
Inductive Biases and Variable Creation in Self-Attention Mechanisms

Benjamin L. Edelman 1 Surbhi Goel 2 Sham Kakade 1 Cyril Zhang 2

Abstract
Self-attention, an architectural motif designed
to model long-range interactions in sequential
data, has driven numerous recent breakthroughs
in natural language processing and beyond. This
work provides a theoretical analysis of the in-
ductive biases of self-attention modules. Our
focus is to rigorously establish which func-
tions and long-range dependencies self-attention
blocks prefer to represent. Our main result shows
that bounded-norm Transformer networks “cre-
ate sparse variables”: a single self-attention head
can represent a sparse function of the input se-
quence, with sample complexity scaling only
logarithmically with the context length. To sup-
port our analysis, we present synthetic experi-
ments to probe the sample complexity of learning
sparse Boolean functions with Transformers.

1. Introduction
Self-attention mechanisms have comprised an era-defining
cornerstone of deep learning in recent years, appearing
ubiquitously in empirical breakthroughs in generative se-
quence modeling and unsupervised representation learning.
Starting with natural language (Vaswani et al., 2017), self-
attention has enjoyed surprising empirical successes in nu-
merous and diverse modalities of data. In many of these
settings, self-attention has supplanted traditional recurrent
and convolutional architectures, which are understood to
incorporate inductive biases about temporal and transla-
tional invariances in the data. Self-attention models discard
these functional forms, in favor of directly and globally
modeling long-range interactions within the input context.

The proliferation of self-attention raises a fundamental
question about its inductive biases: which functions do self-
attention networks prefer to represent? Various intuitions

1Department of Computer Science, Harvard University, Cam-
bridge, MA, USA 2Microsoft Research, New York, NY, USA.
Correspondence to: Cyril Zhang <cyrilzhang@microsoft.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

and empirics inform the design of these architectures, but
formal statistical abstractions and analyses are missing in
this space. To this end, this work initiates an analysis of the
statistical foundations of self-attention.

We identify an inductive bias for self-attention, for which
we coin the term sparse variable creation: a bounded-norm
self-attention head learns a sparse function (which only de-
pends on a small subset of input coordinates, such as a
constant-fan-in gate in a Boolean circuit) of a length-T con-
text, with sample complexity scaling as log(T). The main
technical novelty in this work is a covering number-based
capacity bound for attention mechanisms (including Trans-
former heads, as well as related and future architectures),
implying norm-based generalization bounds. This is ac-
companied by a matching representational result, showing
that bounded-norm self-attention heads are indeed capable
of representing s-sparse functions with weight norms 2O(s)

(or poly(s), for symmetric sparse functions). This provides
a theoretical account for why attention models can learn
long-range dependencies without overfitting.

Finally, we conduct synthetic experiments to probe the
sample efficiency of learning sparse interactions with self-
attention. We train Transformer models to identify sparse
Boolean functions with randomly chosen indices, and cor-
roborate the sample complexity scaling law predicted by
the theory. A variant of this experiment (with i.i.d. sam-
ples) reveals a computational mystery, beyond the scope of
our current statistical analysis: we find that Transformers
can successfully learn the “hardest” (in the sense of SQ-
dimension) s-sparse functions: the XOR (parity) functions.

1.1. Related work

The direct precursors to modern self-attention architectures
were recurrent and convolutional networks augmented with
attention mechanisms (Bahdanau et al., 2014; Luong et al.,
2015; Xu et al., 2015). Landmark work by Vaswani
et al. (2017) demonstrated significantly improvements in
machine translation via a pure self-attention architecture;
autoregressive language models (Liu et al., 2018; Rad-
ford et al., 2018; 2019; Brown et al., 2020), and self-
supervised representation learning via masked language
modeling (Devlin et al., 2018) followed shortly.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Norm-based capacity bounds for neural nets. There is
a vast body of literature dedicated to establishing statistical
guarantees for neural networks, including VC-dimension
and shattering bounds (dating back to (Anthony & Bartlett,
1999)). In recent years, classical norm-based generaliza-
tion bounds have been established for various architec-
tures (Bartlett et al., 2017; Neyshabur et al., 2015; 2017;
Golowich et al., 2018; Long & Sedghi, 2019; Chen et al.,
2019) using covering-based arguments. Jiang et al. (2019)
provide an extensive empirical study of how well these
bounds predict generalization in practice. Our work com-
plements these results by establishing the first norm-based
capacity analysis for attention models. Our main results
rely on a novel reduction to the `∞ covering number bound
for linear function classes given by (Zhang, 2002).

Other theoretical lenses on attention. Our work
complements various existing theoretical perspectives on
attention-based models. Vuckovic et al. (2020) formu-
late a dynamical system abstraction of attention layers,
arriving at similar Lipschitz constant calculations to ours
(which are coarser-grained, since they focus on contractiv-
ity and stability rather than finite-sample statistical guaran-
tees). Zhang et al. (2019); Snell et al. (2021) study idealiza-
tions of the optimization problem of learning self-attention
heads. Wei et al. (2021) propose a definition of statis-
tically meaningful approximation of function classes that
ties statistical learnability with expressivity, and show that
Boolean circuits can be SM-approximated by Transformers
with a sample complexity bound that depends mildly on
circuit depth (rather than context size), using a margin am-
plification procedure. Kim et al. (2021) show that standard
dot-product attention is not Lipschitz for an unbounded in-
put domain, whereas our paper shows that norm-based gen-
eralization bounds are attainable with a ‖·‖2,∞-bounded in-
put domain.

See Appendix D for a broader survey of the literature on
attention and self-attention networks.

2. Background and notation
Throughout this paper, the input X := [x1x2 . . . xT]> ∈
RT×d to an attention module (a.k.a. the context) will be
a length-T sequence of embeddings xt ∈ Rd; m refers
to the sample size (i.e. number of length-T sequences in
a dataset). ‖ · ‖2 denotes the spectral norm for matrices,
and ‖ · ‖p,q denotes the (p, q) matrix norm where the p-
norm is over columns and q-norm over rows. For vectors,
‖ · ‖p denotes the `p norm; we drop the subscript for the `2
norm. B is generally used to quantify bounds on norms of
matrices and L for Lipschitz constants. ∆n−1 denotes the
simplex in dimension n, that is, ∆n−1 := {x ∈ Rn : x ≥
0, ‖x‖1 = 1}.

Covering numbers. Our main technical contribution is a
generalization bound arising from carefully counting the
number of functions representable by a Transformer. The
main technical ingredient is the notion of a covering num-
ber. We will use the following definition of∞-norm cov-
ering number adapted from (Zhang, 2002):

Definition 2.1 (Covering number). For a given class
of vector-valued functions F , the covering number
N∞(F ; ε; {z(i)}mi=1; ‖·‖) is the smallest size of a collection
(a cover) C ⊂ F such that ∀f ∈ F ,∃f̂ ∈ C satisfying

max
i
‖f(z(i))− f̂(z(i))‖ ≤ ε.

Further, define

N∞(F , ε,m, ‖ · ‖) =

sup
z(1)...z(m)

N∞(F ; ε; z(1), . . . , z(m), ‖ · ‖).

If F is real-valued (instead of vector-valued), we drop the
norm from the notation. Furthermore for functions param-
eterized by a set of parameters Θ, we exploit the notation
to replace F by Θ.

Recall that for the class of linear functions,

Flin = {x 7→ w · x : w ∈ Rd, ‖w‖2 ≤ BW },

we have the covering number bound (Zhang, 2002) of

N∞(F ; ε; {x(i)}mi=1) ≤ O
(
B2
XB

2
W

ε2
· log

(
BXBWm

ε

))
,

where ‖x(i)‖ ≤ BX for i ∈ [m]. Importantly, note that the
covering number has a mild dependence on m, only log-
arithmic; this logarithmic dependence on m will be help-
ful when we turn our analysis to the capacity of attention
mechanisms.

Generalization bounds. This work focuses on providing
log-covering number bounds, which imply uniform gener-
alization bounds via standard arguments. The following
lemma relates these quantities; we refer the reader to Ap-
pendix A.1 for a formal review.

Lemma 2.2 (Generalization bound via covering num-
ber; informal). Suppose F is a class of bounded func-
tions, and logN∞(F ; ε;x(1), . . . , x(m)) ≤ CF/ε

2 for all
x(1), . . . , x(m) ∈ Xm. Then for any δ > 0, with prob-
ability at least 1 − δ, simultaneously for all f ∈ F , the
generalization error εgen satisfies

εgen(f) ≤ Õ

(√
CF
m

+

√
log(1/δ)

m

)
.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

x1 xT

y

z

x2 ⋯ x1 xTx2 ⋯

y1 yTy2 ⋯

xt

yt

x1 x[𝙲𝙻𝚂]x2 ⋯

y1 y[𝙲𝙻𝚂]y2 ⋯

xT

yT linear yscalar

attention head self-attention layer scalar self-attention output

Figure 1. Diagrams of attention modules ftf-head, ftf-layer, ftf-scalar described in Section 3: alignment scores (grey edges) determine nor-
malized attention weights (blue), which are used to mix the inputs x1:T . Left: Attention with a general context z. Center: Self-attention
layer, where both the input and the context come from x1:T . Right: Auxiliary [CLS] token to extract a single scalar from a self-attention
layer, providing a real-valued function class for classification or regression tasks.

3. Abstractions for (self-)attention
The precise definition of attention is less straightforward to
define than for architectural components such as convolu-
tions and residual connections. In this section, guided by
the manifestations of attention discussed in (Luong et al.,
2015), we present some notation and definitions which gen-
eralize attention mechanisms commonly seen in practice,
including the Transformer. Intuitively, these definitions
encompass neural network layers which induce context-
dependent representation bottlenecks. Subsequently, we
show how to represent the Transformer (the predominant
attention-based architecture) as a special case of this for-
mulation.

3.1. Attention

Intuitively, we would like to capture the notion that an out-
put variable selects (“attends to”) a part of the input se-
quence on which it will depend, based on a learned func-
tion of global interactions (see Figure 1, left). To this end,
we define an attention head as a function which maps a
length-T input sequence (e.g. the tokens in a sentence,
pixels in an image, or intermediate activations in a deep
Transformer network) and an additional context z ∈ Z to
an output y ∈ Y . In this work, we will exclusively consider
X ,Y,Z to be Rd. An attention head uses z to select the in-
put coordinates in X to which the output y will “attend”,
formalized below:

Definition 3.1 (Attention head). An attention head is
a function f : X → Y , specified by an alignment
score function Score : X × Z → R parameterized by
θs ∈ Θs, normalization function Norm : RT → ∆T−1,
and position-wise maps φin : X → V, φout : V → Y
parameterized by θin ∈ Θin and θout ∈ Θout. The output
of an attention head on input X ∈ X T , z ∈ Z is

y = φout

(T∑
t=1

[
Norm

(
Score(x1, z; θs), . . . ,

Score(xT , z; θs)
)]

t
φin(xt; θin); θout

)

= φout

(
φin(X; θin)>Norm

(
Score(x1, z; θs), . . . ,

Score(xT , z; θs)
)

; θout

)
where φin(X; θ) = [φin(x1; θ) . . . φin(xT ; θ)]> denotes
the row-wise application of φin.

The above definition corresponds to the leftmost diagram
in Figure 1. Here, V is a vector space of input representa-
tions “mixed” by the normalized alignment scores; in this
work, we will set V = Rk. A function class of atten-
tion heads is induced by specifying parameter classes for
{Θs,Θin,Θout}.

3.2. Self-attention and Transformers

A self-attention head is a special case of an attention head,
in which the context z comes from one of the inputs xt
themselves: pairwise interactions among the elements inX
are used to select the elements of X on which f depends.
In this case, we use “input” and “context” interchangeably
to refer toX . For example, a self-attention head which uses
z := xt is defined by

y = φout

(
φin(X; θin)>Norm(Score(X,xt; θs)); θout

)
.

We now define the Transformer self-attention architecture
as a special case of the above. Since a Transformer layer
has shared parameters between multiple output heads, we
will define all T outputs of the layer at once.

Definition 3.2 (Transformer layer). A Transformer layer is
a collection of T attention heads with outputs y1, . . . , yT ,
specified by the following choices of function classes (with
shared parameters between the heads) where the context
for yτ is xτ .

• Score(x, xτ ; {WQ,WK}) := x>τ WQW
>
Kx,

WQ,WK ∈ Rd×k (for output yt)
• φin(x;WV) := W>V x, WV ∈ Rd×k
• φout(x;WC) := W>C σ(x), WC ∈ Rk×d,

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Lσ-Lipschitz activation function σ : R → R applied
position-wise, with σ(0) = 0.

• Norm(x) := softmax (x) = exp(x)
1> exp(x)

Defining Y := [y1y2 . . . yT]> ∈ RT×d and
[RowSoftmax(M)]t,: := softmax(Mt,:), we have

Y = σ
(
RowSoftmax

(
XWQ(XWK)>

)
XWV

)
WC .

Functions from the above class of Transformer layers map
RT×d to itself, and can thus be iteratively composed. We
discuss remaining discrepancies between Definition 3.2
and real Transformers (positional embeddings, position-
wise feedforward networks, layer normalization, parallel
heads, residual connections) in Section 4.3 and the ap-
pendix.

Extracting scalar outputs from a Transformer. Finally,
we establish notation for a canonical way to extract a scalar
prediction from the final layer of a Transformer. For a con-
text of size T , a Transformer layer with T + 1 inputs is
constructed, with a special index [CLS].1 The input at this
position is a vector x[CLS] ∈ Rd (which can be fixed or
trainable); the output is a linear function w>y[CLS], for
a trainable parameter w ∈ Rd. This defines a class of
functions mapping RT×d → R, parameterized by a Trans-
former layer’s parameters and w, which we call the class of
scalar-output Transformers. This is the setup used by the
classification modules in BERT (Devlin et al., 2018) and
all of its derivatives.

4. Capacity bounds for attention modules
In this section, we present covering number-based capac-
ity bounds for generic attention heads and Transformers,
along with overviews of their proofs. Section 4.1 bounds
the capacity of a general attention head. Section 4.2 in-
stantiates this bound for the case of a single Transformer
self-attention head. Section 4.3 generalizes this bound for
full depth-L Transformer networks. The sample complex-
ity guarantees for Transformers scale only logarithmically
in the context length T , providing rigorous grounding for
the intuition that the architecture’s inductive bias selects
sparse functions of the context.

Note: Throughout this section, assume that ‖xt‖2 ≤ BX
for all t ∈ [T] (i.e. ‖X‖2,∞ ≤ BX). Note that this allows
for the Frobenius norm ‖X‖F to scale with

√
T . The key

challenge throughout our analysis is to avoid incurring fac-
tors of norms which take a sum over the t dimension, by
constructing covers appropriately.

1[CLS]stands for “class”, as in “treat the output at this posi-
tion as the classifier’s prediction”.

4.1. Capacity of a general attention head

Recall that the attention head architecture can be repre-
sented as a function fhead : RT×d × Rd → Rd parame-
terized by θs, θin, θout as

fhead(X, z; θs, θin, θout) =

φout

(
φin(X; θin)>Norm(Score(X, z; θs)); θout

)
.

Denote the corresponding function class by

Fhead := {(X, z) 7→ fhead(X, z; θs, θin, θout) :

θs ∈ Θs, θin ∈ Θin, θout ∈ Θout}

To convert the vector-valued function class to a scalar
output function class, we define Fscalar := {(X, z) 7→
w>f(X, z) : f ∈ Fhead, w ∈ Rd, ‖w‖ ≤ Bw}.

For simplicity of presentation, we will focus only on the
attention head, and assume that φout and w are fixed. We
handle the general case of trainable downstream layers in
the analysis of multi-layer Transformers in Appendix A.7.

Assumption 4.1. We make the following assumptions:

1. φout is Lout-Lipschitz in the `2-norm, that is,

∀a, b ∈ Rk : ‖φout(a)− φout(b)‖ ≤ Lout‖a− b‖.

2. φin is Bin-bounded in `2-norm, that is,

∀a ∈ Rd, θin ∈ Θin : ‖φin(a; θin)‖ ≤ Bin‖a‖.

3. Norm is continuously differentiable and its Jacobian
satisfies

∀θ ∈ RT , ‖J Norm(θ)‖1,1 ≤ CNorm.

Note that softmax (the most commonly used Norm func-
tion) satisfies the Jacobian assumption with Csoftmax = 2
(see Corollary A.7).

We prove the following bound on the covering number of
Fhead for m samples,

Theorem 4.2 (Attention head capacity). Under Assump-
tions 4.1, ∀α ∈ [0, 1] the covering number ofFhead satisfies

logN∞
(
Fhead; ε;

{
(X(i), z(i))

}m
i=1

; ‖ · ‖2
)
≤

logN∞
(
FScore;

αε

CNormLoutBinBX
; {(x(i)

t , z(i))}i∈[m]
t∈[T]

)
+ logN∞

(
Fin;

(1− α)ε

Lout
; {x(i)

t }
i∈[m]
t∈[T] ; ‖ · ‖2

)
,

where FScore = {(x, z) 7→ Score(x, z; θs) : θs ∈ Θs}, and
Fin = {x 7→ φin(x; θin) : θin ∈ Θin}.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Note that the bound is in terms of theN∞ covering number
of functions that dependent on dimensions d or k and not
T . The effect of T only shows up in the number of samples
to cover. Crucially, for some function classes (e.g. linear
functions (Zhang, 2002)), N∞ scales only logarithmically
with the number of samples. This is exactly what allows us
to obtain our log T capacity bounds.

Since w is fixed, an ε-covering of Fhead directly gives us
an εBw-covering for Fscalar, implying

logN∞
(
Fscalar; ε;

{
(X(i), z(i))

}m
i=1

)
≤ logN∞

(
Fhead; ε/Bw;

{
(X(i), z(i))

}m
i=1

, ‖ · ‖2
)
.

Proof overview. In order to prove the bound, we first show
a Lipschitzness property of fhead. This property allows us
to construct a cover by using covers for FScore and Fin.

Lemma 4.3 (`∞-Lipschitzness of fhead). For any θs, θ̂s ∈
Θs, θin, θ̂in ∈ Θin; for all X ∈ RT×d, such that∥∥X>∥∥

2,∞ ≤ BX ,∥∥∥fhead(X, z; θs, θin, w)− fhead(X, z; θ̂s, θ̂in, w)
∥∥∥ ≤

CNormLoutBinBX

∥∥∥Score(X, z; θs)− Score(X, z; θ̂s)
∥∥∥
∞

+ Lout

∥∥∥φin(X; θin)− φin(X; θ̂in)
∥∥∥

2,∞
.

The most crucial aspect of this proof is to avoid a spurious
T dependence when accounting for the attention mecha-
nism. The key observation here is that the attention part
of the network is computed using Norm, whose Jacobian
norm is bounded. This allows us to use the mean-value
theorem to move to the maximum (`∞) error over T tokens
instead of sum (`1), which could potentially incur a T fac-
tor. Furthermore, this allows us to combine all samples and
tokens and construct an `∞-cover directly formT samples.

4.2. Capacity of a Transformer head

Let us now look at the case of a Transformer self-attention
head and instantiate the covering bound. For ease of pre-
sentation and to focus on the self-attention part, we collapse
WQW

>
K to a single matrix, set k = d and remove the linear

layer WC
2. Then the Transformer self-attention head (for

any fixed τ ∈ [T]) can be described as

ftf-head(X;WV ,WQK) :=

σ
(
W>V X

>softmax
(
XW>QKxτ

))
which is obtained from the general formulation by setting
the context to be xτ , Score(X,xτ ;WQK) = XW>QKxτ ,
Norm = softmax and φout = σ.

2See Appendix A.7 for an analysis of general deep Trans-
former models.

Because the number of parameters in a Transformer self-
attention head is O(d2), with no dependence on T , one
might presume by simple parameter counting that the ca-
pacity of the class of these heads does not grow as the
context length T grows. But capacity is not solely gov-
erned by the number of parameters—for example, the class
{x ∈ R 7→ sign(sin(αx))}α∈R has a single parameter but
infinite VC-dimension. One might still hope to prove, for
the special case of Transformer heads, a T -independent up-
per bound on the VC-dimension (or rather, its analog for
real-valued functions, the pseudo-dimension). We observe
that, in fact, the pseudo-dimension of this class does grow
with T .

Proposition 4.4. When the embedding dimension is
d = 3, the class Ftf-head-unbounded (:= {X 7→
ftf-head(X;WV ,WQK) : WV ,WQK ∈ Rd×d}) of Trans-
former self-attention heads with unbounded norm has
pseudo-dimension ≥ blog T c.

The proofs for this subsection can be found in Appendix A.

Let us now define the function class of self-attention heads
with bounded weight norms:

Ftf-head := {X 7→ ftf-head(X;WV ,WQK) :

‖WV ‖2,1 ≤ B2,1
V , ‖WV ‖ ≤ BV , ‖W>QK‖2,1 ≤ B

2,1
QK}.

Since WV ,WQK have dimensions dependent on d and k,
bounding their norms does not hide a T dependence. As be-
fore, to convert this vector-valued function class to a scalar
output function class, we define

Ftf-scalar :=

{X 7→ w>f(X) : f ∈ Ftf-head, w ∈ Rd, ‖w‖ ≤ Bw}.

We obtain the following bound on the covering number of
Ftf-head as a corollary of Theorem 4.2:

Corollary 4.5. For any ε > 0 and X(1), . . . , X(m) ∈
RT×d such that

∥∥∥X(i)>
∥∥∥

2,∞
≤ BX for all i ∈ [m], the

covering number of Ftf-head satisfies

logN∞(Ftf-head; ε;X
(1), . . . , X(m), ‖ · ‖2)

. (LσBX)2 ·

(
(B2,1

V)
2
3 + (B2,1

QKBV)
2
3

)3

ε2
· log(mT)

Here . hides logarithmic dependencies on quantities be-
sides m and T .

Proof overview. The above result follows from bounding
the covering numbers of

FQK := {z 7→ x>τ WQKz : ‖W>QK‖2,1 ≤ B
2,1
QK}, and

FV := {z →W>V z : ‖WV ‖2,1 ≤ B2,1
V , ‖WV ‖ ≤ BV }.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Note that |x>τ WQKz − x>τ WQK ẑ| ≤ ‖WQKz −WQK ẑ‖
since ‖xτ‖ ≤ 1, so the covering number of FQK is at most
the covering number of the class of functions of the form
z 7→ WQKz. Therefore, a covering number bound for the
vector-valued linear function class suffices to handle both
covering numbers:

Lemma 4.6. LetW : {W ∈ Rd1×d2 : ‖W>‖2,1 ≤ BW },
and consider the function class F : {x 7→Wx : W ∈ W}.
For any ε > 0 and x(1), . . . , x(N) ∈ Rd1 satisfying ∀i ∈
[N],

∥∥x(i)
∥∥ ≤ BX ,

logN∞(F ; ε;x(1), . . . , x(N); ‖ · ‖2)

.
(BXBW)2

ε2
log(d1N).

Note that this bound only depends logarithmically on the
context length, as desired. The proof can be found in Ap-
pendix A.

Finally, our analysis is compatible with the following addi-
tional components:

Positional embeddings. In practice, the permutation-
invariant symmetry of a Transformer network is broken
by adding a positional embedding matrix P ∈ RT×d to
the input X at the first layer. In practice, the embedding
matrix is often fixed (not trainable). Our results extend
to this setting in a straightforward way; see Appendix
A.5. If these matrices are to be trained from a sufficiently
large class (say, ‖P‖2,∞ ≤ 1), the dependence of the
log-covering number on T could become linear.

Residual connections. Including residual connections
(e.g. redefining ftf-head(X) as xt + ftf-head(X) for some
index t ∈ [T]) simply increases the Lipschitz constant
of each layer (w.r.t. the input) by at most 1. As long
as BV = Ω(1), this only changes our covering number
bounds by a constant factor.

Multi-head self-attention. In almost all applications of
Transformers, multiple parallel self-attention heads are
used, and their outputs aggregated, to allow for a richer
representation. Our analysis directly extends to this setting;
see Appendix A.6 for details. When a single attention
head is replaced with the sum of H parallel heads, the
log-covering number scales up by a factor of poly(H).

Layer normalization. State-of-the-art Transformer net-
works are trained with layer normalization modules (Ba
et al., 2016), which is generally understood to aid optimiza-
tion. We keep a variant of layer normalization in the cover-
ing number analysis– it proves to be useful in the analysis
of full attention blocks (see Appendix A.7), as it keeps the
norm of the embedding of each token bounded. Remov-
ing these layers would lead to a worse dependence on the
spectral norm of the matrices.

4.3. Capacity bounds for multi-layer Transformers

In this section, we will extend our results for L-
layer Transformer blocks. Denote the weights of
layer i by W (i) :=

{
W

(i)
Q ,W

(i)
K ,W

(i)
V ,W

(i)
C

}
. Fur-

ther denote the set of weights up to layer i by
W 1:i = (W (1), . . . ,W i−1). Denote the input repre-
sentation of layer i by g

(i)
tf-block(X;W 1:i). We induc-

tively define g
(i)
tf-block : RT×d → RT×d starting with

g
(1)
tf-block(X;W 1:1) = X (the input):

g
(i+1)
tf-block

(
X;W 1:i+1

)
:=

Πnorm

(
σ
(

Πnorm

(
f
(
g

(i)
tf-block

(
X;W 1:i

)
;W (i)

)))
W

(i)
C

)
with f (Z; {WQ,WK ,WV , ·}) :=

RowSoftmax
(
ZWQ (ZWK)

>
)
ZWV ,

where Πnorm denotes layer normalization3 applied to each
row. We use a slightly modified version of LayerNorm
where instead of normalizing to norm 1, we project it to
the unit ball. Let the class of depth-L transformer blocks
be

F (L)
tf-block :={
X → g

(L+1)
tf-block(X;W 1:L+1) : ∀ i ∈ [L],∥∥∥W (i)

V

∥∥∥
2
,

∥∥∥∥W (i)
K W

(i)
Q

>
∥∥∥∥

2

,
∥∥∥W (i)

C

∥∥∥
2
≤ C2,∥∥∥W (i)

V

∥∥∥
2,1
,

∥∥∥∥W (i)
K

>
W

(i)
Q

∥∥∥∥
2,1

,
∥∥∥W (i)

C

∥∥∥
2,1
≤ C2,1

}
.

To obtain a final scalar output, we use a linear function of
the [CLS] output:

gtf-scalar(X;W 1:L+1, w) = w>
[
g
(
X;W 1:L+1

)]
[CLS],:

.

Let the scalar output function class be F (L)
tf-scalar := {X →

w>f(X)[CLS] : f ∈ F (L)
tf-block, w ∈ Rd, ‖w‖ ≤ Bw}.

Theorem 4.7 (Theorem A.17 (simplified)). Suppose ∀i ∈
[m],

∥∥X(i)
∥∥

2,∞ ≤ BX , then we have

logN∞(F (L)
tf-block; ε;X

(1), . . . , X(m))

. (C2Lσ)O(L) ·
B2
XB

2
wC

2
2,1

ε2
· log(dmT).

Note that the dependence on d and T is only logarithmic
even for deeper networks. The dependence on (2, 1)-norms

3Layer normalization allows for the norms of the outputs of
each token in each layer to remain bounded by 1. Note that the
norm of the entire input can still have a dependence on T . Our
results would go through with a worse dependence on the spectral
norms if we were to remove layer norm.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

of the weight matrices is quadratic. As long as the spectral
norms of the matrices are bounded by 1 and σ is 1-Lipschitz
(which holds for sigmoids and ReLUs), the exponential de-
pendence on L can be avoided.

5. Attention approximates sparse functions
The results in Section 4 show that function classes bottle-
necked by self-attention mechanisms have “small” statisti-
cal capacity in terms of the context size. In this section, we
answer the converse question: which functions of interest
are in these classes? We show that Transformers are able
to represent sparse interactions in the context with bounded
weight norms, and can thus learn them sample-efficiently.

Consider the class of Boolean functions f : {0, 1}T → R
which are s-sparse: they only depend on s � T of their
inputs. We will construct mappings from such functions
to parameters of a self-attention head ftf-head composed
with a feedforward network fmlp; note that ftf-head ◦ fmlp

is the standard Transformer block. Intuitively, ftf-head is
constructed to “keep” the correct s-dimensional subset of
inputs and “forget” the rest, while fmlp “memorizes” the
values of f on these s inputs, using 2O(s) parameters.

Setup. We consider the classes of Boolean functions
f : {0, 1}T → R representable by bounded-norm scalar-
output Transformer heads ftf-scalar : RT×d → R. To do
this, we must first fix a mapping from {0, 1}T to RT×d;
we discuss several natural choices in Appendix B.1. The
simplest of these uses a sum of token and positional em-
beddingsX(b)t,: := ebt +vt, for a set of approximately or-
thogonal unit vectors {e0, e1}∪{v1, . . . , vT } of dimension
d = Θ(log T). After choosing a mapping X(b), the setup
of the representation problem is as follows: given f(b),
find Transformer weights θtf-head and feedforward network
weights θmlp such that

ftf+mlp(X(b); θtf-head, θmlp) :=

fmlp (ftf-head(X(b); θtf-head); θmlp) ≈ f(b),∀b ∈ {0, 1}T .

Main representational results. For any size-s subset of
indices I ⊆ [T], we show that Transformer blocks can rep-
resent all I-sparse Boolean functions, whose values only
depend on the inputs at the coordinates in I. We give infor-
mal statements of these approximation results below, and
present the precise statements in Appendix B.2.

Proposition 5.1 (Sparse variable creation via Transform-
ers; informal). Under any of the input mappings X(b), we
have the following guarantees:

• ftf-scalar can approximate a particular monotone symmet-
ric s-sparse Boolean function, with norms ‖WQ‖F ≤
O (log(Ts)) ; ‖WK‖F , ‖WV ‖F , ‖WC‖F ≤ O(s).

• ftf+mlp can exactly represent symmetric s-sparse func-

tions, with the same Transformer weight norms
as above; the feedforward network weights satisfy
‖W1‖F , ‖W2‖F , ‖w‖F ≤ O(poly(s)).

• ftf+mlp can exactly represent general s-sparse func-
tions, with the same Transformer weight norms
as above; the feedforward network weights satisfy
‖W1‖F , ‖W2‖F , ‖w‖F ≤ O(2s · poly(s)).

These results and the capacity bounds from Section 4 are
simultaneously meaningful in the regime of s � log T .
An appealing interpretation for the s = 2 case is that
a single Transformer head can learn a single logical gate
(i.e. AND,OR,NAND, ...) in a Boolean circuit, with d and
weight norms scaling as log T .

Proof ideas. Each construction uses the same basic idea:
select WQ,WK so that the attention mixture weights ap-
proximate the uniform distribution over the relevant posi-
tions, then use the ReLU network to memorize all distinct
values of f . Full proofs are given in Appendix B.5.

Other realizable functions. Since there are
(
T
s

)
s-sparse

subsets of input indices, the sample complexity of learning
a sparse Boolean function must scale at least as Ω(s log T),
matching the capacity bounds in terms of the log T depen-
dence. However, sparse functions are not the only poten-
tially useful functions realizable by bounded-norm Trans-
formers. For instance, with WQ = WK = 0, so that
all scores are zero, a Transformer head can take an av-
erage of T embeddings X → 1

T 1
>XWV . More gener-

ally, departing from the “orthogonal context vectors” em-
bedding of Boolean inputs but using the same construc-
tions as in this section, it is straightforward to conclude that
bounded-norm Transformers can compute global averages
of tokens whoseXWK embeddings lie in an s-dimensional
subspaces. This is why our results do not contradict the
empirical finding of Clark et al. (2019) that some attention
heads in trained Transformer models attend broadly. It is
also straightforward to extend some of these results beyond
Boolean domains; see Section B.4 for a sketch.

Bypassing theoretical limitations. Hahn (2020) points out
that with constant weight norms, a Transformer’s ability to
express global dependencies degrades with context length:
as T → ∞, the maximum change in output caused by al-
tering a single input token approaches 0, and thus various
interesting formal languages cannot be modeled by a Trans-
former in this particular limit. The constructions in this
section show that this can be circumvented by allowing d
and the weight norms to scale as log(T).

6. Experiments
Sections 4 and 5 show theoretically that Transformers can
learn sparse Boolean functions, with sparse regression-like

Inductive Biases and Variable Creation in Self-Attention Mechanisms

102 103

context length T

50

60

70

80

90

100

110

120

cr
iti

ca
l s

am
pl

e
siz

e

Transformer, 3-way AND

Figure 2. Main experimental finding: the sample complexity of
learning a 3-sparse AND function of T input bits with Transform-
ers. For each T , we measure the smallest sample sizem necessary
to reach 100% validation accuracy on at least 80% of random tri-
als, finding that this threshold scales logarithmically with T .

sample complexity (in terms of the log T dependence). In
this section, we present an empirical study which probes
the end-to-end sample efficiency of Transformer architec-
tures with standard training and architecture hyperparame-
ters, and how it scales with the context length T .

Setup. We introduce a synthetic benchmark to support
our analysis, in which we measure the statistical limit for
learning sparse Boolean functions with Transformers. We
choose a distribution D on {0, 1}T , and a family of dis-
tinct functions {fi : {0, 1}T → {0, 1}}i=∈[N], where N
grows with T . Then, we choose an i∗ ∈ [N] uniformly
at random, and train a Transformer binary classifier on m
samples from D, with labels given by fi∗ , evaluating gen-
eralization error via holdout samples. Then, for any learner
to reach 100% accuracy on this sample, m ≥ Ω(logN)
samples are required (one sample reveals at most one bit of
information about i∗). We can then measure the empirical
scaling of the sufficient sample size m to solve this prob-
lem, in terms of N (and thus T).

Learning sparse conjunctions. Concretely, we can
choose fi be the set of all

(
T
s

)
conjunctions of s inputs

(e.g. y = x2 ∧ x3 ∧ x10), fixing the input distribution
D to be i.i.d. Bernoulli (we choose the bias to balance the
labels). The model must learn which subset of s features
are relevant, out of

(
T
s

)
possibilities; this requires at least

m ≥ Ω(s log T) samples. The theoretical analysis pre-
dicts that the sample complexity of learning any function
realizable by a bounded-norm Transformer should asymp-
totically have the same log T scaling. We choose a fixed
sparsity parameter s = 3, and measure how the empiri-
cal sample complexity (the smallest sample size m(T) at
which model training succeeds with non-negligible proba-
bility) scales with T .

Results. With architecture and training hyperparameters
typical of real Transformer setups (except the number of

0 200 400 600 800 1000
training iterations

0.5

0.6

0.7

0.8

0.9

1.0

va
lid

at
io

n
ac

cu
ra

cy

Training curves, T=300

m=200
m=50

0 20 40
Boolean input index t

10 6

10 4

10 2

100

at
te

nt
io

n
we

ig
ht

Attention weights

Figure 3. Additional visualizations for the sparse function learn-
ing experiments. Left: Examples of validation accuracy curves on
the same problem instance (T = 300), with sample sizes above
(m = 200) and below (m = 50) the threshold (≈ 70 from Fig-
ure 6). Training accuracy goes to 100% in both cases, but the
Transformer overfits (orange curves) when m is too small. Right:
Per-example attention weights for a successfully trained model
(T = 50, m = 300, I = {5, 20, 30}). The input-dependent
attention weights approximately zero out the irrelevant bits.

layers, which we set to 1), we indeed observe that the em-
pirical sample complexity appears to scale as log T ; see
Figure 6. Despite the exponentially large support of input
bit strings x and large total parameter count (∼ 105), the
attention weights vanish on the T − s irrelevant coordi-
nates, and the model converges to sparse solutions; this is
visualized in Figure 3 (right). Details are provided in Ap-
pendix C.1; in particular, model training near the statistical
threshold is extremely unstable, and extensive variance re-
duction (best of 5 random restarts; 40 replicates; a total of
∼ 104 training runs across each T,m) was necessary to
produce these scaling plots.

Beyond our analysis: sparse parities. When choosing the
family of sparse functions {fi}, we can replace the AND
operation with XOR: the label is the parity of a randomly
chosen subset of i.i.d. uniform input bits. In this setting,
unlike the AND case, there is a computational-statistical
gap: Θ(s log T) samples suffice to identify, but the fastest
known algorithms for learning parities with noise require
TΩ(s) time. In the statistical query model, Ω(T s) itera-
tions of noisy batch gradient descent are necessary (Kearns,
1998). Figure 4 (with details in Appendix C.2) shows
that when trained with i.i.d. samples, Transformer models
can learn sparse parities. This raises an intriguing ques-
tion, which is the computational analogue of the current
work’s statistical line of inquiry: how does local search
(i.e. gradient-based training) succeed at finding solutions
that correspond to sparse discrete functions? The present
work merely shows that these solutions exist; we intend to
address the computational mystery in future work.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

0 100 200 300 400 500
training iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
g

lo
ss

3-way parity of T=10 bits

0 250 500 750 1000 1250 1500
training iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3-way parity of T=15 bits

Figure 4. A curious empirical finding: Transformers can learn
sparse parities. Loss curves (across 10 random seeds for initializa-
tion and SGD samples) are shown for this setup with s = 3, T ∈
{10, 15}, exhibiting phase transitions from random guessing to
100% accuracy. See Appendix C.2 for details.

7. Conclusion and future work
This work establishes a statistical analysis of attention and
self-attention modules in neural networks. In particular, we
identify an inductive bias we call sparse variable creation,
consisting of (1) covering number-based capacity bounds
which scale as log T , and (2) constructions which show
that self-attention models with small weight norms can rep-
resent sparse functions. This analysis is supported by an
empirical study on learning sparse Boolean functions with
Transformers. We hope that these rigorous connections be-
tween attention and sparsity, as well as the proposed ex-
perimental protocols, will inform the practice of training
and regularizing these models, and the design of future
attention-based architectures.

We believe that it is possible to refine the covering num-
ber bounds (where we have only sought to obtain opti-
mal dependences on T) as well as the representation re-
sults (where we have not used the structure of the MLP,
beyond its capacity for exhaustive memorization). Signifi-
cant challenges (which are not specific to attention) remain
in closing the theory-practice gap: precisely understanding
the role of depth, as well as the trajectory of the optimiza-
tion algorithm.

An exciting line of empirical work has made progress on
understanding and interpreting state-of-the-art Transformer
language models by examining the activations of their at-
tention mechanisms (Clark et al., 2019; Tenney et al., 2019;
Rogers et al., 2020). In some cases, these works have found
instances in which Transformers seem to have learned fea-
tures that are reminiscent of (sparse) hand-crafted features
used in natural language processing. Reconciling our theo-
retical foundations work with this area of BERTology is an
avenue for future synthesis.

Acknowledgements
Sham Kakade acknowledges funding from the Office of
Naval Research under award N00014-22-1-2377 and the
National Science Foundation Grant under award #CCF-
1703574. We thank Nati Srebro for his questions regarding
the removal of the dimension factor in an earlier version of
this manuscript.

References
Anthony, M. and Bartlett, P. L. Neural network learning:

Theoretical foundations, volume 9. cambridge university
press Cambridge, 1999.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450, 2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

Bartlett, P., Foster, D. J., and Telgarsky, M. Spectrally-
normalized margin bounds for neural networks. arXiv
preprint arXiv:1706.08498, 2017.

Bartlett, P. L. and Mendelson, S. Rademacher and gaus-
sian complexities: Risk bounds and structural results.
Journal of Machine Learning Research, 3:463–482,
2002. URL http://www.jmlr.org/papers/
v3/bartlett02a.html.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the abil-
ity and limitations of transformers to recognize formal
languages. arXiv preprint arXiv:2009.11264, 2020a.

Bhattamishra, S., Patel, A., and Goyal, N. On the com-
putational power of transformers and its implications in
sequence modeling. arXiv preprint arXiv:2006.09286,
2020b.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch,
I. Decision transformer: Reinforcement learning via
sequence modeling. arXiv preprint arXiv:2106.01345,
2021a.

Chen, M., Li, X., and Zhao, T. On generalization bounds
of a family of recurrent neural networks. arXiv preprint
arXiv:1910.12947, 2019.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde, H., Kaplan,
J., Edwards, H., Burda, Y., Joseph, N., Brockman, G.,

http://www.jmlr.org/papers/v3/bartlett02a.html
http://www.jmlr.org/papers/v3/bartlett02a.html

Inductive Biases and Variable Creation in Self-Attention Mechanisms

et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021b.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with perform-
ers. arXiv preprint arXiv:2009.14794, 2020.

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D.
What does BERT look at? an analysis of BERT’s atten-
tion. arXiv preprint arXiv:1906.04341, 2019.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli,
G., and Sagun, L. Convit: Improving vision transformers
with soft convolutional inductive biases. arXiv preprint
arXiv:2103.10697, 2021.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. An image is worth
16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

Dudley, R. M. The sizes of compact subsets of hilbert space
and continuity of gaussian processes. Journal of Func-
tional Analysis, 1(3):290–330, 1967.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Golowich, N., Rakhlin, A., and Shamir, O. Size-
independent sample complexity of neural networks. In
Conference On Learning Theory, pp. 297–299. PMLR,
2018.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine,
S., Bengio, Y., and Schölkopf, B. Recurrent independent
mechanisms. In International Conference on Learning
Representations, 2020.

Goyal, A., Didolkar, A., Ke, N. R., Blundell, C., Beaudoin,
P., Heess, N., Mozer, M. C., and Bengio, Y. Neural pro-
duction systems. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

Hahn, M. Theoretical limitations of self-attention in neural
sequence models. Transactions of the Association for
Computational Linguistics, 8:156–171, 2020.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral networks, 2(5):359–366, 1989.

Hron, J., Bahri, Y., Sohl-Dickstein, J., and Novak, R. Infi-
nite attention: Nngp and ntk for deep attention networks.
In International Conference on Machine Learning, pp.
4376–4386. PMLR, 2020.

Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C.,
Ionescu, C., Ding, D., Koppula, S., Zoran, D., Brock,
A., Shelhamer, E., et al. Perceiver io: A general archi-
tecture for structured inputs & outputs. arXiv preprint
arXiv:2107.14795, 2021a.

Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., Vinyals,
O., and Carreira, J. Perceiver: General perception with
iterative attention. arXiv preprint arXiv:2103.03206,
2021b.

Janner, M., Li, Q., and Levine, S. Reinforcement learning
as one big sequence modeling problem. arXiv preprint
arXiv:2106.02039, 2021.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and
Bengio, S. Fantastic generalization measures and where
to find them. arXiv preprint arXiv:1912.02178, 2019.

Johnson, W. B., Lindenstrauss, J., and Schechtman, G. Ex-
tensions of lipschitz maps into banach spaces. Israel
Journal of Mathematics, 54(2):129–138, 1986.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Žı́dek, A., Potapenko, A., et al. Highly accurate protein
structure prediction with alphafold. Nature, 596(7873):
583–589, 2021.

Kearns, M. Efficient noise-tolerant learning from statistical
queries. Journal of the ACM (JACM), 45(6):983–1006,
1998.

Kerg, G., Kanuparthi, B., Goyal, A., Goyette, K., Bengio,
Y., and Lajoie, G. Untangling tradeoffs between recur-
rence and self-attention in artificial neural networks. Ad-
vances in Neural Information Processing Systems, 33,
2020.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Kim, H., Papamakarios, G., and Mnih, A. The lipschitz
constant of self-attention. In International Conference
on Machine Learning, pp. 5562–5571. PMLR, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lee-Thorp, J., Ainslie, J., Eckstein, I., and Ontanon, S.
Fnet: Mixing tokens with fourier transforms. arXiv
preprint arXiv:2105.03824, 2021.

Likhosherstov, V., Choromanski, K., and Weller, A. On
the expressive power of self-attention matrices. arXiv
preprint arXiv:2106.03764, 2021.

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepa-
ssi, R., Kaiser, L., and Shazeer, N. Generating
wikipedia by summarizing long sequences. arXiv
preprint arXiv:1801.10198, 2018.

Long, P. M. and Sedghi, H. Generalization bounds for
deep convolutional neural networks. arXiv preprint
arXiv:1905.12600, 2019.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Pretrained
transformers as universal computation engines. arXiv
preprint arXiv:2103.05247, 2021.

Luong, M.-T., Pham, H., and Manning, C. D. Effective ap-
proaches to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025, 2015.

Neyshabur, B., Tomioka, R., and Srebro, N. Norm-based
capacity control in neural networks. In Conference on
Learning Theory, pp. 1376–1401. PMLR, 2015.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. A
pac-bayesian approach to spectrally-normalized mar-
gin bounds for neural networks. arXiv preprint
arXiv:1707.09564, 2017.

Nielsen, M. A. Neural networks and deep learning, vol-
ume 25. Determination press San Francisco, CA, 2015.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
learning and induction heads. Transformer Circuits
Thread, 2022. https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Polu, S. and Sutskever, I. Generative language mod-
eling for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfitting
on small algorithmic datasets. In ICLR MATH-AI Work-
shop, 2021.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by genera-
tive pre-training. preprint, available at https:
//cdn.openai.com/research-covers/
language-unsupervised/language_
understanding_paper.pdf, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rogers, A., Kovaleva, O., and Rumshisky, A. A primer in
bertology: What we know about how bert works. Trans-
actions of the Association for Computational Linguis-
tics, 8:842–866, 2020.

Siegelmann, H. T. and Sontag, E. D. On the computational
power of neural nets. Journal of computer and system
sciences, 50(1):132–150, 1995.

Snell, C., Zhong, R., Klein, D., and Steinhardt, J. Approx-
imating how single head attention learns. arXiv preprint
arXiv:2103.07601, 2021.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D.,
Pham, P., Rao, J., Yang, L., Ruder, S., and Metzler, D.
Long range arena: A benchmark for efficient transform-
ers. arXiv preprint arXiv:2011.04006, 2020.

Tenney, I., Das, D., and Pavlick, E. Bert rediscovers the
classical nlp pipeline. arXiv preprint arXiv:1905.05950,
2019.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J.,
Lucic, M., et al. Mlp-mixer: An all-mlp architecture for
vision. arXiv preprint arXiv:2105.01601, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Vuckovic, J., Baratin, A., and Combes, R. T. d. A
mathematical theory of attention. arXiv preprint
arXiv:2007.02876, 2020.

Wei, C., Chen, Y., and Ma, T. Statistically mean-
ingful approximation: a case study on approximat-
ing turing machines with transformers. arXiv preprint
arXiv:2107.13163, 2021.

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudi-
nov, R., Zemel, R., and Bengio, Y. Show, attend and
tell: Neural image caption generation with visual atten-
tion. In International conference on machine learning,
pp. 2048–2057. PMLR, 2015.

Yang, G. Tensor programs ii: Neural tangent kernel for any
architecture. arXiv preprint arXiv:2006.14548, 2020.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J.,
and Kumar, S. Are transformers universal approxima-
tors of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019.

Zhang, J., Karimireddy, S. P., Veit, A., Kim, S., Reddi, S. J.,
Kumar, S., and Sra, S. Why are adaptive methods good
for attention models? arXiv preprint arXiv:1912.03194,
2019.

Zhang, T. Covering number bounds of certain regularized
linear function classes. Journal of Machine Learning
Research, 2(Mar):527–550, 2002.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

A. Proofs of capacity bounds
In this section we present the full proofs (including the omitted proofs) of our capacity bounds. We also cover relevant
background and useful technical lemmas.

A.1. Rademacher complexity and generalization bounds

Here we briefly review Rademacher complexity and its relationship to covering numbers and generalization bounds. We
refer the reader to (Bartlett & Mendelson, 2002) for a more detailed exposition.
Definition A.1 (Empirical Rademacher complexity). For a given class of functionsF = {f : X → R} and {z(i) ∈ X}mi=1,
the empirical Rademacher complexity R̂(F ; z(1), . . . , z(m)) is defined as

R̂(F ; z(1), . . . , z(m)) =
1

m
Eε

[
sup
f∈F

m∑
i=1

εif(z(i))

]
,

where ε is a vector of m i.i.d. Rademacher random variables (Pr[εi = 1] = Pr[εi = −1] = 1/2).

In order to relate the Rademacher complexity and `∞-covering numbers, we use a modified version of Dudley’s metric
entropy.
Lemma A.2 (Dudley (1967); modified). Consider a real-valued function class F such that |f | ≤ A for all f ∈ F . Then

R̂(F ; z(1), . . . , z(m)) ≤ c · inf
δ≥0

(
δ +

∫ A

δ

√
logN∞(F ; ε; z(1), . . . , z(m))

m
dε

)
for some constant c > 0.

Proof sketch. The original statement is for 2-norm covering number, but the ∞-norm case reduces to the 2-norm case
because N2(·) ≤ N∞(·). The original statement also fixes δ = 0 rather than taking an infimum. Also, the standard
statement has the integral going from 0 to∞, but these are easily replaced with δ and A.

For our paper, we will instantiate the above lemma for log covering numbers scaling as 1/ε2.
Corollary A.3 (Rademacher complexity via covering number). Consider a real-valued function class F such that |f | ≤ A
for all f ∈ F . Suppose logN∞(F ; ε; z(1), . . . , z(m)) ≤ CF/ε2, then

R̂(F ; z(1), . . . , z(m)) ≤ c ·
√
CF
m
·
(

1 + log
(
A
√
m/CF

))
for some constant c > 0.

Proof. Using Lemma A.2, we have for some constant c > 0,

R̂(F ; z(1), . . . , z(m)) ≤ c inf
δ≥0

(
δ +

∫ A

δ

√
logN∞(F ; ε; z(1), . . . , z(m))

m
dε

)

≤ c inf
δ≥0

(
δ +

∫ A

δ

√
CF
ε2m

dε

)

= c inf
δ≥0

(
δ +

√
CF
m

∫ A

δ

1

ε
dε

)

= c inf
δ≥0

(
δ +

√
CF
m

log(A/δ)

)

= c

√
CF
m

(
1 + log

(
A
√
m/CF

))
.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

We can now obtain a generalization guarantee from the Rademacher complexity of a function class:

Theorem A.4 (Bartlett & Mendelson (2002)). LetD be a distribution overX×R and let ` : R×R be a b-bounded loss func-
tion that isL-Lipschitz in its first argument. For a given function classF and f ∈ F , let risk(f ;D) := E(x,y)∼D[`(f(x), y)]

and r̂isk
(
f ; (z(i), y(i))mi=1

)
:= 1

m

∑m
i=1 `(f(z(i)), y(i)). Then for any δ > 0, with probability at least 1−δ, simultaneously

for all f ∈ F , ∣∣∣risk(f ;D)− r̂isk
(
f ; (z(i), y(i))mi=1

)∣∣∣ ≤ 4L R̂
(
F ; z(1), . . . , z(m)

)
+ 2b

√
log(1/δ)

2m
.

Combining the above, we get:

Lemma A.5 (Lemma 2.2 (restated)). Consider a function class F such that |f | ≤ A for all f ∈ F and
logN∞(F ; ε;x(1), . . . , x(m)) ≤ CF/ε

2 for all x(1), . . . , x(m) ∈ Xm. Then for any δ > 0, with probability at least
1− δ, simultaneously for all f ∈ F ,∣∣∣risk(f ;D)− r̂isk

(
f ; (x(i), y(i))mi=1

)∣∣∣ ≤ 4cL

√
CF
m

(
1 + log

(
A
√
m/CF

))
+ 2b

√
log(1/δ)

2m
,

for some constant c > 0.

A.2. Useful lemmas

Lemma A.6. Consider function f : Rd → ∆d−1 such that the Jacobian of the function satisfies ‖J f(θ)‖1,1 ≤ cf for all
θ ∈ Rd, then for any vectors θ1, θ2 ∈ Rp,

‖f(θ1)− f(θ2)‖1 ≤ cf‖θ1 − θ2‖∞.

Proof. By the fundamental theorem of calculus applied to g(t) = f(tθ1 + (1− t)θ2), followed by a change of variables:

f(θ1)− f(θ2) =

(∫ 1

0

J (tθ1 + (1− t)θ2) dt

)
(θ1 − θ2),

We have

‖f(θ1)− f(θ2)‖1 =

∥∥∥∥∫ 1

0

J (tθ1 + (1− t)θ2) (θ1 − θ2)dt

∥∥∥∥
1

By Jensen’s inequality:

≤
∫ 1

0

‖J (tθ1 + (1− t)θ2) (θ1 − θ2)‖1 dt

Using ‖Ax‖1 ≤ ‖A‖1,1 ‖x‖∞:

≤
∫ 1

0

‖J (tθ1 + (1− t)θ2)‖1,1 ‖θ1 − θ2‖∞ dt

By assumption on the Jacobian:
≤ cf ‖θ1 − θ2‖∞ .

Corollary A.7. For vectors θ1, θ2 ∈ Rp, ‖softmax(θ1)− softmax(θ2)‖1 ≤ 2‖θ1 − θ2‖∞.

Proof. Observe that for softmax, the Jacobian satisfies:

J(θ) = diag(softmax(θ))− softmax(θ)softmax(θ)>.

We have for all θ, h,

‖J(θ)‖1,1 =

p∑
i=1

p∑
j=1

|softmax(θ)i(1[i = j]− softmax(θ)j)|

Inductive Biases and Variable Creation in Self-Attention Mechanisms

=

p∑
i=1

softmax(θ)i

1− softmax(θ)i +
∑
j 6=i

softmax(θ)j


= 2

p∑
i=1

softmax(θ)i (1− softmax(θ)i)

≤ 2.

Combining the above with Lemma A.6 gives the desired result.

Lemma A.8. For αi, βi ≥ 0, the solution to the following optimization

min
x1,...,xn

n∑
i=1

αi
x2
i

subject to
n∑
i=1

βixi = C

is γ3

C2 and is achieved at xi = C
γ

(
αi

βi

)1/3

where γ =
∑n
i=1 α

1/3
i β

2
3
i .

Proof. The proof follows by a standard Lagrangian analysis.

Lemma A.9 (Contractivity of Πnorm). Let Πnorm be the projection operator onto the unit norm ball. For any vectors u, v,
we have ‖Πnorm(u)−Πnorm(v)‖ ≤ ‖u− v‖.

Proof. If u, v are both in the unit ball then this follows trivially. Let us assume that ‖u‖ ≥ ‖v‖ and ‖u‖ ≥ 1 WLOG. First
suppose ‖v‖ ≤ 1. Let B(1)

V = αu be the projection of v in the direction of u, and let B2
V = v −B(1)

V . Then

‖Πnorm(u)−Πnorm(v)‖2 = ‖u/‖u‖ − v‖2

= ‖u/‖u‖ − (αu+B2
V)‖2

= ‖(‖u‖−1 − α)u−B2
V ‖2

= (‖u‖−1 − α)2‖u‖2 + ‖B2
V ‖2

≤ (1− α2)‖u‖2 + ‖B2
V ‖2 since ‖u‖−1 < α < 1

= ‖u− (αu+B2
V)‖2

= ‖u− v‖2

If ‖v‖ > 1, then

‖Πnorm(u)−Πnorm(v)‖ = ‖Πnorm(u/‖v‖)−Πnorm(v/‖v‖)‖ ≤ ‖u/‖v‖ − v/‖v‖‖ < ‖u− v‖.

where the second-to-last inequality follows from the ‖v‖ < 1 case.

Lemma A.10 (Zhang (2002), Theorem 4). Let V : {v : v ∈ Rd1 , ‖v‖ ≤ B1} and Flinear = {x 7→ v>x : v ∈ V}. For any
δ > 0 and x(1), . . . , x(N) satisfying ‖x(i)‖ ≤ B2 ∀i,

logN∞(Flinear; ε;x
(1), · · · , x(N)) ≤ 36

B2
1B

2
2

ε2
log(2d4B1B2/ε+ 2eN + 1).

A.3. Pseudo-dimension lower bound

Because the number of parameters in a Transformer self-attention head isO(d2), with no dependence on T , one might guess
that the capacity of the class of these heads does not need to grow with the context length T . But parameter counting can
be misleading—for example, the class {x ∈ R 7→ sign(sin(αx))}α∈R has a single parameter but infinite VC-dimension.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

We observe that, when the weight norms are unbounded, the pseudo-dimension of the class of Transformer self-attention
heads does grow with T , at least logarithmically, even when the embedding dimension is as small as 3.

Recall that a Transformer self-attention head is of the form

ftf-head(X;WV ,WQK) := σ
(
W>V X

>softmax
(
XW>QKxτ

))
Let σ : R → R be any activation function that satisfies the following condition: there is a constant c ∈ R such that for
a > 1

2 and b < 1
2 , we have σ(a) > c, σ(b) < c.

The pseudo-dimension of a concept class F is defined as

Pdim(F) := max
c∈R

VCdim({h(x) = sign(f(x)− c) : f ∈ F})

Proof of Proposition 4.4. For the purposes of this proof, we will treat xτ as a fixed vector—so either it is not treated as
part of the input, or it is set to the same value for all of the inputs. Thus, W>QKxτ is a fixed vector, which we call wQK .
Moreover, we will set WV to be a d× 1 matrix, so we will treat it as a vector wV ∈ Rd. Thus, we will be dealing with the
following restricted concept class of unbounded Transformer self-attention heads:

ftf-head(X;wV , wQK) := σ
(
w>VX

>softmax (XwQK)
)

for wV , wQK ∈ Rd.

For simplicity, we consider the case where T is a power of 2. We will construct a set of log T inputs {X(i)}log T
i=1 in RT

that are shattered by Ftf−head−unbounded.

In particular, indexing t = 0, . . . , T − 1, let

X
(i)
t := (cos(2πt/T), sin(2πt/T),bin(t)i)

where bin(t)i is the ith bit of the binary expansion of the integer t (padded with 0s in the front such that the expansion is
length log T). We can think of the first two coordinates as a (fixed) “positional encoding” which allows for the attention
mechanism to select a single position, and the third coordinate as the “token embedding”. The token embedding is de-
signed such that for each binary vector of length log T , there is a position t such that the vector of values at that position
(X

(i)
t [3])log T

i=1 corresponds to the vector, thus inducing a shattering.

For s = 0, . . . T − 1, let
w

(s)
QK := (T 2 cos(2πt/T), T 2 sin(2πt/T), 0).

These attention weights are of sufficiently large magnitude that they “pick out” a single coordinate. Also, let

w
(s)
V := (0, 0, 1).

Then we claim that the set

Observe that
w

(s)
QK

>
x

(i)
t = T 2 cos(2π(s− t)/T),

so we have

softmax(Xw
(s)
QK)[t] =

exp(T 2 cos(2π(s− t)/T))∑T−1
τ=0 exp(T 2 cos(2π(s− τ)/T))

=
exp(T 2 cos(2π(s− t)/T))∑T−1
τ=0 exp(T 2 cos(2πτ/T))

Let us bound the denominator using the fact that cos(θ) ≤ 1− 2
π2 θ

2 for θ ∈ [0, π]:

T−1∑
τ=0

exp(T 2 cos(2πτ/T)) ≤ exp(T 2) + 2

b(T−1)/2c∑
τ=1

exp(T 2 cos(2πτ/T))

Inductive Biases and Variable Creation in Self-Attention Mechanisms

≤ exp(T 2) + 2

b(T−1)/2c∑
τ=0

exp

(
T 2

(
1− 2

π2
(2πτ/T)2

))

= eT
2

+ 2eT
2
b(T−1)/2c∑

τ=1

e−8τ2

≤ eT
2

+ 2eT
2

∫ b(T−1)/2c

ρ=0

e−8ρ2

dρ

≤ eT
2

+ 2eT
2

∫ ∞
ρ=0

e−8ρ2

dρ

= eT
2

+

√
π

8
eT

2

Hence, for each s,

softmax(Xw
(s)
QK)[s] ≥ 1

1 +
√

π
8

>
1

2

and ∑
t6=s

softmax(Xw
(s)
QK)[t] ≤ 1− 1

1 +
√

π
8

<
1

2

Then we claim that the set {ftf-head(·;w(s)
V , w

(s)
QK)}T−1

s=0 shatters {X(i)}log T
i=1 :

ftf-head(X
(i);w

(s)
V , w

(s)
QK) = σ

(
w

(s)
V

>
X>softmax

(
X(i)w

(s)
QK

))
= σ

(
w

(s)
V

> T−1∑
t=0

softmax
(
X(i)w

(s)
QK

)
[t] · bin(t)i

)

which is greater than c if bin(s)i = 1 and is less than c if bin(s)i = 0, since the t = s term in the sum dominates all the
other terms. Thus, the different choices of s induce a shattering.

A.4. Covering number upper bounds

Proof of Lemma 4.3. Observe that,∥∥∥fhead(X, z; θs, θin)− fhead(X, z; θ̂s, θ̂in))
∥∥∥

=
∥∥∥φout

(
φin(X; θin)>Norm(Score(X, z; θs))

)
− φout

(
φin(X; θ̂in)>Norm(Score(X, z; θ̂s))

)∥∥∥
By Lout-Lipschitzness of φout and bound on ‖w‖:

≤ Lout

∥∥∥φin(X; θin)>Norm(Score(X, z; θs))− φin(X; θ̂in)>Norm(Score(X, z; θ̂s))
∥∥∥

By triangle inequality:

≤ Lout

∥∥∥φin(X; θin)>
(
Norm(Score(X, z; θs))− Norm(Score(X, z; θ̂s))

)∥∥∥
+ Lout

∥∥∥∥(φin(X; θin)− φin(X; θ̂in)
)>

Norm(Score(X, z; θ̂s))

∥∥∥∥
Using ‖Pv‖ ≤ ‖P‖2,∞‖v‖1 and Bin-boundedness of φin:

≤ LoutBin

∥∥∥Norm(Score(X, z; θs))− Norm(Score(X, z; θ̂s))
∥∥∥

1

Inductive Biases and Variable Creation in Self-Attention Mechanisms

+ Lout

∥∥∥∥(φin(X; θin)− φin(X; θ̂in)
)>∥∥∥∥

2,∞

∥∥∥Norm(Score(X, z; θ̂s))
∥∥∥

1

By Lemma A.6 and the assumption on Norm:

≤ LoutCNorm

∥∥φin(X; θin)>
∥∥

2,∞

∥∥∥Score(X, z; θs)− Score(X, z; θ̂s)
∥∥∥
∞

+ Lout

∥∥∥∥(φin(X; θin)− φin(X; θ̂in)
)>∥∥∥∥

2,∞

By boundedness of φin and
∥∥X>∥∥

2,∞ ≤ BX :

≤ LoutCNormBinBX

∥∥∥Score(X, z; θs)− Score(X, z; θ̂s)
∥∥∥
∞

+ Lout

∥∥∥∥(φin(X; θin)− φin(X; θ̂in)
)>∥∥∥∥

2,∞
.

Proof of Theorem 4.2. Our goal is to show that for every ε > 0, collection of inputs (X(1), z(1)), . . . , (X(m), z(m)),
there is a cover Chead such that for all θs ∈ Θs, θin ∈ Θin, there is some (θ̂s, θ̂in) ∈ Chead such that
maxi

∥∥∥fhead(X(i), z(i); θs, θin)− fhead(X(i), z(i); θ̂s, θ̂in)
∥∥∥ ≤ ε.

Observe that for all θs, θ̂s,

max
i∈[m]

‖Score(X(i), z(i); θs)− Score(X(i), z(i); θ̂s)‖∞ = max
i∈[m],t∈[T]

∣∣∣Score(x(i)
t , z(i); θs)− Score(x

(i)
t , z(i); θ̂s)

∣∣∣ .
Similarly, for all θin, θ̂in,

max
i∈[m]

∥∥∥∥(φin(X(i); θin)− φin(X(i); θ̂in)
)>∥∥∥∥

2,∞
= max
i∈[m],t∈[T]

∥∥∥φin(x
(i)
t ; θin)− φin(x

(i)
t ; θ̂in)

∥∥∥ .
This crucially allows us to aggregate over the i and t dimensions together.4 Therefore, we can consider N∞ covers for the
above to bound the overall covering number.

Let CScore be the εScore-cover (∞) for FScore over inputs
{

(x
(i)
t , z(i))

}
i∈[m],t∈[T]

of size

N∞
(
FScore; εScore; {(x(i)

t , z(i))}i∈[m],t∈[T]

)
.

Also, Let Cin be the εin-cover (∞) for Fin over inputs {x(i)
t }i∈[m],t∈[T] of size

N∞
(
Fin; εin; {x(i)

t }i∈[m],t∈[T]; ‖ · ‖2
)
.

We are ready to construct the cover for Fhead. Set Chead = {fhead(·; θ̂s, θ̂in))i∈[m] : θ̂s ∈ CScore, θ̂in ∈ Cin}. Then for any
θs ∈ Θs, θin ∈ Θin, there exists θ̂s, θ̂in ∈ Chead, such that for all i ∈ [m], using Lemma 4.3:∥∥∥fhead(X(i), z(i); θs, θin)− fhead(X(i), z(i); θ̂s, θ̂in)

∥∥∥ ≤ CNormLoutBinBXεScore + Loutεin.

The size of the cover we have constructed is,

log |Chead| = log |CScore|+ log |Cin|

= logN∞
(
FScore; εScore; {(x(i)

t , z(i))}i∈[m],t∈[T]

)
+ logN∞

(
Fin; εin; {x(i)

t }i∈[m],t∈[T]; ‖ · ‖2
)

and we are done.
4In the case of the Transformer self-attention mechanism, we will obtain∞-norm covering numbers for Score and φin that have only

logarithmic dependence on the number of examples. Because of this aggregation trick, the resulting covering number for the whole layer
will have merely logarithmic dependence on the context length T .

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Proof of Corollary 4.5. By Theorem 4.2, the covering number of Ftf-head satisfies

logN∞
(
Ftf-head; ε;

{
(X(i), z(i))

}m
i=1

)
≤ inf
α∈[0,1]

[
logN∞

(
FQK ;

αε

2LσBVBX
; {(x(i)

t , z(i))}i∈[m],t∈[T]

)
+ logN∞

(
FV ;

(1− α)ε

Lσ
; {x(i)

t }i∈[m],t∈[T]; ‖ · ‖2
)]

.

where we have used the fact that for a scalar-output Transformer layer:

• softmax satisfies the Jacobian assumption with Csoftmax = 2 using Corollary A.7.

• Lout is the Lipschitz constant of σ: Lσ .

• Bin is a bound on the norm of W>V x with respect to norm of x: BV .

By Lemma 4.6, for any εQK , εV > 0:

logN∞
(
FQK ; εQK ; {(x(i)

t , z(i))}i∈[m],t∈[T]

)
.

(B2,1
QKBX)2 log(dmT)

ε2
QK

logN∞
(
FV ; εV ; {(x(i)

t , z(i))}i∈[m],t∈[T]; ‖ · ‖2
)
.

(B2,1
V BX)2 log(dmT)

ε2
V

since WQK ,WV ∈ Rd×d (k = d). We want to choose εQK and εV to minimize the sum of the above two terms, subject to

2LσBVBXεQK + LσεV ≤ ε.

By Lemma A.8, the solution to this optimization leads to an optimal bound of:

logN∞(Ftf-head; ε;X
(1), . . . , X(M)) . (LσBX)2 ·

(
(B2,1

V)
2
3 + (B2,1

QKBVBX)
2
3

)3

ε2
· log(dmT).

Proof of Lemma 4.6. Our approach will be to construct a cover by decomposing the problem into two separate cover
problems, (1) `2-cover over the possible norms of the rows of W , and (2) `∞-cover of the setW constrained to the norms
dictated by the first cover. More formally, let us define:

W:,2 =


 ‖w1‖

...
‖wd1

‖

 : W =

w1

...
wd1

 ∈ W
 =

{
v ∈ Rd1 : ‖v‖1 ≤ BW

}
, and

Fv =

x→Wx : W =

w1

...
wd1

 ∈ Rd1×d2 ,∀i ‖wi‖ ≤ vi

 .

Denote CW to be the ε1-cover (in terms of `2-norm) for W:,2
5, and for any v ∈ Rd1 , denote Cv :=

N∞
(
Fv, ε2;x(1), . . . , x(N); ‖ · ‖2

)
. We will set ε1 and ε2 later.

5Here the cover is for a set and not a function.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

We will first show that C := {f : v ∈ CW , f ∈ Fv} is an (ε2 + BXε1)-cover (in terms of `∞) for F . Consider f ∈ F

parameterized by some W =

w1

...
wd1

. Since W ∈ W , we know that there is a v̄ ∈ CW , such that,

√√√√ d1∑
i=1

(‖wi‖ − v̄i)2 ≤ ε1.

Define W̄ =


v̄1 · w1

‖w1‖
...

v̄d1
· wd1

‖wd1
‖

. Then there exists f ∈ Fv̄ ⊆ C such that

max
i∈[N]

‖W̄x(i) − f(x(i))‖ ≤ ε2.

Now we have, for all i ∈ [N],

‖Wx(i) − f(x(i))‖ ≤ ‖W̄x(i) − f(x(i))‖+ ‖(W̄ −W)x(i)‖

≤ ε2 +

√√√√ d1∑
j=1

(v̄j − ‖wj‖)2

(
wj · x(j)

‖wj‖2

)2

≤ ε2 +BX

√√√√ d1∑
j=1

(v̄j − ‖wj‖)2)

≤ ε2 +BXε1.

Thus, we get the desired cover. Note that the size of the cover satisfies

log |C| ≤ log |CW |+ max
v∈CW

log |Cv|.

Now we need to construct the sub-covers and bound the size of C. Let us first construct the cover CW . Using Maurey’s
sparsification (see Theorem 3 in (Zhang, 2002)), we can find a proper cover of CW which satisfies,

log |CW | ≤
B2
W

ε2
1

log(2d1 + 1).

Let us now construct Cv for a fixed v. The approach will be to cover each of the rows of W independently, treating
each as specifying a linear function from Rd2 → R. By Lemma A.10, letting Z(b) : {z : z ∈ Rd2 , ‖z‖ ≤ b} and
Flinear(b) = {x 7→ z>x : z ∈ Z(b)}, for any δ > 0

logN∞(Flinear(b); δ;x
(1), · · · , x(N)) ≤ cb2B2

X log((1 + bBX/δ)N)

δ2
.

In fact the cover, which we denote by F̄linear(b; δ), is proper: F̄linear(b; δ) = {x 7→ z̄>x : z̄ ∈ Z̄} for some finite subset
Z̄ ⊂ Z(b). Then the cover for the matrix can be constructed as,

Cv =

x 7→ Z̄x : Z̄ =

 z̄1

...
z̄d1

 : z̄i ∈ F̂linear

(
vi; ε2

√
vi
‖v‖1

)
for all i

 .

Observe that this forms a cover for Fv . For any f ∈ Fv parameterized by W , let w̄i be the closest element in the
corresponding row covers, then we have

‖Wx(i) − W̄x(i)‖ =

√√√√ d2∑
j=1

(w>i x
(i) − w̄>i x(i))2 ≤

√√√√ d2∑
j=1

ε2
2 ·

vi
‖v‖1

= ε2.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Note that the size of Cv can be bounded as,

log |Cv| =
d2∑
i=1

logN∞
(
Flinear(vi); ε2

√
vi
‖v‖1

;x(1), · · · , x(N)

)

≤
d2∑
i=1

cv2
i ‖v‖1B2

X log((1 + ‖v‖1BX/ε2)N)

ε2
2vi

=
c‖v‖21B2

X log((1 + ‖v‖1BX/ε2)N)

ε2
2

≤ cB2
WB

2
X log((1 +BWBX/ε2)N)

ε2
2

.

Combining the above and setting ε1, ε2 appropriately, we get

log |C| ≤ B2
WB

2
X

ε2
log(d1N).

A.5. Capacity with positional embeddings

Since the Transformer architecture is permutation invariant for all t 6= τ , positional embeddings (fixed or trainable) are
typically added to the inputs to distinguish the different positions of the tokens. These positional embeddings are matrices
P ∈ RT×d such that P = [p1 . . . pT]> for pi ∈ Rd. Accounting for the positional embeddings as input, a single
Transformer attention head can be expressed as:

ftf-pos(X,P ;WV ,WQK) := σ
(
W>V (X + P)>softmax

(
(X + P)W>QK(xτ + pτ)

))
.

For a fixed positional embedding P , let us define

Ftf-pos(P) := {X → ftf-pos(X,P ;WV ,WQK) : ‖WV ‖2,1 ≤ B2,1
V , ‖WV ‖ ≤ BV , ‖W>QK‖2,1 ≤ B

2,1
QK}

. Position embedding just impacts the input into the covering bound argument which effects the bound in terms of the∥∥P>∥∥
2,∞ as given below,

Lemma A.11. For all X(1), . . . , X(m) ∈ RT×d such that
∥∥∥X(i)>

∥∥∥
2,∞
≤ BX for all i ∈ [m], and P ∈ RT×d such that

‖P>‖2,∞ ≤ BP , the covering number of Ftf-pos(P) satisfies

logN∞(Ftf-pos(P); ε;X(1), . . . , X(m), ‖·‖2) . (Lσ(BX+BP))2·

(
(B2,1

V)
2
3 + (2B2,1

QKBV (BX +BP))
2
3

)3

ε2
· log(dmT).

Proof. Observe that ftf-pos(X,P ;WV ,WQK) = ftf-head(X + P ;WV ,WQK). Thus we have,

logN∞
(
Ftf-pos(P); ε;

{
(X(i))

}m
i=1

, ‖ · ‖2
)

= logN∞
(
Ftf-head; ε;

{
X(i) + P

}m
i=1

, ‖ · ‖2
)
.

For all i ∈ [m],
∥∥(X(i) + P)>

∥∥
2,∞ ≤

∥∥∥X(i)>
∥∥∥

2,∞
+
∥∥P>∥∥

2,∞ ≤ BX +BP . Therefore, using Corollary 4.5, we get the

desired result.

Therefore our bounds go through for fixed positional embeddings. If we were to train the embeddings, we would need a
much finer cover on the embeddings which could incur a T dependence.

A.6. Capacity of multiple parallel heads

In virtually all practical applications of Transformers since their inception, instead of using one set of weights for an
attention head, there are parallel attention heads, which have separate identically-shaped parameters; their outputs are
concatenated. For the purposes of this analysis, suppose we have

ftf-heads

(
X;
{
W

[h]
V ,W

[h]
QK

}H
h=1

)
:=

H∑
h=1

ftf-head

(
X;W

[h]
V ,W

[h]
QK

)
.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Let us define the class of multi-head self-attention with H heads as

Ftf-heads :=
{
X 7→ ftf-heads

(
X;
{
W

[h]
V ,W

[h]
QK

}H
h=1

)
:

∀h ∈ [H],
∥∥∥W [h]

V

∥∥∥
2,1
≤ B2,1

V

[h]
,
∥∥∥W [h]

V

∥∥∥ ≤ B[h]
V ,

∥∥∥∥W [h]
QK

>
∥∥∥∥

2,1

≤ B2,1
QK

[h]
}
.

Lemma A.12. For all X(1), . . . , X(m) ∈ RT×d such that
∥∥∥X(i)>

∥∥∥
2,∞
≤ BX for all i ∈ [m], the covering number of

Ftf-heads satisfies

logN∞(Ftf-heads; ε;X
(1), . . . , X(m), ‖ · ‖2) . (LσBX)2 ·

(∑H
h=1(B2,1

V

[h]
)

2
3 + (2B2,1

QK

[h]
B

[h]
V)

2
3

)3

ε2
· log(dmT).

Proof. For all h ∈ [H], let Ch be an εh-covering of Ftf-head with weight bounds corresponding to head h. Since

ftf-heads

(
X;
{
W

[h]
V ,W

[h]
QK

}H
h=1

)
=
∑H
h=1 ftf-head

(
X;W

[h]
V ,W

[h]
QK

)
, we have C := C1 × . . . × CH6 is an

(∑H
h=1 εh

)
-

covering for Ftf-heads. Using Corollary 4.5 (and optimizing for εh using Lemma A.8, by breaking them into individual
errors for each head), we have

log |C| =
H∑
h=1

log |Ch| ≤
H∑
h=1

≤ (LσBX)2 ·

(∑H
h=1(B2,1

V

[h]
)

2
3 + (2B2,1

QK

[h]
B

[h]
V)

2
3

)3

ε2
· log(dmT).

To see the dependence on H , consider the setting where the weight bounds are the same for each head (dropping the [h]
subscript), then we get,

logN∞(Ftf-heads; ε;X
(1), . . . , X(m), ‖ · ‖2) . (LσBX)2 ·H3 ·

(
(B2,1

V)
2
3 + (2B2,1

QKBV)
2
3

)3

ε2
· log(dmT).

A.7. Capacity of multi-layer Transformers

This section analyzes the capacity of an L-layer Transformer. Let us denote the weights of layer i by W (i) :={
W

(i)
Q ,W

(i)
K ,W

(i)
V ,W

(i)
C

}
such that

∥∥∥∥W (i)
K W

(i)
Q

>
∥∥∥∥

2

≤ B(i)
QK ,

∥∥∥W (i)
V

∥∥∥
2
≤ B(i)

V ,
∥∥∥W (i)

C

∥∥∥
2
≤ B(i)

C and
∥∥∥∥W (i)

K

>
W

(i)
Q

∥∥∥∥
2,1

≤

B2,1
QK

(i)
,
∥∥∥W (i)

V

∥∥∥
2,1
≤ B2,1

V

(i)
and

∥∥∥W (i)
C

∥∥∥
2,1
≤ B2,1

C

(i)
. Let us further denote the set of weights up to layer i by

W 1:i = (W (1), . . . ,W i−1). Let the input representation of layer i be g(i)
tf-head(X;W 1:i). We inductively define g with

g
(1)
tf-head(X;W 1:1) = X

g
(i+1)
tf-head

(
X;W 1:i+1

)
= Πnorm

(
σ
(

Πnorm

(
f
(
g

(i)
tf-head

(
X;W 1:i

)
;W (i)

)))
W

(i)
C

)
with

f (Z; {WQ,WK ,WV ,WC}) = RowSoftmax
(
ZWQ (ZWK)

>
)
ZWV ,

where Πnorm is applied row-wise. Our final output is gtf-scalar(X;W 1:L+1, w) = w>g
(L)
tf-head

(
X;W 1:L+1

)
[CLS] for

‖w‖ ≤ Bw.

In order to construct a cover, we will first bound the distance between the function g with different weight parameters
W 1:L+1 and Ŵ 1:L+1. This bound will depend on the closeness of the parameters which will allow us to construct a cover
of the network in an iterative fashion by constructing covers of each layer.

6Here, × denotes the Cartesian product: the functions obtained by using the every combination of parameters of each individual
cover.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

A.7.1. LIPSCHITZNESS OF THE NETWORK

To bound the Lipschitzness of the network, we will first bound the distance between f with different weights and inputs.

Lemma A.13 (Instantiation of Lemma 4.3). For any WK , ŴK ,WV , ŴV ,WQ, ŴQ ∈ Rd×k, for all Z ∈ RT×d such that∥∥Z>∥∥
2,∞ ≤ 1, ∥∥∥∥(f (Z; {WQ,WK ,WV , ·})− f

(
Z; {ŴQ, ŴK , ŴV , ·}

))>∥∥∥∥
2,∞

≤ 2 ‖WV ‖2
∥∥∥(WQW

>
K − ŴQŴ

>
K

)
Z>
∥∥∥

2,∞
+
∥∥∥(WV − ŴV)>Z>

∥∥∥
2,∞

Proof. Consider a fixed row τ of the output of the functions,∥∥∥f (Z; {WQ,WK ,WV , ·}) [τ]− f
(
Z; {ŴQ, ŴK , ŴV , ·}

)
[τ]
∥∥∥

=
∥∥∥W>V Z>softmax

(
ZWKW

>
Q zτ

)
− Ŵ>V Z>softmax

(
ZŴKŴ

>
Q zτ

)∥∥∥
By triangle inequality:

≤
∥∥∥W>V Z> (softmax

(
ZWKW

>
Q zτ

)
− softmax

(
ZŴKŴ

>
Q zτ

))∥∥∥
+
∥∥∥(WV − ŴV)>Z>softmax

(
ZŴKŴ

>
Q zτ

)∥∥∥
Using ‖Pv‖ ≤ ‖P‖2,∞ ‖v‖1:

≤
∥∥W>V Z>∥∥2,∞

∥∥∥softmax
(
ZWKW

>
Q zτ

)
− softmax

(
ZŴKŴ

>
Q zτ

)∥∥∥
1

+
∥∥∥(WV − ŴV)>Z>

∥∥∥
2,∞

∥∥∥softmax
(
ZŴKŴ

>
Q zτ

)∥∥∥
1

By Corollary A.7,
∥∥Z>∥∥

2,∞ ≤ 1, ‖PQ‖2,∞ ≤ ‖P‖2‖Q‖2,∞, and ‖P>‖2 = ‖P‖2:

≤ 2 ‖WV ‖2
∥∥∥ZWKW

>
Q zτ − ZŴKŴ

>
Q zτ

∥∥∥
∞

+
∥∥∥(WV − ŴV)>Z>

∥∥∥
2,∞

≤ 2 ‖WV ‖2
∥∥∥(WQW

>
K − ŴQŴ

>
K

)
Z>
∥∥∥

2,∞
+
∥∥∥(WV − ŴV)>Z>

∥∥∥
2,∞

.

Lemma A.14. For any WK ,WV ,WQ ∈ Rd×k, for all Z, Ẑ ∈ RT×d such that
∥∥Z>∥∥

2,∞ ≤ 1, ‖Ẑ>‖2,∞ ≤ 1,∥∥∥∥(f (Z; {WQ,WK ,WV , ·})− f
(
Ẑ; {WQ,WK ,WV , ·}

))>∥∥∥∥
2,∞

≤ ‖WV ‖2
(

1 + 4
∥∥WKW

>
Q

∥∥
2

)∥∥∥(Z − Ẑ)>
∥∥∥

2,∞
.

Proof. Consider a fixed row τ of the output of the functions,∥∥∥f (Z; {WQ,WK ,WV , ·}) [τ]− f
(
Ẑ; {WQ,WK ,WV , ·}

)
[τ]
∥∥∥

=
∥∥∥W>V Z>softmax

(
ZWKW

>
Q zτ

)
−W>V Ẑ>softmax

(
ẐWKW

>
Q ẑτ

)∥∥∥
By triangle inequality:

≤
∥∥∥∥W>V (Z − Ẑ)> softmax

(
ZWKW

>
Q zτ

)∥∥∥∥+
∥∥∥W>V Ẑ> (softmax

(
ZWKW

>
Q zτ

)
− softmax

(
ẐWKW

>
Q ẑτ

))∥∥∥
Using ‖Pv‖ ≤ ‖P‖2,∞‖v‖1:

≤
∥∥∥W>V (Z − Ẑ)∥∥∥

2,∞

∥∥softmax
(
ZWKW

>
Q zτ

)∥∥
1

+
∥∥∥W>V Ẑ>∥∥∥

2,∞

∥∥∥softmax
(
ZWKW

>
Q zτ

)
− softmax

(
ẐWKW

>
Q ẑτ

)∥∥∥
1

Inductive Biases and Variable Creation in Self-Attention Mechanisms

By Corollary A.7,
∥∥∥Ẑ>∥∥∥

2,∞
≤ 1 and ‖PQ‖2,∞ ≤ ‖P‖2‖Q‖2,∞:

≤ ‖WV ‖2
∥∥∥(Z − Ẑ)>

∥∥∥
2,∞

+ 2 ‖WV ‖2
∥∥∥ZWKW

>
Q zτ − ẐWKW

>
Q ẑτ

∥∥∥
∞

By triangle inequality:

≤ ‖WV ‖2
∥∥∥(Z − Ẑ)>

∥∥∥
2,∞

+ 2 ‖WV ‖2
(∥∥∥(Z − Ẑ)WKW

>
Q zτ

∥∥∥
∞

+
∥∥∥ẐWKW

>
Q (zτ − ẑτ)

∥∥∥
∞

)
Since

∥∥∥Ẑ>∥∥∥
2,∞
≤ 1 and ‖Pv‖∞ ≤ ‖P>‖2,∞‖v‖:

≤ ‖WV ‖2
(

1 + 4
∥∥WKW

>
Q

∥∥
2

)∥∥∥(Z − Ẑ)>
∥∥∥

2,∞
.

With the above lemmas, we are ready to prove the effect of change of weights on g.

Lemma A.15. For any W i+1
1 , Ŵ i+1

1 satisfying the norm constraints,∥∥∥∥(g(i+1)
tf-block(X;W 1:i+1)− g(i+1)

tf-block(X; Ŵ 1:i+1)
)>∥∥∥∥

2,∞

≤
∥∥∥∥(W (i)

C − Ŵ
(i)
C

)>
σ
(

Πnorm

(
f
((
X; Ŵ 1:i

)
; Ŵ (i)

)))>∥∥∥∥
2,∞

+ LσB
(i)
C B

(i)
V

(
1 + 4B

(i)
QK

)∥∥∥∥(g(i)
tf-block

(
X;W 1:i

)
− g(i)

tf-block

(
X; Ŵ 1:i

))>∥∥∥∥
2,∞

+ 2LσB
(i)
C B

(i)
V

∥∥∥∥(W (i)
Q W

(i)
K

>
− Ŵ (i)

Q Ŵ
(i)
K

>
)
g

(i)
tf-block

(
X; Ŵ 1:i

)>∥∥∥∥
2,∞

+ LσB
(i)
C

∥∥∥∥(WV − ŴV)>g
(i)
tf-block

(
X; Ŵ 1:i

)>∥∥∥∥
2,∞

.

Proof. Unrolling one layer, we have∥∥∥∥(g(i+1)
tf-head

(
X;W 1:i+1

)
− g(i+1)

tf-head

(
X; Ŵ 1:i+1

))>∥∥∥∥
2,∞

=
∥∥∥(Πnorm

(
σ
(

Πnorm

(
f
(
g

(i)
tf-head

(
X;W 1:i

)
;W (i)

)))
W

(i)
C

)
−Πnorm

(
σ
(

Πnorm

(
f
(
g

(i)
tf-head

(
X; Ŵ 1:i

)
; Ŵ (i)

)))
Ŵ

(i)
C

))>∥∥∥∥
2,∞

Using Lemma A.9 for each row:

≤
∥∥∥∥W (i)

C

>
σ
(

Πnorm

(
f
(
g

(i)
tf-head

(
X;W 1:i

)
;W (i)

)))>
− Ŵ (i)

C

>
σ
(

Πnorm

(
f
(
g

(i)
tf-head

(
X; Ŵ 1:i

)
; Ŵ (i)

)))∥∥∥∥
2,∞

By triangle inequality for each row:

≤
∥∥∥∥W (i)

C

> (
σ
(

Πnorm

(
f
(
g

(i)
tf-head

(
X;W 1:i

)
;W (i)

)))
− σ

(
Πnorm

(
f
(
g

(i)
tf-head

(
X; Ŵ 1:i

)
; Ŵ (i)

))))>∥∥∥∥
2,∞︸ ︷︷ ︸

(A)

+

∥∥∥∥(W (i)
C − Ŵ

(i)
C

)>
σ
(

Πnorm

(
f
(
g

(i)
tf-head

(
X; Ŵ 1:i

)
; Ŵ (i)

)))>∥∥∥∥
2,∞

.

Let us focus on term (A).

Bounding the norm per row:

(A) ≤
∥∥∥W (i)

C

∥∥∥
2

∥∥∥∥σ (Πnorm

(
f
(
g

(i)
tf-head

(
X;W 1:i

)
;W (i)

)))>
− σ

(
Πnorm

(
f
(
g

(i)
tf-head

(
X; Ŵ 1:i

)
; Ŵ (i)

)))>∥∥∥∥
2,∞

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Since σ is Lσ-Lipschitz and
∥∥∥W (i)

C

∥∥∥
2
≤ B(i)

C , for each row:

≤ LσB(i)
C

∥∥∥∥Πnorm

(
f
(
g

(i)
tf-head

(
X;W 1:i

)
;W (i)

))>
−Πnorm

(
f
(
g
(
X; Ŵ 1:i

)
; Ŵ (i)

))>∥∥∥∥
2,∞

Using Lemma A.9 for each row:

≤ LσB(i)
C

∥∥∥∥f (g(i)
tf-head

(
X;W 1:i

)
;W (i)

)>
− f

(
g

(i)
tf-head

(
X; Ŵ 1:i

)
; Ŵ (i)

)>∥∥∥∥
2,∞

By triangle inequality:

≤ LσB(i)
C

∥∥∥∥f (g(i)
tf-head

(
X;W 1:i

)
;W (i)

)>
− f

(
g

(i)
tf-head

(
X; Ŵ 1:i

)
;W (i)

)>∥∥∥∥
2,∞

+ LσB
(i)
C

∥∥∥∥f (g(i)
tf-head

(
X; Ŵ 1:i

)
;W (i)

)>
− f

(
g

(i)
tf-head

(
X; Ŵ 1:i

)
; Ŵ (i)

)>∥∥∥∥
2,∞

By Lemma A.13 and A.14 and norm bounds on the matrices:

≤ LσB(i)
C B

(i)
V

(
1 + 4B

(i)
QK

)∥∥∥∥g(i)
tf-head

(
X;W 1:i

)> − g (X; Ŵ 1:i
)>∥∥∥∥

2,∞

+ 2LσB
(i)
C B

(i)
V

∥∥∥∥(W (i)
Q W

(i)
K

>
− Ŵ (i)

Q Ŵ
(i)
K

>
)
g

(i)
tf-head

(
X; Ŵ 1:i

)>∥∥∥∥
2,∞

+ LσB
(i)
C

∥∥∥∥(WV − ŴV)>g
(i)
tf-head

(
X; Ŵ 1:i

)>∥∥∥∥
2,∞

.

Combining the above gives us the desired result.

Lastly, we take account of the last linear weight and observe that,

Lemma A.16. For any W 1:L+1, Ŵ 1:L+1 and w, ŵ,∣∣∣gtf-scalar (X;W 1:L+1, w
)
− gtf-scalar

(
X; Ŵ 1:L+1, ŵ

)∣∣∣
≤ ‖w‖

∥∥∥∥g(L+1)
tf-block

(
X;W 1:L+1

)
[CLS]

− g(L+1)
tf-block

(
X; Ŵ 1:L+1

)
[CLS]

∥∥∥∥+

∣∣∣∣(w − ŵ)>g
(L+1)
tf-block

(
X; Ŵ 1:L+1

)
[CLS]

∣∣∣∣ .
Proof. Observe that,∣∣∣gtf-scalar (X;W 1:L+1, w

)
− gtf-scalar

(
X; Ŵ 1:L+1, ŵ

)∣∣∣
=

∣∣∣∣w>g(L+1)
tf-block

(
X;W 1:L+1

)
[CLS]

− ŵ>g(L+1)
tf-block

(
X; Ŵ 1:L+1

)
[CLS]

∣∣∣∣
By triangle inequality:

≤
∣∣∣∣w>(g(L+1)

tf-block

(
X;W 1:L+1

)
[CLS]

− g(L+1)
tf-block

(
X; Ŵ 1:L+1

)
[CLS]

)∣∣∣∣+

∣∣∣∣(w − ŵ)>g
(L+1)
tf-block

(
X; Ŵ 1:L+1

)
[CLS]

∣∣∣∣
Bounding the inner product by norms:

≤ ‖w‖
∥∥∥∥g(L+1)

tf-block

(
X;W 1:L+1

)
[CLS]

− g(L+1)
tf-block

(
X; Ŵ 1:L+1

)
[CLS]

∥∥∥∥+

∣∣∣∣(w − ŵ)>g
(L+1)
tf-block

(
X; Ŵ 1:L+1

)
[CLS]

∣∣∣∣ .

A.7.2. CONSTRUCTING THE COVER

The cover construction follows the standard recipe of composing covers per layer (as in (Bartlett et al., 2017)).

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Theorem A.17. Let F (L)
tf-scalar represent the class of functions of L-layer Transformer blocks satisfying the norm bounds

(specified before) followed by linear layer on the [CLS] token. Then, for all X(i)

logN∞(F (L)
tf-scalar; ε;X

(1), . . . , X(m), ‖ · ‖2) .

log(dmT)

ε2
×

(
B

2
3
w +

L∑
i=1

αi
2
3

(
B2,1
C

(i)
2
3

+ d
2
3

(
2LσB

(i)
C B

(i)
V B2,1

QK

(i)
) 2

3

+ k
2
3

(
LσB

(i)
C B2,1

V

(i)
) 2

3

))3

where αi =
∏
j<i LσB

(j)
C B

(j)
V (1 + 4B

(j)
QK).

Proof. Our goal is to show that for every ε > 0, and collection of inputs X(1), . . . , X(m), there is a cover C
of vectors in R(m) such that for all W 1:L+1 and w satisfying the norm bounds, there is some v ∈ C such that
maxi |gtf-scalar(X(i);W 1:L+1, w)− v| ≤ ε.

In each layer of the transformer, W (i)
Q and W (i)

K always appear together in the form W
(i)
K W

(i)
Q

>
. Therefore, we will

overload notation and define W
(i)
QK : W

(i)
K W

(i)
Q

>
. Our cover C will be proper, consisting of vectors of the form

(gtf-scalar(X
(i); Ŵ 1:L+1, ŵ))i∈[m]. We will build the cover iteratively by finding finite collections of matrices Ŵ1:i for

each layer.

First observe that for any collection of Z(1), . . . , Z(m) ∈ RT×d1 , and any W, Ŵ ∈ Rd1×d2 ,

max
i∈[m]

∥∥∥W>Z(i)> − Ŵ>Z(i)>
∥∥∥

2,∞
= max
i∈[m],t∈[T]

∥∥∥W>z(i)
t − Ŵ>z

(i)
t

∥∥∥ .
This crucially allows us to aggregate over the samples and context length. In particular, we can apply Lemma 4.6 with
the input vectors (z

(i)
t)i∈[m],t∈[T]; a total of mT input vectors. Specifically, for any ε and W(d1, d2, α) := {W ∈

Rd1×d2 | ‖W‖2,1 ≤ α} with fixed Z(i) satisfying
∥∥∥Z(i)>

∥∥∥
2,∞
≤ 1, Lemma 4.6 gives us such a cover.

First let us build a cover for one Transformer layer with inputs Z(1), . . . , Z(m). We will begin with creating an εV -cover
ŴV for the function class of linear transformations given byWV : {W ∈ Rd×k, ‖W‖2,1 ≤ α, ‖W‖2 ≤ s} and εQK-cover

ŴQK forWQK := {W ∈ Rd×d,
∥∥W>∥∥

2,1
≤ β, ‖W‖2 ≤ r} and inputs Z(1), . . . , Z(m). For each pair of ŴV ∈ ŴV and

ŴQK ∈ ŴQK , we construct an εC-cover ŴC(ŴV , ŴQK) forWC : {W ∈ Rk×d, ‖W‖2,1 ≤ γ, ‖W‖2 ≤ c} and inputs{
σ
(

Πnorm

(
f
(
Z(i); ŴV , ŴQK

)))}m
i=1

. Our final cover is

Ŵ :=
{

(ŴV , ŴQK , ŴC) : ŴV ∈ ŴV , ŴV ∈ ŴV , ŴC ∈ ŴC(ŴV , ŴQK)
}
.

Using Lemma A.15, we can show that Ŵ is an ε-cover for g(·; {WV ,WQK ,WC}) and inputs Z(1), . . . , Z(m) where

ε = εC + 2LσcsεQK + LσcεV .

Using Lemma 4.6, the size of the cover is

|Ŵ| ≤ |ŴV ||ŴQK | max
ŴV ∈ŴV

ŴQK∈ŴQK

∣∣∣ŴC(ŴV , ŴQK)
∣∣∣

=⇒ log |Ŵ| .

(
α2

ε2
V

+
β2

ε2
QK

+
γ2

ε2
C

)
log(dmT).

We are now ready to inductively construct a cover for the deeper network. Suppose we have a ε(i)-cover Ŵ1:i for g(·;W 1:i)

on X(1), · · · , X(m). We show how to construct an ε(i+1)-cover for g(·;W 1:i+1). For every element Ŵ 1:i ∈ Ŵ1:i

Inductive Biases and Variable Creation in Self-Attention Mechanisms

we construct a
(
ε

(i)
C + 2LσB

(i)
C B

(i)
V ε

(i)
QK + LσB

(i)
C ε

(i)
V

)
-cover Ŵi(Ŵ

1:i) for the transformer layer (as above) on inputs{
g(X(j); Ŵ 1:i)

}m
j=1

. Consider the cover

Ŵ1:i+1 :=
{

(Ŵ 1:i, Ŵ (i)) : Ŵ 1:i ∈ Ŵ1:i, Ŵ (i) ∈ Ŵi(Ŵ
1:i)
}
.

By Lemma A.15, this gives,

ε(i+1) = LσB
(i)
C B

(i)
V (1 + 4B

(i)
QK)ε(i) + ε

(i)
C + 2LσB

(i)
C B

(i)
V ε

(i)
QK + LσB

(i)
C ε

(i)
V .

The size of the cover is

|Ŵ1:i+1| ≤ |Ŵ1:i| max
Ŵ 1:i∈Ŵ1:i

∣∣∣Ŵi(Ŵ
1:i)
∣∣∣ .

Inductively applying this, we get

ε(L+1) =

L∑
i=1

∏
j<i

LσB
(j)
C B

(j)
V (1 + 4B

(j)
QK)

(ε(i)
C + 2LσB

(i)
C B

(i)
V ε

(i)
QK + LσB

(i)
C ε

(i)
V

)

=

L∑
i=1

αi

(
ε

(i)
C + 2LσB

(i)
C B

(i)
V ε

(i)
QK + LσB

(i)
C ε

(i)
V

)
where αi =

∏
j<i LσB

(j)
C B

(j)
V (1 + 4B

(j)
QK).

The size of the cover is

log
(
|Ŵ1:L+1|

)
≤

L∑
i=1

B2,1
V

(i)2

ε
(i)
V

2 +
B2,1
QK

(i)2

ε
(i)
QK

2 +
B2,1
C

(i)2

ε
(i)
C

2

 log(dmT).

Notice that the layer-norm maintains the norm bound on the inputs. Lastly, we need to cover the linear layer on the [CLS]
token and compose it with the cover of g1:L (as before). Using Lemma A.10 and A.16, we can get the final ε-cover C with

ε = Bw

L∑
i=1

αi

(
ε

(i)
C + 2LσB

(i)
C B

(i)
V ε

(i)
QK + LσB

(i)
C ε

(i)
V

)
+ εw

and size

log |C| . B2
w log(m)

ε2
w

+

L∑
i=1

B2,1
V

(i)2

ε
(i)
V

2 +
B2,1
QK

(i)2

ε
(i)
QK

2 +
B2,1
C

(i)2

ε
(i)
C

2

 log(dmT).

Using Lemma A.8, the size of the cover for fixed ε gives us the desired result.

B. Sparse function representation via bounded-norm Transformers
B.1. Setup

Reductions from Boolean functions to Transformers. In order to establish our function approximation results, we must
first define a canonical mapping between length-T Boolean strings b ∈ {0, 1}T and Transformer inputs X ∈ RT×d. The
key point (which has also been considered since the inception of the Transformer (Vaswani et al., 2017), and continues to
be a crucial consideration in practice (Dosovitskiy et al., 2020)) is that the network’s permutation-equivariant symmetry
needs to be broken by assigning different embeddings to different indices of b. There are several possible natural choices
here, which are all of practical interest:

• Deterministic positional embeddings. Fix positional embedding matrices P ∈ RT×d, E ∈ R{0,1}×d, and a special
direction v[CLS] ∈ Rd, such that the T+3 vectors {Pt,:}Tt=1∪{Ej,:}j∈0,1∪{v[CLS]} are an approximately orthonormal
basis for Rd (see below). The input to the Transformer is thenX = Eb+P , whereEb ∈ RT×d such that [Eb]t,: = Ebt,:
for each t ∈ [T]. In the ftf-scalar formulation, we choose the auxiliary input x[CLS] to be the constant vector v[CLS].
This closely matches applications of Transformers in NLP (Vaswani et al., 2017).

Inductive Biases and Variable Creation in Self-Attention Mechanisms

• Trainable positional embeddings. Like the above, but P is a trainable parameter; we still require approximate orthog-
onality of {Ej,:}j∈0,1 ∪ {v[CLS]}. It is also possible to consider the case where E and v[CLS] are trainable (matching
the way token embeddings are trained in practice). This becomes important in the regime of large vocabulary sizes
that require embeddings to capture shared information between tokens; however, this is not necessary for our con-
structions, as we limit our consideration to binary tokens. This simplifies our constructions and improves statistical
rates; additionally, it is a popular and well-studied alternative (Vaswani et al., 2017; Devlin et al., 2018; Radford et al.,
2018; 2019; Brown et al., 2020).

• Bag of vectors. Fix a matrix V ∈ RT×d with approximately orthogonal rows (like the deterministic P), but choose
the Transformer input

X := V diag(b).

This construction replaces positional embeddings with positional “indicator vectors” which can be swapped between
any of the Transformer’s input positions. It has the advantage of being symmetric with respect to permutation of the
Transformer’s input positions: it turns out that

ftf-scalar(V diag(b)) = ftf-scalar(VΠdiag(b)),

for any T × T permutation matrix Π. It is also the most natural construction when considering the composition of
sparse Boolean functions across multiple layers: a layer can output combinations of the basis rows vi for further
function composition, like Boolean gates.

Approximately orthonormal basis. Each of the Boolean function approximation constructions will rely on a basis set
of vectors, which will be used as positional embeddings (or the variable indices in the bag-of-vectors construction). We
will fix a set of approximately orthonormal vectors {vi : ‖vi‖ = 1}T ′i=1 in Rd: for each i 6= j, we have |v>i vj | ≤ ∆. When
∆ = 0, the maximal T ′ for which such a set exists is d; for ∆ ∈ (0, 1

2), the Johnson-Lindenstrauss lemma (Johnson et al.,
1986) implies that the maximal set of is of size exp(Θ(d∆2)). For given choices of d,∆ and a maximal {v1, . . . , vT ′},
our construction is valid for contexts of length T ≤ T ′. For the special vectors e0, e1, v[CLS], we will assume that these
are exactly orthogonal to the vi and each other, so that the vi must be a basis in dimension at least d− 3. This is for clarity
only– it reduces the number of error terms to propagate through the analysis.

Self-attention block. In each construction (which specifies an input X ∈ RT×d, we will specify the parameters
WQ,WK ,WV ,WC , w = e1 of a scalar-output Transformer ftf-scalar, which takes an input X ∈ R(T+1)×d; the auxil-
iary token input will be the constant vector x[CLS] := v[CLS] ∈ Rd. The internal activation function σ is chosen to be the
identity. Summarizing, the functional form of ftf-scalar ∈ Ftf-scalar in these constructions is

ftf-scalar(X;WQ,WK ,WV ,WC , e1) = softmax
(
v>[CLS]WQW

>
KX

>)XWVWCe1.

In the intermediate lemmas, it will also be useful to consider the corresponding attention head output

ftf-head(X;WQ,WK ,WV ,WC) = softmax
(
v>[CLS]WQW

>
KX

>)XWVWC ,

and its projections ftf-head ◦Πdproj onto the first dproj coordinates.

Feedforward networks. We establish some notation for feedforward networks. An L-layer feedforward network, with
activation function σ : R → R and dimensions d1, . . . , dL+1, is parameterized by weight matrices Wi ∈ Rdi+1×di , and
maps x ∈ Rd1 to y ∈ RdL+1 , by the iterative equations

y>1 := σ(x>W1),

y>i+1 := σ(y>i Wi), i = 1, . . . , L− 1,

fmlp(x;W1, . . . ,WL)> = y> := y>LWi.

When dL+1 = 1, we will use the notationw instead ofWL. It will be convenient to incorporate bias weights by introducing
an extra input coordinate Wi ∈ R(di+1+1)×di , and augmenting the linear function accordingly:

y>i Wi 7→ [y>i 1]Wi.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Self-attention composed with a feedforward network. The full definition of the Transformer layer composes a self-
attention layer (ftf-layer : RT×d → RT×d) with a position-wise feedforward network (fmlp : Rd → Rd). We will use this
combination of modules to establish our function approximation results: ftf-layer acts as a sparse bottleneck, while fmlp

approximates an arbitrary function of the selected coordinates. For our single-layer constructions, it is most convenient
to establish notation for a scalar-output Transformer with a feedforward network. To this end, define Ftf+mlp to be the
function class with the same Score,Norm, φin functions as in Ftf-scalar (thus, the same parameters WQ,WK ,WV), with
identity activation function, but a feedforward neural network replacing the linear φout and w. Concretely, with L = 3 and
the ReLU activation function (·)+, Ftf+mlp contains functions of the form

ftf+mlp(X; θ) =
(
(y>W1)+W2

)
+
w,

y = softmax
(
v>[CLS]WQW

>
KX

>)XWVWCw,

with parameters θ := (WQ,WK ,WV ,WC ,W1,W2, w).

Multiple self-attention heads. The final component we will need for the function approximation setup is multi-headed
self-attention. We will extend the definition of the single-headed ftf-head to

ftf-heads

(
X;
{
W

[h]
Q ,W

[h]
K ,W

[h]
V ,W

[h]
C

}H
h=1

)
:=

H∑
h=1

ftf-head

(
X;W

[h]
Q ,W

[h]
K ,W

[h]
V ,W

[h]
C

)
,

and substitute this definition into ftf+mlp when discussing a multi-headed construction.

Classes and properties of Boolean functions. We will call a Boolean function f : {0, 1}T → Y I-sparse if it only
depends on a fixed subset I ⊆ [T] of its inputs:

bi = b′i ∀i ∈ I =⇒ f(b) = f(b′).

Overloading notation, if I = s, we will also call f s-sparse. We will call an I-sparse Boolean function f symmetric if its
value is invariant under permutation of the indices in I:

|{i ∈ I : bi = 1}| = |{i ∈ I : b′i = 1}| =⇒ f(b) = f(b′).

Further, we will call an I-sparse real-valued symmetric Boolean function f : {0, 1}T → Y monotone if f(b) is monotoni-
cally increasing in r := |{i ∈ I : bi = 1}|. If, for some γ > 0, it holds that f(r+ 1) ≥ f(r) +γ for each r = 0, . . . , s−1,
we call f γ-strictly monotone. A vector-valued I-sparse Boolean function f : {0, 1}T → Rdf is γ-injective if

‖f(b)− f(b′)‖∞ ≥ γ

for each b, b′ that differ at some position i ∈ I; f is called B-bounded if ‖f(b)‖∞ ≤ B for all b ∈ {0, 1}T .

Uniform approximation. For some ε ≥ 0 and a function f : {0, 1}T → Rd, we say that f̂ ∈ F ε-uniformly approxi-
mates f under the mapping b 7→ X(b) if∥∥∥f̂(X(b))− f(b)

∥∥∥
∞
≤ ε, ∀b ∈ {0, 1}T .

B.2. Results

We give an overview of the function approximation results under each input mapping b 7→ X(b), as a multi-part proposi-
tion:
Proposition B.1 (Sparse variable creation with Transformers). The function classesFtf-scalar,Ftf+mlp contain the following
classes of sparse Boolean functions:

• Deterministic positional embeddings: For any I, Ftf-scalar can approximate a particular monotone symmetric I-
sparse f , with Transformer weight norm bounds from the real-valued construction in Lemma B.2. Ftf+mlp with
1 head can exactly represent any symmetric s-sparse f , with the same bounds on Transformer weight norms, and
feedforward network weight norms scaling asO(poly(s)). Ftf+mlp with s heads can exactly represent any s-sparse f ,
with Transformer weight norm bounds from the vector-valued construction in Lemma B.2, and feedforward network
weight norms scaling as O(poly(s) · 2s).

Inductive Biases and Variable Creation in Self-Attention Mechanisms

• Trainable positional embeddings: For any I, Ftf-scalar can approximate a particular monotone symmetric I-sparse f ,
with positional embedding and Transformer weight norm bounds from the real-valued construction in Lemma B.3.
Ftf+mlp with 1 head can exactly represent any symmetric s-sparse f , with the same bounds on P and Transformer
weight norms, and feedforward network weight norms scaling as O(poly(s)). Ftf+mlp with s heads can exactly rep-
resent any sparse f , with P and Transformer weight norm bounds from the vector-valued construction in Lemma B.3,
and feedforward network weight norms scaling as O(poly(s) · 2s).

• Bag of vectors: For any I, Ftf-scalar can approximate a particular monotone symmetric I-sparse f , with Transformer
weight norms from Lemma B.4. Ftf+mlp with 1 head can represent any symmetric s-sparse f , with the same Trans-
former weight norm bounds, and feedforward network weight norms scaling as O(poly(s)). Ftf+mlp with 1 head can
also exactly represent any s-sparse f , with the same bounds on Transformer weight norms, and feedforward network
weight norms scaling as O(poly(s) · 2s).

The formal statements are obtained by (γ/4)-uniformly approximating a γ-strictly monotone or γ-injective function with
self-attention alone (Lemmas B.2, B.3, B.4), then applying a robust universal function representation construction (Lem-
mas B.5, B.6) appropriately. They are organized as follows:

Lemma B.2 (Deterministic P , no MLP). Suppose X(b) = P +Eb with deterministic P . Let I ⊆ [T] such that |I| = s ≤
d, k, and ∆ < 1/s. Then, for all 0 < γ ≤ 1, there exists a 1-bounded, (2/s)-strictly monotone symmetric I-sparse Boolean
function gI : {0, 1}T → R and Transformer head parameters such that ftf-scalar(X(b);WQ,WK ,WV ,WC , w = e1)
(γ/4)-uniformly approximates gI . The norms satisfy

‖WQ‖F ≤
log
(

8T
γ

)
1− s∆

, ‖WK‖F ≤ s, ‖WV ‖F ≤ 2, ‖WC‖F ≤ 1.

Also, there exists a 1-bounded, 2-injective I-sparse Boolean function g′I : {0, 1}T → Rs and s-headed Transformer

parameters such that ftf-head
(
X(b);

{
W

[h]
Q ,W

[h]
K ,W

[h]
V ,W

[h]
C

}s
h=1

)
◦Πs uniformly approximates g′I . The norms of each

head satisfy ∥∥∥W [h]
Q

∥∥∥
F
≤

log
(

8T
γ

)
1− s∆

,
∥∥∥W [h]

K

∥∥∥
F
≤ 1,

∥∥∥W [h]
V

∥∥∥
F
≤ 2,

∥∥∥W [h]
C

∥∥∥
F
≤ 1.

Lemma B.3 (Trainable P , no MLP). Suppose X(b) = P + Eb with trainable P . Let I ⊆ [T] such that |I| = s ≤ d, k.
Then, for any 0 < γ ≤ 1, and with the same gI as in Lemma B.2, there exists P and Transformer head parameters such
that ftf-scalar(X(b);WQ,WK ,WV ,WC , w = e1) (γ/4)-uniformly approximates gI . The norms satisfy

∥∥P>∥∥
2,1
≤ s, ‖WQ‖F ≤ log

(
8T

γ

)
, ‖WK‖F ≤ 1, ‖WV ‖F ≤ 2, ‖WC‖F ≤ 1.

Also, for the same g′I as in Lemma B.2, there exists P and s-headed Transformer parameters such that

ftf-head

(
X(b);

{
W

[h]
Q ,W

[h]
K ,W

[h]
V ,W

[h]
C

}s
h=1

)
◦Πs uniformly approximates g′I . The norms of each head satisfy

∥∥P>∥∥
2,1
≤ s,

∥∥∥W [h]
Q

∥∥∥
F
≤ log

(
8T

γ

)
,

∥∥∥W [h]
K

∥∥∥
F
≤ 1,

∥∥∥W [h]
V

∥∥∥
F
≤ 2,

∥∥∥W [h]
C

∥∥∥
F
≤ 1.

Lemma B.4 (Bag of vectors, no MLP). Suppose X(b) = V + diag(b). Let I ⊆ [T] such that |I| = s ≤ d, k, and
∆ < 1/s. Then, for all s∆ < γ < 1, there exists an s-bounded, (1/s)-strictly monotone symmetric I-sparse Boolean
function gI : {0, 1}T → R and Transformer head parameters such that ftf-scalar(X(b);WQ,WK ,WV ,WC , w = e1)
(γ/4)-uniformly approximates gI . The norms satisfy

‖WQ‖F ≤
log
(

8Ts(1+∆)
γ−s∆

)
1− s∆

, ‖WK‖F ≤ s+ 1, ‖WV ‖F ≤ 2s, ‖WC‖F ≤ s.

Also, there exists a 1-bounded, (1/s)-injective I-sparse Boolean function g′I : {0, 1}T → Rs and Transformer head
parameters such that ftf-head(X(b);WQ,WK ,WV ,WC) ◦ Πs uniformly approximates g′I . The norms satisfy the same
bounds as above.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Lemma B.5 (Monotone to symmetric functions via MLP). Let f : {0, 1}T → R be any real-valued symmetric s-sparse
Boolean function with index set I. Let WQ,WK ,WV ,WC be the parameters of a function

ftf-head(X;WQ,WK ,WV ,WC) := softmax
(
v>[CLS]WQW

>
KX

>)XWVWC ,

and let Π1 : Rd → R be the projection onto the first coordinate. Suppose that under some mapping b 7→ X(b), ftf-head ◦Πs

(γ/4)-uniformly approximates a B-bounded γ-strictly monotone symmetric I-sparse Boolean function g : {0, 1}T → R,
for some γ. Then, there exists a function ftf+mlp ∈ Ftf+mlp with the same weights WQ,WK ,WV ,WC , and 3-layer
feedforward network weights W1,W2, w, such that

ftf+mlp(X(b)) = f(b), ∀b ∈ {0, 1}T ,

with dimensions (d2, d3) = (4(s+ 1), 2(s+ 1)) and weight norms satisfying

‖W1‖∞ ≤
8 max(1, B)

γ
, ‖W2‖∞ ≤

8s

γ
, ‖w‖∞ ≤ max

b∈{0,1}T
|f(b)|.

Lemma B.6 (Injective to arbitrary functions via MLP). Let f : {0, 1}T → R be any real-valued s-sparse Boolean function
with index set I such that |I| = s ≤ d. Let WQ,WK ,WV ,WC be the parameters of a function

ftf-head(X;WQ,WK ,WV ,WC) := softmax
(
v>[CLS]WQW

>
KX

>)XWVWC ,

and let Πs : Rd → Rs be the projection onto the first s coordinates. Suppose that under some mapping b 7→ X(b),
ftf-head ◦ Πs (γ/4)-uniformly approximates a γ-injective function g : {0, 1}T → Rs satisfying ‖g(b)‖∞ ≤ B. Then, there
exists a function ftf+mlp ∈ Ftf+mlp with the same weights WQ,WK ,WV ,WC , and 3-layer feedforward network weights
W1,W2, w, such that

ftf+mlp(X(b)) = f(b), ∀b ∈ {0, 1}T ,

with dimensions (d2, d3) = (4s2s, 2 · 2s) and weight norms satisfying

‖W1‖∞ ≤
8 max(1, B)

γ
, ‖W2‖∞ ≤

8s

γ
, ‖w‖∞ ≤ max

b∈{0,1}T
|f(b)|.

B.3. Useful lemmas

We will use a construction which approximates a “hard selection” of s indices using the softmax mixture; for this, we will
need to quantify the approximation error when the inputs to the softmax function are bounded.

Lemma B.7 (Softmax truncation). Let z ∈ (R ∪ {−∞})T such that zt ≥ R for each 1 ≤ t ≤ s, and zt ≤ 0 for each
s+ 1 ≤ t ≤ T . Define z′ ∈ (R ∪ {−∞})T so that z′t = zt for 1 ≤ t ≤ s, and zt = −∞ for s+ 1 ≤ t ≤ T . Then, letting
e−∞ = 0 in the definition of softmax(·), we have

‖softmax(z′)− softmax(z)‖1 ≤ 2
T − s
s exp(R)

<
2T

exp(R)
.

Proof. We have

‖softmax(z′)− softmax(z)‖1 =

s∑
t=1

exp(zt)

(
1

1> exp(z′)
− 1

1> exp(z)

)
+

T∑
t=s+1

exp(zt)

1> exp(z)
.

The first summation is equal to

1− 1> exp(z′)

1> exp(z)
≤ T − s
s exp(R)

,

while the same upper bound holds for the second summation, since each term is at most 1
s exp(R) .

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Our results on approximating arbitrary sparse Boolean functions will depend on a generic construction for robustly ap-
proximating an arbitrary function f : Rd → R with a feedforward neural network. For simplicity of presentation, we use a
standard7 3-layer ReLU network construction, which exactly represents a piecewise constant function in specified regions.

Lemma B.8 (Exact function representation with a 3-layer ReLU net). Let f : Rdf → R, and let x1, . . . , xn ∈ Rdf such
that ‖xi‖∞ ≤ B for each i ∈ [n], ‖xi − xj‖∞ ≥ 4δ for each i 6= j ∈ [n]. Then, there is a 3-layer feedforward network
with ReLU activations, with parameters W1 ∈ R(df+1)×d2 ,W2 ∈ R(d2+1)×d3 , w ∈ Rd3 8, such that

fmlp(xi + z) = f(xi)

for all i ∈ [n] and ‖z‖∞ ≤ δ, where ReLU(x) := x+ = max(0, x) is applied entrywise, with

d2 = 4ndf , d3 = 2n,

‖W1‖∞ ≤
max(1, B)

δ
, ‖W2‖∞ ≤

df
δ
, ‖w‖∞ ≤ max

i∈[n]
|f(xi)|.

Proof. First, we construct a one-dimensional “bump” function basis, and propagate the Lipschitz constants. A threshold
function with a linear “ramp” of width δ can be obtained from a linear combination of 2 ReLU functions:

νδ(x) := (x/δ + 1)+ − (x/δ)+ =


0 x ≤ −δ
x/δ + 1 −δ ≤ x ≤ 0

1 x ≥ 0

.

Next, we construct the bump function
ψδ(x) := νδ(x)− νδ(2δ − x).

By this construction, we have ψδ(x) = 1 for 0 ≤ x ≤ 2δ and ψδ(x) = 0 for x ≤ −δ and x ≥ 3δ, interpolating linearly on
[−δ, 0] and [2δ, 3δ]. Next, define

ψδ(x;x0) := ψδ(x− x0 + δ)

=

(
x− x0

δ
+ 2

)
+

−
(
x− x0

δ
+ 1

)
+

−
(
x0 − x
δ

+ 2

)
+

+

(
x0 − x
δ

+ 1

)
+

so that ψδ(x;x0) = 1 for |x− x0| ≤ δ, ψδ(x;x0) = 0 for |x− x0| ≥ 2δ.

We construct the first layer W1 ∈ R(d+1)×(4nd) using these bump functions: indexing the 4nd dimension by (h ∈ [4], i ∈
[n], j ∈ [d]), we construct

[W1]:,(1,i,:) :=

[
1
δ I

−xi

δ + 2 · 1>
]
, [W1]:,(2,i,:) :=

[
1
δ I

−xi

δ + 1>

]
,

[W1]:,(3,i,:) :=

[
− 1
δ I

xi

δ + 2 · 1>
]
, [W1]:,(4,i,:) :=

[
− 1
δ I

xi

δ + 1>

]
,

so that (
[x 1]>

[
[W1]j,(1,i,:) [W1]j,(2,i,:) [W1]j,(3,i,:) [W1]j,(4,i,:)

])
+

[1 −1 −1 1]> = ψδ(x; [xi]j).

The second layer is used to construct n activations which are indicators of whether x is in the neighborhood of each xi.
For each xi, we will simply average the df one-dimensional indicators for each coordinate, and implement a threshold
function νδ/df (1 − x). We choose W2 ∈ R(4ndf+1)×(2n), with the 4ndf + 1 dimension indexed by (h, i, j) and an extra
bias dimension ⊥, and the 2n dimension indexed by (h′ ∈ {1, 2}, i′ ∈ [n]) so that

[W2](h,i,:),(h′,i′) := [1 −1 −1 1]h · 1[i = i′] · 1

δ
· 1,

7For example, this follows from the discussion in Chapter 4 of (Nielsen, 2015).
8Here, W1,W2 have bias terms; w does not.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

[W2]⊥,(1,i′) := 1− df
δ
, [W2]⊥,(2,i′) := −df

δ
.

Finally, the third (output) layer w ∈ R2n, with dimensions indexed by (h ∈ {1, 2}, i ∈ [n]), multiplies the indicators of
each xi by the desired f(xi):

w(1,i) := f(xi), w(2,i) := −f(xi).

For any x0 ∈ Rdf , let Bδ(x0) be the set of x such that ‖x− x0‖∞ ≤ δ. By this construction, for each x ∈ Bδ(xi), we
have f(x) = xi, as required.

Note that we use 3-layer ReLU networks for function approximation in order to minimize the introduction of unnecessary
notation. Some minor remarks:

• It would be routine to replace this construction with any architecture which can represent an arbitrary function ap-
proximately (Hornik et al., 1989; Cybenko, 1989); this includes the 2-layer feedforward networks (and nonlinear
activations other than the ReLU) which are typically used by Transformers in practice.

• It is possible to embed this construction in ftf+mlp with a 2-layer ReLU network, by using (WC ,W1,W2) and intro-
ducing a nonlinearity after WC , without changing the results.

• When df = 1, W2 is unnecessary (one can represent f directly using the bump function basis).

B.4. Beyond Boolean domains

These representational results are stated with a Boolean domain {0, 1}T for clarity and simplicity of presentation; this is
not essential or fundamental to these constructions. Generalizations to the following input domains are straightforward:

• Discrete categorical tokens {1, . . . ,M}T . Use M orthogonal token embeddings, instead of only 2. The “sparse
function approximation” construction uses sMs instead of s2s parameters. The smaller (poly(s)-parameter) repre-
sentation of symmetric Boolean functions has no clear analogue.

• Continuous inputs on a bounded domain (e.g. [0, 1]T). The (fixed or trainable) positional embeddings can still
select the s sparse indices. Replace the discrete ReLU network construction with any continuous universal function
approximation construction. The “bag-of-vectors” formulation has no clear analogue.

The capacity results from Section 4 hold for any input domain, as long as the embeddings are bounded in the ‖·‖2,∞ norm.
Note that Transformers are predominantly used with discrete inputs.

B.5. Proofs

Throughout the constructions in each case, we will refer to standard coordinate bases in several spaces:

• E0, E1 ∈ Rd denote the embeddings of the 0, 1 tokens E0,:, E1,:.

• e(k)
1 , . . . , e

(k)
k denotes the standard basis in Rk.

• e(d)
i denotes the standard basis in Rd.

• e(T)
1 , . . . , e

(T)
T , e

(T)
[CLS] denotes the standard basis in RT+1 with the special [CLS] index.

• Recall that the vi form a ∆-approximate orthonormal basis for Rd, v[CLS], e0, e1 are exactly orthogonal to each of
them as well as each other, and d is chosen such that these conditions can be met.

Let n(i) be a unique bijection between I and [s]. Let vI :=
∑
i∈I vi.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Approximate vector equality. We will use u ≈ε v to denote that two vectors u, v ∈ Rdu satisfy ‖u− v‖∞ ≤ ε.

Proof of Lemma B.2. We construct attention heads such that the softmax mixture always selects the indices in I.

Single head, deterministic P . We seek to approximate the 1-bounded, (2/s)-strictly monotone function

1

s

∑
i∈I

χi,

where χi = +1 if bi = 0 and −1 if bi = 1. Set

WQ := Rv[CLS]e
(k)>
1 , WK := vIe

(k)>
1 , WV := (E0 − E1)e

(k)>
1 , WC := e

(k)
1 e

(d)>
1 ,

where R will be chosen later. Then, by approximate orthogonality,

v>[CLS]WQW
>
KX

> = v>[CLS]WQW
>
K (P + Eb)

> = v>[CLS]WQW
>
KP

> ≈Rs∆ R
∑
i∈I

e
(T)>
i .

By Lemma B.7, ∥∥∥∥∥softmax
(
v>[CLS]WQW

>
KX

>)− 1

s

∑
i∈I

e
(T)>
i

∥∥∥∥∥
1

≤ 2T

exp(R− 2Rs∆)
.

Finally, we have

XWVWC = EbWVWC =

∑
i∈[T]

χie
(T)
i

 e
(d)>
1 ,

so that by Hölder’s inequality,

ftf-head(X) ◦Π1 = softmax
(
v>[CLS]WQW

>
KX

>)XWVWCe
(d)
1 ≈ 2T

exp(R−2Rs∆)

1

s

∑
i∈I

χi.

To get (γ/4)-uniform approximation, we choose

R =
log
(

8T
γ

)
1− s∆

.

Multiple heads, deterministic P . For h = 1, . . . , s, and the same R as above:

W
[h]
Q := Rv[CLS]e

(k)>
1 , W

[h]
K := vn−1(h)e

(k)>
1 , W

[h]
V := (E0 − E1)e

(k)>
2 , W

[h]
C := e

(k)
1 e

(d)>
h .

This is the same construction as above, but each head only selects one of the coordinates in I. Thus, by the same analysis,

ftf-head(X) ◦Πs ≈ 2T
exp(R−2Rs∆)

∑
i∈I

χie
(d)
n(i).

This function is clearly 1-bounded and 2-injective.

Proof of Lemma B.3. The constructions closely follow Lemma B.2, but are simpler.

Single head, trainable P . For each i ∈ I, set the trainable positional embeddings to be

Pi,: :=

{
v1 i ∈ I
0 otherwise

.

Set
WQ := Rv[CLS]e

(k)>
1 , WK := v1e

(k)>
1 , WV := (E0 − E1)e

(k)>
1 , WC := e

(k)
1 e

(d)>
1 .

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Now, we have (with equality)
v>[CLS]WQW

>
KX

> = R
∑
i∈I

e
(T)>
i ,

so that Lemma B.7 gives ∥∥∥∥∥softmax
(
v>[CLS]WQW

>
KX

>)− 1

s

∑
i∈I

e
(T)>
i

∥∥∥∥∥
1

≤ 2T

exp(R)
.

Like before, we have

ftf-head(X) ◦Π1 = softmax
(
v>[CLS]WQW

>
KX

>)XWVWCe
(d)
1 ≈ 2T

exp(R)

1

s

∑
i∈I

χi.

To get (γ/4)-uniform approximation, we choose

R = log

(
8T

γ

)
.

Multiple heads, trainable P . For each i ∈ I, set the trainable positional embeddings to be

Pi,: :=

{
e

(d)
n(i) i ∈ I

0 otherwise
.

For h = 1, . . . , s, and the same R as above:

W
[h]
Q := Rv[CLS]e

(k)>
1 , W

[h]
K := e

(d)
h e

(k)>
1 , W

[h]
V := (E0 − E1)e

(k)>
1 , W

[h]
C := e

(k)
1 e

(d)>
h .

This is the same construction as above, but each head only selects one of the coordinates in I. Thus, by the same analysis,

ftf-head(X) ◦Πs ≈ 2T
exp(R)

∑
i∈I

χie
(d)
n(i).

Proof of Lemma B.4. This input mapping does not use position embeddings, and does not need multiple heads to imple-
ment arbitrary (non-symmetric) functions. The constructed monotone and injective functions are slightly different, but the
proof strategy is very similar. The key difference is that the softmax mixture is uniform only on the positions i ∈ I where
bi = 1.

Bag of vectors, scalar output. The function we will approximate is defined as follows:

gI(r) :=
r − s
r + 1

, where r =
∑
i∈I

bi, s = |I|.

Note that this function is (1/s)-strictly monotone, and has absolute value bounded by s. Set

WQ := Rv[CLS]e
(k)>
1 , WK := (vI + v[CLS])e

(k)>
1 ,

WV :=
∑
i∈I

vie
(k)>
n(i) − v[CLS]

(∑
i∈I

e
(k)
n(i)

)>
, WC :=

∑
i∈I

e
(k)
n(i)e

(d)>
1 ,

where R will be chosen later. Then, by approximate orthogonality,

v>[CLS]WQW
>
KX

> ≈Rs∆ R

(
v[CLS] +

∑
i∈I

bie
(T)>
i

)
,

Inductive Biases and Variable Creation in Self-Attention Mechanisms

so that by Lemma B.7,∥∥∥∥∥softmax
(
v>[CLS]WQW

>
KX

>)− 1

r + 1

(
e

(T)>
[CLS] +

∑
i∈I

bie
(T)>
i

)∥∥∥∥∥
1

≤ 2T

exp(R− 2Rs∆)
.

Finally, we have

XWVWCe
(d)
1 = −se(T)

[CLS] +
∑
i∈[T]

bi · v>i vI · e
(T)
i ≈s∆ −se(T)

[CLS] +
∑
i∈I

bie
(T)
i ,

so that

|ftf-head(X) ◦Π1 − gI(r)| ≤∥∥∥∥∥softmax
(
v>[CLS]WQW

>
KX

>)− 1

r + 1

(
e

(T)>
[CLS] +

∑
i∈I

bie
(T)>
i

)∥∥∥∥∥
1

(∥∥∥XWVWCe
(d)
1

∥∥∥
∞

+ s∆
)

+
∥∥softmax

(
v>[CLS]WQW

>
KX

>)∥∥
1

(s∆)

≤ 2Ts(1 + ∆)

exp(R− 2Rs∆)
+ s∆.

To get (γ/4)-uniform approximation, we choose

R =
log
(

8Ts(1+∆)
γ−s∆

)
1− s∆

.

Bag of vectors, s-dimensional output. We use the same construction as above, except

WC :=
∑
i∈I

e
(k)
n(i)e

(d)>
n(i) .

This will allow us to approximate the function

g′I(b) =
1

r + 1

∑
i∈I

(bi − 1)e
(d)
n(i),

which is (1/s)-injective and has absolute value is bounded by 1. Then, for each i ∈ I, we have

XWVWCe
(d)
i = −e(T)

[CLS] + v>i vI · e
(T)
i ≈s∆ −e(T)

[CLS] + bie
(T)
i .

Repeating the above analysis for each coordinate, we have

ftf-head(X) ◦Πs ≈ε g′I(r),

where a slightly tighter bound

ε =
2T (1 + s∆)

exp(R− 2Rs∆)
+ s∆

comes from the fact that
∥∥∥XWVWCe

(d)
i

∥∥∥
∞

is now bounded by 1 instead of s. The previous choice of R suffices for

(γ/4)-uniform approximation.

Proof of Lemma B.5. This follows by instantiating Lemma B.8 with δ = γ/8, df = 1, n = s + 1. Notice that a (γ/4)-
uniform approximation of a γ-strictly monotone function satisfies the conditions needed for Lemma B.8.

Proof of Lemma B.6. This follows by instantiating Lemma B.8 with δ = γ/8, df = s, n = 2s. Notice that a (γ/4)-uniform
approximation of a γ-injective function satisfies the conditions needed for Lemma B.8.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

C. Details for experiments
C.1. Empirical scaling laws (Figure 6)

In this section, we provide details for the sample complexity scaling law experiments, which are the main empirical
verification of the log T dependence of the sample complexity arising from the analysis.

Data. Synthetic supervised learning tasks corresponding to learning a 3-sparse conjunction were generated by the pro-
tocol described in the main paper, parameterized by sample size m and context T : in each trial, one of the

(
T
3

)
sub-

sets of indices was selected uniformly at random9, under i.i.d. Bernoulli inputs xi ∼ Bern(p). Here, p = (1/2)1/3

was chosen so that the classes are balanced Pr[y = 0] = Pr[y = 1]. m samples were drawn this distribution to
form a training set (rejecting training sets which were compatible with multiple hypotheses), and 104 samples were
drawn from the same distribution as a holdout validation set. The grid of problem instances was constructed as follows:
T ∈ {100, 150, 200, . . . , 750, 800} ∪ {900, 1000, 1100}, m ∈ {50, 60, 70, . . . , 200}.

Training. A 1-layer Transformer network (with a scalar output at a special trainable token x[CLS] at an extra index
[CLS]) was trained with Adam (Kingma & Ba, 2014) and full-batch gradients of the cross entropy loss for binary classi-
fication. 40 independent trials were performed (re-randomizing the dataset generation); each trial was restarted (with fresh
random initialization and dropout masks) 5 times before being labeled as a failure. Cross-validation was performed on a
holdout sample of size 104 every 10 iterations. At the end of 1000 training iterations, the trial was counted as a success if
the maximum validation accuracy throughout training was greater than 0.99. (In 100% of runs, the training loss was driven
to < 10−4, with 100% training accuracy, within 1000 iterations.)

Architecture. Like (Chen et al., 2021a), our experimental setup is based on a popular PyTorch implementation (https:
//github.com/karpathy/minGPT), with some optimizations for faster 1-layer training and inference. This imple-
mentation includes widely-used architectural details (GeLU activations; dropout) which were not discussed in the theoret-
ical analysis; refer to the referenced repository for details. All hyperparameter settings left undiscussed are taken from the
default settings in this codebase.

Hyperparameters. A fixed architecture was used (d = 64, k = 4, 16 parallel heads), with trainable positional embed-
dings initialized with Gaussian entriesN (0, σ2), σ = 0.02, 3 input token embeddings (corresponding to 0, 1,[CLS]), and
2 output embeddings (corresponding to the possible labels 0, 1). For regularization mechanisms, typical choices were used:
0.1 for {attention, embedding, output} dropout; 10−4 weight decay. The Adam optimizer was instantiated with typical
parameters η = 10−3, β1 = 0.9, β2 = 0.999.

Infrastructure and computational costs. All experiments were performed on an internal cluster, with NVIDIA Tesla
P100, NVIDIA Tesla P40, and NVIDIA RTX A6000 GPUs. Each training run took at most 10 minutes (with most
computation time spent on cross-validation), for a total of ∼ 150 GPU-hours.

C.2. Other figures

Example training curves. Figure 3 (left) shows the best training curves (in terms of highest validation accuracy) out of
5 restarts for all 40 replicates, in the settings T = 300,m = 200 and T = 300,m = 50. As the sample size m decreases,
the trained models overfit with higher probability; when they overfit, they differ significantly in validation accuracy.

Attention weights. In Figure 3, the normalized attention weights at the [CLS]position are shown for a Transformer
model trained for 500 iterations with T = 50,m = 300 (achieving 100% validation accuracy on 104 holdout samples), for
100 validation samples (which each induce different attention weights, shown in the scatter plot). One key difference (for
simplicity of visualization) is that this network only has one attention head, with embedding dimensions d = k = 64.

Parity. These experiments use the same architecture as the main AND experiments, except the. In the loss curves pre-
sented in Figure 4, gradient-based training is done on streaming online losses (so that there is no training/validation split),

9Note that due to the permutation-symmetry of the Transformer architecture (as long as the position embeddings are initialized with
a permutation-symmetric distribution), it is equivalent to select I = [s]. Also, by symmetry of the initial token embeddings, AND and
OR are interchangeable in these experiments and results.

https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT

Inductive Biases and Variable Creation in Self-Attention Mechanisms

with batch size 2048.

D. Additional related work
In this section, we discuss some additional related work.

Domains beyond language. We provide a few references on the successful application of Transformers to domains
beyond natural language processing; this frontier is continually and rapidly evolving.

• With minimal changes compared to the analogous natural language settings, Transformer sequence models have been
applied to theorem proving (Polu & Sutskever, 2020) and program synthesis (Chen et al., 2021b).

• Beyond sequence modeling: In self-supervised learning of image representations, the Vision Transformer (ViT)
(Dosovitskiy et al., 2020) has sometimes outperformed older convolution-based architectures, particularly when pre-
trained on massive datasets. Further architectural variants have been proposed for vision and other continuous modal-
ities (Tolstikhin et al., 2021; Lee-Thorp et al., 2021; Jaegle et al., 2021b;a; d’Ascoli et al., 2021).

• Natural sciences: A state-of-the-art pipeline for protein structure prediction (Jumper et al., 2021) features a self-
attention-based component.

• Reinforcement learning: Transformer architectures have shown promise for planning (Janner et al., 2021) and offline
RL (Chen et al., 2021a).

Expressive power of Transformers. Several works establish results on the representational power of self-attention ar-
chitectures in regimes where the statistical guarantees are necessarily weak or vacuous (i.e. there are too many functions
in the class). (Dehghani et al., 2018; Yun et al., 2019; Bhattamishra et al., 2020a;b) establish universal function approxi-
mation and Turing-completeness, which have been known for previous architectures (Siegelmann & Sontag, 1995). Our
work is a significantly finer-grained analysis, in which we establish a hierarchy of function classes (indexed by sparsity
s) representable by these architectures, with tight (in terms of T) statistical guarantees. (Hron et al., 2020; Yang, 2020)
analyze properties of the kernels induced by Transformers at the infinite-width limit. Quoting the discussion following The-
orem 4.1 of (Wei et al., 2021), who show statistically meaningful approximations of TM using Transformers: “The correct
norm-based Rademacher complexity bound to use for Transformers is unclear.” The connection between Transformers
and circuits also appears in (Elhage et al., 2021; Olsson et al., 2022), with a different technical approach (interpreting
the classes of computations performed by attention weights and heads). (Likhosherstov et al., 2021) analyze the sparsity
patterns representable by a self-attention head, with results superficially similar to ours: when the embedding dimension
is at least logarithmic in the context length, all sparse matrices can be approximately realized by an attention head. How-
ever, their analysis is not about the capacity of the function class: it quantifies over the input X , and holds the parameters
(WQ,WK , . . .) to be constant (rather than vice versa). This finding serves as an interesting complement to our result: even
though the attention mixture weights can take on exponentially many sparsity patterns for distinct inputs, the generalization
error scales as log(T).

Interpreting attention mixtures. A line of empirical work (“BERTology”) has made progress on understanding and in-
terpreting state-of-the-art Transformer language models by examining the activations of their attention mechanisms (Clark
et al., 2019; Tenney et al., 2019; Rogers et al., 2020). In some cases, these works have found instances in which Transform-
ers seem to have learned features that are reminiscent of (sparse) hand-crafted features used in natural language processing,
without explicit supervision. Our analysis formalizes the intuition that self-attention heads can represent sparse interactions
within the context in a statistically meaningful way.

Other theoretical work on self-attention. Kerg et al. (2020) analyze self-attention and its benefits for learning long-
term dependencies by establishing gradient norms bounds and showing how attention helps address the problem of gra-
dient vanishing in recurrent networks. In contrast to our results that analyze the statistical and representational properties
of attention-based architectures, this work focuses on the computational aspects of gradient-based methods on recurrent
networks with self-attention.

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Other attention-based architectures. Our analysis is amenable to computationally efficient variants of the Transformer
which use parsimonious (e.g. low-rank) approximations of the softmax kernel, like the Performer (Choromanski et al.,
2020). Building upon the success of modern attention-based architectures, a large body of work (e.g. Goyal et al. (2020;
2021), and the works cited within) has sought to design architectures which induce model sparsity and modularity. Our
analysis is relevant to any architecture that uses a softmax (or similar) bottleneck for statistical capacity, and could inform
design principles for norm-based capacity control of these architectures.

Synthetic experiments with Transformers. Power et al. (2021) train small Transformer networks on synthetic algebraic
tasks, and discover an abrupt phase transition from overfitting to correct generalization similar to ours. (Tay et al., 2020)
propose some synthetic tasks for benchmarking the ability of Transformer variants to capture long-range dependences.
(Chen et al., 2021a) present a synthetic demonstration of extrapolation (inferring a maximum-reward path from random
walk observations) when using Transformers for offline reinforcement learning. (Lu et al., 2021) probe the transfer learning
capabilities of pretrained Transformers, and consider some simple Boolean tasks. Our experimental protocol of learning
sparse Boolean functions provides a simple and fundamental setting for elucidating computational and statistical properties
of sequence modeling architectures.

