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Abstract
Graph Convolutional Networks (GCNs), similarly
to Convolutional Neural Networks (CNNs), are
typically based on two main operations - spatial
and point-wise convolutions. In the context of
GCNs, differently from CNNs, a pre-determined
spatial operator based on the graph Laplacian is
often chosen, allowing only the point-wise opera-
tions to be learnt. However, learning a meaningful
spatial operator is critical for developing more ex-
pressive GCNs for improved performance. In this
paper we propose pathGCN, a novel approach to
learn the spatial operator from random paths on
the graph. We analyze the convergence of our
method and its difference from existing GCNs.
Furthermore, we discuss several options of com-
bining our learnt spatial operator with point-wise
convolutions. Our extensive experiments on nu-
merous datasets suggest that by properly learning
both the spatial and point-wise convolutions, phe-
nomena like over-smoothing can be inherently
avoided, and new state-of-the-art performance is
achieved.

1. Introduction
The study of Graph Convolutional Networks (GCNs) has
gained large popularity in recent years (Bruna et al., 2013;
Defferrard et al., 2016; Kipf & Welling, 2016; Bronstein
et al., 2017; Monti et al., 2017) in a wide variety of fields and
applications such as computer graphics and vision (Boscaini
et al., 2016; Monti et al., 2017; Wang et al., 2018; Eliasof
& Treister, 2020), Bioinformatics (Strokach et al., 2020;
Jumper et al., 2021), node classification (Kipf & Welling,
2016; Chen et al., 2020; Chamberlain et al., 2021) and oth-
ers. The common ingredient that most of the methods share
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Figure 1. The spatial operator induced by a smoothing kernel on
different graphs. The vertex with dashed outline is the path origin.

is the use of a pre-determined spatial operator, often times
based on the graph Laplacian. While this choice is intu-
itive and effective, it induces limitations on the behaviour of
GCNs. First, it is limited in the aspect of the expressiveness
of the networks. Unlike CNNs (Krizhevsky et al., 2012; He
et al., 2016; Howard et al., 2017), where both the spatial
filters (e.g., 3× 3 depth-wise convolutions) and point-wise
(1× 1) convolutions are learnt, here only the latter are left
to be determined. Secondly, it is well known (Wu et al.,
2019) that the Laplacian operator, when applied as in (Kipf
& Welling, 2016) smooths the input features, and therefore
a recurrent application of it may lead to over-smoothing,
resulting in typically shallow networks. This phenomenon
is well documented and studied in the field of GCNs (Wu
et al., 2019; Zhao & Akoglu, 2020; Chen et al., 2020; Cham-
berlain et al., 2021; Eliasof et al., 2021). In this work we
propose pathGCN – a novel approach that overcomes the
limitations above, based on aggregation from random paths
defined over the graph vertices. We show that using this
approach it is possible to define spatial operators similarly to
the ones used in 2D convolutions on images. Such operators
have variable aperture and coefficients that may increase the
expressiveness of GCNs. In addition, since the coefficients
of the operator are learnt, its eigenvalues can be rather dif-
ferent than those of the graph Laplacian. This implies that
the learnt kernels can take different roles, from smoothing
to edge-detecting (or sharpening) operators. An example
of the effective spatial operators that are induced by the
smoothing spatial kernel [0.8, 1.0, 0.6] is presented in Fig.
1, where we can see that the spatial operator is dependent
both on the graph topology and the spatial kernel.

We provide an analysis of our method to motivate our ap-
proach in Sec. 3, and present actual learnt kernels by our
network in Fig. 4, which suggests that greater spatial flexi-
bility is required to obtain better performance and to avoid
over-smoothing, as reflected in our experiments in Sec. 4.
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Our contributions are as follows:

• We introduce pathGCN – a novel approach for learning
expressive spatial operators for GCNs from random
paths. pathGCN supports several formulations, simi-
larly to standard CNNs – ranging from a global to per
layer and per channel learnt spatial operators.

• We provide an analysis of the behaviour of our
pathGCN, and present a stochastic path training policy.

• Our experiments reveal the significance of the learnt
spatial operator by obtaining and improving the state-
of-the-art accuracy on various benchmarks, while also
inherently preventing over-smoothing.

2. Related work
2.1. Graph convolutional networks

Notations. Assume we are given an undirected graph de-
fined as G = (V, E) where V is a set of n vertices (nodes)
and E is a set of m edges. Let us denote by fi ∈ Rc the
feature vector that resides at the i-th node of G with c being
the number of channels. Also, we denote the adjacency
matrix A, where Aij = 1 if there exists an edge (i, j) ∈ E ,
and the diagonal degree matrix D where Dii equals to the
degree of the i-th node. The graph Laplacian is given by
L = D − A, and its symmetric normalized formulation
reads Lsym = I−D− 1

2AD− 1
2 where I is the identity op-

erator. Let us also denote the adjacency and degree matrices
after adding a self-loop to the nodes by Ã and D̃ respec-
tively, and accordingly define the normalized Laplacian
of G with added self-loops by L̃sym = I − D̃− 1

2 ÃD̃− 1
2 .

It follows that the spatial operation from GCN (Kipf &
Welling, 2016), induced by the graph Laplacian is given by
P̃ = I − L̃sym. We refer the readers to (Wu et al., 2019)
for more information.

The spatial operator in GCNs. GCNs typically involve
two main ingredients: spatial and point-wise (1× 1) convo-
lutions to mix the channels. The majority of GCNs employ
a spatial operator based on the graph Laplacian, followed
by a point-wise convolution. For example, GCN (Kipf &
Welling, 2016) is given by:

f (l+1) = σ(S(l)f (l)W(l)) (1)

where S(l) = P̃, and W(l) is a 1× 1 convolution operator.
The combination of the operator P̃ and a learnable 1 × 1
convolution continued in a series of works (Wu et al., 2019;
Chen et al., 2020; Zhou et al., 2021). For instance, the spatial
operation in GCNII (Chen et al., 2020) can be obtained by
replacing S(l) with :

S(l)(f (l), f (0)) = (1− α(l))P̃f (l) + α(l)f (0), (2)

with α(l) ∈ [0, 1] being a hyper-parameter and f (0) are the
features of the first (embedding) layer, which is also similar
to APPNP (Klicpera et al., 2019). Another recent example
is EGNN (Zhou et al., 2021) which performs

S(l)(f (l), f (0)) = (1− cmin)P̃f (l) + αf (l) + βf (0), (3)

where cmin = α+β, and α , β are learnt scalars. While the
methods above achieve impressive accuracy, they are still
limited in their spatial expressiveness due to their depen-
dence on P̃, which may lead to sub-optimal performance.

On the other hand, there are methods that allow the freedom
of learning a rich spatial operator. For example, ChebNet
(Defferrard et al., 2016) learns dense convolutions through
polynomial parameterization of the graph Laplacian. While
from a conceptual perspective, ChebNet should be able to
learn diverse operators and prevent over-smoothing, it still
exhibits a degradation in performance when adding more
layers, as discussed in (Levie et al., 2018) and according to
our experiments as presented in Fig. 3. In addition, GDC
(Gasteiger et al., 2019) propose to impose constraints on
the filters of ChebNet to obtain diffusion kernels. Another
network to consider is MoNet (Monti et al., 2017), which
learns local patch operators by a mixture of Gaussian. While
the Gaussian parameterization can yield more expressive
kernels and favourable results compared to GCN (Kipf &
Welling, 2016), it is more computationally demanding and
challenging to train as more layers are stacked.

2.2. Random walk on graphs

The concept of random walk is useful in many applications
and domains, from graph node classification (Perozzi et al.,
2014; Nikolentzos & Vazirgiannis, 2020) to RNA disease
association (Lei & Bian, 2020) and mesh denoising (Sun
et al., 2008). In the context of graphs in machine and deep
learning, multiple methods utilized random walks for differ-
ent purposes. DeepWalk (Perozzi et al., 2014) is a two-step
algorithm for node embedding learning, based on random
walks and the SkipGram (Mikolov et al., 2013) method.
RWGNN (Nikolentzos & Vazirgiannis, 2020) learns a set
of hidden graphs which are then compared with an input
graph using a differentiable mutual random walk counting
procedure. Our approach is different as we utilize the ran-
dom walk to effectively sample paths, and employ them to
learn a spatial operator by the means of a convolution ker-
nel. Another difference is that RGWNN considers the graph
classification problem, as it employs the random walk ker-
nel which is a scalar binary function of two graphs, whose
output discards the notion of the graph itself. Therefore, it
is not straight-forward to use it for node classification tasks.
The recent PAN (Ma et al., 2020) parameterizes the convolu-
tion kernel by a polynomial of the adjacency matrix, where
the coefficients are the learnt parameters, motivated by path
integral theory. However, as its formulation consists of
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learning non-negative weights, it is prone to over-smoothing
and reduced expressiveness. Another related work that uses
random walk strategy is GraphSAGE (Hamilton et al., 2017)
where neighbourhood sampling of k hops is performed. This
method is based on two steps in which an aggregation from
two subsequent hops is performed, followed by a 1 × 1
convolution. This is different than ours, as we first extract
the complete path, and learn a convolution kernel based on
the original information along this path, while the former
iteratively aggregates from subsequent hops.

3. Method
3.1. Learning spatial operators

In this section we motivate the need for learnt spatial opera-
tors. To do that, let us first consider a standard CNN where
the data resides on a simple uniform mesh-grid. We note
that CNNs and GCNs both represent data with geometrical
features. However, while CNNs are networks that operate
on a simple mesh-grid graph where pixels (nodes) are linked
based on their location, and the local geometry of the graph
is fixed, GCNs can be thought of as unstructured meshes
where the local geometry varies.

Given a feature tensor f ∈ Rn×c, the convolution in CNNs
denoted by Kf , is a linear operation where each input chan-
nel and each output channel has its own spatial operator.
Thus, each linear operator K consists of c× c different spa-
tial convolutions represented by the tensor K. Furthermore,
the convolutions can have a variable aperture (i.e., kernel
size) obtaining a larger field of view, and are typically learnt
per-layer, yielding a highly expressive set of operators.

In contrast, many popular and recent GCNs (Kipf & Welling,
2016; Wu et al., 2019; Chen et al., 2020; Chamberlain et al.,
2021; Zhou et al., 2021) and others employ a pre-determined
spatial operator, often times guided by the graph Laplacian
which is determined solely by the topology of the graph
G, coupled with a 1 × 1 convolution to mix the channels.
Therefore, by comparing GCNs to CNNs it is notable that
the former have significantly fewer degrees of freedom with
respect to their spatial operation. Indeed, 2D CNNs with a
spatial kernel of size k and c channels optimize c×c×k×k
parameters, while GCNs typically only optimize the 1× 1
convolution, yielding c × c parameters. In addition to the
possible expressiveness issue, the frequent of the graph
Laplacian can lead to undesired phenomena such as over-
smoothing (Wu et al., 2019; Zhao & Akoglu, 2020; Chen
et al., 2020). Some attempts to overcome the expressive-
ness limitation consider using polynomials of the graph
Laplacian, stabilizing them by constructing a Chebyshev
basis (Defferrard et al., 2016). However, it imposes high
computational cost due to the frequent computations of the
Chebyshev polynomial and fully-connected convolution fil-

ters. Furthermore, it is difficult to train such a network due to
its eigenvalues distribution, as demonstrated in (Levie et al.,
2018). With respect to the over-smoothing phenomenon,
various techniques were proposed (Zhao & Akoglu, 2020;
Chen et al., 2020; Rong et al., 2020). While those methods
indeed aid the over-smoothing issue, they do not inherently
change the smoothing behaviour of GCNs, but rather ease
the smoothing process.

In what follows, we present a methodology that allows the
construction of a graph convolution that is similar to the
standard convolution on a regular mesh grid which allows
greater expressiveness and inherently does not over-smooth.

3.2. From fixed to variable spatial operator

The non-constant topology of the graph is the major obstacle
in generating a meaningful spatial convolution in GCNs. We
now show that this can be addressed by using random walks.

To this end, we consider a path on the graph, on which
the weights that parameterize the spatial operator are learnt.
Therefore, a transition function that dictates some traver-
sal strategy on the graph is required in order to obtain a
path like input to our network. Specifically, we adopt the
graph random walk generator from node2vec (Grover &
Leskovec, 2016), as implemented in PyTorch-Geometric
(Fey & Lenssen, 2019), for its simplicity and efficient im-
plementation. We note, however, that a different transition
function could also be used or learnt.

Assume first that we have a single channel feature ten-
sor f ∈ Rn×1, and a path of length k is given. Let us
denote the learnt spatial parameters by s ∈ Rk, and let
yj = (j0, ..., jk−1) be a tuple of node indices of a single
random path of nodes of length k, starting from node j0 = j.
The convolution over a single path for the j-th node is de-
fined by the following linear operator:

Kyj (s)f =

k−1∑
i=0

sifji . (4)

That is, the features of the nodes on the path yj are weighted
by the corresponding learnt parameter in s, and summed to
get the feature of the j-th node—the node where the path
originates from.

More generally, instead of considering a single path, let us
sample p different paths, and accordingly define the paths
convolution as the average over all sampled paths

KYj (s)f =
1

p

∑
yj∈Yj

Kyj (s)f (5)

where yj ∈ Yj is a path from a set of p random walks
starting from the j-th node.
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Figure 2. The effective spatial operator from a walk of length 3 starting at the dashed node, ranging from 1 to 1000 random walks.

3.3. Constructing pathGCN

So far we defined the path convolution, which operates in
the spatial domain. In what follows, we omit s for brevity,
and denote by KY the pathConv module described in Eq.
(5) on all the nodes in V given their corresponding path
realizations Y . To obtain a complete network, we need
to add the channel mixing convolution and the non-linear
activation σ, as follows

f (l+1) = σ(W(l)K
(l)
Y f (l)), (6)

where in our implementation σ is ReLU and W(l) is a 1× 1
(i.e., point-wise) convolution . The simplest utilization of
pathConv applies a single spatial operator parameterized by
s ∈ Rk, shared among all channels and all L layers. While
this is more flexible than using P̃ as in Eq. (1), it can be
further generalized. Scaling up, it is also possible to learn a
different parameterization of the spatial operator per layer,
that is, s ∈ RL×k. In practice and inspired by modern CNNs
(Sandler et al., 2018; Ephrath et al., 2020), we found that
learning a depth-wise spatial operator (i.e., a spatial operator
per channel and layer such that s ∈ RL×c×k) followed by
a 1 × 1 convolution leads to favorable performance both
accuracy- and computationally-wise across all the consid-
ered data sets in this paper, as reflected in our experiments
in Sec. 4. We refer to this architecture as pathGCN. We note
that it is also possible to learn different spatial operators
for all pairs of channels, per layer – similarly to a standard
fully-connected CNN.

Finally, learning the spatial convolution allows for a variety
of operators, from non-smoothing (e.g., edge-detection fil-
ters) to smoothing operators. Thus, as we demonstrate in the
experiments section, our network achieves state-of-the-art
performance, and does not suffer from over-smoothing.

3.4. Convergence analysis

The process defined in Eq. (4)-(5) represents a simple
stochastic process to build a spatial operation for a single
channel that depends on two quantities. First, it depends on
the algorithm used to sample the set of paths Y , and second,
it depends on the learnt weights s. A natural question that

arises is – does this process converge, and to what? To
answer this question we need to make a mild assumption
on the random walk process. Namely, we assume that the
process is Markovian, that is, at each state the walk can
visit any neighbouring node of the current node at an equal
probability. In the following, we show that at the sampling
limit (i.e., p → ∞), there exists a stationary distribution of
the paths, which induces a spatial operator sampled by our
method, as exemplified in Fig. 2.

Let us consider the simple case of a convolution on a general
path of length 2, which can be written as

Kyj
(s)f = s0fj0 + s1fj1 = s0fj + s1fj1 . (7)

The second transition follows from the fact that the path
originates from the j-th node, i.e., fj0 = fj . Note, that j1
can represent any of the immediate neighbours of the j-th
node. Therefore, the expectation of (7) which corresponds
to all the nodes V is given by

Ey(Ky(s)f) = s0f + s1(AD−1)f (8)

where A is the adjacency matrix and D is a diagonal matrix
with the degree of each node.

More generally, let us consider a path of an arbitrary length
k. In this case we have that the expectation term reads

Ey (Ky(s)f) =

(
k−1∑
i=0

si(AD−1)i

)
f (9)

where (AD−1)0 = I. We note that the transition matrix
AD−1 is column-stochastic, and therefore its eigenvalues
are bounded between [−1, 1]. Thus, this polynomial for-
mulation is stable and does not diverge for an appropriate
choice of coefficients s.

Furthermore, Eq. (9) is a deterministic representation of the
process given in Eq. (5). If the number of path-realizations,
p is large then the results from both are similar. For short
paths, a direct evaluation of Eq. (9) can be computationally
advantageous compared to its stochastic implementation.
However, for long paths, computing the powers of the adja-
cency matrix times a vector can be expensive. The average
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over paths is, in this case, an economical way to approximate
the process, avoiding repeated matrix multiplications.

Lastly, as we show in our experiments, the stochastic nature
of the process has additional advantages. In particular, it
allows for better trainability and generalization, compared
to the deterministic form. Indeed, a significant increase in
the value of p causes performance degradation, as reported
in Fig. 5. For inference purposes, we may use both the
stochastic or deterministic formulations from Eq. (5) and
(9) respectively, yielding similar results for both.

3.5. Computational cost and number of parameters

We compare the cost of our pathGCN with the methods
considered in Eq. (1)-(3). On the spatial side, our pathGCN
involves n×k×p operations rather than n×d for the consid-
ered methods, where d is the mean node degree of the graph.
Therefore, if k × p is larger than d, our method requires
more computations. Nonetheless, our pathGCN has a wider
aperture as it considers paths of k nodes, thus its field of
view is larger . We also compare of the number of trainable
parameters, which further highlights the difference of our
approach. Recall that our pathGCN learns the spatial opera-
tor in addition to a 1× 1 convolution, which is also present
in other methods. That is, per pathGCN layer, the spatial
weights that parameterize KY require c × k parameters,
while the 1× 1 convolution W requires c× c parameters,
where typically k is significantly smaller than c. In our ex-
periments, different values of k and p were examined, and
we found that setting k between 3 to 7 and p between 5 to 10
achieves better or on par with state-of-the-art models while
keeping the computational cost reasonable.

We also consider the stochastic implementation of a ran-
dom walk over an arbitrary graph. Sampling a single path
of length k for all nodes in V requires n × k operations1.
Therefore, if the number of paths p is smaller than the av-
erage node degree d of the graph, then the cost of random
walk sampling is smaller than the cost of applying the ad-
jacency matrix as in (9). Furthermore, in the deterministic
case, a spatial operation on a path of length 2 requires n× d
computations. Extending it to a path of length k requires
n × d × (k − 1) operations, realized by polynomials of
degree k − 1 of the adjacency matrix. We note that Eq. (9),
which is the deterministic form of our method, can also be
used for inference purposes.

4. Experiments
We demonstrate our pathGCN on node classification and
protein-protein interaction (Hamilton et al., 2017), followed
by an ablation study in order to gain a profound understand-

1We note that further efficiency can be gained by using a tree
structure that describes the nodes of the sampled paths.

Table 1. Node classification datasets statistics.

Dataset Classes Nodes Edges Features

Cora 7 2,708 5,429 1,433
Citeseer 6 3,327 4,732 3,703
Pubmed 3 19,717 44,338 500
Chameleon 5 2,277 36,101 2,325
Cornell 5 183 295 1,703
Texas 5 183 309 1,703
Wisconsin 5 251 499 1,703
PPI 121 56,944 818,716 50
Wiki-CS 10 11,701 216,123 300
Actor 5 7,600 33,544 932
Ogbn-arxiv 40 169,343 1,166,243 128

Table 2. Summary of semi-supervised node classification accuracy
(%)

Method Cora Citeseer Pubmed

ChebNet 81.2 69.8 74.4
GCN 81.1 70.8 79.0
GAT 83.1 70.8 78.5
APPNP 83.3 71.8 80.1
JKNET 81.1 69.8 78.1
GCNII 85.5 73.4 80.3
GRAND 84.7 73.6 81.0
PDE-GCN 84.3 75.6 80.6
EGNN 85.7 – 80.1

pathGCN (Ours) 85.8 75.8 82.7

ing of our method. In all experiments, we employ a network
that is comprised of an embedding layer (1×1 convolution),
followed by a sequence of pathGCN layers, whose final
output is fed to a 1 × 1 convolution layer which acts as a
classifier. A detailed description of the network architec-
ture is given in Appendix A. We use the Adam (Kingma &
Ba, 2014) optimizer in all experiments, and perform grid
search over the hyper-parameters of our network. The se-
lected hyper-parameters are reported in Appendix B. The
objective function in all experiments is the cross-entropy
loss, besides inductive learning on PPI where we use the
binary cross-entropy loss. Our code is implemented using
PyTorch (Paszke et al., 2019) and PyTorch-Geometric (Fey
& Lenssen, 2019) and trained on an Nvidia Titan RTX GPU.

We show that for all the considered tasks and datasets, whose
statistics are provided in Tab. 1, our method is either better
or on par with other state-of-the-art models.
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Figure 3. ChebNet vs pathGCN on semi-supervised node classifi-
cation.

4.1. Semi-supervised node classification

Here, we use three datasets – Cora, Citeseer and Pubmed
(Sen et al., 2008). For all datasets we use the standard train-
ing/validation/testing split as in (Yang et al., 2016), with 20
nodes per class for training, 500 validation nodes and 1,000
testing nodes and follow the training scheme of (Chen et al.,
2020). For comparison, we consider various models like
ChebNet (Defferrard et al., 2016), GCN (Kipf & Welling,
2016), GAT(Veličković et al., 2018), Inception (Szegedy
et al., 2017), APPNP (Klicpera et al., 2019), JKNet (Xu
et al., 2018), DropEdge (Rong et al., 2020), GCNII(Chen
et al., 2020), GRAND (Chamberlain et al., 2021), PDE-
GCN (Eliasof et al., 2021) and EGNN (Zhou et al., 2021).

As discussed in Sec. 3, our pathGCN is constructed such
that wider spatial operators are obtained, allowing for im-
proved expressiveness, namely, compared to methods that
are based on the graph Laplacian or its proxies. As objec-
tively portrayed by Tab. 2 and 3, our pathGCN is capable
of obtaining higher accuracy on all three datasets. A bold
improvement is obtained on Pubmed, where an accuracy of
82.7% is achieved, compared to previously state-of-the-art
GRANDnl-rw with 81.0%. Our approach also benefits from
the inherent absence of over-smoothing, as the spatial oper-
ator is fully learnt. This is also validated by inspecting the
learnt kernels of different layers of the network. Indeed, as
shown in Fig. 4, some layers perform smoothing by averag-
ing, while others act as edge-detection filters by considering
the difference of neighbouring nodes along the path.

4.2. Fully-supervised node classification

To further validate our method, we employ a total of 10
datasets. First, we follow (Pei et al., 2020) and examine our
pathGCN on Cora, Citeseer, Pubmed, Chameleon (Rozem-
berczki et al., 2021), Cornell, Texas and Wisconsin. We also
use the same train/validation/test splits of 60%, 20%, 20%,

Table 3. Semi-supervised node classification accuracy (%). – indi-
cates not available results.

Dataset Method Layers
2 4 8 16 32 64

Cora GCN 81.1 80.4 69.5 64.9 60.3 28.7
GCN (Drop) 82.8 82.0 75.8 75.7 62.5 49.5
JKNet – 80.2 80.7 80.2 81.1 71.5
JKNet (Drop) – 83.3 82.6 83.0 82.5 83.2
Incep – 77.6 76.5 81.7 81.7 80.0
Incep (Drop) – 82.9 82.5 83.1 83.1 83.5
GCNII 82.2 82.6 84.2 84.6 85.4 85.5
GCNII* 80.2 82.3 82.8 83.5 84.9 85.3
PDE-GCND 82.0 83.6 84.0 84.2 84.3 84.3
EGNN 83.2 – – 85.4 – 85.7
pathGCN (Ours) 84.2 84.5 84.6 85.1 85.4 85.8

Citeseer GCN 70.8 67.6 30.2 18.3 25.0 20.0
GCN (Drop) 72.3 70.6 61.4 57.2 41.6 34.4
JKNet – 68.7 67.7 69.8 68.2 63.4
JKNet (Drop) – 72.6 71.8 72.6 70.8 72.2
Incep – 69.3 68.4 70.2 68.0 67.5
Incep (Drop) – 72.7 71.4 72.5 72.6 71.0
GCNII 68.2 68.8 70.6 72.9 73.4 73.4
GCNII* 66.1 66.7 70.6 72.0 73.2 73.1
PDE-GCND 74.6 75.0 75.2 75.5 75.6 75.5
pathGCN (Ours) 74.3 74.8 75.4 75.3 75.6 75.8

Pubmed GCN 79.0 76.5 61.2 40.9 22.4 35.3
GCN (Drop) 79.6 79.4 78.1 78.5 77.0 61.5
JKNet – 78.0 78.1 72.6 72.4 74.5
JKNet (Drop) – 78.7 78.7 79.7 79.2 78.9
Incep – 77.7 77.9 74.9 – –
Incep (Drop) – 79.5 78.6 79.0 – –
GCNII 78.2 78.8 79.3 80.2 79.8 79.7
GCNII* 77.7 78.2 78.8 80.3 79.8 80.1
PDE-GCND 79.3 80.6 80.1 80.4 80.2 80.3
EGNN 79.2 – – 80.0 – 80.1
pathGCN (Ours) 81.8 81.8 82.4 82.5 82.4 82.7

respectively, and report the average performance over 10
random splits from (Pei et al., 2020). We fix the number
of channels to 64 and perform grid search to determine the
hyper-parameters. We compare our network with GCN,
GAT, Geom-GCN (Pei et al., 2020), APPNP, JKNet, Incep-
tion, GCNII and PDE-GCN in Tab. 4. Our experiments
read improvement across all data-sets compared to all the
considered methods. For instance, we obtain 90.02% ac-
curacy on Cora with our pathGCN, compared to 88.49%
of GCNII* and 88.60% of PDE-GCN. In addition, we ex-
amine our pathGCN on larger datasets using the standard
train/validation/test splits of Actor (Pei et al., 2020), Ogbn-
arxiv (Hu et al., 2020) and Wiki-CS (20 random splits)
(Mernyei & Cangea, 2020) in Tab. 5 and 6 – where again
we see accuracy improvement across all considered datasets.
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Figure 4. A visualization of the learnt spatial operator KY from a 8-layer pathGCN trained on Cora, applied on the dashed node in the
graph (top), and its corresponding learnt weights (bottom).

Table 4. Fully-supervised node classification accuracy (%). (L) denotes the number of layers.

Method Cora Cite. Pubm. Cham. Corn. Texas Wisc.

GCN (Kipf & Welling, 2016) 85.77 73.68 88.13 28.18 52.70 52.16 45.88
GAT (Veličković et al., 2018) 86.37 74.32 87.62 42.93 54.32 58.38 49.41
Geom-GCN-I (Pei et al., 2020) 85.19 77.99 90.05 60.31 56.76 57.58 58.24
Geom-GCN-P (Pei et al., 2020) 84.93 75.14 88.09 60.90 60.81 67.57 64.12
Geom-GCN-S (Pei et al., 2020) 85.27 74.71 84.75 59.96 55.68 59.73 56.67
APPNP (Klicpera et al., 2019) 87.87 76.53 89.40 54.30 73.51 65.41 69.02
JKNet (Xu et al., 2018) 85.25 (16) 75.85 (8) 88.94 (64) 60.07 (32) 57.30 (4) 56.49 (32) 48.82 (8)
JKNet (Drop) (Rong et al., 2020) 87.46 (16) 75.96 (8) 89.45 (64) 62.08 (32) 61.08 (4) 57.30 (32) 50.59 (8)
Incep (Drop) (Rong et al., 2020) 86.86 (8) 76.83 (8) 89.18 (4) 61.71 (8) 61.62 (16) 57.84 (8) 50.20 (8)
GCNII (Chen et al., 2020) 88.49 (64) 77.08 (64) 89.57 (64) 60.61 (8) 74.86 (16) 69.46 (32) 74.12 (16)
GCNII* (Chen et al., 2020) 88.01 (64) 77.13 (64) 90.30 (64) 62.48 (8) 76.49 (16) 77.84 (32) 81.57 (16)
PDE-GCNM(Eliasof et al., 2021) 88.60 (16) 78.48 (32) 89.93 (16) 66.01 (16) 89.73 (64) 93.24 (32) 91.76 (16)

pathGCN (Ours) 90.02 (64) 78.95 (32) 90.42 (64) 66.79 (16) 91.35 (8) 95.14 (16) 93.53 (16)

Table 5. Fully-supervised node classification accuracy (%).

Method Actor Ogbn-arxiv

GCN (Kipf & Welling, 2016) 26.86 71.74
GAT (Veličković et al., 2018) 28.45 71.89
APPNP (Klicpera et al., 2019) 31.26 71.82
Geom-GCN-P (Pei et al., 2020) 31.63 –
JKNet (Xu et al., 2018) 29.81 72.19
SGC (Wu et al., 2019) 30.98 69.20
GCNII (Chen et al., 2020) 32.87 72.74
EGNN (Zhou et al., 2021) – 72.70
GRAND (Chamberlain et al., 2021) – 72.23

pathGCN (Ours) 37.54 72.83

4.3. Inductive learning

We employ the PPI dataset (Hamilton et al., 2017) for the
inductive learning task. We use a 8 layer pathGCN, without
weight-decay, dropout of 0.2 and a learning rate of 0.001.
We compare our results with various methods like Graph-
SAGE, GAT, JKNet, GeniePath, Cluster-GCN, GCNII and
others, and present the micro-averaged F1 score in in Tab.

Table 6. Node classification on Wiki-CS.
Method Accuracy (%)

GCN (Kipf & Welling, 2016) 77.19
GAT (Veličković et al., 2018) 77.65
SuperGAT (Kim & Oh, 2020) 77.90
APPNP (Klicpera et al., 2019) 79.84

pathGCN (Ours) 80.02

7. We note that our pathGCN achieves a score of 99.61, su-
perior to methods like GAT, JKNet, GeniePath, PDE-GCN,
and slightly above GCNII* with a score of 99.58.

4.4. Graph classification

Our previous experiments considered various datasets and
settings of the node classification task. To further demon-
strate the efficacy of our pathGCN we experiment with
graph classification on the popular TUDatasets (Morris et al.,
2020). We follow the same experimental settings from (Xu
et al., 2019) and report the 10 fold cross-validation perfor-
mance on MUTAG, PTC, PROTEINS and NCI1 datasets.
The hyper-parameters are determined by grid search, as
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Table 7. Inductive learning on PPI dataset. Results are reported in
micro-averaged F1 score.

Method Micro-averaged F1

GraphSAGE (Hamilton et al., 2017) 61.20
VR-GCN (Chen et al., 2018) 97.80
GaAN (Zhang et al., 2018a) 98.71
GAT (Veličković et al., 2018) 97.30
JKNet (Xu et al., 2018) 97.60
GeniePath (Liu et al., 2018) 98.50
Cluster-GCN (Chiang et al., 2019) 99.36
GCNII (Chen et al., 2020) 99.54
GCNII* (Chen et al., 2020) 99.58
PDE-GCNM (Eliasof et al., 2021) 99.18

pathGCN (ours) 99.61

Table 8. TUDatasets graph classification accuracy (%).

Model MUTAG PTC PROTEINS NCI1

DGCNN 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5

IGN 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7

GIN 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7

CIN 92.7±6.1 68.2±5.6 77.0±4.3 83.6±1.4

GSN 92.7±7.5 68.2±7.2 76.6±5.0 83.5±2.0

pathGCN (ours) 94.7±4.7 75.2±5.3 80.4±4.2 83.3±1.3

in (Xu et al., 2019) and are reported in Appendix B. We
compare our pathGCN with recent methods like DGCNN
(Zhang et al., 2018b), IGN (Maron et al., 2018),GIN (Xu
et al., 2019), CIN (Bodnar et al., 2021) and GSN (Bouritsas
et al., 2022). The results are summarized in Tab. 8, where
our pathGCN shows better or similar results compared to
the considered methods, further highlighting the efficacy of
our approach.

4.5. Inference and runtimes

In this section we compare the inference accuracy of our
stochastic approach with its deterministic form. Later, we
report the runtimes of our method.

As discussed in Sec. 3.4, both the stochastic and determinis-
tic forms of our pathGCN can be used during inference. In
Tab. 9, we show that after training our stochastic pathGCN,
it is possible to obtain similar results (with up to 0.1% accu-
racy difference) by its deterministic form as in Eq. (9). The
stochastic results are averaged over 10 inference runs, and
we also present their standard deviation.

Next, we present the training and inferences times, as well
as path sampling time of our pathGCN and compare it with

Table 9. Deterministic vs stochastic pathGCN inference accuracy
(%).

Inference Cora Cite. Pub. ogbn-arxiv Wisc. PPI

Determin. 85.8 75.8 82.7 72.84 93.51 99.61

Stochastic 85.8 75.8 82.7 72.83 93.53 99.61
±0.29 ±0.34 ±0.34 ±0.13 ±0.21 ±0.02

Table 10. Computation times (in ms) on Cora.
Model Path samp. Training Inference Acc (%)

GCN (2 layers) - 4.07 1.97 81.1
GCNII (2 layers) - 4.24 1.95 82.2
GCNII (8 layers) - 13.05 6.87 84.2
GAT (2 layers) - 5.27 1.96 83.1

pathGCNk=2,p=5 (2 layers) 0.378 3.48 1.67 81.3
pathGCNk=5,p=5 (2 layers) 0.384 5.35 2.17 84.2

GCN, GCNII and GAT, in Tab. 10. For reference, we also
report the node classification accuracy of the different meth-
ods. We see that the sampling time is relatively small, and
that our pathGCN has a similar runtime to GCN, GCNII
and GAT, while obtaining similar or better accuracy. For ex-
ample, our pathGCN with k = 5, p = 5 obtains an accuracy
of 84.2% on Cora and requires 5.35 milliseconds (ms) for a
training iteration, while GCNII requires 8 layers and 13.05
ms to achieve the same accuracy.

4.6. Ablation study

In this section we consider the different possible variants of
our pathGCN, and the influence of our its hyper-parameters
the path length k and the number of paths p.

As discussed in Sec. 3, our method can be formulated in
various manners. That is, it is possible to learn a global
spatial operator, which is most similar to GCN (Kipf &
Welling, 2016), only there it is fixed and not learnt. We
denote this variant by pathGCNG. In addition, we can learn a
spatial operator per layer that is shared among the channels,
denoted by pathGCNPL. The next step is our pathGCN from
Sec. 3.3, which is more similar to CNNs, by utilizing a
depth-wise spatial operator (i.e., per channel and layer). As
depicted in Tab. 11, the global variant, pathGCNG yields
the least attractive performance among the three considered
variants. This is not surprising, as a global operator is learnt,
which is less expressive than pathGCNPL and pathGCN.
Still, it is interesting to see that no over-smoothing is evident.
As discussed in (Wu et al., 2019), a recurrent application of a
fixed operator leads to over-smoothing. However, the learnt
spatial operator of pathGCNG is variable. Following that,
the per layer variant, pathGCNPL prevents over-smoothing
and also further improves accuracy. This is obtainable as
the network has the freedom to learn a variety of kernels,
which may function as smoothing kernels or edge detectors.
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Figure 5. Semi-supervised node classification accuracy (%), as a function of number of paths p and path length k.

Table 11. Variants of pathGCN on semi-supervised classification.
Results are reported in accuracy (%).

Dataset Method Layers
2 4 8 16 32 64

Cora pathGCNG 83.0 81.9 81.5 81.2 81.4 82.0
pathGCNPL 82.9 83.3 83.5 83.8 84.1 84.7
pathGCN 84.2 84.5 84.6 85.1 85.4 85.8

Citeseer pathGCNG 73.1 71.9 72.0 71.9 72.6 71.7
pathGCNPL 73.4 73.6 74.0 74.3 74.5 75.0
pathGCN 74.3 74.8 75.4 75.3 75.6 75.8

Pubmed pathGCNG 80.9 80.4 81.1 81.0 80.4 80.8
pathGCNPL 81.1 81.2 81.5 82.0 82.2 82.1
pathGCN 81.8 81.8 82.4 82.5 82.4 82.7

Finally, we see that the additional degrees of freedom in
the depth-wise operator in pathGCN lead to overall better
performance, also as depicted in our other experiments.

As for the hyper-parameters of our method, we report in Fig.
5 the influence of the number of paths p and path length
k on the performance of our pathGCN on semi-supervised
node classification using Cora, Citeseer and Pubmed. In all
the experiments we use a 2 layer pathGCN, fix one hyper-
parameter, and vary the other. Specifically, for the evaluation
of the influence of number of paths p, we fix the path length
to k = 5, and the results in Fig. 5 suggest that indeed the
stochastic nature of our method is beneficial to obtain higher
accuracy, since we see a consistent accuracy degradation
trend as k is increased past 20. In addition, we present in
Fig. 5, that by fixing p = 10 and examining a variable path
length k from 1 to 11, accuracy improves and stagnates at
k = 7. We can see that when k = 1, our pathGCN behaves
similarly to an MLP (Qi et al., 2017) (as it considers only
the self node), and that in some cases, increasing the kernel
size caused a slight performance degradation.

5. Conclusion
In this paper we propose a new approach for learning the
spatial operators for GCNs. Our motivation stems from the

need for deep GCNs that have expressive spatial kernels,
similar to standard CNNs that do not over-smooth. Our
approach leverages on paths defined on the graph, to enable
the learning of such operators, further bridging the gap
between GCNs and CNNs.

Just as the Laplacian is not the sole spatial operator used
on images in CNNs, it may also not necessarily be optimal
in the case of graphs and GCNs. To this end we propose
pathGCN which replaces the Laplacian based operator by a
fully learnt kernel. Indeed, our experiments reveal that more
expressive kernels can be learnt based on the data and task
at hand, leading to consistently better accuracy on numerous
applications and datasets and without over-smoothing.

Acknowledgements
The research reported in this paper was supported by the
Israel Innovation Authority through Avatar consortium. In
addition, this work was supported in part by the Israeli
Council for Higher Education (CHE) via the Data Science
Research Center, Ben-Gurion University of the Negev, Is-
rael. ME is supported by Kreitman High-tech scholarship.

References
Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montu-

far, G. F., and Bronstein, M. Weisfeiler and lehman go
cellular: Cw networks. Advances in Neural Information
Processing Systems, 34:2625–2640, 2021.

Boscaini, D., Masci, J., Rodolà, E., and Bronstein, M. Learn-
ing shape correspondence with anisotropic convolutional
neural networks. 05 2016.

Bouritsas, G., Frasca, F., Zafeiriou, S. P., and Bronstein,
M. Improving graph neural network expressivity via
subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.



pathGCN: Learning General Graph Spatial Operators from Paths

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
arXiv preprint arXiv:1312.6203, 2013.

Chamberlain, B. P., Rowbottom, J., Gorinova, M., Webb,
S., Rossi, E., and Bronstein, M. M. Grand: Graph neural
diffusion. arXiv preprint arXiv:2106.10934, 2021.

Chen, J., Zhu, J., and Song, L. Stochastic training
of graph convolutional networks with variance reduc-
tion. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 942–950. PMLR, 10–15 Jul
2018. URL http://proceedings.mlr.press/
v80/chen18p.html.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li,
Y. Simple and deep graph convolutional networks.
In III, H. D. and Singh, A. (eds.), Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 1725–1735. PMLR, 13–18 Jul 2020.
URL http://proceedings.mlr.press/v119/
chen20v.html.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2019. URL https://arxiv.org/
pdf/1905.07953.pdf.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information pro-
cessing systems, pp. 3844–3852, 2016.

Eliasof, M. and Treister, E. Diffgcn: Graph convolutional
networks via differential operators and algebraic multi-
grid pooling. 34th Conference on Neural Information
Processing Systems (NeurIPS 2020), Vancouver, Canada.,
2020.

Eliasof, M., Haber, E., and Treister, E. Pde-gcn: Novel ar-
chitectures for graph neural networks motivated by partial
differential equations. Advances in Neural Information
Processing Systems, 34, 2021.

Ephrath, J., Eliasof, M., Ruthotto, L., Haber, E., and Treister,
E. Leanconvnets: Low-cost yet effective convolutional
neural networks. IEEE Journal of Selected Topics in
Signal Processing, 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Gasteiger, J., Weißenberger, S., and Günnemann, S. Diffu-
sion improves graph learning. In Conference on Neural
Information Processing Systems (NeurIPS), 2019.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864, 2016.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In NIPS, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mo-
bileNets: Efficient convolutional neural networks for mo-
bile vision applications. arXiv preprint arXiv:1704.04861,
2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Kim, D. and Oh, A. How to find your friendly neighbor-
hood: Graph attention design with self-supervision. In
International Conference on Learning Representations,
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Klicpera, J., Bojchevski, A., and Günnemann, S. Combining
neural networks with personalized pagerank for classifica-
tion on graphs. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=H1gL-2A9Ym.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet
classification with deep convolutional neural networks.
Adv Neural Inf Process Syst, 61:1097–1105, 2012.

Lei, X. and Bian, C. Integrating random walk with restart
and k-nearest neighbor to identify novel circrna-disease
association. Scientific reports, 10(1):1–9, 2020.

http://proceedings.mlr.press/v80/chen18p.html
http://proceedings.mlr.press/v80/chen18p.html
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v119/chen20v.html
https://arxiv.org/pdf/1905.07953.pdf
https://arxiv.org/pdf/1905.07953.pdf
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym


pathGCN: Learning General Graph Spatial Operators from Paths

Levie, R., Monti, F., Bresson, X., and Bronstein, M. M.
Cayleynets: Graph convolutional neural networks with
complex rational spectral filters. IEEE Transactions on
Signal Processing, 67(1):97–109, 2018.

Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., and Song, L. Ge-
niepath: Graph neural networks with adaptive receptive
paths. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 33, 02 2018. doi: 10.1609/aaai.v33i01.
33014424.

Ma, Z., Xuan, J., Wang, Y. G., Li, M., and Liò, P. Path
integral based convolution and pooling for graph neural
networks. arXiv preprint arXiv:2006.16811, 2020.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. ICLR, 2018.

Mernyei, P. and Cangea, C. Wiki-cs: A wikipedia-based
benchmark for graph neural networks. arXiv preprint
arXiv:2007.02901, 2020.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. In Advances in neural infor-
mation processing systems, pp. 3111–3119, 2013.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5115–5124, 2017.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond
(GRL+ 2020), 2020. URL www.graphlearning.
io.

Nikolentzos, G. and Vazirgiannis, M. Random walk graph
neural networks. Advances in Neural Information Pro-
cessing Systems, 33:16211–16222, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks. In
International Conference on Learning Representations,

2020. URL https://openreview.net/forum?
id=S1e2agrFvS.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: On-
line learning of social representations. In Proceedings
of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710,
2014.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet:
Deep learning on point sets for 3d classification and seg-
mentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 652–660,
2017.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node
classification. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=Hkx1qkrKPr.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-Scale At-
tributed Node Embedding. Journal of Complex Networks,
9(2), 2021.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. MobileNetV2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–
4520, 2018.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Strokach, A., Becerra, D., Corbi-Verge, C., Perez-
Riba, A., and Kim, P. M. Fast and flexible pro-
tein design using deep graph neural networks. Cell
Systems, 11(4):402 – 411.e4, 2020. ISSN 2405-
4712. doi: https://doi.org/10.1016/j.cels.2020.08.
016. URL http://www.sciencedirect.com/
science/article/pii/S2405471220303276.

Sun, X., Rosin, P. L., Martin, R. R., and Langbein, F. C. Ran-
dom walks for feature-preserving mesh denoising. Com-
puter Aided Geometric Design, 25(7):437–456, 2008.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.
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A. Architecture in details
We elaborate on the architecture that was used in our exper-
iments. As discussed in Sec. 4, our network is comprised
of an embedding layer (1× 1 convolution), a sequence of
pathGCN layers, and a closing (projection) layer (1 × 1
convolution). Throughout this section, cin and cout denote
the input and output channels, respectively, and c denotes
the number of features in hidden layers (which is a hyper-
parameter, as given in Appendix B) We denote the number
of pathGCN blocks by L, and the dropout probability by
pdrop. Our architecture for node classification tasks is de-
scribed in Tab. 12, which is similar to the architecture
found in GCNII (Chen et al., 2020), only with our pathGCN
instead. In Tab. 13 we present our network for graph classi-
fication tasks, which is based on the one in GIN (Xu et al.,
2019).

Table 12. pathGCN architecture for node classification.

Input size Layer Output size

n× cin 1× 1 Dropout(pdrop) n× cin
n× cin 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× pathGCN block n× c
n× c 1× 1 Dropout(pdrop) n× c
n× c 1× 1 Convolution n× cout

Table 13. pathGCN architecture for graph classification.

Input size Layer Output size

n× cin 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× [ pathGCN , BN n× c

, 1× 1 Convolution, ReLU ]
n× c 1× 1 Add-pool 1× c
1× c 1× 1 Convolution 1× c
1× c 1× 1 Dropout(pdrop) 1× c
1× c 1× 1 Convolution 1× cout

B. Hyper-parameters details
We provide the selected hyper-parameters in our experi-
ments. We denote the learning rate of our pathGCN layers
by LRGCN , and the learning rate of the 1× 1 opening (em-
bedding) and closing (classifier) layers by LRoc. Also, the
weight decay for the opening and closing layers is denoted
by WDoc, and for the pathGCN layers by WDGCN .

Table 14. Semi-supervised node classification hyper-parameters

Dataset LRGCN WDGCN LRoc WDoc c pdrop k p

Cora 1 · 10−3 2 · 10−5 1 · 10−2 1 · 10−5 64 0.6 5 5

Citeseer 1 · 10−3 1 · 10−5 7 · 10−3 5 · 10−5 256 0.7 5 5

Pubmed 5 · 10−3 0 1 · 10−2 1 · 10−5 256 0.5 7 10

Table 15. Fully-supervised node classification hyper-parameters

Dataset LRGCN WDGCN LRoc WDoc c pdrop k p

Cora 1 · 10−4 1 · 10−4 7 · 10−2 1 · 10−4 64 0.5 5 10

Citeseer 3 · 10−4 5 · 10−5 8 · 10−3 1 · 10−4 64 0.5 5 10

Pubmed 1 · 10−4 2 · 10−4 1 · 10−2 1 · 10−6 64 0.5 7 10

Chameleon 5 · 10−4 1 · 10−5 5 · 10−3 3 · 10−5 64 0.5 3 10

Cornell 4 · 10−4 1 · 10−5 5 · 10−2 5 · 10−4 64 0.5 5 10

Texas 3 · 10−4 5 · 10−4 4 · 10−2 1 · 10−4 64 0.5 7 10

Wisconsin 3 · 10−4 2 · 10−4 1 · 10−2 5 · 10−5 64 0.5 7 10

Actor 2 · 10−4 1 · 10−4 8 · 10−2 5 · 10−4 64 0.5 7 10

Wiki-CS 3 · 10−2 1 · 10−4 7 · 10−3 1 · 10−5 64 0.3 7 5

Ogbn-arxiv 1 · 10−3 0 1 · 10−3 0 256 0.1 5 10

B.1. Semi-supervised node classification

The hyper-parameters for this experiment are summarized
in Tab. 14.

B.2. Fully-supervised node classification

The hyper-parameters for this experiment are summarized
in Tab. 15.

B.3. Inductive learning on PPI

For this experiment we used LRoc = LRGCN = 0.001 ,
with dropout probability pdrop = 0.2, k = 5 and p = 10,
and no weight decay was used.

B.4. Graph classification

The hyper-parameters in this experiment were chosen ac-
cording to the protocol described in (Xu et al., 2019). We
present the chosen hyper-parameters in Tab. 16. Through-
out all the experiments in this section, no weight decay was
used.

B.5. Ablation study

In this experiment we used the same hyper-parameters as
reported in Tab. 14, for the results in Tab. 11. For the results
in Fig. 5, we use the same learning rate and weight decay,
but k and p are as described in the main paper.
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Table 16. Graph classification hyper-parameters. BS denotes batch
size.

Dataset LRGCN LRoc c pdrop BS p k

MUTAG 0.01 0.01 32 0 32 5 5
PTC 0.01 0.01 32 0 32 5 5
PROTEINS 0.01 0.01 32 0 128 5 10
NCI1 0.01 0.01 32 0.5 32 5 10


