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Abstract
Estimating the difficulty of a dataset typically in-
volves comparing state-of-the-art models to hu-
mans; the bigger the performance gap, the harder
the dataset is said to be. However, this compari-
son provides little understanding of how difficult
each instance in a given distribution is, or what
attributes make the dataset difficult for a given
model. To address these questions, we frame
dataset difficulty—w.r.t. a model V—as the lack
of V-usable information (Xu et al., 2019), where
a lower value indicates a more difficult dataset for
V . We further introduce pointwise V-information
(PVI) for measuring the difficulty of individual
instances w.r.t. a given distribution. While stan-
dard evaluation metrics typically only compare
different models for the same dataset, V-usable in-
formation and PVI also permit the converse: for a
given model V , we can compare different datasets,
as well as different instances/slices of the same
dataset. Furthermore, our framework allows for
the interpretability of different input attributes via
transformations of the input, which we use to dis-
cover annotation artefacts in widely-used NLP
benchmarks.

1. Introduction
Datasets are designed to act as proxies for real-world tasks,
yet most bear limited semblance to the tasks they purport
to reflect (Torralba & Efros, 2011; Recht et al., 2019). Un-
derstanding dataset difficulty is therefore imperative to un-
derstanding progress in AI. In practice, however, estimating
dataset difficulty is often limited to an informal comparison
of state-of-the-art model performance to that of humans; the
bigger the performance gap, the harder the dataset is said to
be (Ethayarajh & Jurafsky, 2020; Ma et al., 2021). However,
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Figure 1. The Stanford NLI dataset contains more BERT-usable
information than the MultiNLI and CoLA datasets, making it easier
for BERT-base. Above, the distribution of instance difficulty (PVI)
in the held-out sets for each; dotted lines denote the average PVI.

such performance metrics offer little understanding of the
differential difficulty of individual instances, or of which
attributes in the input a given model finds useful.

To understand why a dataset is difficult, we extend recent
work in information theory (Xu et al., 2019). To illustrate,
consider a model family V that can learn to map a sentence
X with its sentiment Y . Even if X were to be encrypted,
the information X contains about Y would not be removed;
in other words, the Shannon mutual information would be
unchanged (Shannon, 1948). However, encryption makes
predicting the sentiment a lot more difficult for V . But
why? Intuitively, the task is easier when X is unencrypted
because the information it contains is usable by V; when
X is encrypted, the information still exists but becomes
unusable. This quantity—V-usable information—reflects
the ease with which V can predict Y given X . Xu et al.
(2019) show that it can be measured using the predictive
V-information framework, which generalizes Shannon in-
formation to consider computational constraints.

Our work extends the above framework by framing dataset
difficulty as the lack of V-usable information.1 The higher

1We use the terms “V-usable information” and “V-information”
from Xu et al. (2019), interchangeably.



Understanding Dataset Difficulty with V-Usable Information

the V-usable information, the easier the dataset is for V .
Not only does this framework allow comparisons of models
w.r.t. the same dataset, but also of different datasets w.r.t.
the same model. Figure 1 illustrates that different datasets
provide different amounts of usable information for the
same model, even when the task is identical (i.e., natural
language inference in the SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) datasets).

Building on the aggregate estimate of dataset difficulty, we
introduce a measure called pointwise V-information (PVI)
for estimating the difficulty of each instance w.r.t. a given
distribution (§3). PVI estimates allow us to compare not only
individual instances, but also the difficulty of slices of data
w.r.t V . On datasets containing more usable information
(e.g., SNLI), PVI estimates are highly correlated (Pearson
r ≥ 0.75) across different models, seeds, and training time,
and with human judgments of difficulty.

Comparisons of V-usable information before and after iso-
lating an input attribute shed light on why the dataset is easy
or difficult for V (§4), which has significant implications for
interpretability in AI2 (Miller, 2019). Specifically, we use
V-usable information to identify some limitations in bench-
marks that are widely used in NLP to test for a model’s
understanding of different language phenomena:

• Word ordering has a limited impact on the difficulty
of a popular natural language entailment benchmark,
SNLI (Bowman et al., 2015), even though entailment
describes a causal relationship.

• Some of the most difficult instances in SNLI and a
popular grammaticality detection benchmark, CoLA
(Warstadt et al., 2018), are mislabelled.

• In a popular dataset for hate speech detection (David-
son et al., 2017), just 50 (potentially) offensive words
contain most of the BERT-usable information about
the label; less subtle bias may be going undetected.

2. V-Usable Information
2.1. Background

Consider a model family V , which can be trained to map text
input X to its label Y . If we encrypted the text, or translated
it into a language with a very complex grammar, it would be
harder to predict Y given X using the same V . How might
we measure this increase in difficulty? Shannon (1948)’s
mutual information I(X;Y ) is not an option—it would not
change after X is encrypted, as it allows for unbounded
computation, including any needed to decrypt the text.

Intuitively, the task is easier when X is unencrypted because
the information it contains is usable by V; when X is en-

2Our code and data are available here.

crypted, this information still exists but becomes unusable.
This quantity, called V-usable information, provides an
estimate the difficulty of a dataset w.r.t. V . It can be mea-
sured under a framework called predictive V-information,
which generalizes Shannon information to measure how
much information can be extracted from X about Y when
constrained to functions V , written as IV(X → Y ) (Xu
et al., 2019). The greater the IV(X → Y ), the easier the
dataset is for V . If V is the set of all functions—i.e., under
unbounded computation—V-information reduces to Shan-
non information.

Processing the input with τ (e.g., by decrypting the text)
can make prediction easier, allowing IV(τ(X) → Y ) ≥
IV(X → Y ). Although this violates the data processing
inequality, it explains the usefulness of certain types of pro-
cessing, such as representation learning. Compared to X ,
the learned representations cannot have more Shannon infor-
mation with Y , but they can have more usable information.

2.2. Definitions

As defined in Xu et al. (2019):
Definition 2.1. Let X,Y denote random variables with
sample spaces X ,Y respectively. Let ∅ denote a null input
that provides no information about Y . Given predictive
family V ⊆ Ω = {f : X ∪ ∅ → P (Y)}, the predictive
V-entropy is

HV(Y ) = inf
f∈V

E[− log2 f [∅](Y )] (1)

and the conditional V-entropy is

HV(Y |X) = inf
f∈V

E[− log2 f [X](Y )] (2)

We use log2 to measure the entropies in bits of information,
though one could also use loge and measure them in nats
instead.

Put simply, f [X] and f [∅] produce a probability distribution
over the labels. The goal is to find the f ∈ V that maximizes
the log-likelihood of the label data with (Eq. 2) and without
the input (Eq. 1). f [∅] models the label entropy, so ∅ can
be set to an empty string for most NLP tasks. Although
predictive family has a technical definition3, most neural
models, provided they are finetuned without any frozen
parameters, easily meet this definition. Further, as per Xu
et al. (2019):
Definition 2.2. Let X and Y denote random variables with
sample spaces X and Y , respectively. Given a predictive
family V , the V-information is

IV(X → Y ) = HV(Y )−HV(Y |X) (3)
3V is a subset of all possible mappings from X to P (Y) that

satisfies optional ignorance: for any P in the range of some f ∈ V ,
there exists some f ′ ∈ V s.t. f ′[X] = f ′[∅] = P . See Xu et al.
(2019) for why optional ignorance is necessary.

https://github.com/kawine/dataset_difficulty
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Because we are estimating this quantity on a finite dataset,
the estimate can differ from the true V-information. Xu
et al. (2019) provide PAC bounds for this error, where less
complex V and larger datasets yield tighter bounds. Xu et al.
(2019) also list several useful properties of V-information:

• Non-Negativity: IV(X → Y ) ≥ 0
• Independence: If X is independent of Y , IV(X →
Y ) = 0.

• Montonicity: If U ⊆ V , then HU (Y ) ≥ HV(Y ) and
HU (Y |X) ≥ HV(Y |X).

Training with the cross-entropy loss finds the f ∈ V that
maximizes the log-likelihood of Y given X (Xu et al., 2019).
Thus, HV(Y |X) can be easily computed by standard train-
ing or by finetuning a pre-trained model.4 We estimate
HV(Y |X) by calculating E[− log f [X](Y )] on an identi-
cally distributed held-out set, where Y is the gold label.
Since training with cross-entropy ultimately aims to find
the infimum over the data distribution, not just the training
set, it is important not to overfit the model to the train-
ing instances; this is of added significance for estimating
HV(Y |X). We estimate HV(Y ) by training or finetuning
another model where X is replaced by ∅, intended to fit
the label distribution. As such, computing V-information
involves training or finetuning only two models.

2.3. Assumptions

Implicit in estimating the V-information is the assumption
that the data used to find the optimal f ∈ V and the data
used to estimate HV(Y |X) are identically distributed, since
V-information is ultimately a function of two random vari-
ables X,Y . This dependence on the data distribution makes
V-information well-suited for estimating and interpreting
dataset difficulty. However, it is still possible to estimate the
difficulty of sub-populations or subsets of the data, though it
would be imprecise to refer to this measure as V-information
(see §3.1 for details). We also assume that the difference be-
tween the empirical V-information (calculated using some
finite dataset) and the true V-information (calculated over
the distributions) is negligible, though this may not hold, for
example, if the dataset is too small (see Appendix A).

2.4. Implications

V-usable information allows us to compare

i. different models V by computing IV(X → Y ) for the
same X,Y (Fig. 2),

ii. different datasets {(x, y)} by computing IV(X → Y )
for the same V (Fig. 1), and

iii. different input variables Xi by computing IV(Xi →
Y ) for the same V and Y (Fig. 4; §4).

4Improving model calibration using more advanced methods
(Kumar et al., 2019) is a possible direction of future work.

Figure 2. Comparing the V-usable information estimate to accu-
racy in SNLI. In the first three epochs, estimates on the test set are
similar across all models (top), but due to over-fitting, the estimates
diverge and decline. The test accuracy (bottom) for each model
loosely tracks the V-information estimate for that model, since
extracting information makes prediction easier.

While common classification metrics, such as accuracy or F1

score, are often used for the above comparisons, V-usable in-
formation offers a theoretically rigorous framework, making
it better suited for interpretability. The V-usable informa-
tion is measured in bits / nats (depending on the log base),
allowing for standardized comparisons across models and
datasets. Additionally, consider the case where X and Y
are independent: here, model accuracy would be no greater
than the majority class frequency, but this frequency varies
across datasets. V-information avoids this problem by fac-
toring in the label entropy HV(Y ); if X,Y are independent,
then the V-information is provably zero.

Say we wish to compare two predictive families, V and U ,
such that U ⊆ V . Assuming both families can model the
label distribution, the task will at least as easy for the larger
family. This provably obviates the need to evaluate simpler
function families (e.g., linear functions) when estimating
dataset difficulty. Our experiments show that this bears out
in practice as well (Appendix B).

2.5. V-Usable Information in Practice

We consider the natural language inference (NLI) task,
which involves predicting whether a text hypothesis entails,
contradicts or is neutral to a text premise. We first apply
the V-information framework to estimate the difficulty of
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a largescale NLI dataset, Stanford NLI (SNLI; Bowman
et al., 2015), across different state-of-the-art models. The
four models we use are GPT2-small (Radford et al., 2019),
BERT-base-cased (Devlin et al., 2019), DistilBERT-base-
uncased (Sanh et al., 2019), and BART-base (Lewis et al.,
2020). Figure 2 shows the V-information estimate for all
four, as well as their accuracy on the SNLI train and held-
out (test) sets, across 10 training epochs. See Appendix B
for results with larger models.

Model performance tracks V-information. As seen in
Figure 2, the model with the most V-information on the
SNLI test set is also the most accurate. This is intuitive,
since extracting more information makes prediction easier.
Overall, BART-base extracts the most V-information, fol-
lowed by BERT-base, DistilBERT-base, and GPT2-small;
accuracy follows the same trend.

V-information is more sensitive to over-fitting than held-
out performance. At epoch 10, the V-information is at
its lowest for all models, although the SNLI test accuracy
has only declined slightly from its peak, as seen in Figure 2.
This is because the models start becoming less certain about
the correct label long before they start predicting the wrong
label. This causes HV(Y |X) to rise—and thus IV(X → Y )
to decline—even while most of the probability mass is still
placed on the correct label. This suggests that, compared to
performance metrics like test accuracy, V-information can
more readily inform us of over-fitting.

Different datasets for the same task can have differ-
ent amounts of V-usable information. We consider the
MultiNLI dataset (Williams et al., 2018), a multi-genre coun-
terpart of SNLI. Despite both being proxies for the NLI task,
SNLI and MultiNLI have significantly different amounts
of BERT-usable information, as shown in Figure 1. The
V-information framework provides a principled means of
measuring this difference in levels of difficulty; MultiNLI is
expected to be more difficult than SNLI due to the diversity
of genres it considers. Also shown is CoLA (Warstadt et al.,
2018), a dataset for linguistic acceptability where each sen-
tence is labeled as grammatical or not; this task is seemingly
more difficult than NLI for BERT.

3. Measuring Pointwise Difficulty
While V-information provides an aggregate measure of
dataset difficulty (§2), a closer analysis requires measur-
ing the degree of usable information in individual instances
(w.r.t. a given distribution). We extend the V-information
framework to introduce a new measure called pointwise
V-information (PVI) for individual instances. The higher
the PVI, the easier the instance is for V , under the given
distribution.

Definition 3.1 (Pointwise V-Information). Given random
variables X,Y and a predictive family V , the pointwise
V-information (PVI) of an instance (x, y) is

PVI(x → y) = − log2 g[∅](y) + log2 g
′[x](y) (4)

where g ∈ V s.t. E[− log g[∅](Y )] = HV(Y ) and g′ ∈ V
s.t. E[− log g′[X](Y )] = HV(Y |X).

If V were, for instance, the BERT function family, g′ and
g would be the models after finetuning BERT with and
without the input respectively. For a held-out instance (x, y),
PVI(x → y) is the difference in the log-probability these
models place on the gold label. PVI is to V-information
what PMI is to Shannon information:

I(X;Y ) = Ex,y∼P (X,Y )[PMI(x, y)]

IV(X → Y ) = Ex,y∼P (X,Y )[PVI(x → y)]
(5)

Given this relationship, our understanding of V-information
extends to PVI as well: higher PVI instances are easier for
V and vice-versa. A higher PVI increases the odds of being
predicted correctly—this is intuitive because a correct pre-
diction of a non-majority-class instance requires that some
information be extracted from the instance. Although the
V-information cannot be negative, the PVI can be—much
like how PMI can be negative even though Shannon infor-
mation cannot. A negative PVI simply means that the model
is better off predicting the majority class than considering
X , which can happen for many reasons (e.g., mislabelling).
Examples with negative PVI can still be predicted correctly,
as long as g′ places most of the probability mass on the
correct label. Algorithm 1 shows our computation of PVI
and V-information (by averaging over PVI).

The PVI of an instance (x, y) w.r.t. V should only depend
on the distribution of the random variables. Sampling
more from P (X,Y ) during finetuning should not change
PVI(x → y). However, an instance can be drawn from dif-
ferent distributions, in which case we would expect its PVI
to differ. For example, say we have restaurant reviews and
movie reviews, along with their sentiment. The instance
(“That was great!”, positive) could be drawn from either
distribution, but we would expect its PVI to be different in
each (even though V is the same).

3.1. Implications

In addition to the comparisons that V-information allows us
to make (§2.4), PVI allows us to compare:

iv. different instances (x, y) by computing PVI (x → y)
for the same X,Y,V (Tables 1, 4; Fig. 11)

v. different slices or subsets of the data by computing
the average PVI over instances in each slice (Table 2;
Fig. 5).
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Algorithm 1 After finetuning on a dataset of size n, the
V-information and PVI can be calculated in O(n) time.
Input: training data Dtrain = {(input xi, gold label yi)}mi=1, held-
out data Dtest = {(input xi, gold label yi)}ni=1, model V
do

g′ ← Finetune V on Dtrain
∅← empty string (null input)
g ← Finetune V on {(∅, yi) | (xi, yi) ∈ Dtrain}
HV(Y ), HV(Y |X)← 0, 0
for (xi, yi) ∈ Dtest do

HV(Y )← HV(Y )− 1
n
log2 g[∅](yi)

HV(Y |X)← HV(Y |X)− 1
n
log2 g

′[xi](yi)
PVI(xi → yi)← − log2 g[∅](yi) + log2 g

′[xi](yi)
end for
ÎV(X → Y ) = 1

n

∑
i PVI(xi → yi) = HV(Y )−HV(Y |X)

end do

Note that the average PVI of a slice of data is not its V-
information, since we optimize the model w.r.t. the entire
distribution. However, since in practice one often wishes to
understand the relative difficulty of different subpopulations
w.r.t. the training distribution, calculating the average PVI—
as opposed to the V-information of the subpopulation itself—
is more useful.

3.2. PVI in Practice

PVI can be used to find mislabelled instances. Correctly
predicted instances have higher PVI values than incorrectly
predicted ones. For the held-out sets in SNLI, MultiNLI
and CoLA, the difference in mean PVI between instances
correctly and incorrectly predicted by BERT-base is 3.03,
2.87, and 2.45 bits respectively. These differences are sta-
tistically significant (p < 0.001). Table 1 shows the most
difficult (lowest PVI) instances from CoLA; we further find
that some of these are in fact mislabelled (see Appendix C
for an analysis of SNLI).

The PVI threshold at which predictions become incorrect
is similar across datasets. In Figure 3, we plot the PVI
distribution of correctly and incorrectly predicted instances
in each dataset. As expected, high-PVI instances are pre-
dicted correctly and low-PVI instances are not. Notably, the
point at which instances start being incorrectly predicted is
similar across datasets (PVI ≈ 0.5). Such a pattern could
not be observed with a performance metric because the la-
bel spaces are different, evincing why the V-information
framework is so useful for cross-dataset comparison.

PVI estimates are highly consistent across models, train-
ing epochs, and random initializations. The cross-model
Pearson correlation between PVI estimates of SNLI in-
stances is very high (r > 0.80). However, the cross-model
Pearson correlation is lower for CoLA (0.40 < r < 0.65);
see Fig. 9 in Appendix D. This is because, as visualized in

Sentence Label PVI

Wash you! No -4.616
Who achieved the best result
was Angela.

No -4.584

Sue gave to Bill a book. No -3.649
Only Churchill remembered
Churchill giving the Blood,
Sweat and Tears speech.

No -3.571

Cynthia chewed. No -3.510
It is a golden hair. Yes -3.251
I won’t have some money. No -3.097
You may pick every flower, but
leave a few for Mary.

No -2.875

I know which book Mag read,
and which book Bob said that
you hadn’t.

Yes -2.782

John promise Mary to shave
himself.

Yes -2.609

Table 1. The 10 hardest (lowest PVI) instances in the CoLA in-
domain test set for grammaticality detection (label indicates gram-
maticality), according to BERT-base. Examples in red are assessed
to be mislabelled by authors of this work. For e.g., ‘Cynthia
chewed.’ might be grammatical because the verb ‘chew’ could
be intransitive in this usage. This suggests that PVI could be used
to identify mislabelled examples. All of these examples were pre-
dicted incorrectly by BERT-base.

Figure 1, CoLA has less usable information, making diffi-
culty estimates noisier. In the limit, if a dataset contained
no usable information, then we would expect the correlation
between PVI estimates across different models and seeds to
be close to zero. It is also worth noting, however, that a high
degree of cross-model correlation—as with SNLI—does
not preclude comparisons between different models on the
same dataset. Rather, it suggests that in SNLI, a minority
of instances is responsible for distinguishing one model’s
performance from another. This is not surprising—given
the similar complexity and architecture of these models,
we would expect most instances to be equally easy. More-
over, despite the performance of Transformer-based models
varying across random initializations (Dodge et al., 2019;
2020; Mosbach et al., 2020), we find that PVI estimates are
quite stable: the correlation across seeds is r > 0.85 (for
SNLI finetuned BERT-base, across 4 seeds); see Table 6
in Appendix D. It also concurs with human judgments of
difficulty; see Fig. 10 in Appendix D.

4. Uncovering Dataset Artefacts
A key limitation of standard evaluation metrics (e.g. accu-
racy) is the lack of interpretability— there is no straight-
forward way to understand why a dataset is as difficult as
it is. V-usable information offers an answer by allowing
comparison of different input variables Xi under the same V
and Y , as implicated in §2.4. We consider two approaches
for this: applying input transformations (§4.1), and slicing
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Figure 3. The distribution of PVI for correctly and incorrectly pre-
dicted instances in each dataset. Note that the point at which
instances start being incorrectly predicted is similar across datasets
(∼ 0.5 bits). In contrast, because the label space is different across
CoLA and the other two datasets, such a comparison could not be
made with a performance-based metric.

the dataset (§4.2).

4.1. Input Transformations

Our first approach involves applying different transforma-
tions τi(X) to isolate an attribute a, followed by calculating
IV(τi(X) → Y ) to measure how much information (usable
by V) the attribute contains about the label. For example,
by shuffling the tokens in X , we can isolate the influence of
the word order attribute.

Given that a transformation may make information more
accessible (e.g., decrypting some encrypted text; c.f. §2),
it is possible for IV(τi(X) → Y ) ≥ IV(X → Y ), so the
latter shouldn’t be treated as an upper bound. Such trans-
formations were applied by O’Connor & Andreas (2021)
to understand what syntactic features Transformers use in
next-token prediction; we take this a step further, aiming to
discover annotation artefacts, compare individual instances,
and ultimately understand the dataset itself. We present our
findings on SNLI, CoLA, as well as DWMW17 (Davidson
et al., 2017), a dataset for hate speech detection, where input
posts are labeled as hate speech, offensive, or neither.

We apply transformations to the SNLI input to isolate dif-
ferent attributes (see Appendix E for an example): shuffled
(shuffle tokens randomly), hypothesis-only (only include
the hypothesis), premise-only (only include the premise),

Figure 4. The amount of V-usable information contained in dif-
ferent input attributes about the gold labels in SNLI. The token
identity alone (regardless of order) provides most of the informa-
tion for all models (see SHUFFLED). The PREMISE, which can
be shared by multiple instances, is useless alone; the HYPOTHE-
SIS, which is unique to an instance, is quite useful even without a
premise, suggesting it may contain annotation artefacts.

overlap (tokens in both the premise and hypothesis).

Token identity alone provides most of the usable infor-
mation in SNLI. Figure 4 shows that the token identity
alone—isolated by shuffling the input—contains most of
the usable information for all models. The premise, which
is often shared by multiple instances, is useless alone; the
hypothesis, which is unique to an instance, is useful even
without a premise. This corroborates the well-known an-
notation artefacts in SNLI (Gururangan et al., 2018; Poliak
et al., 2018), which are spurious correlations exploited by
models to predict the correct answer for the wrong reasons.

Hate speech detection might have lexical biases. Au-
tomatic hate speech detection is an increasingly important
part of online moderation, but what causes a model to label
speech as offensive? We find that in DWMW17, the text
contains 0.724 bits of BERT-usable information about the
label. Additionally, if one removed all the tokens, except
for 50 (potentially) offensive ones—comprising common
racial and homophobic slurs5—from the input post hoc,
there still remains 0.490 bits of BERT-usable information.
In other words, just 50 (potentially) offensive words contain
most of the BERT-usable information in DWMW17. Our
findings corroborate prior work which shows that certain
lexical items (e.g., swear words, identity mentions) are re-
sponsible for hate speech prediction (Dixon et al., 2018;
Dinan et al., 2019). Allowing models to do well by simply
pattern-matching may permit subtleties in hate speech to
go undetected, perpetuating harm towards minority groups
(Blodgett et al., 2020).

5These terms were manually chosen based on a cursory review
of the dataset and are listed in Appendix E.
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Entailment Neutral Contradiction

original 1.188 1.064 1.309
shuffled 1.130 0.984 1.224
hypothesis only 0.573 0.553 0.585
premise only 0.032 -0.016 -0.016
overlap 0.415 0.177 0.298

Table 2. The average amount of usable information (i.e., mean
PVI, in bits) that each attribute contains about each class in SNLI,
according to BERT-base. Some attributes are more useful for a
particular class: e.g., the degree of premise-hypothesis overlap is
most useful for predicting ‘entailment’. Note that the mean PVI

for a particular class is different from the V-information.

4.2. Slicing Datasets

Certain attributes are more useful for certain classes.
Comparing the usefulness of an attribute across classes can
be useful for identifying systemic annotation artefacts. This
can be done by simply averaging the PVI over the slice of
data whose difficulty we are interested in measuring. Note
that the equivalence between V-information and expected
PVI only holds when the model used to estimate PVI is
trained over the entire dataset, which means that the average
PVI of a slice of data is not its V-information. It would not
make sense to estimate the V-information of a slice because
it would require training on examples from just one class,
in which case the V-information would be zero. Thus the
only usable difficulty measure is the mean PVI.

We do this for SNLI in Table 2. We see that the tokens in
the premise-hypothesis overlap contains much more BERT-
usable information about the ‘entailment’ class than ‘con-
tradiction’ or ‘neutral’. This is unsurprising, given that the
simplest means of entailing a premise is to copy it into the
hypothesis and provide some additional detail. If there is
no inherent reason for an attribute to be more/less useful—
such as overlap for entailment—there may be an artefact at
work. Even when there is an inherent reason for an attribute
to be useful for a particular slice of the data, an attribute
being exceptionally useful may also be evidence of a dataset
artefact. For example, if the premise-overlap hypothesis
provided almost all the usable information needed for en-
tailment, it may be because the crowdworkers who created
the dataset took a shortcut by copying the premise to create
the hypothesis.

In Appendix F, we show how similar comparisons can be
made between instances.

Certain subsets of each class are more difficult than oth-
ers. In Figure 5, we bin the examples in each SNLI class
by the level of hypothesis-premise overlap and plot the aver-
age PVI. We see entailment instances with no hypothesis-
premise overlap are the most difficult (i.e., lowest mean

Figure 5. The mean PVI of SNLI instances according to BERT-
base, broken down by the overlap length (i.e., the number of tokens
shared by the hypothesis and premise). Entailment examples with
no overlap are the most difficult (i.e., lowest mean PVI).

PVI) while contradiction instances with no overlap are the
easiest (i.e., highest mean PVI). This is not surprising, since
annotation artefacts in SNLI arise from constructing entail-
ment and contradiction via trivial changes to the premise
(Gururangan et al., 2018).

We additionally consider slices in the dataset based on
dataset cartography (Swayamdipta et al., 2020), which uses
training dynamics to differentiate instances via their (1) con-
fidence (i.e., mean probability of the correct label across
epochs), and (2) variability (i.e., variance of the former).
The result is a dataset map revealing three regions: easy-to-
learn, hard-to-learn, and ambiguous w.r.t the trained model.
Slices of the dataset based on cartographic regions have
distinct ranges of average PVI (Fig. 13 in Appendix H).

4.3. Token-level Artefacts

Transforming X and then measuring the V-information to
discover all token-level signals and artefacts is untenable,
since we would need to finetune one new model per token.
Instead, we compute the change in the V-information esti-
mate after removing t, which yields modified input x¬t. We
use the same model g′ but evaluate only on a slice of the
data, DC,t, which contains the token t and belongs to the
class C of interest. This simplifies to measuring the increase
in conditional entropy:

1

|DC,t|
∑
DC,t

[− log2 g
′[x¬t](y) + log2 g

′[x](y)]

Token-level signals and artefacts can be discovered using
leave-one-out. Table 3 shows that auxiliary verbs (e.g., be,
did) and prepositions are most indicative of ungrammatical
sentences in CoLA; in contrast, grammatical sentences have
no strong indicators, with no word on average increasing
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WARNING: The following content contains language from the
DWMW17 dataset that is offensive in nature.

DWMW17 (Davidson et al., 2017)

Hate Speech Offensive Neither

f*ggots (3.844) r*tards (2.821) lame (4.426)
f*g (3.73) n*gs (2.716) clothes (0.646)
f*ggot (3.658) n*gro (2.492) dog (0.616)
c**ns (3.53) n*g (2.414) cat (0.538)
n*ggers (3.274) c*nts (2.372) iDntWearCondoms

(0.517)

CoLA (Warstadt et al., 2018)

Grammatical Ungrammatical

will (0.267) book (2.737)
John (0.168) is (2.659)
. (0.006) was (2.312)
and (-0.039) of (2.308)
in (-0.05) to (1.972)

Table 3. Token-level annotation artefacts in DWMW17 and CoLA.
These are the tokens whose omission leads to the greatest average
increase in conditional entropy for each class (given in parenthe-
ses). Note that certain racial slurs are correctly identified as ‘hate
speech’ but in-group variants of the same terms fall under ‘offen-
sive’ instead. The full lists are available in Appendix G.

the conditional entropy above 0.30 upon omission.

In DWMW17, racial and homophobic slurs are the top in-
dicators of ‘hate speech’. However, in-group variants of
the same racial slur—commonly used in African-American
Vernacular English (AAVE)—fall under ‘offensive’ instead.
The fact that AAVE terms are marked as ‘offensive’ supports
previous findings by that hate speech detection datasets may
themselves be biased (Sap et al., 2019). In SNLI, we found
many of the token-level artefacts matching those found us-
ing descriptive statistics in Gururangan et al. (2018). The
complete word lists are available in Appendix G.

4.4. Conditioning Out Information

What if we wanted to measure how much BERT-usable infor-
mation offensive words contain about the label in DWMW17
beyond that which is captured in the sentiment? In other
words, if we already had access to the sentiment polarity of
a text (positive/negative/neutral), how many additional bits
of information would the offensive words provide? We can-
not estimate this by simply subtracting IV(offensive → Y )
from IV(sentiment → Y ), since that difference could po-
tentially be negative. Acquiring another random variable
should not decrease the amount of information we have
about the label (at worst, it should be useless).

To capture this intuition, Hewitt et al. (2021) proposed con-
ditional V-information, which allows one to condition out
any number of random variables. Given a set of random

variables B that we want to condition out, it is defined as:

IV(X → Y |B) = HV(Y |B)−HV(Y |B ∪ {X}) (6)

The conditional entropy with respect to multiple variables
is the only new concept here. It is estimated in practice
by concatenating the text inputs represented by B and X ,
which in our example is the sentiment polarity (one of ‘neg-
ative’/‘neutral’/‘positive’) and the sequence of offensive
words in the input. The actual model family need not change
to accommodate the longer text, as long as it remains under
the input token limit.6 We find that offensive words con-
tain 0.482 bits of BERT-usable information about the label
beyond that which is contained in text sentiment.7 This is
close to all of the BERT-usable information that the offen-
sive words contain about the label (0.490 bits), suggesting
that the predictive power of (potentially) offensive words is
not mediated through sentiment in DWMW17.

5. Related Work
While prior literature has acknowledged that not all data in-
stances are equal (Vodrahalli et al., 2018; Swayamdipta
et al., 2020), there have been few efforts to estimate
dataset difficulty formally and directly. As a notable excep-
tion, Zhang et al. (2020) proposed DIME, an information-
theoretic measure to estimate a lower bound on the lowest
possible (i.e., model-agnostic) 0-1 error. Model-agnostic
approaches do not explain why some datasets are easier for
some models, and have limited interpretability. In contrast,
V-information and PVI are specific to a model family V .

Various techniques have been proposed to differentiate
data instances within a dataset. Text-based heuristics such
as word identity (Bengio et al., 2009) or input length
(Spitkovsky et al., 2010; Gururangan et al., 2018) have
sometimes been used as proxies for instance difficulty, but
offer limited insight into difficulty w.r.t. models. Other ap-
proaches consider training loss (Han et al., 2018; Arazo
et al., 2019; Shen & Sanghavi, 2019), confidence (Hovy
et al., 2013), prediction variance (Chang et al., 2017), and
area under the curve (Pleiss et al., 2020). Estimates re-
lying on model training dynamics (Toneva et al., 2018;
Swayamdipta et al., 2020), gradient magnitudes (Vodra-
halli et al., 2018), or loss magnitudes (Han et al., 2018) are
sensitive to factors such as variance during steps of training.
Influence functions (Koh & Liang, 2017), forgetting events
(Toneva et al., 2018), and the Data Shapley (Ghorbani &
Zou, 2019; Jia et al., 2019) can all be used to assign point-
wise estimates of importance to data instances based on their

6If the inputs were vectors, the inputs represented by B and
B ∪ {X} would need to be of the same size; to do so, we would
concatenate a zero vector to the former (Hewitt et al., 2021).

7The sentiment was categorized as positive/neutral/negative
based on the polarity estimated by spaCy’s built-in sentiment clas-
sifier (Honnibal & Montani, 2017).
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contribution to the decision boundary. Moreover, although
these methods all capture some aspect of difficulty, they do
not lend themselves to interpreting datasets as readily as the
predictive V-information framework.

Given its dependence on training behavior across time, car-
tography (Swayamdipta et al., 2020) offers complementary
benefits to V-information. It can be non-trivial to measure
differences between, say a CoLA data map and an SNLI
data map, w.r.t BERT. In contrast, V-information provides a
formal framework to make dataset difficulty estimates as an
aggregate to compare datasets w.r.t a model. Other work has
offered insight by splitting the data into “easy” and “hard”
sets with respect to some attribute and studying changes in
model performance, but these methods do not offer a point-
wise estimate of difficulty (Sugawara et al., 2018; Rondeau
& Hazen, 2018; Sen & Saffari, 2020).

Item response theory (IRT; Embretson & Reise, 2013) al-
lows the difficulty of instances to be learned via parameters
in a probabilistic model meant to explain model perfor-
mance (Lalor et al., 2018; Rodriguez et al., 2021). How-
ever, it does not formally relate dataset difficulty to the
model being evaluated. Estimating instance difficulty is also
evocative of instance selection for active learning (Lewis &
Catlett, 1994; Fu et al., 2013; Liu & Motoda, 2002); how-
ever these estimates could change as the dataset picks up
new instances. In contrast, PVI estimates are relatively sta-
ble, especially when the dataset has higher V-information.
Uncertainty sampling, for example, picks the instances that
the partially trained model is least certain about (Lewis &
Gale, 1994; Nigam et al., 2000), which could be interpreted
as a measure of difficulty. However, once an instance is
used for training, the model may become much more certain
about it, meaning that the uncertainty values are unstable.

Interpretability of the role of certain attributes in trained
models have lately led to the discovery of many dataset
artefacts in NLP. Our approach to discovering dataset arte-
facts can also complement existing approaches to artefact
discovery (Gardner et al., 2021; Pezeshkpour et al., 2021;
Le Bras et al., 2020). Rissanen data analysis (Perez et al.,
2021) offers a complimentary method for interpretability
w.r.t attributes; it involves calculating the minimum descrip-
tion length (MDL): how many bits are needed to transmit
the gold labels from a sender to a recipient when both have
access to the same model and inputs. Since the framework
depends on the order of instances (i.e., what data has been
transmitted thus far), it is unsuitable for estimating dataset
difficulty. In contrast, V-information is defined w.r.t. a data
distribution, so it is (in theory) agnostic to data and its or-
dering in fine-tuning.

V-information (Xu et al., 2019) has had limited adoption
in NLP. It has been used to study what context features
Transformers actually use (O’Connor & Andreas, 2021),

as well as to condition out information for probing-based
interpretability techniques (Hewitt et al., 2021; Pimentel &
Cotterell, 2021). However, to the best of our knowledge,
ours is the first approach to use V-usable information for
estimating the difficulty of NLP datasets.

6. Future Work
There has been much work in the way of model interpretabil-
ity, but relatively little in the way of dataset interpretability.
Our framework will allow datasets to be probed, helping us
understand what exactly we are testing for in models and
how pervasive annotation artefacts really are. By identifying
the attributes responsible for difficulty, it will be possible
to build challenge sets in a more principled way and reduce
artefacts in existing datasets. By studying which attributes
contain information that is unusable by existing SOTA mod-
els, model creators may make more precise changes to archi-
tectures. More immediate directions of future work include:

1. Understanding how changes to the data distribution
change the difficulty of individual examples.

2. Extending V-information to open-ended text genera-
tion, which does not induce explicit distributions over
the output space. This may requiring truncating the
output space (e.g., using beam search with fixed width).

3. Applying V-information to estimate dataset difficulty
in other modalities (e.g., image, audio, tabular, etc.).
There is nothing limiting the use of V-information to
the NLP domain. For example, one could create a set
of image filters—for different colors and objects—use
them to transform the image, and then measure the
drop in usable information.

7. Conclusion
We provided an information-theoretic perspective to un-
derstanding and interpreting the difficulty of various NLP
datasets. We extended predictive V-information to estimate
difficulty at the dataset level, and then introduced pointwise
V-information (PVI) for measuring the difficulty of individ-
ual instances. We showed that instances with lower PVI had
lower levels of annotator agreement and were less likely to
be predicted correctly. We then demonstrated how systemic
and token-level annotation artefacts in a dataset could be dis-
covered by manipulating the input before calculating these
measures. Our studies indicate that V-information offers a
new, efficient means of interpreting NLP datasets.
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A. Training Data
In Figure 6, we plot the V-information estimate on the SNLI test set as BERT-base is trained on increasing amounts of
training data. This is to test the assumption that the training set is sufficiently large to find the function f ∈ V that minimizes
the conditional entropy. Although this assumption is impossible to validate with complete certainty, since we don’t have
access to the true distribution, if the V-information estimate plateaus before all the training data is used, it suggests that the
training set size is not a limiting factor to the estimation. We find that this is indeed the case with SNLI, where 80% of the
training data on averages provides the same estimate as using the entire training set. In cases when this assumption does not
hold, readers may want to consider measuring the Bayesian mutual information instead (Pimentel & Cotterell, 2021).

Figure 6. The V-information estimate on the SNLI test set when BERT-base is trained on increasing fractions of the training data, drawn
as a random sample (with replacement). Here we plot the average and standard deviation across four samples for each fraction.

B. Larger Models

Figure 7. Comparing accuracy and the V-information estimate on the SNLI train and test set w.r.t. various models.

In Figure 7, we plot the V-information estimate for the SNLI test and train sets. In Figure 8, we plot the V-information
estimate on the CoLA in-domain held-out set for the four models that we previously studied, as well as a larger model,
RoBERTa-large (Liu et al., 2019). Despite the increase in scale, the trends observed in §2 still hold.
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Figure 8. Comparing accuracy and the V-information estimate on the CoLA in-domain train and held-out set w.r.t. various models.

C. Qualitative Analysis

premise hypothesis label PVI

Twenty five people are marching. A man plays the trombone on the sidewalk. N -9.966
A woman in a striped shirt holds an infant. A person is watching TV. N -9.612
A person swimming in a swimming pool. A person embraces the cold N -9.152
Women enjoying a game of table tennis. Women are playing ping pong. E -8.713
A boy dressed for summer in a green shirt and kahki
shorts extends food to a reindeer in a petting zoo.

A boy alien dressed for summer in a green shirt and
kahki shorts

E -8.486

Two skateboarders, one wearing a black t-shirt and
the other wearing a white t-shirt, race each other.

Two snowboarders race. E -8.087

An Asian woman dressed in a colorful outfit laugh-
ing.

The woman is not laughing. E -7.903

An older gentleman looks at the camera while he is
building a deck.

An older gentleman in overalls looks at the camera
while he is building a stained red deck in front of a
house.

E -7.709

A man wearing black pants, an orange and brown
striped shirt, and a black bandanna in a ”just thrown
a bowling ball” stance.

The bandana is expensive. C -7.685

Two girls kissing a man with a black shirt and brown
hair on the cheeks.

Two girls kiss. C -7.582

Table 4. The 10 hardest (lowest PVI) instances in the SNLI test set, according to BERT-base. ‘E’ denotes entailment, ‘N’ neutral, and ‘C’
contradiction. Instances that are possibly mislabelled are colored red.

In Table 4, we list the 10 hardest instances in the SNLI test set according to BERT-base. All three classes—entailment,
neutral, and contradiction—are represented in this list, with entailment being slightly over-represented. We see that
some of the examples are in fact mislabelled—e.g., ‘PREMISE: An Asian woman dressed in a colorful outfit laughing.
HYPOTHESIS: The women is not laughing.’ is labelled as ‘entailment’ even though the correct label is ‘contradiction’.

D. Consistency of PVI estimates
Cross-Model Correlations Figure 9 shows a heatmap for Cross-model Pearson’s r between PVI estimates made by
different finetuned models, on the SNLI and CoLA test sets; these results support the findings in §2.5.
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Di.BERT GPT2 BERT BART

Di.BERT
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BERT
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1.000 0.821 0.846 0.815

0.821 1.000 0.809 0.822

0.846 0.809 1.000 0.832

0.815 0.822 0.832 1.000

SNLI
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Figure 9. Cross-model Pearson’s r between PVI estimates made by different finetuned models, on the SNLI and CoLA test sets. For SNLI,
the estimates are consistent: what one model finds difficult, others find difficult as well. Since CoLA has less usable information for all
these models, the correlations are lower. All correlations are highly statistically significant (p < 0.001).

Figure 10. Examples that human annotators find easier (as measured by the fraction of annotators, in the range [0.5, 1.0], that agree with
the gold label) also have higher PVI on average.

Human Agreement In Figure 10, we plot the average PVI at different levels of annotator agreement. We find that there is
a concurrence between what humans find difficult and what examples are difficult according to PVI.

Cross-Epoch Correlations In Table 5, we list the cross-epoch Pearson correlation between PVI estimates made by the
same model on the SNLI test set over the course of finetuning. The correlation is high (r > 0.80 during the first 5 epochs),
suggesting that when an instance is easy(difficult) early on, it tends to remain easy(difficult).

Cross-Seed Correlations In Table 6, we list the Pearson correlation between PVI estimates made by BERT across different
training runs. The correlation is high (r > 0.87), suggesting that what a model finds difficult is not due to chance.

E. Transformations
WARNING: The following content contains language from the DWMW17 dataset that is offensive in nature.

In Table 7, we provide an instance from the SNLI test set in its original form and after various attribute-specific transforma-
tions have been applied to it. These only capture a small subset of the space of possible transformations.

For DWMW17, we hand-picked a set of 50 potentially offensive words based on a cursory review of the dataset to see
how much information these terms alone contain about the label: ‘nigga’, ‘niggas’, ‘niggah’, ‘niggahs’, ‘hoe’, ‘hoes’,
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BERT-base

Epoch/Epoch 1 2 3 5 10

1 1.000 0.908 0.871 0.838 0.762
2 0.908 1.000 0.929 0.883 0.795
3 0.871 0.929 1.000 0.879 0.796
5 0.838 0.883 0.879 1.000 0.833
10 0.762 0.795 0.796 0.833 1.000

BART-base

Epoch/Epoch 1 2 3 5 10

1 1.000 0.925 0.885 0.853 0.754
2 0.925 1.000 0.952 0.906 0.807
3 0.885 0.952 1.000 0.914 0.814
5 0.853 0.906 0.914 1.000 0.862
10 0.754 0.807 0.814 0.862 1.000

DistilBERT-base

Epoch/Epoch 1 2 3 5 10

1 1.000 0.928 0.884 0.828 0.766
2 0.928 1.000 0.952 0.890 0.825
3 0.884 0.952 1.000 0.900 0.819
5 0.828 0.890 0.900 1.000 0.860
10 0.766 0.825 0.819 0.860 1.000

GPT2

Epoch/Epoch 1 2 3 5 10

1 1.000 0.931 0.887 0.855 0.747
2 0.931 1.000 0.961 0.918 0.813
3 0.887 0.961 1.000 0.933 0.827
5 0.855 0.918 0.933 1.000 0.874
10 0.747 0.813 0.827 0.874 1.000

Table 5. Cross-epoch Pearson correlation between PVI estimates made on the SNLI test set while finetuning various models on the SNLI
training set. The estimates are stable: when an instance is easy(difficult) early on, it generally remains easy(difficult). For all models
studied, the cross-epoch correlation does not dip below 0.80 for the first five epochs.

‘bitch’, ‘bitches’, ‘whitey’, ‘white trash’, ‘cracker’, ‘crackers’, ‘beaner’, ‘beaners’, ‘pussy’, ‘pussies’, ‘fag’, ‘fags’, ‘faggot’,
‘faggots’, ‘ho’, ‘hos’, ‘redneck’, ‘rednecks’, ‘porn’, ‘fuck’, ‘fucks’, ‘fucker’, ‘fuckers’, ‘motherfucker’, ‘motherfuckers’,
‘nigger’, ‘niggers’, ‘coon’, ‘coons’, ‘niggaz’, ‘nig’, ‘nigs’, ‘slut’, ‘sluts’, ‘wigger’, ‘wiggers’, ‘fucked’, ‘fucking’, ‘wigga’,
‘wiggas’, ‘retard’, ‘retards’, and ‘retarded’.

F. Instance-wise Comparisons
Certain attributes are responsible for the difficulty of certain examples. Figure 11 is an example of how we might do
a fine-grained comparison of instances to understand why one may be more difficult for a given model. We compare
two SNLI ‘neutral’ instances from the test set to try to understand why #9627 is easier for BERT than #7717 (i.e., why
PVI(x9627 → y9627) > PVI(x7717 → y7717)), finding that it is likely due to the former’s hypothesis being more informative.
While different instances can be compared w.r.t. the same attribute, different attributes cannot be compared w.r.t. the same
instance, since the models used to estimate the attribute-specific V-information IV(τa(X) → Y ) are chosen to maximize
the likelihood of all the data. This is why, for example, the PVI of #7717 is higher after its tokens have been shuffled even
though the average PVI (i.e., dataset-level V-information) declines after shuffling tokens.

G. Token-Level Artefacts
WARNING: The following content contains language from the DWMW17 dataset that is offensive in nature. In Table
8, we list the tokens in the SNLI, CoLA, and DWMW17 datasets that, when dropped out, cause the greatest decrease in
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seed Run 1 Run 2 Run 3 Run 4

Run 1 1.000 0.877 0.884 0.885
Run 2 0.877 1.000 0.887 0.882
Run 3 0.884 0.887 1.000 0.895
Run 4 0.885 0.882 0.895 1.000

Table 6. Cross-model Pearson correlation between PVI estimates made after one epoch of finetuning BERT on SNLI with different seeds.
Estimates are stable: what a model finds difficult is mostly not due to chance.

Attribute Transformation Transformed Input

Original PREMISE: Two girls kissing a man with a black shirt and brown hair on the cheeks.
HYPOTHESIS: Two girls kiss.

Shuffled shuffle tokens randomly PREMISE: girls two a kissing man with a black cheeks shirt and hair brown on the
. HYPOTHESIS: kiss two . girls

Hypothesis-only only include hypothesis HYPOTHESIS: Two girls kiss.
Premise-only only include premise PREMISE: Two girls kissing a man with a black shirt and brown hair on the cheeks.
Overlap hypothesis-premise overlap PREMISE: Two girls [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]

[MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] . HYPOTHESIS:
Two girls [MASK] .

Table 7. Given an NLI instance (see ‘Original’), each transformation isolates some attribute from the input. The headers ‘PREMISE’ and
‘HYPOTHESIS’ were added by us to transform the two sentence inputs into a single text input for all models that were evaluated.

the V-information estimate. These are token-level artefacts of each class in the dataset. In the DWMW17 hate speech
detection dataset, racial and homophobic slurs are artefacts of hate speech, while ableist and sexual slurs are artefacts of
offensive speech. In-group AAVE terms are also predictive of offensive speech in DWMW17 even when they are used
non-offensively, hinting at possible bias in the dataset (Sap et al., 2019). In CoLA, auxiliary verbs and prepositions are
artefacts of ungrammatical sentences; grammatical sentences don’t have any artefacts. For SNLI, we recover many of the
token-level artefacts found by Gururangan et al. (2018) using descriptive statistics—even uncommon ones, such as ‘cat’ for
contradiction.

H. Relation to Dataset Cartography
Swayamdipta et al. (2020) introduced dataset cartography, a method to automatically analyze and diagnose datasets with
respect to a trained model. It offers a complimentary understanding of datasets and their properties, taking into account the
behavior of a model towards different data instances during training. This behavior—training dynamics—helps differentiate
instances via their (1) confidence (i.e., mean probability of the correct label across epochs), and (2) variability (i.e., variance
of the former). The result is a dataset map revealing three regions:

• Easy-to-learn (high confidence, low variability) instances are the most frequent instances in the dataset, those which
high capacity models like BERT predict correctly throughout training.

• Hard-to-learn (low confidence, low variability) instances correspond to those which are predicted incorrectly through-
out training; these were shown to correspond to mislabeled examples often.

• Ambiguous (high variability) instances correspond to those which the model often changes its prediction for; these
examples are the ones which are most responsible for high test performance, both in and out of distribution.

Figure 12 shows that PVI values track closely to the confidence axis of a SNLI-DistilBERT-base data map8 (Swayamdipta
et al., 2020). Data maps and PVI estimates offer orthogonal perspectives to instance difficulty, the former capturing behavior
of instances as training proceeds. Moreover, V-information can estimate dataset difficulty as an aggregate (§2), which is not
the case for training dynamics metrics, which offer only point estimates. Both approaches can be helpful for discovering

8Data maps were originally plotted on training data; however, they can be plotted on held-out data by computing training dynamics
measures on the same, after every training epoch.
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#7717: PREMISE: Little kids play a game of running around a pole. HYPOTHESIS: The kids are fighting outside.
#9627: PREMISE: A group of people watching a boy getting interviewed by a man. HYPOTHESIS: A group of people are sleeping on

Pluto.

Figure 11. The PVI of two SNLI ‘neutral’ instances (#7717 and #9627) w.r.t. BERT-base after attribute-specific transformations, as well
as the V-information estimate (i.e., average PVI over the data) for each attribute. The latter instance is easier for BERT, likely because
its hypothesis is much more informative due to being so different from its premise. Note that it makes sense to compare instances w.r.t.
the same attribute, but not different attributes w.r.t. the same instance, since the models used to estimate the attribute V-information
IV(τa(X)→ Y ) are chosen to maximize the likelihood of all the data.

data artefacts. Predictive V-information estimates, however, offer the unique capability of transforming the input to discover
the value of certain attributes in an efficient manner.

In Figure 13, we report the average PVI estimates of the three regions discovered via data maps:

• Easy-to-learn (high confidence, low variability) instances correspond to the highest average PVI, indicating that they
have the highest amount of DistilBERT-usable information.

• Hard-to-learn (low confidence, low variability) instances correspond to the lowest average PVI, indicating that they
have the lowest amount of DistilBERT-usable information. This is not surprising, since they also correspond to
mislabeled instances, which can be difficult to extract usable information from.

• Ambiguous (high variability) instances correspond to lower average PVI, indicating that there is some usable informa-
tion, but not as much as those of the easy-to-learn instances, w.r.t DistilBERT.

For each of the bars in the plot, we consider 10% of the dataset belonging to each region (with the highest corresponding
measures of confidence and variability).
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Figure 12. Relationship between PVI and the training dynamics-
based data map (Swayamdipta et al., 2020) for SNLI held-out
(test) set, computed for the DistilBERT-base architecture. As in
Swayamdipta et al. (2020), Y -axis corresponds to confidence, i.e.
the mean probabilities of the true class across training epochs, and
X-axis corresponds to variability, i.e. the standard deviation of the
true class probabilities across the same. Colours indicate binned
values of PVI. PVI estimates track closely with confidence.
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Figure 13. Average PVI of the 10% of the most ambiguous, and
the 10% of the hardest-to-learn, and 10% of the easiest-to-learn
regions of the SNLI / DistilBERT-base data map (Fig. 12). Hard-
to-learn instances are frequently mislabeled, and therefore also
reflect the lowest average PVI values. The highest average PVI

values are possessed by the easy-to-learn instances, which are the
most common class of instances in the SNLI dataset. Ambiguous
instances are those that the model changes it decision on frequently
through training; these correspond to lower average PVI values than
easy-to-learn instances.
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WARNING: The following content contains language from the DWMW17 dataset that is offensive in nature.
DWMW17 (Davidson et al., 2017)

Hate Speech Offensive Neither

f*ggots (3.844) r*tards (2.821) lame (4.426)
f*g (3.73) n*gs (2.716) clothes (0.646)
f*ggot (3.658) n*gro (2.492) dog (0.616)
c*ons (3.53) n*g (2.414) cat (0.538)
n*ggers (3.274) c*nts (2.372) iDntWearCondoms (0.517)
qu*er (3.163) p*ssies (2.29) thank (0.47)
co*n (3.137) qu*er (2.213) kick (0.423)
n*gger (3.094) r*tarded (1.997) 30 (0.345)
d*ke (3.01) c*nt (1.919) football (0.334)
f*gs (2.959) b*tches (1.858) soul (0.323)

SNLI (Bowman et al., 2015)

Entailment Neutral Contradiction

nap (3.256) tall (4.246) Nobody (7.258)
bald (3.183) naked (2.193) not (4.898)
crying (2.733) indoors (1.724) no (4.458)
Woman (2.517) light (1.442) naked (3.583)
asleep (2.482) fun (1.318) crying (2.938)
sleeping (2.416) bed (1.006) indoors (2.523)
soda (2.267) motorcycle (0.993) vegetables (2.295)
bed (2.136) works (0.969) sleeping (2.293)
not (2.111) race (0.943) jogging (2.17)
snowboarder (2.099) daughter (0.924) cat (2.092)

CoLA (Warstadt et al., 2018)

Grammatical Ungrammatical

will (0.267) book (2.737)
John (0.168) is (2.659)
. (0.006) was (2.312)
and (-0.039) of (2.308)
in (-0.05) to (1.972)
’ (-0.063) you (1.903)
to (-0.195) be (1.895)
of (-0.195) in (1.618)
that (-0.379) did (1.558)
the (-0.481) The (1.427)

Table 8. Token-level annotation artefacts in each dataset. These are the tokens whose omission leads to the greatest average increase in
conditional entropy for each class (given in parentheses).


