendix.

Performance in Discrete Additive Noise Regime. In
Figure 4, we compare the performance of the entropic algo-
rithms and discrete ANM when the true SCM is a discrete
additive noise model. Using the discrete ANM generative
model, we observe that entropic enumeration out-performs
the discrete ANM method with few samples and matches
its performance with many samples. This demonstrates that
even though entropic methods are designed for the general
unconstrained SCM class, they perform similarly to ANM
which was designed specifically for this setting.

Effect of Finite Samples. We observe that entropic meth-
ods, particularly enumeration, work well even in regimes
with low samples. Experiments focusing on the impact of
finite samples can be found in the Appendix.

Performance on Real-World Data. Due to the computa-
tional cost of discrete ANM, we compared entropic causal-
ity against GES and PC algorithms to evaluate how well it
learned real-world causal graphs from the bnlearn repository
beyond their equivalence class. Figure 3 shows performance
on the eight networks we evaluated. Of particular interest
is Figure 3(a), where entropic enumeration almost perfectly
identifies a graph with 46 edges from its skeleton and finite
samples. Again, we do not claim that the assumptions of
entropic causality are universally true in nature, but instead
that there are real settings such as Figure 3(a) where the
framework enables us to learn causal graphs. Our experi-
ments, exceeding our best theoretical guarantees, show that
even when the number of nodes is the same as the number of
states, entropic causality can be used for learning the causal
graph with a moderate number of samples.

7. Conclusion
In this work, we have extended the entropic causality frame-
work to graphs. An identifiability result was proven, and

two algorithms were presented and experimentally evalu-
ated — a theoretically-motivated sequential peeling algo-
rithm and a heuristic entropic enumeration algorithm that
performs better on small graphs. Overall, we observed
strong experimental results in settings much more general
than the assumptions used in our theory, indicating that a
much stronger theoretical analysis might be possible. We
note however that the quantity H(Ei) = Θ(log(log(n)))
appears to be approximately a phase transition for the balls-
and-bins setting, and posit that the development of novel
tools may be required for such an extension of the theory.

We suggest such an advancement may involve an increased
focus on a total entropy criterion (i.e., an extension of com-
paring H(X) + H(E) to H(Y ) + H(Ẽ) in the bivariate
case), as in our proposed algorithm of entropic enumera-
tion. Experiments indicate that this performs well, and one
might argue that it appears to be more conceptually justi-
fied. For one, it mirrors Occam’s razor in that it prefers
the causal graph with minimal total randomness required.
While we do not claim that this methodology will always
discover the true generative model (as Occam’s razor does
not require the simplest explanation to always be true), we
believe these intuitions mirror nature more often than not,
as confirmed by our experimental results. Moreover, such
an approach appears to fare better with counter-examples
for exogenous-based criterion such as the traveling ball sce-
nario of (Janzing, 2019) discussed in (Compton et al., 2020).
Showing theoretical guarantees for this approach’s perfor-
mance is of interest in future work, and can be framed more
generally as, “Under what conditions is the true generative
model the most information-theoretically efficient way to
produce a distribution?”
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Loh, P.-L. and Bühlmann, P. High-dimensional learning of
linear causal networks via inverse covariance estimation.
The Journal of Machine Learning Research, 15(1):3065–
3105, 2014.

Magliacane, S., van Ommen, T., Claassen, T., Bongers, S.,
Versteeg, P., and Mooij, J. M. Domain adaptation by
using causal inference to predict invariant conditional dis-
tributions. In Advances in Neural Information Processing
Systems, pp. 10869–10879, 2018.

Marx, A. and Vreeken, J. Formally justifying mdl-
based inference of cause and effect. arXiv preprint
arXiv:2105.01902, 2021.

Mooij, J., Janzing, D., Peters, J., and Schölkopf, B. Regres-
sion by dependence minimization and its application to
causal inference in additive noise models. In Proceed-
ings of the 26th International Conference on Machine
Learning, pp. 745–752, 2009.

Moraffah, R., Karami, M., Guo, R., Raglin, A., and Liu,
H. Causal interpretability for machine learning-problems,
methods and evaluation. ACM SIGKDD Explorations
Newsletter, 22(1):18–33, 2020.

Morgan, S. L. and Winship, C. Counterfactuals and causal
inference. Cambridge University Press, 2015.

Painsky, A., Rosset, S., and Feder, M. Innovation represen-
tation of stochastic processes with application to causal
inference. IEEE Transactions on Information Theory, 66
(2):1136–1154, 2019.

Pearl, J. Causality. Cambridge university press, 2009.

Pearl, J. and Bareinboim, E. External validity: From do-
calculus to transportability across populations. Statistical
Science, 29(4):579–595, 2014.



Entropic Causal Inference: Graph Identifiability

Peters, J. and Bühlmann, P. Identifiability of gaussian
structural equation models with equal error variances.
Biometrika, 101(1):219–228, 2014.

Peters, J., Janzing, D., and Scholkopf, B. Causal inference
on discrete data using additive noise models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 33
(12):2436–2450, 2011.

Scutari, M. Learning bayesian networks with the bnlearn
R package. Journal of Statistical Software, 35(3):1–22,
2010. doi: 10.18637/jss.v035.i03.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., Kerminen, A.,
and Jordan, M. A linear non-gaussian acyclic model for
causal discovery. Journal of Machine Learning Research,
7(10), 2006.

Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman,
D. Causation, Prediction, and Search. MIT Press, 2000.

Squires, C., Shen, D., Agarwal, A., Shah, D., and Uhler,
C. Causal imputation via synthetic interventions. arXiv
preprint arXiv:2011.03127, 2020.

Wajc, D. Negative association: definition, properties, and
applications. Manuscript, available from https://goo.
gl/j2ekqM, 2017.

Zhang, K., Gong, M., Stojanov, P., Huang, B., LIU, Q., and
Glymour, C. Domain adaptation as a problem of inference
on graphical models. Advances in Neural Information
Processing Systems, 33, 2020.



Entropic Causal Inference: Graph Identifiability

A. Proof of Theorem 4.1
A.1. Proof Outline

Following the approach described in the proof overview in
the main text (with the descriptions of helpful and hurful
mass), we first introduce the surplus of a state of Y to
characterize the amount of hurtful mass it receives:

Recall that S is the set of “plateau states” of X , i.e., those
whose probabilities are close to one another.
Definition A.1 (Surplus). We define the surplus of a state y
of Y as zy =

∑
j /∈S max(0, P (X = j, Y = i)− T ).

Intuitively, only values from states of X outside the plateau
states which exceed the threshold will significantly “hurt”
conditional entropy H(X|Y = y). We will show there
is a state y′ of Y where zy′ is small and y′ receives
Ω( log(n)

log(log(n)) ) plateau balls. To bound zy′ , we will char-
acterize it as the sum of contributions from three types of
balls from (X\S)× E.3

Definition A.2 (Ball characterizations). We characterize
three types of balls:

1. Dense balls. Consider a set L of states of X , where
a state of X is in L if P (X = x) ≥ 1

log3(n)
. Dense

balls are all balls of the form (x ∈ L, e ∈ E). We
call these dense balls, because the low-entropy of E
will prevent the collective mass of these balls from
“expanding” well.

2. Large balls. For all balls of the form (x ∈ X\(S ∪
L), e ∈ E) where the ball has mass ≥ T

2 .

3. Small balls. For all balls of the form (x ∈ X\(S ∪
L), e ∈ E) where the ball has mass < T

2 .

We will show there are a non-negligible fraction of bins such
that zy is small. To do so, we will bound the contribution
from dense balls by showing that the small entropy of E
prevents “spread” in a sense, as there cannot be many states
of Y that receive much contribution towards zy from these
dense balls. We will bound contribution from large balls by
bounding the number of large balls, and showing that a non-
negligible number of bins receive no large balls. Finally, we
will bound contribution from small balls by showing how
they often are mapped to states of Y that have yet to receive
T
2 mass from the corresponding state of X , meaning they
often don’t immediately increase zy .

Finally, we will show (with high probability) the existence
of a bin y′ with small zy′ that will receive many plateau balls,
and how this will imply H(X|Y = y′) = Ω(log(log(n))).

3In the proofs, with a slight abuse of notation, we use X,E
both for the observed and exogenous variables, respectively and
their supports.

A.2. Complete Proof

Bounding H(Ẽ) via H(X|Y = y). Because Ẽ ⊥⊥ Y , it
must be true that H(Ẽ) ≥ maxy H(X|Y = y). This is
simple to prove by data processing inequality and is shown
in Step 1 of the proof of Theorem 1 by (Compton et al.,
2020). We aim to show there exists a y′ such that H(X|Y =
y′) = Ω(log(log(n))).

Showing existence of a near-uniform plateau. First, we
aim to find a subset of the support of X whose probabilities
are multiplicatively close to one another. Here, we have
a looser requirement for closeness than (Compton et al.,
2020). Instead of requiring these probabilities to be within
a constant factor of each other, we allow them to be up to
a factor of logcclose(n) apart where cclose is a constant such
that 0 < cclose < 1. While there are multiple values of cclose
that would be suitable for our analysis, for simplicity of
presentation we choose cclose = 1

4 throughout. This set of
states of X that are multiplicatively close to one another will
be called the plateau of X . We begin by showing how the
(Ω(n),Ω( 1

n log(n) ))-support assumption implies a plateau
of states of X:

Lemma A.3 (Plateau existence). Suppose X has
(csupportn,

1
clbn log(n) )-support for constants 0 < csupport ≤ 1

and clb ≥ 1. Additionally, assume n is sufficiently large
such that log(2clb/csupport)

log(log(n)) ≤ 1. Then, there exists a subset
S ⊆ [n] of the support of X , such that the following three
statements hold:

1. maxi∈S P (X=i)
mini∈S P (X=i) ≤ logcclose(n)

2. mini∈S P (X = i) ≥ 1
clbn log(n)

3. |S| ≥ cclosecsupportn
6 , for any 0 < cclose < 1.

Proof. By definition of (csupportn,
1

clbn log(n) ) support, there
are at least csupportn states of X with probability in range
[ 1
clbn log(n) , 1]. Moreover, at most csupportn

2 states will have
probabilities in range [ 2

csupportn
, 1]. Otherwise, they would

have total probability mass > 1 which is impossible. There-
fore, there are at least csupportn

2 states with probabilities in
range [ 1

clbn log(n) ,
2

csupportn
].

Now, we aim to divide the range [ 1
clbn log(n) ,

2
csupportn

] into
a number of contiguous segments such that all values
in any segment are multiplicatively within logcclose(n)
of each other. To do so, we can create segments
[ 1
clbn log(n) × (logcclose(n))i, 1

clbn log(n) × (logcclose(n))i+1]

from i = 0 until the smallest i that satisfies
1

clbn log(n) × (logcclose(n))i+1 ≥ 2
csupportn

. Accordingly,

we need ⌈ log((2/(csupportn))/(1/(clbn log(n))))
log(logcclose (n)) ⌉ ≤ 1 + 1

cclose
+
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log(2clb/csupport)
cclose log(log(n))

≤ 3
cclose

groups. Hence one group must have

at least csupportn/2
3/cclose

=
cclosecsupportn

6 states of X that are multi-
plicatively within logcclose(n) and have probability at least

1
clbn log(n) .

Lower-bounding the most probable state of E. Our proof
method focuses on a balls-and-bins game where states of
X × E are balls and states of Y are bins. We focus first on
plateau balls, which are balls corresponding to states of S
(the set of plateau states of X) and the highest probability
state of E. In particular, they are balls of the form (X ∈
S,E = e1) where e1 is the most probable state of E. To
show that these plateau balls have enough probability mass
to be helpful, we first show that P (E = e1) is relatively
large:

Lemma A.4. If H(E) ≤ cclose log(log(n)) then P (E =
e1) ≥ 1

logcclose (n)

Proof. For any distribution with entropy H , its state with
the highest probability has at least probability 2−H (see
Lemma 5 of (Compton et al., 2020)). Thus if H(E) ≤
cclose log(log(n)) then P (E = e1) ≥ 2−cclose log(log(n)) =

1
logcclose (n) .

Introducing surplus. We now begin proving how there
exists a bin that receives a large amount of mass that helps
the bin have large conditional entropy (such helpful mass
includes the plateau balls), and not much mass that hurts
the conditional entropy making it small. To formalize this
hurtful mass, recall the surplus quantity described in Defini-
tion A.1. This surplus is a way of quantifying the probability
mass received by a state of Y that is hurtful towards making
the conditional entropy large. We define surplus, with the
threshold of T specified as 12

n log(n) as follows:

Definition A.5 (Surplus, T = 12
n log(n) ). We define the

surplus of a state i of Y as zi =
∑

j /∈S max(0, P (X =

j, Y = i)− 12
n log(n) ), where S is the set of plateau states of

X .

Characterizing balls-and-bins. Now we will show that
there are a non-negligible number of states of Y where the
surplus is small. Recall from our proof outline that we view
the process of realizing the random function f as a balls-
and-bins game. In particular, each element of X × E (a
ball) is i.i.d. uniformly randomly assigned to a state of Y
(a bin). Only balls of the form (x ∈ X\S, e ∈ E) affect a
bin’s surplus. To bound surplus for bins, we characterize it
as the sum of contributions from three types of balls from
(X\S)×E, and restate this characterization from the proof
outline:

Definition A.6 (Ball characterizations). We characterize
three types of balls:

1. Dense balls. Consider a set L of states of X , where
a state of X is in L if P (X = x) ≥ 1

log3(n)
. Dense

balls are all balls of the form (x ∈ L, e ∈ E). We
call these dense balls, because the low-entropy of E
will prevent the collective mass of these balls from
“expanding” well.

2. Large balls. For all balls of the form (x ∈ X\(S ∪
L), e ∈ E) where the ball has mass ≥ T

2 .

3. Small balls. For all balls of the form (x ∈ X\(S ∪
L), e ∈ E) where the ball has mass < T

2 .

Bounding the harmful effects of dense balls. Recall that
T = 12

n log(n) . Now, we show how to bound the contribution
of dense balls towards surplus. By our assumptions, Y =
f(X,E), and H(E) is small, meaning there is not much
randomness in our function. We defined L as states of X
with probability at least 1

log3(n)
, so |L| ≤ log3(n). We

would like to show that there are not too many bins where
the dense balls contribute a significant amount to surplus.
If H(E) = 0, this would be easy to show as then there
would only be |L| ≤ log3(n) dense balls and thus they
could only affect the surplus of log3(n) bins. However, we
aim to show this claim in the more general setting where
H(E) = o(log(log(n))). To accomplish this, we follow the
same intuition to show that the limited entropy of E prevents
this small number of states of X from greatly “spreading”
to significantly affect a large number of states of Y . In
particular, we show:

Lemma A.7 (Limited expansion). Suppose Y can be writ-
ten as a function f(X,E) and X ⊥⊥ E. Consider any sub-
set R of the support of X . For any subset T of the support
of Y that satisfies ∀t ∈ T : P (X ∈ R, Y = t) > δ, the car-
dinality of T is upper bounded as |T | ≤ H(E)+log(|R|)+2

δ log( 1
δ )

.

Proof. Consider a variable X ′, whose distribution is ob-
tained from the distribution of X by keeping only the states
in R, and then normalized. More formally, for any i ∈ R,
P (X ′ = i) = P (X=i)

P (X∈R) , and for any i /∈ R, P (X ′ = i) = 0.

Recall Y = f(X,E). Using the same f,E, we define Y ′ =
f(X ′, E). Note that P (X ∈ R, Y = i) ≤ P (Y ′ = i). If
P (X ∈ R, Y = i) ≥ δ, then it must be true that P (Y ′ =
i) ≥ δ. Moreover, this implies that if there exists such a
subset T then H(Y ′) ≥ |T |δ log( 1δ )− 2 (note the negative
two is from the fact that modifying a distribution by adding
non-negative numbers to probabilities can decrease entropy
by at most 2). Moreover, by data-processing inequality note
that H(Y ′) ≤ H(X ′) + H(E|X ′) ≤ H(X ′) + H(E) ≤
log(|R|) +H(E), where previous inequality is due to the
fact that conditioning reduces entropy. This implies the
desired inequality for the cardinality of set T .
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To more directly use this for our goal, we present:

Corollary A.8. There exist no subset |T | = n/4 such that
∀t ∈ T : P (X ∈ L, Y = t) ≥ 1

n log(log(n)) log2cclose (n)

Proof. Note that |L| ≤ log3(n). By Lemma A.7, any such
T must satisfy:

|T | (1)

≤ H(E) + log(|L|) + 2

1/(n · log(log(n)) · log2cclose(n)) · log(n)
(2)

≤ 5 log2(log(n)) · n · log2cclose(n)

log(n)
(3)

≤ 5 log2(log(n)) · n · log1/2(n)
log(n)

(4)

≤ n

4
(5)

We obtain Step 4 by previously setting cclose =
1
4 . We obtain

Step 5 when n is sufficiently large such that 5 log2(log(n))

log1/2(n)
≤

1
4 . It can be shown that n ≥ 5 is sufficient.

As a result, dense balls cannot significantly affect the surplus
of many bins.

Bounding the harmful effects of large balls. We now show
how large balls cannot significantly affect the surplus of too
many bins, by showing there is a non-negligible number of
bins that receive no large balls.

Lemma A.9 (Avoided big). Given a balls-and-bins game
with c · n ln(n) balls mapped uniformly randomly to n bins,
at least n1−c

2 bins will receive no balls with high probability
if c is a constant such that 0 < c ≤ 1

3 .

Proof. This follows directly from (Wajc, 2017). By (Wajc,
2017), with high probability the number of empty bins
will be n1−c ± O(

√
n log(n)). For sufficiently large n,

O(
√
n log(n)) ≤ n2/3

2 ≤ n1−c

2 and thus the number of
empty bins is at least n1−c

2 with high probability.

Note how this relates to the coupon collector’s problem,
where it is well-known that Θ(n log(n)) trials are necessary
and sufficient to receive at least one copy of all coupons
with high probability. This is analogous to the number of
balls needed such that every bin has at least one ball. The
result of Lemma A.9 is intuitive from the coupon collector’s
problem, because the number of trials needed concentrates
very well. Meaning, with a constant-factor less number of
trials than the expectation required, there are many coupons
that have not yet been collected with high probability.

Corollary A.10. As there are at most 1
T /2 ≤

n log(n)
6 ≤

1
4 · n ln(n) large balls, with high probability there are at

least n3/4

2 bins that receive no large balls.

Bounding the harmful effects of small balls. For the small
balls, we will also show that they cannot contribute too
much surplus to too many states of Y . We will notably
use that all small balls correspond to a state of X where
P (X = x) ≤ 1

log3(n)
. We will utilize this to show that

most small balls are assigned to a state of Y that has not yet
received > T

2 mass from its corresponding state of X , and
accordingly would not increase the surplus. To accomplish
this, we define a surplus quantity that only takes into account
small balls:

Definition A.11 (Small ball surplus). We define the small
ball surplus of a state y of Y as

zsmall
y =

∑
x/∈(S∪L)

max




∑
e:

P (X=x,E=e)

<T
2

P (X = x,E = e, Y = y)

− T


With this notion of surplus constrained to small balls, we
show the following:

Lemma A.12 (Small ball limited surplus). With high prob-
ability, there are at most n

4 values of i, i.e., number of bins,
where zsmall

i ≥ 1
n log(log(n)) log2cclose (n)

.

Proof. We will consider all small balls in an arbitrary order.
Let x(t) be the corresponding state of X for the t-th small
ball, e(t) the corresponding state of E, and wball(t) be the
ball’s probability mass (i.e., P (X = x(t), E = e(t))). Re-
call that for all small balls it must hold that x(t) /∈ L and
thus P (X = x(t)) < 1

log3(n)
. We define the total small ball

surplus as Zsmall =
∑

y∈Y zsmall
y . Now, we will consider

all small balls in an arbitrary order and realize their corre-
sponding entry of f to map them to a state of Y . Initially,
we have not realized the entry of f for any balls and thus all
zsmall
y = 0 and Zsmall = 0. As we map small balls to states

of Y , we define ∆(t) as the increase of Zsmall after mapping
the t-th ball to a state of Y . By definition,

∑
t ∆(t) is equal

to Zsmall after all values of f have been completely realized.

Our primary intuition is that we will show for many small
balls it holds that ∆(t) = 0. As a result, we expect Zsmall to
not be very large.

As a result, we expect Zsmall to not be very large. Let
y(t) be equal to f(x(t), e(t)), the state of Y that the t-
th ball is mapped to. As f is realized for each config-
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uration, let wt
Y (y, x) denote the total mass of balls as-

signed to state y of Y so far from state x of X , i.e.,
wt

Y (y
′, x′) :=

∑
x′,e:f(x′,e)=y′

wball(t
′).

We upper-bound the expectation of ∆(t):

Claim 1. Regardless of the realizations of all ∆(t′) for
t′ < t, it holds that ∆(t) is a random variable with values
in range [0, wball(t)] and E[∆(t)] ≤ wball(t)

log2(n)
.

Proof. The only conditions under which ∆(t) takes a pos-
itive value (which is upper-bounded by wball(t)), is when
wt

Y (y(t), x(t)) > T
2 before the t-th ball is realized. Re-

call that P (x(t)) ≤ 1
log3(n)

. Accordingly, the number of

states y′ of Y where wt
Y (y

′, x(t)) > T
2 is upper-bounded by

P (X=x(t))
T /2 ≤ 1/ log3(n)

6/(n log(n)) =
n log(n)
6 log3(n)

≤ n
log2(n)

. This is due
to the fact that balls partition the total mass of P (X = x(t))
since we have P (X = x(t)) =

∑
e P (X = x(t), E = e).

This implies that the probability that the t-th ball will be
mapped to a state y′ of Y such that wt

Y (y
′, x(t)) already ex-

ceeds the threshold of T /2 (in other words where we might
have ∆(t) > 0) is upper-bounded by n/ log2(n)

n = 1
log2(n)

due to the fact that the function f is realized independently
and uniformly randomly for each pair of (x, e), i.e., for
every distinct ball. Accordingly, E[∆(t)] ≤ w(t)

log2(n)
.

This enables us to upper-bound the sum of ∆(t):

Claim 2.
∑

t ∆(t) ≤ 1
4 log(n) with high probability.

Proof. We will transform ∆(t) into a martingale. In
particular, we define ∆′(t) = ∆′(t − 1) + ∆(t) −
E[∆(t)|∆(1), . . . ,∆(t − 1)]. We define ∆′(0) = 0, and
note that ∆′(c) is a martingale. By Azuma’s inequality, we
show |

∑
t ∆

′(t)| ≤ 1
8 log(n) with high probability:

P [|∆(t)| > ε] < 2e
− ε2

2
∑

c2
i

≤ 2e
−

( 1
8 log(n) )

2

2(maxi ci)·
∑

ci

≤ 2e−
( 1

8 log(n) )
2

2×T /2·1

= 2e
−n log(n)

12×8×|V |×log(n)

Accordingly, by definition of ∆′(t) this im-
plies |(

∑
t ∆(t)) −

∑
c E[∆(t)|∆(1), . . . ,∆(c −

1)]| ≤ 1
8 log(n) . By Claim 16 we know all

E[∆(t)|∆(1), . . . ,∆(c − 1)] ≤ wconfig(c)

log2(n)
and accord-

ingly,
∑

t E[∆(t)|∆(1), . . . ,∆(c − 1)] ≤ 1
log2(n)

.
Together, these imply

∑
t ∆(t) ≤ 1

8 log(n) +
1

log2(n)
with

high probability, and for sufficiently large n it holds that

1
log2(n)

≤ 1
8 log(n) . Thus, our high-probability on |∆′(t)|

implies that
∑

t ∆(t) ≤ 1
4 log(n) with high probability.

Finally, we conclude that our upper-bound on
∑

t ∆(t) im-
plies an upper-bound on the number of states of Y with
non-negligible small ball support:

Claim 3. If
∑

t ∆(t) ≤ 1
4 log(n) , then there are at most n

4

bins where zsmall
i ≥ 1

n log(log(n)) log2cclose (n)
.

Proof. Zsmall =
∑

t ∆(t) ≤ 1
4 log(n) . Given this upper-

bound for total small ball surplus, we can immediately
upper-bound the number of states of Y with small ball
surplus greater than 1

n log(log(n)) log2cclose (n)
by the quantity

1/(4 log(n))
1/(n·log(log(n))·log2cclose (n))

≤ n·log(log(n))·log1/2(n)
4 log(n) ≤ n

4 .
We obtain this by using cclose =

1
4 and for sufficiently large

n such that log(log(n)) ≤ log1/2(n).

Combining the three ball types: many bins with small
surplus. Now, we combine all these intuitions to show there
are many bins that have a small amount of surplus. We have
shown that, with high probability, the are at most n/4 bins
with non-negligible mass from dense balls by Corollary A.8,
and at most n/4 bins with non-negligible mass from small
balls Lemma B.18. Combining these sets, there are at most
n/2 bins with non-negligible mass from dense balls or small
balls. By Corollary B.16, with high probability at least n3/4

2
bins will receive no large balls. Our goal is to show the
intersection of the sets is large, so there are many bins that
have small surplus.

Lemma A.13. Let there be two sets A,B ⊆ [n], where
|A| ≥ n

2 and A and B are both independently uniformly
random subsets of size |A| and |B|, respectively. It holds
that P (|A ∩B| ≥ |B|

4 ) ≥ 1− 2e
−|B|

8 .

Proof. To accomplish this, we will heavily utilize proper-
ties of negative association (NA). Lemma 8 of (Wajc, 2017)
shows that permutation distributions are NA. Lemma 9 of
(Wajc, 2017) shows closure properties of NA random vari-
ables. In particular, they show that concordant monotone
functions defined on disjoint subsets of a set of NA variables
are also NA. Accordingly, consider concordant monotone
functions where each bin i has a random variable Ai that
takes value 1 if it is the first |A| values of a permutation dis-
tribution and value 0 otherwise. These random variables are
thus NA. Suppose we first realize the set B, independently
of the realization of A. Then, a bin y ∈ B would be in A∩B
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if Ay = 1. It is clear this formulation of the random pro-
cess has a bijective mapping with the true random process,
so P (|A ∩ B| ≥ |B|

4 ) = P (
∑

y∈B Ay ≥ |B|
4 ). By Theo-

rem 5 of (Wajc, 2017), we can use Hoeffding’s upper tail
bound to show P (

∑
y∈B Ay < |B|

4 ) ≤ P (|
∑

y∈B Ay −
E[
∑

y∈B Ay]| > |B|
4 ) ≤ 2e

−|B|
8 .

Corollary A.14. With high probability, there are at least
n3/4

8 bins with surplus zy ≤ 2
n log(log(n)) log2cclose (n)

.

Proof. We have defined three types of balls, and have
proven results that show how there are many bins with
negligible bad contribution for each type of ball. Now,
we combine these with Lemma A.13 to show there are
many bins where there is not much bad contribution in to-
tal. By Corollary A.8 there are at most n/4 bins with more
than 1

n log(log(n)) log2cclose(n)(n)
mass from dense balls. By

Lemma B.18, there are at most n/4 bins with small ball
surplus more than 1

n log(log(n)) log2cclose(n)(n)
. Let A be the

set of bins with at most 1
n log(log(n)) log2cclose(n)(n)

mass from

dense balls and at most 1
n log(log(n)) log2cclose(n)(n)

small ball
surplus. By combining Corollary A.8 and Lemma B.18 we
know |A| ≥ n

2 with high probability. Let B be the set of
bins that receive no big balls. By Corollary B.16, it holds
that |B| ≥ n3/4

2 with high probability. By Lemma A.13, it

holds that |A ∩B| ≥ n3/4

8 with failure probability at most

2e
−2n3/4

16 . Moreover, all such bins will have total surplus at
most 2

n log(log(n)) log2cclose (n)
, because they receive no large

balls and total surplus is then upper-bounded by the sum of
small ball surplus and total mass from dense balls.

Existence of a small surplus bin with many plateau balls.
Recall plateau balls, which are balls of X ×E that take the
form (x ∈ S,E = e1), where e1 is the most probable state
of E. We show that at least one of the bins with small surplus
will receive many plateau balls with high probability:

Lemma A.15. There exists a bin with surplus at most
2

n log(log(n)) log2cclose (n)
and at least log(n)

2 log(log(n)) plateau
balls.

Proof. Note that total surplus is independent of how plateau
balls are mapped. Accordingly, we have determined a set of
n3/4

8 bins with small enough surplus. We aim to show that
one of these bins receives a large number of plateau balls
with high probability. We will rely on negative association
(NA) in the balls-and-bins process to prove our result.

Claim 4. Indicator variables for if a bin receives some thresh-
old of balls in a i.i.d. uniformly random balls-and-bins game
are NA.

Proof. This follows immediately by using results of (Wajc,
2017). By Theorem 10 of (Wajc, 2017), the random vari-
ables of the number of balls assigned to each bin are NA. By
Lemma 9 of (Wajc, 2017), concordant monotone functions
define on disjoint subsets of a set of NA random variables
are NA. Accordingly, if we have an indicator variable for
whether a bin receives at least some number of balls, these
indicator variables are NA.

Now, we lower-bound the expectation of these indicator
variables:
Claim 5. Suppose cn balls (c ≤ 1) are thrown i.i.d. uni-
formly randomly into n bins. The probability that a particu-
lar bin receives at least k = d log(n)

log(log(n)) balls is at least 1
end

given that d
c ≤ log(log(n)).

Proof. We use the method outlined by (Cunha, 2011). We
lower-bound the probability of a bin receiving at least k
balls as follows:(

cn

k

)
· ( 1

n
)k·(1− 1

n
)cn−k ≥ (

cn

k
)k · 1

nk
· 1
e

≥ 1

e
· ( c

k
)k

=
1

e
· (c log(log(n))

d log(n)
)loglog(n)(n

d)

≥ 1

e
· ( 1

log(n)
)loglog(n)(n

d) (6)

=
1

end

We obtain Step 6 by using d
c ≤ log(log(n)).

By Lemma A.3 there are at least cclosecsupport

6 · n =
csupport

24 · n
plateau balls. Now, consider NA indicator variables Bi for
whether or not a particular bin receives at least log(n)

2 log(log(n))

plateau balls. By Claim 4, these indicator variables are NA.
By Claim 5, it holds that E[Bi] ≥ 1

en0.5 for sufficiently
large n where 1/2

csupport/24
= 12

csupport
≤ log(log(n)). Finally,

we can upper-bound the probability that Bi = 0 for all
bins with small enough surplus, of which there are at least
n3/4

8 . Using marginal probability bounds for NA variables
shown in Corollary 3 of (Wajc, 2017), all such Bi = 0 with

probability at most ( 1
en0.5 )

n3/4

8 .

Proving large conditional entropy. Finally, we show how
the existence of a bin with small surplus and many plateau
balls implies that the bin has large conditional entropy:
Lemma A.16 (High-entropy conditional). Given a bin
y′ that has zy′ ≤ 2

n·log(log(n))·log2cclose (n)
, and receives

log(n)
2 log(log(n)) plateau balls, then H(X|Y = y′) =

Ω(log(log(n))).
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Proof. To show H(X|Y = y′) is large, we first define
the vector v such that v(x) = P (X = x, Y = y′).
Similarly, we define v(x) = v

P (Y=y′) , meaning v(x) =

P (X = x|Y = y′) and |v|1 = 1. Our underlying goal
is to show H(v) is large. To accomplish this, we will
split the probability mass of v into three different vectors
vinitial, vplateau, vsurplus such that v = vinitial + vplateau + vsurplus.
The entries of vplateau will correspond to mass from plateau
states of X , vinitial will correspond to the first T mass from
non-plateau states of X , and vsurplus will correspond to mass
that contributes to the surplus zy′ . We more formally define
the three vectors as follows:

• vplateau. The vector of probability mass from plateau
states of X . vplateau(x) is 0 if x /∈ S and vplateau(x) =
P (X = x, Y = y′) if x ∈ S.

• vinitial. For non-plateau states of X , their first T proba-
bility mass belongs to vinitial. vinitial(x) = min(P (X =
x, Y = y′), T ) if x /∈ S and vinitial(x) = 0 otherwise.

• vsurplus. For non-plateau states of X , their probabil-
ity mass beyond the first T mass belongs to vsurplus.
This corresponds to the surplus quantity. vsurplus(x) =
max(0, P (X = x, Y = y′) − T ) if x /∈ S and
vsurplus(x) = 0 otherwise. By this definition, zy′ =
|vsurplus|1.

To show H(X|Y = y′) = H(v) is large, we divide our
approach into two steps:

1. Show there is substantial helpful mass: |vinitial +

vplateau|1 = Ω
(

1
n·log(log(n))·log2cclose (n)

)
2. Show the distribution of helpful mass has high entropy:

H
(

vinitial+vplateau

|vinitial+vplateau|1

)
= Ω(log(log(n))).

3. Show that, even after adding the hurtful mass, the con-
ditional entropy is large: H(X|Y = y′) = H(v) ≥
H
(

vinitial+vplateau

|vinitial+vplateau|1

)
−O(1) = Ω(log(log(n)))

In the first step, we are showing that the distribution when
focusing on just the helpful mass of vinitial, vplateau has high
a substantial amount of probability mass. In the second step,
we prove how this distribution of helpful mass has high
entropy. In the third step, we show that the hurtful mass of
vsurplus does not decrease entropy more than a constant.

First, we show that there is a substantial amount of helpful
mass:
Claim 6. |vinitial + vplateau|1 = 1

2clbn·log(log(n))·log2cclose (n)

Proof. Recall that the bin y′ received log(n)
2 log(log(n)) plateau

balls. As defined in Lemma A.3, the set S of plateau

states is defined such that maxx∈S P (X=x)
minx∈S P (X=x) ≤ logcclose(n)

and minx∈S P (X = x) ≥ 1
clbn log(n) . Also recall that by

Lemma A.4 the most probably state of E has large prob-
ability. In particular, P (E = e1) ≥ 1

logcclose (n) . Let the
subset S′ ⊆ S be the subset of plateau states of X such that
their plateau ball is mapped to y′. In particular, for every
x ∈ S′ it holds that f(x, e1) = y′. Accordingly, P (X =
x, Y = y′) ≥ P (X = x) · P (E = e1) for x ∈ S′. Thus,
the total weight from plateau states of X is at least |S′| ·
minx∈S′ P (X = x) ·P (E = e1) ≥ |S′| · maxx∈S′ P (X=x)

logcclose (n) ·
P (E = e1) ≥ 1

2clbn log(log(n)) log2cclose (n)
.

Next, we show the distribution of helpful mass has high
entropy:

Claim 7. H
(

vinitial+vplateau

|vinitial+vplateau|1

)
≥ log(log(n))

4

Proof. Let us define vhelpful =
vinitial+vplateau

|vinitial+vplateau|1 to be the vector
of helpful mass, and we will show H(vhelpful) is large by
upper-bounding maxx vhelpful(x).

For non-plateau states of X , it follows from
Claim 20 that maxx/∈S vhelpful(x) ≤ T

|vinitial+vplateau|1 ≤
T
1

2clbn·log(log(n))·log2cclose (n)

= 24clb log(log(n))·log2cclose (n)
log(n) .

For plateau states of X , in Claim 20 we also developed the
lower-bound of |vinitial + vplateau|1 ≥ |S′| · maxx∈S′ P (X=x)

logcclose (n) ·
P (E = e1) ≥

log(n)·maxx∈S′ P (X=x)

2 log2cclose (n) log(log(n))
. Accordingly, we

can upper-bound maxx∈S′ vhelpful(x) ≤
maxx∈S′ P (X=x)

|vinitial+vplateau|1 ≤
2 log(log(n)) log2cclose (n)

log(n) .

Accordingly, we can lower-bound the en-
tropy of H(vhelpful) =

∑
x vhelpful(x) ·

log( 1
vhelpful(x)

) ≥
∑

x vhelpful(x) · log( 1
maxx′ vhelpful(x′) ) =

log( 1
maxx′ vhelpful(x′) ) ≥ log( 24clb log(n)

log2cclose (n) log(log(n))
) =

(1−2cclose) log(log(n))− log(log(log(n)))− log(24clb) =
log(log(n))

2 − log(log(log(n))) − log(24clb) ≥ log(log(n))
4

for sufficiently large n where log(log(n))
2 ≥

log(log(log(n))) + log(24clb).

Finally, we show the hurtful mass does not decrease entropy
much, and thus our conditional distribution has high entropy:

Claim 8. H(X|Y = y′) = H(v) ≥ Ω(1) ·
H
(

vinitial+vplateau

|vinitial+vplateau|1

)
−O(1) = Ω(log(log(n)))

Proof. We lower-bound H(v) with the main intu-
itions that H

(
vinitial+vplateau

|vinitial+vplateau|1

)
= Ω(log(log(n))) and
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|vinitial+vplateau|1
|vinitial+vplateau+vsurplus|1 = Ω(1). We more precisely obtain this
lower-bound for H(v) as follows:

H(v) = H

(
vinitial + vplateau + vsurplus

|vinitial + vplateau + vsurplus|1

)
=
∑
x

vinitial(x) + vplateau(x) + vsurplus(x)

|vinitial + vplateau + vsurplus|1
×

log
|vinitial + vplateau + vsurplus|1

vinitial(x) + vplateau(x) + vsurplus(x)

≥
∑
x

vinitial(x) + vplateau(x)

|vinitial + vplateau + vsurplus|1
×

log
|vinitial + vplateau + vsurplus|1

vinitial(x) + vplateau(x)
− 2 (7)

≥
∑
x

vinitial(x) + vplateau(x)

|vinitial + vplateau + vsurplus|1
×

log
|vinitial + vplateau|1

vinitial(x) + vplateau(x)
− 2

=
|vinitial + vplateau|1

|vinitial + vplateau + vsurplus|1
H

(
vinitial + vplateau

|vinitial + vplateau|1

)
− 2

=
|vinitial + vplateau|1

|vinitial + vplateau|1 + zy′
H

(
vinitial + vplateau

|vinitial + vplateau|1

)
− 2

≥ 1

1 + 2clb
·H
(

vinitial + vplateau

|vinitial + vplateau|1

)
− 2 (8)

= Ω(log(log(n))) (9)

To obtain Step 10, we note that all summands are ma-
nipulated from the form

∑
x px log(

1
px
) to

∑
x p

′
x log(

1
p′
x
)

where p′x ≤ px for all x. As the derivative of p log( 1p ) is
non-negative for 0 ≤ p ≤ 1

e , the value of at most two sum-
mands can decrease, and they can each decrease by at most
one. To obtain Step 11, we use Claim 20. To obtain Step 12,
we use Claim 22.

Thus, we have shown H(X|Y = y′) = Ω(log(log(n))).

Corollary A.17. Under our assumptions, H(X|Y = y′) =
Ω(log(log(n))) and thus H(Ẽ) = Ω(log(log(n))).

B. Proof of Theorem 5.4
B.1. Proof Outline

For much of this proof, we follow intuitions and use ter-
minology from the proof of Theorem 4.1. Consider a
pair of variables X and Y such that X is a source and
there is a path from X to Y . We aim to show that
MEC(Y |X) < MEC(X|Y ). It is simple for us to show that
MEC(Y |X) = o(log(log(n))). To show MEC(X|Y ) =

Ω(log(log(n))), we will use an approach similar to Theo-
rem 4.1 in that we will show existence of a state y′ of Y
such that H(X|Y = y′) is large. For showing there is a
large H(X|Y = y′), we will show that there is a y′ where
its surplus is small and it receives many plateau balls. While
we can factor Y as a function of X and small-entropy E
(i.e., Y = f(X,E)), this is not a uniformly random func-
tion so we cannot simply apply the result of Theorem 4.1.
In fact, a key difficulty is that this graph setting with more
than two variables results in correlations between mappings.
For example, in a graph such as the line graph (Figure 1(a))
with each node being a uniformly random deterministic
function of its parents, one can show that conditioning on
fY (fX2(X = x)) = y almost doubles the probability that
fY (fX2(X = x′)) = y. Our new proof method must be
able to withstand the dependencies that are introduced by
this setting.

To provide some intuition, we give a very high-level
overview for how to show existence of a large H(Xsrc|Y =
y′) for two particular graphs, and we then expand to gener-
alize these intuitions.

First, we consider the line graph. For simplicity, suppose
that all nodes are deterministic functions of their parents
(i.e., all H(Ei) = 0). Using the method from Theorem 4.1,
we can see that there exists a large H(Xsrc|X2 = x′

2). This
is because we can show there is a bin of X2 that has small
surplus and receives Ω( log(n)

log(log(n)) ) balls. However, this
analysis is actually loose in a sense. For a c where 0 < c <
1, we can actually show there are nc such bins that have
small surplus and receive Ω( log(n)

log(log(n)) ) plateau balls. Now,
when we look at how X2 is mapped to Y , each of the bins of
X2 will “stick together.” More formally, each bin of X2 will
have all of its mass mapped together to a uniformly random
state of Y . This is because it is a deterministic function, but
our proof will utilize a similar idea for when the function
is not deterministic but the entropy is still small. It is then
our hope that a good fraction of the bins with our desired
properties (small surplus and many plateau balls) at X2, will
be mapped to a state of Y that does not have much surplus.
In this sense, we have “heavy bins” and a non-negligible
proportion of them are “surviving” from one node to the
next because they aren’t mapped to a bin with too much
surplus. Through careful analysis, we are able to show that
at least one such bin survives to the node of Y , and thus
H(X|Y = y′) is large. This proof method would hold if
we extend this line graph to any constant length.

Second, we consider the diamond graph (Figure 1(b)).
Again, we assume all functions are deterministic for sim-
plicity. Recall that for the line graph, our proof method
was to show that there were many heavy bins at X2, and
then some heavy bins kept “sticking together” and “surviv-
ing” until we reached Y . This was because if two states
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of X were mapped to the same state of X2, then they
would “stick together” and would always be mapped to
the same state for later nodes (e.g. if fX2(x) = fX2(x

′)
then fX3

(fX2
(x)) = fX3

(fX2
(x′))). However, this is very

far from what is happening in diamond graph. In diamond
graph, observe that Y = fY (X2, X3). By definition of
our graph, X2 and X3 are independent deterministic func-
tions of X . Two states x and x′ of X will be mapped
to Y independently unless both fX2(x) = fX2(x

′) and
fX3

(x) = fX3
(x′). As these are independent, the proba-

bility of this happening is 1
n2 . Thus, the expected number

of pairs that are not mapped to Y independently of each
other is

(
n
2

)
× 1

n2 < 1
2 . Accordingly, essentially all states

of X will be mapped to a state of Y i.i.d. uniformly ran-
domly. This enables us to more directly use the result and
techniques of Theorem 4.1 and treat X and Y as a bivariate
problem.

While we are able to show how both of these graphs will
result in a large H(Xsrc|Y = y′), we do so very differently.
For the line graph we show that there are bins with the
properties we desire (small surplus and many plateau balls),
that they will “stick together” as we move down through
the graph, and at least one will “survive” to Y and thus
H(Xsrc|Y = y′). For the diamond graph we show that
when we get to Y , almost everything will be mapped inde-
pendently randomly again, and that we can more directly use
our bivariate techniques. There is a strong sense in which
these two proof methods are opposites of each other (utiliz-
ing probability mass staying together throughout the graph
as opposed to being independent at the end), yet we would
like one unified approach for handling general graphs. To
accomplish this, we introduce the Random Function Graph
Decomposition to combine intuitions of these two settings
into a characterization for all graphs.

Definition B.1 (Random Function Graph Decomposition).
For the Random Function Graph Decomposition we specify
a source X and a node Y such that there is a path from X
to Y . We ignore all nodes not along a path from X to Y .
We define the remaining nodes as the set Vdecomp. Then, we
consider the nodes of Vdecomp an arbitrary valid topological
ordering and color each node as follows:

• If X is a parent of the node, or if the node has multiple
parents and they are not all the same color, we create a
new color for this node.

• Otherwise, all of the node’s parent(s) have the same
color, and this node will inherit said color.

At a high-level, when a new color is created for a node,
then everything is being mapped to the node almost-
independently (similar to the intuition of the diamond graph).
When a node inherits its color, there is a sense in which

things “stick together” (similar to the intuition of the line
graph). Let color-root(Y ) be the earliest node in any topo-
logical ordering that has the same color as Y in the Ran-
dom Function Graph Decomposition (it can be shown that
color-root(Y ) is unique). We aim to use the Random Func-
tion Graph Decomposition to show that everything will be
mapped to color-root(Y ) mostly independently. This will
result in there being some bins with our desired properties
(small surplus, many plateau balls) at color-root(Y ). Then,
we will show that at least one of these bins survives through-
out all bins with the same color from color-root(Y ) to Y ,
implying existence of a large H(Xsrc|Y = y′).

In particular, to show that balls are mapped to color-root(Y )
mostly independently, we introduce the notion of related
mass. More concretely, we define related1(x) mass as the
amount of mass of balls that are ever mapped to the same
state as x among any variable. We define related2(x) mass
as the amount of mass of balls that are mapped to the
same state as x for variables of at least two distinct col-
ors in the Random Function Graph Decomposition. Induc-
tively, we will show there are Ω(n) plateau balls such that
related1(x) = O( 1n ) and related2(x) = O( 1

n2 ). Moreover,
we show that the quantity related2(x) upper-bounds mass
that can have some dependence with x in how it is mapped
to color-root(Y ). With this upper-bound on dependence,
we are able to use techniques of Theorem 4.1 to show there
are many bins of color-root(Y ) with many plateau balls and
not much surplus. Finally, we show that, within the color
of color-root(Y ) and Y , at least one of these bins “survives”
to Y and accordingly MEC(Xsrc|Y ) is large.

B.2. Complete Proof

We must show that for a source Xsrc and a node Y such
that there is a path from Xsrc to Y , MEC(Xsrc|Y ) >
MEC(Y |Xsrc).

Upper bounding MEC(Y |Xsrc). It is simple to show that
MEC(Y |Xsrc) is small:
Claim 9. MEC(Y |Xsrc) ≤ o(|V | log(log(n)))

Proof. Y can be written as a function of Xsrc and the set of
all Ei excluding EXsrc . As Xsrc is independent of these Ei,
and their total entropy is

∑
i H(Ei) = o(|V | log(log(n))),

the claim holds since |V | = O(1).

Bounding MEC(Xsrc|Y ) via H(Xsrc|Y = y). Our method
for lower-bounding MEC(Xsrc|Y ) is substantially more in-
volved. As in Theorem 4.1, we will lower-bound it by
MEC(Xsrc|Y ) ≥ maxy H(Xsrc|Y = y) (see Theorem 4.1
for proof). Our proof aims to show there is a conditional
entropy such that maxy H(Xsrc|Y = y) = Ω(log(log(n))).

Showing existence of a near-uniform plateau. A key step
in our approach, as in the proof of Theorem 4.1, is that we
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will find a subset of the support of X whose probabilities
are multiplicative close to one another. In particular, we will
find a subset of Xsrc where their probabilities are within a
factor of logcclose(n) of each other, where 0 < cclose < 1. For
our analysis, we require a value of cclose that is Ω(1) yet be-
low some threshold. While there are multiple values of cclose
that satisfy this condition, we will use cclose = 1/4. This
set of states of Xsrc that are multiplicatively close to one an-
other will be called the plateau of Xsrc. We use Lemma A.3
proven in Theorem 4.1 to show how the (Ω(n),Ω( 1

n log(n) ))-
support assumptions implies a plateau of states of X:

Lemma B.2 (Plateau existence). Suppose X has
(csupportn,

1
clbn log(n) )-support for constants 0 < csupport ≤ 1

and clb ≥ 1. Additionally, assume n is sufficiently large
such that log(2clb/csupport)

log(log(n)) ≤ 1. Then, there exists a subset
S ⊆ [n] of the support of X , such that the following three
statements hold:

1. maxi∈S P (X=i)
mini∈S P (X=i) ≤ logcclose(n)

2. mini∈S P (X = i) ≥ 1
clbn log(n)

3. |S| ≥ cclosecsupportn
6 , for any 0 < cclose < 1.

Characterization as a balls-and-bins game. Our proof
method of Theorem 4.1 characterizes a balls-and-bins game
where states of X × E are balls and states of Y are bins.
As we realized an entry f(x, e) as a uniformly random state
of Y , we characterized this as a ball (a state of X × E)
being assigned to a uniformly random bin (a state of Y ). In
the graph setting of this theorem, such a characterization
is more complicated. Any node Xi is a uniformly random
function of Pa(Xi) and Ei. We define E∗ to be the Cartesian
product of all Ei other than EX . Using this, we characterize
balls as being states of X × E∗. Note how any random
variable in our SCM is a deterministic function of X ×E∗.
In particular, it is the composition of (potentially many) fi
terms. For simplicity of notation, we let f∗

T (x× e∗) denote
the value of a set of variables T for a particular state of
x× e∗. In the characterization of our balls-and-bins game,
all balls with the same configuration of Pa(Xi) and Ei are
mapped uniformly randomly together to a state of Xi. In
other words, configurations are realized i.i.d. uniformly
randomly. Using our notation, this means two balls (xa, e

∗
a)

and (xb, e
∗
b) are mapped independently to variable Xi if any

only if f∗
Pa(Xi)∪Ei

(xa, e
∗
a) ̸= f∗

Pa(Xi)∪Ei
(xb, e

∗
b).

Lower-bounding the most probable state of Ei and E∗.
We focus first on plateau balls, which are balls correspond-
ing to states of S (the set of plateau states of X) and the high-
est probability state of E∗. In particular, they are balls of the
form (X ∈ S,E∗ = e∗1) where e∗1 is the most probable state

of E∗. To show that these plateau balls have enough proba-
bility mass to be helpful, we first use Lemma A.4 proven in
Theorem 4.1 that implies all max

e
H(Ei = e) ≥ 1

logcclose (n) :

Lemma B.3. If H(E) ≤ cclose log(log(n)) then P (E =
e1) ≥ 1

logcclose (n)

This implies a lower-bound on the probability P (E∗ = e∗1):

Lemma B.4. If all max
e

P (Ei = e) ≥ 1
logcclose (n) , then

P (E∗ = e∗1) ≥ 1
logcclose|V |(n)

.

Proof. As E∗ is the Cartesian product of |V | − 1 variables
Ei, it holds that maxP (E∗ = e∗) ≥ (mini maxe P (Ei =
e))|V |−1 ≥ ( 1

logcclose (n) )
|V |−1 ≥ 1

logcclose|V |(n)
.

Introducing surplus. In Theorem 4.1, we prove how there
exists a bin that receives a large amount of mass that helps
the bin have large conditional entropy (such helpful mass
includes the plateau balls), and not much mass that hurts
the conditional entropy making it small. To formalize this
hurtful mass, we introduced the surplus quantity described
in Definition A.1. This surplus is a way of quantifying the
probability mass received by a state of Y that is hurtful
towards making the conditional entropy large. The proof of
Theorem 4.1 achieves a lower-bound for maxy H(X|Y =
y) by proving existence of a state y′ of Y where y′ receives
many plateau balls and the surplus is small. Likewise, we
will also prove existence of such a state of Y with many
plateau balls and small surplus, in the graph setting. We
formalize the notion of surplus as follows:

Definition B.5 (Surplus, T = 120
n log(n) ). We define the sur-

plus of a state i of Y as zi =
∑

j /∈S max(0, P (X = j, Y =

i)− 120
n log(n) ).

Introducing the Random Function Graph Decomposi-
tion. In Appendix B.1, we introduced intuitions from con-
sidering the diamond graph in Figure 1(b) and the line graph
in Figure 1(a). In the proof outline for a diamond graph,
we utilized the intuition that almost all balls were indepen-
dently assigned to Y . This enables us to use techniques
from Theorem 4.1, as almost all balls were independently
assigned to a uniformly random state of Y , closely mirror-
ing the setting of Theorem 4.1. In the proof outline for line
graph, we used techniques of Theorem 4.1 to show that
there would be many bins that received many plateau balls
and small surplus. Then, we showed that at least one of
these bins would mostly “survive” and remain in-tact to Y .
While our intuitions for both of these graphs enabled us to
show existence of a large H(Xsrc|Y = y), but they did so
with near-opposite methods. Our intuition for the diamond
graph exploits independence (everything is assigned almost
independently to Y ), while our intuition for the line graph
exploits dependence (some bins with our desired properties
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“survive” from the second node onwards). We introduce
the Random Function Graph Decomposition to combine
intuitions of these two graphs into a characterization for all
graphs:
Definition B.6 (Random Function Graph Decomposition).
For the Random Function Graph Decomposition we specify
a source X and a node Y such that there is a path from X
to Y . We ignore all nodes not along a path from X to Y .
We define the remaining nodes as the set Vdecomp. Then, we
consider the nodes of Vdecomp an arbitrary valid topological
ordering and color each node as follows:

• If X is a parent of the node, or if the node has multiple
parents and they are not all the same color, we create a
new color for this node.

• Otherwise, all of the node’s parent(s) have the same
color, and this node will inherit said color.

At a high-level, when a new color is created for a node,
then we will see that plateau balls are being mapped to the
node almost-independently (similar to the intuition of the
diamond graph). When a node inherits its color, there is
a sense in which things “stick together” (similar to the in-
tuition of the line graph). For some node Xi ∈ Vdecomp,
we define color(Xi) to be the node’s color in the Random
Function Graph Decomposition. Under a fixed topological
ordering, let color-root(Y ) be the earliest node that has the
same color as Y in the Random Function Graph Decomposi-
tion (it can be shown that color-root(Y ) is unique). We aim
to use the Random Function Graph Decomposition to show
that everything will be mapped to color-root(Y ) mostly
independently. This will result in there being some bins
with our desired properties (small surplus, many plateau
balls) at color-root(Y ). Then, we will show that at least
one of these bins survives throughout all bins with the same
color from color-root(Y ) to Y , implying existence of a large
H(Xsrc|Y = y′).

Introducing related mass. To show how plateau balls are
mapped to color-root(Y ) mostly independently, we intro-
duce the concept of related mass. Related mass introduces
a measure of how much mass has come into contact with a
particular plateau ball:

Definition B.7 (Related mass). We define related mass
of two types as follows.

• For a plateau state x of X , we define related1(x) mass
as the amount of mass of balls from non-plateau states
of X that are ever mapped to the same state as the
plateau ball of x among any variable in the Random
Function Graph Decomposition. In other words, x′, e∗

contributes to related1(x) if it satisfies the following
for some Xi: x′ together with some realization e∗ con-
tributes to the same bin of Xi that x is mapped to to-
gether with e∗1. More formally, we define B1(x) as the

set of balls whose mass counts towards related1(x),
where B1(x) = {x′ ∈ X\S, e∗ ∈ E∗|∃Xi ∈
Vdecomps.t.f∗

Xi
(x′, e∗) = f∗

Xi
(x, e∗1)}. Accordingly,

related1(x) =
∑

x′,e∗∈B1(x)
P (X = x′) · P (E∗ =

e∗).

• For a plateau state x of X , we define related2(x) mass
as the amount of mass of balls from non-plateau states
of X that are ever mapped to the same state as the
plateau ball of x among variables of at least two distinct
colors in the Random Function Graph Decomposition.
In other words, x′, e∗ contributes to related2(x) if it sat-
isfies the following for some Xi, Xj with distinct col-
ors: x′ together with some realization e∗ contributes to
the same bin of Xi that x is mapped to together with e∗1;
same holds for Xj . More formally, we define B2(x) as
the set of balls whose mass counts towards related2(x),
where B2(x) = {x′ ∈ X\S, e∗ ∈ E∗|∃Xi, Xj ∈
Vdecomps.t.f∗

Xi
(x′, e∗) = f∗

Xi
(x, e∗1), f

∗
Xj

(x′, e∗) =

f∗
Xj

(x, e∗1), color(Xi) ̸= color(Xj)}. Accordingly,
related2(x) =

∑
x′,e∗∈B2(x)

P (X = x′) · P (E∗ =

e∗).

Now, we will consider an arbitrary topological ordering
of Vdecomp. In this ordering, we define order(Xi) for
Xi ∈ Vdecomp as the index of Xi in the topological or-
dering. We introduce a modification of related1(x) where
relatedorder(Xi)

1 (x) only considers nodes of Vdecomp that are
strictly earlier in the topological ordering than Xi. We
define relatedorder(Xi)

2 (x) analogously. It is our goal to
show that there are many plateau states x ∈ S such that
relatedorder(color-root(Y ))

2 (x) is small. This will enable us to
show how there are many plateau balls that are mapped to
color-root(Y ) independently of almost all other mass.

Upper-bounding related mass. To show independence
in how some plateau balls are mapped to color-root(Y ),
we bound relatedorder(color-root(Y ))

2 (x) for some plateau states
x ∈ S.

To show this, we will process nodes in the topological or-
dering. After processing the first i nodes, we will argue
that there is a large set Si

indep with upper-bounds on all
relatedi1(x) and relatedi2(x).

Lemma B.8. With high probability, after processing the first
i nodes in the topological ordering, there exists a set Si

indep

such that |Si
indep| =

|S|
6i , all x ∈ Si

indep satisfy relatedi1(x) ≤
6i
n and relatedi2(x) ≤

18×i×(i−1)
n2 , and all x, x′ ∈ Si

indep
satisfy f∗

Xj
(x, e∗1) ̸= f∗

Xj
(x′, e∗1) for all 1 ≤ j ≤ i.

Proof. We begin with the following claims.

Claim 10. Lemma B.8 holds for i = 1.
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Proof. To find a subset of S to be Si
indep, we will choose

any arbitrary subset of size S
6 . By definition of related1

and related2, all plateau balls are different states of Xsrc
so related11(x) = related12(x) = 0 for every x ∈ S, and
f∗
Xsrc

(x, e∗1) ̸= f∗
Xsrc

(x′, e∗1) for all x, x′ ∈ S.

Claim 11. Lemma B.8 holds for i if it holds for all j < i.

Proof. First, we realize fXi for all cells other than those
corresponding to configurations of Pa(Xi) ∪EXi

that con-
tain an element of Si−1

indep. Now, we consider the process of
realizing the entries of fXi

corresponding to elements of
Si−1

indep in an arbitrary order. We define a random variable for
every element of Si−1

indep. For the j-th element, we define Sj
as follows:

• If the element is mapped to a bin that another element
of Si−1

indep has been mapped to, then Sj = −1.

• Otherwise, if the element x ∈ Si−1
indep is mapped to a bin

that contains total mass at least 6
n , or total mass from

Bi−1
1 (x) of at least 6relatedi−1

1 (x)
n , then Sj = 0.

• Else, then Sj = 1.

The intuition behind Sj is that we will count an element of
x ∈ Si

indep as being eligible for Si
indep if it lands in a bin with

no other value of Si−1
indep, and if it lands in a bin that will not

increase relatedi1(x) or relatedi2(x) by too much.

Claim 12. Consider the set comprised of each element x ∈
Si−1

indep that satisfies the following. Suppose x is assigned to a
bin such that before x is mapped to the bin, the bin has total
mass at most 6

n and total mass intersecting from Bi−1(x)

of at most 6relatedi−1
1 (x)
n . Moreover, suppose x is the only

element of Si−1
indep that is ever assigned to this bin. Then, this

set of all such x would meet the desired properties required
of Si

indep.

Proof. The increase of the quantity relatedi1(x) is bounded
by the amount of other mass in the bin that x is as-
signed to. Accordingly, relatedi1(x) ≤ relatedi−1

1 (x) +
6
n ≤

6×(i−1)
n + 6

n = 6i
n . The increase of the quantity

relatedi2(x) is bounded by the amount of mass from Bi−1
1 (x)

in the bin x is assigned to. Accordingly, relatedi2(x) ≤
relatedi−1

2 (x)+
6relatedi−1

1 (x)
n ≤ 18×(i−1)×(i−2)

n2 + 36(i−1)
n2 =

18×i×(i−1)
n2

Moreover, we claim that
∑
Si serves as a lower bound for

the set of elements eligible for Si
indep referenced in Claim 12.

Claim 13. The number of elements of Si−1
indep that are eligible

for Si
indep by satisfying Claim 12 is at least

∑
j Sj .

Proof. For each bin, consider the sum of Sj for variables
corresponding to elements of Si−1

indep that were assigned to the
bin (if any). If the sum is nonpositive, then we trivially claim
the set of elements meeting the criteria in this bin is at least
the sum, as there will be at least 0 such elements. Otherwise,
the sum must be 1, This implies there is exactly one element
of Si−1

indep assigned to the bin, and that it met the criteria
when it was assigned, because its corresponding Sj = 1.
Moreover, as no other elements could have been assigned to
the bin later, it still meets the criteria. Combining both cases,
we see that the sum of Sj for each bin is a lower-bound for
the number of elements satisfying the criteria in said bin,
and thus globally the sum of all Sj is a lower-bound for how
many elements meet the criteria in total.

We aim to now use the sum of Sj as a lower-bound for the
size of the set of elements meeting the criteria. To do so, we
will first lower-bound E[Sj ].

Claim 14. Regardless of the realization of any previous
randomness, E[Sj ] ≥ 1

3 .

Proof. Sj is equal to −1 only if it is assigned to a bin with
another element of Si−1

indep. The number of such bins is upper-
bounded by |Si−1

indep| ≤ |S1
indep| ≤ n

6 . Otherwise, Sj is equal
to 0 only if the bin had mass at least n

6 or it has mass from

the corresponding Bi−1
1 (x) of at least 6relatedi−1

1 (x)
n . There

can only be at most n
6 bins satisfying the former, and at

most n
6 bins satisfying the latter. Accordingly, there are at

least n− 3× n
6 = n

2 where if the corresponding element is
assigned to it, then Sj = 1. Hence E[Sj ] ≥ 1

2−
1
6 = 1

3 .

As we need a set Si
indep with cardinality |Si

indep| =
|Si−1

indep |
6 ,

we show the following:

Claim 15.
∑

j Sj ≥
|Si−1

indep |
6 with high probability.

Proof. We will modify the variables to make a martingale
and then utilize Azuma’s inequality. We define S ′j = S ′j−1+
Sj − E[(Sj |S1, . . . ,Sj−1)]. Accordingly, the sequence of
S ′ is a martingale of length |Si−1

indep| where |S ′j−1 − S ′j | ≤ 1.
Thus, we can use Azuma’s inequality to show P (|S ′|Si−1

indep |
−

S ′1| ≥
|Si−1

indep |
6 ) ≤ 2e

−|Si−1
indep |
72 = 2e

−|S|
726i−1 = 2e−Ω(n). By

definition,
∑

j Sj =
∑

j S ′j+
∑

j E[Sj ]. By our result with
Azuma’s inequality, we then claim that with high probability

it holds that
∑

j Sj ≥ −
|Si−1

indep |
6 +

|Si−1
indep |
3 =

|Si−1
indep |
6 .
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Combining Claim 12 and Claim 15, we have now shown

that there exists a valid set Si
indep of size |Si

indep| =
|Si−1

indep |
6 ,

completing the proof of Claim 11.

By induction Lemma B.8 holds.

Corollary B.9. There exists a subset of plateau states
Sindep ⊆ S such that |Sindep| ≥ |S|

6|V | = Ω(n) and

every x ∈ Sindep satisfies relatedorder(color-root(Y ))
2 (x) ≤

18×|V |×(|V |−1)
n2 . Moreover, for all pairs x, x′ ∈ Sindep

it holds that they never share a state, meaning f∗
Xi

(x) ̸=
f∗
Xi

(x′) for all Xi ∈ Vdecomp.

Proof. One such set is simply |S|V |
indep| as shown in

Lemma B.8.

Characterizing balls. Recall that each variable assigns
balls with the same configuration of its parents and exoge-
nous variable together. We aim to show a similar result
at color-root(Y ). To do so, we will characterize the balls
within configurations into types:

Definition B.10 (Ball characterizations). We characterize
three types of balls:

1. Dense balls. Consider a set L of states of X , where
a state of X is in L if P (X = x) ≥ 1

log3(n)
. Dense

balls are all balls of the form (x ∈ L, e ∈ E). We
call these dense balls, because the low-entropy of E
will prevent the collective mass of these balls from
“expanding” well.

2. Large balls. For all balls of the form (x ∈ X\(S ∪
L), e ∈ E) where the ball has mass ≥ T

2 .

3. Small balls. For all balls of the form (x ∈ X\(S ∪
L), e ∈ E) where the ball has mass < T

2 .

We use T = 120|V |
n log(n) .

Now, we will show that for every variable Xi there are
many bins without too much surplus, such that the plateau
configurations have many bins that they may be assigned to
that will help us obtain a bin with small surplus and many
plateau configurations.

Definition B.11 (Configuration and ball characterizations).
We characterize three types of configurations/balls:

1. Large configurations. For all configurations of the
form (Pa(Xi) ∪Ei) where the configuration has balls
of total mass ≥ T

2 .

2. Dense ball. Consider a set L of states of Xsrc, where a
state of Xsrc is in L if P (Xsrc = x) ≥ 1

log3(n)
. Dense

balls are all balls of the form (x ∈ L, e ∈ E∗). We call
these dense balls, because the low-entropy of E will
prevent the collective mass of these balls from being
distributed well throughout.

3. Small ball. For all balls of the form (x ∈ Xsrc\(S ∪
L), e ∈ E∗) where the ball has mass < T

2 .

Bounding dense ball surplus. Recall the following used in
Theorem 4.1 to bound contributions from dense balls:

Lemma B.12 (Limited expansion). Suppose Y can be writ-
ten as a function f(X,E) and X ⊥⊥ E. Consider any sub-
set R of the support of X . For any subset T of the support
of Y that satisfies ∀t ∈ T : P (X ∈ R, Y = t) > δ, the car-
dinality of T is upper bounded as |T | ≤ H(E)+log(|R|)+2

δ log( 1
δ )

.

We use the following corollary:

Corollary B.13. There exist no subset |T | = n/4 such that
∀t ∈ T : P (X ∈ L, Y = t) ≥ 1

n log(log(n)) log2cclose (n)

These imply the following for our graph setting. While this
may seems strictly weaker than Corollary A.8, we will uti-
lize that the event of a bin having too much mass from dense
balls is now independent from how large configurations are
mapped.

Corollary B.14. Let Clarge denote the set of large configu-
rations of Pa(Xi) ∪ Ei as defined in Definition B.11. Let
C be a random variable denoting the configuration of the
corresponding ball of Pa(Xi) ∪ E∗. We claim that dense
balls in configurations other than Clarge are not distributed
well throughout Xi. In particular, there exists no subset
|T | = n/4 such that ∀t ∈ T : P (X ∈ L, Y = t, C /∈
Clarge) ≥ 1

n log(log(n)) log2cclose (n)
.

Proof. Note that the results of Lemma A.7 and Corol-
lary A.8 still hold in this setting as any Xi ∈ Vdecomp can
be written as a function of Xsrc and ∪jEj . This corollary
trivially follows from Corollary A.8, as it is strictly weaker
in that we add a restriction that C /∈ Clarge. Any set T that
contradicts Corollary B.14 would immediately contradict
Corollary A.8.

Bounding large configuration surplus. To bound con-
tribution to surplus by large configurations, we bound the
number of bins that receive any mass from large configura-
tions. Recall Lemma A.9 from the proof of Theorem 4.1:

Lemma B.15 (Avoided big). Given a balls-and-bins game
with c · n ln(n) balls mapped uniformly randomly to n bins,
at least n1−c

2 bins will receive no balls with high probability
if c is a constant such that 0 < c ≤ 1

3 .
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Accordingly, we can use the following:

Corollary B.16. As there are at most 1
T /2 ≤

n log(n)
60|V | ≤

1
40|V | · n ln(n) large balls, with high probability there are

at least n
1− 1

40|V |

2 bins that receive no large balls.

Bounding small ball surplus. Here we will bound the
surplus from small balls. Note that, while this proof is not
short, it is using the same ideas as the corresponding section
in the proof of Theorem 4.1. However, there are some subtle
differences that necessitate a separate proof for the graph
setting. We use identical text from the proof of Theorem 4.1
when applicable.

For the small balls, we will also show that they cannot
contribute too much surplus to too many states of any Xi.
We will notably use that all small balls correspond to a state
of Xsrc where P (Xsrc = x) ≤ 1

log3(n)
. We will utilize this

to show that most small balls are assigned to a state of Xi

that has not yet received > T
2 mass from its corresponding

state of Xsrc, and accordingly would not increase the surplus.
To accomplish this, we define a surplus quantity that only
takes into account small balls:

Definition B.17 (Small ball surplus). We define the small
ball surplus of a state y of Y as

zsmall
j =

∑
xsrc /∈(S∪L)

max

(
0,−T +

∑
e∗:

(X=xsrc,E
∗=e.C /∈Clarge)

P (Xsrc = x,E∗ = e,Xi = j)

 .

With this notion of surplus constrained to small balls, we
show the following:

Lemma B.18 (Small ball limited surplus). With high prob-
ability, there are at most n

4 values of i, i.e., number of bins,
where zsmall

i ≥ 1
n log(log(n)) log2cclose (n)

.

Proof. We will consider configurations C /∈ Clarge in an
arbitrary order, and within each configuration consider balls
in an arbitrary order. Let xi(c) be the corresponding state
of Xi for the c-th configuration, let xsrcc(t) be the corre-
sponding state of Xsrc for the t-th ball in the c-th config-
uration. esrcc(t) be the corresponding state of E∗ for the
t-th ball in the c-th configuration, and wc,ball(t) be the t-
th ball’s probability mass in the c-th configuration (i.e.,
P (Xsrc = xsrcc(t), E = esrcc(t))). Moroever, we define
wconfig(c) as the weight of all such balls with configuration
c. Recall that for all small balls it must hold that xsrcc(t) /∈ L
and thus P (Xsrc = xsrcc(t)) <

1
log3(n)

. We define the total
small ball surplus as Zsmall =

∑
j∈Xi

zsmall
j . Now, we will

consider all non-large configurations in an arbitrary order
and realize their corresponding entry of f to map them to
a state of Xi. Initially, we have not realized the entry of f
for any balls and thus all zsmall

j = 0 and Zsmall = 0. As we
map configurations to states of Xi, we define ∆(c) as the
increase of Zsmall after mapping the c-th configuration to a
state of Xi. By definition,

∑
c ∆(c) is equal to Zsmall after

all values of f have been completely realized.

Our primary intuition is that we will show for many small
balls it holds that they have zero contribution towards their
configuration’s quantity ∆(c). As f is realized for each
configuration, let wXi(xi, xsrc) denote the total mass of
balls assigned to state xi of Xi so far from state xsrc of
Xsrc, i.e., wXi

(x′
i, x

′
src) :=

∑
c′<c,t:xi(c)=x′

i

wc,ball(t
′). Note

that this quantity is shared among all configurations.

Claim 16. Regardless of the realizations of all ∆(c′) for
c′ < c, it holds that ∆(c) is a random variable with values
in range [0, wconfig(c)] and E[∆(c)] ≤ wconfig(c)

log2(n)
.

Proof. Let us define ∆t(c) as the contribution of the t-th
ball to ∆(c). By definition,

∑
t ∆t(c) = ∆(c). We aim to

show E[∆t(c)] ≤ wc,ball(t)

log2(n)
. This would immediately imply

the desired bound on E[∆(t)] by linearity of expectation.

The only conditions under which ∆t(c) takes a non-
negative value (which is upper-bounded by wc,ball(t)), is
when wXi

(xi(c), xsrcc(t)) > T
2 before the entry of f

for the c-th configuration is realized (other. Recall that
P (xsrcc(t)) ≤ 1

log3(n)
. Accordingly, the number of states

x′
i of Xi where wc

Xi
(x′

i, xsrcc(t)) >
T
2 is upper-bounded by

P (Xsrc=xsrc))
T /2 ≤ 1/ log3(n)

60|V |/(n log(n)) = n log(n)
60|V | log3(n)

≤ n
log2(n)

.
This is due to the fact that balls partition the total mass
of P (Xsrc = xsrc(t)) since we have P (Xsrc = xsrc(t)) =∑

e P (X = xsrc(t), E = e). This implies that the proba-
bility that the t-th ball of configuration c will be mapped
to a state x′

i of Xi such that wc
Xi

(x′
i, xsrcc(t)) already ex-

ceeds the threshold of T /2 (in other words where we will
have ∆t(c) > 0) is upper-bounded by n/ log2(n)

n = 1
log2(n)

due to the fact that the function f is realized uniformly
randomly. Accordingly, E[∆t(c)] ≤ wc,ball(t)

log2(n)
and thus

E[∆(c)] ≤ wconfig(c)

log2(n)
.

This enables us to upper-bound the sum of ∆(t):

Claim 17.
∑

c ∆(c) ≤ 1
4 log(n) with high probability.

Proof. We will transform ∆(c) into a martingale. In
particular, we define ∆′(c) = ∆′(c − 1) + ∆(c) −
E[∆(c)|∆(1), . . . ,∆(c − 1)]. We define ∆′(0) = 0, and
note that ∆′(c) is a martingale. By Azuma’s inequality, we
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show |
∑

c ∆
′(c)| ≤ 1

8 log(n) with high probability:

P [|∆(c)| > ε] < 2e
− ε2

2
∑

c2
i

≤ 2e
−

( 1
8 log(n) )

2

2(maxi ci)·
∑

ci

≤ 2e−
( 1

8 log(n) )
2

2×T /2·1

= 2e
−n log(n)

120×8×|V |×log(n)

Accordingly, by definition of ∆′(c) this im-
plies |(

∑
c ∆(c)) −

∑
c E[∆(c)|∆(1), . . . ,∆(c −

1)]| ≤ 1
8 log(n) . By Claim 16 we know all

E[∆(c)|∆(1), . . . ,∆(c − 1)] ≤ wconfig(c)

log2(n)
and accord-

ingly,
∑

c E[∆(c)|∆(1), . . . ,∆(c − 1)] ≤ 1
log2(n)

.
Together, these imply

∑
c ∆(c) ≤ 1

8 log(n) +
1

log2(n)
with

high probability, and for sufficiently large n it holds that
1

log2(n)
≤ 1

8 log(n) . Thus, our high-probability on |∆′(c)|
implies that

∑
t ∆(t) ≤ 1

4 log(n) with high probability.

Finally, we conclude that our upper-bound on
∑

t ∆(t) im-
plies an upper-bound on the number of states of Y with
non-negligible small ball support:

Claim 18. If
∑

t ∆(t) ≤ 1
4 log(n) , then there are at most n

4

bins where zsmall
i ≥ 1

n log(log(n)) log2cclose (n)
.

Proof. By definition, Zsmall =
∑

t ∆(t) ≤ 1
4 log(n) . Given

this upper-bound for total small ball surplus, we can immedi-
ately upper-bound the number of states of Xi with small ball
surplus greater than 1

n log(log(n)) log2cclose (n)
by the quantity

1/(4 log(n))
1/(n·log(log(n))·log2cclose (n))

≤ n·log(log(n))·log1/2(n)
4 log(n) ≤ n

4 .
We obtain this by using cclose =

1
4 and for sufficiently large

n such that log(log(n)) ≤ log1/2(n).

This concludes the proof of the lemma.

Concluding many bins with small surplus. Now, we
combine all these intuitions to show there are many bins
that have a small amount of surplus. We have shown that,
with high probability, the are at most n/4 bins with non-
negligible mass from dense balls by Corollary A.8, and at
most n/4 bins with non-negligible surplus from small balls
from non-large configurations Lemma B.18. Combining
these sets, there are at most n/2 bins with non-negligible
mass from dense balls or surplus from small balls. By

Corollary B.16, with high probability at least n
1− 1

40|V |

2 bins
will receive no large configurations mapped to it. Our goal

is to show the intersection of the sets is large, so there are
many bins that have small surplus. We use Lemma A.13
proven in Theorem 4.1:

Lemma B.19. Let there be two sets A,B ⊆ [n], where
|A| ≥ n

2 and A and B are both independently uniformly
random subsets of size |A| and |B|, respectively. It holds
that P (|A ∩B| ≥ |B|

4 ) ≥ 1− 2e
−|B|

8 .

Corollary B.20. With high probability, there are at least
n
1− 1

40|V |

8 bins with surplus zy ≤ 2
n log(log(n)) log2cclose (n)

.

Proof. We have defined three types of balls, and have
proven results that show how there are many bins with
negligible bad contribution for each type of ball. Now,
we combine these with Lemma A.13 to show there are
many bins where there is not much bad contribution in to-
tal. By Corollary A.8 there are at most n/4 bins with more
than 1

n log(log(n)) log2cclose(n)(n)
mass from dense balls. By

Lemma B.18, there are at most n/4 bins with small ball
surplus more than 1

n log(log(n)) log2cclose(n)(n)
. Let A be the

set of bins with at most 1
n log(log(n)) log2cclose(n)(n)

mass from

dense balls and at most 1
n log(log(n)) log2cclose(n)(n)

small ball
surplus. By combining Corollary A.8 and Lemma B.18
we know |A| ≥ n

2 with high probability. Let B be the
set of bins that receive no large configurations. By Corol-

lary B.16, it holds that |B| ≥ n
1− 1

40|V |

2 with high probability.
A and B are independent, as A is undetermined by the map-
ping of large configurations. By Lemma A.13, it holds

that |A ∩ B| ≥ n
1− 1

40|V |

8 with failure probability at most

2e
−n

1− 1
40|V |

16 . Moreover, all such bins will have total sur-
plus at most 2

n log(log(n)) log2cclose (n)
, because they receive no

large configurations and total surplus is then upper-bounded
by the sum of small ball surplus and total mass from dense
balls.

Existence of many desirable bins at color-root(Y ).

We have shown that at each node Xi there are many bins
without much surplus. If we restrict this calculation of
surplus to not include mass from plateau configurations in
Sindep for color-root(Y ), then the set of bins that do not
have much surplus is independent of the assignment of such
configurations with plateau balls not having much related
mass. Consider the set Sorder(color-root(Y ))

indep . By Corollary B.9,

we know |Sorder(color-root(Y ))
indep | ≥ |S|

6|V | , no two correspond-
ing plateau balls ever share a state before color-root(Y ),
and all relatedorder(color-root(Y ))

2 (x) ≤ 18×|V |×(|V |−1)
n2 . Re-

call that color-root(Y ) by its definition must create a new
color, and thus either have Xsrc as a parent, or have at
least two distinct colors in its parent set. Given these prop-
erties, we know that each plateau ball in this set has at
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most relatedorder(color-root(Y ))
2 (x) ≤ 18×|V |×(|V |−1)

n2 mass in
its configuration for color-root(Y ), and all elements in the
set will be in different configurations. We aim to show that
there are many bins with small surplus that receive many
of these configurations corresponding to the plateau balls
in the set. To do so, we use the following results shown in
Theorem 4.1. First, we use negative association:
Claim 4. Indicator variables for if a bin receives some thresh-
old of balls in a i.i.d. uniformly random balls-and-bins game
are NA.

Second, we lower bound the probability of a bin researching
a certain threshold:
Claim 5. Suppose cn balls (c ≤ 1) are thrown i.i.d. uni-
formly randomly into n bins. The probability that a particu-
lar bin receives at least k = d log(n)

log(log(n)) balls is at least 1
end

given that d
c ≤ log(log(n)).

Corollary B.21. With high probability, there are n
1− 1

20|V |

16e
bins with zj ≤ 2

n log(log(n)) log2cclose (n)
and at least

log(n)
40|V | log(log(n)) configurations mapped from states of

S
order(color-root(Y ))
indep .

Proof. Consider the indicator variable Bi if a bin met the
threshold of plateau configurations. We show that with
high probability

∑
i Bi is large enough, considering just

the bins with small surplus. By Corollary B.20 we know

there are at least n
1− 1

40|V |

8 such bins with high probabil-
ity. Now let us focus on just the configurations corre-
sponding to S

order(color-root(Y ))
indep that we know has cardinality

Ω(n). By Claim 5, the probability of a bin receiving at
least log(n)

40|V | log(log(n)) such configurations is at least 1

en
1

40|V |
.

Accordingly, it holds that
∑

i E[Bi] ≥ n
1− 1

20|V |

8e .

By Hoeffding’s inequality, we show |
∑

i B⟩−
∑

i E[B⟩]| ≤
n
1− 1

20|V |

16e with high probability:

P [|Sn − En| > t] < 2e
− 2t2∑

c2
i

≤ 2e

− 2n
2− 1

10|V |

162e2 n
1− 1

40|V |
8

≤ 2e−
n
1− 3

40|V |
16e2 .

Therefore,
∑

i Bi ≥
n
1− 1

20|V |

16e with high probability.

Survival of desirable bins to Y . Now we aim to show that
of the bins that received many plateau configurations and
had small surplus, that enough will “survive” and keep these
properties as we process nodes within the same color as Y ,

and that eventually at least one such bin will survive to Y
with high probability.

Lemma B.22. After processing i nodes of the same color

as Y , with high probability there are at least n
1− i

20|V |

16e sets
of plateau balls, such that each set has cardinality at least

log(n)
100 log(log(n)) , have been assigned together to a bin with
surplus zj ≤ 2

n log(log(n)) log2cclose (n)
, and no two sets were

ever mapped to the same state within this color.

Proof. Trivially, this holds for i = 1 from Corollary B.21.

First, we note that all sets of plateau balls will again be
mapped together. This is because they are in the same
configuration, as for any node Xi, as it inherits its color, it
must be true that they all have the same values for Pa(Xi)
and because they are plateau balls they must have E∗ = e∗1.

Now, we will make a random variable Si for whether the
i-th configuration survived together. Roughly, we desire Si
to be 1 if it is assigned to a bin with small surplus with none
of the other bins that has survived to this stage, we desire Si
to be 0 if it is assigned to a bin with non-small surplus, and
Si to be −1 if it lands in a small surplus bin with another
bin that had survived (the intuition is that said bin would
likely have a positive Sj and now we must cancel them
out). Now, we slightly modify Si so all Si are independent.

By Corollary B.20 we know there will be at least n
1− 1

40|V |

8
small surplus bins with high probability. Let us create a
subset of bad bins Bbad for which Si will take value −1.
Before realizing the assignment for the i-th configuration,
add all small surplus bins that have already received a bin
that survived to this round. Arbitrarily fill the remainder of

Bbad so that |Bbad| = n
1− i

20|V |

16e . Let us define |Bgood| =
n
1− 1

40|V |

8 − n
1− i

20|V |

16e . So, if the configuration is assigned
to Bbad then Si = −1, if assigned to Bgood then Si = 1,
and otherwise Si = 0. By Hoeffding’s inequality, it holds

that
∑

i S⟩ ≥
n
1− i+1

20|V |

16e with high probability and thus the
lemma holds.

Concluding large conditional entropy from desirable
bin. By Lemma B.22, it is clear that with high probability
there is at least n19/20

16e >
√
n bin y′ of Y satisfying the

desired properties. Now, we seek to prove that this implies
H(Xsrc|Y = y′). Consider a looser definition of surplus:

Definition B.23 (Relaxed Surplus, T relax = 120|V |
n log(n) ).

We define the surplus of a state i of Y as zrelax
i =∑

j /∈S max(0, P (X = j, Y = i)− 120|V |
n log(n) ).

Claim 19. There exists a bin with at least
log(n)

100 log(log(n)) plateau balls and relaxed surplus at

most 2|V |
n log(log(n)) log2cclose (n)
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Proof. There are two contributors towards relaxed surplus.
First, when configurations were assigned to color-root(Y ),
each plateau ball brought related2(x) mass with it that could
contribute to the surplus. By Lemma B.8, each of the plateau
balls we considered satisfied related2(x) ≤ 18|V |(|V |−1)

n2 .

Accordingly, there is at most n × 18|V |(|V |−1)
n2 ≤ 18|V |2

n
such mass in total. Among the at least

√
n bins that survived

to Y , let us choose the one with the least initial mass from
related2. Accordingly, it must have at most 18|V |2

n1.5 such
mass.

Now, consider the at most |V − 1| times that mass may
have been acquired by landing in a bin with at most

2
n log(log(n)) log2cclose (n)

surplus. Combining all these masses
and calculating the worst-case relaxed mass results in
an upper-bound of 2

n log(log(n)) log2cclose (n)
× (|V | − 1) +

18|V |2
n1.5 ≤ 2|V |

n log(log(n)) log2cclose (n)
. This is because the defini-

tion of relaxed surplus gives enough threshold to fit within
it all the mass that was within the regular surplus threshold
for each of the groups we are aggregating.

Now, we show that this implies H(X|Y = y′) is large, with
almost exactly the same proof as Lemma A.16:

Lemma B.24 (High-entropy conditional). Given a bin
y′ that has zrelax

y′ ≤ 2|V |
n·log(log(n))·log2cclose (n)

, and receives
log(n)

100 log(log(n)) plateau balls, then H(Xsrc|Y = y′) =

Ω(log(log(n))).

Proof. To show H(Xsrc|Y = y′) is large, we first define
the vector v such that v(x) = P (Xsrc = x, Y = y′).
Similarly, we define v(x) = v

P (Y=y′) , meaning v(x) =

P (Xsrc = x|Y = y′) and |v|1 = 1. Our underlying
goal is to show H(v) is large. To accomplish this, we will
split the probability mass of v into three different vectors
vinitial, vplateau, vsurplus such that v = vinitial + vplateau + vsurplus.
The entries of vplateau will correspond to mass from plateau
states of X , vinitial will correspond to the first T relaxed mass
from non-plateau states of Xsrc, and vsurplus will correspond
to mass that contributes to the surplus zy′ . We more formally
define the three vectors as follows:

• vplateau. The vector of probability mass from plateau
states of Xsrc. vplateau(x) is 0 if x /∈ S and vplateau(x) =
P (Xsrc = x, Y = y′) if x ∈ S.

• vinitial. For non-plateau states of Xsrc, their first
T probability mass belongs to vinitial. vinitial(x) =
min(P (X = x, Y = y′), T relaxed) if x /∈ S and
vinitial(x) = 0 otherwise.

• vsurplus. For non-plateau states of Xsrc, their probability
mass beyond the first T relaxed mass belongs to vsurplus.
This corresponds to the surplus quantity. vsurplus(x) =

max(0, P (Xsrc = x, Y = y′)− T relaxed) if x /∈ S and
vsurplus(x) = 0 otherwise. By this definition, zy′ =
|vsurplus|1.

To show H(Xsrc|Y = y′) = H(v) is large, we divide our
approach into two steps:

1. Show there is substantial helpful mass: |vinitial +

vplateau|1 = Ω
(

1
n·log(log(n))·log2cclose (n)

)
2. Show the distribution of helpful mass has high entropy:

H
(

vinitial+vplateau

|vinitial+vplateau|1

)
= Ω(log(log(n)))

3. Show that, even after adding the hurtful mass, the con-
ditional entropy is large: H(Xsrc|Y = y′) = H(v) ≥
H
(

vinitial+vplateau

|vinitial+vplateau|1

)
−O(1) = Ω(log(log(n)))

In the first step, we are showing that the distribution when
focusing on just the helpful mass of vinitial, vplateau has high
a substantial amount of probability mass. In the second step,
we prove how this distribution of helpful mass has high
entropy. In the third step, we show that the hurtful mass of
vsurplus does not decrease entropy more than a constant.

First, we show that there is a substantial amount of helpful
mass:

Claim 20. |vinitial + vplateau|1 = 1
100clbn·log(log(n))·log2cclose (n)

Proof. Recall that the bin y′ received log(n)
100 log(log(n)) plateau

balls. As defined in Lemma A.3, the set S of plateau
states is defined such that maxx∈S P (X=x)

minx∈S P (X=x) ≤ logcclose(n)

and minx∈S P (X = x) ≥ 1
clbn log(n) . Also recall that

by Lemma A.4 the most probably state of E has large
probability. In particular, P (E = e1) ≥ 1

logcclose (n) . Let
the subset S′ ⊆ S be the subset of plateau states of X
such that their plateau ball is mapped to y′. In particular,
for every x ∈ S′ it holds that f(x, e1) = y′. Accord-
ingly, P (Xsrc = x, Y = y′) ≥ P (Xsrc = x) · P (E =
e1) for x ∈ S′. Thus, the total weight from plateau
states of Xsrc is at least |S′| · minx∈S′ P (Xsrc = x) ·
P (E = e1) ≥ |S′| · maxx∈S′ P (Xsrc=x)

logcclose (n) · P (E = e1) ≥
1

100clbn log(log(n)) log2cclose (n)
.

Next, we show the distribution of helpful mass has high
entropy:

Claim 21. H
(

vinitial+vplateau

|vinitial+vplateau|1

)
≥ log(log(n))

4

Proof. Let us define vhelpful =
vinitial+vplateau

|vinitial+vplateau|1 to be the vector
of helpful mass, and we will show H(vhelpful) is large by
upper-bounding maxx vhelpful(x).
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For non-plateau states of Xsrc, it follows from
Claim 20 that maxx/∈S vhelpful(x) ≤ T relaxed

|vinitial+vplateau|1 ≤
T relaxed

1

100clbn·log(log(n))·log2cclose (n)

= 100|V |clb log(log(n))·log2cclose (n)
log(n) .

For plateau states of X , in Claim 20 we also de-
veloped the lower-bound of |vinitial + vplateau|1 ≥
|S′|·maxx∈S′ P (X=x)

logcclose (n) ·P (E = e1) ≥
log(n)·maxx∈S′ P (X=x)

2 log2cclose (n) log(log(n))
.

Accordingly, we can upper-bound maxx∈S′ vhelpful(x) ≤
maxx∈S′ P (X=x)

|vinitial+vplateau|1 ≤ 100 log(log(n)) log2cclose (n)
log(n) .

Accordingly, we can lower-bound the en-
tropy of H(vhelpful) =

∑
x vhelpful(x) ·

log( 1
vhelpful(x)

) ≥
∑

x vhelpful(x) · log( 1
maxx′ vhelpful(x′) ) =

log( 1
maxx′ vhelpful(x′) ) ≥ log( 1200clb log(n)

log2cclose (n) log(log(n))
) = (1 −

2cclose) log(log(n)) − log(log(log(n))) − log(1200clb) =
log(log(n))

2 − log(log(log(n)))− log(1200clb) ≥ log(log(n))
4

for sufficiently large n where log(log(n))
2 ≥

log(log(log(n))) + log(1200clb).

Finally, we show the hurtful mass does not decrease entropy
much, and thus our conditional distribution has high entropy:

Claim 22. H(X|Y = y′) = H(v) ≥ Ω(1) ·
H
(

vinitial+vplateau

|vinitial+vplateau|1

)
−O(1) = Ω(log(log(n)))

Proof. We lower-bound H(v) with the main intu-
itions that H

(
vinitial+vplateau

|vinitial+vplateau|1

)
= Ω(log(log(n))) and

|vinitial+vplateau|1
|vinitial+vplateau+vsurplus|1 = Ω(1). We more precisely obtain this
lower-bound for H(v) as follows:

H(v) = H

(
vinitial + vplateau + vsurplus

|vinitial + vplateau + vsurplus|1

)
=
∑
x

vinitial(x) + vplateau(x) + vsurplus(x)

|vinitial + vplateau + vsurplus|1
×

log
|vinitial + vplateau + vsurplus|1

vinitial(x) + vplateau(x) + vsurplus(x)

≥
∑
x

vinitial(x) + vplateau(x)

|vinitial + vplateau + vsurplus|1
×

log
|vinitial + vplateau + vsurplus|1

vinitial(x) + vplateau(x)
− 2 (10)

≥
∑
x

vinitial(x) + vplateau(x)

|vinitial + vplateau + vsurplus|1
×

log
|vinitial + vplateau|1

vinitial(x) + vplateau(x)
− 2

=
|vinitial + vplateau|1

|vinitial + vplateau + vsurplus|1
H

(
vinitial + vplateau

|vinitial + vplateau|1

)
− 2

=
|vinitial + vplateau|1

|vinitial + vplateau|1 + zy′
H

(
vinitial + vplateau

|vinitial + vplateau|1

)
− 2

≥ 1

1 + 50clb|V |
·H
(

vinitial + vplateau

|vinitial + vplateau|1

)
− 2 (11)

= Ω(log(log(n))) (12)

To obtain Step 10, we note that all summands are ma-
nipulated from the form

∑
x px log(

1
px
) to

∑
x p

′
x log(

1
p′
x
)

where p′x ≤ px for all x. As the derivative of p log( 1p ) is
non-negative for 0 ≤ p ≤ 1

e , the value of at most two sum-
mands can decrease, and they can each decrease by at most
one. To obtain Step 11, we use Claim 20. To obtain Step 12,
we use Claim 22.

Thus, we have shown H(X|Y = y′) = Ω(log(log(n))).

Corollary B.25. Under our assumptions, H(Xsrc|Y =
y′) = Ω(log(log(n))) and thus H(Ẽ) = Ω(log(log(n))).

C. Counterexample for General Identifiability
with Unconfounded-Pairwise Oracles

We formalize the oracle first discussed in Section 5:

Definition C.1 (Unconfounded-pairwise oracle). An
unconfounded-pairwise oracle is an oracle that returns the
correct orientation of an edge if the edge exists in the true
graph and if there is no confounding for the edge.

Consider a causal graph G1 with four nodes and the edge set
{X1 → X2, X1 → X3, X2 → X4, X2 → X3, X3 → X4}.
Likewise, consider G2 with four nodes and the edge set
{X2 → X1, X3 → X1, X4 → X2, X2 → X3, X4 → X3}.
Note that these graphs are in the same Markov equivalence
class. Finally, consider a causal graph G3 with four nodes
and the edge set {X1 → X2, X1 → X3, X4 → X2, X2 →
X3, X4 → X3}. If we orient all edges in the skeleton for
G1 and G2 without conditioning using an unconfounded-
pairwise oracle, G3 is a consistent output of the oracle for
both G1 and G2. As a result, the peeling approach would
see the same set of edge orientations for G1 and G2 and not
be able to identify the true source.

D. Proof of Theorem 5.6
We need to show that in each iteration of the while loop
in line 4, the algorithm correctly identifies all non-source
nodes and only the true non-sources. In the first iteration
of the loop, there is no node to condition on and therefore
tests are independence (not conditional independence) tests.
Consider a non-source node N in the initial graph. Then
there must be a directed path from some source node Xsrc
to N . Due to the faithfulness assumption, two nodes with a
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directed path cannot be unconditionally independent. Then
either Oracle(Xsrc, N |∅) will return Xsrc → N in line 12 or
Oracle(N,Xsrc|∅) will return Xsrc → N . In either case, N
is added to the non-source list. Now suppose S is a source
node. It is never identified as a non-source since it is ei-
ther conditionally independent with the node it is compared
with, found in line 9 , or it is conditionally dependent with a
non-source (for which it has a path to) and the oracle orients
correctly in line 11 or line 13. Since all non-sources are cor-
rectly identified and only the true non-sources are identified
as non-sources, all sources are correctly identified as well in
line 15. Since sources are incomparable in the partial order,
the order in which they are added to the topological order
does not impact the validity of topological order in line 18.

Suppose the while loop identified all sources correctly for
all iterations j, ∀j < i. Let Si be the sources in R, i.e.,
the sources that are to be discovered in iteration i. Let
PaSi be the set of parents of Si in the initial graph. Then
PaSi

⊆ C, i.e., the set of conditioned nodes include all the
parents of the current source nodes. Therefore, C blocks
all backdoor paths from Si, effectively disconnecting the
previous found sources from the graph: This is because G\C
is a valid Bayesian network for the conditional distribution
p(.|C = c). Therefore, in G\C, Si are source nodes and the
source pathwise oracle correctly identifies all non-source
nodes, similar to the base case.

This implies after the while loop terminates, we have a valid
topological order for the nodes in the graph. Finally, the
for loop in line 19 converts the obtained total order into
a partial order since either it removes an edge, or adds an
edge that is consistent with the topological order. Therefore
we only need to show that non-edges are correct. Suppose
Xi, Xj are non-adjacent in the true graph. Then condi-
tioned on all ancestors of Xi, Xj they are independent due
to d-separation in the graph. Therefore all non-edges are
identified at some iteration of the for loop. Furthermore,
under the faithfulness assumption, no edge can be mistak-
enly identified as a non-edge: No two adjacent nodes at any
stage of the algorithm are independent conditioned on the
ancestors of the cause variable .

E. Additional Experiments
E.1. Further Synthetic Experiments and Comparisons

with ANM

Figure 5 compares the performance under the additive
noise model assumption, i.e., the data is sampled from
X = f(PaX) + NX for all variables. The noise term is
chosen as a uniform, zero-mean cyclic noise in the supports
{−1, 0, 1}, {−2,−1, 0, 1, 2}, {−3,−2,−1, 0, 1, 2, 3}
which corresponds to different entropies H(NX). This
entropy is shown on the x−axis in Figure 5. The corre-

sponding plots where the x−axis represents the number
of samples are given in the Appendix. While this is the
generative model that discrete ANM is designed for, its
performance is either approximately matched or exceeded
by entropic enumeration.

For further experiments with different number of nodes,
please see Figures 5, 6, 10.

E.2. Entropy Measure for Peeling Algorithm

In this section, we compare different versions of peeling
algorithm, one that uses only the exogenous entropy and one
that uses the total entropy in pairwise comparisons. We ran-
domly sample exogenous distributions according to symmet-
ric Dirichlet distribution, which is characterized by a single
parameter α. By varying α and with rejection sampling, we
are able to generate distributions for the exogenous nodes E
such that H(E) ≤ θ for some θ. For each distribution, we
then compare the structural Hamming distance of the output
of our peeling algorithm with the true graph. The structural
Hamming distance (SHD) is the number of edge modifica-
tions (insertions, deletions, flips) required to change one
graph to another. Results are given in Figure 12. Let H(E)
and H(Ẽ) be the minimum exogenous entropy needed to
generate Y from X and the minimum exogenous entropy
needed to generate X from Y , respectively. At each step of
the algorithm for every pair X,Y , the red curve compares
H(X) with H(Y ), the blue curve compares H(E) with
H(Ẽ), and the green curve compares H(X) +H(E) with
H(Y ) +H(Ẽ) and orients the edge based on the minimum.
As expected, comparing exogenous entropies perform better
than comparing observed variables’ entropies in the low-
entropy regime. Interestingly, we observe that comparing
total entropies consistently performs much better than either.

E.3. Entropy Percentile of True Graph

In this section, We test the hypothesis that when true exoge-
nous entropies are small, the true causal graph is the DAG
that minimizes the total entropy. To test this, we find the
minimum entropy needed to generate the joint distribution
for every directed acyclic graph that is consistent with the
true graph skeleton. We then look at the percentile of the
entropy of the true graph. For example, if there are 5 DAGs
with less entropy than the true graph out of 100 distinct
DAGs, then the percentile is 1− 5/100 = 0.95.

E.3.1. SYNTHETIC DATA

Figure 13 shows the results for various graphs. It can be
seen that, especially for dense graphs, the true graph is the
unique minimizer of total entropy needed to generate the
joint distribution for a very wide range of entropy values.
This presents exhaustive search as a practical algorithm for
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Figure 5. Performance of methods in the ANM setting in the triangle graph X → Y → Z,X → Z: 25 datasets are sampled for each
configuration from the ANM model X = f(PaX) +N . The x−axis shows entropy of the additive noise.
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Figure 6. Performance of methods in the ANM setting in the triangle graph X → Y → Z,X → Z: 25 datasets are sampled for each
configuration from the ANM model X = f(PaX) +N . The x−axis shows the number of samples in each dataset. Entropic enumeration
outperforms ANM algorithm in the low-noise low-sample regime.
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Figure 7. Performance of methods in the unconstrained setting in the triangle graph X → Y → Z,X → Z: 25 datasets are sampled for
each configuration from the unconstrained model X = f(PaX , EX). The x−axis shows the number of samples in each dataset. Entropic
enumeration and peeling algorithms consistently outperform the ANM algorithm in almost all regimes.

graphs with a small number of nodes (or generally, those
for which the MEC is small). Our experiments, contrary to
our theory, show that even when the number of nodes is the
same as the number of states, entropic causality can be used
for learning the graph.

E.3.2. SEMI-SYNTHETIC DATA

We use the bnlearn repository4 which contains a selection
of Bayesian network models curated from real data (Scutari,

2010). Each model in bnlearn contains the real causal DAG
along with a .bif file that details the conditional distribu-
tions that define the distribution. Using this, we generate
some number of samples (specified per experiment) and
evaluate a collection of causal graph discovery algorithms

4https://www.bnlearn.com/bnrepository/

https://www.bnlearn.com/bnrepository/
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Figure 8. Performance of methods in the unconstrained setting on the line graph X → Y → Z: 25 datasets are sampled for each
configuration from the unconstrained model X = f(PaX , EX). The x−axis shows entropy of the exogenous noise. Entropic enumeration
and peeling algorithms consistently outperform the ANM algorithm in all regimes.
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Figure 9. Performance of methods in the unconstrained setting in the triangle graph X → Y → Z,X → Z: 50 datasets are sampled
for each configuration from the unconstrained model X = f(PaX , EX). The x−axis shows entropy of the exogenous noise. Entropic
enumeration and peeling algorithms consistently outperform the ANM algorithm in almost all regimes. Note how unlike Figure 2, we do
not fix the source to have high-entropy or treat the source differently than the other nodes.
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Figure 10. Performance of methods in the ANM setting on random 5−node graphs: 25 datasets are sampled for each configuration from
the ANM X = f(PaX) +N . The x−axis shows entropy of the exogenous noise. Entropic enumeration outperforms consistently in all
regimes.

given the graph skeleton (which can be learned using, e.g.,
Greedy Equivalence Search) and generated samples as input.
Using these models, we can generate any number of sam-
ples and test the accuracy of our algorithms. The datasets

however are often binary which makes them less suitable
for Algorithm 1. We therefore limit our use of this data
to test our hypothesis that the true graph has the smallest
entropy among all graphs consistent with the skeleton. The
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Figure 11. Performance of methods in the unconstrained setting on random 5−node graphs: 25 datasets are sampled for each configuration
from a random graph from the unconstrained model X = f(PAX , N). The x−axis shows entropy of the additive noise. Entropic
enumeration and peeling algorithms consistently outperform the ANM algorithm in all regimes.
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Figure 12. Average structural Hamming distance (SHD) of peeling algorithm on synthetic data for comparing i) exogenous entropies
(blue, dashed), ii) entropies of observed variables (red, dotted-dashed) and iii) total entropies (green, dotted) in line 11 as the Oracle for
Algorithm 1. Randomly orienting all edges would result in an average SHD equal to half the number of edges (0.5, 1.5, and 3.0 for (a),
(b), and (c), respectively).
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Figure 13. Percentile of the true graph’s entropy compared to minimum entropy required to fit every other incorrect possible causal graph
that is consistent with the skeleton (synthetic data).

results are given in Figure 14. As can be seen, for most
of the small-sized graphs that we tested, the true graph has
one of the smallest entropies. Indeed for Cancer dataset,
the true graph is the unique minimizer when the number
of samples is large enough. Only in Sachs data does the

true causal graph require one of the largest entropies. This
shows that our low-entropy assumption is viable for some
real datasets.
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Figure 14. Percentile of true graphs entropy compared to minimum entropy required to fit wrong causal graphs in semi-synthetic data
from Bayesian Network Repository (Scutari, 2010).


