
pathGCN: Learning General Graph Spatial Operators from Paths

Moshe Eliasof 1 Eldad Haber 2 Eran Treister 1

Abstract
Graph Convolutional Networks (GCNs), similarly
to Convolutional Neural Networks (CNNs), are
typically based on two main operations - spatial
and point-wise convolutions. In the context of
GCNs, differently from CNNs, a pre-determined
spatial operator based on the graph Laplacian is
often chosen, allowing only the point-wise opera-
tions to be learnt. However, learning a meaningful
spatial operator is critical for developing more ex-
pressive GCNs for improved performance. In this
paper we propose pathGCN, a novel approach to
learn the spatial operator from random paths on
the graph. We analyze the convergence of our
method and its difference from existing GCNs.
Furthermore, we discuss several options of com-
bining our learnt spatial operator with point-wise
convolutions. Our extensive experiments on nu-
merous datasets suggest that by properly learning
both the spatial and point-wise convolutions, phe-
nomena like over-smoothing can be inherently
avoided, and new state-of-the-art performance is
achieved.

1. Introduction
The study of Graph Convolutional Networks (GCNs) has
gained large popularity in recent years (Bruna et al., 2013;
Defferrard et al., 2016; Kipf & Welling, 2016; Bronstein
et al., 2017; Monti et al., 2017) in a wide variety of fields and
applications such as computer graphics and vision (Boscaini
et al., 2016; Monti et al., 2017; Wang et al., 2018; Eliasof
& Treister, 2020), Bioinformatics (Strokach et al., 2020;
Jumper et al., 2021), node classification (Kipf & Welling,
2016; Chen et al., 2020; Chamberlain et al., 2021) and oth-
ers. The common ingredient that most of the methods share

1Department of Computer Science, Ben-Gurion University,
Israel. 2Department of Earth, Ocean and Atmospheric Sci-
ences, University of British Columbia, Canada.. Correspondence
to: Moshe Eliasof <eliasof@post.bgu.ac.il>, Eran Treister <er-
ant@cs.bgu.ac.il>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Figure 1. The spatial operator induced by a smoothing kernel on
different graphs. The vertex with dashed outline is the path origin.

is the use of a pre-determined spatial operator, often times
based on the graph Laplacian. While this choice is intu-
itive and effective, it induces limitations on the behaviour of
GCNs. First, it is limited in the aspect of the expressiveness
of the networks. Unlike CNNs (Krizhevsky et al., 2012; He
et al., 2016; Howard et al., 2017), where both the spatial
filters (e.g., 3× 3 depth-wise convolutions) and point-wise
(1× 1) convolutions are learnt, here only the latter are left
to be determined. Secondly, it is well known (Wu et al.,
2019) that the Laplacian operator, when applied as in (Kipf
& Welling, 2016) smooths the input features, and therefore
a recurrent application of it may lead to over-smoothing,
resulting in typically shallow networks. This phenomenon
is well documented and studied in the field of GCNs (Wu
et al., 2019; Zhao & Akoglu, 2020; Chen et al., 2020; Cham-
berlain et al., 2021; Eliasof et al., 2021). In this work we
propose pathGCN – a novel approach that overcomes the
limitations above, based on aggregation from random paths
defined over the graph vertices. We show that using this
approach it is possible to define spatial operators similarly to
the ones used in 2D convolutions on images. Such operators
have variable aperture and coefficients that may increase the
expressiveness of GCNs. In addition, since the coefficients
of the operator are learnt, its eigenvalues can be rather dif-
ferent than those of the graph Laplacian. This implies that
the learnt kernels can take different roles, from smoothing
to edge-detecting (or sharpening) operators. An example
of the effective spatial operators that are induced by the
smoothing spatial kernel [0.8, 1.0, 0.6] is presented in Fig.
1, where we can see that the spatial operator is dependent
both on the graph topology and the spatial kernel.

We provide an analysis of our method to motivate our ap-
proach in Sec. 3, and present actual learnt kernels by our
network in Fig. 4, which suggests that greater spatial flexi-
bility is required to obtain better performance and to avoid
over-smoothing, as reflected in our experiments in Sec. 4.

pathGCN: Learning General Graph Spatial Operators from Paths

Our contributions are as follows:

• We introducepathGCN– a novel approach for learning
expressive spatial operators for GCNs from random
paths. pathGCN supports several formulations, simi-
larly to standard CNNs – ranging from a global to per
layer and per channel learnt spatial operators.

• We provide an analysis of the behaviour of our
pathGCN, and present a stochastic path training policy.

• Our experiments reveal the signi�cance of the learnt
spatial operator by obtaining and improving the state-
of-the-art accuracy on various benchmarks, while also
inherently preventing over-smoothing.

2. Related work

2.1. Graph convolutional networks

Notations. Assume we are given an undirected graph de-
�ned asG = (V; E) whereV is a set ofn vertices (nodes)
andE is a set ofm edges. Let us denote byf i 2 Rc the
feature vector that resides at thei -th node ofGwith c being
the number of channels. Also, we denote the adjacency
matrix A , whereA ij = 1 if there exists an edge(i; j) 2 E,
and the diagonal degree matrixD whereD ii equals to the
degree of thei -th node. The graph Laplacian is given by
L = D � A , and its symmetric normalized formulation
readsL sym = I � D � 1

2 AD � 1
2 whereI is the identity op-

erator. Let us also denote the adjacency and degree matrices
after adding a self-loop to the nodes by~A and ~D respec-
tively, and accordingly de�ne the normalized Laplacian
of G with added self-loops by~L sym = I � ~D � 1

2 ~A ~D � 1
2 .

It follows that the spatial operation from GCN (Kipf &
Welling, 2016), induced by the graph Laplacian is given by
~P = I � ~L sym . We refer the readers to (Wu et al., 2019)
for more information.

The spatial operator in GCNs. GCNs typically involve
two main ingredients: spatial and point-wise (1 � 1) convo-
lutions to mix the channels. The majority of GCNs employ
a spatial operator based on the graph Laplacian, followed
by a point-wise convolution. For example, GCN (Kipf &
Welling, 2016) is given by:

f (l +1) = � (S(l) f (l) W (l)) (1)

whereS(l) = ~P, andW (l) is a1 � 1 convolution operator.
The combination of the operator~P and a learnable1 � 1
convolution continued in a series of works (Wu et al., 2019;
Chen et al., 2020; Zhou et al., 2021). For instance, the spatial
operation in GCNII (Chen et al., 2020) can be obtained by
replacingS(l) with :

S(l) (f (l) ; f (0)) = (1 � � (l)) ~Pf (l) + � (l) f (0) ; (2)

with � (l) 2 [0; 1] being a hyper-parameter andf (0) are the
features of the �rst (embedding) layer, which is also similar
to APPNP (Klicpera et al., 2019). Another recent example
is EGNN (Zhou et al., 2021) which performs

S(l) (f (l) ; f (0)) = (1 � cmin) ~Pf (l) + � f (l) + � f (0) ; (3)

wherecmin = � + � , and� ; � are learnt scalars. While the
methods above achieve impressive accuracy, they are still
limited in their spatial expressiveness due to their depen-
dence on~P, which may lead to sub-optimal performance.

On the other hand, there are methods that allow the freedom
of learning a rich spatial operator. For example, ChebNet
(Defferrard et al., 2016) learns dense convolutions through
polynomial parameterization of the graph Laplacian. While
from a conceptual perspective, ChebNet should be able to
learn diverse operators and prevent over-smoothing, it still
exhibits a degradation in performance when adding more
layers, as discussed in (Levie et al., 2018) and according to
our experiments as presented in Fig. 3. In addition, GDC
(Gasteiger et al., 2019) propose to impose constraints on
the �lters of ChebNet to obtain diffusion kernels. Another
network to consider is MoNet (Monti et al., 2017), which
learns local patch operators by a mixture of Gaussian. While
the Gaussian parameterization can yield more expressive
kernels and favourable results compared to GCN (Kipf &
Welling, 2016), it is more computationally demanding and
challenging to train as more layers are stacked.

2.2. Random walk on graphs

The concept of random walk is useful in many applications
and domains, from graph node classi�cation (Perozzi et al.,
2014; Nikolentzos & Vazirgiannis, 2020) to RNA disease
association (Lei & Bian, 2020) and mesh denoising (Sun
et al., 2008). In the context of graphs in machine and deep
learning, multiple methods utilized random walks for differ-
ent purposes. DeepWalk (Perozzi et al., 2014) is a two-step
algorithm for node embedding learning, based on random
walks and the SkipGram (Mikolov et al., 2013) method.
RWGNN (Nikolentzos & Vazirgiannis, 2020) learns a set
of hidden graphs which are then compared with an input
graph using a differentiable mutual random walk counting
procedure. Our approach is different as we utilize the ran-
dom walk to effectively sample paths, and employ them to
learn a spatial operator by the means of a convolution ker-
nel. Another difference is that RGWNN considers the graph
classi�cation problem, as it employs the random walk ker-
nel which is a scalar binary function of two graphs, whose
output discards the notion of the graph itself. Therefore, it
is not straight-forward to use it for node classi�cation tasks.
The recent PAN (Ma et al., 2020) parameterizes the convolu-
tion kernel by a polynomial of the adjacency matrix, where
the coef�cients are the learnt parameters, motivated by path
integral theory. However, as its formulation consists of

pathGCN: Learning General Graph Spatial Operators from Paths

learning non-negative weights, it is prone to over-smoothing
and reduced expressiveness. Another related work that uses
random walk strategy is GraphSAGE (Hamilton et al., 2017)
where neighbourhood sampling ofk hops is performed. This
method is based on two steps in which an aggregation from
two subsequent hops is performed, followed by a1 � 1
convolution. This is different than ours, as we �rst extract
the complete path, and learn a convolution kernel based on
the original information along this path, while the former
iteratively aggregates from subsequent hops.

3. Method

3.1. Learning spatial operators

In this section we motivate the need for learnt spatial opera-
tors. To do that, let us �rst consider a standard CNN where
the data resides on a simple uniform mesh-grid. We note
that CNNs and GCNs both represent data with geometrical
features. However, while CNNs are networks that operate
on a simple mesh-grid graph where pixels (nodes) are linked
based on their location, and the local geometry of the graph
is �xed, GCNs can be thought of as unstructured meshes
where the local geometry varies.

Given a feature tensorf 2 Rn � c, the convolution in CNNs
denoted byKf , is a linear operation where each input chan-
nel and each output channel has its own spatial operator.
Thus, each linear operatorK consists ofc � c different spa-
tial convolutions represented by the tensorK . Furthermore,
the convolutions can have a variable aperture (i.e., kernel
size) obtaining a larger �eld of view, and are typically learnt
per-layer, yielding a highly expressive set of operators.

In contrast, many popular and recent GCNs (Kipf & Welling,
2016; Wu et al., 2019; Chen et al., 2020; Chamberlain et al.,
2021; Zhou et al., 2021) and others employ a pre-determined
spatial operator, often times guided by the graph Laplacian
which is determined solely by the topology of the graph
G, coupled with a1 � 1 convolution to mix the channels.
Therefore, by comparing GCNs to CNNs it is notable that
the former have signi�cantly fewer degrees of freedom with
respect to their spatial operation. Indeed, 2D CNNs with a
spatial kernel of sizek andc channels optimizec� c� k � k
parameters, while GCNs typically only optimize the1 � 1
convolution, yieldingc � c parameters. In addition to the
possible expressiveness issue, the frequent of the graph
Laplacian can lead to undesired phenomena such as over-
smoothing (Wu et al., 2019; Zhao & Akoglu, 2020; Chen
et al., 2020). Some attempts to overcome the expressive-
ness limitation consider using polynomials of the graph
Laplacian, stabilizing them by constructing a Chebyshev
basis (Defferrard et al., 2016). However, it imposes high
computational cost due to the frequent computations of the
Chebyshev polynomial and fully-connected convolution �l-

ters. Furthermore, it is dif�cult to train such a network due to
its eigenvalues distribution, as demonstrated in (Levie et al.,
2018). With respect to the over-smoothing phenomenon,
various techniques were proposed (Zhao & Akoglu, 2020;
Chen et al., 2020; Rong et al., 2020). While those methods
indeed aid the over-smoothing issue, they do not inherently
change the smoothing behaviour of GCNs, but rather ease
the smoothing process.

In what follows, we present a methodology that allows the
construction of a graph convolution that is similar to the
standard convolution on a regular mesh grid which allows
greater expressiveness and inherently does not over-smooth.

3.2. From �xed to variable spatial operator

The non-constant topology of the graph is the major obstacle
in generating a meaningful spatial convolution in GCNs. We
now show that this can be addressed by using random walks.

To this end, we consider apath on the graph, on which
the weights that parameterize the spatial operator are learnt.
Therefore, a transition function that dictates some traver-
sal strategy on the graph is required in order to obtain a
path like input to our network. Speci�cally, we adopt the
graph random walk generator from node2vec (Grover &
Leskovec, 2016), as implemented in PyTorch-Geometric
(Fey & Lenssen, 2019), for its simplicity and ef�cient im-
plementation. We note, however, that a different transition
function could also be used or learnt.

Assume �rst that we havea single channelfeature ten-
sor f 2 Rn � 1, and a path of lengthk is given. Let us
denote the learnt spatial parameters bys 2 Rk , and let
yj = (j 0; :::; j k � 1) be a tuple of node indices of a single
random path of nodes of lengthk, starting from nodej 0 = j .
The convolution overa single pathfor thej -th node is de-
�ned by the following linear operator:

K y j (s)f =
k � 1X

i =0

si f j i : (4)

That is, the features of the nodes on the pathyj are weighted
by the corresponding learnt parameter ins, and summed to
get the feature of thej -th node—the node where the path
originates from.

More generally, instead of considering a single path, let us
samplep different paths, and accordingly de�ne the paths
convolution as the average over all sampled paths

K Y j (s)f =
1
p

X

y j 2Y j

K y j (s)f (5)

whereyj 2 Y j is a path from a set ofp random walks
starting from thej -th node.

