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Abstract

We examine global non-asymptotic convergence
properties of policy gradient methods for multi-
agent reinforcement learning (RL) problems in
Markov potential games (MPGs). To learn a Nash
equilibrium of an MPG in which the size of state
space and/or the number of players can be very
large, we propose new independent policy gradi-
ent algorithms that are run by all players in tan-
dem. When there is no uncertainty in the gradient
evaluation, we show that our algorithm finds an
ε-Nash equilibrium with O(1/ε2) iteration com-
plexity which does not explicitly depend on the
state space size. When the exact gradient is not
available, we establish O(1/ε5) sample complex-
ity bound in a potentially infinitely large state
space for a sample-based algorithm that utilizes
function approximation. Moreover, we identify a
class of independent policy gradient algorithms
that enjoy convergence for both zero-sum Markov
games and Markov cooperative games with the
players that are oblivious to the types of games
being played. Finally, we provide computational
experiments to corroborate the merits and the ef-
fectiveness of our theoretical developments.

1. Introduction
Multi-agent reinforcement learning (RL) studies how mul-
tiple players learn to maximize their long-term returns in
a setup where players’ actions influence the environment
and other agents’ returns (Busoniu et al., 2008; Zhang et al.,
2021a). Recently, multi-agent RL has achieved significant
success in various multi-agent learning scenarios, e.g., com-
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petitive game-playing (Silver et al., 2016; 2018; Vinyals
et al., 2019), autonomous robotics (Shalev-Shwartz et al.,
2016; Levine et al., 2016), and economic policy-making
(Zheng et al., 2020; Trott et al., 2021). In the framework
of stochastic games (Shapley, 1953; Fink, 1964), most re-
sults are established for fully-competitive (i.e., two-player
zero-sum) games; e.g., see Daskalakis et al. (2020); Wei
et al. (2021b); Cen et al. (2021). However, to achieve so-
cial welfare for AI (Dafoe et al., 2020; 2021; Stastny et al.,
2021), it is imperative to establish theoretical guarantees for
multi-agent RL in Markov games with cooperation.

Policy gradient methods (Williams, 1992; Sutton et al.,
2000) have received significant attention for both single-
agent (Bhandari & Russo, 2019; Agarwal et al., 2021) and
multi-agent RL problems (Zhang et al., 2019; Daskalakis
et al., 2020; Wei et al., 2021b). Independent policy gradi-
ent (Zhang et al., 2021a; Ozdaglar et al., 2021) is probably
the most practical protocol in multi-agent RL, where each
player behaves myopically by only observing her own re-
wards and actions (as well as the system states), while indi-
vidually optimizing its own policy. More importantly, inde-
pendent learning dynamics do not scale exponentially with
the number of players in the game. Recently, Daskalakis
et al. (2020); Leonardos et al. (2022); Zhang et al. (2021b)
have in fact shown that multi-agent RL players could per-
form policy gradient updates independently, while enjoying
global non-asymptotic convergence. However, these results
are only focused on the basic tabular setting in which the
value functions are represented by tables; they do not carry
over to large-scale multi-agent RL problems in which the
state space size is potentially infinite and the number of
players is large. This motivates the following question:

Can we design independent policy gradient methods for
large-scale Markov games, with non-asymptotic global

convergence guarantees?

In this paper, we provide the first affirmative answer to
this question for a class of mixed cooperative/competitive
Markov games: Markov potential games (MPGs) (Macua
et al., 2018; Leonardos et al., 2022; Zhang et al., 2021b). In
particular, we make the following contributions:

• We propose an independent policy gradient algorithm
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– Algorithm 1 – for learning an ε-Nash equilibrium of
MPGs with O(1/ε2) iteration complexity. In contrast
to the existing results (Leonardos et al., 2022; Zhang
et al., 2021b), such iteration complexity does not ex-
plicitly depend on the state space size.

• We consider a linear function approximation setting
and design an independent sample-based policy gradi-
ent algorithm – Algorithm 2 – that learns an ε-Nash
equilibrium with O(1/ε5) sample complexity. This
appears to be the first result for learning MPGs with
function approximation.

• We establish the convergence of an independent opti-
mistic policy gradient algorithm – Algorithm 3 that has
been proved to converge in learning zero-sum Markov
games (Wei et al., 2021b) – for learning a subclass of
MPGs: Markov cooperative games. We show that the
same type of optimistic policy learning algorithm pro-
vides an ε-Nash equilibrium in both zero-sum Markov
games and Markov cooperative games while the play-
ers are oblivious to the types of games being played.
To the best of our knowledge, this appears to be the first
game-agnostic convergence result in Markov games.

We next discuss some related work.

Markov potential games (MPGs). In stochastic optimal
control, the MPG model dates back to Dechert & O’Donnell
(2006); González-Sánchez & Hernández-Lerma (2013).
More recent studies include Zazo et al. (2016); Mazalov
et al. (2017); Macua et al. (2018); Mguni et al. (2018) and
all of these studies focus on systems with known dynamics.
MPGs have also attracted attention in multi-agent RL. In the
infinite-horizon setting, Leonardos et al. (2022); Zhang et al.
(2021b) extended the policy gradient method (Agarwal et al.,
2021; Kakade, 2001) for multiple players and established
the iteration/sample complexity that scales with the size of
state space; Fox et al. (2022) generalized the natural policy
gradient method (Kakade, 2001; Agarwal et al., 2021) and
established the global asymptotic convergence. In the finite-
horizon setting, Song et al. (2022) built on the single-agent
Nash-VI (Liu et al., 2021) to propose a sample efficient turn-
based algorithm and Mao et al. (2022) studied the policy
gradient method. Earlier, Wang & Sandholm (2002); Lowe
et al. (2017) studied Markov cooperative games and Klein-
berg et al. (2009); Palaiopanos et al. (2017); Cohen et al.
(2017a) studied one-state MPGs; both of these are special
cases of MPGs. We note that the term: Markov potential
game has also been used to refer to state-based potential
MDPs (Marden, 2012; Mguni et al., 2021), which are differ-
ent from the MPGs that we study; see counterexamples in
Leonardos et al. (2022).

Policy gradient methods for Markov games. Despite re-
cent advances on the theory of policy gradient (Bhandari

& Russo, 2019; Agarwal et al., 2021), the theory of policy
gradient methods for multi-agent RL is relatively less stud-
ied. In the basic two-player zero-sum Markov games, Zhang
et al. (2019); Bu et al. (2019); Daskalakis et al. (2020); Zhao
et al. (2021) established global convergence guarantees for
policy gradient methods for learning an (approximate) Nash
equilibrium. More recently, Cen et al. (2021); Wei et al.
(2021b) examined variants of policy gradient methods and
provided last-iterate convergence guarantees. However, it
is much harder for the policy gradient methods to work in
general Markov games (Mazumdar et al., 2020; Hambly
et al., 2021). The effectiveness of (natural) policy gradient
methods for tabular MPGs was demonstrated in Leonar-
dos et al. (2022); Zhang et al. (2021b); Fox et al. (2022);
Zhang et al. (2022). Moreover, Xie & Zhong (2020); Wang
et al. (2021a); Yu et al. (2021); Peng et al. (2021) reported
impressive empirical performance of multi-agent policy gra-
dient methods with function approximation in cooperative
Markov games, but the theoretical foundation has not been
provided.

Independent learning recently received attention in multi-
agent RL (Daskalakis et al., 2020; Zhang et al., 2021a;
Ozdaglar et al., 2021; Sayin et al., 2021; Jin et al., 2021a;
Song et al., 2022; Kao et al., 2022), because it only re-
quires local information for learning and naturally yields
algorithms that scale to a large number of players. The al-
gorithms in Leonardos et al. (2022); Zhang et al. (2021b);
Fox et al. (2022); Zhang et al. (2022) can also be generally
categorized as independent learning algorithms for MPGs.

Game-agnostic convergence. Being game-agnostic is a
desirable property for independent learning in which play-
ers are oblivious to the types of games being played. In
particular, classical fictitious-play warrants average-iterate
convergence for several games (Robinson, 1951; Monderer
& Shapley, 1996; Hofbauer & Sandholm, 2002). Although
online learning algorithms, e.g., the one based on multi-
plicative weight updates (MWU) (Cesa-Bianchi & Lugosi,
2006), offer average-iterate convergence in zero-sum matrix
games, they often do not provide last-iterate convergence
guarantees (Bailey & Piliouras, 2018), which motivates re-
cent studies (Daskalakis & Panageas, 2018; Mokhtari et al.,
2020; Wei et al., 2020). Interestingly, while MWU con-
verges in last-iterate for potential games (Palaiopanos et al.,
2017; Cohen et al., 2017a), this is not the case for zero-sum
matrix games (Cheung & Piliouras, 2020). Recently, Leonar-
dos et al. (2021); Leonardos & Piliouras (2022) established
last-iterate convergence of Q-learning dynamics for both
zero-sum and potential/cooperative matrix games. However,
it is open question whether an algorithm can have last-iterate
convergence for both zero-sum and potential/cooperative
Makov games.
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2. Preliminaries
In this section, we introduce Markov potential games
(MPGs), define the Nash equilibrium, and describe the prob-
lem setting.

We consider an N -player, infinite-horizon, discounted
Markov potential game (Macua et al., 2018; Leonardos
et al., 2022; Zhang et al., 2021b),

MPG (S, {Ai}Ni= 1, P, {ri}Ni= 1, γ, ρ ) (1)

where S is the state space, Ai is the action space for the
ith player, with the joint action space of N ≥ 2 players
denoted as A := A1 × . . .×AN , P is the transition proba-
bility measure specified by a distribution P( · | s, a) over S
if N players jointly take an action a from A in state s, ri:
S ×A → [0, 1] is the ith player immediate reward function,
γ ∈ [0, 1) is the discount factor, and ρ is the initial state dis-
tribution over S . We assume that all action spaces are finite
with the same size A = Ai = |Ai| for all i = 1, . . . , N . It
is straightforward to apply our analysis to the general case
in which players’ finite action spaces have different sizes.

For the ith player, ∆(Ai) represents the probability simplex
over the action set Ai. A stochastic policy for player i
is given by πi: S → ∆(Ai) that specifies the action
distribution πi(· | s) ∈ ∆(Ai) for each state s ∈ S.
The set of stochastic policies for player i is denoted by
Πi := (∆(Ai))S , the joint probability simplex is given
by ∆(A) := ∆(A1) × . . . × ∆(AN ), and the joint pol-
icy space is Π := (∆(A))S . A Markov product policy
π := {πi}Ni= 1 ∈ Π for N players consists of the policy
πi ∈ Π for all players i = 1, . . . , N . We use the shorthand
π−i = {πk}Nk= 1, k 6= i to represent the policy of all but the
ith player. We denote by V πi : S → R the ith player value
function under the joint policy π, starting from an initial
state s(0) = s:

V πi (s) := Eπ
[ ∞∑
t= 0

γtri(s
(t), a(t))

∣∣∣∣ s(0) = s

]

where the expectation Eπ is over a(t) ∼ π(· | s(t)) and
s(t+1) ∼ P(· | s(t), a(t)). Finally, V πi (µ) denotes the ex-
pected value function of V πi (s) over a state distribution µ,
V πi (µ) := Es∼µ[V πi (s)].

In a MPG, at any state s ∈ S , there exists a global function
– the potential function Φπ(s): Π× S → R – that captures
the incentive of all players to vary their policies at state s,

V
πi, π−i
i (s) − V

π′i, π−i
i (s) = Φπi, π−i(s) − Φπ

′
i, π−i(s)

for any policies πi, π′i ∈ Πi and π−i ∈ Π−i. Let Φπ(µ) :=
Es∼µ[Φπ(s)] be the expected potential function over a

state distribution µ. Thus, V πi, π−ii (µ) − V
π′i, π−i
i (µ) =

Φπi, π−i(µ)− Φπ
′
i, π−i(µ). There always exists a constant

CΦ > 0 such that |Φπ(µ)−Φπ
′
(µ)| ≤ CΦ for any π, π′, µ;

see a trivial upper bound in Lemma 18 in Appendix E. An
important subclass of Markov potential games is given by
Markov cooperative games (MCG) in which all players
share the same reward function r = ri for all i = 1, . . . , N .

We also denote by Qπi : S × A → R the action-value
function under policy π, starting from an initial state-action
pair (s(0), a(0)) = (s, a):

Qπi (s, a) := Eπ
[ ∞∑
t= 0

γtri(s
(t), a(t))

∣∣∣∣ s(0) = s, a(0) = a

]
.

The value function can be equivalently expressed as
V πi (s) =

∑
a′ ∈A π(a′ | s)Qπi (s, a′). For each player i, by

averaging out π−i, we can define the averaged action-value
function Q̄πi, π−ii : S ×Ai → R,

Q̄
πi, π−i
i (s, ai) :=

∑
a−i ∈A−i

π−i(a−i | s)Qπi, π−ii (s, ai, a−i)

where A−i is the set of actions of all but the ith player.
We use the shorthand Q̄πi for Q̄πi, π−ii when πi and π−i are
from the same joint policy π. It is straightforward to see that
V πi , Q

π
i , and Q̄πi are bounded between 0 and 1/(1− γ).

We recall the notion of (Markov perfect stationary) Nash
equilibrium (Fink, 1964). A joint policy π? is called a Nash
equilibrium if for each player i = 1, . . . , N ,

V
π?i , π

?
−i

i (s) ≥ V
πi, π

?
−i

i (s), for all πi ∈ Πi, s ∈ S,

and called an ε-Nash equilibrium if for i = 1, . . . , N ,

V
π?i , π

?
−i

i (s) ≥ V
πi, π

?
−i

i (s)− ε, for all πi ∈ Πi, s ∈ S.

Nash equilibria for MPGs with finite states and actions al-
ways exist (Fink, 1964). When the state space is infinite, we
assume the existence of a Nash equilibrium; see Takahashi
(1962); Maitra & Parthasarathy (1970; 1971); Altman et al.
(1997) for cases with countable or compact state spaces.

Given policy π and initial state s(0), we define the dis-
counted state visitation distribution,

dπs(0)(s) = (1− γ)

∞∑
t= 0

γt Prπ( s(t) = s | s(0) ).

For a state distribution µ, define dπµ(s) = Es(0)∼µ[ dπ
s(0)(s) ].

By definition, dπµ(s) ≥ (1− γ)µ(s) for any µ and s.

It is useful to introduce a variant of the performance dif-
ference lemma (Agarwal et al., 2021) for multiple players;
for other versions, see Zhang et al. (2019); Daskalakis et al.
(2020); Zhang et al. (2021b); Leonardos et al. (2022).

Lemma 1 (Performance difference). For the ith player, if
we fix the policy π−i and any state distribution µ, then for
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any two policies π̂i and π̄i,

V
π̂i, π−i
i (µ)− V π̄i, π−ii (µ)

=
1

1− γ
∑
s, ai

dπ̂i, π−iµ (s) · (π̂i − π̄i)(ai | s)Q̄π̄i, π−ii (s, ai)

where Q̄π̄i,π−ii (s, ai)=
∑
a−i
π−i(a−i|s)Qπ̄i,π−ii (s, ai, a−i).

It is common to use the distribution mismatch coefficient
to measure the exploration difficulty in policy optimiza-
tion (Agarwal et al., 2021). We next define a distribution
mismatch coefficient for MPGs (Leonardos et al., 2022) in
Definition 1, and its minimax variant in Definition 2.
Definition 1 (Distribution mismatch coefficient). For any
distribution µ ∈ ∆(S) and policy π ∈ Π, the distribution
mismatch coefficient κµ is the maximum distribution mis-
match of π relative to µ, κµ := supπ∈Π

∥∥dπµ/µ∥∥∞, where
the division dπµ/µ is evaluated in a componentwise manner.
Definition 2 (Minimax distribution mismatch coefficient).
For any distribution µ ∈ ∆(S), the minimax distribu-
tion mismatch coefficient κ̃µ is the minimax value of
the distribution mismatch of π relative to ν, κ̃µ :=
infν ∈∆(S) supπ ∈Π

∥∥dπµ/ν∥∥∞, where the division dπµ/ν is
evaluated in a componentwise manner.

Other notation. We denote by ‖ · ‖ the `2-norm of a vector
or the spectral norm of a matrix. The inner product of a
function f : S × A → R with p ∈ ∆(A) at fixed s ∈ S
is given by 〈f(s, ·), p(·)〉A :=

∑
a∈A f(s, a)p(a). The `2-

norm projection operator onto a convex set Ω is defined
as PΩ(x) := argminx′∈Ω ‖x′ − x‖. For functions f and
g, we write f(n) = O(g(n)) if there exists N < ∞ and
C < ∞ such that f(n) ≤ Cg(n) for n ≥ N , and write
f(n) = Õ(g(n)) if log g(n) appears in O(·). We use “.”
and “&” to denote “≤” and “≥” up to a constant.

3. Independent Learning Setting
We examine an independent learning setting (Zhang et al.,
2021a; Daskalakis et al., 2020; Ozdaglar et al., 2021) for
Markov potential games in which all players repeatedly
execute their own policy and update rules individually. At
each time t, all players propose their own polices π(t)

i : S →
∆(Ai) with the player index i = 1, . . . , N , while a game
oracle can either evaluate each player’s policy or generate
a set of sample trajectories for each player. In repeating
such protocol for T times, each player behaves myopically
in optimizing its own policy, but does not observe actions
or policies from any other player.

To evaluate the learning performance, we introduce a notion
of regret,

Nash-Regret(T ) :=
1

T

T∑
t= 1

max
i

(
max
π′i

V
π′i, π

(t)
−i

i (ρ)−V π
(t)

i (ρ)

)

which averages the worst player’s local gaps in T iterations:

maxπ′i V
π′i, π

(t)
−i

i (ρ) − V π
(t)

i (ρ) for t = 1, . . . , T , where

maxπ′i V
π′i, π

(t)
−i

i (ρ) is the ith player best response given π(t)
−i .

In Nash-Regret(T ), we compare the learnt joint policy π(t)

with the best policy that the ith player can take by fixing
π

(t)
−i . We notice that Nash-Regret is closely related to the

notion of dynamic regret (Zinkevich, 2003) in which the re-
gret comparator changes over time. This is a suitable notion
because the environment is non-stationary from the perspec-
tive of an independent learner (Matignon et al., 2012; Zhang
et al., 2021a).

To obtain an ε-Nash equilibrium π(t?) with a tolerance ε >
0, our goal is to show the following average performance,

Nash-Regret(T ) = ε.

The existence of such t? is straightforward,

t? := argmin
1 ≤ t ≤ T

max
i

(
max
π′i

V
π′i, π

(t)
−i

i (ρ)− V π
(t)

i (ρ)

)
.

Since each summand above is non-negative, V π
(t?)

i (ρ) ≥

V
π′i, π

(t?)
−i

i (ρ)−ε for any π′i and i = 1, . . . , N , which implies
that π(t?) is an ε-Nash equilibrium.

For an independent learning setting without uncertainty in
gradient evaluation, we introduce a policy gradient method
for Markov potential/cooperative games in Section 4. In Sec-
tion 5, we utilize a sample-based approach with function
approximation to address the scenario in which true gra-
dient is not available and, in Section 6, we provide the
game-agnostic convergence analysis.

4. Independent Policy Gradient Methods
In this section, we assume that we have access to exact
gradient and examine a gradient-based method for learning
a Nash equilibrium in Markov potential/cooperative games.

4.1. Policy gradient for Markov potential games

A natural independent learning scheme for MPGs is to
let every player independently perform policy gradient as-
cent (Leonardos et al., 2022; Zhang et al., 2021b). In this
approach, the ith player updates its policy according the
gradient of the value function with respect to the policy
parameters,

π
(t+1)
i (· | s)← P∆(Ai)

(
π

(t)
i (· | s) + η

∂V πi (ρ)

∂πi(ai | s)

∣∣∣∣
π=π(t)

)
∂V πi (ρ)

∂πi(ai | s)
=

1

1− γ
dπρ (s)Q̄πi (s, ai) (3)

where the calculation for the gradient in (3) can be found in
Agarwal et al. (2021); Leonardos et al. (2022); Zhang et al.



Independent Policy Gradient for Large-Scale Markov Potential Games

Algorithm 1 Independent policy gradient ascent
1: Parameters: η > 0.

Initialization: Let π(1)
i (ai | s) = 1/A for s ∈ S, ai ∈ Ai and i = 1, . . . , N .

2: for step t = 1, . . . , T do
3: for player i = 1, . . . , N (in parallel) do
4: Define player i’s policy on s ∈ S,

π
(t+1)
i ( · | s) := argmax

πi(· | s)∈∆(Ai)

{〈
πi(· | s), Q̄(t)

i (s, ·)
〉
Ai
− 1

2η

∥∥πi(· | s)− π(t)
i (· | s)

∥∥2
}
. (2)

where Q̄(t)
i (s, ai) is a shorthand for Q̄

π
(t)
i , π

(t)
−i

i (s, ai) (defined in Section 2).
5: end for
6: end for

(2021b).

Update rule (3) may suffer from a slow learning rate for
some states. Since the gradient with respect to πi(ai | s)
scales with dπρ (s) – which may be small if the current policy
π has small visitation frequency to s – the corresponding
states may experience slow learning progress. To address
this issue, we propose the following update rule (equivalent
to (2) in Algorithm 1):

π
(t+1)
i (· | s) ← P∆(Ai)

(
π

(t)
i (· | s) + ηQ̄π

(t)

i (s, ·)
)

(4)

which essentially removes the dπρ (s)/(1− γ) factor in stan-
dard policy gradient (3) and alleviates the slow-learning
issue. Interestingly, update rule (4) for the single-player
MDP has also been studied in Xiao (2022), concurrently.
However, since the optimal value is not unique, the analysis
of Xiao (2022) does not apply to our multi-player case for
which many Nash policies exist and the set that contains
them is non-convex (Leonardos et al., 2022). We also note
that regularized variants of (4) for the single-player MDP
appeared in Lan (2022); Zhan et al. (2021).

Furthermore, in contrast to (3), our update rule (4) is in-
variant to the initial state distribution ρ. This allows us to
establish performance guarantees simultaneously for all ρ
in a similar way as typically done for natural policy gradi-
ent (NPG) and other policy mirror descent algorithms for
single-player MDPs (Agarwal et al., 2021; Lan, 2022; Zhan
et al., 2021).

Theorem 1 establishes performance guarantees for Algo-
rithm 1; see Appendix B.1 for proof.

Theorem 1 (Nash-Regret bound for Markov potential
games). For MPG (1) with an initial state distribution ρ, if
all players independently perform the policy update in Algo-
rithm 1 then, for two different choices of stepsize η, we have

Nash-Regret(T ) . R(η)

R(η) =


√
κ̃ρAN (CΦ)

1
4

(1− γ)
9
4 T

1
4

, η =
(1− γ)

5
2

√
CΦ

NA
√
T

min(κρ, S)2
√
ANCΦ

(1− γ)3
√
T

, η =
(1− γ)4

8 min(κρ, S)3NA
.

Depending on the stepsize η, Theorem 1 provides two rates
for the average Nash regret: T−1/4 and T−1/2. The tech-
nicalities behind these choices will be explained later and,
to obtain an ε-Nash equilibrium, our two bounds suggest
respective iteration complexities,

κ̃2
ρA

2N2 CΦ

(1− γ)9 ε4
and

min(κρ, S)4AN CΦ

(1− γ)6 ε2
.

Compared with the iteration complexity guarantees in
Leonardos et al. (2022); Zhang et al. (2021b), our bounds
in Theorem 1 improve the dependence on the distribution
mismatch coefficient κρ and the state space size S. Since
our minimax distribution mismatch coefficient κ̃ρ satisfies

κ̃ρ ≤ min(κρ, S) ≤ κρ

our κ̃ρ-dependence or min(κρ, S)-dependence are less re-
strictive than the explicit S-dependence in Leonardos et al.
(2022); Zhang et al. (2021b). Importantly, this permits our
bounds to work for systems with large number of states, and
makes Algorithm 1 suitable for sample-based scenario with
function approximation (see Section 5). With polynomial
dependence on the number of players N instead of exponen-
tial, Algorithm 1 overcomes the curse of multiagents (Jin
et al., 2021a; Song et al., 2022). In terms of problem parame-
ters (γ,A,N,CΦ), our iteration complexity either improves
or becomes slightly worse.

Remark 1 (Infinite state space). When the state space is
infinite, explicit S-dependence disappears in our iteration
complexities. Implicit S-dependence only exists in the dis-
tribution mismatch coefficient κρ or κ̃ρ. However, it is easy
to bound κρ by devising an initial state distribution without
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introducing constraints on the MDP dynamics. For instance,
in MPGs with agent-independent transitions (in which every
state is a potential game and transitions do not depend on
actions (Leonardos et al., 2022)), if we select ρ to be the
stationary state distribution dπρ then κρ = 1 regardless of
the state-space size S.
Remark 2 (Our key techniques). A key step of the analysis
is to quantify the policy improvement regarding the potential
function Φ in each iteration. Similar to the standard descent
lemma in optimization (Arora, 2008), applying the projected
policy gradient algorithm to a smooth Φ yields the following
ascent property (cf. Eq. (9) in Leonardos et al. (2022) and
Lemmas 11 and 12 in Zhang et al. (2021b)),

Φπ
(t+1)

(µ)−Φπ
(t)

(µ) &
1

β

N∑
i=1

∑
s

∥∥∥π(t+1)
i (·|s)−π(t)

i (·|s)
∥∥∥2

where β > 0 is related to the smoothness constant (or the
second-order derivative) of the potential function. However,
since the search direction in our policy update is not the
standard search direction utilized in policy gradient, this
ascent analysis does not apply to our algorithm.

To obtain such improvement bound, it is crucial to analyze
the joint policy improvement. Let us consider two players i
and j: player i changes its policy from πi to π′i to maximize
its own reward based on the current policy profile (πi, πj)
and player j changes its policy from πj to π′j in its own
interest. What is the overall progress after they indepen-
dently change their policies from (πi, πj) to (π′i, π

′
j)? One

method of capturing the joint policy improvement exploits
the smoothness of the potential function, which is useful
in the standard policy gradient ascent method (Leonardos
et al., 2022; Zhang et al., 2021b). In our analysis, we con-
nect the joint policy improvement with the individual policy
improvement via the performance difference lemma. In par-
ticular, as shown in Lemma 3, Lemma 2 and Lemma 21
provide an effective means for analyzing the joint policy im-
provement. The proposed approach could be of independent
interests for analyzing other Markov games.

In Lemma 3, we obtain two different joint policy improve-
ment bounds by dealing with the cross terms in two different
ways (see the proofs for details). Hence, we establish two
different Nash-Regret bounds in Theorem 1: one has better
dependence on T while the other has better dependence on
κρ. Even though, it is an open issue how to achieve the best
of the two, we next show that this is indeed possible for a
special case: Markov cooperative games.

4.2. Faster rates for Markov cooperative games

When all players use the same reward function, i.e., r =
ri for all i = 1, . . . , N , MPG (1) reduces to a Markov
cooperative game. In this case, V πi = V π and Qπi = Qπ

for all i = 1, . . . , N and Algorithm 1 works immediately.

Thus, we continue to use Nash-Regreti(T ) that is defined

through V
π′i, π

(t)
−i

i = V π
′
i, π

(t)
−i and V π

(t)

i = V π
(t)

.

Theorem 2 provides a Nash-Regret bound for Markov coop-
erative games; see Appendix B.2 for proof.

Theorem 2 (Nash-Regret bound for Markov cooperative
games). For MPG (1) with identical rewards and an initial
state distribution ρ, if all players independently perform
the policy update in Algorithm 1 with stepsize η = (1 −
γ)/(2NA) then,

Nash-Regret(T ) .

√
κ̃ρAN

(1− γ)2
√
T

.

For Markov cooperative games, Theorem 2 achieves the best
of the two bounds in Theorem 1 and an ε-Nash equilibrium
is achieved with the following iteration complexity,

κ̃ρAN

(1− γ)4 ε2
.

This iteration complexity improves the ones provided
in Leonardos et al. (2022); Zhang et al. (2021b) in several
aspects. In particular, we have introduced the minimax dis-
tribution mismatch coefficient κ̃ρ, which is upper bounded
by κρ. When we take this upper bound, our bound improves
the κρ-dependence in Leonardos et al. (2022); Zhang et al.
(2021b) from κ2

ρ to κρ. We note that if we view the Markov
cooperative game as an MPG, then the value function V π

serves as a potential function Φ which is bounded between
0 and 1/(1 − γ). Thus, our (1 − γ)-dependence matches
the one in Zhang et al. (2021b) and improves the one in
Leonardos et al. (2022) by (1− γ)2.

5. Independent Policy Gradient with Function
Approximation

We next remove the exact gradient requirement and ap-
ply Algorithm 1 to the linear function approximation setting.
In what follows, we assume that the averaged action value
function is linear in a given feature map.

Assumption 1 (Linear averaged Q). In MPG (1), for each
player i, there is a feature map φi : S × Ai → Rd, such
that for any (s, ai) ∈ S ×Ai and any policy π ∈ Π,

Q̄πi (s, ai) = 〈φi(s, ai), wπi 〉, for some wπi ∈ Rd.

Moreover, ‖φi‖ ≤ 1 for all s, ai, and ‖wπi ‖ ≤W for all π.

Without loss of generality, we can assumeW ≤
√
d/(1−γ);

see Lemma 8 in Wei et al. (2021a). Assumption 1 is a
multi-agent generalization of the standard linear Q assump-
tion (Abbasi-Yadkori et al., 2019) for single-player MDPs.
It is more general than the multi-agent linear MDP assump-
tion (Xie et al., 2020; Dubey & Pentland, 2021) in which
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both transition and reward functions are linear in given fea-
ture maps. A special case of Assumption 1 is the tabular
case in which the sizes of state/action spaces are finite, and
where we can select φi to be an indicator function. Since
the feature map φi is locally-defined coordination between
players is avoided (Zhao et al., 2021).

Remark 3 (Function approximation). Since RL with func-
tion approximation is statistically hard in general, e.g.,
see Weisz et al. (2021); Wang et al. (2021b) for hardness re-
sults, assuming regularity of underlying MDPs is necessary
for the application of function approximation to multi-agent
RL in which either the value function (Xie et al., 2020;
Dubey & Pentland, 2021; Jin et al., 2021b; Huang et al.,
2022) or the policy (Zhao et al., 2021) is approximated. Be-
cause of restrictive function approximation power, the main
challenge is the entanglement of policy improvement (or op-
timization) and policy evaluation (or approximation) errors.
In Theorem 3 and Theorem 4, we show that optimization and
approximation errors are decoupled under Assumption 1 so
that we can control them, separately. Our analysis can be
generalized to some neural networks, e.g., overparametrized
neural networks (Liu et al., 2019), a rich function class
that allows splitting optimization and approximation errors,
which we leave for future work.

We formally present our algorithm in Algorithm 2 (see it
in Appendix A). At each step t, there are two phases. In
Phase 1, the players begin with the initial state s̄(0) ∼ ρ and
simultaneously execute their current policies {π(t)

i }Ni= 1 to
interact with the environment for K rounds. In each round
k, we terminate the interaction at step H = maxi(hi + h′i),
where hi and h′i are sampled from a geometric distribution
GEOMETRIC(1 − γ), independently; the state at hi natu-
rally follows s̄(hi) ∼ dπ

(t)

ρ . By collecting rewards from
step hi to hi + h′i − 1, as shown in (6), we can justify
E[R

(k)
i ] = Q̄

(t)
i (s̄(hi), ā

(hi)
i ) where Q̄(t)

i (·, ·) := Q̄π
(t)

i (·, ·)
and ā(hi)

i ∼ π
(t)
i (· | s̄(hi)), in Appendix C.1. In the end of

round k, we collect a sample tuple: (s
(k)
i , a

(k)
i , R

(k)
i ) in (6)

for each player i.

After each player collects K samples, in Phase 2, they use
these samples to estimate Q̄(t)

i (·, ·), which is required for
policy updates. By Assumption 1,

Q̄
(t)
i (s, ai) = 〈φi(s, ai), w(t)

i 〉, ∀(s, ai) ∈ S ×Ai

where w(t)
i represents wπ

(t)

i . Our goal is to obtain a solution
ŵ

(t)
i ≈ w

(t)
i using samples, and estimate Q̄(t)

i (s, ai) via

Q̂
(t)
i (s, ai) := 〈φi(s, ai), ŵ(t)

i 〉, ∀(s, ai) ∈ S×Ai. (5)

To obtain ŵ
(t)
i , the standard approach is to solve lin-

ear regression (7) since E[R
(k)
i ] = Q̄

(t)
i (s

(k)
i , a

(k)
i ) =

〈φi(s(k)
i , a

(k)
i ), w

(t)
i 〉. We measure the estimation quality

of ŵ(t)
i via the expected regression loss,

L
(t)
i (wi) = E

(s,ai)∼ ν(t)
i

[(
Q̄

(t)
i (s, ai)− 〈φi(s, ai), wi〉

)2
]

where ν(t)
i (s, ai) := d

(t)
ρ (s) ◦ π(t)

i (ai | s) and L(t)
i (w

(t)
i ) =

0 by Assumption 1. We make the following assumption for
the expected regression loss of ŵ(t)

i .

Assumption 2 (Bounded statistical error). Fix a state dis-
tribution ρ. For any sequence of iterates ŵ(1)

i , . . . , ŵ
(T )
i for

i = 1, . . . , N that are generated by Algorithm 2, there exists
an εstat <∞ such that

E
[
L

(t)
i ( ŵ

(t)
i )

]
≤ εstat

for all i and t, where the expectation is on randomness in
generating ŵ(t)

i .

The bound for εstat can be established using standard lin-
ear regression analysis (Audibert & Catoni, 2009) and
it is given by εstat = O

(
dW 2

K(1−γ)2

)
. This bound can be

achieved by applying the stochastic projected gradient de-
scent method (Hsu et al., 2012; Cohen et al., 2017b) to the
regression problem.

After obtaining Q̂(t)
i (·, ·), we update the polices in (8) which

is different from the update in Algorithm 1 in two aspects:
(i) the gradient direction Q̂(t)

i (·, ·) is the estimated version
of Q̄(t)

i (·, ·); and (ii) the Euclidean projection set becomes
∆ξ(Ai) := { (1 − ξ)πi(· | s) + ξUnifAi ,∀πi(· | s) } that
introduces ξ-greedy policies for exploration (Leonardos
et al., 2022; Zhang et al., 2021b), where ξ ∈ (0, 1).

Theorem 3 establishes performance guarantees for Algo-
rithm 2; see Appendix C.2 for proof.

Theorem 3 (Nash-Regret bound for Markov potential
games with function approximation). Let Assumption 1
hold for MPG (1) with an initial state distribution ρ.
If all players independently run Algorithm 2 with ξ =

min
((

κ2
ρNAεstat

(1−γ)2W 2

) 1
3

, 1
2

)
and Assumption 2 holds, then

E [ Nash-Regret(T ) ] . R(η) +

(
κ2
ρWANεstat

(1− γ)5

) 1
3

R(η) =



√
κρWN (ACΦ)

1
4

(1− γ)
7
4 T

1
4

, η =
(1− γ)

3
2

√
CΦ

WN
√
AT

κ2
ρ

√
AN CΦ

(1− γ)3
√
T
, η =

(1− γ)4

16κ3
ρNA

.

Theorem 3 shows the additive effect of the function approx-
imation error εstat on the Nash regret of Algorithm 2. When
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εstat = 0, Theorem 3 matches the rates in Theorem 1 in the
exact gradient case. As in Algorithm 1, even though update
rule (8) iterates over all s ∈ S, we do not need to assume
a finite state space S. In fact, (8) only “defines” a function
π

(t)
i (· | s) instead of “calculating” it. This is commonly

used in policy optimization with function approximation,
e.g., Cai et al. (2020); Luo et al. (2021). To execute this
algorithm, π(t)

i (· | s) only needs to be evaluated if necessary,
e.g., when the state s is visited in Phase 1 of Algorithm 2.

When we apply stochastic projected gradient updates to
(7), Algorithm 2 becomes a sample-based algorithm and
existing stochastic projected gradient results directly apply.
Depending on the stepsize choice, an ε-Nash equilibrium
is achieved with sample complexities (see Corollary 1 in
Appendix C.4),

TK = O

(
1

ε7

)
and O

(
1

ε5

)
, respectively.

Compared with the sample complexity guarantees for the
tabular MPG case (Leonardos et al., 2022; Zhang et al.,
2021b), our sample complexity guarantees hold for MPGs
with potentially infinitely large state spaces. When we spe-
cialize Assumption 1 to the tabular case, our second sample
complexity improves the sample complexity in Leonardos
et al. (2022); Zhang et al. (2021b) fromO(1/ε6) toO(1/ε5).

As before, we get improved performance guarantees when
we apply Algorithm 2 to Markov cooperative games.
Theorem 4 (Nash-Regret bound for Markov cooperative
games with function approximation). Let Assumption 1 hold
for MPG (1) with identical rewards and an initial state distri-
bution ρ > 0. If all players independently perform the policy
update in Algorithm 2 with stepsize η = (1 − γ)/(2NA)

and exploration rate ξ = min
((

κ2
ρNAεstat

(1−γ)2W 2

) 1
3

, 1
2

)
, with

Assumption 2,

E [ Nash-Regret(T ) ] . R(η) +

(
κ2
ρWANεstat

(1− γ)5

) 1
3

whereR(η) =

√
κρAN

(1−γ)2
√
T
.

We prove Theorem 4 in Appendix C.3 and show sample com-
plexity TK = O(1/ε5) in Corollary 2 of Appendix C.4.

6. Game-Agnostic Convergence
In Section 4 and Section 5, we have shown that our inde-
pendent policy gradient method converges (in best-iterate
sense) to a Nash equilibrium of MPGs. For the same al-
gorithm in two-player case, however, (Bailey & Piliouras,
2019) showed that players’ policies can diverge for zero-
sum matrix games (a single-state case of zero-sum Markov
games). A natural question arises:

Does there exist a simple gradient-based algorithm that
provably converges to a Nash equilibrium in both

potential/cooperative and zero-sum games?

Unfortunately, classical MWU and optimistic MWU up-
dates do not converge to a Nash equilibrium in zero-sum
and coordination games simultaneously (Cheung & Pil-
iouras, 2020). Recently, this question was partially an-
swered by Leonardos et al. (2021); Leonardos & Piliouras
(2022) in which the authors established last-iterate conver-
gence of Q-learning dynamics to a quantal response equi-
librium for both zero-sum and potential/cooperative matrix
games. In this work, we provide an affirmative answer to
this question for general Markov games that cover matrix
games. Specifically, we next show that optimistic gradient
descent/ascent with a smoothed critic (see Algorithm 3 in
Appendix A) – an algorithm that converges to a Nash equi-
librium in two-player zero-sum Markov games (Wei et al.,
2021b) – also converges to a Nash equilibrium in Markov
cooperative games.

We now setup notation for tabular two-player Markov coop-
erative games with N = 2, r = r1 = r2, A = |A1| = |A2|,
and S = |S|. For convenience, we use xs ∈ RA and
ys ∈ RA to denote policies π1(· | s) and π2(· | s) taken at
state s ∈ S, and Qπs ∈ RA×A to denote Qπ(s, a1, a2) with
a1 ∈ A1 and a2 ∈ A2. We describe our policy update (9)
in Algorithm 3: the next iterate (x

(t+1)
s , y

(t+1)
s ) is obtained

from two steps of policy gradient ascent with an intermedi-
ate iterate (x̄

(t+1)
s , ȳ

(t+1)
s ). Motivated by Wei et al. (2021b),

we introduce a critic Q(t)
s to learn the value function at

each state s using the learning rate α(t). When the critic
is ideal, i.e., Q(t)

s = Q
(t)
s , where Q(t)

s is a matrix form of
Q(t)(s, a1, a2) for a1 ∈ A1 and a2 ∈ A2, we can view
Algorithm 3 as a two-player case of Algorithm 1.

In Theorem 5, we establish asymptotic last-iterate conver-
gence of Algorithm 3 in Markov cooperative games; see
Appendix D.1 for proof.
Theorem 5 (Last-iterate convergence for two-player
Markov cooperative games). For MPG (1) with two players
and identical rewards, if both players run Algorithm 3 with
0 < η < (1−γ)/(32

√
A) and a non-increasing {α(t)}∞t= 1

that satisfies 0 < α(t) < 1/6 and
∑∞
t= t′ α

(t) =∞ for any
t′ ≥ 0, then the policy pair (x(t), y(t)) converges to a Nash
equilibrium when t→∞.

Last-iterate convergence in Theorem 5 is measured by
the local gaps maxx′(V

x′,y(t)

(ρ) − V x
(t),y(t)

(ρ)) and
maxy′(V

x(t),y′(ρ) − V x
(t),y(t)

(ρ)), i.e., a policy pair
(x(t), y(t)) constitutes an approximate Nash policy for large
t. The condition on algorithm parameters η and α(t) in The-
orem 5 is mild in sense that it is straightforward to take a
pair of such parameters that ensures last-iterate convergence
in zero-sum Markov games (Wei et al., 2021b). Hence, Al-
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gorithm 3 enjoys last-iterate convergence in both two-player
Markov cooperative and zero-sum competitive games. Com-
pared with the result (Fox et al., 2022), our proof of Theo-
rem 5 utilizes gap convergence instead of point-wise policy
convergence that is restricted to isolated fixed points of the
algorithm dynamics. Moreover, our algorithm works for
both cooperative and competitive Markov games.

In the following Theorem 6, we further strengthen our result
of Theorem 5 and show the sublinear Nash-Regret bounds
for Algorithm 3 in both two-player Markov cooperative and
zero-sum competitive games; see Appendix D.2 for proof.
Theorem 6 (Nash-Regret bound for two-player Markov
cooperative/competitive games). (i) For MPG (1) with two
players and identical rewards (r1 = r2 = r), if both players
independently run Algorithm 3 with α(t) = 1

6 3√t and η =

(1−γ)2

32
√
SA

, then

1

T

T∑
t= 1

max
x′,y′

(
V x
′,y(t)

(ρ) + V x
(t),y′(ρ)− 2V x

(t),y(t)

(ρ)
)

.
(S3A )

1
4

(1− γ)
7
2 T

1
6

(ii) For a two-player zero-sum Markov game (r1 = −r2 =
r), if both players independently run Algorithm 3 with the
same choice of α(t) and η, then

1

T

T∑
t= 1

max
x′,y′

(
V x
′,y(t)

(ρ)− V x
(t),y′(ρ)

)
.

(S3A )
1
2

(1− γ)
15
4 T

1
6

.

For two-player Markov cooperative/competitive games, The-
orem 6 establishes the same rate T−1/6 for the average Nash
regret and the average duality gap, respectively. Alterna-
tively, independent players in Algorithm 3 can find an ε-
Nash equilibrium after O(1/ε6) iterations, no matter which
types of games are being played. To the best of our knowl-
edge, Theorem 6 appears to be the first game-agnostic con-
vergence for Markov cooperative/competitive games with
finite-time performance guarantees. We leave the extension
to more general Markov games for future work.

7. Experimental Results
To demonstrate the merits and the effectiveness of our ap-
proach, we examine an MDP in which every state defines a
congestion game. This example is borrowed from Bistritz
& Bambos (2020) and it includes MPG as a special case.

Figure 1 shows that our independent policy gradient with
a large stepsize (green curve) quickly converges to a Nash
equilibrium. We note that stepsize η ≥ 0.001 does not
provide convergence of the projected stochastic gradient
ascent (Leonardos et al., 2022). In contrast, our approach al-
lows large stepsizes for a broad range of initial distributions;
see Appendix G for additional details.

ac
cu

ra
cy

iteration

Figure 1. Learning curves for our independent policy gradient (—)
with stepsize η = 0.002 and the projected stochastic gradient as-
cent (—) with η = 0.0001 (Leonardos et al., 2022). The accuracy
measures the absolute distance of each iterate to the converged
Nash policy, i.e., 1

N

∑N
i=1 ‖π

(t)
i − π

Nash
i ‖1. Each solid line is

the mean of trajectories over three random seeds and each shaded
region displays the confidence interval.

8. Concluding Remarks
We have proposed new independent policy gradient algo-
rithms for learning a Nash equilibrium of Markov potential
games when the size of state space and/or the number of
players are large. In the exact gradient case, we show that
our algorithm finds an ε-Nash equilibrium with O(1/ε2)
iteration complexity. Such iteration complexity does not ex-
plicitly depend on the state space size. In the sample-based
case, our algorithm works in the function approximation
setting, and we prove O(1/ε5) sample complexity in a po-
tentially infinitely large state space. This appears to be the
first result for learning MPGs with function approximation.
Moreover, we identify a class of independent policy gra-
dient algorithms that enjoys last-iterate convergence and
sublinear Nash regret for both zero-sum Markov games and
Markov cooperative games (a special case of MPGs). This
finding sheds light on an open question in the literature on
the existence of such an algorithm.

Future directions include extending techniques that of-
fer faster rates for the single-agent policy gradient meth-
ods (Lan, 2022; Zhan et al., 2021; Xiao, 2022) to indepen-
dent multi-agent learning and applying independent policy
gradient for other large-scale Markov games.
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González-Sánchez, D. and Hernández-Lerma, O. Discrete–
time stochastic control and dynamic potential games: the
Euler–Equation approach. Springer Science & Business
Media, 2013.

Hambly, B. M., Xu, R., and Yang, H. Policy gradient meth-
ods find the Nash equilibrium in N-player general-sum
linear-quadratic games. arXiv preprint arXiv:2107.13090,
2021.

Hofbauer, J. and Sandholm, W. H. On the global conver-
gence of stochastic fictitious play. Econometrica, 70(6):
2265–2294, 2002.

Hsu, D., Kakade, S. M., and Zhang, T. Random design
analysis of ridge regression. In Conference on learning
theory, pp. 9–1, 2012.

Huang, B., Lee, J. D., Wang, Z., and Yang, Z. Towards gen-
eral function approximation in zero-sum Markov games.
In International Conference on Learning Representations,
2022.

Jin, C., Liu, Q., Wang, Y., and Yu, T. V-learning – A
simple, efficient, decentralized algorithm for multiagent
RL. arXiv preprint arXiv:2110.14555, 2021a.

Jin, C., Liu, Q., and Yu, T. The power of exploiter: Prov-
able multi-agent RL in large state spaces. arXiv preprint
arXiv:2106.03352, 2021b.

Kakade, S. M. A natural policy gradient. Advances in
Neural Information Processing Systems, 14, 2001.

Kao, H., Wei, C.-Y., and Subramanian, V. Decentralized
cooperative reinforcement learning with hierarchical in-
formation structure. In International Conference on Al-
gorithmic Learning Theory, pp. 573–605, 2022.

Kleinberg, R., Piliouras, G., and Tardos, É. Multiplicative
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Supplementary Materials for
“Independent Policy Gradient for Large-Scale Markov Potential Games:

Sharper Rates, Function Approximation, and Game-Agnostic Convergence”

A. Algorithms in Section 5 and Section 6

Algorithm 2 Independent policy gradient with linear function approximation
1: Parameters: K, W , and η > 0.
2: Initialization: Let π(1)

i (ai | s) = 1/A for s ∈ S, ai ∈ Ai and i = 1, . . . , N .
3: for step t = 1, . . . , T do
4: // Phase 1 (data collection)
5: for round k = 1, . . . ,K do
6: For each i ∈ [N ], sample hi ∼ GEOMETRIC(1− γ) and h′i ∼ GEOMETRIC(1− γ).
7: Draw an initial state s̄(0) ∼ ρ.
8: Continuing from s̄(0), let all players interact with each other using {π(t)

i }Ni= 1 for H = maxi(hi +h′i) steps, which
generates a state-joint-action-reward trajectory s̄(0), ā(0), r̄(0), s̄(1), ā(1), r̄(1), . . . , s̄(H), ā(H), r̄(H).

9: Define for every player i ∈ [N ]:

s
(k)
i = s̄(hi), a

(k)
i = ā

(hi)
i , R

(k)
i =

hi+h
′
i−1∑

h=hi

r̄
(h)
i . (6)

10: end for
11: // Phase 2 (policy update)
12: for player i = 1, . . . , N (in parallel) do
13: Compute ŵ(t)

i as

ŵ
(t)
i ≈ argmin

‖wi‖≤W

K∑
k= 1

(
R

(k)
i −

〈
φi(s

(k)
i , a

(k)
i ), wi

〉 )2

. (7)

14: Define Q̂(t)
i (s, ·) :=

〈
φi(s, ·), ŵ(t)

i

〉
and player i’s policy for s ∈ S,

π
(t+1)
i ( · | s) = argmax

πi(· | s)∈∆ξ(Ai)

{〈
πi(· | s), Q̂(t)

i (s, ·)
〉
Ai
− 1

2η

∥∥πi(· | s)− π(t)
i (· | s)

∥∥2
}
. (8)

15: end for
16: end for
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Algorithm 3 Independent optimistic policy gradient ascent

1: Parameters: 0 < η ≤ 1−γ
32
√
A

and a non-increasing sequence {α(t)}∞t=1 that satisfies

0 < α(t) ≤ 1

6
for all t and

∞∑
t= t′

α(t) = ∞ for any t′.

2: Initialization: Let x(1)
s = x̄

(1)
s = y

(1)
s = ȳ

(1)
s = 1/A and V(0)

s = 0 for all s ∈ S.
3: for step t = 1, 2, . . . do
4: Define Q(t)

s ∈ RA×A for all s ∈ S,

Q(t)
s (a1, a2) = r(s, a1, a2) + γ Es′∼ P(· | s,a1,a2)

[
V(t−1)
s′

]
.

5: Define two players’ policies for s ∈ S,

x̄
(t+1)
s = argmax

xs ∈∆(A1)

{
x>s Q(t)

s y(t)
s − 1

2η

∥∥xs − x̄(t)
s

∥∥2
}

x
(t+1)
s = argmax

xs ∈∆(A1)

{
x>s Q(t)

s y(t)
s − 1

2η

∥∥xs − x̄(t+1)
s

∥∥2
}

ȳ
(t+1)
s = argmax

ys ∈∆(A2)

{
(x(t)
s )>Q(t)

s ys −
1

2η

∥∥ys − ȳ(t)
s

∥∥2
}

y
(t+1)
s = argmax

ys ∈∆(A2)

{
(x(t)
s )>Q(t)

s ys −
1

2η

∥∥ys − ȳ(t+1)
s

∥∥2
}

(9)

V(t)
s = (1− α(t))V(t−1)

s + α(t)(x(t)
s )>Q(t)

s y(t)
s .

6: end for
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B. Proofs for Section 4
In this section, we provide proofs of Theorem 1 and Theorem 2 in Appendix B.1 and Appendix B.2, respectively.

B.1. Proof of Theorem 1

We first seek to decompose the difference of a potential function Φπ(µ) at two different policies for any state distribution µ.

Let Ψπ : Π → R be any multivariate function mapping a policy π ∈ Π to a real number. In Lemma 2, we show that the
difference Ψπ′ − Ψπ at any two policies π, π′ equals to a sum of several partial differences. For i, j ∈ {1, . . . , N} with
i < j, we denote by “i ∼ j” the set of indices {k | i < k < j}, “< i” the set of indices {k | k = 1, . . . , i− 1}, and “> j”
the set of indices {k | k = j + 1, . . . , N}. We use the shorthand πI := {πk}k∈ I to represent the joint policy for all players
k ∈ I . For example, when I = i ∼ j, πI = {πk}j−1

k= i+1 is a joint policy for players from i+ 1 to j − 1; π<i, i∼j , π<i, and
π>j can be introduced similarly.

Lemma 2 (Multivariate function difference). For any function Ψπ: Π→ R, and any two policies π, π′ ∈ Π,

Ψπ′ − Ψπ =

N∑
i= 1

(
Ψπ′i, π−i − Ψπ

)
+

N∑
i= 1

N∑
j= i+1

(
Ψπ<i,i∼j , π

′
>j , π

′
i, π
′
j − Ψπ<i,i∼j , π

′
>j , πi, π

′
j

−Ψπ<i,i∼j , π
′
>j , π

′
i, πj + Ψπ<i,i∼j , π

′
>j , πi, πj

)
.

(10)

Proof of Lemma 2. We prove (10) by induction on the number of players N . In the basic step: N = 2, the right-hand side
of (10) becomes(

Ψπ′1, π2 −Ψπ1, π2

)
+
(

Ψπ1, π
′
2 −Ψπ1, π2

)
+
(

Ψπ′1, π
′
2 −Ψπ1, π

′
2 −Ψπ′1, π2 + Ψπ1, π2

)
which equals to the left-hand side: Ψπ′1,π

′
2 −Ψπ1,π2 .

Assume the equality (10) holds for N players. We next consider the induction step for N + 1 players . By subtracting and
adding Ψπ≤N , π

′
N+1 ,

Ψπ′ − Ψπ =
(

Ψπ′≤N , π
′
N+1 −Ψπ≤N , π

′
N+1

)
︸ ︷︷ ︸

Diff≤N

+
(

Ψπ≤N , π
′
N+1 −Ψπ≤N , πN+1

)
︸ ︷︷ ︸

DiffN+1

. (11)

In (11), we use the shorthand π′≤N and π≤N for {π′k}Nk= 1 and {πk}Nk= 1, respectively. We note that Diff≤N or DiffN+1 can
be viewed as a function for N players if we fix the (N + 1)th policy. By the induction assumption, for the first term Diff≤N ,

Diff≤N =

N∑
i= 1

(
Ψπ′i, π<i,i∼N+1, π

′
N+1 − Ψπ≤N , π

′
N+1

)
+

N∑
i= 1

N∑
j= i+1

(
Ψπ<i,i∼j , π

′
>j , π

′
i, π
′
j , π
′
N+1 − Ψπ<i,i∼j , π

′
>j , πi, π

′
j , π

′
N+1

−Ψπ<i,i∼j , π
′
>j , π

′
i, πj , π

′
N+1 + Ψπ<i,i∼j , π

′
>j , πi, πj , π

′
N+1

)
=

N∑
i= 1

(
Ψπ′i, π<i,i∼N+1, πN+1 − Ψπ≤N , πN+1

)
+

N∑
i= 1

(
Ψπ′i, π<i,i∼N+1, π

′
N+1 − Ψπ≤N , π

′
N+1 −Ψπ′i, π<i,i∼N+1, πN+1 + Ψπ≤N , πN+1

)
+

N∑
i= 1

N∑
j= i+1

(
Ψπ<i,i∼j , π

′
>j , π

′
i, π
′
j , π
′
N+1 − Ψπ<i,i∼j , π

′
>j , πi, π

′
j , π

′
N+1

−Ψπ<i,i∼j , π
′
>j , π

′
i, πj , π

′
N+1 + Ψπ<i,i∼j , π

′
>j , πi, πj , π

′
N+1

)
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where we use π′>j to represent {π′k}Nk= j+1.

Adding DiffN+1 to the last equivalent expression of Diff≤N above yields

Diff≤N + DiffN+1 =

N+1∑
i= 1

(
Ψπ′i, π−i − Ψπ

)
+

N∑
i= 1

N+1∑
j=N+1

(
Ψπ<i,i∼j , π

′
>j , π

′
i, π
′
j − Ψπ<i,i∼j , π

′
>j , πi, π

′
j

−Ψπ<i,i∼j , π
′
>j , π

′
i, πj + Ψπ<i,i∼j , π

′
>j , πi, πj

)
+

N∑
i= 1

N∑
j= i+1

(
Ψπ<i,i∼j , π

′
>j , π

′
i, π
′
j , π
′
N+1 − Ψπ<i,i∼j , π

′
>j , πi, π

′
j , π

′
N+1

−Ψπ<i,i∼j , π
′
>j , π

′
i, πj , π

′
N+1 + Ψπ<i,i∼j , π

′
>j , πi, πj , π

′
N+1

)
=

N+1∑
i= 1

(
Ψπ′i, π−i − Ψπ

)
+

N+1∑
i= 1

N+1∑
j= i+1

(
Ψπ<i,i∼j , π

′
>j , π

′
i, π
′
j − Ψπ<i,i∼j , π

′
>j , πi, π

′
j

−Ψπ<i,i∼j , π
′
>j , π

′
i, πj + Ψπ<i,i∼j , π

′
>j , πi, πj

)
.

where the first equality has a slight abuse of the notation: π′>j represents {π′k}
N+1
k= j+1 in the first double sum and π′>j

represents {π′k}Nk= j+1 in the second double sum. Therefore, (10) holds for N + 1 players. The proof is completed by
induction.

We apply Lemma 2 to the potential function Φπ(µ) at two consecutive policies π(t+1) and π(t) in Algorithm 1, where µ is
an initial state distribution. We use the shorthand Φ(t)(µ) for Φπ

(t)

(µ), the value of potential function at policy π(t).

Lemma 3 (Policy improvement: Markov potential games). For MPG (1) with any state distribution µ, the potential function
Φπ(µ) at two consecutive policies π(t+1) and π(t) in Algorithm 1 satisfies

(i) Φ(t+1)(µ)− Φ(t)(µ) ≥ 1

2η(1− γ)

N∑
i= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

µ (s)
∥∥∥π(t+1)

i (·|s)− π(t)
i (·|s)

∥∥∥2

− 4η2A2N2

(1− γ)5

(ii) Φ(t+1)(µ)− Φ(t)(µ) ≥ 1

2η(1− γ)

N∑
i= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

µ (s)

(
1−

4ηκ3
µAN

(1− γ)4

)∥∥∥π(t+1)
i (·|s)− π(t)

i (·|s)
∥∥∥2

where η is the stepsize, N is the number of players, A is the size of one player’s action space, and κµ is the distribution
mismatch coefficient relative to µ (see κµ in Definition 1).

Proof of Lemma 3. We let π′ = π(t+1) and π = π(t) for brevity. By Lemma 2 with Ψπ = Φπ(µ), it is equivalent to analyze

Φ(t+1)(µ) − Φ(t)(µ) = Diffα + Diffβ (12)

where

Diffα =

N∑
i= 1

(
Φπ
′
i, π−i(µ)− Φπ(µ)

)

Diffβ =

N∑
i= 1

N∑
j= i+1

(
Φπ<i,i∼j , π

′
>j , π

′
i, π
′
j (µ) − Φπ<i,i∼j , π

′
>j , πi, π

′
j (µ)

−Φπ<i,i∼j , π
′
>j , π

′
i, πj (µ) + Φπ<i,i∼j , π

′
>j , πi, πj (µ)

)
.
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Bounding Diffα. By the property of the potential function Φπ(µ),

Φπ
′
i, π−i(µ) − Φπ(µ) = V

π′i, π−i
i (µ) − V πi (µ)

=
1

1− γ
∑
s, ai

d
π′i, π−i
µ (s) (π′i(ai | s)− πi(ai | s)) Q̄

πi, π−i
i (s, ai)

(13)

where the second equality is due to Lemma 1 using π̂i = π′i and π̄i = πi. The optimality of π′i = π
(t+1)
i in line 4

of Algorithm 1 leads to

〈
π′i(· | s), Q̄

πi,π−i
i (s, ·)

〉
Ai
− 1

2η

∥∥π′i(· | s)− πi(· | s)∥∥2 ≥
〈
πi(· | s), Q̄πi,π−ii (s, ·)

〉
Ai
. (14)

Combining (13) and (14), we get

Φπ
′
i, π−i(µ) − Φπ(µ) ≥ 1

2η(1− γ)

∑
s

d
π′i, π−i
µ (s) ‖π′i(· | s)− πi(· | s)‖

2
.

Therefore,

Diffα ≥
1

2η(1− γ)

N∑
i= 1

∑
s

d
π

(t+1)
i , π

(t)
−i

µ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

. (15)

Bounding Diffβ . For simplicity, we denote π̃−ij as the joint policy of players N\{i, j} where players < i and i ∼ j use π
and players > j use π′. For each summand in Diffβ ,

Φπ̃−ij , π
′
i, π
′
j (µ) − Φπ̃−ij , πi, π

′
j (µ) − Φπ̃−ij , π

′
i, πj (µ) + Φπ̃−ij , πi, πj (µ)

(a)
= V

π̃−ij , π
′
i, π
′
j

i (µ) − V
π̃−ij , πi, π

′
j

i (µ) − V
π̃−ij , π

′
i, πj

i (µ) + V
π̃−ij , πi, πj
i (µ)

(b)
=

1

1− γ
∑
s, ai

d
π̃−ij , π

′
i, π
′
j

µ (s) (π′i(ai | s)− πi(ai | s)) Q̄
π̃−ij , πi, π

′
j

i (s, ai)

− 1

1− γ
∑
s, ai

d
π̃−ij , π

′
i, πj

µ (s) (π′i(ai | s)− πi(ai | s)) Q̄
π̃−ij , πi, πj
i (s, ai)

=
1

1− γ
∑
s, ai

d
π̃−ij , π

′
i, π
′
j

µ (s) (π′i(ai | s)− πi(ai | s))
(
Q̄
π̃−ij , πi, π

′
j

i (s, ai)− Q̄
π̃−ij , πi, πj
i (s, ai)

)
+

1

1− γ
∑
s, ai

(
d
π̃−ij , π

′
i, π
′
j

µ (s)− dπ̃−ij , π
′
i, πj

µ (s)
)

(π′i(ai | s)− πi(ai | s)) Q̄
π̃−ij , πi, πj
i (s, ai)

≥ − 1

1− γ
∑
s

d
π̃−ij , π

′
i, π
′
j

µ (s) ‖π′i(· | s)− πi(· | s)‖1
∥∥∥Q̄π̃−ij , πi, π′ji (s, ·)− Q̄π̃−ij , πi, πji (s, ·)

∥∥∥
∞

− 1

1− γ
∑
s

∣∣∣dπ̃−ij , π′i, π′jµ (s)− dπ̃−ij , π
′
i, πj

µ (s)
∣∣∣ ‖π′i(· | s)− πi(· | s)‖1 ∥∥∥Q̄π̃−ij , πi, πji (s, ·)

∥∥∥
∞

(c)

≥ − 1

(1− γ)3

(
max
s
‖π′i(· | s)− πi(· | s)‖1

)(
max
s

∥∥π′j(· | s)− πj(· | s)∥∥1

)
− 1

(1− γ)2

(
max
s

∥∥π′j(· | s)− πj(· | s)∥∥1

)(
max
s
‖π′i(· | s)− πi(· | s)‖1

)
(d)

≥ − 8η2A2

(1− γ)5

where (a) is due to the property of the potential function, (b) is due to Lemma 1; for (c), we use Lemma 4, Lemma 20, and

the fact that
∑
s d

π̃−ij ,π
′
i,π
′
j

µ (s) = 1 and
∥∥∥Q̄π̃−ij , πi, πji (s, ·)

∥∥∥
∞
≤ 1

1−γ ; The last inequality (d) follows a direct result from
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the optimality of π′i = π
(t+1)
i given by (14) and ‖ · ‖ ≤

√
A‖ · ‖∞ and ‖ · ‖1 ≤

√
A‖ · ‖:

‖π′i(· | s)− πi(· | s)‖
2 ≤ 2η

〈
π

(t+1)
i (· | s)− π(t)

i (· | s), Q̄πi,π−ii (s, ·)
〉
Ai

≤ 2η
∥∥∥π(t+1)

j (· | s)− π(t)
j (· | s)

∥∥∥∥∥Q̄πi,π−ii (s, ·)
∥∥

=⇒
∥∥∥π(t+1)

j (· | s)− π(t)
j (· | s)

∥∥∥ ≤ 2η
∥∥Q̄πi,π−ii (s, ·)

∥∥ ≤ 2η
√
A

1− γ

=⇒
∥∥∥π(t+1)

j (· | s)− π(t)
j (· | s)

∥∥∥
1
≤ 2ηA

1− γ
.

Therefore,

Diffβ ≥ −
N(N − 1)

2
× 8η2A2

(1− γ)5
≥ − 4η2A2N2

(1− γ)5
. (16)

We now complete the proof of (i) by combining (12), (15), and (16).

Alternatively, by Lemma 21, we can bound each summand of Diffβ by

Φπ̃−ij , π
′
i, π
′
j (µ) − Φπ̃−ij , πi, π

′
j (µ) − Φπ̃−ij , π

′
i, πj (µ) + Φπ̃−ij , πi, πj (µ)

= V
π̃−ij , π

′
i, π
′
j

i (µ) − V
π̃−ij , πi, π

′
j

i (µ) − V
π̃−ij , π

′
i, πj

i (µ) + V
π̃−ij , πi, πj
i (µ)

≥ −
2κ2

µA

(1− γ)4

∑
s

dπ̃−ij ,πi,πjµ (s)
(
‖πi(· | s)− π′i(· | s)‖

2
+
∥∥πj(· | s)− π′j(· | s)∥∥2

)
.

Thus,

Diffβ ≥ −
2κ2

µA

(1− γ)4

N∑
i= 1

N∑
j= i+1

∑
s

dπ̃−ij ,πi,πjµ (s)
(
‖πi(· | s)− π′i(· | s)‖

2
+
∥∥πj(· | s)− π′j(· | s)∥∥2

)

≥ −
2κ3

µNA

(1− γ)5

N∑
i= 1

∑
s

d
π

(t+1)
i , π

(t)
−i

µ (s)
∥∥∥π(t)

i (· | s)− π(t+1)
i (· | s)

∥∥∥2

. (since
dπµ(s)

dπ′µ (s)
≤ κµ

1−γ for any π, π′, s)

Combining the inequality above with (12) and (15) finishes the proof of (ii).

Lemma 4. Suppose i < j for i, j = 1, . . . , N . Let π̃−ij be the policy for all players but i, j and πi be the policy for player
i. For any two policies for player j: πj and π′j , we have

max
s

∥∥∥Q̄π̃−ij , πi, π′ji (s, ·)− Q̄π̃−ij , πi, πji (s, ·)
∥∥∥
∞
≤ 1

(1− γ)2
max
s

∥∥π′j(· | s)− πj(· | s)∥∥1
.

Proof of Lemma 4. We note that Q̄
π̃−ij , πi, π

′
j

i (s, ·) and Q̄π̃−ij , πi, πji (s, ·) are averaged action value functions for player i
using policy πi, but they have different underlying averaged MDPs because of different policies executed by player j. Hence,
we can directly apply Lemma 19. Specifically, let (r, p) be the averaged reward and transition functions for player i induced
by (π̃−ij , πj), and (r̃, p̃) be those induced by (π̃−ij , π

′
j). Then,

|r(s, ai)− r̃(s, ai)|

=

∣∣∣∣∣∣
∑

aj ,a−ij

r(s, ai, aj , a−ij)πj(aj | s)π̃−ij(a−ij | s)−
∑

aj ,a−ij

r(s, ai, aj , a−ij)π
′
j(aj | s)π̃−ij(a−ij | s)

∣∣∣∣∣∣
≤

∥∥πj(· | s)− π′j(· | s)∥∥1
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and
‖p(·|s, ai)− p̃(·|s, ai)‖1

=
∑
s′

∣∣∣∣∣∣
∑

aj , a−ij

p(s′ | s, ai, aj , a−ij)
(
πj(aj | s)− π′j(aj | s)

)
π̃−ij(a−ij | s)

∣∣∣∣∣∣
≤

∑
s′

∑
aj , a−ij

p(s′ | s, ai, aj , a−ij)π̃−ij(a−ij | s)
∣∣πj(aj | s)− π′j(aj | s)∣∣

≤
∥∥πj(·|s)− π′j(·|s)∥∥1

.

Application of two inequalities above to Lemma 19 competes the proof.

Proof of Theorem 1. By the optimality of π(t+1)
i in line 4 of Algorithm 1,〈

π′i(· | s)− π
(t+1)
i (· | s), ηQ̄(t)

i (s, ·)− π(t+1)
i (· | s) + π

(t)
i (· | s)

〉
Ai
≤ 0, for any π′i ∈ Πi.

Hence, if η ≤ 1−γ√
A

, then for any π′i ∈ Πi,〈
π′i(· | s)− π

(t)
i (· | s), Q̄(t)

i (s, ·)
〉
Ai

=
〈
π′i(· | s)− π

(t+1)
i (· | s), Q̄(t)

i (s, ·)
〉
Ai

+
〈
π

(t+1)
i (· | s)− π(t)

i (· | s), Q̄(t)
i (s, ·)

〉
Ai

≤ 1

η

〈
π′i(· | s)− π

(t+1)
i (· | s), π(t+1)

i (· | s)− π(t)
i (· | s)

〉
Ai

+
〈
π

(t+1)
i (· | s)− π(t)

i (· | s), Q̄(t)
i (s, ·)

〉
Ai

(a)

≤ 2

η

∥∥∥π(t+1)
i (· | s)− π(t)

i (· | s)
∥∥∥ +

∥∥∥π(t+1)
i (· | s)− π(t)

i (· | s)
∥∥∥∥∥∥Q̄(t)

i (s, ·)
∥∥∥

(b)

≤ 3

η

∥∥∥π(t+1)
i (·|s)− π(t)

i (·|s)
∥∥∥ .

where in (a) we apply the Cauchy-Schwarz inequality and that ‖p− p′‖ ≤ ‖p− p′‖1 ≤ 2 for any two distributions p and p′;
(b) is because of ‖Q̄(t)

i (s, ·)‖ ≤
√
A

1−γ and η ≤ 1−γ√
A

. Therefore, for any initial distribution ρ,

T∑
t= 1

max
i

(
max
π′i

V
π′i, π

(t)
−i

i (ρ)− V π
(t)

i (ρ)

)
(a)
=

1

1− γ

T∑
t= 1

max
π′i

∑
s, ai

d
π′i,π

(t)
−i

ρ (s)
(
π′i(ai | s)− π

(t)
i (ai | s)

)
Q̄

(t)
i (s, ai)

(b)

≤ 3

η(1− γ)

T∑
t= 1

∑
s

d
π′i,π

(t)
−i

ρ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥
(c)

.

√
supπ ∈Π ‖dπρ/ν‖∞

η(1− γ)
3
2

T∑
t= 1

∑
s

√
d
π′i,π

(t)
−i

ρ (s)× dπ
(t+1)
i ,π

(t)
−i

ν (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥
(d)

≤

√
supπ ∈Π ‖dπρ/ν‖∞

η(1− γ)
3
2

√√√√ T∑
t= 1

∑
s

d
π′i,π

(t)
−i

ρ (s)×

√√√√ T∑
t= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

ν (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

(e)

≤

√
supπ ∈Π ‖dπρ/ν‖∞

η(1− γ)
3
2

√√√√ T∑
t= 1

∑
s

d
π′i,π

(t)
−i

ρ (s)×

√√√√ T∑
t= 1

N∑
i= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

ν (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

(17)

where (a) is due to Lemma 1 and we slightly abuse the notation i to represent argmaxi, in (b) we slightly abuse the notation
π′i to represent argmaxπ′i , in (c) we choose an arbitrary ν ∈ ∆(S) and use the following inequality:

d
π′i, π

(t)
−i

ρ (s)

d
π

(t+1)
i , π

(t)
−i

ν (s)

≤ d
π′i, π

(t)
−i

ρ (s)

(1− γ)ν(s)
≤

supπ ‖dπ ∈Π
ρ /ν‖∞

1− γ
.
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We apply the Cauchy–Schwarz inequality in (d), and finally we replace i ( argmaxi in (a)) in the last square root term in
(e) by the sum over all players.

If we proceed (17) with ν = argminν ∈∆(S) maxπ ∈Π ‖dπρ/ν‖∞, then,

T∑
t= 1

max
i

(
max
π′i

V
π′i, π

(t)
−i

i (ρ)− V π
(t)

i (ρ)

)
(a)

≤
√
κ̃ρ

η(1− γ)
3
2

√
T ×

√
2η(1− γ)

(
Φ(T+1)(ν)− Φ(1)(ν)

)
+

4η3A2N2

(1− γ)4
T

(b)

.

√
κ̃ρTCΦ

η(1− γ)2
+

√
κ̃ρηT 2A2N2

(1− γ)7

where in (a) we apply the first bound (i) in Lemma 3 (with µ = ν) and use Definition 2: κ̃ρ =

minν ∈∆(S) maxπ ∈Π ‖dπρ/ν‖∞, and in (b) we use |Φπ(ν) − Φπ
′
(ν)| ≤ CΦ for any π, π′, and further simplify the

bound in (b). We complete the proof for the first bound by taking stepsize η = (1−γ)2.5√CΦ

NA
√
T

(by the upper bound of CΦ

given in Lemma 18, the condition η ≤ 1−γ√
A

is satisfied).

If we proceed (17) with the second bound (ii) in Lemma 3 with the choice of η ≤ (1−γ)4

8κ3
νNA

, then,

T∑
t= 1

max
i

(
max
π′i

V
π′i, π

(t)
−i

i (ρ)− V π
(t)

i (ρ)

)

≤

√
supπ ∈Π ‖dπρ/ν‖∞

η(1− γ)
3
2

√
T ×

√
4η(1− γ)

(
Φ(T+1)(ν)− Φ(1)(ν)

)
.

√
supπ ∈Π ‖dπρ/ν‖∞TCΦ

η(1− γ)2
.

We next discuss two special choices of ν for proving our bound. First, if ν = ρ, then η ≤ (1−γ)4

8κ3
ρNA

. By letting η = (1−γ)4

8κ3
ρNA

,

the last square root term can be bounded by O
(√

κ4
ρNATCΦ

(1−γ)6

)
. Second, if ν = 1

S1, the uniform distribution over S,

then κν ≤ 1
S , which allows a valid choice η = (1−γ)4

8S3NA ≤
(1−γ)4

8κ3
νNA

. Hence, we can bound the last square root term by

O
(√

S4NATCΦ

(1−γ)6

)
. Since ν is arbitrary, combining these two special choices completes the proof.

B.2. Proof of Theorem 2

We first establish policy improvement regarding the Q-function at two consecutive policies π(t+1) and π(t) in Algorithm 1.

Lemma 5 (Policy improvement: Markov cooperative games). For MPG (1) with identical rewards and an initial state
distribution ρ > 0, if all players independently perform the policy update in Algorithm 1 with stepsize η ≤ 1−γ

2N , then for
any t and any s,

Ea∼π(t+1)(· | s)

[
Q(t)(s, a)

]
− Ea∼π(t)(· | s)

[
Q(t)(s, a)

]
≥ 1

4η

N∑
i= 1

∥∥∥π(t+1)
i (·|s)− π(t)

i (·|s)
∥∥∥2

where η is the stepsize and N is the number of players.

Proof of Lemma 5. Fixing the time t and the state s, we apply Lemma 2 to

Ψπ = Ea∼π(· | s)

[
Q(t)(s, a)

]
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where Q(t) := Qπ
(t)

(recall that π is a joint policy of all players). By Lemma 2, for any two policies π′ and π,

Ea∼π′(· | s)
[
Q(t)(s, a)

]
− Ea∼π(· | s)

[
Q(t)(s, a)

]
=

N∑
i= 1

(
Eai∼π′i(· | s), a−i∼π−i(· | s)

[
Q(t)(s, a)

]
− Ea∼π(· | s)

[
Q(t)(s, a)

])
+

N∑
i= 1

N∑
j= i+1

(
Eai∼π′i(· | s), aj ∼π′j(· | s), a−ij ∼ π̃−ij(· | s)

[
Q(t)(s, a)

]
−Eai∼πi(· | s), aj ∼π′j(· | s), a−ij ∼ π̃−ij(· | s)

[
Q(t)(s, a)

]
−Eai∼π′i(· | s), aj ∼πj(· | s), a−ij ∼ π̃−ij(· | s)

[
Q(t)(s, a)

]
+Eai∼πi(· | s), aj ∼πj(· | s), a−ij ∼ π̃−ij(· | s)

[
Q(t)(s, a)

])
(18)

where π̃−ij is a joint policy of players N\{i, j} in which players < i and i ∼ j use π, and players > j use π′. Particularly,
we choose π′ = π(t+1) and π = π(t). Thus, we can reduce (18) into

Ea∼π′(· | s)
[
Q(t)(s, a)

]
− Ea∼π(· | s)

[
Q(t)(s, a)

]
=

N∑
i= 1

∑
ai

(π′i(ai | s)− πi(ai | s)) Q̄
(t)
i (s, ai)

+

N∑
i= 1

N∑
j= i+1

∑
ai, aj

(π′i(ai | s)− πi(ai | s))
(
π′j(aj | s)− πj(aj | s)

)
Ea−ij ∼ π̃−ij(· | s)

[
Q(t)(s, a)

]
(a)

≥
N∑
i= 1

1

2η
‖π′i(· | s)− πi(· | s)‖

2 − 1

1− γ

N∑
i= 1

N∑
j= i+1

∑
ai, aj

|π′i(ai | s)− πi(ai | s)|
∣∣π′j(aj | s)− πj(aj | s)∣∣

(b)

≥
N∑
i= 1

1

2η
‖π′i(· | s)− πi(· | s)‖

2 − A

2(1− γ)

N∑
i= 1

N∑
j= i+1

(
‖π′i(· | s)− πi(· | s)‖

2
+
∥∥π′j(· | s)− πj(· | s)∥∥2

)
=

N∑
i=1

1

2η
‖π′i(· | s)− πi(· | s)‖

2 − (N − 1)A

2(1− γ)

N∑
i=1

‖π′i(· | s)− πi(· | s)‖
2

(c)

≥
N∑
i= 1

1

4η
‖π′i(· | s)− πi(· | s)‖

2

where (a) is due to the optimality condition (14) and Q(t)(s, a) ≤ 1
1−γ , (b) is due to 〈x, y〉 ≤ ‖x‖

2+‖y‖2
2 , and (c) follows

the choice of η ≤ 1−γ
2NA .

Proof of Theorem 2. By Lemma 1 and Lemma 5, we have for any ν ∈ ∆(S),

V (t+1)(ν) − V (t)(ν) =
1

1− γ
∑
s, a

dπ
(t+1)

ν (s)
(
π(t+1)(a | s)− π(t)(a | s)

)
Q(t)(s, a)

≥ 1

4η(1− γ)

N∑
i= 1

∑
s

dπ
(t+1)

ν (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

.

(19)
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By the same argument as the proof of Theorem 1,

T∑
t= 1

max
i

(
max
π′i

V π
′
i, π

(t)
−i (ρ)− V π

(t)

(ρ)

)
(a)

≤ 3

η(1− γ)

T∑
t= 1

∑
s

d
π′i,π

(t)
−i

ρ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥
(b)

.

√
κ̃ρ

η(1− γ)
3
2

T∑
t= 1

∑
s

√
d
π′i,π

(t)
−i

ρ (s)× dπ(t+1)

ν (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥
≤

√
κ̃ρ

η(1− γ)
3
2

√√√√ T∑
t= 1

∑
s

d
π′i,π

(t)
−i

ρ (s)×

√√√√ T∑
t= 1

∑
s

dπ(t+1)

ν (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

(c)

≤
√
κ̃ρ

η(1− γ)
3
2

√√√√ T∑
t= 1

∑
s

d
π′i,π

(t)
−i

ρ (s)×

√√√√ T∑
t= 1

N∑
i= 1

∑
s

dπ(t+1)

ν (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

(d)

≤
√
κ̃ρ

η(1− γ)
3
2

√
T ×

√
4η(1− γ)

(
V (T+1)(ν)− V (1)(ν)

)
.

where in (a) we slightly abuse the notation i to represent argmaxi as in (17), in (b) we take ν =
argminν∈∆(S) maxπ ∈Π ‖dπρ/ν‖∞ and use the definition of κ̃ρ from Definition 2, and we replace i (argmaxi in (a))
in the last square root term in (c) by the sum over all players, and we apply (19) in (d).

Finally, we complete the proof by taking stepsize η = 1−γ
2NA and using V (T+1)(ν)− V (1)(ν) ≤ 1

1−γ .

C. Proofs for Section 5
In this section, we provide proofs of Theorem 3 and Theorem 4 in Appendix C.2 and Appendix C.3, respectively.

C.1. Unbiased estimate

We consider the kth sampling in the data collection phase of Algorithm 2. By the sampling model in lines 6-8 of Algorithm 2,
it is straightforward to see that s̄(hi) ∼ dπ(t)

ρ for player i. Then, we take ā(hi)
i ∼ π(k)

i (· | s(hi)) at step hi for player i. Each

player i begins with such (s̄(hi), ā
(hi)
i ) while all players execute the policy {π(t)

i }Ni= 1 with the termination probability 1− γ.
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Once terminated, we add all rewards collected in R(k)
i . We next show that E[R

(k)
i ] = Q̄πi (s̄(hi), ā

(hi)
i ),

E[R
(k)
i ] = E

 hi+h′i−1∑
h=hi

r̄
(h)
i

∣∣∣∣ s̄(hi), ā
(hi)
i , ā

(hi)
−i ∼ π

(t)
−i(· | s̄

(hi)), h′i ∼ GEOMETRIC(1− γ)


(a)
= E

 h′i−1∑
h= 0

r̄
(h+hi)
i

∣∣∣∣ s̄(hi), ā
(hi)
i , ā

(hi)
−i ∼ π

(t)
−i(· | s̄

(hi)), h′i ∼ GEOMETRIC(1− γ)


= E

[ ∞∑
h= 0

1{0≤h≤h′i−1}r̄
(h+hi)
i

∣∣∣∣ s̄(hi), ā
(hi)
i , ā

(hi)
−i ∼ π

(t)
−i(· | s̄

(hi)), h′i ∼ GEOMETRIC(1− γ)

]
(b)
=

∞∑
h= 0

E
[
Eh′i
[
1{0≤h≤h′i−1}

]
r̄

(h+hi)
i

∣∣∣∣ s̄(hi), ā
(hi)
i , ā

(hi)
−i ∼ π

(t)
−i(· | s̄

(hi))

]
(c)
=

∞∑
h= 0

E
[
γh r̄

(h+hi)
i

∣∣∣∣ s̄(hi), ā
(hi)
i , ā

(hi)
−i ∼ π

(t)
−i(· | s̄

(hi))

]
= E

ā
(hi)

−i ∼π
(t)
−i(· | s̄(hi))

E

[ ∞∑
h= 0

γh r̄
(h+hi)
i

∣∣∣∣ s̄(hi), ā
(hi)
i , ā

(hi)
−i ∼ π

(t)
−i(· | s̄

(hi))

]
= E

ā
(hi)

−i ∼π
(t)
−i(· | s̄(hi))

[
Q

(t)
i (s̄(hi), ā

(hi)
i , ā

(hi)
−i )

]
= Q̄

(t)
i (s̄(hi), ā

(hi)
i )

where in (a) we change the range of index h while using the same initial state and action, (b) is due to the tower property,
(c) follows that Eh′i

[
1{0≤h≤h′i−1}

]
= 1 − (1 − (1 − p)h) = γh, where p = 1 − γ, and we also apply the monotone

convergence and dominated convergence theorems for swapping the sum and the expectation.

C.2. Proof of Theorem 3

We apply Lemma 2 to the potential function Φπ(ρ) at two consecutive policies π(t+1) and π(t) in Algorithm 2, where ρ is
the initial state distribution. We use the shorthand Φ(t)(ρ) for Φπ

(t)

(ρ), the value of potential function at policy π(t). The
proof extends Lemma 3 by accounting for the statistical error in Assumption 2.

Lemma 6 (Policy improvement: Markov potential games). Let Assumption 1 hold. In Algorithm 2, the potential function
Φπ(ρ) at two consecutive policies π(t+1) and π(t) satisfies

(i) Φ(t+1)(ρ)− Φ(t)(ρ) ≥ 1

4η(1− γ)

N∑
i= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

ρ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

− 4η2AW 2N2

(1− γ)3

− ηκρA

(1− γ)2ξ

N∑
i= 1

L
(t)
i (ŵ

(t)
i )

(ii) Φ(t+1)(ρ)− Φ(t)(ρ) ≥ 1

4η(1− γ)

N∑
i= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

ρ (s)

(
1−

4ηκ3
ρNA

(1− γ)4

)∥∥∥π(t+1)
i (· | s)− π(t)

i (· | s)
∥∥∥2

− ηκρA

(1− γ)2ξ

N∑
i= 1

L
(t)
i (ŵ

(t)
i )

where η is the stepsize, N is the number of players, A is the size of one player’s action space, W is the 2-norm bound of
ŵ

(t)
i , and κρ is the distribution mismatch coefficient relative to ρ (see κρ in Definition 1).

Proof of Lemma 6. We let π′ = π(t+1) and π = π(t) for brevity. We first express Φ(t+1)(ρ) − Φ(t)(ρ) = Diffα + Diffβ ,
where Diffα and Diffβ are given as those in (12).
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Bounding Diffα. By the property of the potential function Φπ(ρ) and Lemma 1,

Φπ
′
i, π−i(ρ) − Φπ(ρ) = V

π′i, π−i
i (ρ) − V πi (ρ)

=
1

1− γ
∑
s, ai

d
π′i, π−i
ρ (s) (π′i(ai | s)− πi(ai | s)) Q̄

πi, π−i
i (s, ai).

The optimality of π′i = π
(t+1)
i in line 14 of Algorithm 2 leads to〈

π′i(· | s), Q̂
(t)
i (s, ·)

〉
Ai
− 1

2η

∥∥π′i(· | s)− πi(· | s)∥∥2 ≥
〈
πi(· | s), Q̂(t)

i (s, ·)
〉
Ai
. (20)

Hence,

Φπ
′
i, π−i(ρ) − Φπ(ρ) ≥ 1

2η(1− γ)

∑
s

d
π′i, π−i
ρ (s) ‖π′i(· | s)− πi(· | s)‖

2

+
1

1− γ
∑
s

d
π′i, π−i
ρ (s)

〈
π′i(· | s)− πi(· | s), Q̄

πi,π−i
i (s, ·)− Q̂(t)

i (s, ·)
〉
Ai
.

Therefore,

Diffα ≥ 1

2η(1− γ)

N∑
i= 1

∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

+
1

1− γ

N∑
i= 1

∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)
〈(
π

(t+1)
i − π(t)

i

)
(· | s), Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

〉
Ai
.

However, ∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)
〈(
π

(t+1)
i − π(t)

i

)
(· | s), Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

〉
Ai

(a)

≥ −
∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)

(
1

2η′

∥∥∥(π(t+1)
i − π(t)

i

)
(· | s)

∥∥∥2

+
η′

2

∥∥∥Q̄(t)
i (s, ·)− Q̂(t)

i (s, ·)
∥∥∥2
)

(b)
= − 1

4η

∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)
∥∥∥(π(t+1)

i − π(t)
i

)
(· | s)

∥∥∥2

− η
∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)
∥∥∥Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

∥∥∥2

where (a) follows the inequality 〈x, y〉 ≤ ‖x‖
2

2η′ + η′‖y‖2
2 for η′ > 0, and we choose η′ = 2η in (b).

Therefore,

Diffα ≥ 1

4η(1− γ)

N∑
i= 1

∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

− η

1− γ

N∑
i= 1

∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)
∥∥∥Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

∥∥∥2

.

(21)

Bounding Diffβ . For simplicity, we denote π̃−ij as the joint policy of players N\{i, j} where players < i and i ∼ j use π
and players > j use π′. As done in the proof of Lemma 3, we can bound each summand in Diffβ except for the last step
from (c) to (d),

Φπ̃−ij , π
′
i, π
′
j (ρ) − Φπ̃−ij , πi, π

′
j (ρ) − Φπ̃−ij , π

′
i, πj (ρ) + Φπ̃−ij , πi, πj (ρ)

(c)

≥ − 1

(1− γ)3

(
max
s
‖π′i(· | s)− πi(· | s)‖1

)(
max
s

∥∥π′j(· | s)− πj(· | s)∥∥1

)
− 1

(1− γ)2

(
max
s

∥∥π′j(· | s)− πj(· | s)∥∥1

)(
max
s
‖π′i(· | s)− πi(· | s)‖1

)
(d)

≥ − 8η2AW 2

(1− γ)3
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where (d) follows a direct result from the optimality of π(t+1)
j given by (20),∥∥∥π(t+1)

j (· | s)− π(t)
j (· | s)

∥∥∥ ≤ 2η
∥∥∥Q̂(t)

i (s, ·)
∥∥∥ ≤ 2ηW

and that ‖ · ‖1 ≤
√
A‖ · ‖. Therefore,

Diffβ ≥ −
4η2AW 2N2

(1− γ)3
. (22)

We now complete the proof of (i) by combining (21) and (22) and we also employ that∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)
∥∥∥Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

∥∥∥2

(a)

≤ κρ
1− γ

∑
s

d
π

(t)
i , π

(t)
−i

ρ (s)
∥∥∥Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

∥∥∥2

(b)

≤ κρA

(1− γ)ξ
L

(t)
i (ŵ

(t)
i )

where (a) follows the definition of κρ and (b) is the definition of L(t)
i (ŵ

(t)
i ):

L
(t)
i (ŵ

(t)
i ) := E

s∼ d(t)
ρ ,ai∼π(t)

i (·|s)

[(
Q̄

(t)
i (s, ai)− Q̂(t)

i (s, ai)
)2] ≥ ξ

A
E
s∼d(t)

ρ

∑
ai

(
Q̄

(t)
i (s, ai)− Q̂(t)

i (s, ai)
)2
.

Alternatively, as done in Lemma 3, we can apply Lemma 21 to each summand of Diffβ and show that

Diffβ ≥ −
2κ3

ρNA

(1− γ)5

N∑
i= 1

∑
s

d
π

(t+1)
i , π

(t)
−i

ρ (s)
∥∥∥π(t)

i (· | s)− π(t+1)
i (· | s)

∥∥∥2

.

Combining the inequality above with (21) finishes the proof of (ii).

Proof of Theorem 3. By the optimality of π(t+1)
i in line 14 of Algorithm 2,〈

(1− ξ)π′i(· | s) +
ξ

A
1− π(t+1)

i (· | s), ηQ̂(t)
i (s, ·)− π(t+1)

i (· | s) + π
(t)
i (· | s)

〉
Ai
≤ 0, for any π′i ∈ Πi.

which leads to 〈
π′i(· | s)− π

(t+1)
i (· | s), ηQ̂(t)

i (s, ·)
〉
Ai

≤
〈
π′i(· | s)− π

(t+1)
i (· | s), π(t+1)

i (·|s)− π(t)
i (·|s)

〉
Ai

(23)

+
ξ

1− ξ

〈
π(t+1)(·|s)− 1

A
1, ηQ̂

(t)
i (s, ·)− π(t+1)

i (· | s) + π
(t)
i (· | s)

〉
.
∥∥∥π(t+1)

i (·|s)− π(t)
i (·|s)

∥∥∥ + ηξW (24)

where the last inequality is because of ‖Q̂(t)
i (s, ·)‖ ≤W and ξ ≤ 1

2 . Hence, if η ≤ 1
W , then for any π′i ∈ Πi,〈

π′i(· | s)− π
(t)
i (· | s), Q̄(t)

i (s, ·)
〉
Ai

=
〈
π′i(· | s)− π

(t+1)
i (· | s), Q̂(t)

i (s, ·)
〉
Ai

+
〈
π

(t+1)
i (· | s)− π(t)

i (· | s), Q̂(t)
i (s, ·)

〉
Ai

+
〈
π′i(· | s)− π

(t)
i (· | s), Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

〉
Ai

(a)

.
1

η

∥∥∥π(t+1)
i (· | s)− π(t)

i (· | s)
∥∥∥ + ξW +

∥∥∥π(t+1)
i (· | s)− π(t)

i (· | s)
∥∥∥∥∥∥Q̂(t)

i (s, ·)
∥∥∥

+
〈
π′i(· | s)− π

(t)
i (· | s), Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

〉
Ai

(b)

.
1

η

∥∥∥π(t+1)
i (· | s)− π(t)

i (· | s)
∥∥∥ + ξW

+
〈
π′i(· | s)− π

(t)
i (· | s), Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

〉
Ai
.
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where we apply (24) and the Cauchy-Schwarz inequality in (a), and (b) is because ‖Q̂(t)
i (s, ·)‖ ≤W and η ≤ 1

W . As done
in the proof of Theorem 1, the different steps begin from (b) in (17),

T∑
t= 1

max
i

(
max
π′i

V
π′i, π

(t)
−i

i (ρ)− V π
(t)

i (ρ)

)
(b)

.
1

η(1− γ)

T∑
t= 1

∑
s

d
π′i,π

(t)
−i

ρ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥+
ξTW

1− γ

+
1

1− γ

T∑
t= 1

∑
s

d
π′i,π

(t)
−i

ρ (s)
〈
π′i(· | s)− π

(t)
i (· | s), Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

〉
Ai

(c)

.
√
κρ

η(1− γ)
3
2

T∑
t= 1

∑
s

√
d
π

(t+1)
i ,π

(t)
−i

ρ (s)× dπ
′
i,π

(t)
−i

ρ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥+
ξTW

1− γ

+
κρ

1− γ

∣∣∣∣∣
T∑
t= 1

∑
s

dπ
(t)

ρ (s)
〈
π′i(· | s)− π

(t)
i (· | s), Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

〉
Ai

∣∣∣∣∣
(d)

≤
√
κρ

η(1− γ)
3
2

√√√√ T∑
t= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

ρ (s)×

√√√√ T∑
t= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

ρ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

+
ξTW

1− γ
+

κρ
1− γ

T∑
t= 1

√
AL

(t)
i (ŵ

(t)
i )

ξ

(e)

≤
√
κρ

η(1− γ)
3
2

√√√√ T∑
t= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

ρ (s)×

√√√√ T∑
t= 1

N∑
i= 1

∑
s

d
π

(t+1)
i ,π

(t)
−i

ρ (s)
∥∥∥π(t+1)

i (· | s)− π(t)
i (· | s)

∥∥∥2

+
ξTW

1− γ
+

κρ
1− γ

T∑
t= 1

√
AL

(t)
i (ŵ

(t)
i )

ξ

(25)

where we slightly abuse the notation π′i in (b) to represent argmaxπ′i and i represents argmaxi as in (17), (c) is due to the
definition of the distribution mismatch coefficient (see it in Definition 1):

d
π′i, π

(t)
−i

ρ (s)

d
π

(t+1)
i , π

(t)
−i

ρ (s)

≤ d
π′i, π

(t)
−i

ρ (s)

(1− γ)ρ(s)
≤ κρ

1− γ
,

(d) follows the Cauchy–Schwarz inequality, the inequality
√∑

i xi ≤
∑
i

√
xi for any xi ≥ 0, the Jensen’s inequality, and

the definition of L(t)
i (ŵ

(t)
i ),

∣∣∣∣∣∑
s

dπ
(t)

ρ (s)
〈
π′i(· | s)− π

(t)
i (· | s), Q̄(t)

i (s, ·)− Q̂(t)
i (s, ·)

〉
Ai

∣∣∣∣∣
.

√∑
s

dπ(t)

ρ (s)

√∑
s

dπ(t)

ρ (s)
∑
ai

(
Q̄

(t)
i (s, ai)− Q̂(t)

i (s, ai)
)2

≤

√
AL

(t)
i (ŵ

(t)
i )

ξ

where L(t)
i (ŵ

(t)
i ) := E

s∼ d(t)
ρ ,a∼π(t)

i (·|s)

[(
Q̄

(t)
i (s, ai)− Q̂(t)

i (s, ai)
)2]

, and Q̂(t)
i (s, ai) = 〈φi(s, ai), ŵ(t)

i 〉, and we replace
i ( argmaxi in (b)) in the square root term in (e) by the sum over all players.
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If we proceed (25) with the first bound (i) in Lemma 6, then,

E

[
T∑
t= 1

max
i

(
max
π′i

V
π′i, π

(t)
−i
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where we apply the first bound (i) in Lemma 6 and the telescoping sum for (a), and we use the boundedness of the potential
function: |Φπ − Φπ

′ | ≤ CΦ for any π and π′, and further simplify the bound in (f) by Assumption Assumption 2. We

complete the proof of (i) by taking stepsize η = (1−γ)3/2√CΦ
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and exploration rate ξ ≤
(
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3

.

If we proceed (25) with the first bound (ii) in Lemma 6 with the choice of η ≤ (1−γ)4
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, then,
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which completes the proof if we choose η = (1−γ)4
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ρNA

and exploration rate ξ ≤
(
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) 1
3

.

C.3. Proof of Theorem 4

We first establish policy improvement regarding the Q-function at two consecutive policies π(t+1) and π(t) in Algorithm 2.

Lemma 7 (Policy improvement: Markov cooperative games). For MPG (1) with identical rewards and an initial state
distribution ρ > 0, if all players independently perform the policy update in Algorithm 2 with stepsize η ≤ 1−γ

2N , then for
any t and any s,

Ea∼π(t+1)(· | s)

[
Q(t)(s, a)

]
− Ea∼π(t)(· | s)

[
Q(t)(s, a)

]
≥ 1

8η
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∥∥∥π(t+1)
i (· | s)− π(t)
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∥∥∥2

− η
N∑
i= 1

∥∥∥∥Q(t)
i (s, ·)− ̂̄Q(t)

i (s, ·)
∥∥∥∥2

where η is the stepsize and N is the number of players,

Proof of Lemma 7. As done in the proof of Lemma 5, we let Ψπ := Ea∼π(· | s)
[
Q(t)(s, a)

]
and (18) holds, where
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Q(t) := Qπ
(t)

. By taking π′ = π(t+1) and π = π(t) for (18),
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=
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where (a) is due to the optimality condition (20), the inequality 〈x, y〉 ≤ ‖x‖
2

2η′ + η′‖y‖2
2 for η′ > 0, and Q(t)(s, a) ≤ 1

1−γ ,

(b) is due to 〈x, y〉 ≤ ‖x‖
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2 and η′ = 2η, and (c) follows the choice of η ≤ 1−γ
4N .

Proof of Theorem 4. By Lemma 1 and Lemma 7,
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where (a) follows the definition of κρ and (b) is the definition of L(t)
i (ŵ

(t)
i ).

By the same argument as the proof of Theorem 3,
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By taking expectation and the Jensen’s inequality,
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We complete the proof by taking stepsize η = 1−γ
2NA , exploration rate ξ ≤

(
κ2
ρNAεstat

(1−γ)2W 2

) 1
3

, and using V (N+1) − V (1) ≤
1

1−γ .

C.4. Sample complexity

We present our sample complexity guarantees for Algorithm 2 in which the regression problem (7) in each iteration is
approximately solved by the stochastic projected gradient descent (38). We measure the sample complexity by the total
number of trajectory samples TK, where T is the number of iterations and K is the batch size of trajectories.

Corollary 1 (Sample complexity for Markov potential games). Assume the setting in Theorem 3 except for Assumption 2.
Suppose we compute ŵ(t)
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k w

(k)
i via a stochastic projected gradient descent (38) with stepsize λ(k) = 2
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and β(K)
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Furthermore, if we choose stepsize η = (1−γ)4
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and exploration rate ξ = min
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Moreover, their sample complexity guarantees are TK = O( 1
ε7 ) or TK = O( 1

ε5 ), respectively, for obtaining an ε-Nash
equilibrium.
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Proof of Corollary 1. By the unbiased estimate in Appendix C.1, the stochastic gradient ∇̂(t)
i in (38) is also unbiased.

We note the variance of the stochastic gradient is bounded by 1
(1−γ)2 . By Lemma 23, if we choose λ(k) = 2

2+k and

β
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where L(t)
i (w

(t)
i ) = 0. by Assumption 1. Therefore, substitution of εstat ≤ dW 2

(1−γ)2K into Theorem 3 yields desired results.

Finally, we let the upper bound on Nash-Regret(T ) be ε > 0 and calculate the sample complexity TK = O( 1
ε7 ) or

TK = O( 1
ε5 ), respectively.

Corollary 2 (Sample complexity for Markov cooperative games). Assume the setting in Theorem 4 except for Assump-
tion Assumption 2. Suppose we compute ŵ(t)

i := 1
K

∑K
k= 1 β

(K)
k w

(k)
i via a stochastic projected gradient descent (38)

with stepsize λ(k) = 2
2+k and β(K)

k = 1/λ(k)∑K
r= 1 1/λ(r) . Then, if we choose stepsize η = 1−γ
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Moreover, the sample complexity guarantee is TK = O( 1
ε5 ) for obtaining an ε-Nash equilibrium.

Proof of Corollary 2. The proof follows the proof steps of Corollary 1 above.

D. Proofs for Section 6
In this section, we prove Theorem 5 and Theorem 6 in Appendix D.1 and Appendix D.2, respectively.

D.1. Proof of Theorem 5

It is convenient to introduce an auxiliary sequence {α(t,τ)}∞τ = 0 associated with the learning rate {α(t)}∞t= 1,

α(t,τ) :=



t∏
j= 1

(1− α(j)), for τ = 0

α(τ)
t∏

j= τ+1

(1− α(j)), for 1 ≤ τ ≤ t

0, for τ > t.

(26)

It is straightforward to verify that
∑t−1
τ = 0 α

(t−1,τ) = 1 for t ≥ 1.

Lemma 8. In Algorithm 3, V(t)
s =

∑t
τ = 1 α

(t,τ)(x
(τ)
s )>Q(τ)

s y
(τ)
s for all s, t.

Proof of Lemma 8. We prove it by induction. When t = 0 and t = 1, it holds trivially by noting that V(0)
s = 0 and

α(1,1) = α(1). Assume that it holds for 0, 1, . . . , t− 1. By the update rule for V(t)
s in Algorithm 3,

V(t)
s = (1− α(t))V(t−1)

s + α(t)(x(t)
s )>Q(t)

s y(t)
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(a)
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s
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=
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s )>Q(τ)
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s

where (a) follows the induction hypothesis and (b) is due to the definition of α(t,τ).
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Lemma 9. In Algorithm 3, for every state s and time t ≥ 1,

(x(t+1)
s )>Q(t)

s y(t+1)
s − (x(t)

s )>Q(t)
s y(t)
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Proof of Lemma 9. We decompose the difference into three terms:
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We next deal with Diffx, Diffy , and Diffxy , separately.
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Combining the two inequalities above yields
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Bounding Diffy . Similarly,
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s − ȳ(t+1)

s

∥∥∥2

+
1

2η
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Bounding Diffxy . By the AM-GM and Cauchy-Schwarz inequalities,
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s
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−
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s
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+
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s
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+
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s

∥∥∥2

+
∥∥∥ȳ(t)
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s

∥∥∥2
)

(b)
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where (a) follows ‖x+ y + z‖2 ≤ 3 ‖x‖2 + 3 ‖y‖2 + 3 ‖z‖2 and (b) is by η ≤ 1−γ
32
√
A

.

Finally, we complete the proof by summing up the bounds above for Diffx, Diffy , and Diffxy .
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Lemma 10. In Algorithm 3, for all t and s, the following two inequalities hold:

(i) V(t)
s ≥ V(t−1)

s ;

(ii) (x(t+1)
s )>Q(t+1)

s y(t+1)
s − (x(t)

s )>Q(t)
s y(t)

s ≥
15

16η
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s
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16η
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s

∥∥∥2

.

Proof of Lemma 10. We first note that (ii) is a consequence of Lemma 9 and (i),

(x(t+1)
s )>Q(t+1)

s y(t+1)
s − (x(t)

s )>Q(t)
s y(t)

s

= (x(t+1)
s )>Q(t+1)

s y(t+1)
s − (x(t+1)

s )>Q(t)
s y(t+1)

s + (x(t+1)
s )>Q(t)

s y(t+1)
s − (x(t)

s )>Q(t)
s y(t)

s

(a)

≥ min
s′

γ
(
V(t)
s′ − V

(t−1)
s′

)
+

15

16η

∥∥∥z(t+1)
s − z̄(t+1)

s

∥∥∥2

+
7

16η

∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

− 9

16η

∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

(b)

≥ 15

16η

∥∥∥z(t+1)
s − z̄(t+1)

s

∥∥∥2

+
7

16η

∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

− 9

16η

∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

where (a) is due to Lemma 9, and the update of Q(t)
s in Algorithm 3,

Q(t+1)
s (a1, a2)−Q(t)

s (a1, a2) = γEs′∼ P(· | s,a1,a2)

[
V(t)
s′ − V

(t−1)
s′

]
and (b) follows (i).

Therefore, it suffices to prove (i). We prove it by induction. Define ζ(t)
s :=

∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

and λ(t)
s :=

∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

.

For notational simplicity, define Q(0)
s = 0A×A, z(0)

s = z̄
(0)
s = 1

A1 = z
(1)
s = z̄

(1)
s . Thus, (ii) holds for t = 0 and (i) holds

for t = 1. We note that for t ≥ 2,

V(t)
s − V(t−1)

s

(a)
= α(t)

(
x(t)
s Q(t)

s y(t)
s − V(t−1)

s

)
(b)
= α(t)

(
t−1∑
τ = 0

α(t−1,τ)
(
x(t)
s Q(t)

s y(t)
s − x(τ)

s Q(τ)
s y(τ)

s

))

= α(t)

(
t−1∑
τ = 0

α(t−1,τ)
t−1∑
i= τ

(
x(i+1)
s Q(i+1)

s y(i+1)
s − x(i)

s Q(i)
s y(i)

s

))

= α(t)

(
t−1∑
τ = 0

α(t−1,τ)
t−1∑
i= τ

(
x(i+1)
s Q(i+1)

s y(i+1)
s − x(i)

s Q(i)
s y(i)

s −
15

16η
ζ(i+1)
s − 7

16η
λ(i)
s +

9

16η
ζ(i)
s

))

+ α(t)

(
t−1∑
τ = 0

α(t−1,τ)
t−1∑
i= τ

(
15

16η
ζ(i+1)
s +

7

16η
λ(i)
s −

9

16η
ζ(i)
s

))
(c)

≥ α(t)
t−1∑
i= 0

(
i∑

τ = 0

α(t−1,τ)

)(
15

16η
ζ(i+1)
s − 9

16η
ζ(i)
s

)

= α(t)
t∑

i= 1

ζ(i)
s

(
15

16η

i−1∑
τ = 0

α(t−1,τ) − 9

16η

i∑
τ = 0

α(t−1,τ)

)
− α(t)

(
0∑

τ = 0

α(t−1,τ)

)
9η

16
ζ(0)
s

(d)
= α(t)

t∑
i= 2

ζ(i)
s

(
15

16η

i−1∑
τ = 0

α(t−1,τ) − 9

16η

i∑
τ = 0

α(t−1,τ)

)
(e)

≥ 0

where (a) follows the update of V(t)
s in Algorithm 3, we apply Lemma 8 and

∑t−1
τ = 0 α

(t−1,τ) = 1 in (b), (c) follows the
induction hypothesis (ii), (d) is due to that ζ(0)

s = ζ
(1)
s = 0, and we apply Lemma 14 for (e).
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Lemma 11. For every s ∈ S, the following quantities in Algorithm 3 all converge to some fixed values when t→∞:

(i) V(t)
s ;

(ii)
∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

+
∥∥∥z̄(t)
s − z̄(t−1)

s

∥∥∥2

(converges to zero);

(iii) (x
(t)
s )>Q(t)

s y
(t)
s .

Proof. Establishing (i). By (i) in Lemma 10, {V(t)
s }∞t= 0 is a bounded increasing sequence. By the monotone convergence

theorem, it is convergent. Therefore, (i) holds.

Establishing (ii). By summing up the inequality (ii) in Lemma 10 over t and using the fact that z(1)
s = z̄

(1)
s ,

t∑
τ = 1

(
6

16η

∥∥∥z(τ+1)
s − z̄(τ+1)

s

∥∥∥2

+
7

16η

∥∥∥z̄(τ+1)
s − z̄(τ)

s

∥∥∥2
)
≤ (x(t+1)

s )>Q(t+1)
s y(t+1)

s − (x(1)
s )>Q(1)

s y(1)
s ≤ 1

1− γ

which implies that 6
16η

∥∥∥z(τ+1)
s − z̄(τ+1)

s

∥∥∥2

+ 7
16η

∥∥∥z̄(τ+1)
s − z̄(τ)

s

∥∥∥2

must converge to zero when τ → ∞, which further
implies (ii).

Establishing (iii). By (ii) in Lemma 10,

(x(t+1)
s )>Q(t+1)

s y(t+1)
s − 15

16η

∥∥∥z(t+1)
s − z̄(t+1)

s

∥∥∥2

≥
(

(x(t)
s )>Q(t)

s y(t)
s −

15

16η

∥∥∥z(t)
s − z̄(t)

s

∥∥∥2
)

+
7

16η

∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

+
6

16η

∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

Therefore,

(x(t)
s )>Q(t)

s y(t)
s − 15

16η

∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

converges to a fixed value (increasing and upper bounded). In (ii), we have shown that
∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

converges to zero.

Therefore, (x
(t)
s )>Q(t)

s y
(t)
s must also converge. Therefore, (iii) holds.

Lemma 12. In Algorithm 3, for every s ∈ S, limt→∞ V x
(t),y(t)

s exists, and

lim
t→∞

V(t)
s = lim

t→∞
V x

(t),y(t)

s .

Proof of Lemma 12. By Lemma 11, V(t)
s and (x

(t)
s )>Q(t)

s y
(t)
s both are convergent. Let V?s := limt→∞ V(t)

s and σ?s :=

limt→∞(x
(t)
s )>Q(t)

s y
(t)
s . We next show V?s = σ?s by contradiction. Assume that there exists ε > 0 such that |V?s − σ?s | = ε.

Since (x
(t)
s )>Q(t)

s y
(t)
s converges to σ?s , there exists some t0 > 0 such that for all t ≥ t0,∣∣∣(x(t)

s )>Q(t)
s y(t)

s − σ?s
∣∣∣ ≤ ε

3
. (31)

By our choice of α(t),
∑∞
t= t′ α

(t) =∞ for any t′. Thus, there exists t1 > 0 such that for all t ≥ t1 and all τ ≤ t0,

α(t,τ) ≤
t∏

i= τ+1

(1− α(i))
(a)

≤ exp

(
−

t∑
i= t0+1

α(i)

)
≤ ε(1− γ)

3t0
(32)
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where log(1− x) ≤ −x for x ∈ (0, 1) is used in (a). By the update of V(t)
s in Algorithm 3, for all t ≥ max(t0, t1),

∣∣∣V(t)
s − σ?s

∣∣∣ =

∣∣∣∣∣
t∑

τ = 0

α(t,τ)
(

(x(τ)
s )>Q(τ)

s y(τ)
s − σ?s

)∣∣∣∣∣
(a)

≤

∣∣∣∣∣
t0−1∑
τ = 0

α(t,τ)
(

(x(τ)
s )>Q(τ)

s y(τ)
s − σ?s

)∣∣∣∣∣ +

∣∣∣∣∣
t∑

τ = t0

α(t,τ)
(

(x(τ)
s )>Q(τ)

s y(τ)
s − σ?s

)∣∣∣∣∣
(b)

≤

(
t0−1∑
τ = 0

α(t,τ)

)
× 1

1− γ
+

(
1−

t0−1∑
τ = 1

α(t,τ)

)
× ε

3

≤ t0 max
τ ≤ t0

α(t,τ) × 1

1− γ
+

ε

3
(c)

≤ 2ε

3

where we apply the triangle inequality for (a), (b) is due to (31) and
∑t
τ = 1 α

(t,τ) = 1, and (c) follows (32). Since
|V?s − σ?s | = ε, it is impossible that V(t)

s converges to V?s , and it must be that V?s = σ?s . Therefore, V(t)
s − (x

(t)
s )>Q(t)

s y
(t)
s

converges to zero as t→∞.

Equivalently, V(t)
s − (x

(t)
s )>Q(t)

s y
(t)
s can be expressed as(

V(t)
s − V(t−1)

s

)
+ V(t−1)

s −
∑
a1,a2

x(t)
s (a1)y(t)

s (a2)
(
r(s, a1, a2) + γEs′∼ P(· | s,a1,a2)

[
V(t−1)
s′

])
.

By letting t→ 0, since V(t)
s − V(t−1)

s → 0, thus,

V(t−1)
s −

∑
a1,a2

x(t)
s (a1)y(t)

s (a2)
(
r(s, a1, a2) + γEs′∼ P(· | s,a1,a2)

[
V(t−1)
s′

])
also converges to zero. Hence, V(t)

s converges to the unique fixed point of the Bellman equation. By the uniqueness,
V(t−1)
s − V x(t),y(t)

s converges to zero. Therefore, limt→∞ V x
(t),y(t)

s = limt→∞ V(t−1)
s = V?s .

Lemma 13. In Algorithm 3, for every s,

lim
t→∞

max
x′

(x′s − x(t)
s )>Q(t)

s y(t)
s = 0.

Proof of Lemma 13. By the optimality of x(t+1)
s ,〈

x′s − x(t+1)
s , ηQ(t)

s y(t)
s − x(t+1)

s + x̄(t+1)
s

〉
≤ 0, for any x′s.

Rearranging the inequality yields, for any x′s,

〈x′s − x(t+1)
s ,Q(t)

s y(t)
s 〉 ≤

1

η

(〈
x′s − x(t+1)

s , x(t+1)
s − x(t)

s

〉
+
〈
x(t+1)
s − x(t)

s , ηQ(t)
s y(t)

s − x(t+1)
s + x̄(t+1)

s

〉)
.

1

η

∥∥∥x(t+1)
s − x(t)

s

∥∥∥
≤ 1

η

(∥∥∥x(t+1)
s − x̄(t+1)

s

∥∥∥+
∥∥∥x̄(t+1)

s − x̄(t)
s

∥∥∥ +
∥∥∥x̄(t)

s − x(t)
s

∥∥∥)
By (ii) of Lemma 11, the right-hand side above converges to zero, which completes the proof.

Lemma 14. Let {α(t)}∞t=1 be a non-increasing sequence that satisfies 0 < α(t) ≤ 1
6 for all t. Then for any t ≥ i ≥ 2,

i∑
τ = 0

α(t,τ) ≤ 5

3

i−1∑
τ = 0

α(t,τ).
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Proof of Lemma 14. Equivalently, we prove

α(t,i) ≤ 2

3

i−1∑
τ = 0

α(t,τ).

If suffices to show that α(t,i) ≤ 2
3α

(t,i−1) + 2
3α

(t,i−2). We have the following two cases.

Case 1: i > 2. By the definition of α(t,τ) and the monotonicity of 0 < α(t) ≤ 1
6 ,

α(t,i)

α(t,i−1)
=

α(i)
∏t
j= i+1(1− α(j))

α(i−1)
∏t
j= i(1− α(j))

=
α(i)

α(i−1)(1− α(i))
≤ 1

1− α(i)
≤ 1

1− 1
6

=
6

5

α(t,i)

α(t,i−2)
=

α(i)

α(i−2)(1− α(i))(1− α(i−1))
≤ 36

25

Therefore,

2

3
α(t,i−1) +

2

3
α(t,i−2) ≥ 2

3

(
5

6
+

25

36

)
α(t,i) ≥ α(t,i).

Case 2: i = 2. By the definition of α(t,τ) and the monotonicity of 0 < α(t) ≤ 1
6 ,

α(t,2)

α(t,0)
=

α(2)
∏t
j= 3(1− α(j))∏t

j= 1(1− α(j))
=

α(2)

(1− α(1))(1− α(2))
≤

1
6

5
6 ×

5
6

=
6

25

Therefore,

2

3
α(t,1) +

2

3
α(t,0) ≥ 2

3
× 25

6
α(t,2) ≥ α(t,2).

Proof of Theorem 5.

max
x′

(
V x
′,y(t)

(ρ)− V x
(t),y(t)

(ρ)
)

= max
x′

1

1− γ
∑
s

dx
′,y(t)

ρ (s)
(
x′s − x(t)

s

)>
Qx

(t),y(t)

s y(t)
s

≤ max
x′

1

1− γ
∑
s

dx
′,y(t)

ρ (s)
(
x′s − x(t)

s

)>
Q(t)
s y(t)

s︸ ︷︷ ︸
DiffP

+ max
x′

1

1− γ
∑
s

dx
′,y(t)

ρ (s)
(
x′s − x(t)

s

)> (
Qx

(t),y(t)

s −Q(t)
s

)
y(t)
s︸ ︷︷ ︸

DiffQ

.

By Lemma 13, DiffP → 0 when t→∞. For DiffQ, we notice that∣∣∣Qx(t),y(t)

s −Q(t)
s

∣∣∣ ≤ γmax
s′

∣∣∣V x(t),y(t)

s′ − V(t)
s′

∣∣∣
which converges to zero by Lemma 12. Therefore, DiffQ → 0 when t→∞. Therefore, (x(t), y(t)) converges to a Nash
equilibrium when t→∞.

D.2. Proof of Theorem 6

We first introduce a corollary of Lemma 10.
Corollary 3. In Algorithm 3, for every state s, and any T > 0,

T∑
t= 1

(∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

+
∥∥∥z̄(t+1)
s − z(t)

s

∥∥∥2
)
≤ 8η

1− γ

where z(t)
s = (x

(t)
s , y

(t)
s ) and z̄(t)

s = (x̄
(t)
s , ȳ

(t)
s ).
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Proof of Corollary 3. By (ii) of Lemma 10,

(x(t+1)
s )>Q(t+1)

s y(t+1)
s − (x(t)

s )>Q(t)
s y(t)

s +
15

16η

(∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

−
∥∥∥z(t+1)
s − z̄(t+1)

s

∥∥∥2
)

≥ 7

16η

∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

+
6

16η

∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

≥ 6

16η

∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

+
6

16η

∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

.

Thus, by the inequality ‖x+ y‖2 ≤ 2 ‖x‖2 + 2 ‖y‖2,

∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

+
∥∥∥z̄(t+1)
s − z(t)

s

∥∥∥2

≤ 3
∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

+ 2
∥∥∥z̄(t)
s − z(t)

s

∥∥∥2

≤ 3
∥∥∥z̄(t+1)
s − z̄(t)

s

∥∥∥2

+ 3
∥∥∥z̄(t)
s − z(t)

s

∥∥∥2

≤ 8η
(

(x
(t+1)
s )>Q(t+1)

s y
(t+1)
s − (x

(t)
s )>Q(t)

s y
(t)
s

)
+

15

2

(∥∥∥z(t)
s − z̄(t)

s

∥∥∥2

−
∥∥∥z(t+1)
s − z̄(t+1)

s

∥∥∥2
)

which yields our desired result if we sum it over t, use (x
(T+1)
s )>Q(T+1)

s y
(T+1)
s ≤ 1

1−γ and z(1)
s = z̄

(1)
s , and ignore a

negative term.

Lemma 15. In Algorithm 3, the gap between the critic Q(t)
s and the true Q(t)

s satisfies

T∑
t= 1

max
s

∥∥∥Q(t)
s −Q(t)

s

∥∥∥2

∞
.

A

(α(T ))2(1− γ)6

T∑
t= 1

max
s

(∥∥∥x(t)
s − x(t−1)

s

∥∥∥2

+
∥∥∥y(t)
s − y(t−1)

s

∥∥∥2
)
.

Proof of Lemma 15. For notational simplicity, define Q(0)
s = Q

(0)
s = 0A×A.
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maxs

∥∥∥Q(t)
s −Q(t)

s

∥∥∥2

∞

:= max
s,a1,a2

∣∣∣Q(t)
s (a1, a2)−Q(t)

s (a1, a2)
∣∣∣2

≤ max
s,a1,a2

∣∣∣∣∣r(s, a1, a2) + γEs′∼ P(· | s,a1,a2)

[
(xs′)

>Q
(t)
s′ ys′

]
−

t−1∑
τ = 0

α(t−1,τ)
(
r(s, a1, a2) + γEs′∼P(· | s,a1,a2)

[
(x

(τ)
s′ )>Q(τ)

s′ y
(τ)
s′

]) ∣∣∣∣∣
2

≤ γ2 max
s′

∣∣∣∣∣
t−1∑
τ = 0

α(t−1,τ)
(

(xs′)
>Q

(t)
s′ ys′ − (x

(τ)
s′ )>Q(τ)

s′ y
(τ)
s′

)∣∣∣∣∣
2

(a)

≤ 6γ2

1− γ
max
s

(
t−1∑
τ = 0

α(t−1,τ)(x(t)
s )>

(
Q(t)
s −Q(τ)

s

)
y(t)
s

)2

+
2γ2

1 + γ
max
s

(
t−1∑
τ = 0

α(t−1,τ)(x(t)
s )>

(
Q(τ)
s −Q(τ)

s

)
y(t)
s

)2

+
6γ2

1− γ
max
s

(
t−1∑
τ = 0

α(t−1,τ)(x(t)
s )>Q(τ)

s (y(t)
s − y(τ)

s )

)2

+
6γ2

1− γ
max
s

(
t−1∑
τ = 0

α(t−1,τ)(x(t)
s − x(τ)

s )>Q(τ)
s y(τ)

s

)2

(b)

≤ 2γ2

1 + γ
max
s

(
t−1∑
τ = 0

α(t−1,τ)

)(
t−1∑
τ = 0

α(t−1,τ)
(

(x(t)
s )>

(
Q(τ)
s −Q(τ)

s

)
y(t)
s

)2
)

+ c′max
s

(
t−1∑
τ = 0

α(t−1,τ)
(
‖x(t)

s − x(τ)
s ‖1 + ‖y(t)

s − y(τ)
s ‖1

))2

(c)

≤ 2γ2

1 + γ
max
s

[
t−1∑
τ = 0

α(t−1,τ)
∥∥∥Q(τ)

s −Q(τ)
s

∥∥∥2

∞

]
+ c′max

s

(
t−1∑
τ = 0

α(t−1,τ)
t∑

h= τ+1

diff(h)
s

)2

≤ γmax
s

[
t−1∑
τ = 0

α(t−1,τ)
∥∥∥Q(τ)

s −Q(τ)
s

∥∥∥2

∞

]
+ c′max

s

(
t∑

h= 1

h−1∑
τ = 0

α(t−1,τ)diff(h)
s

)2

(d)

≤ γmax
s

[
t−1∑
τ = 0

α(t−1,τ)
∥∥∥Q(τ)

s −Q(τ)
s

∥∥∥2

∞

]
+ c′max

s

(
t∑

h= 1

δ(t−1,h−1)diff(h)
s

)2

(e)

≤ γmax
s

[
t−1∑
τ = 0

α(t−1,τ)
∥∥∥Q(τ)

s −Q(τ)
s

∥∥∥2

∞

]
+ c′max

s

(
t∑

h= 1

(1− α(t))t−hdiff(h)
s

)2

where in (a) we apply (x+ y + z + w)2 ≤ 6x2

1−γ + 2y2

1+γ + 6z2

1−γ + 6w2

1−γ from the Cauchy-Schwarz inequality, in (b) we use

Lemma 17 and obtain c′ = O
(

1
(1−γ)5

)
, in (c) we introduce notation,

diff(h)
s :=

∥∥∥x(h)
s − x(h−1)

s

∥∥∥
1

+
∥∥∥y(h)
s − y(h−1)

s

∥∥∥
1
,

and in (d) we introduce notation,

δ(t,τ) =

t∏
i= τ+1

(1− α(i)).

and apply Lemma 35 of Wei et al. (2021b), (e) is due to that {α(t)}∞t= 0 is a non-increasing sequence.
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Application of Lemma 33 of Wei et al. (2021b) to the recursion relation above yields

max
s

∥∥∥Q(t)
s −Q(t)

s

∥∥∥2

∞
≤ c′

t∑
τ = 1

β(t,τ) max
s

(
τ∑

q= 1

(1− α(τ))τ−qdiff(q)s

)2

≤ c′
t∑

τ = 1

β(t,τ)

(
τ∑

q= 1

(1− α(τ))τ−qdiff(q)
)2

(33)

where β(t,τ) := α(τ)
∏t−1
i=τ (1− α(i) + α(i)γ) for 1 ≤ τ < t and β(t,t) := 1, and diff(t) := maxs diff(t)s .

The right-hand side of (33) can be further upper bounded by

c′
t∑

τ = 1

β(t,τ)

(
τ∑

q= 1

(1− α(τ))τ−q

)(
τ∑

q= 1

(1− α(τ))τ−q(diff(q))2

)
(a)

≤ c′
t∑

τ = 1

β(t,τ)

α(τ)

τ∑
q= 1

(1− α(τ))τ−q(diff(q))2

= c′
t∑

q= 1

t∑
τ = q

β(t,τ)

α(τ)
(1− α(τ))τ−q(diff(q))2

= c′
t∑

q= 1

[
t−1∑
τ = q

(1− α(t) + α(t)γ)t−τ (1− α(t))τ−q(diff(q))2 +
(1− α(t))t−q

α(t)
(diff(q))2

]

= c′
t∑

q= 1

[
(1− α(t) + α(t)γ)t−q

t−1∑
τ = q

(
1− α(t)

1− α(t) + α(t)γ

)τ−q
+

(1− α(t))t−q

α(t)

]
(diff(q))2

= c′
t∑

q= 1

(1− α(t) + α(t)γ)t−q
1−

(
1−α(t)

1−α(t)+α(t)γ

)t−q
α(t)γ

1−α(t)+α(t)γ

+
(1− α(t))t−q

α(t)

 (diff(q))2

≤ 2c′

α(t)γ

t∑
q= 1

(1− α(t) + α(t)γ)t−q(diff(q))2,

where (a) is due to that
∑τ
q= 1(1− α(τ))τ−q ≤ 1

α(τ) .

Substitution of the upper bound above into (33) yields,

T∑
t= 1

max
s

∥∥∥Q(t)
s −Q(t)

s

∥∥∥2

∞
.

T∑
t= 1

c′

α(t)

t∑
q= 1

(1− α(t) + α(t)γ)t−q(diff(q))2

(a)

≤
T∑

q= 1

T∑
t= q

c′

α(T )
(1− α(T ) + α(T )γ)t−q(diff(q))2

(b)

≤ c′

(α(T ))2(1− γ)

T∑
q= 1

(diff(q))2

where (a) is due to that α(t) is non-increasing, and (b) is due to that
∑T
t= q(1− α(T ) + α(T )γ)t−q ≤ 1

α(T )(1−γ)
.

Finally, using the definition of c′ and applying ‖ · ‖1 ≤
√
A‖ · ‖ to diff(q) lead to the desired result.

Proof of Theorem 6. The proof consists of two parts: Markov cooperative games and Markov competitive games, separately.

Markov cooperative games. Fix s, the optimality of x̄(t+1)
s in Algorithm 3 yields〈

ηQ(t)
s y

(t)
s − (x̄

(t+1)
s − x̄(t)

s ), x′s − x̄
(t+1)
s

〉
≤ 0, for any x′s ∈ ∆(A1). (34)
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Thus, for any x′s ∈ ∆(A1),

(x′s − x
(t)
s )>Q

(t)
s y

(t)
s

= (x′s − x̄(t+1)
s )>Q(t)

s y(t)
s + (x′s − x̄(t+1)

s )>(Q(t)
s −Q(t)

s )y(t)
s + (x̄(t+1)

s − x(t)
s )>Q(t)

s y(t)
s

(a)

.
1

η
(x′s − x̄(t+1)

s )>(x̄(t+1)
s − x̄(t)

s ) +
∥∥∥Q(t)

s −Q(t)
s

∥∥∥ +

√
A

1− γ

∥∥∥x̄(t+1)
s − x(t)

s

∥∥∥
(b)

.
1

η

(∥∥∥x̄(t+1)
s − x̄(t)

s

∥∥∥ +
∥∥∥x̄(t+1)

s − x(t)
s

∥∥∥) +
∥∥∥Q(t)

s −Q(t)
s

∥∥∥ ,
where we use (34) and

∥∥∥Q(t)
s

∥∥∥ ≤ √
A

1−γ in (a), and (b) is due to the Cauchy-Schwarz inequality and the choice of η ≤ 1−γ
32
√
A

.
Hence,

T∑
t= 1

(
max
x′

V x
′, y(t)

(ρ)− V x
(t),y(t)

(ρ)
)

=
1

1− γ

T∑
t= 1

max
x′

∑
s

dx
′,y(t)

ρ (s)
(
x′s − x(t)

s

)>
Q(t)
s y(t)

s

.
1

η(1− γ)

T∑
t= 1

∑
s

dx
′,y(t)

ρ (s)
(∥∥∥x̄(t+1)

s − x̄(t)
s

∥∥∥+
∥∥∥x̄(t+1)

s − x(t)
s

∥∥∥) +
1

(1− γ)

T∑
t= 1

∑
s

dx
′,y(t)

ρ (s)
∥∥∥Q(t)

s −Q(t)
s

∥∥∥
(a)

.
1

η(1− γ)

√√√√ T∑
t= 1

∑
s

dx
′,y(t)

ρ (s)×

√√√√ T∑
t= 1

∑
s

dx
′,y(t)

ρ (s)

(∥∥∥x̄(t+1)
s − x̄(t)

s

∥∥∥2

+
∥∥∥x̄(t+1)

s − x(t)
s

∥∥∥2
)

+
1

(1− γ)

T∑
t= 1

∑
s

dx
′,y(t)

ρ (s)
∥∥∥Q(t)

s −Q(t)
s

∥∥∥
(b)

≤
√
T

η(1− γ)
×

√√√√ T∑
t= 1

∑
s

(∥∥∥x̄(t+1)
s − x̄(t)

s

∥∥∥2

+
∥∥∥x̄(t+1)

s − x(t)
s

∥∥∥2
)

+
1

(1− γ)

T∑
t= 1

∑
s

dx
′,y(t)

ρ (s)
∥∥∥Q(t)

s −Q(t)
s

∥∥∥
(c)

.

√
T

η(1− γ)

√
ηS

1− γ
+

1

1− γ

√√√√ T∑
t=1

∑
s

dx
′,y(t)

ρ (s)

√√√√ T∑
t=1

∑
s

∥∥∥Q(t)
s −Q(t)

s

∥∥∥2

(d)

.

√
ST

η(1− γ)3
+

1

1− γ
√
T

√√√√ SA

(α(T ))2(1− γ)6

T∑
t=1

max
s

(∥∥∥x(t)
s − x(t−1)

s

∥∥∥2

+
∥∥∥y(t)
s − y(t−1)

s

∥∥∥2
)

(e)

.

√
ST

η(1− γ)3
+

1

1− γ
√
T

√
ηS2A

(α(T ))
2
(1− γ)7

where we apply the Cauchy-Schwarz inequality for (a), (b) follows the state distribution dx
′,y(t)

ρ (s), (c) is due to Corollary 3,

(d) is because of Lemma 15, and (e) again is due to Corollary 3. By taking η = (1−γ)2

32
√
SA

and α(t) = 1
6 3√t , the last upper

bound above is of order,

O

(
(S3A)

1
4

√
T

(1− γ)
7
2α(T )

)
= O

(
(S3A)

1
4T

5
6

(1− γ)
7
2

)
.

Markov competitive game. We start from an intermediate step in the proof of Theorem 1 of (Wei et al., 2021b). Specifically,
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they have shown that if both players use Algorithm 3 in a two-player zero-sum Markov game, then,

T∑
t= 1

(
max
x′,y′

V x
′,y(t)

(ρ)− V x
(t),y′(ρ)

)
= O

(
S
√
CαCβT

η(1− γ)

)

where Cα := 1 +
∑T
t= 1 α

(t) and Cβ is an upper bound for
∑T
t= τ β

(t,τ) with β(t,τ) := α(τ)
∏t−1
i= τ (1− α(i) + α(i)γ) if

τ < t and β(t,t) := 1. We next calculate the upper bounds for Cα and Cβ .

Bounding Cα. Recall that α(t) = 1
6 t
− 1

3 . By the definition of Cα,

Cα = 1 +
1

6

T∑
t= 1

t−
1
3 = O

(
T

2
3

)
.

Bounding Cβ . Using α(t) = 1
6 t
− 1

3 , for any τ ≥ 1, we have

T∑
t= τ

β(t,τ) ≤ 1 +

T∑
t= τ+1

α(τ)
t−1∏
i= τ

(1− α(i) + α(i)γ)

= 1 +
1

6

T∑
t= τ+1

τ−
1
3

(
1− 1

6
t−

1
3 (1− γ)

)t−τ

≤ 1 +
1

6

t0∑
t= τ+1

τ−
1
3 +

1

6

T∑
t= t0+1

τ−
1
3

(
1− 1

6
t−

1
3 (1− γ)

)t−τ
(for some t0 defined below)

≤ 1 +
1

6
τ−

1
3 (t0 − τ) +

1

6
τ−

1
3

T∑
t= t0+1

exp

(
−1

6
t−

1
3 (1− γ)(t− τ)

)
. (35)

Define t0 := τ +H(τ + c)
1
3 ln(τ + c) + c, where H := 48

1−γ and c := 2
(

2H
1− 1

3

ln H
1− 1

3

) 1

1− 1
3 (if t0 > T , we simply ignore

the second term in (35)). By Lemma 16 with q = 1
3 , for all t ≥ t0,

t− τ ≥ H

2

(
t

2

) 1
3

ln

(
t

2

)
.

Hence, we can continue to bound the right-hand side of (35) by

O

(
H

(
τ + c

τ

) 1
3

ln(τ + c) +
c

τ
1
3

)
+

1

6
τ−

1
3

T∑
t= t0+1

exp

(
− 1

12
t−

1
3 (1− γ)

H

2

(
t

2

) 1
3

ln

(
t

2

))

≤ Õ
(
H(1 + c)

1
3 + c

)
+

1

6
τ−

1
3

T∑
t= t0+1

2

t

= Õ

(
1

(1− γ)
3
2

)

which proves that Cβ = Õ

(
1

(1−γ)
3
2

)
.

Therefore,

T∑
t= 1

(
max
x′,y′

V x
′,y(t)

(ρ)− V x
(t),y′(ρ)

)
= O

(
S
√
CαCβT

η(1− γ)

)
= Õ

(
ST

5
6

η(1− γ)
7
4

)

which completes the proof by taking η = (1−γ)2

32
√
SA

.
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Lemma 16. Fix τ ∈ N, 0 < q < 1, H ≥ 1. Let

t0 := τ + H(τ + c)q ln(τ + c) + c

where c := 2
(

2H
1−q ln H

1−q

) 1
1−q

. Then for all t ≥ t0,

t − H

(
t

2

)q
ln

(
t

2

)
≥ τ.

Proof of Lemma 16. We first show that for all t ≥ c,

• Htq ln t ≤ t;

• t−H
(
t
2

)q
ln
(
t
2

)
is non-decreasing.

To show the two items above, we apply Lemma A.1 of (Shalev-Shwartz & Ben-David, 2014) which states that x ≥
2a ln(a)⇒ x ≥ a ln(x) for any a > 0. By the definition of c, for all t ≥ c, t1−q ≥

(
t
2

)1−q ≥ 2H
1−q ln H

1−q and thus

t1−q ≥ H

1− q
ln(t1−q) = H ln t

which proves the first item, and that (
t

2

)1−q

≥ H

1− q
ln

(
t

2

)1−q

= H ln
t

2

which gives

d

dt

(
t− H

2

(
t

2

)q
ln

(
t

2

))
= 1 − H

2
· q

2

(
t

2

)q−1

ln

(
t

2

)
− H

2
·
(
t

2

)q
1

t

≥ 1 − 1

2
· q

2
− 1

2
≥ 0

which proves the second item.

By the first item and the definition of t0, t0 ≤ τ + (τ + c) + c = 2τ + 2c. Then by the second item, for all t ≥ t0 we have

t − H

2

(
t

2

)q
ln

(
t

2

)
≥ t0 −

H

2

(
t0
2

)q
ln

(
t0
2

)
≥ t0 −

H

2
(τ + c)

q
ln (τ + c) ≥ τ

which completes the proof.

Lemma 17. For any two policies (x′, y′) and (x, y),

max
s

∥∥∥Qx′,y′s −Qx,ys
∥∥∥

max
≤ γ

(1− γ)2
max
s′

(‖x′s′ − xs′‖1 + ‖y′s′ − ys′‖1) .

Proof of Lemma 17. By the definition,∥∥∥Qx′,y′s −Qx,ys
∥∥∥

max
(a)
:= max

a1,a2

∣∣∣Qx′,y′s (a1, a2)−Qx,ys (a1, a2)
∣∣∣

(b)

≤ γ
∑
s′

P(s′ | s, ā1, ā2)
∣∣∣(x′s′)>Qx′,y′s′ y′s′ − (xs′)

>Qx,ys′ ys′
∣∣∣

≤ γmax
s′

∣∣∣(xs′)>Qx′,y′s′ ys′ − (xs′)
>Qx,ys′ ys′

∣∣∣︸ ︷︷ ︸
Qiff

(36)
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where ā1 and ā2 achieve the maximum in (a), and (b) is due to the Bellman equation,

Qx,ys (a1, a2) = r(s, a1, a2) + γEs′∼ P(· | s,a1,a2) [V x,ys′ ]

= r(s, a1, a2) + γ
∑
s′

P(s′ | s, a1, a2)
∑
a′1,a

′
2

xs′(a
′
1)ys′(a

′
2)Qx,ys′ (a′1, a

′
2).

Fix s′, we next subtract and add (xs′)
>Qx

′,y′

s′ ys′ in Qiff and apply |a+ b| ≤ |a|+ |b| to reach,

Qiff ≤
∣∣∣(x′s′)>Qx′,y′s′ y′s′ − (xs′)

>Qx
′,y′

s′ ys′
∣∣∣ +

∣∣∣(xs′)>Qx′,y′s′ ys′ − (xs′)
>Qx,ys′ ys′

∣∣∣
≤ 1

1− γ

∣∣∣∣∣∣
∑
a′1,a

′
2

(x′s′(a1)y′s′(a
′
2)− xs′(a′1)ys′(a

′
2))Qx

′,y′

s′ (a′1, a
′
2)

∣∣∣∣∣∣
+
∣∣∣(xs′)> (Qx′,y′s′ −Qx,ys′

)
ys′
∣∣∣

≤ 1

1− γ
∑
a′1,a

′
2

|x′s′(a′1)y′s′(a
′
2)− xs′(a′1)ys′(a

′
2)| +

∣∣∣(xs′)> (Qx′,y′s′ −Qx,ys′
)
ys′
∣∣∣ .

We also notice that

‖x′s′ ◦ y′s′ − xs′ ◦ ys′‖1 :=
∑
a′1,a

′
2

|x′s′(a′1)y′s′(a
′
2)− xs′(a′1)ys′(a

′
2)|

≤
∑
a′1,a

′
2

|x′s′(a′1)y′s′(a
′
2)− xs′(a′1)y′s′(a

′
2)|

+
∑
a′1,a

′
2

|xs′(a′1)y′s′(a
′
2)− xs′(a′1)ys′(a

′
2)|

≤
∑
a′1

|x′s′(a′1)− xs′(a′1)| +
∑
a′2

|y′s′(a′2)− ys′(a′2)|

= ‖x′s′ − xs′‖1 + ‖y′s′ − ys′‖1
and ∣∣∣(xs′)> (Qx′,y′s′ −Qx,ys′

)
ys′
∣∣∣ ≤ max

a1,a2

∣∣∣Qx′,y′s′ (a1, a2)−Qx,ys′ (a1, a2)
∣∣∣ :=

∥∥∥Qx′,y′s′ −Qx,ys′
∥∥∥

max
.

By substituting the upper bound on Qiff above into (36),∥∥∥Qx′,y′s −Qx,ys
∥∥∥

max

≤ γmax
s′

1

1− γ
(‖x′s′ − xs′‖1 + ‖y′s′ − ys′‖1) + γmax

s′

∥∥∥Qx′,y′s′ −Qx,ys′
∥∥∥

max
.

Therefore,
max
s

∥∥∥Qx′,y′s −Qx,ys
∥∥∥

max

≤ γmax
s′

1

1− γ
(‖x′s′ − xs′‖1 + ‖y′s′ − ys′‖1) + γmax

s′

∥∥∥Qx′,y′s′ −Qx,ys′
∥∥∥

max
.

which yields the desired result.

E. Auxiliary Lemmas
In this section, we provide some auxiliary lemmas that are helpful in our analysis.

E.1. Auxiliary lemmas for potential functions

Lemma 18. For any N -player Markov potential game with instantaneous reward bounded in [0, 1], it holds that∣∣∣Φπ(µ)− Φπ
′
(µ)
∣∣∣ ≤ N

1− γ
,

for any π, π′ ∈ Π and µ ∈ ∆(S).
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Proof of Lemma 18. By the potential property,

Φπ(µ) − Φπ
′
(µ) = (Φπ − Φπ

′
1,π−1) + (Φπ

′
1,π−1 − Φπ

′
{1,2},π−{1,2}) + . . . + (ΦπN ,π

′
−N − Φπ

′
)

= (V π1 − V
π′1,π−1

1 ) + (V
π′1,π−1

2 − V π
′
{1,2},π−{1,2}

2 ) + . . . + (V
πN ,π

′
−N

N − V π′N )

≤ N

1− γ

where the last inequality is due to V πi − V π
′

i ≤ 1
1−γ for any π and π′. By symmetry, Φπ

′
(µ)− Φπ(µ) ≤ N

1−γ .

E.2. Auxiliary lemmas for single-player MDPs

We provide some auxiliary lemmas in the context of single-player MDPs.

Lemma 19 (Action value function difference). Suppose that two MDPs have the same state/action spaces, but different
reward and transition functions: (r, p) and (r̃, p̃). Then, for a given policy π, two action value functions associated with two
MDPs satisfy

max
s, a
|Qπ(s, a)− Q̃π(s, a)| ≤ 1

1− γ
max
s, a
|r(s, a)− r̃(s, a)| +

γ

(1− γ)2
max
s, a
‖p(· | s, a)− p̃(· | s, a)‖1 .

Proof of Lemma 19. By the Bellman equations,

Qπ(s, a) = r(s, a) + γ
∑
s′, a′

p(s′ | s, a)π(a′ | s′)Qπ(s′, a′)

Q̃π(s, a) = r̃(s, a) + γ
∑
s′,a′

p̃(s′ | s, a)π(a′ | s′) Q̃π(s′, a′).

Subtracting equalities above on both sides yields

|Qπ(s, a)− Q̃π(s, a)|

≤ |r(s, a)− r̃(s, a)| + γ

∣∣∣∣∣∣
∑
s′, a′

(p(s′ | s, a)− p̃(s′ | s, a))π(a′ | s′)Qπ(s′, a′)

∣∣∣∣∣∣
+ γ

∣∣∣∣∣∣
∑
s′, a′

p̃(s′ | s, a)π(a′ | s′)
(
Qπ(s′, a′)− Q̃π(s′, a′)

)∣∣∣∣∣∣
≤ |r(s, a)− r̃(s, a)| +

γ

1− γ
‖p(· | s, a)− p̃(· | s, a)‖1 + γmax

s′, a′

∣∣∣Qπ(s′, a′)− Q̃π(s′, a′)
∣∣∣ .

Taking the maximum over (s, a) leads to

max
s, a
|Qπ(s, a)− Q̃π(s, a)|

≤ max
s, a
|r(s, a)− r̃(s, a)| +

γ

1− γ
max
s, a
‖p(· | s, a)− p̃(· | s, a)‖1 + γmax

s, a
|Qπ(s, a)− Q̃π(s, a)|

which leads to the desired inequality after rearrangement.

Lemma 20 (Visitation measure difference). Let π and π′ be two policies for a MDP, and µ be an initial state distribution.
Then, ∑

s

∣∣∣dπµ(s)− dπ
′

µ (s)
∣∣∣ ≤ max

s
‖π(· | s)− π′(· | s)‖1 .

Proof of Lemma 20. By the definition, for a fixed state s],

dπµ(s]) = (1− γ)E

[ ∞∑
t= 0

γt1{st = s]}

∣∣∣ s0 ∼ µ, π

]
.
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By taking reward function r(s, a) = (1− γ)1{s= s]}, we can view dπµ(s]) as a value function under the policy π and the
initial distribution µ. With a slight abuse of notation, we denote such a value function by V π(µ; s]) = dπµ(s]). Similarly, we
can define V π(s; s]) and Qπ(s, a; s]), using the same reward function.

By the performance difference lemma (a single-player version of Lemma 1),

dπµ(s])− dπ
′

µ (s]) = V π(µ; s])− V π
′
(µ; s]) =

∑
s, a

dπµ(s) (π(a | s)− π′(a | s))Qπ
′
(s, a; s]).

Therefore, ∑
s]

∣∣∣dπµ(s])− dπ
′

µ (s])
∣∣∣ ≤ ∑

s]

∑
s,a

dπµ(s) |π(a | s)− π′(a | s)|Qπ
′
(s, a; s]). (37)

We also note that Qπ
′
(·, ·; s]) is the action value function associated with the reward function r(s, a) = (1− γ)1{s= s]}.

Thus, ∑
s]

Qπ
′
(s, a; s]) =

∑
s]

E

[
(1− γ)

∞∑
t= 0

γt1{st = s]}

∣∣∣ (s0, a0) = (s, a), π′

]

= E

[
(1− γ)

∞∑
t= 0

γt
∣∣∣ (s0, a0) = (s, a), π′

]
= 1.

Therefore, we can arrange (37) as follows,∑
s]

∣∣∣dπµ(s])− dπ
′

µ (s])
∣∣∣ ≤ ∑

s, a

dπµ(s) |π(a | s)− π′(a | s)|

=
∑
s

dπµ(s) ‖π(· | s)− π′(· | s)‖1

≤ max
s
‖π(· | s)− π′(· | s)‖1 .

E.3. Auxiliary lemmas for multi-player MDPs

We first extend Lemma 1 in the 1st-order form to the 2nd-order performance difference, which is useful to measure the joint
policy improvement from multiple players.

Lemma 21 (The 2nd-order performance difference). Consider a two-player common-payoff Markov game with state space
S and action sets A1, A2. Let r : S × A1 ×A2 → [0, 1] be the reward function, and p : S × A1 ×A2 → ∆(S) be the
transition function. Let Π1 = (∆(A1))S and Π2 = (∆(A2))S be player 1 and player 2’s policy sets, respectively. Then,
for any x, x′ ∈ Π1 and y, y′ ∈ Π2,

V x,y(µ) − V x
′,y(µ) − V x,y

′
(µ) + V x

′,y′(µ)

≤
2κ2

µA

(1− γ)4

∑
s

dx
′,y′

µ (s)
(
‖x(· | s)− x′(· | s)‖2 + ‖y(· | s)− y′(· | s)‖2

)
where κµ is the distribution mismatch coefficient relative to µ (see κµ in Definition 1).

Proof of Lemma 21. We define the following non-stationary policies:

x̄i : a Player 1’s policy where in steps from 0 to i− 1, x′ is executed; in steps from i to∞, x is executed.

With this definition, x̄0 = x and x̄∞ = x′. We define ȳi similarly. Since x̄i is non-stationary, we specify its action
distribution as x̄i(· | s, h) where h is the step index. The joint value function for these non-stationary policies can be defined
as usual:

V x̄i,ȳj (µ) := E

[ ∞∑
t= 0

γtr(st, at, bt)

∣∣∣∣ s0 ∼ µ, at ∼ x̄i(· | st, t), bt ∼ ȳj(· | st, t)

]
.
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For simplicity, we omit the initial distribution µ in writing the value function. We first show that for any H ∈ N,

V x̄0,ȳ0 − V x̄H ,ȳ0 − V x̄0,ȳH + V x̄H ,ȳH =

H−1∑
i= 0

H−1∑
j= 0

(
V x̄i,ȳj − V x̄i+1,ȳj − V x̄i,ȳj+1 + V x̄i+1,ȳj+1

)
In fact, the right-hand side above is equal to

H−1∑
j= 0

H−1∑
i= 0

(
V x̄i,ȳj − V x̄i+1,ȳj

)
+

H−1∑
j= 0

H−1∑
i= 0

(
−V x̄i,ȳj+1 + V x̄i+1,ȳj+1

)
=

H−1∑
j= 0

(
V x̄0,ȳj − V x̄H ,ȳj

)
+

H−1∑
j= 0

(
−V x̄0,ȳj+1 + V x̄H ,ȳj+1

)
=

H−1∑
j= 0

(
V x̄0,ȳj − V x̄0,ȳj+1

)
+

H−1∑
j= 0

(
−V x̄H ,ȳj + V x̄H ,ȳj+1

)
= V x̄0,ȳ0 − V x̄0,ȳH − V x̄H ,ȳ0 + V x̄H ,ȳH

Sending H to infinity and recalling that x̄0 = x, x̄∞ = x′, ȳ0 = y, ȳ∞ = y′ lead to

V x,y − V x
′,y − V x,y

′
+ V x

′,y′ =

∞∑
i= 0

∞∑
j= 0

(
V x̄i,ȳj − V x̄i+1,ȳj − V x̄i,ȳj+1 + V x̄i+1,ȳj+1

)
.

We next focus on the particular summand above with index (i, j) and discuss three cases.

Case 1: i < j. We first re-write V x̄i,ȳj − V x̄i+1,ȳj . Notice that the value difference between the policy pairs (x̄i, ȳj) and
(x̄i+1, ȳj) starts at step i, since both policy pairs are equal to (x′, y′) from step 0 to step i− 1. At the ith step, x̄i changes to
x while x̄i+1 remains as x′. Therefore,

V x̄i,ȳj − V x̄i+1,ȳj

=
1

1− γ
∑
s,a,b

dx
′,y′

µ (s; i)x(a | s)y′(b | s)

(
r(s, a, b) + E

[ ∞∑
t= i+1

γt−ir(st, at, bt)

∣∣∣∣ si+1 ∼ p(· | s, a, b), x̄i, ȳj

])

− 1

1− γ
∑
s,a,b

dx
′,y′

µ (s; i)x′(a | s)y′(b | s)

(
r(s, a, b) + E

[ ∞∑
t= i+1

γt−ir(st, at, bt)

∣∣∣∣ si+1 ∼ p(· | s, a, b), x̄i, ȳj

])

=
1

1− γ
∑
s,a,b

dx
′,y′

µ (s; i)
(
x(a | s)− x′(a | s)

)
y′(b | s)

(
r(s, a, b)

+ E

[ ∞∑
t= i+1

γt−ir(st, at, bt)

∣∣∣∣ si+1 ∼ p(· | s, a, b), x̄i, ȳj

])
where we define

dx,yµ (s; i) = (1− γ)E
[
γi1[si = s] | s0 ∼ µ

]
.

(note that dx,yµ (s) =
∑∞
i= 0 d

x,y
µ (s; i)).

Similarly,

V x̄i,ȳj+1 − V x̄i+1,ȳj+1

=
1

1− γ
∑
s,a,b

dx
′,y′

µ (s; i)
(
x(a | s)− x′(a | s)

)
y′(b|s)

(
r(s, a, b)

+ E

[ ∞∑
t= i+1

γt−ir(st, at, bt)

∣∣∣∣ si+1 ∼ p(· | s, a, b), x̄i, ȳj+1

])
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We notice that the following difference:

E

[ ∞∑
t= i+1

γt−ir(st, at, bt)

∣∣∣∣ si+1 ∼ p(· | s, a, b), x̄i, ȳj

]
− E

[ ∞∑
t= i+1

γt−ir(st, at, bt)

∣∣∣∣ si+1 ∼ p(· | s, a, b), x̄i, ȳj+1

]
is equivalent to

γ

1− γ
∑
s̃,ã,̃b

dx,y
′

p(· | s,a,b)(s̃; j − i− 1)x(ã | s̃)
(
y(̃b | s̃)− y′(̃b | s̃)

)
Qx,y(s̃, ã, b̃).

Hence,

V x̄i,ȳj − V x̄i+1,ȳj − V x̄i,ȳj+1 + V x̄i+1,ȳj+1

=
γ

(1− γ)2

∑
s,a,b

∑
s̃,ã,̃b

dx
′,y′

µ (s; i)dx,y
′

p(· | s,a,b)(s̃; j − i− 1)
(
x(a | s)− x′(a | s)

)
y′(b | s)x(ã | s̃)

×
(
y(̃b | s̃)− y′(̃b | s̃)

)
Qx,y(s̃, ã, b̃)

≤ γ

2(1− γ)3

∑
s,a,b

∑
s̃,ã,̃b

dx
′,y′

µ (s; i)dx,y
′

p(· | s,a,b)(s̃; j − i− 1)y′(b | s)x(ã | s̃)
(
x(a | s)− x′(a | s)

)2

+
γ

2(1− γ)3

∑
s,a,b

∑
s̃,ã,̃b

dx
′,y′

µ (s; i)dx,y
′

p(· | s,a,b)(s̃; j − i− 1)y′(b | s)x(ã | s̃)
(
y(̃b | s̃)− y′(̃b | s̃)

)2

(bounding |Qx,y(·, ·, ·)| by 1
1−γ and using AM-GM)

=
γA

2(1− γ)3

∑
s,a

∑
s̃

dx
′,y′

µ (s; i)dx,y
′

p(· | s,a,y′)(s̃; j − i− 1)
(
x(a | s)− x′(a | s)

)2

(define p(· | s, a, y) =
∑
b p(· | s, a, b)y(b|s))

+
γA

2(1− γ)3

∑
s

∑
s̃,̃b

dx
′,y′

µ (s; i)dx,y
′

p(· | s,unif,y′)(s̃; j − i− 1)
(
y(̃b | s̃)− y′(̃b | s̃)

)2

(define uniform distribution unif = 1
A1)

Summing the inequality above over i < j yields

∞∑
i= 0

∞∑
j= i+1

(
V x̄i,ȳj − V x̄i+1,ȳj − V x̄i,ȳj+1 + V x̄i+1,ȳj+1

)

≤ γA

2(1− γ)3

∞∑
i= 0

∑
s,a

dx
′,y′

µ (s; i)
(
x(a | s)− x′(a | s)

)2

∑
s̃

∞∑
j= i+1

dx,y
′

p(· | s,a,y′)(s̃; j − i− 1)


+

γA

2(1− γ)3

∞∑
i= 0

∑
s̃,̃b

∑
s

dx
′,y′

µ (s; i)
(
y(̃b | s̃)− y′(̃b | s̃)

)2

 ∞∑
j= i+1

dx,y
′

p(· | s,unif,y′)(s̃; j − i− 1)


=

γA

2(1− γ)3

∑
s,a

dx
′,y′

µ (s)
(
x(a | s)− x′(a | s)

)2

+
γA

2(1− γ)3

∑
s̃,̃b

∑
s

dx
′,y′

µ (s)dx,y
′

p(· | s,unif,y′)(s̃)
(
y(̃b | s̃)− y′(̃b | s̃)

)2

(using the property:
∑∞
i= 0 d

x,y
µ (s; i) = dx,yµ (s))

=
γA

2(1− γ)3

∑
s

dx
′,y′

µ (s) ‖x(· | s)− x′(· | s)‖2 +
γA

2(1− γ)3

∑
s

dx,y
′

µ′ (s) ‖y(· | s)− y′(· | s)‖2 .

where µ′ is a state distribution that generates the state by the following procedure: first sample a state s0 according to
dx
′,y′

µ (·), then execute (unif, y′) = ( 1
A1, y

′) for one step, and then output the next state.
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By Lemma 22 (with π = (x′, y′), π′ = (x, y′), and π̄ = (unif, y′)), we have
dx,y

′

µ′ (s)

dx
′,y′
µ (s)

≤
dx,y

′

µ′ (s)

µ(1−γ) ≤
κ2
µ

γ(1−γ) . Therefore,

∞∑
i= 0

∞∑
j= i+1

(
V x̄i,ȳj − V x̄i+1,ȳj − V x̄i,ȳj+1 + V x̄i+1,ȳj+1

)
≤

κ2
µA

2(1− γ)4

∑
s

dx
′,y′

µ (s)
(
‖x(· | s)− x′(· | s)‖2 + ‖y(· | s)− y′(· | s)‖2

)
.

Case 2: i > j. This case is symmetric to the case of i < j, and can be handled similarly.

Case 3: i = j. In this case,

∞∑
i= 0

(
V x̄i,ȳi − V x̄i+1,ȳi − V x̄i,ȳi+1 + V x̄i+1,ȳi+1

)
=

1

1− γ

∞∑
i= 0

∑
s,a,b

dx
′,y′

µ (s; i)
(
x′(a | s)− x(a | s)

)(
y′(a | s)− y(a | s)

)
Qx,y(s, a, b)

=
1

1− γ
∑
s,a,b

dx
′,y′

µ (s)
(
x′(a|s)− x(a|s)

)(
y′(a|s)− y(a|s)

)
Qx,y(s, a, b)

≤ 1

2(1− γ)2

∑
s,a,b

dx
′,y′

µ (s)
(
x′(a | s)− x(a | s)

)2

+
1

2(1− γ)2

∑
s,a,b

dx
′,y′

µ (s)
(
y′(a | s)− y(a | s)

)2

=
A

2(1− γ)2

∑
s

dx
′,y′

µ (s) ‖x′(· | s)− x(· | s)‖2 +
A

2(1− γ)2

∑
s

dx
′,y′

µ (s) ‖y′(· | s)− y(· | s)‖2 .

Summing the bounds in all three cases above completes the proof.

Lemma 22. Let π, π′ and π̄ be three policies, and µ be some initial distribution. Let µ′ be a state distribution that generates
a state according to the following: first sample an s0 from dπµ(·), then execute π̄ for one step, and then output the next state.
Then, ∥∥∥∥∥dπ

′

µ′

µ

∥∥∥∥∥
∞

≤
κ2
µ

γ
,

1

γ

(
sup
π̃

∥∥∥∥∥dπ̃µµ
∥∥∥∥∥
∞

)2

Proof of Lemma 22. For a particular state s], we view the supremum supπ̃
dπ̃µ(s])

µ(s])
as the optimal value of an MDP whose

reward function is r(s, a) = 1−γ
µ(s])

1[s = s]] and initial state is generated by µ. The optimal value of this MDP is upper
bounded by κµ by Definition 1. We next consider the following non-stationary policy for this MDP: first execute π̄ for one
step, and then execute π′ in the rest of the steps. The discounted value of this non-stationary policy is lower bounded by

γ
∑
s

Pr (s1 = s | s0 ∼ µ, a0 ∼ π̄(· | s0))× dπ
′

s (s])

µ(s])
= γ

∑
s0,a0,s

µ(s0)π̄(a0|s0)p(s |s0, a0)× dπ
′

s (s])

µ(s])
.

We can upper and lower bound the discounted sum above as the following:

γ

κµ

∑
s0,a0,s

dπµ(s0)π̄(a0|s0)p(s |s0, a0)× dπ
′

s (s])

µ(s])
≤ γ

∑
s0,a0,s

µ(s0)π̄(a0|s0)p(s |s0, a0)× dπ
′

s (s])

µ(s])
≤ κµ.

where the right inequality is due to that this discounted value must be upper bounded by the optimal value of this MDP,
which has an upper bound κµ, and the left inequality is by the definition of κµ. Now notice that

µ′(s) =
∑
s0,a0

dπµ(s0)π̄(a0|s0)p(s|s0, a0)
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Algorithm 4 Stochastic projected gradient descent with weighted averaging

1: Parameters: W , λ(k), and β(K)
k .

2: Input: Stepsize α, total number of iterations K > 0.
3: Initialization: w(0) = 0.
4: for step k = 1, . . . ,K do
5: Draw∇(k) form a distribution such that E[∇(k) |w(k)] ∈ ∂f(w(k)).
6: Update w(k+1) = P‖w‖≤W

(
w(k) − λ(k)∇(k)

)
7: end for
8: Output:

∑K
k= 0 β

(K)
k w(k)

by the definition of µ′. Plugging this into the previous inequality, we get

γ

κµ
×
dπ
′

µ′(s
])

µ(s])
≤ κµ.

Since this holds for any s], this gives ∥∥∥∥∥dπ
′

µ′

µ

∥∥∥∥∥
∞

≤
κ2
µ

γ
.

F. Auxiliary Lemmas for Stochastic Projected Gradient Descent
Algorithm 2 serves a sample-based algorithm if we solve the empirical risk minimization problem (7) via a stochastic
projected gradient descent,

w
(k+1)
i = P‖w‖≤W

(
w

(k)
i − λ(k) ∇̂(t)

i (s(k), a
(k)
i ))

)
(38)

where ∇̂(t)
i := 2(〈φi, w(k)

i 〉 −R
(k)
i )φi is the kth gradient of (7) and λ(k) > 0 is the stepsize. We assume that the smallest

eigenvalue of correlation matrix Es,ai
[
φi(s, ai)φi(s, ai)

>] is positive.

For a constrained convex optimization, minimizew∈{w | ‖w‖≤W} f(w), where f(w) is a convex function and W > 0, we
consider a basic method for solving this problem: the stochastic projected gradient descent in Algorithm 4, where P‖w‖≤W
is a Euclidean projection in Rd to the constraint set ‖w‖ ≤W .

Lemma 23. Let w? := argminw∈{w | ‖w‖≤W} f(w). Suppose Var(∇(k)) ≤ σ2. If we run Algorithm 4 with stepsize

λ(k) = O( 1
1+k ) and β(K)

k = 1/λ(k)∑K
r= 0 1/λ(r) , then,

E

[
f

(
K∑
k= 0

β
(K)
k w(k)

)]
− f(w?) .

σ2W 2d

K
.

Proof of Lemma 23. See the proof of Theorem 1 in (Cohen et al., 2017b).

G. Additional Experiments
We provide details about our experiments as follows.

For illustration, we consider the state space S = {safe, distancing} and action space Ai = {A,B,C,D}, and the number
of players N = 8. In each state s ∈ S , the reward for player i taking an action a ∈ Ai is the was -weighted number of players
using the action a, where was specifies the action preference wAs < wBs < wCs < wDs . The reward in state distancing is less
than that in state safe by a large amount c > 0. For state transition, if more than half of players find themselves using the
same action, then the state transits to the state distancing; transition back to the state safe whenever no more than half of
players take the same action.
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Figure 2. Convergence performance. (a) Learning curves for our independent policy gradient (—) with stepsize η = 0.001 and the
projected stochastic gradient ascent (—) with η = 0.0001 (Leonardos et al., 2022). Each solid line is the mean of trajectories over three
random seeds and each shaded region displays the confidence interval. (b) Learning curves for six individual runs of our independent
policy gradient (solid line) and the projected stochastic gradient ascent (dash line) three each. (c) Distribution of players in one of two
states taking four actions. In (a) and (b), we measure the accuracy by the absolute distance of each iterate to the converged Nash policy,
i.e., 1

N

∑N
i=1 ‖π

(t)
i − π

Nash
i ‖1. In our computational experiments, the initial distribution ρ is uniform.

In our experiments, we implement our independent policy gradient method based on the code for the projected stochastic
gradient ascent (Leonardos et al., 2022). At each iteration, we collect a batch of 20 trajectories to estimate the action-value
function and (or) the stationary state distribution under current policy. We choose the discount factor γ = 0.99, and different
the stepsize η, and initial state distributions as we report next.

Continuing Section 7, we further report our computational results using stepsize η = 0.001 in Figure 2, larger stepsize
η = 0.002 in Figure 3 and stepsize η = 0.005 in Figure 4. We notice that the stepsize η = 0.001 for the projected stochastic
gradient ascent (Leonardos et al., 2022) does not yield convergence while our independent policy gradient converges
as shown in Figure 2. As demonstrated in Section 7, our independent policy gradient permits larger stepsizes with fast
convergence, e.g., η = 0.002 in Figure 3 and η = 0.005 in Figure 4. Compared Figure 3 with Figure 4, we see an improved
convergence of our independent policy gradient using a larger stepsize. We also remark that the learnt policies for all these
experiments can generate the same Nash policy that matches the result in Leonardos et al. (2022).
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Figure 3. Convergence performance. (a) Learning curves for our independent policy gradient (—) with stepsize η = 0.002 and the
projected stochastic gradient ascent (—) with η = 0.0001 (Leonardos et al., 2022). Each solid line is the mean of trajectories over three
random seeds and each shaded region displays the confidence interval. (b) Learning curves for six individual runs of our independent
policy gradient (solid line) and the projected stochastic gradient ascent (dash line) three each. (c) Distribution of players in one of two
states taking four actions. In (a) and (b), we measure the accuracy by the absolute distance of each iterate to the converged Nash policy,
i.e., 1

N

∑N
i=1 ‖π

(t)
i − π

Nash
i ‖1. In our computational experiments, the initial distribution ρ is uniform.
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Figure 4. Convergence performance. (a) Learning curves for our independent policy gradient (—) with stepsize η = 0.005 and the
projected stochastic gradient ascent (—) with η = 0.0001 (Leonardos et al., 2022). Each solid line is the mean of trajectories over three
random seeds and each shaded region displays the confidence interval. (b) Learning curves for six individual runs of our independent
policy gradient (solid line) and the projected stochastic gradient ascent (dash line) three each. (c) Distribution of players in one of two
states taking four actions. In (a) and (b), we measure the accuracy by the absolute distance of each iterate to the converged Nash policy,
i.e., 1

N

∑N
i=1 ‖π

(t)
i − π

Nash
i ‖1. In our computational experiments, the initial distribution ρ is uniform.
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Figure 5. Convergence performance. (a) Learning curves for our independent policy gradient (—) with stepsize η = 0.001 and the
projected stochastic gradient ascent (—) with η = 0.0001 (Leonardos et al., 2022). Each solid line is the mean of trajectories over three
random seeds and each shaded region displays the confidence interval. (b) Learning curves for six individual runs of our independent
policy gradient (solid line) and the projected stochastic gradient ascent (dash line) three each. (c) Distribution of players in one of two
states taking four actions. In (a) and (b), we measure the accuracy by the absolute distance of each iterate to the converged Nash policy,
i.e., 1

N

∑N
i=1 ‖π

(t)
i − π

Nash
i ‖1. In our computational experiments, the initial distribution is nearly degenerate ρ = (0.9999, 0.0001).
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Figure 6. Convergence performance. (a) Learning curves for our independent policy gradient (—) with stepsize η = 0.001 and the
projected stochastic gradient ascent (—) with η = 0.0001 (Leonardos et al., 2022). Each solid line is the mean of trajectories over three
random seeds and each shaded region displays the confidence interval. (b) Learning curves for six individual runs of our independent
policy gradient (solid line) and the projected stochastic gradient ascent (dash line) three each. (c) Distribution of players in one of two
states taking four actions. In (a) and (b), we measure the accuracy by the absolute distance of each iterate to the converged Nash policy,
i.e., 1

N

∑N
i=1 ‖π

(t)
i − π

Nash
i ‖1. In our computational experiments, the initial distribution is nearly degenerate ρ = (0.0001, 0.9999).
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We also examine how sensitive the performance of algorithms depends on initial state distributions. As discussed in Section 4,
our independent policy gradient method (4) is different from the projected policy gradient (3) by removing the dependence
on the initial state distribution. In the policy gradient theory (Agarwal et al., 2021), convergence of projected policy gradient
methods is often restricted by how explorative the initial state distribution is. To be fair, we choose stepsize η = 0.001 for
our algorithm since it achieves a similar performance as the projected stochastic gradient ascent (Leonardos et al., 2022) in
Figure 2. We choose two different initial state distributions ρ = (0.9999, 0.0001) and ρ = (0.0001, 0.9999) and report our
computational results in Figure 5 and Figure 6, respectively. Compared Figure 5 with Figure 2, both algorithms become a
bit slower, but our algorithm is relatively insusceptible to the change of ρ. This becomes more clearer in Figure 6 for another
ρ = (0.0001, 0.9999). This demonstrates that practical performance of our independent policy gradient method (4) indeed
is invariant to the initial distribution ρ.


