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Abstract

While deep generative models have succeeded in
image processing, natural language processing,
and reinforcement learning, training that involves
discrete random variables remains challenging
due to the high variance of its gradient estimation
process. Monte Carlo is a common solution used
in most variance reduction approaches. However,
this involves time-consuming resampling and mul-
tiple function evaluations. We propose a Gapped
Straight-Through (GST) estimator to reduce the
variance without incurring resampling overhead.
This estimator is inspired by the essential prop-
erties of Straight-Through Gumbel-Softmax. We
determine these properties and show via an ab-
lation study that they are essential. Experiments
demonstrate that the proposed GST estimator en-
joys better performance compared to strong base-
lines on two discrete deep generative modeling
tasks, MNIST-VAE and ListOps.

1. Introduction
Deep generative models (DGM) (Ruthotto & Haber, 2021;
Kingma & Welling, 2019; Goodfellow et al., 2020; Rezende
& Mohamed, 2015) are deep neural networks that are capa-
ble of high-dimensional probability distributions modeling
and random samples generation. These properties are es-
pecially useful in applications such as image processing
(Korshunov & Marcel, 2018; Song et al., 2021), speech
processing (Oord et al., 2016), natural language processing
(Radford et al., 2019; Chen et al., 2021), and reinforcement
learning (Ho & Ermon, 2016; Li et al., 2017). Among these
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tasks, some of which involve inherently discrete compo-
nents hence necessitating the need of modeling discrete
random variables. For example, structure learning (Nangia
& Bowman, 2018), generative text modeling (Yang et al.,
2017), multi-agent control (Lowe et al., 2017), and control
with discrete/integer variables (Tang & Agrawal, 2020; Fan
& Wang, 2021). Training these discrete DGMs remains
challenging mainly due to the discrete sampling process,
which impedes the direct use of gradient backpropagation.
Consequently, designing a high-quality gradient estimation
technique for the discrete component becomes the key to
success.

Existing gradient estimation techniques for discrete DGMs
bifurcate into two paradigms: the REINFORCE estimator
(Glynn, 1990; Williams, 1992) and the Straight-Through
Gumbel-Softmax (STGS) (Maddison et al., 2017; Jang et al.,
2017). The former is unbiased but with high variance, while
the latter is of low variance but requires a continuous relax-
ation during the gradient computation (i.e., h in Eq. (6)).
Despite the differences, the Monte Carlo variance reduc-
tion technique has been used in both methods; for example,
Mnih & Gregor (2014); Mnih & Rezende (2016); Gu et al.
(2016) for REINFORCE and Paulus et al. (2021) for STGS.
While the variance is reduced, side-effects such as multiple
resampling and function evaluations emerge, which are also
the main drawbacks that we address.

In this paper, we introduce the Gapped Straight-Through
(GST) estimator, a variant of the Straight-Through estimator
(Bengio et al., 2013), that adds a careful logit perturbation
process. We decide to improve upon the STGS paradigm
since it is believed to have low variance and can leave the
loss function unmodified (Eq. (2) vs. (5)). First, we show
that STGS has a number of properties (§3) essential for
good performance (see ablation study in §5.1.1). To our best
knowledge, this is a new determination of the key properties
that support STGS.

Second, the Gumbel randomness introduced in STGS is suf-
ficient but not necessary for these properties. We show GST
satisfies these properties with less randomness. In particular,
GST first samples a random category D and then computes
the deterministic perturbation given D. This has the advan-
tage of variance reduction while avoiding any resampling
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Figure 1.Different estimators operating on the probability simplex. The blue shaded region represents the probability density of the
Gumbel-Softmax sample in the simplex, where the degree of darkness is proportional to the likelihood. The dashed lines separate three
categories (top, left, right). STGS generates soft samples across all categories. GR-MCK (Paulus et al., 2021) chooses a random category
D � p� 0 (e.g. top category), generates multiple (e.g.K = 100) Gumbel-Softmax samples inD 's category (i.e., conditioning onD ), and
averages over them to obtain a variance-reduced one. GST chooses a random categoryD � p� 0 and appliesm2 to get a variance-reduced
soft sample givenD (§4.2 and Figure 2). Note thatm2 is deterministic givenD , so the resulting sample is of low variance. All estimators
generate the soft samples and convert them into the hard samples using the Straight-Through trick (e.g. Algorithm 1).

overhead, e.g., the Monte Carlo method (Paulus et al., 2021).
Experiments show that GST achieves smaller test losses and
variances on MNIST-VAE (Jang et al., 2017; Kingma et al.,
2014) and better accuracies on ListOps unsupervised pars-
ing (Nangia & Bowman, 2018). Figure 1 summarizes the
difference between our proposed GST and the prior work.

We use bold symbols to denote random variables. For exam-
ple,D , � , andG are the one-hot random sample, random
source,Gumbel(0; 1) random vector, respectively. The sub-
script i , with or without a bracket, denotes the ith entry
of a vector; for example,[p� ]i andG i are the ith entry of
p� andG, respectively. Lastly,� denotes the trainable pa-
rameters of a neural network (NN), andlogit� denotes the
NN-parameterized vector before the Softmax function.

2. Gradient Estimation for Discrete DGM

Let D be a random variable from a discrete/categorical
distributionp� parameterized by an NN with parameter�
(we will takep� = Softmax1(logit� ) in §2.3). Without loss
of generality, supposeD is one-hot andP(D = ei ) =
[p� ]i , wheref e1; :::; eN g is the standard basis inRN . Given
an objective functiong : f e1; :::; eN g ! R, we want to
minimize the expected value ofg over the distribution ofD :

min
p�

ED � p� [g(D )] = min
�

ED � p� [g(D )]: (1)

Sincep� is parameterized by� , Eq. (1) needs to be opti-
mized by an (unbiased) estimate ofr � E[g(D )], which we
will review in this section.

2.1. REINFORCE Estimator

The REINFORCE estimator (Glynn, 1990; Williams, 1992)
is de�ned as follows:

r � E[g(D )] =
NX

i =1

r � [p� ]i g(ei )

( � )
=

NX

i =1

[p� ]i
r � [p� ]i

[p� ]i
g(ei ) = E[r � logp� (D )g(D )];

(2)

wherep� (D ) is the probability ofD ; i.e., p� (D ) = [ p� ]i
if D = i . The LHS of(� ) is unweighted while the RHS
is written into an expectation with weights1=[p� ]i . The
REINFORCE estimator simply takes Eq.(3) as an unbiased
estimate ofr � E[g(D )].

r � logp� (D )g(D ); D � p� : (3)

While Eq. (3) only requires a single sample fromp� to
establish an unbiased estimate, it is of high variance due to
its importance weight1=[p� ]i . The variance can be large
when there exists small[p� ]i for somei 2 f 1; :::; N g.

2.2. Reparameterization and Straight-Through

The major drawback of REINFORCE is that the randomness
(p� ) is coupled with the NN parameters (� ). This motivates
the use of reparameterization to decouple the randomness
and the parameter. Suppose that there exists a reparameter-
ization ofD (e.g. Eq.(7)) , written asD(�; � ), such that
D(�; � ) 2 f e1; :::; eN g (i.e., one-hot) and thatD(�; � ) is
random with the source of randomness from� . Under such
reparameterization, Eq. (1) is re-written as

min
�

E� [g(D (�; � ))] : (4)
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The gradient to optimize Eq. (4) becomes
r � E� [g(D (�; � ))] with r � g(D(�; � )) being its unbi-
ased estimate:

r � E� [g(D (�; � ))] = r �

Z
f � (� )g(D (�; � ))d�

=
Z

r � f � (� )g(D (�; � ))d� = E� [r � g(D(�; � ))] ;
(5)

wheref � is the probability density of� . Compared with
Eq. (2), Eq.(5) does not involve an importance weighting
procedure thanks to the decoupling of� and� . Thus, the gra-
dient estimation from the reparameterization (i.e.D (�; � ))
is believed to be of lower variance.

The �nal missing piece is to backpropagate throughD(�; � ),
which typically requires the differentiability w.r.t.� . How-
ever, the discrete nature ofD (i.e.,D 2 f e1; :::; eN g) hin-
ders the differentiability1. Fortunately, the Straight-Through
estimator (Bengio et al., 2013; Chung et al., 2017), (Hin-
ton et al., 2012)[lecture 15b] helps enforce the discreteness
while maintaining differentiability. In particular, let� be the
NN's parameters and� 0 = stopgrad(� ) be the parameters
in the forward pass but with zero gradient in the backward
pass (i.e.,r � stopgrad(�( � )) = r � �( � 0) = 0 for any
�( �)). After then, the distribution vectorp� 0 is evaluated,
and a one-hot vectorD = D(� 0; � ) is sampled fromp� 0 .
Note� is the randomness of the sampling process and the
random variableD is now represented byD(� 0; � ). With
all the ingredients, the general form of the Straight-Through
(ST) estimator can be written as

DST(�; � )

= stopgrad(D(�; � )) � stopgrad(h(�; � )) + h(�; � )

= D(� 0; � ) � h(� 0; � ) + h(�; � );
(6)

whereh is a differentiable function that depends on the
NN parameter� and (optionally) the randomness� . Intu-
itively, h is the surrogate ofD = D(� 0; � ) and it allows
DST(�; � ) to be differentiable. In the forward propagation
we haveDST(� 0; � ) = D while the backward propaga-
tion givesr � DST(�; � ) = r � h(�; � ). In other words,DST

has the same value asD and therefore is random and one-
hot during the function evaluation but is replaced byh
during the gradient computation. In fact, Eq.(6) can be
viewed as a continuous local approximation around the dis-
crete and non-differentiableD(� 0; � ) by adding a curve
c(� ) = h(�; � ) � h(� 0; � ) such thatc(� 0) = 0 andc(� ) is
differentiable w.r.t� . This builds the local structure around

1We use the concept ofdifferentiablility loosely in this paper.
For example, a common misunderstanding is that thearg max
operation is not differentiable. However, it is differentiable almost
everywhere with gradient 0 except for the case when the equality
sign holds (Paulus et al., 2020). Nevertheless, we still consider it
asnon-differentiablein this paper.

� 0 and makes the differentiation possible around the neigh-
borhood ofD(� 0; � ).

Although Eq.(6) seems a bit abstract, a naive way to specify
h is as follows.

DST-naive(�; � ) = D(� 0; � ) � p� 0 + p� (7)

Eq.(7) is reduced from Eq.(6) with h(�; � ) = p� , wherep�

is the probability vector modeled by an NN. While being
technically feasible, such a naive choice ignores the random-
ness� and is therefore unfavorable. A better choice is to
design anh(�; � ) with a strong connection toD considering
that the latter is replaced by the former during the gradient
computation in Eq.(6). We will review a better choice in
the next subsection.

2.3. Straight-Through Gumbel-Softmax (STGS)

Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017)
provides a reasonable choice ofh(�; � ) that is strongly cor-
related withD and is differentiable w.r.t the NN parameter
� . The construction is as follows.

De�ne Softmax� : Rn ! Rn as [Softmax� (x)] i =
ex i =� =

P n
j =1 ex j =� and letp� = Softmax1(logit� ). That is,

the NN parameter� generates the unnormalized log proba-
bility vector logit� , andlogit� yields the discrete distribution
p� through a Softmax function with temperature� = 1 . The
Gumbel-Max trick (Maddison et al., 2014) states that

arg max
1� i � N

[logit� + G]i � p� = Softmax1(logit� ); (8)

whereG is an i.i.d. N -dimensionalGumbel(0; 1) vector.
Therefore, we can sample the discrete random variableD
using Eq.(8). Since the gradient ofarg max in Eq. (8) is
not useful (either 0 or unde�ned), Gumbel-Softmax approx-
imatesarg max of Eq. (8) using another Softmax:

DGS(�; � ) = Softmax� (logit� + G) (9)

After samplingD(� 0; � ) from Eq. (8) and constructing
h(�; � ) from Eq.(9), we can substitute them into Eq.(6) to
get the Straight-Through Gumbel-Softmax (STGS) estima-
tor (Jang et al., 2017):

DSTGS(�; � ) = D(� 0; � ) � DGS(� 0; � ) + DGS(�; � ); (10)

whereD = D(� 0; � ) = OneHot(arg max
1� i � N

[logit� 0
+ G]i )

is the one-hot random sample using the Gumbel-Max in
Eq. (8).� is the randomness from the Gumbel vectorG.

Note that Eq.(10) is reduced from Eq.(6) with h(�; � ) =
DGS(�; � ). This allowsD andh(�; � ) to share the same
randomness hence establishes a strong correlation, making
Straight-Through Gumbel-Softmax Eq.(10) preferable to
the naive choice in Eq. (7).
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2.4. Conditional Perspective on STGS

Although STGS successfully chooses anh that has a strong
correlation withD , there is still room for improvement. The
key observation is thatD = D(� 0; � ) in Eq.(10) is “much
less random” than its random source� . That is, for a �xed
discrete valueei , there are multiple instances of� that lead
to the sameD(� 0; � ) = ei . From a variance reduction per-
spective, it is tempting to seth(�; � ) = h(�; D (� 0; � )) =
h(�; D ). In other words, it is enough to make the random-
ness ofh solely come fromD if there is a strong correlation
betweenh(�; �) andD .

Such a variance reduction by conditioning is proposed
in Paulus et al. (2021). The authors use an averaging
over conditional distribution to make the randomness of
h almost come fromD . To be more speci�c, we can
�rst sample aD = D(� 0; � ) � p� 0 and then sample

J i (� ) i.i.d.� logit� + GjD . Finally, a rao-blackwellization
scheme can be constructed as follows.

D GR-MCK(�; � ) =

D +
1
K

KX

i =1

[� Softmax� (J i (� 0)) + Softmax� (J i (� ))]

K !1! D � E[D GS(� 0 ; � )jD ] + E[D GS(�; � )jD ]:

(11)

WhenK = 1 , Eq. (11) is identical to STGS. Therefore,
Eq. (11) implies another construction of STGS: �rst sample
D � p� 0 and thenlogit� + GjD . Such a two-step process
motivates the design of our GST estimator in§4. On the
other hand, whenK is large, Eq.(11)converges to the con-
ditional expectation.E[DGS(�; � )jD ]'s randomness only
depends onD = D(� 0; � ), not � . Hence, Eq.(11) reduces
the randomness through conditioning and averaging.

3. Key Properties of STGS

Given the widespread success of STGS, we want to identify
its good properties and use them to motivate our estimator
design in§4. An ablation study is conducted in§5.1.1 to
verify the usefulness of these properties.

3.0. Property 0: Followingp� 0

We want to stress the most basic property of STGS: STGS
follows p� 0 = Softmax1(logit� 0

) during the forward prop-
agation of a NN. This is because Eq.(10) reduces toD
during the forward pass (i.e.� = � 0), andD is sampled by
Gumbel-Max, yieldingD � p� 0 . As shown in Eq.(6), any
discrete DGM based on the Straight-Through estimator sat-
is�es this property. Since we focus on the family of STGS,
we assume this property holds throughout this paper.

3.1. Property 1: Consistency

Recall that in Eq.(10), D = OneHot(arg max
1� i � N

[logit� 0
+

G]i ) is the one-hot sample using the Gumbel-Max trick
and DGS(� 0; � ) = Softmax� (logit� 0

+ G) is its surro-
gate. Because theSoftmaxoperation does not change the
relative order of the input vector components, we have:
arg max

1� i � N
[D ]i = arg max

1� i � N
[DGS(� 0; � )] i . Thereby, we say a

differentiable surrogate functionh is consistent withD in
Eq. (6) if:

arg max
1� i � N

[h(� 0; � )] i = arg max
1� i � N

[D ]i : (12)

This makes intuitive sense as a surrogate should at least
keep the supremacy of the largest component of the input.

3.2. Property 2: Zero-Gradient Perturbation

We now discuss the functional form of the differentiable
surrogate,h(�; � ). One observation is thath should sit in the
probability simplex� N � 1 = f (u1; :::; uN ) :

P N
i =1 ui =

1; ui � 0 8 i 2 [1; :::; N ]g, which can be achieved by
applying a Softmax or Sparsemax (Martins & Astudillo,
2016). This is becauseh mimicsD andD is on the vertices
of � N � 1. Since we are more compatible with Softmax, we
requireh = Softmax� (some logit). Then, the design ofh
boils down to the logit design. Gumbel-Softmax chooses
its logit as a perturbed one:logit� + G. More generally, we
introduce a perturbation functionm and writeh as

h(�; � ) = Softmax� (logit� + m(� 0; � )) : (13)

Note thatm(� 0; � ) = G for Gumbel-Softmax, som is a
perturbation function that generalizes the Gumbel vector.
To see whym is designed to be a function of� 0 and� , we
�rst note thatm has to depend on the sampling randomness
� so that the surrogateh correlates well with the random
one-hot sampleD . Secondly, the perturbation may depend
on logit� , so the dependency on� should also be included.
Furthermore,� is replaced by its zero-gradient version,� 0,
in order to maintain property 1 after a small gradient descent
step in� .2

Eq.(13)brings up the idea ofperturbed logits. For a zero-
gradient perturbationm(� 0; � ), we call logit� + m(� 0; � )
the perturbed logits oflogit� by m, or simply the perturbed
logits. We will discuss the property of perturbed logits in the
next subsection, which will be useful for our GST estimator
proposed in §4.

2Let h0 = Softmax� (logit� + m(�; � )) : After a gradient step,
m(�; � ) is changed butm(� 0 ; � ) is not, soh is more likely to be
consistent withD thanh0 is.
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3.3. Property 3: Strict Gap Between Perturbed Logits

In §3.1, we focused only on the largest logit, but this leaves
us wonder the actual difference between the largest and the
other logits. The difference is important since we want to
apply the perturbation correctly to re�ect the logit difference.
To simplify the problem, we study the difference between
the top-2 largest perturbed logits of STGS. In particular,
conditioning on the event thati is the index of the largest
perturbed logit; i.e.,

D = OneHot(arg max
1� j � N

[logit� 0
]j + G j ) = ei ;

the expected gap between the top-2 largest perturbed logits
is de�ned as

Gap(� 0 jD = ei ) =

E
�
[logit� 0

]i + G i � max
j 6= i

([logit� 0
]j + G j )

�
�
�D = ei

�
:

(14)

Lemma 1 gives an analytical expression of Eq. (14).

Lemma 1. Gap(� 0jD = ei ) = � log(1 � [p� 0 ]i )
[p� 0 ]i

=
log (1+ e` i � s )

1� 1=(1+ e` i � s ) , where` i is the shorthand of[logit� 0
]i and

s = log
� P

j 6= i è j

�
is the log-sum-exponential of the unse-

lected logits.

A closer look into Lemma 1 shows that the expected gap
largely depends on the logit difference` i � s ands is inter-
preted asthe effective unselected logit. It is immediate to
see that(a) the gap increases iǹi � s, (b) the gap converges
to 1 wheǹ i � s � 0, and(c) the gap converges tòi � s
as` i � s � 0.

(a) follows from that larger̀ i � s implies larger logit dif-
ference and gap.(b) means the expected gap is strict and
is lower-bounded by 1.(c) follows from that the Gumbel
noises are negligible when` i � s is large, so the expected
gap converges to the effective unperturbed logit difference.

(b) is probably the most counter-intuitive but also the most
important property. Although the intuition might suggest
a vanishing gap wheǹi � s � 0, the eventD = ei turns
out to put weight on large enough random gaps such that
the expected gap� 1. We provide more discussion on this
in Appendix A.2. The strict expected gap is important for
the � -tempered Gumbel-Softmax, Eq.(9), to converge to
D easier at low temperatures. That is, a strict gap implies
DGS(� 0; � ) = Softmax� (logit� 0

+ G) � ! 0! D (� 0; � ) = D
and justi�esDGS as a differentiable surrogate ofD .

4. The Proposed Method

4.1. Near-deterministic Straight-Through Estimator

As discussed in§2.4, Paulus et al. (2021) propose condi-
tional averaging for variance reduction. This is not very

ef�cient in large-scale modeling as the averaging causes an
extra computation of sizeO(K ) with K typically being 100
or higher. Nevertheless, in Eq.(11), the average converges
to E[DGS(�; � )jD ] at largeK , which is a deterministic func-
tion in D . This implies a good choice of deterministic
function inD , written ash(�; D ), might improve the per-
formance. We thus reduce the general Straight-Through,
Eq.(6) to the following near-deterministic Straight-Through
estimator.

DST-det(�; D ) = D � h(� 0; D ) + h(�; D ): (15)

D = D(� 0; � ) is generated from the random source� . We
see that Eq.(11) with K ! 1 becomes a special case
of Eq. (15) with h(�; D ) = E[DGS(�; � )jD ]. In the next
subsection, we will �nd anotherh(�; D ) that also has a high
correlation withD but without high resampling cost.

4.2. Gapped Straight-Through Estimator

We now present our Gapped Straight-through Estimator
(GST). Due to the success of variance-reduction-type es-
timator (Paulus et al., 2021), it is enough to �nd a good
deterministic function,h(�; D ), for the near-deterministic
Straight-Through estimator, Eq.(15). Motivated by the suc-
cess of Gumbel-Softmax, we chooseh(�; D ) based on the
properties discussed in §3.

According to property 1 & 2, we requireh(�; D ) to satisfy

arg max
1� j � N

[h(�; D )] j = arg max
1� j � N

[D ]j

h(�; D ) = Softmax� (logit� + m(� 0; D )) :

Since Softmax does not change the relative order of the
input components, this can be reduced to

arg max
1� j � N

[logit� + m(� 0; D )] j = arg max
1� j � N

[D ]j : (16)

To realize Eq.(16), we design the perturbationm1 that
pushes theD -selected logithlogit� 0

; D i to be the same as
the largest logit. Noteh�; �i denotes the inner product. Then,
Eq. (16) is satis�ed whenm(� 0; D ) = m1(� 0; D ):

m1(� 0; D ) =
�

max
1� j � N

[logit� 0
]j � h logit� 0

; D i
�

� D :
(17)

Although a combination of Eq.(13) and Eq.(17) realizes
properties 1 & 2, it cannot guarantee a strict gap between
the top-2 perturbed logits (i.e., whenD does not select the
largest logit,m1 makes the top-2 perturbed logits the same,
and the gap size becomes zero). To enforce property 3's
strict gap, we may either increase the selected logit or de-
crease the unselected ones. While both are mathematically
correct, experiments show the latter gives stable results.
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Figure 2.The soft samples GST estimator on the probability simplex.The dashed line separate three categories (top, left, right). First,
GST chooses a random categoryD � p� 0 , arriving at either the red, green or yellow point. Then, starting fromp� 0 , applym1 andm2

to get a variance-reduced soft sample givenD . m1 pushes the point to the boundary (ifarg maxj [p� 0 ]j 6= arg max j [D ]j ), andm2

encourages a strict gap between theD -selected logit and the unselected ones so thatD 's category stands out.

To enforce a strict gap (property 3 of§3), we choose to make
the unselected logits smaller. Let[m2]k be the decrease on
the unselected logit at indexk such that the gap size is at
leastg � 0. Then, for allk in the indices of unselected log-
its, we require the following (Note that the selected logit's
value becomesmax

1� j � N
[logit� 0

]j after applyingm1.)

max
1� j � N

[logit� 0
]j � ([logit� 0

]k � [m2]k ) � g:

To enhance the sparsity, we also require[m2]k � 0 where
[m2]k = 0 means the kth logit doesn't need the decrease.
This avoids the unnecessary perturbation on the logit and
makes it simpler to constructm2. m2(� 0; D ; g) is de�ned
as follows.

m2(� 0; D ; g) =
�

logit� 0
+ g � max

1� j � N
[logit� 0

]j

�

+
� (1 � D );

(18)

where(x)+ = max( x; 0) and the product with(1 � D ) is
element-wise (Hadamard product). Combiningm1 andm2,
we propose the Gapped Straight-Through estimator as

D GST(�; D ) = D � h(� 0 ; D ) + h(�; D )
h(�; D ) = Softmax� (logit� + m1(� 0 ; D ) � m2(� 0 ; D ; g)) :

(19)

One might expectg � 1 due to the limiting behavior
of Gumbel-Softmax's expected gap discussed in§3. Fur-
thermore, according to Lemma 1, we may set the gap as
g = � log(1 � [p� 0 ]i )

[p� 0 ]i
for D = ei . The experiments in§5

show that both produce very similar results.

4.3. Connection To Paulus et al. (2021)

Let E[X ]; V[X ] be the mean and variance ofX . By the
chain rule and the law of total variance, the variances of

gradients under GR-MCK and our proposed GST are

V[r GR-MCK] = E[V[r GR-MCKjD ]] + V[E[r GR-MCKjD ]]

=
1
K

E
h� @g(D )

@D

� 2
V

h@DGS (�; � )
@�

�
�
�D

ii

| {z }
( a )

+ V
h@g(D )

@D
E

h@DGS (�; � )
@�

�
�
�D

ii

| {z }
( b)

:

V[r GST] = V
h@g(D )

@D
@DGST(�; D )

@�

i
:

WhenK = 1 , V[r GR-MCK] becomesV[r STGS]. Therefore,
GR-MCK reduces the variance of STGS by minimizing term
(a), which decreases inK . On the other hand,V[r GST] is
very similar to term (b). Since GST follows the key prop-

erties of STGS, we expectE
h

@DGS ( �; � )
@�

�
�
�D

i
� @DGST( �; D )

@� ,
implying that GST may enjoy similar variance reduction as
GR-MCK. This is veri�ed through experiments in §5.

Algorithm 1 The Proposed GST Estimator
Input : NN para.� , temperature� , mode2f hard,softg
Output : DGST(�; D )
D = sampleonehotfrom(p� 0 ); p� 0 = Softmax1(logit� 0

).
m1 = Eq. (17); / * consistency * /
m2 = Eq. (18); / * strict gap * /
h(�; D ) = Softmax� (logit� + m1 � m2) by Eq. (19);
if mode is hardthen

return D - stopgradient(h(�; D )) + h(�; D ) ;
/ * Straight-Through trick for hard
samples * /

else
returnh(�; D ) ; / * soft samples * /

end
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5. Experiments

In this section, we compare our Gapped Straight-Through
(GST) estimator with the Straight-Through-based model
such as STGS (Jang et al., 2017) and its Monte Carlo vari-
ance reduction variant, GR-MC100 (Paulus et al., 2021).
Note MC100 means taking 100 independent samples dur-
ing the Monte Carlo sampling. All models generatehard
samplesusing the Straight-Through trick.Soft samplesare
the outputs of their differentiable surrogate functions, e.g.
Eq. (9) andh(�; D ) in Eq. (19).

We evaluate the models on two standard tasks, MNIST-VAE
(Jang et al., 2017; Kingma et al., 2014) and ListOps unsu-
pervised parsing (Nangia & Bowman, 2018). MNIST-VAE
takes each digit of an MNIST image as a random variable
and trains a Variational Auto Encoder (Kingma & Welling,
2019) to generate images. The latent space is represented
by 30 categorical variables, each with 10 categories. i.e., 30
one-hot vectors with a total dimension of 30x10. ListOps
is a dataset composed of pre�x arithmetic expressions such
asmin(3; max(5; 6)), and the objective is to predict their
evaluation results. The task is typically addressed by a tree-
LSTM (Tai et al., 2015) that learns a distribution over latent
parse trees. The categorical random variable models the
distribution of the parent node over the plausible candidates
(Choi et al., 2018). Since the latent space of MNIST-VAE
accepts either discrete or continuous representations while
ListOps' parent node selection is strictly discrete, thesoft
sampleoption is only allowed in MNIST-VAE and is forbid-
den in ListOps.3

5.1. MNIST-VAE

A variational autoencoder that generates the MNIST images
can be trained by maximizing the evidence lower bound
(ELBO) on the log-likelihood:

log L �;� (x)

� ED 1:30 � p � ( �j x )

�
log

L � (xjD 1:30 )Pri(D 1:30 )
p� (D 1:30 jx)

�

= ED 1:30 � p � ( �j x ) log L � (xjD 1:30 ) � KL (p� (�jx)kPri(�))

= ELBO�;� (x):

x is an input image.D 1:30 = [ D 1; :::; D 30] is the concate-
nation of 30 categorical random variables, with eachD i

having 10 categories.p� (D 1:30 jx) is the encoder as well
as the probability mass ofD 1:30 conditioning on the input
image.L � (xjD 1:30 ) is the decoder that model likelihood of
x givenD 1:30 . Pri(D 1:30 ) = 1 =1030 is the prior ofD 1:30

and is chosen as the uniform distribution. We train the VAE
with the loss function being the negative of ELBO:

� Ex �X trainELBO�;� (x); Xtrain : training data:

3We release our code for both tasks at:https://github.
com/chijames/GST .

and test the model by replacingXtrain with the testing data
Xtest. For simplicity, we train all tasks using the same neural
network structure, batch size (=100), epochs (=40), opti-
mizer (Adam, learning rate=0.001) and seeds (2[0,1,...,9]).
The only differences are the models (STGS, GR-MC100,
GST) and temperatures� 2 [1; 0:5; 0:1].

5.1.1. ABLATION STUDY

To start with, we conduct an ablation study of the proper-
ties in §3. We compare �ve estimators from which only
one (GST-1.0) satis�es all properties. Because GST-1.0 per-
forms much better than the others, the study justi�es that
a reasonable estimator should satisfy all properties at the
same time.

Table 1 summarizes the estimators and their proper-
ties. ST is Eq.(7), which lacks the consistency be-
causearg maxi [p� 0 ]i may not bearg maxi D i . Gap-0.0 is
Eq.(19)with g = 0 and thus the gap is zero by construction.
NZ means ”non-zero gradient form”; i.e. m = m(�; � ) and
hencer � m 6= 0 .

Table 2 suggests that as long as an estimator violates any of
the properties, its performance will worsen. Note that the
best performing one, GST-1.0, satis�es all three properties.

Estimator Consistency r � m = 0 Gap> 0
ST x X X
NZ-GST-0.0 X x x
NZ-GST-1.0 X x X
GST-0.0 X X x
GST-1.0 X X X

Table 1.Estimators and properties 1, 2 & 3 of section 3.

Estimator Temperature Neg. ELBO Std.

ST
1.0 123.35 0.54
0.5 133.84 0.66

NZ-GST-0.0
1.0 128.45 0.53
0.5 139.02 0.47

NZ-GST-1.0
1.0 205.88 0.04
0.5 205.90 0.05

GST-0.0
0.5 119.10 0.29
1.0 115.48 0.81

GST-1.0
1.0 113.63 1.48
0.5 108.43 1.08

Table 2.Ablation study on the dev set. The smaller (average)
negative ELBO the better. Std. is the standard deviation.

5.1.2. COMPARISONS OFDIFFERENTESTIMATORS

We now turn to the comparison of STGS, GR-MC100, and
GST. Each of these estimators satis�es the properties in §3




