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Abstract

While deep generative models have succeeded in
image processing, natural language processing,
and reinforcement learning, training that involves
discrete random variables remains challenging
due to the high variance of its gradient estimation
process. Monte Carlo is a common solution used
in most variance reduction approaches. However,
this involves time-consuming resampling and mul-
tiple function evaluations. We propose a Gapped
Straight-Through (GST) estimator to reduce the
variance without incurring resampling overhead.
This estimator is inspired by the essential prop-
erties of Straight-Through Gumbel-Softmax. We
determine these properties and show via an ab-
lation study that they are essential. Experiments
demonstrate that the proposed GST estimator en-
joys better performance compared to strong base-
lines on two discrete deep generative modeling
tasks, MNIST-VAE and ListOps.

1. Introduction

Deep generative models (DGM) (Ruthotto & Haber, 2021;
Kingma & Welling, 2019; Goodfellow et al., 2020; Rezende
& Mohamed, 2015) are deep neural networks that are capa-
ble of high-dimensional probability distributions modeling
and random samples generation. These properties are es-
pecially useful in applications such as image processing
(Korshunov & Marcel, 2018; Song et al., 2021), speech
processing (Oord et al., 2016), natural language processing
(Radford et al., 2019; Chen et al., 2021), and reinforcement
learning (Ho & Ermon, 2016; Li et al., 2017). Among these
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tasks, some of which involve inherently discrete compo-
nents hence necessitating the need of modeling discrete
random variables. For example, structure learning (Nangia
& Bowman, 2018), generative text modeling (Yang et al.,
2017), multi-agent control (Lowe et al., 2017), and control
with discrete/integer variables (Tang & Agrawal, 2020; Fan
& Wang, 2021). Training these discrete DGMs remains
challenging mainly due to the discrete sampling process,
which impedes the direct use of gradient backpropagation.
Consequently, designing a high-quality gradient estimation
technique for the discrete component becomes the key to
success.

Existing gradient estimation techniques for discrete DGMs
bifurcate into two paradigms: the REINFORCE estimator
(Glynn, 1990; Williams, 1992) and the Straight-Through
Gumbel-Softmax (STGS) (Maddison et al., 2017; Jang et al.,
2017). The former is unbiased but with high variance, while
the latter is of low variance but requires a continuous relax-
ation during the gradient computation (i.e., h in Eq. (6)).
Despite the differences, the Monte Carlo variance reduc-
tion technique has been used in both methods; for example,
Mnih & Gregor (2014); Mnih & Rezende (2016); Gu et al.
(2016) for REINFORCE and Paulus et al. (2021) for STGS.
While the variance is reduced, side-effects such as multiple
resampling and function evaluations emerge, which are also
the main drawbacks that we address.

In this paper, we introduce the Gapped Straight-Through
(GST) estimator, a variant of the Straight-Through estimator
(Bengio et al., 2013), that adds a careful logit perturbation
process. We decide to improve upon the STGS paradigm
since it is believed to have low variance and can leave the
loss function unmodified (Eq. (2) vs. (5)). First, we show
that STGS has a number of properties (§3) essential for
good performance (see ablation study in §5.1.1). To our best
knowledge, this is a new determination of the key properties
that support STGS.

Second, the Gumbel randomness introduced in STGS is suf-
ficient but not necessary for these properties. We show GST
satisfies these properties with less randomness. In particular,
GST first samples a random category D and then computes
the deterministic perturbation given D. This has the advan-
tage of variance reduction while avoiding any resampling
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Figure 1.Different estimators operating on the probability simplex. The blue shaded region represents the probability density of the
Gumbel-Softmax sample in the simplex, where the degree of darkness is proportional to the likelihood. The dashed lines separate three
categories (top, left, ). STGS generates soft samples across all categories. GR-MCK (Paulus et al., 2021) chooses a random category
D p, (e.g. top category), generates multiple (&g= 100) Gumbel-Softmax samples In 's category (i.e., conditioning oB ), and

averages over them to obtain a variance-reduced one. GST chooses a random Eategpry and appliesn, to get a variance-reduced

soft sample give (84.2 and Figure 2). Note that; is deterministic giverD , so the resulting sample is of low variance. All estimators
generate the soft samples and convert them into the hard samples using the Straight-Through trick (e.g. Algorithm 1).

overhead, e.g., the Monte Carlo method (Paulus et al., 20213.1. REINFORCE Estimator
Experiments show that GST achieves smaller test losses al
variances on MNIST-VAE (Jang et al., 2017; Kingma et al.
2014) and better accuracies on ListOps unsupervised pa
ing (Nangia & Bowman, 2018). Figure 1 summarizes the X

difference between our proposed GST and the prior work. I E[G(D)]= 1 [p ]ig(e)

rJl%e REINFORCE estimator (Glynn, 1990; Williams, 1992)

i8 de ned as follows:

=1
We use bold symbols to denote random variables. For exam- | 2
ple,D, ,andG are the one-hot random sample, random &) ol r pl g(e) = E[r logp (D)g(D)];
source Gumbe(0; 1) random vector, respectively. The sub- - [P ]i

scripti, with or without a bracket, denotes the ith entry
of a vector; for exampldp ] andG; are the ith entry of

p andG, respectively. Lastly, denotes the trainable pa-
rameters of a neural network (NN), alogjit denotes the
NN-parameterized vector before the Softmax function.

wherep (D) is the probability oD ; i.e.,p (D) =[p i

if D = i. The LHS of( ) is unweighted while the RHS
is written into an expectation with weighis{p ];. The
REINFORCE estimator simply takes H&) as an unbiased
estimate of E[g(D)].

2. Gradient Estimation for Discrete DGM r logp(D)g(D); D p: 3

Let D be a random variable from a discrete/categoricaMhile Eq. (3) only requires a single sample from to
distributionp parameterized by an NN with parameter ~€stablish an unbiased estimate, it is of high variance due to
(we will takep = Softmax (logit ) in §2.3). Without loss  its importance weight=[p ];. The variance can be large
of generality, supposB is one-hot and®(D = g) = when there exists smdjp |; for somei 2 f 1;::;;Ng.

[p Ii, wheref e;; ::2; ey g is the standard basis RN . Given

an objective functiomy : fe;;:;eng! R, wewantto 2.2. Reparameterization and Straight-Through

minimize the expected value gfover the distribution oD : The major drawback of REINFORCE is that the randomness

(p ) is coupled with the NN parameters)( This motivates

the use of reparameterization to decouple the randomness
minEp , [9(D)]=min Ep , [g(D)]: (1)  and the parameter. Suppose that there exists a reparameter-
P ization of D (e.g. Eq.(7)) , written asD( ; ), such that

D(; )2fep;:;eng(ie., one-hot)and thdd (; ) is

random with the source of randomness fronUnder such

Sincep is parameterized by, Eq. (1) needs to be opti- reparameterization, Eq. (1) is re-written as
mized by an (unbiased) estimaterof E[g(D )], which we

will review in this section. minE [g(D(; )]: (4)
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The gradient to optimize Eq. (4) becomes ( and makes the differentiation possible around the neigh-
r E[g(D(; )] with r g(D(; )) being its unbi- borhoodoD( o; ).
ased estimate:

7 Although Eq.(6) seems a bit abstract, a naive way to specify
r EOOCG M=r1  f (O)gd(: )d 15 as follows.
z (5) Dstnavd; )= D(o; ) p,*tPp (7)

= r £ ()aD( Nd =Er oD N _ _

Eq.(7)is reduced from Eq6) withh(; )= p , wherep
wheref is the probability density of. Compared with is the probability vector modeled by an NN. While being
Eq.(2), Eq.(5) does not involve an importance weighting technically feasible, such a naive choice ignores the random-
procedure thanks to the decoupling aind . Thus, the gra- N€SS and is therefore unfavorable. A better choice is to
dient estimation from the reparameterization (Dg.; ))  designam(; ) with astrong connection D considering
is believed to be of lower variance. that the latter is replaced by the former during the gradient

S computation in Eq(6). We will review a better choice in
The nal missing piece is to backpropagate thro6; ),  the next subsection.

which typically requires the differentiability w.r.t. How-
ever, the discrete nature bf (i.e.,D 2fe;eng) hin- 5 3 giraight-Through Gumbel-Softmax (STGS)

ders the differentiability. Fortunately, the Straight-Through

estimator (Bengio et al., 2013; Chung et al., 2017), (HinGumbel-Softmax (Jang et al., 2017; Maddison et al., 2017)
ton et al., 2012)[lecture 15b] helps enforce the discretenesgrovides a reasonable choiceltf; ) that is strongly cor-
while maintaining differentiability. In particular, letbe the  related withD and is differentiable w.r.t the NN parameter
NN's parameters and, = stopgrad ) be the parameters . The construction is as follows.

in the f.orward pass but with zero gradient in the backwardDe ne FSoftmax . R" | R" as [Softmax (X)];
pass (i.e.r stopgrad( )) = r ( o) = 0 for any o= =
(' )). After then, the distribution vectqr , is evaluated,

-, €97 andletp = Softmax(logit ). Thatis,

h - TN led f the NN parameter generates the unnormalized log proba-
and a one- otvectdd = D( o; ) is samp ed fronp , . bility vectorlogit , andlogit yields the discrete distribution
Note is the randomness of the sampling process and ths through a Softmax function with temperatures 1. The

random variabl® is now represented y( o; ). With 5 mpel-Max trick (Maddison et al., 2014) states that
all the ingredients, the general form of the Straight-Through

(ST) estimator can be written as argmax[logit + G]; p = Softmax(logit ); (8)
1 i N
Psrt: ) hereG i i.i.d. N-di ionalGumbe(0; 1) t
_ ) ) ) whereG is an i.i.d. N -dimensionalGumbe(0; 1) vector.
- stopgradD( ’ _)) stop.Lgre.\c{h( P )* G ) Therefore, we can sample the discrete random variable
=D(o: ) hCos )+ h(: ) using Eq.(8). Since the gradient afrg maxin Eq. (8) is

(6)  not useful (either 0 or unde ned), Gumbel-Softmax approx-

whereh is a differentiable function that depends on the|matesarg max of Eq. (8) using another Softmax:

NN parameter and (optionally) the randomness Intu- Des(; )= Softmax (logit + G) Q)
itively, h is the surrogate db = D( o; ) and it allows

Dst(; ) to be differentiable. In the forward propagation After samplingD( o; ) from Eq. (8) and constructing
we haveDsr( o; ) = D while the backward propaga- h(; ) from Eq.(9), we can substitute them into E@) to
tiongivesr Dst(; )=r h(; ).InotherwordsDst  getthe Straight-Through Gumbel-Softmax (STGS) estima-
has the same value Bs and therefore is random and one-tor (Jang et al., 2017):

hot during the function evaluation but is replaced by

during the gradient computation. In fact, §6) can be  Dsted; )= D(0; ) Des( 0; )+ Des(; ); (10)
viewed as a continuous local approximation around the dis- _ N .
crete and non-differentiablB ( ¢; ) by adding a curve whereD = D(o; ) = OneHo(alrgime flogit , + G1)
c()=h(; ) h(o; )suchthat( ¢) =0 andc( )is is the one-hot random sample using the Gumbel-Max in
differentiable w.r.t . This builds the local structure around Eq. (8). is the randomness from the Gumbel vedgar

We use the concept diifferentiablility loosely in this paper. Note that Eq(10)is reduced from Eq6) with h(; ) =
For example, a common misunderstanding is thatafgemax Dgs(; ). This allowsD andh(; ) to share the same

operation is not differentiable. However, it is differentiable almost d h tablish t lati i
everywhere with gradient 0 except for the case when the equalit hdomness hence establishes a strong correlation, maxing

sign holds (Paulus et al., 2020). Nevertheless, we still consider iptraight-Through Gumbel-Softmax Ed.0) preferable to
asnon-differentiablen this paper. the naive choice in Eq. (7).
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2.4. Conditional Perspective on STGS 3.1. Property 1: Consistency

Although STGS successfully choosestathat has a strong  Recall that in Eq(10), D = OneHotarg max [logit  +
correlation withD , there is still room for improvement. The . . LN .
key observation is thd = D( o; ) in Eq.(10)is “much G];) is the one-hot sample using the Gumb_eI-Max trick
less random” than its random sourceThat is, fora xed =~ a"dDes( o; ) = Softmax (logit , + G) is its surro-
discrete value, there are multiple instances othat lead gate_. Because théoftr_naxoperatlon does not change the
to the sam®( o, ) = &. From a variance reduction per- relative ordei of the input vec.tor components, we have:
spective, it is temptingtoséi( ; )= h(;D ( o; )) = alrgim’\?x[D Ji = agg imﬁX[DGS( 0; )Ii. Thereby, we say a
h(; D). In other words, it is enough to make the random-ifferentiable surrogate functidmis consistent wittD in
ness oh solely come fronD if there is a strong correlation  Eq. (6) if:

betweerh(; ) andD.

Such a variance reduction by conditioning is proposed argmax{h( o; )]i =argmax|[D J: (12)

in Paulus et al. (2021). The authors use an averaging 1 N 10 N

over conditional distribution to make the randomness of

h almost come fromD . To be more specic, we can
rst sample aD = D( q; ) p, and then sample

Ji() . logit + GjD. Finally, a rao-blackwellization
scheme can be constructed as follows.

This makes intuitive sense as a surrogate should at least
keep the supremacy of the largest component of the input.

3.2. Property 2: Zero-Gradient Perturbation

We now discuss the functional form of the differentiable
surrogateh(; ). One observation is thatsholgld sitin the
% probability simplex n 1 = f(uy;:un): iN:l up =
D + Ki [ Softmax (Ji( o))+ Softmax (Ji( )] (11) L Ui 08i 2 [1;::N]g, which can be achieved by
i=1 applying a Softmax or Sparsemax (Martins & Astudillo,
“I' D E[Des( o; )iD]+ E[Das(; )iD]: 2016). This is becaugemimicsD andD is on the vertices
of N 1. Since we are more compatible with Softmax, we
requireh = Softmax (some logi}. Then, the design df
boils down to the logit design. Gumbel-Softmax chooses
WhenK = 1, Eq.(11)is identical to STGS. Therefore, its logit as a perturbed onéogit + G. More generally, we
Eq.(11) implies another construction of STGS: rst sample introduce a perturbation function and writeh as
D p,andtherlogit + GjD . Such a two-step process
motivates the design of our GST estimatogfi On the h(; )= Softmax (logit + m( o; )): (13)
other hand, wheK is large, Eq(11) converges to the con-
ditional expectation.E[Dgs(; )jD]'s randomness only
depends o® = D( o; ), not . Hence, Eq(11)reduces Note thatm( o; ) = G for Gumbel-Softmax, sen is a

Dermek(; )=

the randomness through conditioning and averaging. perturbation function that generalizes the Gumbel vector.
To see whym is designed to be a function of and , we
3. Key Properties of STGS rst note thatm has to depend on the sampling randomness

so that the surrogate correlates well with the random
Given the widespread success of STGS, we want to identifpne-hot sampl® . Secondly, the perturbation may depend
its good properties and use them to motivate our estimato®nlogit , so the dependency orshould also be included.
design ing4. An ablation study is conducted §5.1.1to  Furthermore, is replaced by its zero-gradient versiog,
verify the usefulness of these properties. in order to maintain property 1 after a small gradient descent
stepin .2

3.0. Property 0: Followingp , Eq.(13) brings up the idea gierturbed logits For a zero-

We want to stress the most basic property of STGS: STGgradient perturbatiom( o; ), we calllogit + m( o; )
follows p , = Softmax (logit ) during the forward prop- the perturbed logits dbgit by m, or simply the perturbed
agation of a NN. This is because HG40) reduces td logits. We will discuss the property of perturbed logits in the
during the forward pass (i.e.= o), andD is sampled by next subsection, which will be useful for our GST estimator
Gumbel-Max, yieldingd  p ,. As shown in Eq(6), any ~ Proposed in 84.

Fhscretg DGM based.on the Straight-Through estimator sat- 2| oy 0= Softmax (logit + m(; )): After a gradient step,
is es this property. Since we focus on the family of STGS,m(; ) is changed bumn( o; ) is not, soh is more likely to be
we assume this property holds throughout this paper. consistent wittD thanh®is.
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3.3. Property 3: Strict Gap Between Perturbed Logits ef cient in large-scale modeling as the averaging causes an
. . extra computation of siz&(K ) with K typically being 100

In 83.1, we focused only on the largest logit, but this IeavesOr higher. Nevertheless, in EL.1), the average converges
us wonder the actual difference between the largest and ti}% E[Das(: )jD]at Iarg;eK which is a deterministic func-
other logits. The difference is important since we want tOion in D _’ This implies a,good choice of deterministic
apply the perturbation correctly to re ect the logit difference.

7 . function inD , written ash( ; D), might improve the per-
To simplify the problem, we study the difference bet_weenformance. We thus reduce the general Straight-Through,
the top-2 largest perturbed logits of STGS. In particular

conditioning on the event thats the index of the largest Eq. (6) to the following near-deterministic Straight-Through

. estimator.
perturbed logit; i.e.,

D = OneHotarg max(logit ] + Gj) = &; Dsrae(: D)= D h(0:D)+ h(; D) (19)
1) N

D = D( o; ) is generated from the random sourcaNe
the expected gap between the top-2 largest perturbed logitiee that Eq(11) with K ! 1 becomes a special case
is de ned as of Eq. (15)with h(: D) = E[Dgs(; )jD]. In the next

Gaf ojD = &)= subsection, we will nd anothen( ; D) that also has a high
) . (14)  correlation withD but without high resampling cost.
E [logit ] + Gi rJ_neaix ([logit |l + G;) D = &

Lemma 1 gives an analytical expression of Eq. (14). 4.2. Gapped Straight-Through Estimator

Lemma 1. Gag oD = €) = Iog(l[ [?‘O]i) - We now present our Gapped Strgight—through Estimator
og(1re ) Pol (GST). Due to the success of variance-reduction-type es-
% where’; is the shorthand ofogit ] and  timator (Paulus et al., 2021), it is enough to nd a good

deterministic functionh( ; D), for the near-deterministic
) Straight-Through estimator, E(L5). Motivated by the suc-
lected logits. cess of Gumbel-Softmax, we chodsg; D ) based on the

A closer look into Lemma 1 shows that the expected gapprOpertIes discussed in §3.
largely depends on the logit differenGge s andsis inter-  According to property 1 & 2, we requite( ; D) to satisfy
preted aghe effective unselected logit is immediate to

s =log i6i el isthe log-sum-exponential of the unse-

see thafa) the gap increases in s, (b) the gap converges arg max [h(; D)} = arg max [D];
tolwhen; s 0, and(c)the gap convergestp s J !
as;, s O h(; D)= Softmax (logit + m( ¢;D)):

(a) follows from that larger; s implies larger logit dif- Since Softmax does not change the relative order of the
ference and gap(b) means the expected gap is strict andinput components, this can be reduced to

is lower-bounded by 1(c) follows from that the Gumbel )

noises are negligible when s is large, so the expected ~ argmax flogit + m( 0;D)]; = arg max [D]j: (16)

gap converges to the effective unperturbed logit difference. .

: T To realize Eq.(16), we design the perturbatiom; that
(b) is probably the most counter-intuitive but also the mostpushes th@® -selected logitiogit ;D i to be the same as

|mpor_tan_t property. Although the intuition m_|ght suggest the largest logit. Noté&; i denotes the inner product. Then,
avanishinggapwhen s 0, theevenD = g turns (16) is satis ed whem( o:D) = my( :D):
out to put weight on large enough random gaps such thatd 0=/ = 0=

the expected gap 1. We provide more discussion on this mi( o;D) =
in Appendix A.2. The strict expected gap is important for 17)
the -tempered Gumbel-Softmax, E(Q), to converge to max [logit ] hlogit ;Di D:

1j N

D easier at low temperatures. That is, a strict gap implies
Des( o; ) = Softmax (logit , + G) ! °D(¢; )= D

and justi esD s as a differentiable surrogate bf. Although a combination of Eq13) and Eq.(17) realizes

properties 1 & 2, it cannot guarantee a strict gap between
the top-2 perturbed logits (i.e., wh&n does not select the

4. The Proposed Method largest logit;m, makes the top-2 perturbed logits the same,
and the gap size becomes zero). To enforce property 3's
strict gap, we may either increase the selected logit or de-
As discussed i82.4, Paulus et al. (2021) propose condi-crease the unselected ones. While both are mathematically
tional averaging for variance reduction. This is not verycorrect, experiments show the latter gives stable results.

4.1. Near-deterministic Straight-Through Estimator
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Figure 2.The soft samples GST estimator on the probability simplexThe dashed line separate three categories (top, left, ). First,
GST chooses a random categ@y p ,, arriving at either the red, green or point. Then, starting fpog applym: andm.

to get a variance-reduced soft sample gilzenm; pushes the point to the boundarydig max; [p ,]; & argmax; [D ];), andm;
encourages a strict gap between fheselected logit and the unselected ones sollhatcategory stands out.

To enforce a strict gap (property 383), we choose to make gradients under GR-MCK and our proposed GST are
the unselected logits smaller. Let,]x be the decrease on

the unselected logit at inddxsuch that the gap size is at V[r grmex] = E[V[r crmexiD 11+ VIE[r crmexiD 1]

leastg 0. Then, for allk in the indices of unselected log- 1 h @) 2 h@Q;s( ) i
its, we require the following (Note that the selected logit's "xF @ \17 @ D
value becomefrr]]axN [logit ]; after applyingm.) | - }

(a)

h h . ii
. . vy @P) g @hs ( )D” :
,max fogit Jj  (flogit J«  [m2])  g: | @ 2 @ }

(b)

To enhance the sparsity, we also req@ime]y ~ Owhere  v[r gg1] = Vh@gD) @Rsi(; D)' :
[m2]k = 0 means the kth logit doesn't need the decrease. @ @

This avoids the unnecessary perturbation on the logit an({NhenK
makes it simpler to construat,. my( o;D ;g) is de ned
as follows.

=1, V[r GR-MCK] becomeeV[r STGé- Therefore,
GR-MCK reduces the variance of STGS by minimizing term
(a), which decreases K. On the other hand/[r gs1] is
mo( o;D ;@) = very similar to term (b). Sipce GST follpws the key prop-

(18) erties of STGS, we expeft @2sli) p  @ReliD)
implying that GST may enjoy similar variance reduction as
GR-MCK. This is veri ed through experiments in 85.

logit | + g lmaxN [logit J; a1 D),
i

+

where(x)+ = max(x; 0) and the productwitlil D) is
element-wise (Hadamard product). Combining andm,,
we propose the Gapped Straight-Through estimator as

Algorithm 1 The Proposed GST Estimator
Input : NN para. , temperature, mode2f hard,sofg

Dest(; D)=D h(o;D)+ h(;D) Output: Dgst(; D)
h(; D)= Softmax (logit + mi( ;D) m2( 0;D:Q)): D =sampleonehotfrom(p ,); p , = Softmax(logit ).
(19)  my;=Eq.(17); [ = consistency */
m, = Eq. (18); [ = strict gap */

of Gumbel-Softmax’s expected gap discusse8@3n Fur- it mode is hardhen
thermore, according to Lemma 1, we may set the gap ag return D - stopgradienth(; D)) + h(; D)

g= W for D = g. The experiments i85 [ = Straight-Through trick for hard
0 I
show that both produce very similar results. samples  */
else
4.3. Connection To Paulus et al. (2021) | returnh(; D) ; /= soft samples  */
end

Let E[X]; V[X] be the mean and variance ¥f. By the
chain rule and the law of total variance, the variances of
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5. Experiments and test the model by replacidgi» with the testing data

) . . Xiest FOr simplicity, we train all tasks using the same neural
In this section, we compare our Gapped Straight-Throug etwork structure, batch size (=100), epochs (=40), opti-

(GST) estimator with the Straight-Through-based mode izer (Adam, learning rate=0.001) and see2f9(L,...,9]).

such as STGS (Jang et al., 2017) and its Monte Carlo van'l-he only differences are the models (STGS, GR-MC100,
ance reduction variant, GR-MC100 (Paulus et al., 2021)GST) and temperatures2 [L; 0:5: 0:1].

Note MC100 means taking 100 independent samples dur-
ing the Monte Carlo sampling. All models generatad
sampleausing the Straight-Through triclSoft sampleare
the outputs of their differentiable surrogate functions, e.gTo start with, we conduct an ablation study of the proper-
Eqg. (9) andh( ; D) in Eqg. (19). ties in83. We compare ve estimators from which only

one (GST-1.0) satis es all properties. Because GST-1.0 per-

Eforms much better than the others, the study justi es that

(Jang etal., 2017; Kingma et al., 2014) and ListOps UNSU3 reasonable estimator should satisfy all properties at the
pervised parsing (Nangia & Bowman, 2018). MNIST-VAE same time fy all prop

takes each digit of an MNIST image as a random variable

and trains a Variational Auto Encoder (Kingma & Welling, Table 1 summarizes the estimators and their proper-
2019) to generate images. The latent space is representtiels. ST is Eq.(7), which lacks the consistency be-
by 30 categorical variables, each with 10 categories. i.e., 30ausearg max [p ,]i may not bearg max D ;. Gap-0.0 is
one-hot vectors with a total dimension of 30x10. ListOpsEq.(19)with g = 0 and thus the gap is zero by construction.
is a dataset composed of pre x arithmetic expressions suchiZ means "non-zero gradient far”; i.e. m = m(; ) and
asmin(3; max(5; 6)), and the objective is to predict their hencer m 6 0.

evaluation results. The task is typically addressed by a treg e 2 suggests that as long as an estimator violates any of

LSTM (Tai etal., 2015) thaf[ learmns a dlstnbgnon over Iatentthe properties, its performance will worsen. Note that the
parse trees. The categorical random variable models thsz

NN X ; est performing one, GST-1.0, satis es all three properties.
distribution of the parent node over the plausible candidates P 9 prop
(Choi et al., 2018). Since the latent space of MNIST-VAE

5.1.1. ABLATION STUDY

We evaluate the models on two standard tasks, MNIST-VA

accepts either discrete or continuous representations while Estimator | Consistency r m=0 Gap> 0

ListOps' parent node selection is strictly discrete, $loé ST X X X

sampleoption is only allowed in MNIST-VAE and is forbid- NZ-GST-0.0| X X X

den in ListOps’ NZ-GST-1.0| X X X
GST-0.0 X X X

5.1. MNIST-VAE GST-1.0 X X X

A variational autoencoder that generates the MNIST image%able 1.Estimators and properties 1, 2 & 3 of section 3.
can be trained by maximizing the evidence lower bound
(ELBO) on the log-likelihood:

oa L Estimator Temperature Neg. ELBO  Std.
ogl: () U 1.0 123.35 0.54
_ , L (xjD =)Pri(D =) ST 0.5 133.84 0.66

Epuo , (jx) log 130
p (D +%jx) 1.0 128.45 0.53
= Epiw p (jxlogl (xjD ™) KL (p (jx)kPri()) NZ-GST-0.0 0.5 139.02 0.47
= ELBO; (x): 1.0 205.88 0.04
_ NZ-GST-1.0 0.5 205.90 0.05
x is an inputimageD % = [D *; ::;; D ¥] is the concate- 05 119.10 0.29
nation of 30 categorical random variables, with e@ch GST-0.0 1.0 115.48 0.81
having 10 categoriesp (D'%0jx) is the encoder as well 10 113.63 1.48
as the probability mass & *° conditioning on the input GST-1.0 05 108.43 1.08

image.L (xjD %29) is the decoder that model likelihood of

x givenD %0 Pri(D*30) = 1=10% is the prior ofD **°  1apje 2 Ablation study on the dev set. The smaller (average)
and is chosen as the uniform distribution. We train the VAEnegative ELBO the better. Std. is the standard deviation.
with the loss function being the negative of ELBO:

Ex x ELBO: (X); Xyain: training data 5.1.2. ®MPARISONS OFDIFFERENTESTIMATORS

3We release our code for both tasks fatps://github. We now turn to the comparison of STGS, GR-MC100, and
com/chijames/GST . GST. Each of these estimators satis es the properties in 83






