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Abstract
We study the problem of learning general — i.e.,
not necessarily homogeneous — halfspaces with
adversarial label noise under the Gaussian distri-
bution. Prior work has provided a sophisticated
polynomial-time algorithm for this problem. In
this work, we show that the problem can be solved
directly via online gradient descent applied to a
sequence of natural non-convex surrogates. This
approach yields a simple iterative learning algo-
rithm for general halfspaces with near-optimal
sample complexity, runtime, and error guarantee.
At the conceptual level, our work establishes an in-
triguing connection between learning halfspaces
with adversarial noise and online optimization
that may find other applications.

1. Introduction
We study the distribution-specific PAC learnability of linear
classifiers (or halfspaces) in the presence of adversarial label
noise. Before we describe our contributions, we provide the
necessary context for this work.

1.1. Background and Motivation

A halfspace or Linear Threshold Function (LTF) is any
Boolean-valued function f : Rd 7→ {±1} of the form
f(x) = sign(w∗·x+t), for a vector w∗ ∈ Rd (known as the
weight vector) and a scalar t ∈ R (known as the threshold).
Halfspaces are a central class of Boolean functions that arise
in several areas of computer science, including complexity
theory, learning theory, and optimization (Rosenblatt, 1958;
Novikoff, 1962; Minsky & Papert, 1968; Yao, 1990; Gold-
mann et al., 1992; Freund & Schapire, 1997; Vapnik, 1998;
Shawe-Taylor & Cristianini, 2000; O’Donnell, 2014). Here
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we focus on the algorithmic problem of learning halfspaces
from labeled examples, arguably one of the most extensively
studied and influential problems in machine learning.

The computational problem of learning halfspaces from ran-
dom examples is efficiently solvable without noise (Maass
& Turan, 1994) in the distribution-independent setting. The
complexity of the problem in the presence of corrupted data
depends on the contamination model and the underlying dis-
tributional assumptions. In this paper, we focus on learning
with adversarial label noise under the Gaussian distribution.
Formally, we have the following definition.

Definition 1.1 (Learning with Adversarial Label Noise).
Let C be a concept class of Boolean functions over X = Rd

and ϵ ∈ (0, 1/2). Let f be an unknown target function in
C. A noisy example oracle, EX(f, ϵ), works as follows:
Each time EX(f, ϵ) is invoked, it returns a labeled example
(x, y), such that: (a) x ∼ Dx, where Dx is the standard
normal distribution on Rd, and (b) y ̸= f(x) with prob-
ability at most ϵ. Let D denote the joint distribution on
(x, y) generated by the above oracle. We say that such a
distribution D is ϵ-corrupted. For some constant C ≥ 1,
a C-approximate learning algorithm is given i.i.d. samples
from D and its goal is to output a hypothesis h such that
with high probability it holds Pr(x,y)∼D[h(x) ̸= y] ≤ Cϵ.

We remark that the agnostic PAC-learning model (Kearns
et al., 1994) requires that the hypothesis h(x) satisfies
Pr(x,y)∼D[h(x) ̸= y] ≤ Pr(x,y)∼D[f(x) ̸= y] + ϵ′, for
any desired ϵ′ > 0. This guarantee corresponds to the C = 1
case of Definition 1.1. Without distributional assumptions,
learning with adversarial label noise is computationally hard
for any constant C > 1 (Daniely, 2016). This motivates
studying the problem under natural distributional assump-
tions. Interestingly, it is known (Klivans & Kothari, 2014)
that even when the underlying distribution is the standard
Gaussian, achieving an agnostic error guarantee (i.e., C = 1
in Definition 1.1) requires super-polynomial runtime (un-
der a plausible complexity assumption about the hardness
of noisy parity). The latter hardness result does not rule
out constant factor approximations, i.e., achieving approx-
imation ratio C > 1, where C is some universal constant.
Indeed, this is the regime where the algorithmic results of
this paper apply.
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General vs Homogeneous Halfspaces A halfspace is
called homogeneous if the defining separating hyperplane
goes through the origin; or equivalently if it can be ex-
pressed in the form sign(w∗ · x). The vast majority of
prior work on efficiently learning halfspaces with adversar-
ial label noise (under natural distributional assumptions) is
restricted the homogeneous case. This line of work was initi-
ated in (Awasthi et al., 2017) who gave the first polynomial
time constant-factor approximate learner under isotropic
log-concave distributions. Subsequently, a number of works
generalized and/or quantitatively improved on that work (Di-
akonikolas et al., 2018; 2020c; Shen, 2021).

Interestingly, with the sole exception of (Diakonikolas et al.,
2018), all prior approaches for our problem inherently fail
when the halfspace is no longer homogeneous, i.e., when
a non-zero threshold t is introduced. Moving from homo-
geneous to general halfspaces may seem innocuous at first
sight. Indeed, it is seemingly straightforward to reduce a
general halfspace to a homogeneous one by adding an extra
constant coordinate to every sample. While this reduction
is valid in the distribution-independent setting, it does not
work in the distribution-specific setting because it alters the
marginal distribution on the examples. In fact, for general
halfspaces, the only known result that achieves error O(ϵ)
in polynomial time is from (Diakonikolas et al., 2018). (We
note that their algorithm also succeeds in a more general
contamination model that also allows an ϵ-fraction of the
points to be corrupted in addition to the labels.)

Motivation The learning algorithm of (Diakonikolas et al.,
2018) for general halfspaces has some shortcomings. First,
the algorithm is rather complicated and consequently seems
difficult to generalize to other settings. Second, its sam-
ple complexity and runtime, while polynomially bounded,
are significantly sub-optimal. Ideally, we would like a sim-
ple and practical iterative algorithm for the problem that
moreover has (near-)optimal sample size and runtime.

Concretely, we ask whether we can achieve the near-optimal
error guarantee of (Diakonikolas et al., 2018) with a simple
and practical algorithm.

Is there a simple iterative method to learn general
halfspaces with an ϵ-fraction of adversarial label noise?

Our main result provides an affirmative answer to this ques-
tion. Specifically, we develop a learning algorithm based
on online gradient descent that additionally achieves near-
optimal sample complexity and runtime.

1.2. Our Results and Techniques

Our main result is a simple gradient-based iteration that
efficiently converges to a halfspace with error O(ϵ) after
only poly log(1/ϵ) rounds. We show the following theorem

(see Theorem 4.1 for the formal statement).
Theorem 1.2 (Online Gradient Descent Learner). Let
ϵ ∈ (0, 1/2) and D be an ϵ-corrupted distribution on
Rd × {±1} with standard normal x-marginal. Using
N = Õ((d/ϵ2) log(1/δ)) samples, we can construct a se-
quence of T = poly(log(1/ϵ)) non-convex loss-functions
such that Online Projected-Gradient-Descent converges to
a vector w(T ) that, with probability at least 1− δ, satisfies
Pr(x,y)∼D[sign(w(T ) · x+ t) ̸= y] ≤ Cϵ, for a universal
constant C. The resulting algorithm has runtime Õ(N) d.

The connection with online non-convex optimization drawn
in Theorem 1.2 is new and may find other applications.
In addition to obtaining a much simpler algorithm, Theo-
rem 1.2 leads to the first sample (and time) near-optimal
algorithm for the problem. Indeed, the algorithm given
in the prior work (Diakonikolas et al., 2018) has sample
complexity and runtime poly(d/ϵ), for some polynomial of
unspecified degree.

Discussion Our algorithmic result is enabled by a novel
non-convex feasibility program that essentially character-
izes approximate learnability of halfspaces with adversarial
label noise under the Gaussian distribution. Our non-convex
formulation leverages the idea of localization, i.e., focus-
ing on the samples that fall in some specific subset of the
space. Localization is a powerful tool going back to the
work of (Bartlett et al., 2005). Variants of the method have
been used in several works that deal with learning noisy half-
spaces (see, e.g., (Awasthi et al., 2015; 2016; Yan & Zhang,
2017; Zhang et al., 2020; Diakonikolas et al., 2020c)). While
localization is most commonly used to “zoom in” on the
region close to decision boundary of the classifier, in this
work we will be focusing on arbitrary subsets that can be
far from the decision boundary. Specifically, we consider
intervals of the form Ba,b = {z ∈ R : |z − b| ≤ a}; and
for a given a weight vector w, we restrict our attention
to the band w · x ∈ Ba,b. Our main insight is that, in
the noiseless setting, i.e., when y = sign(w∗ · x + t), the
label y is constant along any direction orthogonal to the
optimal direction w∗, and therefore for any a ≥ 0, b ∈ R
it holds E(x,y)∼D[y(proj(w∗)⊥x)1{w∗ · x ∈ Ba,b}] = 0,
where proju⊥x is the projection of x onto the orthogo-
nal complement of u. On the other hand, for any di-
rection w not parallel to w∗, it is not hard to see that
∥E(x,y)∼D[y(projw⊥x)1{w · x ∈ Ba,b}]∥2 > 0, since
w∗ has now non-zero projection onto the subspace w⊥.
When there is noise in the data, it may happen that for
many bands Ba,b it holds that E(x,y)∼D[y(projw⊥x)1{w ·
x ∈ Ba,b}] = 0 even though the weight vector w is
far from the optimal w∗. However, we show that since
only an ϵ-fraction of the examples are noisy, this cannot
happen for all bands, and, in particular, when w is far
from being optimal, there must exist some band inside
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which ∥E(x,y)∼D[y(proj(w∗)⊥x)1{w∗ · x ∈ Ba,b}]∥2, is
significantly smaller than ∥E(x,y)∼D[y(projw⊥x)1{w ·
x ∈ Ba,b}]∥2. The key property is that there exists a
carefully designed threshold on the value of the norm
∥E(x,y)∼D[y(projw⊥x)1{w · x ∈ Ba,b}]∥2 that makes
the optimal weight-vector feasible and any significantly
sub-optimal vector w infeasible. The following feasibility
problem 1 formalizes this idea:

Find w : ∥w∥2 = 1

s. t.
∥∥∥∥ E
(x,y)∼D

[y(projw⊥x)1 {w · x ∈ Ba,b}]
∥∥∥∥
2

≤

4
√
e ϵ

√
log

(
Pr

z∼N (0,1)
[z ∈ Ba,b]/ϵ+ 1

)
(1)

∀a ≥ 0, b ∈ R

Our main structural result shows that the above non-convex
feasibility program essentially identifies an approximately
optimal weight vector up to a sign change.

Theorem 1.3 (Non-Convex Feasibility Program). Fix
ϵ ∈ (0, 1/2) and let D be an ϵ-corrupted distribution
on Rd × {±1} with standard normal x-marginal. De-
note by w∗ the weight vector of an optimal halfspace,
i.e., Pr(x,y)∼D[sign(w

∗ · x + t) ̸= y] ≤ ϵ. We have
that: (i) program (1) is feasible, and (ii) any solution
w satisfies Pr(x,y)∼D[sign(w · x + t) ̸= y] ≤ Cϵ or
Pr(x,y)∼D[sign(−w · x+ t) ̸= y] ≤ Cϵ, where C is some
universal constant.

Non-convex problems are of course computationally in-
tractable in general. Therefore, at first sight, Theorem 1.3
cannot readily be used to obtain an efficient algorithm. Our
algorithmic result relies on the following crucial property:
given any sub-optimal weight vector w, we can identify a
band Ba,b that corresponds to a violated constraint of the
feasibility problem (1). We then use this band to improve
the guess w. Our algorithm fits in the online optimization
framework: at every round the (optimization) adversary tries
to find a band Ba,b that corresponds to a violated constraint
of (1) and then presents the learner with a loss-function that
forces them to focus on the band Ba,b. We show that On-
line Gradient Descent with these “localized” loss-functions
converges to an almost optimal solution.

1.3. Related Work

In the preceding discussion, we have already mentioned
the most closely related prior work. Here we elaborate
on some of these results. The work (Diakonikolas et al.,

1Observe that the variable of the non-convex program is only
the weight vector w. We remark that we can always assume that we
know the optimal threshold since it is straightforward to estimate
it (even with noisy samples), see also Claim 4.7.

2020c) shows that SGD on a carefully selected non-convex
surrogate achieves error O(ϵ) for the special case of homo-
geneous halfspaces. Unfortunately, this method fails for
general halfspaces, and it is not clear whether an alternative
formulation exists. In the same vein, (Shen, 2021) gave a
(localized) perceptron update rule to learn halfspaces with
adversarial noise under structured marginals. Our online
convex optimization approach is more powerful and allows
us to circumvent the obstacles posed when restricted to a
single objective.

Finally, we acknowledge the work of (Frei et al., 2020)
which developed gradient-based algorithms for learning
ReLU activations under structured distributions. Similarly,
(Frei et al., 2020) studies the homogeneous case, correspond-
ing to functions of the form ReLU(w∗ · x). For the case of
Gaussian marginals (that is relevant to our work), the error
guarantee they obtain is of the form O(d ϵ), where ϵ is the
optimal L2-loss.

2. Preliminaries
We use small boldface characters for vectors. For x ∈ Rd

and i ∈ [d], xi denotes the i-th coordinate of x, and ∥x∥2 :=

(
∑d

i=1 x
2
i )

1/2 denotes the ℓ2-norm of x. We will use x · y
for the inner product of x,y ∈ Rd and θ(x,y) for the angle
between x,y. For simplicity of notation, we may use θ
instead of θ(x,y) when it is clear from the context. We
will use 1A to denote the characteristic function of the set
A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.
Let ei be the i-th standard basis vector in Rd. For a vector
w ∈ Rd, we use w⊥ to denote the subspace spanned by
vectors orthogonal to w, i.e., w⊥ = {u ∈ Rd : w · u = 0}.
For a subspace U ⊆ Rd, we denote (projUx), the projection
of x onto U .

We use Ex∼D[x] for the expectation of the random vari-
able x according to the distribution D and Pr[E ] for the
probability of event E . For simplicity of notation, we may
omit the distribution when it is clear from the context. Let
N (µ,Σ) denote the d-dimensional Gaussian distribution
with mean µ ∈ Rd and covariance Σ ∈ Rd×d. we also de-
note N (µ, σ2), the standard normal distribution with mean
µ and variance σ2. For (x, y) distributed according toD, we
denote Dx to be the distribution of x and Dy to be the distri-
bution of y. For a set B and a distribution D, we denote DB

to be the distribution D conditional on B. Let Φ(·) be the
cumulative distribution function of the standard normal, i.e.,
Φ(t) = 1/

√
2π
∫ t

−∞ exp(−z2/2)dz, moreover, we denote
Φ−1(·) to be the inverse function of Φ(·).
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3. Structural Result: A Non-Convex Feasibility
Problem

In this section, we prove our structural result and show
that the solutions of the feasibility problem (1) are near
optimal halfspaces. We remark that, in general, it is not hard
to construct non-convex feasibility programs with optimal
solutions: minimizing the zero-one loss is indeed such a
non-convex problem which is known to be computationally
challenging under adversarial label noise even when the
underlying distribution is the standard normal. Our non-
convex feasibility formulation is inherently different than
the standard zero-one loss minimization and the proof of its
identifiability is the basis of our Online Gradient Descent
algorithm.

Before we prove the theorem, we would like to highlight
its connection with our algorithmic result. Our Online
Gradient Descent algorithm essentially uses as gradients
the vectors in the left-hand side of the constraint of the
non-convex program (1). In Section 4, we will show that,
as long as the current halfspace h is not nearly optimal,
we can find an appropriate band Ba,b and use the vector
g = E(x,y)∼D[y(projw⊥x)1 {w · x ∈ Ba,b}] to improve
the guess w. For the above reasons, we will refer to this
vector g as the “gradient”.

We split the proof of Theorem 1.3 in two parts: in
Lemma 3.1, where we show that the non-convex program is
feasible and Lemma 3.3, where we show that any solution
is an approximately optimal halfspace.

Lemma 3.1 (Feasibility). Fix ϵ ∈ (0, 1/2) and letD be an ϵ-
corrupted distribution on Rd × {±1} with standard normal
x-marginal. Denote by w∗ the weight vector of an optimal
halfspace, i.e., Pr(x,y)∼D[sign(w

∗ · x+ t) ̸= y] ≤ ϵ. Then
w∗ is a feasible solution of the non-convex problem (1).

Proof. Note that ∥g∥2 = supv∈Rd | v
∥v∥2

· g|. Pick any unit
vector u ∈ Rd and denote f(x) = sign(w∗ · x+ t). Using
the triangle inequality and the fact that Ex∼Dx [f(x)u ·
(proj(w∗)⊥x)1{w∗ · x ∈ Ba,b}] = 0, we have that

|u · g|
≤ | E

x∼Dx

[f(x)u · (proj(w∗)⊥x)1{w∗ · x ∈ Ba,b}]|

+ | E
(x,y)∼D

[(y − f(x))u · (proj(w∗)⊥x)1{w∗ · x ∈ Ba,b}]|

≤ 2 E
(x,y)∼D

[|u · (proj(w∗)⊥x)|1{w∗ · x ∈ Ba,b, y ̸= f(x)}] .

We now have to bound from above the contribution of the
term E(x,y)∼D[|u · (proj(w∗)⊥x)|1{w∗ · x ∈ Ba,b, y ̸=
f(x)}]. One could use the Cauchy-Schwarz inequality to
bound this expectation by

√
E(x,y)∼D[|u · (proj(w∗)⊥x)|2]√

Pr(x,y)∼D[w∗ · x ∈ Ba,b, y ̸= f(x)] . However, this

would only imply an upper bound of the order of
(Pr(x,y)∼D[w

∗ ·x ∈ Ba,b, y ̸= f(x)])1/2 = O(
√
ϵ). Using

the concentration of the Gaussian distribution and the fact
that u · proj(w∗)⊥x is independent from w∗ · x we are able
to prove a much stronger decoupling inequality. We show
the following lemma.

Lemma 3.2 (Gaussian Decoupling Inequality). Let D be a
distribution on Rd×{±1}with standard normal x-marginal.
Moreover, let w,u ∈ Rd be two orthogonal unit vectors,
define B = {z ∈ R : z ∈ (t1, t2)}, for some t1, t2 ∈ R and
let S(x, y) be an event over Rd × {±1}. It holds that

E[|u · x|1{S(x, y),w · x ∈ B}]

≤ 2
√
ePr[S(x, y)]

√
log

(
Pr[w · x ∈ B]

Pr[S(x, y)]
+ 1

)
.

Using Lemma 3.2, we get that

E
(x,y)∼D

[|u · (projw⊥x)|1{w · x ∈ Ba,b, y ̸= h(x)}]

≤ 2
√
e Pr
(x,y)∼D

[h(x) ̸= y]

√
log

(
Prz∼N (0,1)[z ∈ Ba,b]

Pr(x,y)∼D[h(x) ̸= y]

)

≤ 2
√
eϵ

√
log

(
Prz∼N (0,1)[z ∈ Ba,b]

ϵ

)
.

Next we show that for any vector w such that
Pr(x,y)∼D[sign(w · x + t) ̸= y] ≥ Cϵ, where C > 0 is
some sufficiently large universal constant, there exists a set
B which violates a constraint of the non-convex program (1).
In particular we show that by choosing a = sin(θ(w,w∗))
and b = −t cos(θ(w,w∗)) we get a violated constraint of
problem (1). We establish the following lemma.

Lemma 3.3 (Approximate Robust Identifiability). Fix
ϵ ∈ (0, 1/2) and let D be an ϵ-corrupted distribution
on Rd × {±1} with standard normal x-marginal. Let
w ∈ Rd be any feasible solution to Equation (1). It holds
that either Pr(x,y)∼D[sign(w · x + t) ̸= y] ≤ Cϵ or
Pr(x,y)∼D[sign(−w · x + t) ̸= y] ≤ Cϵ, for some uni-
versal constant C ≥ 1.

Remark 3.4. To prove the lemma, we consider any vector
w with significantly sub-optimal error and then show that
there exists a band Ba,b such that the norm of the gradient
∥g∥2 violates the corresponding constraint of problem (1).
In fact, we prove a stronger statement that will eventually
allow us to design an efficient algorithm. We show that
the vector g = E(x,y)∼D[y(projw⊥x)1{w · x ∈ Ba,b}]
correlates positively with the optimal vector w∗, i.e., that
g ·w∗ > 0. At a high-level, this means that g “points to the
right direction” and we can use it in order to improve our
current guess; see Lemma 3.5 and Section 4.
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Proof. As we plan to bound from below the norm of g,
it suffices to consider any unit vector u and show that
g · u is large. We will first prove a general lemma that,
given any band B, bounds from below the inner product
of E(x,y)∼D[(projw⊥x)y1{w · x ∈ B}] with the optimal
direction w∗.

Lemma 3.5 (Noisy Gradient Decomposition). Fix ϵ ∈
(0, 1/2) and let D be an ϵ-corrupted distribution on Rd ×
{±1} with standard normal x-marginal. Denote by w∗

with ∥w∗∥2 = 1, the weight vector of an optimal halfs-
pace, i.e., Pr(x,y)∼D[sign(w

∗ · x + t) ̸= y] ≤ ϵ. Fix
some unit vector w ∈ Rd such that θ(w,w∗) = θ ∈
(0, π) and let B = {z ∈ R : t1 < z < t2}. De-
note g = E(x,y)∼D[y(projw⊥x)1{w · x ∈ B}] and

v =
proj

w⊥w∗

∥proj
w⊥w∗∥2

. It holds

g · v ≥
√

2

π

(
sin θe−

t2

2 p− 9ϵ
√
log(q/ϵ+ 1)

)
,

where p = Prz∼N (−t cos θ,(sin θ)2)[z ∈ B], and q =
Prz∼N (0,1)[z ∈ B].

Remark 3.6. The term sin θe−
t2

2 p in the lower bound of
g · v in Lemma 3.5 corresponds to the contribution of the
clean examples, i.e., when the noise rate is ϵ = 0 we would
only get this term. The term ϵ

√
log(q/ϵ+ 1) corresponds

to the noise. This can potentially make g · v < 0, and
therefore make the gradient vector g point away from w∗.

We are now ready to prove Lemma 3.3. We consider
any w with both Pr(x,y)∼D[sign(w · x + t) ̸= y] >
Cϵ and Pr(x,y)∼D[sign(−w · x + t) ̸= y] > Cϵ.
We will show that there exists Ba,b such that ∥g∥2 >
4
√
e
√
log(Prz∼N (0,1)[Ba,b]/ϵ+ 1), i.e., a constraint of

the program (1) is violated. To bound from below the
norm of ∥g∥2 we can pick any unit vector v and obtain
the lower bound ∥g∥2 ≥ g · v. We choose the vector
v = projw⊥w∗/∥projw⊥w∗∥2 and use Lemma 3.5, to ob-
tain

∥g∥2 ≥
√

2

π

(
2

3
sin θe−

t2

2 − 9ϵ
√
log(q/ϵ+ 1)

)
. (2)

Our goal is to show that under the assumption that the error
of the weight vector w is larger than Cϵ the positive term
sin θe−t2/2 of the above inequality is much larger than the
“noise” contribution ϵ

√
log(q/ϵ+ 1).

Recall, that in Lemma 3.3 we pick the band Ba,b with a =
sin(θ(w,w∗)) and b = −t cos(θ(w,w∗)). We now have to
provide estimates for the probabilities p and q of Lemma 3.5.

p = Pr
z∼N (−t cos θ,(sin θ)2)

[z ∈ B]

= Pr
z∼N (0,(sin θ)2)

[|z| ≤ sin θ] = Pr
z∼N (0,1)

[|z| ≤ 1] ≥ 2

3
.

Moreover, we have

q = Pr
z∼N (0,1)

[z ∈ B] = Pr
z∼N (0,1)

[|z + t cos θ| ≤ sin θ]

≤ 4 sin θe−t2/2 e(t sin θ)2/2+|t| sin θ .

In order to bound from below the term (2/3) sin θe−
t2

2 , we
will use our assumption that the error of the current weight
vector w is larger than Cϵ. To do so, we need to connect the
disagreement between two halfspaces with their parameter
distance, i.e., the angle of their normal vectors. We will use
the following lemma.

Lemma 3.7 ((Diakonikolas et al., 2018)). For unit vectors
w1,w2 ∈ Rd and t ∈ R, it holds

Pr
x∼N (0,I)

[sign(w1 · x+ t) ̸= sign(w2 · x+ t)]

≤ θ(w1,w2)

π
e−t2/2 .

Observe now that since, by the assumptions of Lemma 3.3,
it holds that Pr(x,y)∼D[sign(w · x + t) ̸= y] > Cϵ and
Pr(x,y)∼D[sign(−w · x+ t) ̸= y] > Cϵ, we obtain that θ
can neither be very close to 0 or to π. In particular, we have
that

1

π
θ(w,w∗)e−t2/2 ≥ Pr

(x,y)∼D
[sign(w · x+ t) ̸= f(x)]

≥ Pr
(x,y)∼D

[sign(w · x+ t) ̸= y]− Pr
(x,y)∼D

[f(x) ̸= y]

≥ (C − 1)ϵ .

Similarly, we obtain that 1
π (π−θ)e

−t2/2 ≥ (C−1)ϵ, which
implies that sin θe−t2/2/ϵ is greater than the sufficiently
large absolute constant C−1. It now suffices to show that it
is larger than the “noise” term: 9ϵ

√
log(q/ϵ+ 1). We can

now replace the probability q by its upper bound and obtain

9ϵ
√

log(q/ϵ+ 1) ≤ 9ϵ
√

log(sin θe−t2/2/ϵ) + 3

+ 9ϵ
√
(t sin θ)2/2 + |t| sin θ + 3 .

We will first prove that the term (2/3) sin θe−t2/2/3 is
greater than 9ϵ

√
log(sin θe−t2/2/ϵ) + 3. Observe that

since sin θe−t2/2/ϵ ≥ (C − 1) > 1, it suffices to show that
sin θe−t2/2/ϵ is larger than cϵ

√
log(sin θe−t2/2/ϵ) + 1, for

some absolute constant c > 0. Using the inequality
t ≥ r

√
log(t) + 1, for t ≥ r2 ≥ 1, we obtain that

when sin θe−t2/2/ϵ ≥ c2 the claim is true. Therefore, it
suffices to make the constant C sufficiently large so that
C − 1 > c2. For the proof that (2/3) sin θe−t2/2/3 >
9ϵ
√
(t sin θ)2/2 + |t| sin θ + 3 we refer to the Appendix.



Learning General Halfspaces with Adversarial Label Noise via Online Gradient Descent

Algorithm 1 Online Projected Gradient Descent (OPGD)
Input: Loss function ℓ, Step size λ, Current vector w
u← w − λ∇ℓ(w).
w′ ← projB(u).
return w′.

Algorithm 2 Online Projected Gradient Descent Learner

Input: ϵ ∈ (0, 1), N examples (x(i), y(i)) from an ϵ-
corrupted D.

Denote D̂ the N -sample empirical distribution of D.

t← Φ−1
(

1−E(x,y)∼D̂[y]

2

)
.

w(0) ← E(x,y)∼D̂[xy].

s← Θ(1/ log3/2(1/ϵ)).
λ← et

2/2s and T ← Θ(log4(1/ϵ)).
for k = 0 to T do
ϕk ← (π/2)(1− s2/64)k.
ak ← sin(ϕk).
bk ← −t cos(ϕk).
L̂k(w) = E(x,y)∼D̂

[
−rak,bk

(
w·x
∥w∥2

)
y
]
.

Online Projected Gradient Descent Step
w(k+1) ← OPGD (L̂k,w

(k), λ)
end for
return (w(T ), t).

4. Learning LTFs via Online Gradient Descent
In this section, we prove our main algorithmic result: we
show that we can solve the non-convex feasibility prob-
lem of Section 3 using Online Gradient Descent; see Algo-
rithm 2. The sequence of non-convex objectives that we use
has the form La,b(w) = E(x,y)∼D[−ra,b(w · x)y], where
we define the ramp function ra,b with center b and length a
as follows:

ra,b(t) =


0 if t ≤ b− a

t− b+ a if b− a < t < b+ a

2a otherwise

Similar “ramp” or sigmoidal loss functions have been previ-
ously used in (Diakonikolas et al., 2020b;c) in order to learn
homogeneous halfspaces with label noise. In particular, in
(Diakonikolas et al., 2020b) it was shown that finding a
stationary points of the “centered” ramp activation, i.e., the
loss La,0(w) for a = Θ(ϵ), suffices to obtain a halfspace
with error O(ϵ). While such fixed objectives cannot handle
general halfspaces, we essentially show that following the
gradients of a sequence of “ramp” objectives with differ-
ent thresholds and lengths converges to an approximately
optimal halfspace. At a high-level, the adversary of the
online optimization process picks a loss function whose gra-

dient violates some constraint of the non-convex problem
(1) and the learning algorithm uses this gradient to improve
its guess. We now formally state our result.

Theorem 4.1 (Online Gradient Descent Learner). Fix
ϵ, δ ∈ (0, 1/2) and let D be an ϵ-corrupted distribution on
Rd×{±1} with standard normal x-marginal. Denote by D̂
the empirical distribution formed with N = Õ(d log(1/δ)

ϵ2 )
samples from D. Then the Online Gradient Descent Algo-
rithm 2, after T = O(log4(1/ϵ)) iterations, returns a vector
w(T ) and a threshold t such that, with probability at least
1 − δ, it holds Pr(x,y)∼D[sign(w

(T ) · x + t) ̸= y] ≤ Cϵ,
where C > 0 is some universal constant.

We first show that the gradient of Lk(w) is equal to
E(x,y)∼D[−y(projw⊥x)1{w ·x ∈ Ba,b}], i.e., it coincides
(modulo a sign change) with the vector of the left hand side
of the constraint of the non-convex problem (1).

Claim 4.2. For any unit vector w ∈ Rd, the Online
Projected Gradient update rule of Algorithm 1 with loss
La,b(w) and stepsize λ corresponds to the update

w′ =
w − λ∇wLa,b(w)

∥w − λ∇wLa,b(w)∥2
.

Moreover, the gradient is equal to ∇wLa,b(w) =

E(x,y)∼D

[
−y1{|w · x− b| ≤ a}∇w

w·x
∥w∥2

]
.

Proof. The gradient of La,b(w) is equal to

∇wLa,b(w) = E
(x,y)∼D

[
−r′a,b

(
w · x
∥w∥2

)
y∇w

w · x
∥w∥2

]
= E

(x,y)∼D

[
−y1{|w · x− b| ≤ a}∇w

w · x
∥w∥2

]
,

where in the first equality we used the chain rule.
Observe that ∇w

w·x
∥w∥2

= 1
∥w∥2

(x − (w·x)w
∥w∥2

2
) =

(proj
w⊥x)

∥w∥2
= (projw⊥x), where we used that w

is a unit norm vector. Hence ∇wLa,b(w) =
E(x,y)∼D [−y(projw⊥x)1{|w · x− b| ≤ a}]. Moreover,
from the above we get that w · ∇wLa,b(w) = 0, there-
fore from the Pythagorean theorem we get that

∥w − λ∇wLa,b(w)∥22 = ∥w∥22 + λ2∥∇wLa,b(w)∥22 ≥ 1 ,

where we used that ∥w∥2 = 1. Therefore, after each step,
the Online Projected Gradient update rule will normalize
the new vector so that it lies on the d-dimensional unit ball,
i.e., the projection step of Algorithm 1 happens always.

In Lemma 3.3 (see also Remark 3.4) we essentially showed
that there exist parameters a, b such that the gradient∇L(w)
“points to the direction” of w∗. In particular, we showed
that we can pick the band with a = sin θ(w,w∗) and b =
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−t cos(θ(w,w∗)). Unfortunately, we do not know either
the value of the optimal threshold t or the angle between the
guess and the optimal weight vector w∗: θ(w,w∗). It is not
hard to obtain an estimate t′ of the value of the threshold
t from the noisy samples: we can show (see Claim 4.7)
that with O(1/ϵ2) samples we can obtain a good estimate t′.
In fact, we show that we can assume that t′ is the optimal
threshold and only introduce O(ϵ) additional noise in the
distribution D. Therefore, to keep the presentation clean,
in what follows we will assume that we know the value
of the optimal threshold t. One could hope that we can
also estimate the angle between w,w∗ from samples and
assume that it is also known. It is unclear whether we can
estimate the angle accurately enough: in fact, we will show
that we do not need to do so. In general, we will need a
“robust” version of Lemma 3.3 showing how close must
be the threshold, and size values a, b to the “true” used in
Lemma 3.3 in order for the gradient ∇Lk(w) to point to
the right direction. We prove the following lemma showing
that it suffices to use the band Ba,b with a = sin(ϕ) and
b = −t cos(ϕ) assuming that |ϕ−θ(w,w∗)| ≤ ϕ/ log(1/ϵ).
The fact that we only have an (inverse) logarithmic tolerance
(as opposed to requiring the difference to be poly(ϵ)) is
crucial for obtaining the fast, i.e., in poly(log(1/ϵ)) rounds,
convergence of our Online Gradient Descent algorithm. In
what follows, given some ϕ ∈ [0, π/2], we define the band

Bϕ = {z ∈ R : |z + t cos(ϕ)| < sin(ϕ)} ,

and the corresponding (negative) gradient of the loss func-
tion Lsin(ϕ),−t cos(ϕ)(w) as

g(w, ϕ) = E
(x,y)∼D

[y(projw⊥x)1{w · x ∈ Bϕ}] .

Lemma 4.3 (“Robust” Localized Gradient Update). Fix
ϵ ∈ (0, 1/2) and a sufficiently large constant C > 1. Let D
be an ϵ-corrupted distribution on Rd ×{±1} with standard
normal x-marginal. Denote by w∗ the weight vector of
an optimal halfspace, i.e., Pr(x,y)∼D[sign(w

∗ · x + t) ̸=
y] ≤ ϵ. Fix ϕ ∈ [0, π/2] and a unit vector w ∈ Rd and
assume that Pr(x,y)∼D[sign(w · x+ t) ̸= y] ≥ Cϵ. Then,
if |ϕ− θ(w,w∗)| ≤ ϕ/(C log(1/ϵ)), it holds that

g(w, ϕ) ·w∗ ≥ (sin θ(w,w∗))2e−t2/2 .

We now have shown that there exists a choice for the pa-
rameter ϕ of the ramp objective so that its gradient g(w, ϕ)
points to the right direction. The following claim makes
this fact precise and proves that when a vector u correlates
positively with some target vector v∗ and at the same time
lies in the orthogonal complement of some current guess u,
then there exists a step size such that the normalized gradi-
ent step will improve the correlation with the target vector
v∗ (or equivalently decrease the angle with v∗). Formally,
we use the following claim (a variant of which was proved
in (Diakonikolas et al., 2020a)).

Figure 1. The “angle-contractive” map of Lemma 4.5. The target
vector is v∗ (green vector). Observe that for some fixed angle ϕ,
as long as |θ(v,w∗) − ϕ| ≤ γϕ. it holds that g(v, ϕ) points to
the right direction. This happens in the two dotted cones around
w∗. For example, for the blue vector v1 the gradient field g(v1, ϕ)
points towards v∗. Vectors outside of this region have noisy gradi-
ents that may point to any arbitrary direction. Notice that this may
also happen when a vector is very close to v∗. For example, even
though the orange vector v2 is closer to v∗ than v1, its gradient
points in the wrong direction.

Claim 4.4 (Correlation Improvement (Diakonikolas et al.,
2020a)). For unit vectors v∗,v ∈ Rd, let u ∈ Rd such
that u · v∗ ≥ c, u · v = 0, and ∥u∥2 ≤ 1, with c > 0.
Then, for v′ = v+λu

∥v+λu∥2
, with λ ≤ c/2, we have that

v′ · v∗ ≥ v · v∗ + λc/8.

Given a current guess w we still have the issue of knowing
the angle between w and w∗. In the next lemma we show
that we do not need to know the value of the angle but
only an upper bound, i.e., we know that θ(w,w∗) ∈ [0, ϕ].
We show that, with an appropriate step size, the online
gradient descent update of Algorithm 1 is a contraction
map in the sense that, even though an update may make the
angle between the guess w and w∗ worse, we can show that
the new angle belongs in a smaller interval [0, ϕ′] that is
significantly smaller than our initial interval [0, ϕ].

Lemma 4.5 (Angle Contractive Map). Fix a unit vector
v∗ ∈ Rd, β, γ, κ ∈ (0, 1) and a vector field g : Rd ×
R 7→ Rd such that for any vector u and ϕ ∈ [0, π/2],
it holds that ∥g(u, ϕ)∥2 ≤ κ, g(u, ϕ) · u = 0, and, if
|ϕ− θ(u,v∗)| ≤ γ sinϕ, and sin(θ(u,v∗)) ≥ β > 0 then
g(u, ϕ) ·v∗ ≥ ρκ sin(θ(u,v∗)) > 0. Fix ϕ ∈ [0, π/2] with
sin(ϕ) ≥ β > 0. Set v to be any unit vector in Rd with
θ(v,v∗) ≤ ϕ and consider the normalized gradient update
rule

v′ =
v + λg(v, ϕ)

∥v + λg(v, ϕ)∥2
,

with λ = ργ sinϕ/(4κ). Then, it holds that θ(v′,v∗) ≤ ϕ′,
where, ϕ′ = max(ϕ(1− ρ2γ2/64), β).

Remark 4.6. It is useful to provide some context and con-
nect the parameters of Lemma 4.5 with the parameters of
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Lemma 3.5. Assuming that w and w∗ have angle θ, we
can show that ∥g(w, ϕ)∥ = O(sin θe−t2/2

√
log(1/ϵ)) =

κ. Moreover, Lemma 3.5 shows that g(w, ϕ) · w∗ =
Ω(κ sin θ/

√
log(1/ϵ)) = ρκ sin θ for some ρ =

Ω(1/
√
log(1/ϵ)). Moreover, we know that this holds as

long as |ϕ − θ| ≤ sinϕ/(C log(1/ϵ)). Therefore, γ =
Ω(1/ log(1/ϵ)). Finally, β is the target angle which can
be as small as Ω(ϵ). Importantly, the decrease in the up-
per bound that we obtain in Lemma 4.5 is multiplicative:
combining, these estimates we obtain that after one gradient
update the angle upper bound ϕ′ ≤ ϕ(1−Ω(1/ log3(1/ϵ))).
Thus, in order to make sure that the angle lies in the interval
[0, β] we need at most O(log4(1/ϵ)) iterations.

Proof. We shall distinguish two cases. In the first case we
assume that |ϕ − θ(v,v∗)| ≤ γ sinϕ (this corresponds to
the vector v1 (blue) in Figure 1), and that means that it holds
g(v, ϕ) · v∗ ≥ ρ sin(θ(v,v∗))/κ, i.e., its gradient points in
the right direction. From Claim 4.4, we have that v′ · v∗ ≥
v · v∗ + λρ sin(θ(v,v∗))/(8κ) ≥ v · v∗ + ρ2γ2ϕ2/64,
where we used that λ = ργ sinϕ/(4κ) ≥ ργϕ/(8κ), be-
cause sinx ≥ x/2 for π/2 ≥ x ≥ 0. Hence, we have
that cos(θ(v′,v∗)) ≥ cos(θ(v,v∗))+ρ2γ2ϕ2/64 and note
that because cos(t) is decreasing in [0, π], it holds that
θ(v,v∗) ≥ θ(v′,v∗). Moreover, using the trigonometric
identity cosx − cos y = 2 sin((x + y)/2) sin((y − x)/2)
and that sinx ≤ x for x > 0, we get that

θ(v,v∗)2 − θ(v′,v∗)2 ≥ ρ2γ2ϕ2/32 ,

and using that θ(v,v∗) ≤ ϕ, we get that

ϕ2(1− ρ2γ2/32) ≥ θ(v′,v∗)2 ,

which completes the proof for this case, since we have
shown that ϕ′ = ϕ(1− ρ2γ2/64) ≥ ϕ(1− ρ2γ2/32)1/2 ≥
θ(v′,v∗).

We now assume that the true current angle θ(v,v∗) is far
from our current upper bound ϕ (this corresponds to vector
v2 (orange) in Figure 1), i.e., |ϕ − θ(v,v∗)| ≥ γ sin θ. In
this case, we will potentially do a step in the wrong direc-
tion, i.e., the angle between v′ and v∗ will become worse
than before but still not worse than our new upper bound
for the angle ϕ′. By Cauchy-Schwarz, and the fact that
∥g(v, ϕ)∥2 ≤ κ, we obtain ∥v′−v∥2 ≤ 2λκ. Equivalently,
we have that | cos(θ(v′,v∗))− cos(θ(v,v∗))| ≤ 2λκ. Us-
ing the fact that t 7→ cos(t) is 1-Lipschitz, we obtain that
θ(v′,v∗) ≤ θ(v,v∗) + 2κλ. Since the initial angle was far
from the upper bound ϕ, ϕ− θ(v,v∗) ≥ γ sinϕ, we have:

ϕ′ − θ(v′,v∗) ≥ (ϕ′ − ϕ) + (ϕ− θ(v,v∗))− 2λκ

≥ γ sin θ > 0 .

Therefore, we conclude that, in both cases, the new angle
θ(v′,v∗) belongs in the interval [0, ϕ′].

4.1. Proof Sketch of Theorem 4.1

We first show that the empirical threshold estimate obtained
in the first step of Algorithm 2 is sufficiently accurate.

Claim 4.7 (Threshold estimation). Fix ϵ, δ ∈ (0, 1/2)
and let D be an ϵ-corrupted distribution on Rd × {±1}
with standard normal x-marginal and let w∗, t be a unit
vector and a threshold such that Pr(x,y)∼D[sign(w

∗ ·
x + t) ̸= y] ≤ ϵ. Denote D̂ the empirical distribu-
tion with N = O(log(1/δ)/ϵ2) samples and let t′ =

Φ−1
(
(1−E(x,y)∼D̂[y])/2

)
be the empirical estimate of

t used in Algorithm 2. It holds that Pr(x,y)∼D[sign(w
∗ ·

x+ t′) ̸= y] ≤ O(ϵ) with probability at least 1− δ.

By Claim 4.7, using t′ as the optimal threshold only intro-
duces O(ϵ) additional noise in the distributionD. Therefore,
to keep the presentation clean, in what follows we will as-
sume that we know the value of the optimal threshold t.

Observe that in Claim 4.4 and Lemma 4.3 we require a non-
trivial initialization, namely that θ(w(0),w∗) ∈ [0, π/2].
We remark that choosing a random vector on the unit
sphere will satisfy this assumption with probability 1/2.
However, we can do much better by choosing our ini-
tial vector to be w(0) = E(x,y)∼D̂[xy]. For simplicity,
we ignore the sampling error, i.e., we consider the vector
w(0) = E(x,y)∼D[xy] and we show that w∗ ·E(x,y)∼D[xy]

is larger than Ω(ϵ
√
log(1/ϵ)). Therefore, with sufficiently

many samples (in particular Õ(d/ϵ2) suffice) we have
that the empirical estimate of E(x,y)∼D[xy] will also have
positive correlation with w∗. Next, ignoring again sam-
pling errors and assuming access to the population gra-
dients of Lk(w), using Lemma 4.3 and Lemma 4.5, we
have seen that with roughly O(log4(1/ϵ)) updates we ob-
tain that θ(w(T ),w∗) ≤ Cϵe−t2/2; see also Remark 4.6.
From Lemma 3.7 we obtain that Pr[sign(w∗ · x + t) ̸=
sign(w · x + t)] = O(ϵ) and by a triangle inequality we
conclude that also Pr[sign(w∗ · x+ t) ̸= y] = O(ϵ).

The analysis of the sample complexity of Algorithm 2 relies
on standard concentration and union bound arguments and
we defer it to the appendix. Finally, given N samples, the
runtime of a single iteration of Algorithm 2 is O(N) since
we simply have to iterate over all samples and only keep
those that fall in the band Bak,bk . Since we are doing T =
O(log4(1/ϵ)) iterations the total runtime of Algorithm 2
is sample near-linear. We refer to Appendix C for more
details.
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A. Preliminaries
We use small boldface characters for vectors. For x ∈ Rd and i ∈ [d], xi denotes the i-th coordinate of x, and ∥x∥2 :=

(
∑d

i=1 x
2
i )

1/2 denotes the ℓ2-norm of x. We will use x · y for the inner product of x,y ∈ Rd and θ(x,y) for the angle
between x,y. For simplicity of notation, we may use θ instead of θ(x,y) when it is clear from the context. We will use
1A to denote the characteristic function of the set A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. Let ei be the i-th
standard basis vector in Rd. For a vector w ∈ Rd, we use w⊥ to denote the subspace spanned by vectors orthogonal to w,
i.e., w⊥ = {u ∈ Rd : w · u = 0}. For a subspace U ⊆ Rd, we denote (projUx), the projection of x onto U .

We use Ex∼D[x] for the expectation of the random variable x according to the distributionD and Pr[E ] for the probability of
event E . For simplicity of notation, we may omit the distribution when it is clear from the context. Let N (µ,Σ) denote the
d-dimensional Gaussian distribution with mean µ ∈ Rd and covariance Σ ∈ Rd×d. we also denote N (µ, σ2), the standard
normal distribution with mean µ and variance σ2. For (x, y) distributed according to D, we denote Dx to be the distribution
of x and Dy to be the distribution of y. For a set B and a distribution D, we denote DB to be the distribution D conditional
on B. Let Φ(·) be the cumulative distribution function of the standard normal, i.e., Φ(t) = 1/

√
2π
∫ t

−∞ exp(−z2/2)dz,
moreover, we denote Φ−1(·) to be the inverse function of Φ(·).

B. Structural Result: A Non-Convex Feasibility Problem
In this section we prove our structural result, namely that there exists a non-convex feasibility problem whose solutions are
approximately optimal halfspaces. In general, it is not hard to construct non-convex feasibility programs whose solutions are
near-optimal vectors: in particular, minimizing the zero-one loss is indeed such a non-convex problem which is known to be
computationally challenging under adversarial label noise even when the underlying distribution is the standard normal. Our
non-convex feasibility formulation is inherently different than the standard zero-one loss minimization and its idenfiability
proof is the basis of our Online Gradient Descent algorithm.
Theorem B.1 (Non-Convex Feasibility Program). Fix ϵ ∈ (0, 1/2) and let D be an ϵ-corrupted distribution on Rd × {±1}
with standard normal x-marginal. Denote by w∗ the weight vector of an optimal halfspace, i.e., Pr(x,y)∼D[sign(w

∗·x+t) ̸=
y] ≤ ϵ. Denote Ba,b = {z ∈ R : |z − b| ≤ a} and consider the following feasibility program

Find w : ∥w∥2 = 1 (3)

s. t.
∥∥∥∥ E
(x,y)∼D

[y(projw⊥x)1 {w · x ∈ Ba,b}
∥∥∥∥
2

≤ 4
√
eϵ

√
log

(
Pr

z∼N (0,1)
[z ∈ Ba,b]/ϵ+ 1

)
∀a ≥ 0, b ∈ R

We have that: (i) the above program is feasible and (ii) any solution w satisfies Pr(x,y)∼D[sign(w · x+ t) ̸= y] ≤ Cϵ or
Pr(x,y)∼D[sign(−w · x+ t) ̸= y] ≤ Cϵ, where C is some universal constant.

Before we prove the theorem, we would like to highlight its connection with our algorithmic result. Our Online Gradient
Descent algorithm essentially uses as gradients the vectors in the left-hand side of the constraint of the non-convex program
Equation (3). In Appendix C we will show that, as long as the current halfspace h is not nearly optimal, we can find an
appropriate band Ba,b and use the vector E(x,y)∼D[y(projw⊥x)1 {w · x ∈ Ba,b}] to improve its weight vector.

We split the proof of Theorem B.1 in two parts: in Lemma B.2, where we show that the non-convex program is feasible and
Lemma B.5, where we show that any of its solutions is an approximately optimal halfspace. We will show that any unit
vector w ∈ Rd such that Pr(x,y)∼D[sign(w · x+ t) ̸= y] ≤ Cϵ, where C > 0 is some sufficiently large universal constant,
satisfies all the constraints of (3). We prove the following lemma.
Lemma B.2 (Feasibility). Fix ϵ ∈ (0, 1/2) and let D be an ϵ-corrupted distribution on Rd × {±1} with standard normal x-
marginal. Denote by w∗ the weight vector of an optimal halfspace, i.e., Pr(x,y)∼D[sign(w

∗ ·x+t) ̸= y] ≤ ϵ. Fix unit vector
w ∈ Rd with θ(w,w∗) = θ and denote g = E(x,y)∼D[y(projw⊥x)1{w · x ∈ Ba,b}] with Ba,b = {z ∈ R : |z − b| ≤ a}.
It holds

∥g∥2 ≤ O(ϵ+ θe−t2/2)

√
log

(
Pr

z∼N (0,1)
[z ∈ Ba,b]/ϵ

)
.

Moreover, if Pr(x,y)∼D[sign(w · x+ t) ̸= y] ≤ ϵ, it holds that

∥g∥2 ≤ 4
√
eϵ

√
log

(
Pr

z∼N (0,1)
[z ∈ Ba,b]/ϵ

)
.



Learning General Halfspaces with Adversarial Label Noise via Online Gradient Descent

Remark B.3. In particular, Lemma B.2 shows that w∗ is a solution of the non-convex feasibility system (3). We
remark that by relaxing the constraint of the non-convex program to

∥∥E(x,y)∼D[y(projw⊥x)1 {w · x ∈ Ba,b}
∥∥
2
≤

4
√
eC ′ϵ

√
log
(
Prz∼N (0,1)[z ∈ Ba,b]/ϵ+ 1

)
for some larger constant C ′ > 1 we will obtain that any halfspace h with

error Pr(x,y)∼D[h(x) ̸= y] ≤ C ′ϵ will also be a feasible solution.

Proof. Note that ∥g∥2 = supv∈Rd | v
∥v∥2
·g|. Pick any unit vector u ∈ Rd and denote h(x) = sign(w ·x+ t). We have that

|u · g| ≤ | E
(x,y)∼D

[(y − h(x))u · (projw⊥x)1{w · x ∈ Ba,b}]|+ | E
x∼Dx

[h(x)u · (projw⊥x)1{w · x ∈ Ba,b}]|

= | E
(x,y)∼D

[(y − h(x))u · (projw⊥x)1{w · x ∈ Ba,b}]| ≤ 2 E
(x,y)∼D

[|u · (projw⊥x)|1{w · x ∈ Ba,b, y ̸= h(x)}] ,

where for the first inequality we used triangle inequality; in the equality we used the fact that Ex∼Dx [h(x)u·(projw⊥x)1{w·
x ∈ Ba,b}] = Ex∼Dx [u · (projw⊥x)]Ex∼Dx [h(x)1{w · x ∈ Ba,b}] = 0 because u · (projw⊥x) is independent of
h(x)1{w · x ∈ Ba,b} and Ex∼Dx [u · (projw⊥x)] = 0 because Dx is zero-mean; and in the last inequality we used
that |y − h(x)| is non-zero only when y ̸= h(x) and at most 2. We now have to bound from above the contribution
of the term E(x,y)∼D[|u · (projw⊥x)|1{w · x ∈ Ba,b, y ̸= h(x)}]. One could use the Cauchy-Schwarz inequality to
bound this expectation by (E(x,y)∼D[|u · (projw⊥x)|2])1/2(Pr(x,y)∼D[w · x ∈ Ba,b, y ̸= h(x)])1/2. However, this would
only imply an upper bound of the order of (Pr(x,y)∼D[w · x ∈ Ba,b, y ̸= h(x)])1/2 = O(

√
ϵ), where we used that

Pr(x,y)∼D[y ̸= h(x)] ≤ Pr(x,y)∼D[y ̸= h(x)] +Pr(x,y)∼D[y ̸= f(x)] = O(ϵ). Using the concentration of the Gaussian
distribution and the fact that u · projw⊥x is independent from w · x we are able to prove a much stronger decoupling
inequality. We show the following lemma.

Lemma B.4 (Gaussian Decoupling Inequality). Let D be a distribution on Rd × {±1} with standard normal x-marginal.
Moreover, let w,u ∈ Rd be two orthogonal unit vectors, define B = {z ∈ R : z ∈ (t1, t2)}, for some t1, t2 ∈ R and let
S(x, y) be an event over Rd × {±1}. It holds that

E[|u · x|1{S(x, y),w · x ∈ B}] ≤ 2
√
ePr[S(x, y)]

√
log

(
Pr[w · x ∈ B]

Pr[S(x, y)]
+ 1

)
.

Proof. We first observe that the inequality is trivially true when Pr[w · x ∈ B] = 0. To simplify notation we will not now
condition on the event w · x ∈ B. For any ξ > 0, we have that

E[|u · x|1{S(x, y)} | w · x ∈ B]

= E[|u · x|1{S(x, y), |u · x| ≤ ξ} | w · x ∈ B] +E[|u · x|1{S(x, y), |u · x| ≥ ξ} | w · x ∈ B]

≤ ξPr[S(x, y) | x ∈ B] +E[|u · x|1{|u · x| ≥ ξ} | w · x ∈ B] .

We now observe that since w and u are orthogonal the Gaussian random variables w · x and u · x are independent and
therefore, we can compute the second expectation as follows:

E[|u · x|1{|u · x| ≥ ξ} | w · x ∈ B] = E[|u · x|1{|u · x| ≥ ξ}] = 1√
2π

∫ +∞

ξ

ze−z2/2 =
e−ξ2/2

√
2π

.

Denote p = Pr[S(x, y) | w · x ∈ B] and set ξ =
√

2 log(1/p). We obtain that

E[|u · x|1{S(x, y)} | w · x ∈ B] ≤ p
√
2 log(1/p) +

p√
2π

.

Using the elementary inequalities
√
a+
√
b ≤
√
2
√
a+ b which is true for all a, b > 0 and log z+1 ≤ e log(z+1), which

is true for all z > 0, we obtain
√
2 log(1/p) + 1/

√
2π ≤ 2

√
e
√

log(1/p+ 1) for every p ∈ (0, 1].

Using that Pr[S(x, y) | w · x ∈ B] = Pr[S(x, y)1{w · x ∈ B}]/Pr[w · x ∈ B] we obtain

E[|u · x|1{S(x, y),w · x ∈ B}] ≤ 2
√
ePr[S(x, y),w · x ∈ B]

√
log

(
Pr[w · x ∈ B]

Pr[S(x, y),w · x ∈ B]

)
.
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Moreover, it is not hard to see that for all r > 0 the function p 7→ p
√

log(r/p+ 1) is increasing in p > 0 and therefore we
can replace the probability Pr[S(x, y),w · x ∈ B] by its upper bound Pr[S(x, y)] in the previous bound to obtain

E[|u · x|1{S(x, y),w · x ∈ B}] ≤ 2
√
ePr[S(x, y)]

√
log

(
Pr[w · x ∈ B]

Pr[S(x, y)]
+ 1

)
.

Using Lemma B.4, we get that

E
(x,y)∼D

[|u · (projw⊥x)|1{w · x ∈ Ba,b, y ̸= h(x)}] ≤ 2
√
e Pr
(x,y)∼D

[h(x) ̸= y]

√
log

(
Prz∼N (0,1)[z ∈ Ba,b]

Pr(x,y)∼D[h(x) ̸= y]

)

≤ O(ϵ+ θe−t2/2)

√
log

(
Prz∼N (0,1)[z ∈ Ba,b]

ϵ

)
,

where we used that ϵ ≤ Pr(x,y)∼D[sign(w · x + t) ̸= y] ≤ Pr(x,y)∼D[f(x) ̸= y] + Prx∼Dx [h(x) ̸= f(x)] =

ϵ+O(θe−t2/2). To bound the disagreement between h(x) and the optimal halfspace f(x) we used Fact C.11. From the
same computation as above, we conclude that when Pr(x,y)∼D[sign(w · x+ t) ̸= y] ≤ ϵ, it holds that

E
(x,y)∼D

[|u · (projw⊥x)|1{w · x ∈ Ba,b, y ̸= h(x)}] ≤ 4
√
eϵ

√
log

(
Prz∼N (0,1)[z ∈ Ba,b]

ϵ

)
,

which proves the second part of the lemma.

Next, we show that for any vector w such that Pr(x,y)∼D[sign(w · x+ t) ̸= y] ≥ Cϵ, where C > 0 is some sufficiently
large universal constant, there exists a set B which violates a constraint of the non-convex program (3). In particular we
show that choosing a = sin(θ(w,w∗)) and b = −t cos(θ(w,w∗)) we get a violated constraint of problem (3). We show
the following lemma.

Lemma B.5. Fix ϵ ∈ (0, 1/2) and let D be an ϵ-corrupted distribution on Rd × {±1} with standard normal x-marginal.
Denote by w∗ the weight vector of an optimal halfspace, i.e., Pr(x,y)∼D[sign(w

∗ ·x+ t) ̸= y] ≤ ϵ. Fix unit vector w ∈ Rd

and assume that min(e−t2/2 sin(θ(w,w∗)), e−t2/2/|t|) ≥ Cϵ, where C > 0 is some sufficiently large universal constant.
Denote g = E(x,y)∼D[y(projw⊥x)1{w · x ∈ Ba,b}] and pick a = sin θ(w,w∗) and b = −t cos θ(w,w∗). Then, it holds
that,

∥g∥2 ≥ (4
√
e) ϵ

√
log

(
Pr

z∼N (0,1)
[Ba,b]/ϵ

)
.

Remark B.6. We remark that, in fact, our proof of Lemma B.5 establishes a stronger condition which will eventually allow us
to design an efficient algorithm. We show that the vector g = E(x,y)∼D[y(projw⊥x)1{w · x ∈ Ba,b}] correlates positively
with the optimal vector w∗, i.e., that g ·w∗ > 0. At a high-level this means that g “points to the right direction” and we can
use it in order to improve our current guess, see Lemma B.7 and Section C.

Proof. As we plant to bound from below the norm of g it suffices to consider any unit vector u and show that g·u is large. We
will first prove a general lemma that given any band B, bounds from below the inner product of E(x,y)∼D[(projw⊥x)y1{w ·
x ∈ B}] with the direction w∗.

Lemma B.7. Fix ϵ ∈ (0, 1/2) and let D be an ϵ-corrupted distribution on Rd × {±1} with standard normal x-marginal.
Denote by w∗ with ∥w∗∥2 = 1, the weight vector of an optimal halfspace, i.e., Pr(x,y)∼D[sign(w

∗ · x + t) ̸= y] ≤ ϵ.
Fix some unit vector w ∈ Rd such that θ(w,w∗) = θ ∈ (0, π) and let B = {z ∈ R : t1 < z < t2}. Denote
g = E(x,y)∼D[y(projw⊥x)1{w · x ∈ B}] and v =

proj
w⊥w∗

∥proj
w⊥w∗∥2

. It holds

g · v ≥
√

2

π

(
sin θe−

t2

2 p− 9ϵ
√
log(q/ϵ+ 1)

)
,

where p = Prz∼N (−t cos θ,(sin θ)2)[z ∈ B], and q = Prz∼N (0,1)[z ∈ B].
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We are now ready to prove Lemma B.5. Recall, that in Lemma B.5 we pick the band Ba,b with a = sin(θ(w,w∗)) and
b = −t cos(θ(w,w∗)). We have that

p = Pr
z∼N (−t cos θ,(sin θ)2)

[z ∈ B] = Pr
z∼N (0,(sin θ)2)

[|z| ≤ sin θ] = Pr
z∼N (0,1)

[|z| ≤ 1] ≥ 2

3
.

Moreover, we have

q = Pr
z∼N (0,1)

[z ∈ B] = Pr
z∼N (0,1)

[|z + t cos θ| ≤ sin θ] ≤ 2 sin θmax(e−(−t cos θ+sin θ)2/2, e−(−t cos θ−sin θ)2/2)

≤ 2 sin θe−(t cos θ)2/2+|t| sin θ+1/2 ≤ 4 sin θe−t2/2 e(t sin θ)2/2+|t| sin θ .

Therefore, we have that log(q/ϵ + 1) ≤ log(sin θe−t2/2/ϵ) + (t sin θ)2/2 + |t| sin θ + 3. Using Lemma B.7, and the
inequality

√
a+
√
b ≤
√
2
√
a+ b, we have that

1

sin θ
(projw⊥ ḡ) ·w∗ ≥

√
2

π

(
sin θe−

t2

2 p− 9ϵ
√

log(q/ϵ+ 1)
)

≥ 2
√
2

3
√
π

(
sin θe−

t2

2 − 20ϵ
(√

log(sin θe−t2/2/ϵ) + 3 +
√
(t sin θ)2 + |t| sin θ

))
,

Observe now that since, by the assumptions of Lemma C.3, it holds that sin θe−t2/2/ϵ is greater than some suf-
ficiently large absolute constant C > 1, it suffices to show that it is larger than each of the “noise” terms:√

log(sin θe−t2/2/ϵ) + 3,
√
(t sin θ)2 + |t| sin θ, separately. We will first prove that the term sin θe−t2/2/3 is greater

than 20ϵ
√

log(sin θe−t2/2/ϵ) + 3. Observe that since sin θe−t2/2 ≥ 1 it suffices to show that it is larger than
20
√
3ϵ
√
log(sin θe−t2/2/ϵ) + 1. We will use the following elementary inequality.

Claim B.8. Let c ≥ 1. Then for all t ≥ c2 it holds that t ≥ c
√

log(t) + 1.

Proof. Follows immediately from the inequality log(t) ≤ t− 1.

Using the above claim, we obtain that when sin θe−t2/2/ϵ ≥ (20 · 3
√
3)2 it holds that sin θe−t2/2/3 ≥

20
√
3ϵ
√
log(sin θe−t2/2/ϵ) + 1. We next show that sin θe−t2/2/3 ≥ 20ϵ

√
(t sin θ)2 + |t| sin θ. We distinguish two

cases. First, we handle the case |t| sin θ ≤ 1. In this case, we have to show that sin θe−t2/2/3 ≥ 20
√
6ϵ which holds

directly from assumptions. When |t| sin θ ≥ 1 we have that
√

(t sin θ)2 + |t| sin θ ≤
√
2|t| sin θ. Therefore, in order for

sin θe−t2/2/3 to be larger than 20
√
2ϵ|t| sin θ we need e−t2/2/|t| ≥ 3 · 20

√
2ϵ, which holds from the assumption that

e−t2/2/(ϵ|t|) is greater than an absolute constant.

B.1. The Proof of Lemma B.7

Without loss of generality, to simplify notation, we assume that w = e2 and w∗ = − sin θe1 + cos θe2. We have that
v = −e1. Let S(x, y) be the event that a point (x, y) is corrupted and note that E[1{S(x, y)}] = ϵ. Therefore, we have

g · v = E[−x1y1{w · x ∈ B}]
= E[−x1sign(w

∗ · x+ t)1{w · x ∈ B}]− 2E[−|x1|1{S(x, y)}1{w · x ∈ B}]
= E[|x1|1{w · x ∈ B,x1(w

∗ · x+ t) < 0}]−E[|x1|1{w · x ∈ B,x1(w
∗ · x+ t) ≥ 0}]︸ ︷︷ ︸

I1

− 2E[|x1|1{S(x, y)}1{w · x ∈ B}]︸ ︷︷ ︸
I2

.

Using the Lemma B.4, we get that
I2 ≤ 2

√
eϵ
√

log(Pr[w · x ∈ B]/ϵ+ 1) , (4)

where we used that Pr[S] = ϵ. Next, we prove the following claim for the term I1.
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Claim B.9. It holds that

I1 =
sin θ√
2π

e−
t2

2 Pr
x∼N (−t cos θ,sin θ2)

[t1 < x < t2] .

Proof. First we show that

I1 = 2E

[
|x1|

{
w · x ∈ B,x1 ≥

|x2 cos θ + t|
sin θ

}]
.

Fix t1 ≤ x2 ≤ t2 and we have two cases. The first case is when x2 cos θ + t ≥ 0, then x1(w
∗ · x+ t) ≤ 0 is equivalent

to x1 ∈ (−∞, 0) ∪ ((x2 cos θ + t)/ sin θ,∞). The second case is when x2 cos θ + t < 0, then x1(w
∗ · x + t) ≤ 0 is

equivalent to x1 ∈ (−∞,−(x2 cos θ + t)/ sin θ) ∪ (0,∞). Note that from the symmetry of the Gaussian distribution, i.e.,
x1 has the same distribution with −x1, we have

E[|x1|1{w · x ∈ B,x1(w
∗ · x+ t) < 0}] = E[|x1|{w · x ∈ B,x1 ∈ (−∞, 0) ∪ (|x2 cos θ + t|/ sin θ,∞)}] ,

and note that E[|x1|1{w ·x ∈ B,x1(w
∗ ·x+t) ≥ 0}] = E[|x1|1{w ·x ∈ B}]−E[|x1|1{w ·x ∈ B,x1(w

∗ ·x+t) < 0}]
and that E[|x1|{w · x ∈ B,x1 ∈ (−∞, 0)}] = (1/2)E[|x1|{w · x ∈ B}], therefore,

I1 = 2E

[
|x1|

{
w · x ∈ B,x1 ≥

|x2 cos θ + t|
sin θ

}]
.

Next, we have that

I1 =
1

2π

∫ t2

t1

∫ ∞

|t+cos θx2|
sin θ

x1 exp(−(x2
1 − x2

2)/2)dx1dx2 =
1

2π

∫ t2

t1

exp

(
−
(

t

sin θ
+

x2

tan θ

)2

/2− x2
2/2

)
dx2 .

Next, we prove the following claim

Claim B.10. For a ≥ 0 and b ∈ R, it holds that∫ t2

t1

exp
(
−ax2 + bx

)
dx =

exp(b2/(4a))
√
π√

a
Pr

x∼N (b/(2a),1/(2a))
[t1 < x < t2] .

Proof. We have that ∫ t2

t1

exp
(
−ax2 + bx

)
dx =

∫ t2

t1

exp
(
−a(x− b/(2a))2 + b2/(4a)

)
dx

= exp(b2/(4a))

∫ t2

t1

exp

(
−1

2
(2a)(x− b

2a
)2
)
dx ,

Therefore, we have that∫ t2

t1

exp
(
−ax2 + bx

)
dx =

exp(b2/(4a))
√
π√

a
Pr

x∼N (b/(2a),1/(2a))
[t1 < x < t2] .

Using the claim above, we have that

1

2π

∫ t2

t1

exp(−
(

t

sin θ
+

x2

tan θ

)2

/2−x2
2/2)dx2

=
exp(− 1

2 (t/ sin θ)
2)

2π

∫ t2

t1

exp

(
−1

2
(1 +

1

tan2 θ
)x2

2 − x2t
cos θ

sin2 θ

)
dx2 ,
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therefore for a = 1
2 (1 + 1/ tan θ2) = 1

2 (sin θ)
−2 and b = −t cos θ/ sin2 θ, we have that

1

2π

∫ t2

t1

exp

(
−
(

t

sin θ
+

x2

tan θ

)2

/2− x2
2/2

)
dx2 =

sin θ√
2π

e−
t2

2 ((1/ sin θ)2−cos θ2/ sin θ2) Pr
x∼N (−t cos θ,sin θ2)

[t1 < x < t2]

=
sin θ√
2π

e−
t2

2 Pr
x∼N (−t cos θ,sin θ2)

[t1 < x < t2] .

Using Claim B.9 and Equation (4), we get

E[−x1y1{w · x ∈ B}] ≥ 2

(
sin θ√
2π

e−
t2

2 Pr
z∼N (−t cos θ,sin θ2)

[z ∈ B]− 2
√
eϵ
√
log(Pr[w · x ∈ B]/ϵ+ 1)

)
.

Using that 2
√
2eπ ≤ 9, we get that

E[−x1y1{w · x ∈ B}] ≥
√

2

π

(
sin θe−

t2

2 Pr
z∼N (−t cos θ,sin θ2)

[z ∈ B]− 9ϵ
√
log(Pr[w · x ∈ B]/ϵ+ 1)

)
,

which completes the proof.

C. Learning LTFs via Online Gradient Descent
In this section we prove our main algorithmic result: we show that we can solve the non-convex feasibility problem of
Appendix B using Online Gradient Descent. We first formally state our result.

Theorem C.1 (Non-Adaptive Online Gradient Descent Learner). Fix ϵ, δ ∈ (0, 1/2) and letD be an ϵ-corrupted distribution
on Rd × {±1} with standard normal x-marginal. Denote by D̂ the empirical distribution formed with N = Õ(d log(1/δ)

ϵ2 )

samples from D. Then, the Online Gradient Descent Algorithm 2, after T = O(log4(1/ϵ)) iterations, returns a vector w(T )

and a threshold t such that, with probability at least 1− δ, it holds Pr(x,y)∼D[sign(w
(T ) ·x+ t)) ̸= y] ≤ Cϵ, where C > 0

is some universal constant.

Recall that the sequence of non-convex objectives that we use has the form Lk(w) = −E(x,y)∼D̂[rak,bk(w · x/∥w∥2)y],
where we define the ramp function ra,b with center b and length a as follows:

ra,b(t) =


0 if t ≤ b− a

t− b+ a if b− a < t < b+ a

2a otherwise

We first show that the gradient of Lk(w) is equal to E(x,y)∼D[−y(projw⊥x)1w · x ∈ Ba,b], i.e., it coincides with the
vector of the left hand side of the constraints of the non-convex problem (1).

Claim C.2. For any unit vector w ∈ Rd, the Online Projected Gradient update rule of Algorithm 1 with loss Lk(w) and
stepsize λ corresponds to the update

w′ =
w − λ∇wLk(w)

∥w − λ∇wLk(w)∥2
.

Moreover,∇wLk(w) = E(x,y)∼D̂

[
−y1{|w · x− bk| ≤ ak}∇w

w·x
∥w∥2

]
.

Proof. The gradient of Lk(w) is equal to

∇wLk(w) = E
(x,y)∼D̂

[
−∇wrak,bk

(
w · x
∥w∥2

)
y

]
= E

(x,y)∼D̂

[
−r′ak,bk

(
w · x
∥w∥2

)
y∇w

w · x
∥w∥2

]
= E

(x,y)∼D̂

[
−y1{|w · x− bk| ≤ ak}∇w

w · x
∥w∥2

]
,
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where in the first equality we used the chain rule. Observe that∇w
w·x
∥w∥2

= 1
∥w∥2

(x− (w·x)w
∥w∥2

2
) =

(proj
w⊥x)

∥w∥2
= (projw⊥x),

where we used that w is a unit norm vector. Hence ∇wLk(w) = E(x,y)∼D̂ [−y(projw⊥x)1{|w · x− bk| ≤ ak}]. More-
over, from the above we get that w · ∇wLk(w) = 0, therefore from Pythagorian theorem we get that

∥w − λ∇wLk(w)∥22 = ∥w∥22 + λ2∥∇wLk(w)∥22 = 1 + λ2∥∇wLk(w)∥22 ≥ 1 ,

where we used that ∥w∥2 = 1. Therefore, after each step, the Online Projected Gradient update rule will project the new
vector inside the d-dimensional unit ball, hence the result follows.

In Lemma B.5 (see also Remark B.6) we essentially showed that there exist parameters a, b such that the gradient
∇L(w) “points to the direction” of w∗. In particular we showed that we can pick the band with a = sin θ(w,w∗) and
b = −t cos(θ(w,w∗)). Unfortunately, we do not know either the value of the optimal threshold t or the angle between the
guess and the optimal weight vector w∗: θ(w,w∗). It is not hard to obtain an estimate t′ of the value of the threshold t from
the noisy samples: we can show (see Claim C.9) that with O(1/ϵ) we can obtain a good estimate t′. In fact, we show that t′

is the optimal threshold and only introduce O(ϵ) additional noise in the distribution D. Therefore, to keep the presentation
clean, in what follows we will assume that we know the value of the optimal threshold t. One could hope that we can also
estimate the angle between w,w∗ from samples and assume that it is also known. It is unclear whether we can estimate the
angle accurately enough: in fact we will show that we do not need to do so. In general, we will need a “robust” version of
Lemma B.5 showing how close must be the threshold, and size values a, b to the “true” used in Lemma B.5 in order for
the gradient∇Lk(w) to point to the right direction. We prove the following lemma that shows that it is ok to use the band
Ba,b with a = sin(ϕ) and b = t cos(ϕ) assuming that |ϕ− θ(w,w∗)| ≤ min(ϕ, 1/ log(1/ϵ)). The fact that we only have
an (inverse) logarithmic tolerance (as opposed to requiring the difference to be poly(ϵ) is crucial for obtaining the fast, i.e.,
in poly(log(1/ϵ) rounds, convergence of our Online Gradient Descent algorithm.

Lemma C.3 (Localized Update). Fix ϵ ∈ (0, 1/2) and a sufficiently large constant C > 1. Let D be an ϵ-
corrupted distribution on Rd × {±1} with standard normal x-marginal. Denote by w∗ the weight vector of an op-
timal halfspace, i.e., Pr(x,y)∼D[sign(w

∗ · x + t) ̸= y] ≤ ϵ. Fix ϕ ∈ [0, π/2] and a unit vector w ∈ Rd and
assume that min(e−t2/2 sin(θ(w,w∗)), e−t2/2/|t|) ≥ Cϵ. Denote Bϕ = {z ∈ R : |z − t cos(ϕ)| < sin(ϕ)} and
g(w, ϕ) = E(x,y)∼D[y(projw⊥x)1{w · x ∈ Bϕ}]. Then, if |ϕ− θ(w,w∗)| ≤ ϕ/(C log(1/ϵ)), it holds that

g(w, ϕ) ·w∗ ≥ (sin θ)2e−t2/2 .

Proof. Let θ = θ(w,w∗). First, we show that under the assumption that |ϕ− θ(w,w∗)| ≤ ϕ/(C log(1/ϵ)), it holds that
max(|t cosϕ− t cos θ|, |1− (sin θ/ sinϕ)2|) ≤ 1/C. We have that |t cosϕ− t cos θ| ≤ |t||ϕ−θ| ≤ t/(C log(1/ϵ)) ≤ 1/C
where we used that |t| ≤

√
2 log(1/ϵ) from the assumptions, i.e., it holds that exp(−t2/2)/|t| ≥ Cϵ. Moreover, we

need to show that |1 − (sin θ/ sinϕ)2| ≤ 1/C. It suffices to show that |1 − sin θ/ sinϕ| ≤ 1/(2C), because then
|1 − (sin θ/ sinϕ)2| ≤ |1 + (sin θ/ sinϕ)|/(2C) ≤ 1/(2C) + 1/(2C)2 ≤ 1/C. From our assumptions, we have that
|ϕ− θ| ≤ ϕ/(2C), therefore |1− (sin θ/ sinϕ)2| ≤ 1/C.

Denote B̄ = [−t cos θ − sin θ,−t cos θ]. We have that

p̄ = Pr
z∼N (−t cos θ,(sin θ)2)

[z ∈ B̄] = Pr
z∼N (0,(sin θ)2)

[|z| ≤ sin θ] = Pr
z∼N (0,1)

[|z| ≤ 1] ≥ 2

3
.

Moreover, we have

q̄ = Pr
z∼N (0,1)

[z ∈ B̄] = Pr
z∼N (0,1)

[|z + t cos θ| ≤ sin θ] ≤ 2 sin θmax(e−(−t cos θ+sin θ)2/2, e−(−t cos θ−sin θ)2/2)

≤ 2 sin θe−(t cos θ)2/2+|t| sin θ+1/2 ≤ 4 sin θe−t2/2 e(t sin θ)2/2+|t| sin θ .

Let a = sinϕ and b = −t cosϕ. We now show that under the assumptions that max(|b− t cos θ|, |1− (sin θ/a)2|) ≤ 1/C
and |a−sin θ| ≤ 1/(C log(1/ϵ)) it holds that the the corresponding Gaussian integrals p = Prz∼N (−t cos θ,(sin θ)2)[z ∈ Bϕ]
and q = Prz∼N (0,1)[z ∈ Bϕ] are close to the values p̄ and q̄. In particular, we have the following claim.

Claim C.4. It holds that p ≥ p̄/2 and q ≤ 2q̄.



Learning General Halfspaces with Adversarial Label Noise via Online Gradient Descent

Proof. We first prove that p ≥ p̄/2. We have that p̄ = Prz∼N (0,1)[|z| ≤ 1] and p = Prz∼N (−t cos θ−b,(sin θ/a)2 [|z| ≤ 1].
For simplicity, denote µ = −t cos θ − b and σ = sin θ/a. The log-ratio of the densities of the standard normal and the
normal N (µ, σ2) is equal to

log

(
N (0, 1; z)

N (µ, σ2; z)

)
= log(σ) + (z − µ)2/(2σ2)− z2/2 = log(σ) +

z2

2

(
1

σ2
− 1

)
− z

µ

σ2
+

µ2

2σ2
.

Since we only care about the ratio in the interval |z| ≤ 1 we can bound the above log-ratio in absolute value by log(σ) +
|1− 1/σ2|+ (|µ|+ |µ|2)/σ2. We see that when σ is sufficiently close to 1 (for concreteness σ ∈ (1− 1/100, 1 + 1/100)
and |µ| ≤ 1/100 we obtain that for all |z| ≤ the (absolute value of the) above log-ratio is at most 0.05 which implies that p
is well above p̄/2.

We next bound the ratio of the probabilities q, q̄. The main ingredient is the following lemma bounding the ratio of the
probabilities of two different intervals under the Gaussian distribution. In particular, for the two intervals of the form
|x − b1| ≤ a1 and |x − b2| ≤ a2 to have roughly the same Gaussian mass, it suffices that a1/a2 = Θ(1), a1 ≤ 1,
|b1 − b2| = O(1) and |a21 − a22| ≤ 1/(1 + |b2|2).

Lemma C.5 (Gaussian Intervals Ratio). Let a1, a2 ∈ (0,∞) and let b1, b2 ∈ R. It holds

e−c ≤
Prz∼N (0,1)[|z − b1| ≤ a1]

Prz∼N (0,1)[|z − b2| ≤ a2]
≤ ec,

where, c = a21/(|b1 + b2|+ 1)|b1 − b2|+ | log(a1/a2)|+ ((1 + |b2|)2/2)|a21 − a22|.

Proof. It holds that

Prz∼N (0,1)[|z − b1| ≤ a1]

Prz∼N (0,1)[|z − b2| ≤ a2]
=

Prz∼N (0,1)[|z − b1| ≤ a1]

Prz∼N (0,1)[|z − b2| ≤ a1]

Prz∼N (0,1)[|z − b2| ≤ a1]

Prz∼N (0,1)[|z − b2| ≤ a2]
.

Therefore, it suffices to bound each of the ratios separately. For the first ratio, we have

Prz∼N (0,1)[|z − b1| ≤ a1]

Prz∼N (0,1)[|z − b2| ≤ a1]
=

Prz∼N (−b1,1/a2
1)
[|z| ≤ 1]

Prz∼N (−b2,1/a2
1)
[|z| ≤ 1]

We have that the log-ratio of the densities of N (−b1, 1/a21) and N (−b2, 1/a21) is equal to

log

(
N (−b1, 1/a21;x)
N (−b2, 1/a21;x)

)
= −(x+ b1)

2a21/2 + (x+ b2)
2a21/2 = a21/2(x(b2 − b1) + (b22 − b21),

which, in absolute value, is less than or equal to a21/2(|b1 + b2|+ 1)|b1 − b2|, where we used the fact that we only need to
bound the ratio of the densities in the interval |x| ≤ 1. Similarly, we bound the log-ratio of densities of the second ratio

log

(
N (−b2, 1/a21;x)
N (−b2, 1/a22;x)

)
= log(

a1
a2

)− (x− b2)
2a21/2 + (x− b2)

2a22/2 = log(
a1
a2

) +−((x− b2)
2/2)(a22 − a21),

which, in absolute value is at most | log(a1/a2)|+ ((1 + |b2|)2/2)|a21 − a22|.

From the assumption that |t| ≤
√
2 log(1/ϵ) we have that |t cos θ| ≤

√
2 log(1/ϵ), and therefore, using Lemma C.5, we

obtain that when |b + t cos θ|, |1 − (sin θ/a)2| are sufficiently small universal constants, and | sin θ − a| is a sufficiently
small constant multiple of 1/ log(1/ϵ), it holds that q̄ ≤ 2q.
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Therefore, we have that log(q̄/ϵ + 1) ≤ log(sin θe−t2/2/ϵ) + (t sin θ)2/2 + |t| sin θ + 3. We next denote ḡ =
E(x,y)∼D[yx1B̄(w · x)]. Using Lemma B.7, and the inequality

√
a+
√
b ≤
√
2
√
a+ b, we have that

1

sin θ
g(w, ϕ) ·w∗ ≥

√
2
2

π

(
sin θe−

t2

2 p̄− 18
√
2ϵ
√

log(q̄/ϵ+ 1)
)

≥ 2
√
2

3
√
π

(
sin θe−

t2

2 − 60ϵ
(√

log(sin θe−t2/2/ϵ) + 3 +
√
(t sin θ)2 + |t| sin θ

))
,

Observe now that since, by the assumptions of Lemma C.3, it holds that sin θe−t2/2/ϵ is greater than some suf-
ficiently large absolute constant C > 1, it suffices to show that it is larger than each of the “noise” terms:√

log(sin θe−t2/2/ϵ) + 3,
√
(t sin θ)2 + |t| sin θ, separately. We will first prove that the term sin θe−t2/2/3 is greater

than 20ϵ
√

log(sin θe−t2/2/ϵ) + 3. Observe that since sin θe−t2/2 ≥ 1 it suffices to show that it is larger than
20
√
3ϵ
√
log(sin θe−t2/2/ϵ) + 1. From Claim B.8, we obtain that when sin θe−t2/2/ϵ ≥ (60 · 3

√
3)2 it holds that

sin θe−t2/2/3 ≥ 60
√
3ϵ
√
log(sin θe−t2/2/ϵ) + 1. We next show that sin θe−t2/2/3 ≥ 60ϵ

√
(t sin θ)2 + |t| sin θ. We

distinguish two cases. First, we handle the case |t| sin θ ≤ 1. In this case, we have to show that sin θe−t2/2/3 ≥ 20
√
6ϵ

which holds directly from assumptions. When |t| sin θ ≥ 1 we have that
√
(t sin θ)2 + |t| sin θ ≤

√
2|t| sin θ. Therefore, in

order for sin θe−t2/2/3 to be larger than 20
√
2ϵ|t| sin θ we need e−t2/2/|t| ≥ 3 · 20

√
2ϵ, which holds from the assumption

that e−t2/2/(ϵ|t|) is greater than an absolute constant.

We now have shown that there exists a choice for the parameters a, b of the ramp objective L(w) so that its gradient point
to the right direction. Given a current guess w we still have the issue of knowing the angle between w and w∗. In the
next lemma we show that we do not need to know the value of the angle but only an upper bound, i.e., we know that
θ(w,w∗) ∈ [0, ϕ]. We show that, with an appropriate step size, the online gradient descent update of Algorithm 1 is a
contraction map in the sense that, even though an update may make the current angle between the guess w,w∗ worse, we
can show that the new angle belongs in a smaller interval [0, ϕ′] that is significantly smaller than our initial interval [0, ϕ].
Lemma C.6 (Angle Contractive Map). Fix a unit vector v∗ ∈ Rd, β, γ, κ ∈ (0, 1) and a vector field g : Rd × R 7→ Rd

such that for any vector u and ϕ ∈ [0, π/2], it holds that ∥g(u, ϕ)∥2 ≤ κ, g(u, ϕ) · u = 0, and, if |ϕ− θ(u,v∗)| ≤ γ sinϕ,
and sin(θ(u,v∗)) ≥ β > 0 then g(u, ϕ) · v∗ ≥ ρκ sin(θ(u,v∗)) > 0. Fix ϕ ∈ [0, π/2] with sin(ϕ) ≥ β > 0. Set v to be
any unit vector in Rd with θ(v,v∗) ≤ ϕ and consider the normalized gradient update rule

v′ =
v + λg(v, ϕ)

∥v + λg(v, ϕ)∥2
,

with λ = ργ sinϕ/(4κ). Then, it holds that θ(v′,v∗) ≤ ϕ′, where, ϕ′ = max(ϕ(1− ρ2γ2/64), β).

Proof. First, we start by proving the following claim.

Claim C.7 (Correlation Improvement). For unit vectors v∗,v ∈ Rd, let u ∈ Rd such that u · v∗ ≥ c, u · v = 0, and
∥u∥2 ≤ 1, with c > 0. Then, for v′ = v+λu

∥v+λu∥2
, with λ ≤ c/2, we have that v′ · v∗ ≥ v · v∗ + λc/8.

Proof. We will show that v′ · v∗ = cos θ′ ≥ cos θ + λ2/2, where cos θ = v · v∗. We have that

∥v + λu∥2 =

√
1 + λ2 ∥u∥22 ≤ 1 + λ2 ∥u∥22 , (5)

where we used that
√
1 + a ≤ 1 + a, for a > 0. Using the update rule, we have

v′ · v∗ = v′ · (v∗)⊥v sin θ + v′ · v cos θ =
λu · (v∗)⊥v

∥v + λu∥2
sin θ +

(v + λu)·v
∥v + λu∥2

cos θ .

Now using Equation (5), we get

v′ · v∗ ≥ λu · (v∗)⊥v

1 + λ2 ∥u∥22
sin θ +

cos θ

1 + λ2 ∥u∥22
= cos θ +

λu · (v∗)⊥v

1 + λ2 ∥u∥22
sin θ +

−λ2 ∥u∥22 cos θ
1 + λ2 ∥u∥22

.
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Then, using that u · v∗ = u · (v∗)⊥v sin θ, we have that u · (v∗)⊥v ≥ c
sin θ , thus

v′ · v∗ ≥ cos θ +
λc− λ2 ∥u∥22
1 + λ2 ∥u∥22

≥ cos θ +
λc− λ2

1 + λ2 ∥u∥22
= cos θ +

1

4

λc

1 + λ2 ∥u∥22
,

where in the first inequality we used that ∥u∥2 ≤ 1 and in the second that for λ ≤ c/2 it holds c− λ ≥ c/2. Finally, we
have that

cos θ′ = v′ · v∗ ≥ cos θ +
1

4

cλ

1 + λ2 ∥u∥22
≥ cos θ +

1

8
cλ .

This completes the proof.

We shall distinguish two cases. In the first case we assume that |ϕ − θ(v,v∗)| ≤ γ sinϕ and that means that it holds
g(v, ϕ) · v∗ ≥ ρ sin(θ(v,v∗))/κ; then from Claim C.7, we have that v′ · v∗ ≥ v · v∗ + λρ sin(θ(v,v∗))/(8κ) ≥
v · v∗ + ρ2γ2ϕ2/64, where we used that λ = ργ sinϕ/(4κ) ≥ ργϕ/(8κ), because sinx ≥ x/2 for π/2 ≥ x ≥ 0. Hence,
we have that cos(θ(v′,v∗)) ≥ cos(θ(v,v∗)) + ρ2γ2ϕ2/64 and note that because cos(t) is decreasing in [0, π], it holds that
θ(v,v∗) ≥ θ(v′,v∗). Moreover, using the trigonometric identity cosx− cos y = 2 sin((x+ y)/2) sin((y− x)/2) and that
sinx ≤ x for x > 0, we get that

cos(θ(v′,v∗))− cos(θ(v,v∗)) = 2 sin((θ(v′,v∗) + θ(v,v∗))/2) sin((θ(v,v∗)− θ(v′,v∗))/2)

≤ θ(v,v∗)2/2− θ(v′,v∗)2/2 ,

hence,
θ(v,v∗)2 − θ(v′,v∗)2 ≥ ρ2γ2ϕ2/32 ,

and using that θ(v,v∗) ≤ ϕ, we get that

ϕ2(1− ρ2γ2/32) ≥ θ(v′,v∗)2 ,

which completes the proof for this case, since we have shown that ϕ′ = ϕ(1− ρ2γ2/64) ≥ ϕ(1− ρ2γ2/32)1/2 ≥ θ(v′,v∗).

We now assume that the true current angle θ(v,v∗) is far from our current upper bound ϕ, i.e., |ϕ− θ(v,v∗)| ≥ γ sin θ. In
this case, we will potentially do a step in the wrong direction, i.e., the angle between v′ and v∗ will become worse than
before but still not worse than our new upper bound for the angle ϕ′. By Cauchy-Schwarz, and the fact that ∥g(v, ϕ)∥2 ≤ κ,
we obtain ∥v′ − v∥2 ≤ 2λκ. Equivalently, we have that | cos(θ(v′,v∗)) − cos(θ(v,v∗))| ≤ 2λκ. Using the fact that
t 7→ cos(t) is 1-Lipschitz we obtain that θ(v′,v∗) ≤ θ(v,v∗) + 2κλ. Since the initial angle was far from the upper bound
ϕ, ϕ− θ(v,v∗) ≥ γ sinϕ, we have that

ϕ′ − θ(v′,v∗) ≥ (ϕ′ − ϕ) + (ϕ− θ(v,v∗))− 2λκ ≥ γ sin θ > 0 .

Therefore, we conclude that, in both cases, the new angle θ(v′,v∗) belongs in the interval [0, ϕ′].

Corollary C.8. Fix unit vectors v∗,v(0) ∈ Rd with θ(v(0),v∗) ≤ π/2, parameters β, γ ∈ (0, 1), and function t :
R 7→ (0, 1]. Moreover, fix a vector field g : Rd × R 7→ Rd such that for any vector u and ϕ ∈ [0, π/2], it holds
that ∥g(u, ϕ)∥2 ≤ t(ϕ) ≤ 1, g(u, ϕ) · u = 0, and, if |ϕ − θ(u,v∗)| ≤ γ sinϕ, and sin(θ(u,v∗)) ≥ β > 0 then
(1/t(ϕ))(g(u, ϕ) · v∗) ≥ ρ sin(θ(u,v∗)) > 0, where ρ > 0. Fix sequence αi = (π/2)(1 − ρ2γ2/64)i and let λi =
ρ sinαiγ/(4t(αi)) and consider the normalized gradient update rule

v(i+1) =
v(i) + λig(v

(i), αi)∥∥v(i) + λig(v(i), αi)
∥∥
2

.

Then, after T = O(log(1/β)/(γρ)2) steps, it holds that θ(v(T ),v∗) ≤ 2β.

Proof. We show that for each i ∈ N with i ≤ O(log(1/β)/(γρ)2), it holds that θ(v(i),v∗) ≤ αi. For the base case k = 0,
it holds trivially from the assumptions. Assume that for k = i it holds θ(v(k),v∗) ≤ αk, we will show that if αk+1 ≥ β,
then θ(v(k+1),v∗) ≤ αk+1. From Lemma C.6, we have for ϕ = αk that one gradient update step will give a vk+1 such
that θ(v(k+1),v∗) ≤ ϕ(1 − ρ2γ2/64) = αk+1; and therefore from mathematical induction we get that θ(v(i),v∗) ≤ αi

for each i ∈ N with ai ≥ 2β. To find the maximum number of steps, note that aT = (π/2)(1 − ρ2γ2/64)T ≤
(π/2) exp(−ρ2γ2T/64). Hence, for T = O(log(1/β)/(γρ)2), we get that aT ≤ 2β.
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C.1. The Proof of Theorem 1.2

We first show that the simple empirical threshold estimate obtained in the first step of Algorithm 2 is sufficiently good.

Claim C.9 (Threshold estimation). Fix ϵ, δ′ ∈ (0, 1/2) and let D be an ϵ-corrupted distribution on Rd × {±1} with
standard normal x-marginal and let w∗, t be a unit vector and a threshold such that Pr(x,y)∼D̂[sign(w

∗ · x+ t) ̸= y] ≤ ϵ.

Denote D̂ the empirical distribution with N = O(log(1/δ′)/ϵ2) samples and let t′ = Φ−1
(
(1−E(x,y)∼D̂[y])/2

)
be the

empirical estimate of t used in Algorithm 2. It holds that Pr(x,y)∼D[sign(w
∗ · x + t′) ̸= y] ≤ O(ϵ), with probability at

least 1− δ′.

Proof. First, note that for any t′ ∈ R with |Prz∼N (0,1)[z ≤ t′]−Prz∼N (0,1)[z ≤ t]| ≤ ϵ′, for some ϵ′ = Θ(ϵ), we have
that

Pr
x∼Dx

[sign(w∗ · x+ t) ̸= sign(w∗ · x+ t′)] = | Pr
z∼N (0,1)

[z ≤ t′]− Pr
z∼N (0,1)

[z ≤ t]| = ϵ′ .

Hence, Pr[sign(w∗ · x + t′) ̸= y] ≤ ϵ + ϵ′ = Θ(ϵ). Therefore, by assuming that the unknown threshold is any t′ with
|Prz∼N (0,1)[z ≤ t′]−Prz∼N (0,1)[z ≤ t]| = Θ(ϵ), we introduce O(ϵ) noise.

To find such a t′, note that for the unknown threshold t, it holds that |E[y]−Prz∼N (0,1)[z ≥ t] +Prz∼N (0,1)[z ≤ t]| ≤ ϵ
which is equivalent to |(E[y] − 1)/2 + Prz∼N (0,1)[z ≤ t]| ≤ ϵ/2. Moreover, from Hoeffding inequality, we have
that with O(log(1/δ′)/ϵ2) samples with probability 1 − δ′, it holds that |Ey∼D̂y

[y] − E[y]| ≤ ϵ, we call this event A0.
Therefore, |(Ey∼D̂y

[y] − 1)/2 + Prz∼N (0,1)[z ≤ t]| ≤ ϵ. For t′ = Φ−1((1 − Ey∼D̂y
[y])/2), we get |Prz∼N (0,1)[z ≤

t′]−Prz∼N (0,1)[z ≤ t]| ≤ ϵ. Hence, for this choice of t′, we have that Pr[sign(w∗ · x+ t′) ̸= y] = O(ϵ).

Therefore, from Claim C.9, using t′ as the optimal threshold and only introduce O(ϵ) additional noise in the distribution D.
Therefore, to keep the presentation clean, in what follows we will assume that we know the value of the optimal threshold t.

To prove Theorem 1.2, we need to consider several cases. The first case is when exp(−t2/2)/|t| ≤ Cϵ. In this case, any
unit vector w ∈ Rd with the correct threshold t will have error Pr(x,y)∼D[sign(w · x+ t)) ̸= y] ≤ 3Cϵ. To show this, we
need the following fact that bounds from below the tail of the standard normal distribution.

Fact C.10 (Komatsu’s Inequality, see, e.g., (Kouba, 2006)). for any t ≥ 0, it holds that

Pr
z∼N (0,1)

[z ≥ t] ≤ 4 exp(−t2/2)
3t+

√
t2 + 8

.

Therefore, if exp(−t2/2)/t ≤ Cϵ, then Prz∼N (0,1)[z ≥ t] ≤ Cϵ, hence Pr(x,y)∼D[sign(w · x + t)) ̸= sign(t)] ≤ Cϵ
which from triangle inequality gives

Pr
(x,y)∼D

[sign(w · x+ t) ̸= y] ≤ Pr
(x,y)∼D

[sign(w∗ · x+ t) ̸= y] + Pr
(x,y)∼D

[sign(w · x+ t) ̸= sign(w∗ · x+ t)]

≤ ϵ+ Pr
(x,y)∼D

[sign(w∗ · x+ t) ̸= sign(t)] + Pr
(x,y)∼D

[sign(w · x+ t) ̸= sign(t)]

≤ 3Cϵ .

Next, we consider the case where exp(−t2/2)/|t| ≥ Cϵ. For simplicity, for the rest of the proof, we will assume that we
know the optimal threshold t and use the ϵ for the new noise rate which is c times more than the previous one, where c > 0
is some absolute constant.

We are going to show that after T gradient steps, we will get a w(T ) such that θ(w(T ),w∗) ≤ O(exp(t2/2)ϵ). Then using
the following fact, which connects the disagreement of two hypotheses with the distance between these vectors, we will
show that the current hypothesis gets small error.

Fact C.11 ((Diakonikolas et al., 2018)). Fix unit vectors w1,w2 ∈ Rd and t ∈ R, it holds

Pr
x∼N (0,I)

[sign(w1 · x+ t) ̸= sign(w2 · x+ t)] =
1

π

∫ θ(w1,w2)

0

e−t2/(1+cosϕ)dϕ ≤ θ(w1,w2)

π
exp(−t2/2) .
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Note that using the fact above, when θ(w(T ),w∗) ≤ O(exp(t2/2)ϵ), we get that Prx∼N (0,I)[sign(w
(T ) · x + t) ̸=

sign(w∗ · x+ t)] = O(ϵ). From Claim C.2, we have that ∇wLk(w) = E(x,y)∼D̂ [y(projw⊥x)1{|w · x− bk| ≤ ak}].

Next, we show that when w(k), ak and bk satisfy certain conditions, we have that∇wL(w(k)) ·w∗ ≥ c′ sin2 θ exp(−t2/2),
where θ = θ(w∗,w(k)). Let ϕ ∈ (0, π) and denote g(w, ϕ,x, y) = y(projw⊥x)1{|w · x − t cos(ϕ)| ≤ sin(ϕ)} and
Bϕ = {z ∈ R : |z − t cos(ϕ)| ≤ sinϕ}.

We will show that if N is large enough, then for any unit vector u ∈ Rd, we will have that u ·E(x,y)∼D̂[g(w, ϕ,x, y)] is
close to u ·E(x,y)∼D[g(w, ϕ,x, y)]. The proof of Lemma C.12 can be found on Appendix C.2.

Lemma C.12. Let q = Prx∼Dx [w · x ∈ Bϕ]. Assuming that N ≥ O
(

d log(1/δ)q
ϵ′2 + log(d/δ)

q2

)
, we have with probability at

least 1− δ that for any unit vector u ∈ Rd, it holds

E
(x,y)∼D̂

[u · g(w, ϕ,x, y)] ≥ (1/2) E
(x,y)∼D

[u · g(w, ϕ,x, y)]− ϵ′ ,

and that ∥E(x,y)∼D̂[g(w, ϕ,x, y)]∥2 ≤ 2∥E(x,y)∼D[u · g(w, ϕ,x, y)]∥2 + ϵ′.

Assuming that ϕ ≥ Cϵ exp(t2/2), we have that Pr[w · x ∈ Bϕ] ≥ ϵ, to see this, observe that Pr[w · x ∈
Bϕ] ≥ 1/(

√
2π) exp(−(t cos θ + sin θ)2/2) sin θ ≥ ϵ exp(t2 sin2 θ/2) ≥ ϵ. Therefore, from Lemma C.12 given

N ≥ O(d log(1/δ′)
ϵ2 ), we have with probability at least 1 − δ′ that for any unit vector u ∈ Rd, it holds that

E(x,y)∼D̂[u · g(w, ϕ,x, y)] ≥ (1/2)E(x,y)∼D[u · g(w, ϕ,x, y)]− ϵ and ∥E(x,y)∼D̂[g(w, ϕ,x, y)]∥2 ≤ 2. We denote Ak

this event and note that this event has probability at least 1− δ′, i.e., Pr[Ak] ≥ 1− δ′.

Notice that from Lemma C.3, if sin θ exp(−t2/2) ≥ Cϵ and |θ − ϕ| ≤ (1/C)min(sinϕ, 1/ log(1/ϵ)), where C > 0 is
a sufficiently large constant, we have that E(x,y)∼D[w

∗ · g(w, ϕ,x, y)] ≥ (sin θ)2 exp(−t2/2) and hence, for the unit
vector v = (w∗)⊥w/∥(w∗)⊥w∥2, we have that E(x,y)∼D[v · g(w, ϕ,x, y)] ≥ sin θ exp(−t2/2), where we used the fact
that ∥(w∗)⊥w∥2 = sin θ.

Therefore, conditioning on the event Ak, we have that v · E(x,y)∼D̂[g(w, ϕ,x, y)] ≥ sin θ exp(−t2/2) − ϵ ≥
sin θ exp(−t2/2)/2, where used again the fact ϵ ≤ C sin θ exp(−t2/2)/2. Hence, we have that

w∗ · E
(x,y)∼D̂

[g(w, ϕ,x, y)] ≥ sin2 θ exp(−t2/2)/2 .

Moreover, we have that ∥E(x,y)∼D̂[g(w, ϕ,x, y)]∥2 ≤ 2∥E(x,y)∼D[g(w, ϕ,x, y)]∥2 + ϵ, and from Lemma B.2 we

have that ∥E(x,y)∼D[g(w, ϕ,x, y)]∥2 = O(sin θ exp(−t2/2)
√
log(1/ϵ)), which gives ∥E(x,y)∼D̂[g(w, ϕ,x, y)]∥2 =

O(sin θ exp(−t2/2)
√
log(1/ϵ)) = O(sinϕ exp(−t2/2)

√
log(1/ϵ)) = κ(ϕ), where we used that | sin θ − sinϕ| ≤

sinϕ/C, from the assumptions. Hence, we have that

1

κ(ϕ)
w∗ · E

(x,y)∼D̂
[g(w, ϕ,x, y)] ≥ c′′ sin θ/

√
log(1/ϵ) ,

where c′′ is a sufficiently small constant. Therefore, assuming that θ(w(0),w∗) ≤ π/2 by applying Corollary C.8 with pa-
rameters β = C exp(t2/2)ϵ, γ = (1/C log(1/ϵ)), ρ = c′′/ log(1/ϵ), and κ(ϕ) = min(C sinϕ exp(−t2/2)

√
log(1/ϵ), 1),

we get that after T = O(log4(1/ϵ)) update steps, we have that conditioning on the events A0, A1, . . . , AT , we get
θ(w(T ),w∗) ≤ exp(t2/2)ϵ/c′ and from Fact C.11, we get that

Pr
x∼N (0,I)

[sign(w(T ) · x+ t) ̸= sign(w∗ · x+ t)] = O(ϵ) .

Moreover, the algorithm fails if one of the events Ak does not happen, which from union bound has probability at most Tδ′

and by setting δ′ = δ/T = O(δ/ log3(1/ϵ)), we get overall sample complexity Õ(d log(1/δ)
ϵ2 ). To complete the proof, we

need to show that θ(w(0),w∗) ≤ π/2. Let w(0) = E(x,y)∼[xy] and we show that w∗ ·E(x,y)∼D[xy] ≥ 0. Let S(x, y) be



Learning General Halfspaces with Adversarial Label Noise via Online Gradient Descent

the event that a sample (x, y) is corrupted. We have that

w∗ · E
(x,y)∼D

[xy] = E
x∼Dx

[w∗ · xsign(w∗ · x+ t)]− 2 E
(x,y)∼D

[|w∗ · x|S(x, y)]

=

∫ ∞

−|t|

2t√
2π

e−z2/2dz − E
(x,y)∼D

[|w∗ · x|S(x, y)]

=
2√
2π

e−t2/2 − E
(x,y)∼D

[|w∗ · x|S(x, y)]

≥ 2√
2π

e−t2/2 − 2
√
eϵ
√
log(1/ϵ+ 1) ,

where in the first inequality we used Lemma B.4. To show that this is positive, note that if |t| ≤
√

log(1/(2Cϵ
√
log(1/ϵ))),

then 2√
2π

e−t2/2 − 2
√
eϵ
√
log(1/ϵ+ 1) > 0. For the other case, note that from our assumptions, we have that

exp(−t2/2)/|t| ≥ Cϵ, and for t =
√
log(1/(2Cϵ

√
log(1/ϵ))), we get

2Cϵ
√

log(1/ϵ)√
log(1/(2Cϵ

√
log(1/ϵ)))

=
2Cϵ

√
log(1/ϵ)√

log(1/(2Cϵ))−
√
log(1/ϵ)

≤
2Cϵ

√
log(1/ϵ)√

1
2 log(1/(2Cϵ))

≤ Cϵ ,

therefore, |t| ≤
√
log(1/(2Cϵ

√
log(1/ϵ))) and hence, we have w∗ ·E(x,y)∼D[xy] > 0. Hence, similar with Claim C.13,

with O(d log(1/δ)) samples, we have that w∗ ·E(x,y)∼D̂[xy] > 0, therefore, θ(w(0),w∗) ≤ π/2.

C.2. Proof of Lemma C.12

First we prove the following claim:

Claim C.13 (Uniform Convergence of g). Fix ϵ, δ ∈ (0, 1/2). LetD be a distribution on Rd×{±1} with standard normal x-
marginal. Fix unit vector w ∈ Rd and let B = {x ∈ Rd : t1 ≤ w ·x ≤ t2} with t1, t2 ∈ R. Denote g(x, y) = projw⊥(x)y,
and DB be the distribution D conditioned on B. Moreover, let D̂ be the empirical distribution of DB with N > 0

samples. Then, if N ≥ O(d log(1/δ)
ϵ2 ) from DB , with probability at least 1 − δ, it holds that ∥E(x,y)∼DB

[g(x, y)] −
E(x,y)∼D̂N

[g(x, y)]∥2 ≤ ϵ.

Proof. First, we show that the random vector g is subgaussian with parameter 1. We remind that we say that a random
variable X is subgaussian with parameter β if β = inf{z > 0 : E[exp(X2/z2)] ≤ 2} and we say that a random vector X is
β subgaussian if for any unit vector v ∈ Rd, the random variable v ·X is subguassian with parameter β. Let u ∈ Rd be any
unit vector. We write u = aw + bu⊥w and notice that g · u = b g · u⊥w . We have that

E
(x,y)∼DB

[exp((g(x, y) · u)2/z2)] ≤ E
(x,y)∼D

[exp((yx · u⊥w)2/z2)] = E
x∼Dx

[exp((x · u⊥w)2/z2)] ,

where in the first inequality we used that g is perpendicular to w. Moreover, because Dx is standard d-dimensional normal,
we have that for z = 1, Ex∼Dx [exp((x · u⊥w)2/z2)] ≤ 2, therefore g is subgaussian with parameter 1. Next, we make use
of the following fact which shows that the norm of g is concentrated well enough.

Fact C.14 (Lemma 1 of (Jin et al., 2019)). If a random vector x is subgaussian with parameter β, then there exists an
absolute constant c > 0 such that

Pr[∥x−E[x]∥2 ≥ t] ≤ 2 exp(−t2/(cβ2d)) .

Using a simple application of the above, we get that with N ≥ O(d log(1/δ)/ϵ2) samples fromDB , we have with probability
at least 1− δ that ∥E(x,y)∼DB

[g(x, y)]−E(x,y)∼D̂N
[g(x, y)]∥2 ≤ ϵ, which completes the proof of Claim C.13.
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From Claim C.13, we have that with O(d log(1/δ)/ϵ′2) samples from the region B, we have that with probability at least
1 − δ it holds for any unit vector u ∈ Rd that u · E(x,y)∼D̂[g(w, ϕ,x, y) | w · x ∈ Bϕ] ≥ u · E(x,y)∼D[g(w, ϕ,x, y) |
w · x ∈ Bϕ]− ϵ′ and u ·E(x,y)∼D[g(w, ϕ,x, y) | w · x ∈ Bϕ] + ϵ′ ≥ u ·E(x,y)∼D̂[g(w, ϕ,x, y) | w · x ∈ Bϕ].

Using the fact that E(x,y)∼D[g(w, ϕ,x, y)] = E(x,y)∼D[g(w, ϕ,x, y) | B]Prx∼Dx [w · x ∈ Bϕ], we get

u · E
(x,y)∼D̂

[g(w, ϕ,x, y)] ≥ u · E
(x,y)∼D

[g(w, ϕ,x, y)]
Prx∼D̂x

[w · x ∈ Bϕ]

Prx∼Dx [w · x ∈ Bϕ]
− ϵ′ Pr

x∼D̂x

[w · x ∈ Bϕ] .

We need to show that |Prx∼D̂x
[w · x ∈ Bϕ]−Prx∼Dx [w · x ∈ Bϕ]| ≤ 2Prx∼Dx [w · x ∈ Bϕ]. To prove that, we use the

following inequality, known as Dvoretzky–Kiefer–Wolfowitz (DKW) inequality.

Fact C.15 (DKW inequality (Naaman, 2021)). Let D be a distribution on Rd and let D̂ be its empirical with N samples.
Denote FN (z) = Ex∼D̂x

[
∏d

i=1 1{xi ≤ zi}] and F (z) = Ex∼Dx [
∏d

i=1 1{xi ≤ zi}]. Then, it holds that

Pr[ sup
z∈Rd

(FN (z)− F (z)) ≥ ϵ] ≤ (N + 1)de−2Nϵ2 .

Denote q = Prx∼Dx [w · x ∈ Bϕ]. Using the fact above for N ≥ O( log(d/δ)q2 ), we have that |Prx∼D̂x
[w · x ∈

Bϕ]−Prx∼Dx [w · x ∈ Bϕ]| ≤ 2Prx∼Dx [w · x ∈ Bϕ] with probability at least 1− δ. Therefore, with probability at least
1− 2δ

u · E
(x,y)∼D̂

[g(w, ϕ,x, y)] ≥ (1/2)u · E
(x,y)∼D

[g(w, ϕ,x, y)]− 2ϵ′ Pr
x∼Dx

[w · x ∈ Bϕ] .

Therefore, by setting ϵ′′ = ϵ′/(4q), we get that

u · E
(x,y)∼D̂

[g(w, ϕ,x, y)] ≥ (1/2)u · E
(x,y)∼D

[g(w, ϕ,x, y)]− ϵ′′ .

Moreover, using a similar aproach as before, we bound the ∥E(x,y)∼D̂[g(w, ϕ,x, y)]∥2. For any unit vector u, we have that

u · E
(x,y)∼D̂

[g(w, ϕ,x, y)] ≤ 2 E
(x,y)∼D

[u · g(w, ϕ,x, y)] + 2ϵ′ Pr
x∼Dx

[w · x ∈ Bϕ] ≤ 2 E
(x,y)∼D

[u · g(w, ϕ,x, y)] + ϵ′′ .

Using that ∥E(x,y)∼D̂[g(w, ϕ,x, y)]∥2 ≤ maxu∈Rd,∥u∥2=1 |u · E(x,y)∼D̂[g(w, ϕ,x, y)]|2, we get that
∥E(x,y)∼D̂[g(w, ϕ,x, y)]∥2 ≤ 2∥E(x,y)∼D[g(w, ϕ,x, y)]∥2 + ϵ′′.

Note that in order to get one sample from the region B, you need O(1/q) samples from D, therefore overall you need
O
(

d log(1/δ)q
ϵ′′2 + log(d/δ)

q2

)
samples from D.


