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Abstract
Optimization of directed acyclic graph (DAG)
structures has many applications, such as neu-
ral architecture search (NAS) and probabilistic
graphical model learning. Encoding DAGs into
real vectors is a dominant component in most
neural-network-based DAG optimization frame-
works. Currently, most DAG encoders use an
asynchronous message passing scheme which se-
quentially processes nodes according to the depen-
dency between nodes in a DAG. That is, a node
must not be processed until all its predecessors
are processed. As a result, they are inherently not
parallelizable. In this work, we propose a Paral-
lelizable Attention-based Computation structure
Encoder (PACE) that processes nodes simultane-
ously and encodes DAGs in parallel. We demon-
strate the superiority of PACE through encoder-
dependent optimization subroutines that search
the optimal DAG structure based on the learned
DAG embeddings. Experiments show that PACE
not only improves the effectiveness over previ-
ous sequential DAG encoders with a significantly
boosted training and inference speed, but also gen-
erates smooth latent (DAG encoding) spaces that
are beneficial to downstream optimization sub-
routines. Our source code is available at https:
//github.com/zehao-dong/PACE.

1. Introduction
Directed acyclic graphs (DAGs) are ubiquitous in var-
ious real-world problems including neural architecture
search (Elsken et al., 2019; Wen et al., 2020), source code
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modeling (Allamanis et al., 2018), structure learning of
Bayesian networks (Koller & Friedman, 2009; Zhang et al.,
2019), etc. One key challenge in DAG optimization prob-
lems is the difficulty to use gradient strategies to quickly ad-
just the structure of a DAG towards the right direction due to
the absence of gradient information. Some earlier works pro-
pose to directly optimize the discrete DAG structure through
black-box optimization techniques such as reinforcement
learning (Zoph & Le, 2016), evolutionary algorithms (Liu
et al., 2017), and Bayesian optimization (Kandasamy et al.,
2018), which are inherently less efficient. A more recent
approach is to encode DAGs into some continuous space for
searching, and various DAG encoders have been developed.
In general, these DAG encoding schemes fall into two cate-
gories: structure-aware encoding scheme (Ying et al., 2019;
Wen et al., 2020; Shi et al., 2020) and computation-aware
(performance-aware) encoding scheme (Zhang et al., 2019;
Thost & Chen, 2021).

Due to the superior graph representation learning ability,
graph neural networks (GNNs) have broadly achieved state-
of-art performance on various graph learning tasks, such
as node classification (Velickovic et al., 2018; Hamilton
et al., 2017), graph classification (Xu et al., 2019; Zhang
et al., 2018b; Duvenaud et al., 2015), link prediction (Zhang
& Chen, 2018), and hyperlink prediction (Zhang et al.,
2018a). Basically, GNNs follow the message passing
scheme (Gilmer et al., 2017) where each node aggregates
node features from its one-hop neighborhood repeatedly
to update its own feature, and this aggregation happens at
all nodes simultaneously. However, Thost & Chen (2021)
suggests that such a framework cannot exploit the inductive
bias of the computation dependency defined by DAGs, thus
failing to generate a smooth encoding space beneficial to
downstream optimization and prediction routines.

Hence, in order to model the dependency between nodes
in DAGs, various GNNs specifically designed for en-
coding DAGs, such as D-VAE (Zhang et al., 2019) and
DAGNN (Thost & Chen, 2021), are developed to inject the
computation dependency between nodes into the represen-
tation learning process. Instead of updating node features
simultaneously, these DAG encoders are constructed upon
a gated recurrent unit (GRU) and will not update the repre-
sentation of a node until all of its predecessors are updated.
Such an asynchronous message passing scheme actually
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simulates how a real computation is performed along the
DAG—the message passing order respects the computation
dependency defined by the DAG, thus better exploiting the
inductive bias. One way to achieve this is to perform mes-
sage passing sequentially following a topological ordering
of the nodes. However, one key limitation of such DAG
encoders is that the encoding process is inherently sequen-
tial, precluding processing all nodes in parallel. Although
DAGNN proposes a topological batching trick to accelerate
the training speed by partitioning nodes into disjoint batches
where nodes within a batch can be processed in parallel, the
time complexity is still lower-bounded by the longest path
(diameter) of the DAG and the fundamental constraint of
the sequential computation nature still remains.

Numerous efforts have been made to reduce the sequen-
tial computation cost in the sequence modeling litera-
ture (Cho et al., 2014; Wu et al., 2016). For instance,
ConvS2S (Gehring et al., 2017) utilizes convolutional lay-
ers as building blocks to compute output representations
at different positions, while Transformer (Vaswani et al.,
2017) proposes to inject the position (order) information
into the model through positional encoding, and then the
dependency between positions can be captured through the
attention mechanism (Bahdanau et al., 2015; Gehring et al.,
2017) in parallel instead of resorting to recurrent neural
networks. However, the success of these techniques relies
on the inherent linear order of symbols in the input/output
sequences that automatically characterizes the dependency
between symbols. That is, the dependency between symbols
is fully captured by their positions in the sequence. Such
a condition is not satisfied by nodes in a DAG since each
node can have multiple parents instead of only one like in
plain sequences, and the dependency between nodes forms
a (strong) partial order rather than a linear order. Thus, pre-
vious parallel sequence modeling methods would fail in the
representation learning of DAGs.

In this paper, we propose a novel Parallelizable Computa-
tion Encoder, PACE, to improve the efficiency over existing
GRU-based DAG encoders. In order to borrow the power
of Transformer for sequence modeling to DAG modeling
problems, we need to design a positional encoding scheme
specifically for DAGs which can fully capture the depen-
dency between nodes in a DAG before applying the pairwise
self-attention mechanism. To achieve this, we propose a
GNN-based dag2seq framework which is proved to injec-
tively map DAGs to sequences of node embeddings. This
means, we are able to fully recover the DAG structure from
these produced node embeddings, the same as the positional
encoding in the original Transformer. After that, a Trans-
former encoder (with mask operation) is applied to the node
embedding sequence to simultaneously learn representa-
tions for all nodes in the DAG through the self-attention
mechanism. This way, PACE incorporates the relational

inductive bias (Battaglia et al., 2018; Xu et al., 2020) car-
ried by DAG structures into the encoding process, while
eschewing the recurrence in previous works thus greatly
improving the parallelization and encoding efficiency.

To demonstrate the superiority of the proposed PACE model,
we evaluate PACE against current state-of-art DAG en-
coders, GNN-based graph encoders, and recent (undirected)
graph Transformers. Massive experiments show that PACE
not only outperforms competitive baselines but also sig-
nificantly boosts the training and inference speed through
parallelization.

2. Backgrounds
2.1. Parallelizable Sequence Models

Encoding the complexities and nuances of sequences plays
a central role in various machine learning tasks, includ-
ing sentiment classification (Medhat et al., 2014), speech
recognition (Abdel-Hamid et al., 2014), and other natural
language processing (NLP) tasks (Khan et al., 2016). For
many years, sequential models, such as recurrent neural
networks (RNNs) (Medsker & Jain, 2001), were the primal
way to solve the sequence encoding problem. These models
are computationally expansive due to the sequential encod-
ing process. Hence, many parallelizable sequence models
are proposed, including Transformer (Vaswani et al., 2017),
BERT (Devlin et al., 2019), etc. Our proposed PACE model
is built upon the Transformer (encoder) architecture.

Transformer (Vaswani et al., 2017) is arguably the earliest
translation model that solves the sequence-to-sequence task
without using sequence-aligned RNNs or convolutional ar-
chitectures. Transformer relates information from different
positions in the sequence through the (masked) self-attention
mechanism to encode/decode the representation of items
in the input/output sequence, and incorporates the order
of the items into the encoding/decoding process through
a positional encoding mechanism. Briefly, the positional
encoding mechanism is an injective function fpe : N → Rd

that represents the positions (i.e. indices) of items in the
sequence as d-dimensional vectors. Hence, it consistently
outputs a unique encoding for each position in the sequence.
The Transformer architecture is inherently parallelizable
and can capture the long-term dependency with ease, thus
is broadly applied to sequence modeling tasks in following
works (Dai et al., 2019; Al-Rfou et al., 2019; Devlin et al.,
2019; Lewis et al., 2020).

2.2. DAG Encoding Problem

A directed acyclic graph (DAG) G is represented as a pair
(V,E) with V = {v1, v2, .., vn} denoting the set of nodes
and E ∈ V × V denoting the set of directed edges. A DAG
often carries a computation. We use O to denote an (com-
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Figure 1. Illustration of PACE. The input DAG is first injectively represented as a sequence through the dag2seq framework, and then the
sequence is fed into multiple stacked masked Transformer encoder blocks. The operations of nodes (i.e. node types) are visualized as
colors, and nodes in the sequence is sorted according to the canonical label generated in the dag2seq framework.

putational) operation dictionary. For instance, the operation
dictionary O for NAS-Bench-101 dataset contains five op-
erations: “Input”, “Output”, “3 × 3 convolution”, “1 × 1
convolution”, and “3 × 3 max-pool”. Let G = (V,E) be
a DAG whose nodes represent operations in O. Then the
DAG G represents a computation structure in which de-
pendencies between operations are determined by directed
edges in E. Hence, isomorphic DAGs define the same com-
putation structure. Then the objective of the DAG encoding
problem is to develop encoders that can generate embed-
dings to distinguish the computation structures defined by
DAGs in the encoding space.

Figure 2. Illustration of the ambigu-
ity when applying sequence models
(such as Transformer) to the DAG
encoding problem.

DAGs G = (V,E)
show a close rela-
tion with partial order.
For any two nodes
vi, vj ∈ V , let ⪯ be
a binary relation such
that vi ⪯ vj if and
only if there is a di-
rected path from vi to
vj , then the binary re-
lation ⪯ defines a par-
tial order on the node
set V . Based on the partial order, sequential DAG encoders,
such as D-VAE (Zhang et al., 2019) and DAGNN (Thost &
Chen, 2021), use GRU (Cho et al., 2014) to recursively en-
code nodes in the input DAG, where a node is not encoded
until all of its predecessors (those nodes with a ⪯ relation
with it) are encoded. Because of the possibly very long
dependency chains, these sequential DAG encoders inher-
ently share the same limitations as RNNs, such as the slow
training and inference speed and the difficulty to capture
long-term dependencies.

To address these limitations, it is intuitive to generalize

Transformer to the DAG encoding problem, as Transformer
brings undoubtedly a huge improvement over the RNN-
based sequence models. However, Figure 2 illustrates that it
can be ambiguous how to represent DAGs as sequences due
to the complex topological structure of DAGs. Let o : V →
O be the function that maps each node in G to an operation
in O, and fpe be the original positional encoding function
in Transformer. One intuitive way to linearize a DAG into
a sequence is to sort its nodes with a topological order,
which is also used in GRU-based DAG encoders. However,
the topological orders of nodes in a DAG are often not
unique. For instance, graph G1 in Figure 2 has two different
topological orders: v1, v2, v3, v4, v5 and v2, v1, v3, v4, v5,
hence resulting in two different node sequences Seq1 and
Seq2. Note that this does not hurt existing GRU-based DAG
encoders as they are invariant to which topological order is
used.

To avoid the ambiguity of topological order, another ap-
proach is to sort nodes according to a canonical order
(i.e., node index in the canonical form of the DAG) as
suggested by (Niepert et al., 2016). For example, let
v1, v2, v3, v4, v5 be the nodes sorted by a canonical or-
der. Then, we can linearize a DAG into a sequence
(o(v1), fpe(v1)), (o(v2), fpe(v2)), ...(o(vn), fpe(vn)), sim-
ilar to how Transformer represents a sentence. Although
canonical order guarantees the generated sequence is unique
for the same DAG, different DAGs might have the same
sequence. For instance, DAGs G1 and G2 in Figure 2 are
not isomorphic, yet they will be represented as the same
sequence Seq2. This is because the positional encoding func-
tion fpe only captures node positions in the sequence but
fails to encode the node dependencies, causing a significant
structural information loss.

In summary, it is not straightforward to generalize Trans-
former to DAGs. We need to design a smart linearization
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method for DAGs which guarantees that the same DAG is
transformed to the same sequence, while different DAGs
are always transformed to different sequences, in order to
achieve a lossless transformation.

3. The PACE Model
In this section, we describe the proposed Parallelizable
Computation Encoder (PACE). The key component of
PACE is a dag2seq framework, which leverages graph can-
onization procedure and a graph neural network to transform
DAGs into sequences while preserving the distinctiveness of
non-isomorphic DAGs, so that the DAG encoding problem
can be addressed efficiently by applying Transformer to the
sequences.

3.1. The Dag2seq Framework

Here we describe the proposed dag2seq framework. Let
G = (V,E, o) be a labeled DAG (node labels are operations
in O), where V = {1, 2, ..., n} is the finite set of nodes, E
is the set of directed edges, and o : V → O is a function
that associates to each node an operation in O. We denote
the canonical form of G as C(G) = (V C , EC , oC), which
assigns to each labeled graph G an isomorphic labeled graph
C(G) that is a unique representation of its isomorphism
class. That is, all labeled graphs isomorphic to G will have
the same canonical form C(G). Since G and C(G) are
isomorphic, there exists a bijection π : V → V C (note
that V C = {1, 2, ..., n}) between the node sets such that
oC(π(i)) = o(i) for all i ∈ V and (π(i), π(j)) ∈ EC if
and only if (i, j) ∈ E. The graph canonization process
assigns a new index π(i) to each node i. Based on the new
indices π(i), the proposed dag2seq computes the positional
encoding of node j ∈ V (denoted as pj) as follows

aj = Agg({π(i), (i, j) ∈ E}) (1)
pj = Combine(π(j), aj) (2)

where functions Agg and Combine follow the same defi-
nition as Graph Isomorphism Network (GIN) (Xu et al.,
2019). Note that π(i), i ∈ V are discrete variables, and
function (1) and (2) take their one-hot encodings as input
in practice. From Equations (1) and (2), we can see that
dag2seq uses the canonical indices as node features and
applies a one-layer injective GNN to obtain the positional
encoding of each node. Note that (i, j) ∈ E is equivalent
to (π(i), π(j)) ∈ EC . Hence, Equations (1) and (2) can
also be interpreted as applying a one-layer injective GNN
on the canonical graph C(G) with the true node indices of
C(G) as node features. For notation convenience, we use
π−1 : V C → V to denote the inverse function of π. Then
Theorem 3.1 describes how dag2seq generates sequences
that uniquely represent DAGs.
Theorem 3.1. Let G = (V,E, o) be a labeled DAG,

and p1, p2, ..., pn be the positional encodings generated by
dag2seq. If functions Agg and Combine are injective, then
the sequence (o(π−1(1)), pπ−1(1)), (o(π−1(2)), pπ−1(2)),
..., (o(π−1(n)), pπ−1(n)) injectively encodes the computa-
tion structures defined by DAGs.

We prove Theorem 3.1 in Appendix A. Theorem 3.1 pro-
vides a guarantee that node sequences generated by dag2seq
injectively encode the original DAGs which fully preserve
the node type information as well as structure information
of the original DAGs. In other words, two labeled DAGs
will be encoded into the same sequence if and only if they
are isomorphic (i.e. their computation structures are the
same). Then advanced parallelizable encoders (such as the
Transformer encoder) for sequence modeling can be applied
to the DAG encoding problem to improve the efficiency of
the encoding process, thus facilitating the downstream opti-
mization and prediction routines. Intuitively, the canonical
form provides a unified node indexing for isomorphic DAGs
which initially may have different node orderings, while
the one-layer injective GNN encodes the direct predeces-
sors of each node into its positional encoding. Then it is
not difficult to see that from the canonical indices of nodes
and their direct predecessors as well as the node types we
can fully recover the original DAG. The one-layer GNN is
parallelizable, in contrast to the sequential GNNs used in
previous works (Zhang et al., 2019; Thost & Chen, 2021).

It is also worth discussing the complexity of graph canon-
ization. The graph canonization problem is theoretically
at least as computationally hard as the graph isomorphism
problem, which is in NP but not known to be solvable in
polynomial time nor to be NP-complete. However, getting
the canonical form of graphs is not too difficult in practice,
thanks to the well-known graph canonization tools such
as Nauty (McKay & Piperno, 2014). Empirically, such
tools usually return the canonical form of a reasonable-sized
graph in seconds. Theoretically, Nauty has an average time
complexity of O(n), and polynomial-time graph canoniza-
tion algorithms also exist for graphs of bounded degrees.
We also found in our experiments that graph canonization
adds a negligible overhead.

3.2. The Transformer in PACE

With the dag2seq framework to injectively map DAGs to se-
quences, we next develop the attention-based parallelizable
encoder which consists of K stacked Transformer (encoder)
blocks.

For each item (o(π−1(i)), pπ−1(i)) in the output sequence
of dag2seq, o(π−1(i)) provides the operation information,
while the positional encoding pπ−1(i) contains the structural
information. Hence, PACE concatenates the trainable em-
bedding of operation o(π−1(i)) and the positional encoding
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pπ−1(i) as the embedding ei of item i in the sequence.

ei = Concat(Emb(o(π−1(i))), pπ−1(i)) (3)

Then the sequence e1, e2, ..., en is fed into the first Trans-
former encoder block. Each transformer encoder block
performs the multi-head self-attention mechanism (Vaswani
et al., 2017) to update the embedding of each item in the se-
quence. We provide details of the multi-head self-attention
mechanism in Appendix C.

In the original transformer encoder blocks, the attention op-
erations are not masked. In other words, for any two items i
and j in the sequence, the embedding of item i will be used
to update the embedding of item j. Such unmasked opera-
tion is reasonable as the positional encodings {pπ−1(i),∀i}
have already encoded the partial order between nodes. How-
ever, due to the complex dependencies a DAG may encode,
fully relying on the positional encodings to capture such
dependencies might not be enough. Therefore, we introduce
a masked attention operation that helps better capture the de-
pendency between nodes in practice. The masked attention
operation can be specified through a binary mask matrix M
such that Mi,j = False if there exists a path from i to j in
C(G) and Mi,j = True otherwise.

In this mask matrix M , element Mi,j = True indicates that
the effect of item i in updating the embedding of item j will
be masked out. When Mi,j = True, there is no (directed)
path from node i to node j in the canonical form C(G). In
other words, we only allow j’s predecessors in C(G) (or
equivalently, π−1(j)’s predecessors in G) to participate in
the updating of j’s embedding. Such a masking operation
has two benefits: 1) the structure information of the DAG is
strengthened in the masked self-attention, and 2) the partial
order between operations in the computation structure is
exploited, which aligns with the logic of a real computation
in the sense that the operation at some node does not depend
on its successor operations. We also empirically verify the
effectiveness of the masked attention operation in the abla-
tion study. The mask matrix M can be efficienly computed
through the DFS algorithm or the Floyd algorithm, which
we describe in Appendix B.

Together with the proposed dag2seq framework, Trans-
former in PACE helps reduce the complexity of covering
the entire DAG’s diameter significantly. The positional en-
coding (from dag2seq) of each node encodes its canonical
index and its incoming neighbors. Since the masked self-
attention aggregates messages from all predecessors of a
node, this node will know all its predecessors and their
connection structures in one step, which provides us all
the information needed to compute graph metrics such as
shortest path distance to this node with only one message
passing step. In contrast, ordinary GNNs require at least
O(shortest path distance) message passing steps to capture

the dependency/attention between two nodes. For the last
node to capture the entire graph structure, GNNs will re-
quire O(diameter) message passing steps. Therefore, PACE
allows using much shallower layers than GNNs to encode
DAGs (especially when the DAG has a long diameter) and
increases the speed significantly.

3.3. Training Methodology

We design two schemes to train the PACE model. One is
to train a variational autoencoder (VAE) for DAGs that is
able to encode and decode/generate DAGs into and from a
latent space, like D-VAE. On the other hand, since the pro-
posed dag2seq transforms the DAG encoding problem to the
sequence encoding problem, pre-training (self-supervised
learning) techniques in NLP are also suitable for training
PACE.

Without loss of generality, we assume that there is a single
output node in each DAG that has no successor. If not,
we can add a virtual output node and add directed edges
from all nodes whose out-degree is 0 to the output node.
When PACE is trained in a VAE architecture, we use a
common trick in standard Transformers by assuming that
there are at most N nodes in the input DAG. If a DAG has
n < N nodes, we pad N − n end symbols to the end of the
sequence generated by dag2seq. Then PACE readouts the
DAG encoding by concatenating the learned embeddings
of the N symbols. When PACE is trained in a pre-training
architecture, similar to the sentiment classification task in
BERT, PACE takes the learned embedding of the output
node as the DAG encoding.

Training PACE in a VAE architecture. In the PACE-VAE
architecture, we take PACE as the encoder, and connect the
output of PACE with two fully connected (FC) layers to
predict the mean and variance of the approximated posterior
distribution in the evidence lower bound (ELBO) (Kingma
& Welling, 2013). The decoder of PACE-VAE consists of
K = 3 standard Transformer decoder blocks of dimension
dk. Given the latent vector z to decode, the decoder uses
a FC layer to reconstruct a vector of dimension N × dk.
The vector is then reshaped to a matrix Z of shape (N, dk),
which plays the same role as the “memory” matrix in a
standard Transformer in NLP. Hence, the encoder-decoder
attention layer in each Transformer decoder block takes the
decoded matrix Z as the “Key” matrix and “Value” matrix,
and uses the output from the previous self-attention layer
as the “Query” matrix. Similar to the standard Transformer,
during the generation, the decoder of PACE-VAE sequen-
tially predicts nodes in G according to the learnt canonical
order, and this process is ended until a special symbol is
predicted indicating the decoding process is completed. For
each generated node i in the decoding process, we do a
softmax to select the operation of the node, and use a binary
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classifier to predict the existence of an edge between node i
and any node j < i. We describe details about PACE-VAE
and its parallelizable training framework in Appendix D.

Training PACE in a pre-training architecture. After
converting DAGs to sequences by the proposed dag2seq
framework, PACE is essentially a sequence modeling en-
coder. (Yan et al., 2020) validates that the pre-training ar-
chitecture in NLP that generates embeddings without using
accuracies can better preserve the local structural relation-
ship in the latent space. As such, PACE can also take the
masked language modeling (MLM) (Devlin et al., 2019;
Yan et al., 2021) objective for (pre-)training to capture the
locality information of the computation structure defined
by DAGs. For each input DAG, we randomly select 20%
nodes for masking and prediction, where 80% of them are
replaced with the [MASK] token and the remaining nodes
are unchanged. The output embeddings are used to predict
the original node operations o(π−1(i)), and we train PACE
by minimizing the cross-entropy loss of the predicted node
operations and the true node operations.

4. Comparison to Related Works
Despite the great success of Transformers in modeling se-
quential data such as natural languages and images (Carion
et al., 2020; Dosovitskiy et al., 2020), there has been no
work generalizing Transformers to another important type
of sequential data, namely DAGs. Existing DAG encoders
mostly adopt an RNN-style encoding scheme to sequen-
tially process nodes in a DAG. S-VAE (Bowman et al.,
2016) takes as input the sequence of node strings which
consist of the node type as well as the adjacency vector
of each node, and then applies a GRU-based RNN to the
topologically sorted node sequence to encode a DAG. To
encode the semantics of the computation carried by a DAG,
D-VAE (Zhang et al., 2019) proposes an DAG-style mes-
sage passing framework that sequentially updates the DAG
encoding following a topological order of nodes. For each
node in a DAG, D-VAE takes a gated summation aggregator
to combine information from all its direct predecessors, and
then a GRU is used to update the node embedding based on
the aggregated information and the node type. Similar to the
encoder of D-VAE, Thost & Chen (2021) proposes DAGNN
which also sequentially aggregates node features. It differs
from D-VAE in the sense that the aggregator is constructed
through the attention mechanism and it comes with a layer
notion in the DAG encoding process. However, the sequen-
tial nature of these RNN-style DAG encoders precludes
their parallelizability. In contrast, PACE adopts a dag2seq
framework that encodes the dependencies between nodes in
the positional encodings, and then applies a Transformer to
the node sequence to encode a DAG parallelly.

Various previous works (e.g., S-VAE and GraphRNN) have

proposed to linearize graphs to node sequences by adopting
different node ordering techniques. S-VAE topologically
sorts nodes, where each node feature is the concatenation of
the one-hot encoding of the node type and a 0/1 vector indi-
cating whether (directed) edges exist from previous nodes
to itself. On the other hand, GraphRNN takes the BFS order-
ing and utilizes the fixed M -dimensional vector to represent
the node connectivity in the BFS queue. The above meth-
ods share a major limitation—both topological ordering and
BFS ordering are not unique. That is, the same DAG can
still be represented as different sequences, thus generating
different DAG embeddings. Consequently, similar DAGs
might be encoded to vastly different vectors in the DAG
encoding space, which makes the encoding space unsmooth
and the DAG optimization problem difficult. In contrast,
our dag2seq framework injectively represents DAGs as se-
quences, which guarantees that the same DAG is always
represented as the same sequence, and different DAGs are
always represented as different sequences. This is crucial
for the downstream DAG optimization problems.

Concurrent to our work, a large body of works are pro-
posed to apply Transformer to general graph data. GT
(Dwivedi & Bresson, 2020) and SAN (Kreuzer et al., 2021)
propose to use the Laplacian positional encodings (Lapla-
cian PEs) (Dwivedi & Bresson, 2020) to encode the relative
positions of nodes in graphs, instead of the original posi-
tional encoding framework for sequences. On the other
hand, GraphiT (Mialon et al., 2021) and Graphormer (Ying
et al., 2021) incorporate the (relative) position of nodes in
graphs in the attention mechanism. The difference is that
GraphiT uses graph kernels to adjust the attention scores,
while Graphormer utilizes the shortest path between nodes
to do so. Furthermore, (Jain et al., 2021) applies a Trans-
former module after a standard GNN module to capture
the both local and long-term context. However, all previ-
ous graph Transformers have problems when applying to
DAGs. Laplacian PEs are constructed from the k smallest
non-trivial eigenvectors of the graph Laplacian, which is
inherently not suitable for DAGs because graph Laplacian is
only defined for undirected graphs. Other relative-position-
based approaches such as graph kernels and shortest path are
symmetric in nature and do not take the absolute (canonical)
index of each node, thus are not injective. In contrast, our po-
sitional encoding framework, dag2seq, is DAG-friendly, and
injectively converts DAGs into sequences, which preserves
the full structure and type information of DAGs so that we
can safely treat DAG encoding as sequence encoding.

5. Experiments
In this section, we conduct experiments on popular DAG
encoding datasets to validate the effectiveness and efficiency
of the proposed PACE model against state-of-art GRU-
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Table 1. Predictive performance on NA and BN.
NA BN

Evaluation Metric RMSE ↓ Pearson’s r ↑ RMSE ↓ Pearson’s r ↑
PACE (our model) 0.254 ± 0.002 0.964 ± 0.001 0.115 ± 0.004 0.994 ± 0.001
DAGNN 0.264 ± 0.004 0.964 ± 0.001 0.122 ± 0.004 0.991 ± 0.000
D-VAE 0.384 ± 0.002 0.920 ± 0.001 0.281 ± 0.004 0.964 ± 0.001
S-VAE 0.478 ± 0.002 0.873 ± 0.001 0.499 ± 0.006 0.873 ± 0.002
GraphRNN 0.726 ± 0.002 0.669 ± 0.001 0.779 ± 0.007 0.634 ± 0.001
DeepGMG 0.478 ± 0.002 0.873± 0.001 0.843 ± 0.007 0.555 ± 0.003
GCN 0.832 ± 0.001 0.527 ± 0.001 0.599 ± 0.006 0.809 ± 0.002
gated-GCN 0.416 ± 0.002 0.891 ± 0.001 0.311± 0.003 0.953 ± 0.002
GT 0.329± 0.001 0.942 ± 0.001 0.166 ± 0.003 0.987 ± 0.000
SAN 0.311± 0.003 0.950 ± 0.001 0.158± 0.005 0.989 ± 0.001
Graphormer 0.352 ± 0.002 0.936 ± 0.001 0.181± 0.004 0.971 ± 0.001
GraphiT 0.299 ± 0.002 0.955 ± 0.001 0.142 ± 0.005 0.990 ± 0.003

Table 2. Downstream search performance on NAS101 and NAS301.
NAS101 (Regret) NAS301 (Acc)

Search Method DNGO (%) ↓ DNGO-LS (%) ↓ DNGO (%) ↑ DNGO-LS (%) ↑
PACE (our model) 0.391 ± 0.241 0.278 ± 0.178 94.507 ± 0.165 94.547 ± 0.145
DAGNN 0.445 ± 0.224 0.448 ± 0.127 94.445 ± 0.219 94.433 ± 0.156
D-VAE 0.439 ± 0.203 0.430 ± 0.222 94.453 ± 0.148 94.428 ± 0.131
S-VAE 0.458 ± 0.175 0.451 ± 0.225 94.332 ± 0.183 94.371 ± 0.203
GIN 0.593 ± 0.177 0.518 ± 0.201 94.451 ± 0.224 94.411 ± 0.198
GAT 0.597 ± 0.269 0.509 ± 0.187 94.430 ± 0.171 94.421 ± 0.202
GCN 0.627 ± 0.161 0.538 ± 0.233 94.448 ± 0.149 94.404 ± 0.160
gated-GCN 0.451 ± 0.177 0.428 ± 0.168 94.461 ± 0.170 94.421 +- 0.164
GT 0.573± 0.276 0.460 ± 0.148 94.421 ± 0.174 94.533 ± 0.139
SAN 0.390 ± 0.250 0.291± 0.166 94.446± 0.191 94.501 ± 0.143
Graphormer 0.429± 0.302 0.314 ± 0.182 94.477± 0.142 94.551 ± 0.137
GraphiT 0.407± 0.233 0.307± 0.181 94.482± 0.156 94.489 ± 0.138

based DAG encoders, general-purpose GNN-based graph
encoders, and recent (undirected) graph Transformers.

5.1. Datasets and Metrics

NA and BN. The dataset NA consists of approximately
19K neural architectures generated by the software ENAS
(Pham et al., 2018). Each architecture has its pre-computed
weight-sharing (WS) accuracy on CIFAR-10 (Krizhevsky
et al., 2009) and includes 8 nodes. The dataset BN con-
sists of 200K Bayesian networks randomly generated by the
bnlearn package (Scutari, 2010). Each Bayesian network
has 8 nodes and is associated with a Bayesian Information
Criterion (BIC) score that measures the architecture perfor-
mance on dataset Asia (Lauritzen & Spiegelhalter, 1988).
Following the experimental settings used in (Zhang et al.,
2019), PACE is evaluated under a VAE architecture, and
we take 90% NA/BN data as the training set and hold out
the rest for testing. To make a fair comparison, we evaluate
the quality of DAG encoders by measuring the predictive
performance as well as the downstream search performance.
Briefly, a sparse Gaussian process (SGP) regression model

(Snelson & Ghahramani, 2005) is trained to predict the DAG
performance from its encoding, and we use rooted mean
square error (RMSE) and Pearson correlation (Pearson’r)
as metrics to evaluate the predictive performance. When
evaluating the downstream search performance, we perform
Bayesian optimization (BO) in the DAG encoding space
based on the SGP regression model, and compare the per-
formance of the best searched architecture.

NAS101 and NAS301. NAS101 (NAS-Bench-101) and
NAS301 (NAS-Bench-301) are two well-known neural
architecture search (NAS) benchmark datasets. NAS101
(Ying et al., 2019) consists of approximately 420K neural
architectures with pre-computed validation and test accu-
racies on CIFAR-10, where each architecture has up to 7
nodes and 9 edges. NAS301 (Siems et al., 2020) is a surro-
gate benchmark for DARTS (Liu et al., 2018b). Following
(Liu et al., 2018a; Yan et al., 2021), we randomly sample
1M neural architectures, where each architecture contains
at most 15 nodes. On NAS101 and NAS301, the PACE
model is trained with the pre-training architecture using
the MLM objective. Since better predictive performance
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of DAG encoders always facilitates the downstream search,
we implement two popular BO-based downstream search
methods, DNGO (Snoek et al., 2015) and DNGO-LS (Yan
et al., 2021), and compare the downstream search perfor-
mance of different encoders. For NAS101, following the
original work of (Ying et al., 2019), we take the regret as the
evaluation metric, where the regret is the difference between
the test accuracy of the (offline) best neural architecture
and that of the best searched neural architecture (after 20
rounds). For NAS301, since we do not have an oracle for the
(offline) best neural architecture, we use the test accuracy
of the best searched neural architecture, instead.

OGBG-CODE2. Encoding ASTs (abstract syntax trees) is
another application area for DAG-based processing. Hence,
we also evaluate PACE on dataset OGBG-CODE2 (Hu et al.,
2020) against state-of-art GRU-based DAG encoders (i.e.
D-VAE and DAGNN). Dataset OGBG-CODE2 contains
approximately 450K Python functions parsed into DAGs.
These DAGs in average contain more than 120 nodes, and
the largest DAG has more than 30000 nodes. In the exper-
iment, PACE takes the learnt representation of the output
node as the whole-graph embedding for the token prediction
task (TOK), and the test F1 score is used as the evaluation
metric.

5.2. Baselines and Model Configuration

We benchmark the proposed PACE with 1) recent (undi-
rected) graph Transformers (i.e. GT (Dwivedi & Bresson,
2020), SAN (Kreuzer et al., 2021), GraphiT (Mialon et al.,
2021) and Graphormer (Ying et al., 2021)); 2) DAG en-
coders (i.e. GraphRNN (You et al., 2018), DeepGMG (Li
et al., 2018), S-VAE, D-VAE and DAGNN); and 3) GNN-
based graph encoders (i.e. gated GCN (Bresson & Laurent,
2017), GCN (Kipf & Welling, 2016), GIN (Xu et al., 2019),
GAT (Velickovic et al., 2018)). In the experiments, PACE
uses 3 Transformer encoder blocks to boost the training and
inference speed. The dimension of the embedding layer that
maps node types to embeddings is 64. The output dimension
of the 1-layer GNN in dag2seq is also 64. On NA and BN,
we concatenate the positional encodings and node type em-
beddings as the node features fed into the first Transformer
encoder block. On NAS101 and NAS301, we use the sum-
mation of positional encodings and node type embeddings,
instead. All the experiments are done on NVIDIA Tesla
P100 12GB GPUs.

5.3. Experimental Results

NA and BN: Table 1. In the experiment, PACE achieves the
smallest RMSE and the largest Pearson’s r on both NA and
BN, indicating that PACE generates the smoothest encoding
space with respect to the computation structure defined by
DAGs. In addition, the improvement is more significant

on NA. One possible reason is that DAGs in NA always
have a Hamiltonian path which introduces the long-term
dependencies between nodes. Since the Transformer-style
attention in PACE can better capture the long-term depen-
dency than GRU-based DAG encoders, PACE can preserve
the similarity of DAGs better in the learnt DAG encoding
space. Furthermore, Appendix E and Appendix G com-
pare the downstream search performance and generation
performance, respectively. The results show that PACE still
achieves the best performance, and the observation suggests
that PACE has superior DAG-encoding ability than compet-
itive encoders.

NAS101 and NAS301: Table 2. In the experiment, PACE
significantly outperforms other baselines. When applying
DNGO-lS search on NAS301, PACE achieves the second
best performance. In other cases, PACE has the best down-
stream search performance. Similar to PACE, DAGNN and
GAT also use the attention mechanism to model the de-
pendencies (relations) between nodes. However, the atten-
tion mechanism in these encoders is only applied to nodes
and their direct predecessors (DAGNN) or adjacent nodes
(GAT), hence making it hard to capture the long-term depen-
dencies between nodes. On the contrary, PACE allows all
predecessive nodes to participate in the attention mechanism
while encoding the neighbors through positional encoding,
which enables PACE to learn both the long-term dependen-
cies and short-term dependencies with ease, thus effectively
capturing the similarity of computation structure defined by
DAGs. In addition, Laplacian PEs is dependent on the fac-
torization of the graph Laplacian matrix, hence techniques
based on Laplacian PEs (i.e. GT, SAN, and gated-GCN) are
inherently not suitable for DAGs, and their performance are
not comparable to the proposed DAG-friendly PACE model.

OGBG-CODE2: Table 3. The results interestingly reveal
that PACE effectively learn the long-term dependencies
between nodes in a DAG. In this experiment, the training
process always takes a batch size of 16 and a training epoch
of 30, thus we use the average training and inference time
(per epoch) to measure the encoding speed. Experimental
results show that PACE significantly improves the predictive
performance over the state-of-art GRU-based DAG encoders
(i.e. DAGNN and D-VAE), and PACE only requires about
1
3 training time and 1

3 inference time. More details about
the experiment are provided in Appendix F.

Table 3. OGBG-CODE2: PACE versus state-of-art DAG encoders
Methods Test F1 score ↑ Training time (min) ↓ Inference time (min) ↓
PACE 0.1779 ± 0.0021 40.71 ± 0.19 2.11 ± 0.22
DAGNN 0.1751 ± 0.0049 166.19 ± 3.52 6.77 ± 0.36
D-VAE 0.1596 ± 0.0041 134.54 ± 3.06 6.08 ± 0.16
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Table 4. Ablation study.
NA BN NAS101 (Regret) NAS301 (Acc)

Model configuration RMSE ↓ Pearson’s r ↑ RMSE ↓ Pearson’s r ↑ DNGO (%) ↓ DNGO-LS (%) ↓ DNGO (%) ↑ DNGO-LS (%) ↑
Model1: dag2seq & Mask 0.254 0.964 0.115 0.9942 0.391 0.278 94.507 94.547
Model2: dag2seq & No Mask 0.255 0.967 0.119 0.9941 0.479 0.368 94.501 94.505
Model3: No dag2seq & No mask 0.981 0.001 0.368 0.9318 0.600 0.498 94.467 94.401

Table 5. Comparison of different DAG-to-sequence methods + Transformer
NA BN NAS101 (regret) NAS301 (acc) ogbg-code2

RMSE ↓ Pearson’s r ↑ RMSE ↓ Pearson’s r ↑ DNGO (%) ↓ DNGO-LS (%) ↓ DNGO (%) ↑ DNGO-LS (%) ↑ Test F1 score ↑
PACE 0.254 0.964 0.115 0.994 0.391 0.278 94.507 94.547 0.1779
S-VAE (Transformer) 0.392 0.903 0.417 0.901 0.439 0.386 94.361 94.384 0.1481
GraphRNN (Transformer) 0.406 0.896 0.431 0.889 0.427 0.371 94.410 94.392 0.1463

5.4. Computational Cost

A key advantage of PACE is the parallelizable DAG en-
coding process, so we compare the computational cost of
PACE to GRU-based DAG encoders (D-VAE and DAGNN).
We use a single GPU for each experiment, and Figure 3
shows our results. In this experiment, PACE is trained
with the VAE architecture on datasets NA and BN, but
with BERT-like objective (the pre-training architecture) on
datasets NAS101 and NAS031. On the other hand, D-VAE
and DAGNN are always trained with a VAE architecture.
Then, to make a fair comparison, we compare the total
training time and the average inference time per epoch to
evaluate the computational cost of each method. Figure 3
shows that PACE requires about 1

3 total training time and
about 1

3 average inference time compared to GRU-based
DAG encoders (i.e. D-VAE and DAGNN). Hence, PACE
significantly boosts the DAG encoding speed.

5.5. Ablation Study

In the ablation study, we demonstrate the effectiveness of
our proposed dag2seq (positional encoding) framework and
the attention mask in PACE. From Table 4, we have the
following observations: 1) In general, PACE trained with
attention mask outperforms the one without attention mask,
indicating that the attention mask helps better capture the
inductive bias of DAGs. Nevertheless, even without atten-
tion mask, PACE still performs relatively well because the
dag2seq framework also captures the node dependencies. 2)
We also find that the dag2seq framework is vital for the per-
formance of PACE. Without dag2seq, PACE (without mask)
almost completely fails at the NA dataset. This verifies the
importance of dag2seq for solving the ambiguity issue of
DAG encoding illustrated in Figure 2.

Comparison of different DAG-to-sequence methods To
further decouple the contribution of dag2seq from that
of the Transformer, we replace the RNN encoders in the
baselines S-VAE and GraphRNN with Transformers, and
compare them with our PACE model (dag2seq + Trans-
former). GraphRNN is originally designed as a pure genera-

Figure 3. Computational cost.

tive model, and thus does not have a DAG encoder. However,
following the idea of S-VAE, we generate the node feature
sequence by replacing the topological ordering in S-VAE
with the BFS ordering as in GraphRNN, and replacing the
0/1 vector in S-VAE with the fixed M -dimensional vector.
Table 5 shows the results. PACE still demonstrates signifi-
cant performance advantages, illustrating the importance of
dag2seq for DAG encoding.

6. Conclusion
In this paper, we have proposed PACE, a novel DAG en-
coder based on Transformer. Unlike traditional GRU-based
DAG encoders which sequentially encode DAG nodes,
PACE is fully parallelizable and effectively learn the long-
range dependencies of node pairs in a DAG. PACE in-
corporates the strong relational inductive bias through a
node-dependency-aware positional encoding framework,
dag2seq, and a masked self-attention mechanism. Experi-
ments demonstrate that PACE not only generates smooth
latent (DAG encoding) space beneficial to the downstream
prediction and optimization routines, but also significantly
boosts the encoding speed.
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A. Proof of Theorem 3.1
Let G1 = (V1, E1, o1) and G2 = (V2, E2, o2) be two labelled graphs, then G1 and G2 are isomorphic (i.e.G1 and G2

represent the same computation structure.) if and only if their canonical forms are identical, i.e. C(G1) = C(G2).
Note that this equation means equality between the canonical forms, not isomorphism. Let C(G1) = (V C

1 , EC
1 , oC1 ) and

C(G2) = (V C
2 , EC

2 , oC2 ). As discussed in section 3.1, there exists bijections π1 : V1 → V C
1 and π2 : V2 → V C

2 , and we use
π−1
1 : V C

1 → V1 and π−1
2 : V C

2 → V2 to denote their inverse functions. Then, we have C(G1) = C(G2) if and only if (1)
oC1 (i) = oC2 (i) for ∀i; and (2) (i, j) ∈ EC

1 ⇔ (i, j) ∈ EC
2 for ∀i, j.

Next, we will prove Theorem 3.1 by equivelantly showing that the sequence (o(π−1(1)), pπ−1(1)), (o(π−1(2)), pπ−1(2)),
..., (o(π−1(n)), pπ−1(n)) can guarantee the distinctness of canonical forms C(G). For the notation convenience, let
function f(π(j), {π(i), (i, j) ∈ E}) = Combine(π(j),Agg({π(i), (i, j) ∈ E)}) be the composition of functions Agg and
Combine, then it is injective if and only if both Agg and Combine are injective. Furthermore, we use Seq1 to denote
the sequence (o1(π

−1
1 (1)), pπ−1

1 (1)), (o1(π
−1
1 (2)), pπ−1

1 (2)), ..., (o1(π
−1
1 (n)), pπ−1

1 (n)), and Seq2 to denote the sequence

(o2(π
−1
2 (1)), pπ−1

2 (1)), (o2(π
−1
2 (2)), pπ−1

2 (2)), ..., (o2(π
−1
2 (n)), pπ−1

2 (n)).

So far, we know C(G1) ̸= C(G2)⇔ there (1) exists i such that oC1 (i) ̸= oC2 (i), or (2) exists i, j such that (i, j) ∈ EC
1 but

(i, j) ̸∈ EC
2 (equivalently, (i, j) ̸∈ EC

1 but (i, j) ∈ EC
2 ).

Now, let’s prove C(G1) ̸= C(G2)⇒ Seq1 ̸= Seq2.

• (1) For the first case, since π1, π2 are the bijections that map G1 and G2 to their canonical forms, then we have:

o1(π
−1
1 (i)) = oC1 (π1(π

−1
1 (i)))

= oC1 (i)

o2(π
−1
2 (i)) = oC2 (π2(π

−1
2 (i)))

= oC2 (i)

Since oC1 (i) ̸= oC2 (i), then we get o1(π−1
1 (i)) ̸= o2(π

−1
2 (i)), indicating that Seq1 ̸= Seq2.

• (2) For the second case, according to the definition of canonical form, we know that (π−1
1 (i), π−1

1 (j)) ∈ E1 ⇔
(i, j) ∈ EC

1 (similarly, (π−1
2 (i), π−1

2 (j)) ∈ E2 ⇔ (i, j) ∈ EC
2 ). As such, we get:

pπ−1
1 (j) = f(π1(π

−1
1 (j)), {π1(π

−1
1 (s)), (π−1

1 (s), π−1
1 (j)) ∈ E1})

= f(j, {s, (s, j) ∈ EC
1 })

pπ−1
2 (j) = f(π2(π

−1
2 (j)), {π2(π

−1
2 (s)), (π−1

2 (s), π−1
2 (j)) ∈ E1})

= f(j, {s, (s, j) ∈ EC
2 })

Then, since (i, j) ∈ EC
1 but (i, j) ̸∈ EC

2 , we have {s, (s, j) ∈ EC
1 } ≠ {s, (s, j) ∈ EC

2 }. Since function f is injective,
then we have pπ−1

1 (j) ̸= pπ−1
2 (j). Hence, Seq1 ̸= Seq2

In the end, let’s prove the other direction, i.e. Seq1 ̸= Seq2 ⇒ C(G1) ̸= C(G2). When Seq1 ̸= Seq2, there (1) exists i such
that o1(π−1

1 (i)) ̸= o2(π
−1
2 (i)), or (2) exists j such that pπ−1

1 (j) ̸= pπ−1
2 (j).

• (1) For the first case, according to the previous analysis, we have:

oC1 (i) = o1(π
−1
1 (i))

oC2 (i) = o2(π
−1
2 (i))

Hence, we can get oC1 (i) ̸= oC2 (i), which indicates C(G1) ̸= C(G2).

• (2) For the second case, according to the previous analysis, we get:

pπ−1
1 (j) = f(j, {s, (s, j) ∈ EC

1 })

pπ−1
2 (j) = f(j, {s, (s, j) ∈ EC

2 })
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Since f is injective, pπ−1
1 (j) ̸= pπ−1

2 (j) implies that {s, (s, j) ∈ EC
1 } ≠ {s, (s, j) ∈ EC

2 }.Then, there must exist i such
that (i, j) ∈ EC

1 but (i, j) ̸∈ EC
2 (or (i, j) ̸∈ EC

1 but (i, j) ∈ EC
2 ). Henceforth, we get C(G1) ̸= C(G2).

B. Mask Matrix
Here we provide two potential ways to get the mask matrix in PACE. Following the same notation as the main paper, we use
C(G) = (V C , EC , oC) to denote the canonical form of the input DAG G.

DFS Algorithm This algorithm takes the canonical form C(G) as input and performs the DFS (depth first search)
algorithm on the graph to explore all the nodes of the graph. Before we start the depth first search, we traverse all edges
in EC to find all direct-successors of each node i, and then put them in a set S(i) for i ∈ V C . Then, for each node i, we
perform the DFS to get a dependent set D(i), and we have Mj,i = False if and only if j ∈ D(i).

Algorithm 1 DFS Algorithm
Input: D(i) = {}; Visited = [False for j ∈ V C ]; a source (start) node i, T = [i] (T is a stack).
Visited[i] = True.
while |T | > 0. do

j = T [−1].
delete j from T
for k in S(j) do

if Visited[k] = Flase then
put k in D(i)
Visited[k] = True
put k in T

end if
end for

end while

Floyd Algorithm The Floyd algorithm is originally proposed for finding shortest paths in directed weighted graphs. Here,
we initialize the edge weights to be 1, and implement the Floyd algorithm to find the distance dist(i, j) (i.e. length of the
shortest directed path) between each node pair i, j in C(G). Then we have Mi,j = False if and only if dist(i, j) ̸= ∞.

Algorithm 2 Floyd Algorithm
Input: dist(i, j) = 1 if (i, j) ∈ EC else ∞
for i ∈ V C do

for j ∈ V C do
for k ∈ V C do

if dist(j, k) > dist(j, i) + dist(i, k). then
dist(j, k) = dist(j, i) + dist(i, k).

end if
end for

end for
end for

C. Multi-Head Self-Attention Mechanism
Here we introduce the multi-head (masked) self-attention mechanism in the Transformer encoder block of PACE. For the
notation convenience, we use Hk to denote the output representation of the kth Transformer encoder block, and use H0

to denote the input (i.e. the representation of the sequence generated by dag2seq) to the first Transformer encoder block.
Furthermore, we denote the number of heads in the self-attention mechanism as h, and the embedding dimension (of each
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item in the sequence) as d. Then the Transformer encoder blocks update representation Hk as following.

Hj
k = softmax(

Qj
k(K

j
k)

T

d
)V j

k for j = 1, 2, ...h (4)

Hk+1 = feed-forward(∥hj=1H
j
k) (5)

where Qj
k = HkW

j
k,q , Kj

k = HkW
j
k,k, V j

k = HkW
j
k,v are the query matrix, key matrix and value matrix, respectively (i.e.

W j
k,q,W

j
k,k,W

j
k,v are trainable parameter matrices); ∥ represents the concatenation operation; Feed-forward is a one-layer

MLP. When we introduce the mask operation into the Transformer encoder block, let M be the mask matrix from the Floyd
algorithm or the BFS algorithm, then we use following equation to replace equation 5 in the Transformer encoder block.

Hj
k = softmax(

Qj
k(K

j
k)

T +−∞ ∗M
d

)V j
k for j = 1, 2, ...h (6)

D. Details about PACE in the VAE Architecture
In the section, we describe the decoder of PACE-VAE. Figure 4 illustrates the overall architecture. In the main paper, we
have introduced how PACE maps input DAGs to the latent space, here we focus on the decoder of PACE-VAE.

Figure 4. The illustration of PACE in the VAE architecture (PACE-VAE)

Similar to PACE, the decoder is constructed upon the Transformer decoder block. Each Transformer decoder block consists
of a masked multi-head self-attention layer(i.e. Equation 6), a multi-head attention layer (i.e. Equation 4 except that the
key matrix and value matrix are computed from points z in the latent space), and a feed-forward layer (i.e. Equation 5).
The decoder takes a MLP as the embedding layer to generate node type embeddings as PACE. In analogous to the dag2seq
framework in PACE, the decoder also uses a GNN to generate the positional encoding based on the learnt canonical order of
nodes. The node embeddings and positional encodings are concatenated and then fed into multiple stacked Transformer
decoder blocks to predict the node representations, which is used to predict the node types and the existence of edges.
In analogous to the standard Transformer decoder, the decoder performs the shift right trick (i.e. the ith output node
representation corresponds to the i+ 1th node in the sequence) and adds a start symbol node (i.e. the black node in Figure
4) at the beginning of the node sequence. Specifically, the canonical label of the start symbol node is different from any
possible canonical label in the dag2seq framework to distinguish it’s position. For instance, DAG in the searching space
contains at most N nodes, then the canonical order of the start symbol node can be 0 or N + 1. Let oi denotes the output
representation of node i in the sequence, then it is used to predict the type of node i+ 1 in the sequence through a MLP.
Similarly, for any j < i, we use another MLP, which takes the concatenation of oj and oi as input, to predict the existence
of an directed edge from node j + 1 to node i+ 1 in the sequence. Note that the canonical order can be generated from the
topological sort by breaking ties using canonicalization tools, such as Nauty. Thus, for each node i in the sequence, any
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dependent node j of this node must be arranged in a prior position in the sequence (i.e. j < i). In the end, based on these
predictions (node representations), we can perform the teacher forcing to train the VAE.

Although the ordering of the output sequence can have a significant impact on the performance in the sequence-to-sequence
model (Vinyals et al., 2015), it is not the same case for the decoder of PACE-VAE. Let x1, x2, ...xn be an output sequence
in the sequence-to-sequence model, and v1, v2, ...vn an output node sequence in the decoder of PACE-VAE. Then, for any
i, j such that i < j, the sequence-to-sequence model knows that xj is arranged in a later position in the output sequence
than xi, in other words, xj is dependent on xi. However, in the decoder of PACE-VAE, the existence of an edge between vi
and vj is predicted by the decoder itself, hence, any topological order is suitable in the decoder of PACE-VAE, and we select
(topological) canonical order to facilitate the teacher forcing.

E. Downstream Search Performance on NA and BN

Table 6. Downstream search performance on NA and BN.

Model PACE DAGNN D-VAE S-VAE

(NA) Test accuracy ↑ 95.08 95.06 94.80 92.79
(BN) BIC score ↑ -11107.29 -11107.29 −11125.75 −11125.77

Figure 5. Best architectures on NA and BN detected by PACE.

In this section, we compare the downstream search performance on datasets NA and BN. As Table 6 shows, PACE detects
architectures with the best performance on both NA and BN. Compared with GRU-based DAG encoders, the Transformer-
style attention in PACE has superior ability for learning the long-term dependency. Hence, PACE’s latent embeddings are
more informative about the computation structure, which favors using a predictive model in its latent space to guide the
downstream search routines.

We also visualize the optimal architectures detected by Bayesian optimization (over the latent DAG encoding space generated
by PACE) on datasets NA and BN. Figure 5 illustrates our results. On dataset BN, we find that the detected optimal Bayesian
network structure is almost the same as the ground truth (Figure 2 in (Lauritzen & Spiegelhalter, 1988)), except that there is
another directed edge from node A (visit to Asia ?) to node T (Tuberculosis) in the ground truth.

F. Experiment Details and Further Discussion on OGBG-CODE2
Our paper mainly focuses on the DAG optimization problem. Since searching the optimal neural architectures and Bayesian
network structures is essentially typical DAG optimization task, we choose datasets NA, NAS101, NAS301 (neural
architecture search benchmark) and BN (Bayesian network structure learning benchmark) for evaluation. However, encoding
ASTs (Abstract Syntax Trees) can be another standard application area for DAG-based processing, then we implement
additional experiments on dataset OGBG-CODE2 to evaluate PACE against GRU-based DAG encoders. On average, DAGs
in dataset OGBG-CODE2 contain more than 120 nodes, while the largest DAG contains more than 30,000 nodes, and
the depth of tree can reach 275. Hence, sequentially encoding DAGs in OGBG-CODE2 can be extremely costly, and
PACE can take a relative larger number of (self-) attention layers (6 layers) in this setting. On dataset OGBG-CODE2,
it’s conventionally to use a AST node encoder that incorporates edge features to generate continuous node embeddings.
Similarly, PACE uses a GNN as AST node encoder to generate continuous node embeddings, and then dag2seq in PACE
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approximately takes the DFS order as inputs.

Training method: As discussed in the main paper, PACE takes the learnt representation of the output node as the graph
embedding. On dataset OGBG-CODE2, PACE is not trained in the VAE version nor in the BERT version. Instead, PACE
is directly trained on the TOK (token prediction task) in a supervised version based on the graph embedding. Thus, all
methods are trained with a single objective and then evaluated on that objective, so that the test F1 score can determine how
easily the models can learn.

In general cases, PACE takes Floyd algorithm 2 (see Appendix B) to get the attention mask. However, Floyd algorithm
has a time complexity of O(N3), where N is the number of nodes in a DAG. Then, the data preprocessing might be time-
consuming when applied to large-scale graphs. Hence, on dataset OGBG-CODE2, we propose a backtracking algorithm
based on the tree structure of ASTs. The backtracking algorithm has a time complexity of O(N) when the depths of nodes
in ASTs are bounded. Then we can significantly reduce the preprocessing time to obtain the attention mask. In algorithm 3,
we use AST = (V,E) to denote an abstract syntax tree, where nodes in V are sorted according to the DFS order. In all
experiments, we include the computation time of finding the canonical form of DAGs in the training and inference time of
PACE.

Algorithm 3 Backtracking Algorithm
Input: backtracking dictionary B = {}, AST = (V,E), function f : V → N that maps nodes to the depth, Attention
mask M whose elements are set to be True.
for v ∈ V do

j = f(v)
B(j) = v
if j > 0. then

for k in 1 to j do
MB(j),B(k) = False

end for
end if

end for

G. Reconstruction Accuracy and Generation Performance

Table 7. Recon. accuracy, valid prior, uniqueness, novelty and overall (ave) performance %

NA BN

Methods Accuracy ↑ Valid ↑ Unique ↑ Novel ↑ Overall ↑ Accuracy ↑ Valid ↑ Unique ↑ Novel ↑ Overall ↑
PACE 99.97 98.16 57.77 100.00 88.98 99.99 99.96 45.10 98.50 85.88

DAGNN 99.97 99.98 37.36 100.00 84.33 99.96 99.89 37.61 98.16 83.91
D-VAE 99.96 100.00 37.26 100.00 84.31 99.94 98.84 38.98 98.01 83.94
S-VAE 99.98 100.00 37.03 99.99 84.25 99.99 100.00 35.51 99.70 83.80
GraphRNN 99.85 99.84 29.77 100.00 82.37 96.71 100.00 27.30 98.57 80.65
GCN 5.42 99.37 41.48 100.00 61.57 99.07 99.89 30.53 98.26 81.94

Models parameterized with neural networks contribute to the inductive biases of the deep generative models (Zhang et al.,
2016; Keskar et al., 2017). Thus, the quality of DAG encoders can also be characterized by the reconstruction accuracy
(Accuracy) and the generation performance. (i.e. the proportions of valid/ unique/ novel architectures in generated DAGs)

The reconstruction accuracy, prior validity, uniqueness and novelty are calculated in the same way as (Zhang et al., 2019).
Empirical results are presented in Table 7, and we take the average of these four metrics to characterize the overall
performance of the deep generative model (i.e. VAE), which also measures the quality of the DAG encoder. We find that
PACE performs similarly well in reconstruction accuracy, prior validity and novelty with D-VAE, DAGNN and S-VAE,
while significantly improving the uniqueness. Hence, PACE achieves the best overall performance and generates more
diverse DAG architectures.
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H. Extension of Theorem 3.1
The expressive power of message passing Graph Neural Networks (GNNs) is upper bounded by Weisfeiler-Lehman (1-WL)
isomorphism test. To address this limitation, subgraph-based techniques (Zhang & Li, 2021; You et al., 2021) are applied to
general message passing GNNs to extend their expressiveness beyond the 1-WL test by learning the representation of each
node based on the rooted subgraph around it. Thanks to the plug-and-play framework of these subgraph-based techniques,
they share advantages of simplicity and efficiency in various graph learning tasks.

Following this idea, the proposed dag2seq framework can also be extended to a subgraph-based version. Given a DAG
G = (V,E) and a node i, we use Gh

i to denote the height-h rooted subgraph of node i, which is the subgraph induced from
G by the nodes within h hops of node i. Let f be a function that maps subgraphs to vectores, then we have the following
corollary:

Corollary H.1. Let G = (V,E) be a DAG, and p1, p2, ..., pn be the positional encodings generated by dag2seq. If functions
f, Agg and Combine are injective, then the sequence (f(Gh

π−1(1)), pπ−1(1)), (f(Gh
π−1(2)), pπ−1(2)), ..., (f(Gh

π−1(n)),
pπ−1(n)) can injectively represent DAG G.

As the function f is injective, we can prove corollary H.1 by simply replacing o(π−1(i)) in the proof A by f(Gh
π−1(i)) for

∀i. Corollary H.1 shows that the proposed dag2seq framework can be equipped with advancements in GNN literature. When
G has a tree structure (e.g. OGBG-CODE), dag2seq can simply take message passing GNN as the function f to injectively
represent DAGs as sequences. On the other hand, for general DAGs, the corollary indicates that the more expressive GNNs,
such as IDGNN (You et al., 2021) and NGNN (Zhang & Li, 2021), will generate sequences with higher quality.


