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Abstract

Byzantine resilience emerged as a prominent topic
within the distributed machine learning commu-
nity. Essentially, the goal is to enhance distributed
optimization algorithms, such as distributed SGD,
in a way that guarantees convergence despite the
presence of some misbehaving (a.k.a., Byzantine)
workers. Although a myriad of techniques ad-
dressing the problem have been proposed, the
field arguably rests on fragile foundations. These
techniques are hard to prove correct and rely on
assumptions that are (a) quite unrealistic, i.e., of-
ten violated in practice, and (b) heterogeneous,
i.e., making it difficult to compare approaches.

We present RESAM (RESilient Averaging of Mo-
mentums), a unified framework that makes it sim-
ple to establish optimal Byzantine resilience, re-
lying only on standard machine learning assump-
tions. Our framework is mainly composed of
two operators: resilient averaging at the server
and distributed momentum at the workers. We
prove a general theorem stating the convergence
of distributed SGD under RESAM. Interestingly,
demonstrating and comparing the convergence of
many existing techniques become direct corollar-
ies of our theorem, without resorting to stringent
assumptions. We also present an empirical evalu-
ation of the practical relevance of RESAM.

1. Introduction

The vast amount of data collected every day, combined with
the increasing complexity of machine learning models, has
led to the emergence of distributed learning schemes (Abadi
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et al., 2015; Kairouz et al., 2021). In the now classical
parameter server distributed architecture, the learning proce-
dure consists of multiple data owners (or workers) collabo-
rating to build a global model with the help of a central entity
(the parameter server), typically using the celebrated dis-
tributed stochastic gradient descent (SGD) algorithm (Tsit-
siklis et al., 1986; Bertsekas & Tsitsiklis, 2015). The server
essentially maintains an estimate of the model parameter
which is updated iteratively using the average of the stochas-
tic gradients computed by the workers.

Nevertheless, this algorithm is vulnerable to "misbehaving"
workers that could (either intentionally or inadvertently) sab-
otage the learning by sending arbitrarily bad gradients to the
server (Feng et al., 2015; Su & Vaidya, 2016). These work-
ers are commonly referred to as Byzantine (Lamport et al.,
1982). To address this critical issue, a large body of research
has been devoted to adapting distributed SGD to make it
converge despite the presence of (a fraction of) Byzantine
workers, e.g., (Blanchard et al., 2017; Chen et al., 2017;
El Mhamdi et al., 2018; Yin et al., 2018; Xie et al., 2018;
Alistarh et al., 2018; Diakonikolas et al., 2019b; Allen-Zhu
et al., 2020; Prasad et al., 2020; Karimireddy et al., 2021).
The general idea consists in replacing the averaging step
of the algorithm with a robust aggregation rule, basically
seeking to filter out the bad gradients.

Demonstrating the correctness of the resulting algorithms
reveals however very challenging, and previous works rely
on unusual assumptions. For instance, a large body of work
assumes stochastic gradients that follow a specific distribu-
tion, e.g., sub-Gaussian/exponential (Chen et al., 2017; Feng
et al., 2017; Yin et al., 2018; Prasad et al., 2020). Some
approaches rely on stronger assumptions that are not even
satisfied by a Gaussian distribution, such as almost surely
absolutely boundedness (Alistarh et al., 2018; Diakonikolas
et al., 2019b; Allen-Zhu et al., 2020), or vanishing vari-
ance (Blanchard et al., 2017; Xie et al., 2018; El Mhamdi
etal., 2018; 2021a). Indeed, these assumptions are often vio-
lated in practice, resulting in the failure of these approaches
when some workers behave maliciously (Baruch et al., 2019;
Xie et al., 2019a). Ultimately, the considerable difference in
these assumptions from one approach to another makes it
quite difficult to compare the underlying techniques. Byz
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In short, whilst Byzantine resilience is considered crucialrule. The caveat is that the conventional techniques used
to establish robustness in distributed machine learning, thior analyzing the convergence of SGD do not readily apply,

eld arguably rests on fragile foundations. since the honest workers' momentudeyviatefrom the true
gradient. To overcome this challenge, we devise a proof
1.1. Our Contributions technique based onrsovel Lyapunov functiowhich we

- ) also believe to be of independent interest to the distributed
We presenRESAM (RESilient Averaging of Momentums) optimization community.

a general framework for studying Byzantine resilience in dis-

tributed machine learning under minimal assumptions: (1fractical relevance. We report on a comprehensive set
unbiasedstochastic gradients withounded variancend (2) ~ Of experiments evaluating RESAM on benchmark image
rst-order Lipschitz smoothnedsRESAM integrates two classi cation tasks: MNIST, Fashion-MNIST, and CIFAR-

main components within distributed SGD, namedgilient ~ 10. We simulate Byzantine behavior usihgtate-of-the-art
averaginganddistributed momentum attacks. We observe that the algorithm works best when
combining resilient averaging and distributed momentum,
(a) We introduce resilient averaging as a new elementarut performs poc_)rly against some attacks when using 0D|y
criterion of robustness for aggregation rules. It can bePhe of these notions. This advocates that the combination
veri ed in an off-line manner and is readily satis ed by Proposed by RESAM is critical to Byzantine resilience.
many existing schemes, under classical assumptions. It
also standardizes the way to measure the robustness &f2. Closely Related Work
aggreggtlon rules through a parametgthat we call We present below comparisons to closely related work.
theresilience coef cient

o _ Resilient averaging. Whilst the robustness criterion of
(b) We mal_<e use of dl_strlbuted momentum which adapt%-averaging agreemeribtroduced in (El Mhamdi et al.,
the notion of gradient momentum (Polyak, 1964) 105071 4) shares similarities with our notion of resilient aver-
distributed architectures. Speci cally, at each step of,ging ‘it is studied under a non-standard setting where the
the algorithm, honest (i.e., non-Byzantine) workerspaqp size is monotonically increased over the iterations to
send the momentums of their stochastic gradients t@,q;re/anishing variancef the stochastic gradients (and
the server, instead of simply sending their gradients. \ihout exploiting the power of distributed momentum).

) - ~ Our notion of resilient averaging should also not be con-
Byzantine resilience.We prove a general theorem establish-fseq with the notion of resilience introduced by (Steinhardt
ing nite-time convergence of distributed SGD enhancedet g, 2018), for the latter is an assumption on the distribu-
through RESAM. As an immediate corollary, we make thetjon, of honest workers' gradients. Our notion, on the other
following contributions. hand, is a criterion that can be satis ed by an aggregation

. . - rule regardless of the distribution of the workers' gradients.
(a) We show (for the rst time) the Byzantine resilience )
of several existing schemes, without resorting to nonPistributed momentum. The rst paper to discuss the use-

standard assumptions. Our result holds as long as tH&lness of distributed momentum for boosting Byzantine
Byzantine workers represent less tHag of the sys- resilience in dlstr|but§d machine learning is (El Mhamdi
tem, which is optimal (Alistarh et al., 2018). et aI:, 2021b). Esse_ntlally, the paper observes through an ex-
tensive set of experiments that distributed momentum helps
(b) We precisely characterize the convergence rates cfomerobustness techniques counter two state-of-the art at-
these schemes through our framework, enabling comacks, namelittle (Baruch et al., 2019) aneimpire(Xie
parison of their performances on a common theoreticakt al., 2019a). However, the work lacks concrete theoreti-
ground. Essentially, our analysis indicates that usingcal explanations. Moreover, our experimental ndings go
aggregation rules with smaller resilience coef cient  beyond (EI Mhamdi et al., 2021b) by considering a wider
results in faster convergence. range of attacks and robustness techniques. Another related
work (Karimireddy et al., 2021) attempts to formally demon-
Technical signi cance. A key observation that enables us strate that distributed momentum grants provable Byzantine
to prove our theorem is that the momentums of honest workresilience to the robustness technique they devise, called
ers' gradientsonverge toward one anothas the learning  centered clippindCC). While the proof relies on standard
algorithm proceeds. This signi cantly mitigates the im- assumptions, the algorithm requires prior knowledge on the
pact of Byzantine workers when using a resilient averaging/ariance of the gradients, which is quite impractical. Further-

IThese assumptions are elementary for analyzing SGD eVernnore, their result only holds for small fractions of Byzantine
in the non-Byzantine setting (Bottou et al., 2018), and are uéed il){vorkers less tha@=9:7, which is clearly sub-optimal.

all prior works on Byzantine resilience.
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1.3. Paper Outline 2.2. Classical Assumptions

Section 2 formally presents the problem of Byzantine reWhen all the workers are honest, i.e., they follow the pre-
silience in distributed learning. Section 3 introduces REscribed instructions correctly, the above iterative algorithm
SAM. Section 4 presents our main theorem and its corollaryprovably converges to a critical point of functi@y under
showing resilience of some prominent existing approacheshe following assumptions.

Section 5 presents our experimental results. Section 6 prasq mntion 1 (Lipschitz smooth loss function)There ex-
vides addmonal related work and dlscugsmns. Dueto SPaCRts| < 1 suchthatforall: °2 R,

constraints, we defer proofs to appendices A, B, and C.

rQ()r Q9% L 0.

Assumption 2 (Unbiased gradients with bounded variance)
We consider the parameter server architecture witork-  forall 2 RY, the random vectod( ) characterizing the
erswy;:::;w,, and a trusted central server. The workersgradient noise at is sugh thatE[U( )] = 0, and there
only communicate with the server and there is no interéxists < 1 suchthaE KU( )k2 2
worker communication. We & be an unknown data distri-
bution. For a given parameter2 RY, a data poink D
has a real-valued loss functigf ; x ). The server aims to
compute, by collaborating with the workers, a parameter
minimizing the expected loss functi@( ) de ned to be

— . d.

Q()=EBxp [a(:x)] 8 2R% (1) We study a scenario where up ftoworkers ofunknown
We assume) to be differentiable and to have a minimum, identitiesmay beByzanting(Lamport et al., 1982). Such
i.e.,min ,re Q( ) exists and has a nite value. However, Workers may send arbitrarily incorrect information to the
as the loss functio could be non-convex, e.g., when Server, preventing it from solving the learning problem (Su
considering deep neural networks, solving the above opk Vaidya, 2016). The goal is then to design a learning
timization problem may be NP-hard (Boyd et al., 2004).algorithm that computes a critical point despite the fact that
Thus, a more reasonable goal is to compute a critical poin@ fraction of the workers may be Byzantine. Formally, given
of Q,i.e., suchthakr Q( )k =0 wherer Q denotes f andarealvalue> 0, we aimto design a(f; )-resilient

2. Problem Statement

These assumptions are indeed satis ed in many learning
problems (Ghadimi & Lan, 2013; Bottou et al., 2018).

2.3. Byzantine Resilience

thegradientof Q andk k the Euclidean norm oRY. algorithm, as de ned below.
_ o De nition 1 ((f; )-Resilience). A distributed learning al-
2.1. Vanilla Distributed SGD gorithm is said to bgf; )-resilientif, despite the presence

The traditional way to solve this learning problem is throughOf up tqf Byzantine workers, it enables the server to output
a learning parametep such that

a distributed implementation of the classical stochastic gra-
dient descent (SGD) method (Bertsekas & Tsitsiklis, 2015). 2

This is an iterative algorithm where, in each stethe server E rQ b ;
maintains a parameter vectqrwhich is broadcast to all the
workers. Each workew; then returns annbiasedstochas-

tic estimate_;]t(i)

whereE [ ] is de ned over the randomness of the algorithm.
of the gradient Q( ;). Speci cally, Moreover, an algorithm is said to lptimally resilientif it

gt(l) - Q)+ UEI)? @ is (f; )-resilient for anyf <n=2and > 0.
A standard approach to confer Byzantine resilience to dis-
tributed SGD is to replace the simple averaging of the work-
ers' gradients at the server by a more sophisticated aggre-
gation rule that seeks to mitigate the adversarial impact of
any incorrect information sent by the Byzantine workers. In

whereuE') is the realization of a random vectoy( ;), de-
ned over RY, that characterizes theisein the gradient
computation at,.? Ultimately, the server updates by
using the average of the received gradients as follows,

1 particular, consider an aggregation rile: R " I Rd.
1T oty gt('); (3)  Then, at every stepthe server updates as follows:
i=1
. . _ D..... .
where ;  Ois referred to as thearning rateat steft. = ¢ F ginng™ o (4)

2The noiseU( ) is usually assumed to be a result of sampling O .
data points fronD. However, to keep our discussion more general,Note that the gradiery; * of any Byzantine workew; need
we letU( ;) follow any distribution subject to Assumption 2. not follow (2) and may take arbitrary values.
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Aggregation rule H MDA ‘ CWTM ‘ MeaMed‘ Krum ‘ GM ‘ CWMed H Lower bound
2f f 2f T h f f f
H AT ‘ T ‘ AT ‘1+ N ‘ P | 0D H T

. N ¢
=min f 2p f; dg
Table 1.Resilience coef cients for various aggregation rules satisfying De nition 2, whier n= 2. Note that the lower bound for is
f=n . Thus, MDA has an order-optimal coef cient (differs from the lower bound only by a constant factor).

Some notable aggregation rulesin this paper, we con- and the average of honest workers' momentums is bounded
sider a wide range of aggregation rules: Kru@0173 by their diametertimes a factor . We refer to as the
geometric medianGM) 2017, minimum diameter av- resilience coef cient Essentially, smaller the better the
eraging (MDA) 2018, coordinate-wise trimmed mean resilience. We formally de ne this notion below.

(CWTM) 2018, coordinate-wise media(CWMed) 2018,  pe nition 2 ((f; )-Resilient averaging). For f < n

mean-around-mediar(MeaMed) 2018, centered clip-  gnq real value 0, an aggregation ruleF is called
ping (CC) 2021, andcomparative gradient elimination (¢, )_resjlient averaging for any collection of vectors
(CGE) 2021. We refer the interested reader to Appendix (S<1; i xn,andanyseS f 1;::::ngofsizen f,
for a detailed description of these aggregation rules.

KF(x1;:::5; Xn)  Xsk irjngoS(kxi Xj k

3. RESIilient Averaging of Momentums

P
wherexs = i2s Xi, andjSj is the cardinality ofS.

1
: . . iSi
Our framework incorporates the notionsresilient averag- =
ing anddistributed momenturim distributed SGD. We rst ~ Salient features.Resilient averaging is a simple robustness
recall distributed momentum, followed by the introduction criterion that is veri able in an off-line manner, i.e., indepen-

of resilient averaging. Finally, we present the skeleton of adently of the dynamics of the learning algorithm. Moreover,

learning algorithm within RESAM. this criterion is so elementary that it can be satis ed by a
wide class of state-of-the-art aggregation rules under only
3.1. Distributed Momentum standard assumptions. This makes it possible to study and

compare their resilience properties on a common theoretical
ground. Indeed, we show (in Proposition 1 below) that all
the aggregation rules mentioned in Section 2.3 satisfy this
criterion, except CC and CGE that we discuss separately.

At each step of this scheme, upon receiving the current
learning parameter, from the server, each honest worker
w; returns thePolyak's momenturof its stochastic gradi-
ent (Polyak, 1964). This momentum is de ned as
Q) _ i) (0. Proposition 1. Consider an aggregation ruld= 2
m’=mg +@1 g ()  fMDA;CWTM: MeaMed Krum ; GM; CWMedy.  For
(i) —

wherem 0 by convention, 2 [0: 1) andg{(i) is as anyf < n= 2, there exists a resilience coef cient for
0 - ’ 1 l H H . _ HH H
de ned in (2). We refer to as themomentum coef cient whichF is (f; )-resilient averaging.
Recall that for a Byzantine worker;, the momentunm{"’ e list in Table 1 the respective values offor several
need not follow(S). Upon receiving workers’ momentums, aggregation rules satisfying De nition 2. Formal derivations
the server applies the aggregation riléo update the pa- of these coef cients can be found in Appendix C. It is worth
rameter . Speci cally, the server computes noting that ar(f; )-resilient averaging rule cannot have a
m 6 resilience coef cient smaller thafw t (Lower bound in
ot ©) Table 1). Accordingly, the resilience coef cient we compute
Remark 1. Distributed momentum differs from its central- for MDA is order-optimal i.e., it differs from the lower
ized counterpart in that the momentum operation in the forbound by a constant factor.
mer is performed by the workers, unlike in the latter whereganity check. When the inputs of the honest workers are
it is applied by the server after aggregating the gradients. identical, the output of aff; )-resilient averaging rule
5 _ is equal to their inputs from De nition 2 (as the diameter
3.2. Resilient Averaging of atleastn f inputs is null). This simple yet important

The idea behind the notion of resilient averaging is to ensur&2Nity check guarantees that when the gradients of honest

that the distance between the result of the aggregation ru%?rgﬁrs 2reR%(;nsr?elJt§ggv;lgggg;znrﬁ(rat?;\?zigft(ﬁ)aI;r;}](l)lrity

3Krum is a variant of Krum, described in Appendix C.5. voting scheme, which is known to be optimal when there is

t+l =t tFmy
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no uncertainty in the correct responses (Lynch, 1996). Noteive the(f; )-resilience property of the algorithm. Formal
that satisfying this sanity check is a necessary condition foproofs of the results are deferred to appendices A and B.
being(f; )-resilient averaging.

The cases of CGE and CCWhen studying existing rules 4.1. Formal Statements

we encountered two special cases, namely CGE and C@e rst present our main result in Theorem 1 below. Essen-
While CGE clearly does not satisfy the condition of resilient tjally, we analyze Algorithm 1 upon assuming a suf cient
averaging, CC may only satisfy it approximately. Besidessmall constant learning rate for all stepst, provided that
CC uses alipping parametethat requires a priori knowl-  assumptions 1 and 2 hold true. For simpli ed presentation

edge on , and an initial guess on the average of the honesbf our formal results, we introduce the following notation.
vectors withknownbounded error. These are impractical

requirements that are not needed by other rules we consider. Q = mind Q();
As it is unclear whether CC can satisfy our de nition under 2R
the classical assumptions, in the remaining we adopt an =4 2 + 1 K 2 .
oo ) : ) = o Kr kK
agnostic point of view assuming that it does not. & QC) Q) 8L Q)
a; =6912L; and a, :=288L:
3.3. Skeleton of an Algorithm within RESAM

The overall learning procedure combining distributed mo _ . . ] .
mentum and a resilient averaging rule is captured in Algo Theoref“ 1o COIEEET Aol 4 W'th ag; )_-re5|||ei1t
rithm 1, presented below, averaging rule and a constant learning ratei.e., =
; 8t where
Algorithm 1: Distributed SGD using distributed S a(n f) : 1
momentum and aff; )-resilient averaging rule = 2 - —:
= ap ?(n f)*+ & T
Initialization: Server chooses an arbitrary initial al p
parameter vector, 2 RY, a set ofT learning rates fT  Z=%mryand = 1 24L,then
f 1;:::; 10, adeterministic aggregation rule s
F:RY "1 RY and sends the momentum b 2 ) a @ 2
coefcient 2 [0; 1) to all the workers. Each E rQ 2 & n )+ — —
honest workerw; sets its initial momentum s !
m® =0, . @ (N f) 1.
n f a 2(n f)+a, T*=
Algorithm's body: Ineachstept=1;:::; T

1. Serverbroadcasts; to all workers.

2. Eachhonest workerw; sends to the serverthe  Idea of the Proof.Recall thaimgi) denotes the momentum
momentunmgi) de ned by (5), i.e., of workerw; at stept. Below, we denote by, the average
momentum of all the honest workers at ste@ur proof of

(i) _ (M (i) (i) 5
mg’ = m +(1 whereg; ' isa . .
! Cat( )% G Theorem 1 rests on two key observations, detailed below.

stochastic gradient as de ned in (2).
(A Byzantine workew; may send an arbitrary value
for its "momentum'mt“) ) (a) At every stept of Algorithm 1, the growth of the loss

function (i.e.,Q( {+1) Q( )) depends positively on
3. Serverupdates the parameter vector as per (6), i-e., poth thedrift of each honest workav, (i.e.,m{) m)

1= ¢ tF mEl) yiin mﬁn) . and thedeviationof the honest workers from the true
gradient (i.,e.m; r Q( ;)). Essentially, to prove
Output: Server outputs a |earning parame[lér convergence, we need the accumulation of both the
chosen randomly from the skt;;:::; 0. drift and the deviation to be inversely proportional to
T, when scaled by the learning rate
4. General Convergence Theorem (b) Upon analyzing these two quantities separately, we ob-
serve that whilst increasing the momentum coef cient
We present below our main technical result demonstrating decreases the accumulation of drift, it increases the
the convergence of Algorithm 1 when upftovorkers may accumulation of deviation. Hence, we need to care-

be Byzantine. Then, as an immediate corollary, we de- fully determine an appropriate value forto establish
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Aggregation rule MDA | CWTM MeaMed | Krum GM CWMed
2 f2 2 2 f2 2] (n £)> | (n £)® 22
20 T n f + (n f) (n f) (n f) n 2f (n 2f)n (nnf)
p— P

#2(0;1) and =minf2 f;  dg

Table 2.Rates of convergence, as de ned in Corollary 1, for sevdral )-resilient averaging rules whén< n= 2. Note that the rates
only differ in the term. For simplicity, we only present the values ofor the different rules.

the convergence of Algorithm 1. However, the tradi-f=n for all the aggregation rules listed, except for CWMed.

tional Lyapunov function oE [Q( ;)] turns out to be  Basically, a smaller fraction of Byzantine workers enables

inadequate for solving this problem. faster convergence to Algorithm 1 when using an appropri-
ate resilience averaging rule.

To addreSS thIS iSSUe, we deVise a nOVel LyapunOV fUnCtiomomparison Of Convergence rates_The rate Of conver-
1 gence of Algorithm 1, shown in Corollary 1, matches that of
Vi = E 2Q( )+ = kmy r Q( t)k2 : vanilla distributed SGD (Lei et al., 2019) in terms of the total
8L number of step3 .* Moreover, when the Byzantine work-
ers are very few, i.ef, n, the rate for MDA, CWTM,
and MeaMed i€ ( = nT ). Thus, their rate improves with
largern in a similar manner as vanilla distributed SGD (Lian
et al., 2015). However, in the same scenario, the rate for
Krum , GM and CWMed i<O ( PR T), i.e., itis directly
proportional ton.

By analyzing the growth o%; along the steps of Algo-
rithr’rb 1, we show that setting the momentum coef cient
= 1 24L yieldsthe stated nite-time convergence.
Note that this momentum coef cient is well de ned (i.e.,
it belongs to[0; 1)) as soon a§ m which
explains the condition of in Theorem 1.
This phenomenon could be explained by the fact that Krum

Using Theorem 1, we can show that Algorithm {fis )- ~CWMed, and GM are simplynedian-baseeggregation
resilient. Speci cally, by ignoring the higher-order term in rules, without any averaging operation. Thus, the variance

T, and the constants, we obtain the following corollary. ~ Of their outputs grows witm, as suggested by the standard
bounds frormorder statistic§Arnold & Groeneveld, 1979;

Bertsimas et al., 2006). On the contrary, MDA, CWTM,
and MeaMed perform an averaging operation after ltering
out dubious vectors, thus mimicking the variance reduction
property of the averaging scheme traditionally used in the
S ! vanilla distributed SGD.

2 1
_ 2
T n f+ (n 1)

Corollary 1. Suppose that assumptions 1 and 2 hold true
Then, Algorithm 1 with aiff; )-resilient averaging rule,
and parameters;, T and as de nedin Theorem 1, isis
(f; )-resilient with

20

5. Empirical Evaluation

Basically, we can obtain an arbitrarily smalif the algo- 10 investigate the practical relevance of RESAM, we re-
rithm is run for a suf ciently large number of steps. In POrt on a comprehensive set of experiments evaluating it
particular, we can use Corollary 1 to determine, for anyo" benchmark image classi cation tasks under four differ-
f<n=2and > 0, the number of stepE and the momen- €Nt Byzantine threats. We implement Algorithm 1 with
tum coef cient for which Algorithm 1 is(f; )-resilient six different resilient averaging rules and six momentum
for any of the six aggregation rules listed in Table 1. ThisCOef cients. To verify the bene ts of our framework, we
shows that, by De nition 1, Algorithm 1 isptimally re- also run the same set of experiments using tworesilient
silient for any of these rules. In Table 2, we summarize@veraging rules. Essentially, our experiments suggest that
the rates of convergence (i.e., order pfor the aggrega- combining resilient averaging and distributed momentum is
tion rules we consider. These rates are simply computed b§fitical to Byzantine resilience even in practice.

substituting in Corollary 1 the values offrom Table 1. “Vanilla distributed SGD refers to the case when the server

uses the simple averaging rule and there are no Byzantine workers.
4.2. Analysis & Discussion

Impact of the fraction of Byzantine workers. From Ta-
ble 2 we note that the order ofgrows proportionally to



Byzantine Machine Learning Made Easy

Figure 1.We report on experiments performed on MNIST wiitk= 5 Byzantine among = 15 workers. Thelst and2nd rows depict the
results for =0 and = 0:99, respectively. The columns depict the performance of the learning undempieg little, sign- ipping,
andlabel- ipping attacks, respectively.

Figure 2.We report on experiments performed on CIFAR-10 Witk 5 Byzantine among = 25 workers. Thelst and2nd rows
depict the results for = 0 and = 0:99, respectively. The columns depict the performance of the learning undentpiee little,
sign- ipping, andlabel- ipping attacks, respectively.

5.1. Experimental Setup tine workersf in f1;3;5;6; 7g for MNIST and Fashion-

Datasets.We use MNIST (LeCun & Cortes, 2010), Fashion- xglcsk-rinfagr;%;é% fg; %eFABT/-zl :ﬁtinvgewﬁlri(;r\s/arysgzeeci )
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky :

. cally, we considelittle (Baruch et al., 2019 mpire(Xie
et al., 2009). The datasets are pre-processed as in (Baru | N
- ., 201 - Allen-Zh l., 2020),
etal., 2019) and (El Mhamdi et al., 2021b). Hal’ 20 9a)sign-ipping (Allen-Zhu et al., 2020), and

label- ipping (Allen-Zhu et al., 2020). We consider six re-
Architectures and xed hyperparameters. For MNIST  silient aggregation rules (MDA, CWTM, CWMed, Krum
and Fashion-MNIST, we consider a convolutional neural netMeaMed, and GM), and two that are not resilient averaging
work (CNN) with two convolutional layers followed by two (CGE and CC). As benchmark, we also usedhieraging
fully-connected layers. To train the model, we use a Cros@ggregation rule without Byzantine workers (denoted by
Entropy loss, a total number of workers= 15, a constant  “No attack”). Finally, we vary the momentum coef cient
learning rate = 0:75, and a clipping paramet& = 2. inf0;0:6;0:8;0:9; 0:99; 0:999.

- o 4
We also add an,-regularization factor o10 “. Finally, we Intractability of MDA and GM.  Although MDA presents

usgNaler_llr—]bjtch S'Zlet.d'j = |2|5' For CLFQ‘?'”lO’ we us;a d anorder-optimalresilience coef cient, it is computationally
a Wi convolutionaliayers an ully-connecte demanding. As pointed out in (EI Mhamdi et al., 2020), its
layers, a Cross Entropy loss, and arregularization factor o n 5 I
of 10 2. We setn = 25, =0:25 C = 5, andb = 50. time complexity is inO  { + dn® . Additionally, GM
Refer to Appendix D.3 for more details on our models. ~ does not have a closed-form solution. Existing methods

i implementing GM, such as (Cohen et al., 2016; Pillutla
Varying hyperparameters. We vary the number of Byzan-
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et al., 2019) and references therein, are iterative and only af. Additional Related Work & Discussion

proximate GM. Moreover, these methods require expensive

computations, e.g., determining eigenvalues and eigenvewe discuss hereafter other work that we believe to be related

tors ofd d matrices (Cohen et al., 2016) in each iteration t0 Ours, as well as some possible extensions of our approach.

Here, we use the approximation algorithm from (Pillutla Applicability to robust estimation. The problem of robust

et al., 2019) to compute GM and only implement MDA estimation with corrupted data (Lai et al., 2016; Charikar
whenever its computational complexity is not prohibitive, et al., 2017; Diakonikolas et al., 2017; 2019a;b; Steinhardt
i.e., when neither{ nordn? are too large. et al., 2018) can be treated as a special case of Byzantine
— _ _ _ resilience in distributed machine learning where a Byzantine
Reproducibility and reusability. Each experimentis  \yorker behaves just like an honest worker, except that its
repeated 5 times using seeds from 1 to 5 for reproducibil- siochastic gradients may correspond to an incorrect data
ity purposes. Overall, we performed ovBr512ex-  gistribution (instead oD). RESAM can thus be readily

periments {; 560 runs), of which we provide a brief  ;seq for robust estimation over an arbitrary distribuion
overview below. Additional plots and code base tq re-

produce our experiments are available in the supplemen- Momentum variants. Besides Polyak's momentum, which
tary material. Our implementation will also be made We considered, it would be interesting to study the impact

accessible online. of the recently proposesiomentum-based variance reduc-
tion (MVR) technique, which has been shown to have op-
5.2. Experimental Results timal convergence rate in non-convex learning (Cutkosky

o & Orabona, 2019). However, to apply this technique, the
We present in Figures 1 and 2 the top-1 cross-accuragyradients (of honest workers) must be de ned in a different

achieved on MNIST and CIFAR-10 when running dis-way than in(2). Basically,U( ) cannot have an arbitrary
tributed SGD for 800 and 2500 steps respectively for differ-distribution Subject to Assumption 2 anymore.

ent aggregation rules and Byzantine attacks. We consider

f = 5 Byzantine workers in both cases. Due to SpaceSecond—order stationarity. Although a critical point, i.e.,
limitations, we only show here the results for MNIST and & rst-order stationary point, represents a global minimum

CIFAR-10. Similar results for Fashion-MNIST are deferred When the loss functioQ is convex, this need not be true
to Appendix E.1. in general. Indeed, a critical point may not even represent

a local minimum whei) is non-convex, and theoretically
Themain takeawayof our experiments is that RESAM is speaking, our algorithm may get entrappedaddle points
crucial to Byzantine resilience in practice. For all datasetsThys, a stronger learning goal would be to output a second-
considered, we observe from Figures 1 and 2 that combiningrder stationary point, assumiigto be second-order Lip-
resilient averaging rules (identi ed by blue points) and dis-schitz smooth. Previous works achieving this goal in the
tributed momentum (with = 0:99) consistently provides presence of Byzantine workers include (Allen-Zhu et al.,
similar cross-accuracies as the benchmark (“No attack”) irp020; Yin et al., 2019). However, they again resort to non-
all attack scenarios. However, when using a resilient avstandard assumptions for stochastic gradients. Showing
eraging rule without momentum (= 0), the Byzantine  second-order convergence via RESAM under only standard

workers can deteriorate the learning (e.g., see second c@lssumptions represents an interesting future work.

umn, little attack). Furthermore, using momentum by itself i .
might not suf ce either. For instance, on CIFAR-10, using Non-identical workers. When honest workers do not have

CGE (which is not resilient averaging) results in equa"y_badidentical data distributions, Byzantine resilience becomes
cross-accuracies both where 0 and when = 0:99. much more challenging (Su & Shahrampour, 2019; Gupta &
Vaidya, 2020; Data & Diggavi, 2021). In this case, the goal

The case of CClIn Figure 2, we observe that CC does not changes to minimizing the average of the honest workers'
present a consistent behavior regarding momentum. In faggss functions (Su & Vaidya, 2016). More importantly, we
setting = 0:99 clearly mitigates the impact of tHétle  cannot achieve a desirable level of resilience anymore unless
attack, but drastically deteriorates the performance of thénere is some redundancy in the data (Liu et al., 2021). Apart
algorithm againstabel- ipping. Similar inconsistencies from using a robust aggregation rule, there has been some
are observed for MNIST. Note however that although CGuork on the use of;-norm regularization (Li et al., 2019).
does not behave as aresilient averaging rule, it can presepiecently, (Karimireddy et al., 2020) also proposed a meta
good performances when combined with other levels okcheme calleBucketingthat helps in this setting. Extending
momentum (e.g., see= 0:9 in Appendix E.2). RESAM to incorporate non-identical honest workers is an
interesting future direction.

Knowledgeable server. There is some work studying
Byzantine resilience in "non-standard" distributed learning
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settings where the server either has prior knowledge on spe- Systems 2019, 8-14 December 2019, Long Beach, CA,
ci ¢ veri ed datapoints (Cao & Lai, 2019; Yao et al., 2019;  USA 2019.

Xie et al., 2019b; 2020; Regatti et al., 2020), or has control

over the sampling of datapoints (Chen et al., 2018; RajpuBertsekas, D. and Tsitsiklis, Parallel and distributed com-
etal., 2019; Gupta & Vaidya, 2019; Data et al., 2020). Inthe putation: numerical methodsthena Scienti ¢, 2015.

latter case, we can simply useror-correction coding In . . i

the former case, we can also tolerate a majority of Byzantin®ertsimas, D., Natarajan, K., and Teo, C.-P. Tight bounds on
workers. While these solutions might reveal impractical, de- €XPected order statisticBrobability in the Engineering
riving an optimal condition to overcome the limit @£2 and Informational Science20(4):667-686, 2006.

Byzantine workers remains an interesting future dlreCtlon'BIanchard, P.. El Mhamdi, E. M., Guerraoui, R.. and Stainer,
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A. Skeleton of the Proof for Theorem 1

Our formal analysis of Algorithm 1 constitutes of three critical elements

1. Themomentum drif{see Section A.2)
2. Themomentum deviatiofsee Section A.3)
3. Thegrowth of loss functiolQ (see Section A.4)

Ultimately, we combine these elements to obtain the nal convergence result stated in Theorem 1. Essentially, the proof of
Theorem 1, deferred to Appendix B.5, is obtained by combining the three sub-results presented by lemmas 2, 3 and 4 below.

A.1l. Preliminary Notations

Re=F m®;:;m™ 7
We denote bypP; the history from step& tot. Speci cally,

Po= o oomBnnm® =1

By conventionP; = f ;9. We denote byg; [ ] andE[ ] the conditional expectatioB[ |P:] and the total expectation,
respectively. Thus[]= E1[ Er []].

A.2. Momentum Drift

We rst note that at any step given the histornyP;, the momentummﬁ') of the honest workers need not be identically
distributed, even when the said property is true for their stochastic gragfé’ntblevertheless, we show in Lemma 1 below

that thedrift between the honest workers' momentums can be controlled up to a certain extent by tuning the momentum
coef cient . We consider an arbitrary subdét [n]ofn f honestworkers,i.ejHj = n f andi 2H onlyifw, is

an honest worker. Such a set always exists as there are atleasthonest workers in the system. Then, de ning

X (1)
m =150 f) m’; (8)
i2H
we can demonstrate the following. (Proof of Lemma 1 can be found in Appendix B.1.)
Lemma 1. Suppose that Assumption 2 holds true. Consider Algorithm 1. Foriea¢th andt 2 [T], we obtain that
1 1 5.

1+

: 2
E m m 22@ )2 A P2 o —

Not that the above result holds even wheiis not a resilient averaging rule, as it only analyzes the behavior of the worker's
momentum. By building upon this rst lemma, we can obtain a bound on the distance between the actual dutpot of
the average momentum of honest workers for the case whsiff; )-resilient averaging. Speci cally, when de ning

t = RI ﬁt; (9)

we get the following. (Proof of Lemma 2 can be found in Appendix B.2.)

Lemma 2. Suppose that Assumption 2 holds true. Consider Algorithm 1 whierff; )-resilient averaging. For each
stept 2 [T], we obtain that
h i

E kk® 822%n f) 1 )2 D4g (n f+1) 22

1+
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A.3. Momentum Deviation

Next, we study the distance between the average honest momantamd the true gradiemt Q( ,). Speci cally, we
de ne deviationto be

=Moo Q( ), (10)
and obtain in Lemma 3 below an upper bound on the growth of the deviation over the learningatggs (Proof of
Lemma 3 can be found in Appendix B.3.)

Lemma 3. Suppose that assumptions 1 and 2 hold true. Consider Algorithm ITwithl. For all t > 1 we obtain that
h i h i h 2i 2
E kek®  2¢1E ke 1k #4 ¢ qL(1+ ¢ 1l) PE rQ(,q) ~ +(1 )P

h i
+2 ¢ 1L@+ ¢ 1L) 2E k¢ 1K :

(n f)

Wheret::(1+ tL)(1+4 tL)

A.4. Growth of Loss Function

Finally, we analyze the third element, i.e., the growth of cost fund¢n) along the trajectory of Algorithm 1. Froii6)
and (7), we obtain that for each step

1= ¢ tRe= ¢ M ((Re my):
Furthermore, by (9R; m; = . Thus, for allt,

g+ = ot tMe ¢ (11)

This means that Algorithm 1 can actually be treated as distributed SGD with a momentum term that is subject to perturbation
proportional to ; at each step. This perspective leads us to the following result. (Proof of Lemma 4 can be found in
Appendix B.4.)

Lemma 4. Suppose that Assumption 1 holds true. Consider Algorithm 1. For2allT ], we obtain that

h i h i

E 2Q( 1) 2Q( ) ¢! 4tL)Ehkr Q( OK* +2 ((1+2 (L)E kK’
|
+2 ((1+ (L)E k(K :
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B. Proof of Formal Statements

We now present technical proof for both the aforementioned Lemmas as well as Theorem 1 and Corollary 1.

B.1. Proof of Lemma 1

Lemma 1. Suppose that Assumption 2 holds true. Consider Algorithm 1. Foriead¢th andt 2 [T], we obtain that

: 2 1
E m® m 221 2 2t 1) 49 1+ 2.
t t ( ) 1+ n f
Proof. RecallthatH f 1;:::; ngisasetoin f honestworkers,i.ejHj = n f andi 2 H only if w; is an honest
worker. Also, recall from (8) that
X (i)
m = 50 1) m; ’:
i2H
We consider an arbitraiy2 H . For simplicity we de ne
o) =l m;
and
X ()
g ==t g (12)
j2H

Now, we considelrjan arbitrary stej2 [T]. Substituting from(5), i.e.,mEi) =m Ei)l +(1 )gt(i) foralli 2H,in (8),
ie.,Mm =15 1) 5 M), we obtain that

my= ™ 1+(1 )G

wheremg =0, asmf)i) = 0 for all honestw; by convention. Thus,

)= m+@ ) ¢ g (13)

Recall that for any vector, kvk? = hv; vi. From above we obtain that

M 2_ 2 (i) 2

(i) 2 D o o E
2h = ;7 +(1 )2 O 0 +2 (1 ) - N oY g

Upon taking conditional expectatidf [ ] on both sides, and using the fact thmff)l is a deterministic function of the
history P, we obtain that

(i) 2 i 2 (i) 2 hD (i . D) Ei

Et m = 2E, ®; +(1 )ZEt O [of +2 (1 JE: m®my g [sf
(i 2 (i) 2 D h (i) IE
>m’;, +@0 )VE ¢’ &% +2 (1 ) m'pE g’ g

h i h i
Due to Assumption 2 and the de niton of in (12), E; of? g =E o Egl=rQ(,) r Q(,) =0.Thus,
from above we obtain that

. . 2 . 2
E m’ =2m’ +0 )& 4 g
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. 2 .
Assumption 2 also implies th#&; gt(') r Q(,) 2foralli 2H. As gl(”'s forj 2 H are independent of each
h [ . 2
other, we hav&; kg, r Q( )k Zn 1). ThereforeE; ¢ g, 2(1+ xn 1)) 2. Substituting this

above we obtain that

L2 N2 1
E @ P 21 ) 1+ o E
Taking total expectation on both sides we obtain that
) L2 1
E m Eom 20 ) 1+ o B

As the above holds true for an arbitrar@ [T], by telescopic expansion we obtain foraft [T] that
1 X2
f

1 ) 1 2(t 1)
f 1 2

2 N 2
E mg') 2t VE mg-') +2(1 )2 1+ .

L2
= A DE @) +201 )2 1+

AsO < 1,wehavel 2t D 1 Thus, from above we obtain for dal2 [T] that

1 1+ 1 2.

2 N2

(14)
From (13), for each 2 H we have (upon recalling thang) =0 foralli 2H),

m’=@1 ) o’ g

By de nition of g, in (12),

2 23
(i 2 (i 2 1 X0
E m) =@ 2E o @ =@ )?E] o o &
(n f).
j2H
Thus, by applying Jensen's inequality,
2 2 X . L2
(i) @a ) M )
E I'a]. (n f) E gl gl
j2H

. 2
By Assumption 2, as gradients of honest workers are pair-wise indepeEdergg') gﬁ') 2 2. Substituting this
above we obtain that for ea¢t? H ,

N2
E ml 221 )%

Substituting from above in (14) proves the lemma, i.e., fot &ll[T],

1 1 2.

2
E rBEI) 2 2(1 )2 2(t l)+2 T - .
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B.2. Proof of Lemma 2

Lemma 2. Suppose that Assumption 2 holds true. Consider Algorithm 1 Whier{f; )-resilient averaging. For each
stept 2 [T], we obtain that
h i 1
E kk?® 822n f)1 )22 Ds4g I (@ f+1) z g

Proof. Recall from (7) and (9), respectively, that
Re=F m®:;:::;m™ and =R, my:

We consider an arbitrary stepAs F is assumedf; )-resilient averaging, by De nition 2 we obtain that
. . 2
k (k> = kR, mk?® 2 max m?  mi) . (15)
1)

Note that for any paif; j 2 H, from triangle inequality we havemgi) mE”

2 M ) 2 i) o 2 () o 2 (i
As2ab a’+ I?, we also have m; m; 2 m me +2 my m 4dmaxiy Mg M

Therefore,

m" mo+ m® om

2

(i) (i) 2 (i) 2

max m; my 4max m; my
i;j 2H i2H
i o 2 P i o 2 .
Asmaxjon My M ion Mg m; , from above we obtain that
) 2 X . 2
m;dﬁ( m{?  m{® 4 m®  m
' i2H

=) . 2
Substituting from above i(iL5) we obtain thak tkz 42 i1 mE') m; . Upon taking total expectations on both
sides we obtain that
h i X . 2
Ekik 42 E m" m (16)
i2H

From Lemma 1, under Assumption 2, we have foi &IH that
= 1 1 2:

: 2
E m" m 22@ A P2 o G

AsjHj = n f, Substituting from above in (16) proves the lemma, i.e., we obtain that

h i 1

E kk® 822n f)a )>2V4+g?2 7 (0 f+1) 2:

B.3. Proof of Lemma 3

Lemma 3. Suppose that assumptions 1 and 2 hold true. Consider Algorithm ITwithl. For all t > 1 we obtain that
h i h i h N 2
E kk® 2 1E k¢ 1K +4 ( jL(1+ { 1L) 2E rQ(,,) ~ +( )2m
h i
+2 ¢ L@@+ ¢ 1L) 2E k. 1K :

where { = (1+ tL)(l+4 tL)
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Proof. Recall from De nition (10) that
t=meor Q)
Consider an arbitrary steép> 1. By De nitions (5) and (8), we obtain that
t= M o1+(@ )G r Q():
Upon adding and subtracting Q( ; ;) and r Q( ) onthe R.H.S. above we obtain that
(= M1 Q)@ )G T QUIF rQUIF Q) rQY
= M1 Q(y ) +@ )G (@ IrQ()+ rQ(y ) r Q(y :
Asmi; 1 r Q( 4)= + 1 (byDe nition (10)), from above we obtain that
t= t1+t@ )@ r QU+ rQ( 1) r Q(y) :
Therefore,
kek®= 2k ®+@ 2kg r Q(OK+ 271Q( )1 Q) +2 @ )hy ;G r Qi
+2 2 v Q) r Q) +2 (1 )G r Q();rQ ) r QY :

By taking conditional expectatioB; [ ] on both sides, and recalling that 1, ; and ; ; are deterministic values when the
history P; is given, we obtain that
h i h i
Bk = 2k P+ )%E kG 1 QK + 21 Q( ) 1 Q) T+
2@ Hhy pEGIr Q()i+2 2 ¢ 15rQ( 1) r Q(y)
+2 (1 ) EG]lr QC);rQ(: 1) r Q(y) :

P .
Recall tha, = 5n f) 21 gt('). Thus, owing to Assumption E; [g;] = r Q( ;). Using this above we obtain that

h i h i
Eo kk? = 2k iK%+ (L )Ec kg r Q(OK + 21rQ(y 1) r Qo °

+2 2 t Qe 1) r QCy) :

. h i
Also, by Assumption 2 and the fact tf‘g{f)‘s forj 2 H are independent of each other, we h&yekg, r Q( t)k2
2
W. Thus,
h 2i ) 2 )
Et kk 2k 1k + (1 )2(n f)+2rQ(tl)rQ(t) +2 2 51 Q(r 1) r Q) :

By Cauchy-Schwartz inequality, 1 1;r Q(; 1) r Q( ) k ¢+ 1k rQ(; 1) r Q(,) . By Assumption 1,
ro(: 1) r Q(y) L i .Recallfrom()that,= , ; + 1Rt 1. Thus,
ro(, 1) r Q(y) + 1L kR¢ 1k. Using this above we obtain that

h i 2
Et ktk2 2kt 1k2+(1 )2(n f)+ t21 2L2kR1 1k2+2 t 1 2Lk'[ 1kth 1k:
As?2ab a2+ P2, from above we obtain that
h i 2
Ei k (K 2k K2+ (L )2(n 5t 20 2L2KkRy K2+ ¢ gL 2 k¢ K+ KRy 1K

2

W"’ ¢ L@+ ¢ L) 2 KRy 1k2: (17)

=1+ ¢ oal) 2k aKPH+(@Q )2
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By de nition of Ry in (9), Ry 1 = 1+ M; 1. Thus, owing to the triangle inequality and the fact tPald a2 + I,
we havekR; 1k* 2k 1k®+2km; (k. Similarly, by de nition of | in (10), we havekm; 1k®> 2k ; 1k +
2 1Q(, ) > ThuskR, 1k* 2k, 1kK*+4k, 1k*+4 r Q(, ;) > Using thisin (17) we obtain that
h 2i , 2
Et kk L+ ¢ 1l) 2k 1k°+ (2 )Z(n )

+2 L@+ ¢ 1L) 2 ky (KH2k K42 1Q(, ,) 0

By re-arranging the terms on the R.H.S. we get

h i
Er k (K 2@+ ¢ L) (@+4 ¢ L)k K2 +4 ¢ L@+ ¢ gLl) 2 rQ( 1) 2"’(1 )2

(n f)
+2 ¢ L@+ ¢ 1L) %k 1K
Substitutingy 1 =(1+ ¢ 1L)(1+4  .L) above we obtain that
h 2i . , )
Et kk 2k 1K +4 L@+ ¢ 4L) 2 rQ(y ) TH+(@ )2W

Recall thatt in the above is an arbitrary value[ii] greater thari. Hence, upon taking total expectation on both sides above
proves the lemma.

+2 ¢ oL@+ ¢ oal) 2k 1K

O

B.4. Proof of Lemma 4

Lemma 4. Suppose that Assumption 1 holds true. Consider Algorithm 1. For2a(lT ], we obtain that
h [ h i
E 20Q( 1+1) 2Q( ) t(1 4 tL)Ehkr Q( t)k2 +2 ((1+2 (L)E k(K
i
+2 (14 (L)E k(K :

Proof. Consider an arbitrary step Due to Assumption 1 (i.e., Lipschitz continuity ofQ( )), we have (see (Bottou et al.,
2018))

Q1) Q(0) t+1 1 Q( ) +% t+1 12:

Substituting from (11), i.e.,;;1 = t Tt t t, Wwe obtain that

Qu) Q) (MGr QU har Qi+ 2o

= mmr QO QU QU chir QUi+ Fokmit Kk

kmt + tkz:

By De nition (10), m; r Q( ;)= . Thus, from above we obtain that (scaling by factoRpf

2Q( 1) 2Q()  2:kr QUK 2¢hr Q)i 2¢hyr Q)i+ fLkmi+ (kP (18)

Now, we consider the last three terms on the R.H.S. separately. Using Cauchy-Schwartz inequality, and the fact that
2ab ia®+ cb? for anyc > 0, we obtain that (by substituting= 2)

2T QU 2k kkr QUK 2k K+ Skr QUK (19)
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Similarly,
) . 2 2, 1 2
2ih ;1 Q( ij 2k kkr Q( )k 1k k™ + ékr Q( k*: (20)

Finally, using triangle inequality and the fact tt2atb  a? + b?> we have

ki + (k% 2kmk® +2k (kK2 =2 kmy r Q( )+ r Q( k* +2k (K
4K K +4 kr Q( K +2k (K*:  [sincem; r Q( )= ¢ (21)

Substituting from (19), (20) and (21) in (18) we obtain that
1 1
20( 1+1) 2Q( ,) 2 ckr Q( K2+ ¢ 2k (K + Skr Q( DK+ 2k K+ Skr Q( 'S
+ 2L 4Kk (K +4 kr Q( K +2k (K
Upon re-arranging the terms in the R.H.S. we obtain that
2Q( 1)  2Q( ) (1 4 L)kr Q( K +2 ((1+2 (L)k (K2 +2 ((1+ (L)k (K*:

Ast is arbitrarily chosen fronfiT ], taking expectation on both sides above proves the lemma. O

B.5. Proof of Theorem 1

We recall the theorem statement below for convenience.

Theorem 1. Suppose that assumptions 1 and 2 hold true. Let us denote
Q = rr;irR1d Q()a=4 2(Q(;) Q)+ ékr Q( 1)k2 ; a1 =6912L; anda, = 288L: (22)
Consider Algorithm 1 with aiff; )-resilient averaging rule and a constant learning rate ofSpeci cally, for allt,
+ = where
s I
(N f) 1
= ﬁ)—ij 23
a 2(n )2+ a T (23)
fT 2%G—ryand = P T 24T, then
S S !
2 a a, 2 a a(n f) 1
b 2 2 Y ]
E rQ 2 & s f)+n f T o a 2(n f)+a, T='
Proof. De ne
1
0 = ﬁ: (24)

Note that as speci ed in the theorem statement,

aoL 576a,L? S 5763,L%(n f) B 576.%a,(n f)
1222(n f) 12 5762 2(n f)L 69122 2(n f)2L +288L 2 (& 2(n f)2+ ay) 2

T

This implies that for the learning ratede ned in (23),
S |
_ a(n f) 1 < 1 < (. (25)

EYTH qa -~ O

a 2(n )2+ a T 24 18
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This also implies

24L < 1

Therefore = P 1 24L (asdenedinthe theorem) is a well-de ned real valug@)1).

To obtain the convergence result we de ne the Lyapunov function to be

h i
Vi = E 2Q( )+ zk (k* andz= i: (26)

We consider an arbitraty2 [T].

in Lemma 3, we obtain that

Invoking Lemma 3. Upon substituting ¢

Ehzkt+1k2 zktkzl z 2 Ehktkzl +4zL(1+ L) 2Ehkr Q( t)k2I +z(1 )2n 2f
+2zL(1+ L) 2Ehktk2| thkthI: (27)
Recall that
=(1+ L)A+4L)=1+5 1L +4 2% (28)

Invoking Lemma 4. By the same substitution in Lemma 4 we obtain that

h i h o
E 2Q( 1) 2Q( ) (1 4L)E kr Q( )K* +2 (1+2L)E k(K
h o i
+2 (1+ L)E k(K (29)
Substituting from (27) and (29) in (26) we obtain that
h i
Vist Vi =E 2Q( 41) 2Q( ) +E zkwak® zk (K
i h i h i
(1 4L)E kr Q( K +2 (1+2L)E k, k +2 (1+ L)E k(K
h i h i 2
+2 2 E kk® +4zL 1+ L) 2E kr Q( )K* + z(1 )2n :
h o h i
+2zL(1+ L) 2E kkK* ZE kK : (30)
Upon re-arranging the R.H.S. in (30) we obtain that
h i 2
Visi W (1 4L) 4zL(A+ L) 2 E kr Q( K +z(1 )2n -
h i h

|
+ 2 1+2L)+z2 zZE Kk +2 1+ L +zL(A+ L) 2 E kK
For simplicity, we de ne

A=(1 4L) 4zLQ1+ L) % (31)

B=2 (1+2L)+z? 1z (32)
and

C=2 1+ L +zL(Q+ L) 2 : (33)
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Thus,

h

i h
Viei Vi A E krQ()K* +BE

i h 2
k (k* +CE kK +z(1 )2n

(34)

We now analyse below the termAs B andC.

Term A. Recall from(25) that 0= 18%. Upon using this if(31), and the facts that = 8% and ? < 1, we obtain that

1 9.,. 1

4L
A 1 4,0 —(@A+ ,L = -
oL @+ o) 5 o ] (35)
Term B. Substituting from (28) in (32) we obtain that
B=2 (1+2L)+z 2 1+5L +4 2.2 z
= 1 2z+ 2+4L +5z°%L+4z 7L
Using the facts that?> 1 and o 180, and then substituting = g we obtain that
(1 2) 4 5 4 (1 2)
B — ~+ 2+ —+ —+ +3
8L 18 8 18 8 8L
(1 2Y+24 L .
o =0; (36)
where in the last equality we used the fact that 2 =24 L .
Term C. Substitutingz = i in (33), and then using the fact that < 1, we obtain that
1 9
=2 1+ L+ Q1+ L @+ L):
C gL+ L) S+l
As o 10 from above we obtain that
9 1
C 4 l+tqg 3 (37)

Combining terms A, B and C. Finally, substituting from(35), (36) and(37) in (34) (and recalling that = &) we obtain
that

h

i h
Vr Mo g E krQ( DK +3 E

2

i
2 .
k K +(1 )278L(n o

As the above is true for an arbitrary [T], by taking summation on both sides frans 1 tot = T we obtain that

X h i X h i 2
Vra Vi g ) E kr Q( )K* +3 ) E kK +(1 )Zmr
t=1 t=1
Thus,
X h | X ho i , 2
7 E kr Q( )k* Vi Vrs +3 ~ E k{k +1 ) mT- (38)

Note that,as > 0,andl 2=24 L, we have

1 272
@ )2:ﬁ 1 2%=576 2.2
+
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Substituting from above in (38) we obtain that
)@— h i 576 2L2 2

)J h 2i 2
Z . E kr Q( t)k V]_ VT+]_ +3 ) E k tk m :
t=1 t=1
Multiplying both sides byl= we obtain that
h i X h i 2
AV Vi) o7 Bk R +% : (39)

E kr Q( K
t=1 .t:]_

P |
Next, we use Lemma 2 to derive an upper bound oh, E k K

Invoking Lemma 2. Recall from Lemma 2 that ds is assumed -resilient averaging we have for alp [T],

1
2 2t 1 2 2.
) +8 1+ (n f+1) :

h o
E kk® 822%n f)1

By taking summation overfrom 1to T, we obtain that

X ho i N 1
E k (k 822%n f)a )? At D48 T (n f+1) 2 2T
t=1 t=1
=8 22(n f)a )2 17 +g 1 (n f+1) 2 2T
1 2 1+
1 2T 1 2 2
1 +8 T,— (0 f+1) T

— 2 2
=8 (n f) 1+
f)T, from above we obtain that

AsO< < 1,wehavel 2T 1 Thus,asd n f (n
1
: (40)

X Ehk k2i 822%n f) 1 16 1 f)y227T=2422%n £)T —
t=1 t 1+ 1+ 1+

As > 0, and the fact that

(n

2=24 L ,we have

1 1 2 2 oh
Ty LT

Substituting the above in (40), we obtain that

X h i
E ki’ (24 24)22L(n f)T=576 22L(n f)T:
t=1
Substituting from above in (39) we obtain that
X h [ 2
Ekr okt 2V Vi) qn 575220 (n )T+ 72(?18"” T
t=1
Recall that
a; = (12 576)L =6912L; anda, = 288L:
Thus, from above we obtain that
1 T+1 2 2 2
——+a “(n f) T+(n f)T

E kr Q( K

t=1
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Diving both sides byl we obtain that

1 X _h 2i 4(V1 Vra1) 2 2 a 2
?tZIEkr Q( Ik f“ﬁl (n f) +(n - (41)
Analysing V;. Recall thatQ =min ,r« Q( ). Note that for an arbitrart, by de nition of ; in (26),
h i h i
Vi 2Q =2E[Q(,) QI]+zE kk* 0+zE kk* O
Thus,
Vi Vra=V1 2Q (MVra 20) Vi 2Q: (42)
Moreover,
h i
V1=2Q( ,)+ zE k 1K : (43)

By de nition of  in (10), and the de nition ofT; in (8),we obtain that
h i h i h i
E kik* =E kmy r Q( )k =E k(1 )7, r Q( )K

whereg,, de ned in(12), is the average af f honest workers' stochastic gradients in stefexpanding the R.H.S. above
we obtair|1q that

i h i
E kaik® =1 )?E kgy r QK + “kr Q(k* 2 (1 )FE[G] r Q( )it Qi
h i
Under Assumption 2, we ha¥e[g;] = r Q( ;) andE kg, r Q( 1)k2 2=(n  f). Therefore,
h i 2 2
2 (1 ) 2 2.,
E k 1k ot kr Q( )K?:
Substituting the above in (43) we obtain that
(1 )2 2
Vi 2Q( )+ z ﬁ"‘ Zkr Q( 1)k2
Recallthafl )2 1 2 2=576 2L2. Using this, and the facts thaf < 1andz = -, we obtain that
1 , 5762122
Vi 2Q( 1)+ 8Tkr Q( k™ + 8L(n f)
_ 1 , T22L 2
=2Q( ,)+ 8Tkr Q( k™ + IR

Recall thata, = 288L. Therefore,
1 2 a ®
Vi 2Q( 4)+ Ekr Q( k™ + an 1y
Substituting the above in (42) we obtain that
1 2 a®
Vi Vraa 20(4) 2Q +8T_er( kK +m :
Substituting from above in (41) we obtain that
h i 42Q(y) Q)+ YN

X 2
= E Kk Q(k + =+a f(n )7+

ap .
ro1 T n f T (n f)




Byzantine Machine Learning Made Easy

Upon re-arranging the terms on R.H.S. above we obtain that

; kr Q( 4)k?
1 X h 5 4 20Q(1) Q)+ —g— ) as ) a, 2 _
?t:lE kr Q( )k T + a “(n 1‘)+n : + 7 T
Recallthata, =4 2(Q( ;) Q)+ % , we obtain that
1 X _h )AL a An )2+ a ay 2
Z E K k =+ 2 4 —: 44
T, (o T n f n f T (44)
Final step. Recall that
s ]
_ a(n f) |91 :
B a 2(n f)2+a T
Substituting this value of in (44) we obtain that
. S S |
R % a a2 az a(n f) 1
= E k k 2 2 f)+ + e
T QY ach D+ ¢ 7 n f a 2(n f)2+a, T*=

t=1
Finally, recall from Algorithm Jhthap is choisen randomly from the set of computed parameter veicters: :; ;0. Thus,

2 P
E rQb =1 | E kr Q( (K . Substituting this above proves the theorem.

B.6. Proof of Corollary 1

Corollary 1. Suppose that assumptions 1 and 2 hold true. Then, Algorithm 1 with aj-resilient averaging rule
and parameters;, T and as de ned in Theorem 1, is {§; )-resilient with

S |

2 1
2
Tnf+(n R

20

Proof. Owing to Theorem 1, we have

2 a a, 2 a a(n f) 1
b 2 + 2 + 2 L.
E rQ 2 af(n 1) n f T n f a 2(n f)2+a, T*'

where
1
=4 2(0Q(q,) Q)+ ikr Q( l)k2 ; &g =6912L; anda, = 288L:

Thus, by De nition 1, Algorithm 1 igf; )-resilient where
S s I
2 a a, ? a a(n f) 1
= b 2 + 2 + 2 .
E rQ 2 an ) n f T n f a1 2(n f)2+a T’

Upon ignoring constants, includirag, a; anda,, and the higher-order term @, we obtain that
s |

2
20 2(n )+ !

n f T

Hence, the proof. O
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C. Resilience coef cient for several aggregation rules (Proof of Proposition 1)

In this section, we rst present a lower bound in Section C.1 on the resilience coef cient for any deterntiistjeresilient
averaging rule. Then, we present the aggregation rules listed in Table 1 and derive their resilience coef cients. More
precisely, we compute the resilience coef cients of the following rules.

* Minimum diameter averagin@VDA) in Section C.2

Coordinate-wise trimmed med@WTM) in Section C.3

» Mean-around-mediafMeaMed) in Section C.4

(Multi-)Krum in Section C.5

» Geometric mediafGM) in Section C.6

Coordinate-wise mediafCWMed) in Section C.7.

As an immediate corollary of the result we get for theses aggregation rules, we obtain Proposition 1, that we recall below.

Proposition 1. Consider an aggregation ruleé 2 f MDA ; CWTM; MeaMed Krum ; GM; CWMedy. For anyf < n= 2,
there exists a resilience coef cientfor whichF is (f; )-resilient averaging.

Besides computing the aforementioned resilience coef cients, we also discuss the casgred clipping(CC) and
comparative gradient eliminatiofCGE) in Section C.8 and Section C.9 respectively.

C.1. Lower Bound

Proposition 2. For0 f < n , there cannot exist aff; )-resilient averaging rule for < nf—f

Proof. Consider an arbitrary value 6f2 f 0;:::; n 1g. LetF be an(f; )-resilient averaging aggregation rule. Consider
a set ofn one dimensional vectors;;:::; X, suchthak; = :::= X, f =0,andX, f+1 = :::= Xn = 1. Letus rst
considerase®y = f1;:::;n fg. SincejSgj = n f, by De nition 2, we have

KF(X1;::0; Xn)  Xs.k max kx; xjk=0:
i;j 2So
Thus,F(X1;:::; Xn) = Xs, = 0. Now, consider another s8¢ = ff +1;:::;ng. Note thaXs, = nf—f Thus,
_ f
KF(x1;:::; Xn)  Xg, k= - : (45)

As F is assumed to be gffi; )-resilient averaging rule, by De nition 2 we have

KF(X1;::0; Xn)  Xs, K max kx;  xjk=:
ij 251
If < nf—f then the above contradicts (45). This concludes the proof. O

C.2. Minimum Diameter Averaging (MDA)

et al., 2018), rstchooses a s8t of cardinalityn f with the smallestliameteri.e.,

S 2 argmin  maxkx; Xxjk : (46)
Sf 1;ng W 2S
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Then the algorithm outputs, the average of the inputs isseBpeci cally it outputs

1 X
MDA(Xq1;:::; Xp) = Xi: 47

2f

Proposition 3. If f <n= 2thenMDA is an(f; )-resilient averaging rule for = -=+.

Proof. Let S be an arbitrary subset 6fi;:::; ngsuch thajSj= n f. To prove the proposition we rst show that

_ f
KMDA(X1;:::; Xn) Xsk - fi2rsr?jazxS kxi  xjk

o = 1 P
whereXs = 57 s Xi-
Indoingso,wenotethgs nSj=jS [ SjJ S n (n f)=f.Thesame observationholds{@&nsS j. Hence
we obtain that

1 X 1 X 1 X X
KMDA(x1;:::; Xn) Xsk= —— Xi Xj = ; Xi Xi
i2s i2s i2S ns i2sns

max(js nSj;anSJ)_ max kx; Xxjk _max_ kx; xjk: (48)
n f i2S jj2s n fiz2sj2s

As we assume thdit< n= 2, we also have
iS\Sj=jsSj+jsjjs[sS (n f)y+(n f) n n 2> 0

ThereforeS \ S 6 ;. Leti be an arbitrary index that belongs to b&fandS . From triangle inequality, we obtain that,
foranyi¥ 2 S andjY 2 S,

Xy Xjy KXy Xi K+ X Xjy max kx;  xjk+max kx;  XxjKk:
iji2s iij 2S
By de nition of S in (46),max;j 2s kxi X;k max;j 2s kx;  Xjk. Thus, from above we obtain that

Xiy Xy 2i;rjn%kxi xjK: (49)

Asi¥Y andj ¥ above are arbitrary elements$h andS, respectively, from above we obtain that
max_ kx;  xjk 2maxkx;  xjk:
i2S;j2S iij 2S

Combining the above with (49) we obtain that

_ 2f
KMDA(X1;:::; Xn)  Xsk - IrJngvS( kxi  xjk
As S is an arbitrary subset ¢f] of sizen f, the above proves the proposition. O
C.3. Coordinate-Wise Trimmed Mean (CWTM)
Letx 2 RY, we denote byx]x, thek-th coordinate ok. Given the input vectorss;:::; X, (in RY), we let , denote a

X
[CWTM(Xq1; 15 Xn)] = P X )yl
j2[f+1:n ]



Byzantine Machine Learning Made Easy

To obtain the resilience coef cient of CWTM, we recall show in Lemma 5 below howdthmeterof a set of vectors is
related to theicoordinate-wise diameteil his lemma also proves useful to other coordinate-wise aggregation rules, e.g.,
CWMed.

Lemma 5. For a non-empty set af-dimensional vectorS, we have

%
ﬁ xd 2 Np_ _p. O
maxjXilk  [Xjlki min 2 jSj; d maxkx; Xxjk:
k=1 iij 2S ij2S
Proof. Special case of Lemma 18 in (El Mhamdi et al., 2021a)yfer2. O

We can now formally state the proposition proving that CWTM igfan )-resilient averaging rule.

n 0
Proposition 4. If f < n= 2thenCWTM is an(f; )-resilient averaging rule for = nf—f min 2p f; P d .

Proof. The idea of the proof is similar to that of Theorem 5 in (El Mhamdi et al., 2021a). Consider an arbitrary set
S [n] such thajSj = n f > f . For each coordinatk 2 [d], let 2 denote a permutation o8 such that

[x ks(l)]k [x 52) k0 [X E(J'Si)]k' Letc = CWTM(X1;:::;Xn). Then, by De nition of the permuations, for

eachk we have that

nxzf 1 rxf
e (X syl o X ylk = [Cclk: (50)
i=1 j=f+1
Note that for allj 2 S andk 2 [d], we have
nxzf 1 nx2f
[Xj Ik =[]k + N of [x f(i)]k N of [x ks(i)]k
i=1 i=1
1 nX2f 1 nx2f
= N o [x f(i)]k + nof Xl [x E(i)]k
i=1 i=1

Substituting from (50) above we obtain for pl2 S andk 2 [d] that

erf

XjIk [ck+ Xk [Xsplk [ck+ [’r‘n%xsj[x']k XmIkj (51)

n i=1

P
Recall thaiks := 15sj ;, ¢ Xi. From (50) and (51) we obtain that

rD(Zf |xf
Xslk = n [x f(i)]k - . [x ks(i)]k + n [x ks(i)]k
i2[n f] i=1 i=n 2f+1
N+ (e max bk Dok =kt —— maxibik Kili:  (52)
n f ook gk i;jzsjlk He) = 1ee® 4 fi:jZSJ'k il -
Now, similar to (50), we obtain for ak 2 [d] that
1 X 1 X!
T [X syl - X iyl = [cl: (53)
i=f+1 j=f+1

In a similar manner to (51), we obtain for al S andk 2 [d] that

Xjlk [clk lmaz-)éj[xl]k Xmlkj: (54)
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From (53) and (54), in a similar manner to (52), we obtain that

el Ok o maxitcl DXl (55)

n

Owing to (52) and (55) we obtain that, for &ll2 [d],

sk [chi ¢ maxibale by

Thus,
V
S % u x 2
s k= Ksk [ ——f T maxibal [k
k2 [d] k2[d]

. f Np p_o
kxs CWTM(Xy1;::5;Xp)k ——min 2 n f; d maxkx; xjk:
n f ij 2S
As S is an arbitrary subset ¢f] of sizen  f, concludes the proof. O
C.4. Mean around Median (MeaMed)
Letx 2 RY, we denote byx], thek-th coordinate ok. Given the input vectors;;:::; X, (in RY), MeaMed computes
the average of tha  f closest elements to the median in each dimension. Speci cally, forlke&cfd], m 2 [n], letim .k
be the index of the input vector withrth coordinate that im-th closest to Media(fix1]k;:::; [Xn]k). Let Cx be the set of
n f indices de ned as
Ck =fivk;:iirin 10
Then we have
1 X
[MeaMedx1;:::; Xn)lk = - [Xi ]k
i2Cyk
where MeaMe(k,;:::; X,) denotes the output of the aggregation rule.
Nnp po
Proposition 5. If f < n= 2, thenMeaMedis an(f; )-resilient averaging for = anf min 2 f; d.

Proof. Consider an arbitrary s&suchthajSj = n f. SincejSj > n=2, by the de nition of the median, for eadh?2 [d],
we have

'}giQ[Xi]k Median([X1]k;:: 5 [Xnlk) rinzasx[xi]k:

Accordingly, for anyj 2 S andk 2 [d], we have

iMediar([xa]e; i Xnl) - DX maxixil  minfxilc: (56)
In particular, this means that there exist at least f vectors within[x1]x;:::; [Xn]k, whose absolute deviation from
Median([x1]x;:::; [Xnlk) is upper-bound bynaxi>s[xilk minj2s[Xi]xk. Therefore, by the de nition o, for any
j 2 Ck, we have

jMedian ([X1]x;: 0 Xnlk) X Ik] rinzasx[xi]k rir;ig[xi]k: (57)

Combining (56) and (57), then implies that for dn¥ S andm 2 Cy, we have

iXilk Xmlki ZiTza%(([Xi]k [Xj Ik):
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Also note thafSnCyj = jCy nSj=jCk[ Sj j S n (n f)=f.Hencewe get

. i 1 X
jMeaMedx1;:::; Xn)lk  [Xskkj = P [Xilk [Xi ]k
i2Cy i2s
1 X
=4 [Xilk [Xi Ik
i2CknS i2SnCy

f
- fiTg-)S(([Xi]k (X Jk):

Finally, by using Lemma 5, we get

of i % 2
Ks  MeaMedxa;:::;Xn)k €7 maxibale ki (58)
(n f) iij 28
k2[d]
2f PP
7(n ) minf 2 f; dgirjngos( kxi  xjk: (59)
The above concludes the proof. O

C.5. (Multi-)Krum

In this section, we study a slight adaptation of the Multi-Krum algorithm rstintroduced in (Blanchard et al., 2017). This
adaptation, called Multi-Krum is mainly changing one step of the procedure to enhance the tolerance of the method from
f< (n 2)=2(needed for the original method) to< n= 2 (i.e., the optimal tolerance threshold).

Essentially, given the input vectoxs; :: :; X, Multi-Krum outputs an average of the vectors that are the closest to their
neighbors upon discardirfg® farthest vectors. Speci cally, for eadé2 [n] andk 2 [n 1], leti, 2 [n] nfig be the index
of thek-th closest input vector fromy, i.e., we havkx;  xj, k  ::: Xi  Xi, , Wwithties broken arbitrarily. Le€C;

bethesetof f 1closestvectors ta, i.e.,

P
Then, for each 2 [n], we de nescore(i) = i2c KXi X k2. Finally, Multi-Krum,, outputs the average ofinput
vectors with the smallest scores, i.e.,

whereM (q) is the set ofj vectors with the smallest scores. We call by Krutine special case of Multi-Krugnfor g = 1.

Before analyzing Multi-Krurg, we prove the following lemma.
Lemma 6. ConsideraseS [n]suchthajSj=n f.Suppose n f.Foranyk 2 M(g) andl 2 S, we have
s |

n
n 2f iTgl)s(kXi Xk

kxk Xk 1+

Proof. To demonstrate this result, we study two cases separatesg;i)k 2 S, andcase i)k 62S.
Casei)Letl 2 S,if k 2 S, by de nition we have

kxk Xk iT%kXi xjk: (60)

Thus, (6) trivially holds in case i).

5As opposed td + 1 in the original version.
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Case ii) Let us now consider thdt 62S. SincejM (g)j = q n f, there exists at least an indax 2 S such that
m 2 M (q). Then by the de nitions of the score functiaeore( ) and of the se€,, , we get that

score(m) = kXm X K kxm X K* (n fymaxkxi X K% (61)
. . ]
i2Cm j2S

Sincem 2 M (@), we havescore(k) scorg(m). Accordingly, we have that

X
score(k) = KXk Xj K? score(m): (62)
j2Cm

NotethanCk\Sj:jijlngjj Ck[S] (n I;)+(n f) n=n 2f.Asf<n=2 wegetCi\ S6 ;. Now,
asC\' S Cq,wehave ,c skxc XK' = ,c kxc xk% Thus, from (62) we obtain that
X 2
kxx  xjk® scorg(m):
j2c\'s

Substituting from (61) above, we obtain that

X

2 2

kxk  xjk® (n f)ir}]gékxi Xj k™

j2Ck\ S
P
AsiCk\ S n 2f, 0 skXk X K (n 2f)minjos kxk  X; k. Thus, from above we obtain that
: 12 k2
(n 2f)|j”r12|2 kxk  xjk® (n f)m%kx. Xjk*:

This implies that

](T;IQ kxi Xk T ir;jngt)S(kxi Xjk: (63)

Letl 2 Sandj 2 argmin;j,s kxk XjKk. By the triangle inequality, we then obtain that
kxk Xk = kxg Xj + X X1k k Xg Xj k + ka X1 k (64)

Substituting from above in (63) and using the fact thgt  x;k  max;; 2s kx;  Xj k, we then obtain that

S !
n f

kxk Xk 1+ o Irjnglg( kxi  xjk: (65)
The above proves (6) in case ii).
As (6) holds true in either case (see (60) and (65)), the lemma holds true. O

We present below a proposition characterizing the resilient averaging property of Multi;KNote that the resilience
coef cient of Krum can be immediately derived from this proposition by substitutjrgl .

Proposition 6. If f <n=2,andg n f then Multi-Krum, is an(f; )-resilient averaging rule for
S !
n f n g

n 2f min 1;n f

=] 1+

Proof. Consider a set of vecto&such thaiSj = n  f. As in the proof of Lemma 6, we consider two different cases
separatelycase i)q f,andcaseii)q>f.
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Casei)Letq f. By triangle inequality and Lemma 6, we obtain that

1 X 1 X 1 X 1 X
Multi-Krumg (X1;::15 Xn)  Xs = = Xi Xs — kxj Xsk = Xj ; Xj
inM(q) inM(q) inM(q) n j2s
1 X X
a(n )i2M(q)j28
s |
1 X X n
—_ 1+ maxkx;  Xxjk
g(n f)iZM(q)jZS n 2f ij2s
S !
= 1+ —— iE_ngos(kxi Xjk:

Thus, the proposition holds true in case i).

Case ii)Let us now consideq > f . We havgS\ M (g)j = jSj+ jM(q)j j S[ M(g)j (n f)+gq n=q f> 0.
Therefore, there exists a detwith cardinalityq f suchthaP S\ M (g). Hence we get

1 X 1 X
Multi-Krumg (X1;:1:; Xn)  Xs = cooX Xi (66)
n i2s inM(q)
1 X 1 X 1 1 X
i2snP inM(q)nP a n i2P
0 1
1 X an 1y X foa A 1 A Bk 68
= — i L+ . = - .
oan 1) inSnPXI “ )izwl(q)npxI " q)iZPXI qn 1) ok ©9
where 0 1
X X X
A=q xi and B = @n f) xi+(n f q xA: (69)
i2snP i2M (g)nP i2p

SincejSnPj=(n f) (g f)=n qgAisasumofg(n ) (potentially repetitive) vectors all of which belong to
S.Also,f(n f)+(n f qg)(g f)=qg(n q).ThusB isalsoasumofi(n q) (potentially repetitive) vectors all
of which belong taM (g). We now match each vector & to a vector inB. Using the triangle inequality and Lemma 6, we
the obtain s I

n f
+  —— i ik:
kA Bk qgn g 1 T IrJngoS( kx; xjk (70)
Combining above with (68), we then obtain
IS |
Multi-Krumg (Xq;:::; Xn) X n_q 1+ max kx;  Xxjk: (71)
Qb Al RS g n 2t ijas AT
This shows that the proposition holds true in case ii).
Combing the conclusions for cases i) and ii) concludes the proof O
C.6. Geometric Median (GM)
For input vectors<s; :::; X, their geometric median, denoted ®&M(X1;:::;Xn), is de ned to be a vector that minimizes
the sum of the distances to these vectors. Speci cally, we have
X

GM(Xq;:::;Xpn) 2 argmin kz xk:
z2 Rd i=1
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For obtaining the resilience coef cient of GM, we make use of the following three lemmas. Below, we denote by

(s »a )

ConV(Xy;:::; Xp) = aj X; a=1;a 0;8i 2][n]
i=1 i=1
Lemma 7. Lety andz be any two points ilCon(X1;:::; Xp). Thenky zk max;; o;n kX Xj k.
s P n P n P n P n
Proof. By de nition, suppose thay = ,_; ajxj andz= ,_; bx; suchthat ;_, & =1, ;.; b =1,anda O,
b Ofori 2 [n]. We then obtain

0 1 0 1
X X X X X X
ky zk= ax; z = a(xi z) = a; @; hxA = a@ B x)A
i=1 i=1 i=1 j=1 i=1 j=1
Using triangle inequality we obtain that
0 1 0 1 0 1
X X X X X X
ky zk a@ bkx xkA a@ b max kxy xkA = max kxy xk a@ pA
. . . . k;12[n] k;12[n] . .
i=1 j=1 i=1 j=1 i=1 j=1
= max kxx xk:
k;12[n]
Hence, the proof. O
Lemma 8 (Proposition 6 in (Mhamdi et al., 2021)For any input vectors;:::; X, 2 RY, the following holds true:

Foranon-empty s& [n]. In the remaining, we denote Ibx; g, s the set of vectors which index is 8, i.e.,fx;; i 2 Sg.
Lemma 9 (Theorem 1 (Part 1) in (Mhamdi et al., 2021Fjor any setS  [n] such thajSj > n=2,

(nj sj)? j2s
isi

kGM(x1;:::;Xn) GM(fXigizs)k qliimaxkxj GM (fxjgi2s)k:
1

By combing the above lemmas, we can devise the following result.

Proposition 7. If f < n= 2then theGM is an(f; )-resilient averaging rule for =1 + p(:iﬁ:

Proof. Consider any s [n] suchthaiSj = n f > n= 2. By triangle inequality we obtain that

KGM(x1;:::;Xn)  Xsk k GM(Xq;:::;%Xn)  GM(fXigi2s)k+ KGM(fXigizs) Xsk:

KGM(X1;::::Xn)  Xsk %Q@kaj GM (fxigi2s)k+ KGM (fXxigi2s) Xsk: (72)
n n i

From Lemma 8, we know that GM X;gi»s) 2 Conv(fx;gi2s). Thus, owing to Lemma 7, we have

kx; GM(fxigi2s)k m%kxk xk; 8 28S:

Similarly, asxs 2 Conv(fxjgi2s), we get

kGM (fxigi2s) Xsk I[;rlugvs(kxk xik:
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Using these in (72) we obtain that
|

= n f _ n f )
kGM(xq;:::; Xn) Xsk pﬁ IrJngoS( kxi  Xxjk+ T%)é kxi xjk= 1+ pﬁ IrJrk;;oS( kxi  xjk:
As S is an arbitrary subset ¢f] of sizen f, by De nition 2, the above proves the proposition. O

C.7. Coordinate-Wise Median (CWMed)

For input vectorss; :::; X, their coordinate-wise median, denoted®WMedxy;:::;X,), is de ned to be a vector
whosek-th coordinate, for alk 2 [d], is de ned to be

[CWMed(x1;:::;Xn)], = Median([X1]k;:::[Xnlk) : (73)
Before analyzing CWMed, we prove a useful lemma for the median operator.
Lemma 10. Consider a set ofi real numberdy,;:::; yng. If f <n= 2then for any subs&® [n]withjSj=n f we
obtain that
ifi2 S|y Mediar(ys;:::;yn)gi % f and jfi2S|y; Mediar(ys::::;yn)gj % £ (74)

Proof. Consider an arbitrary s& [n]withjSj= n f. By the de nition of the median operator, we have

- : .n . . .n
jfi2[n]lyi Medianys;:::;yn)dj > and jfi2 S|y, Median(yi;:::;¥n)0j E:
xAsjSj=n f>f ,the proof follows immediately from above. O
n p p 0
Proposition 8. If f < n= 2thenCWMedis an(f; )-resilient averaging rule for = 2(nnif) min 2 f; d.
Proof. Consider & [n] suchthaiSj=n f.Asf <n= 2, from Lemma 10 we obtain that
min[xilc  Median([xa];::: [Xnl)  max(xiJ:
This implies that
Median([X1]k;:::[Xnlk) (max[xilk min[xjlk) min[x;lk: (75)
i2s i2s i2s

Note that, by Lemma 10, at least2 f values infy;; i 2 Sgare greater than or equal kbedian([x1]k;:::[Xn]k). Thus,
as the remaining=2 values infy;; i 2 Sg are greater than or equaltain;, s[X;]x, we obtain that

1 n

£ Median(xale: : [<nl) + 3 minixi
i2S

Xslk = - !

Substituting from (75) above we obtain that

Keh o f Median(xiiiil)+ 5 Median(xiliiiial)  (maxbik  minhil)

= Median(Dxulii: Xnl) gy (Maxbalk  minbi ) (76)

Similarly, we can show that

Xk Median(Dalii:: (all) + gy (Maxbale  minbil): (7)
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From (76) and (77) we obtain that

iixsh  Median(xile;:s:baal)l 5y max(xk [

Finally, substituting from Lemma 5 we obtain that

S
N\
kXs CWMedx1;::1;Xn)k = jIXslk  Median([xa]k;: :: [xnlk)j?
k2[d]
v :
X
n_¢ ™ o
GEED) ot if]nfzi)S(J[Xl]k [Xj Ik
n 0
mmin 2 n f; d iT%kxi xjk:
The above concludes the proof. O

C.8. Centered Clipping (CC)

This aggregation rule was proposed by (Karimireddy et al., 2021). Speci cally, given the input vegtors; x, 2 R,
upon choosing alipping parametec 0, we compute a sequence of vectags: : : ; v, in RY such that for all 2 [L],

Vi v o1+ 1 X (Xi v 1)min 1, ¢
[ I i 1 i v 1K
i2[n]

According to Karimireddy et al. (2029£y setting speci c values for parameteasidL, CC can satisfy the condition
of (f; )-resilient averaging for =20 10f=n whenf < n= 9:7. However, they rely on extra information that is often
not possible in practice. Speci cally, the values for parameterandL dgpend on the maximal variance of the honest

gradients , and we must also know a bound on the initial estimate éfrdexy vok2 wherexXy is the average of the
honest vectors. Analyzing CC under standard assumptions and without any extra information remains an open question.

C.9. Comparative Gradient Elimination (CGE)

For input vectorxs;:::; Xn, let denote a permutation dn] that sorts the input vectors based on their norm and in
non-decreasing order, i.e.X (1 X (2 D X (ny - CGE outputs the average of the f vectors with
smallest norm (Gupta et al., 2021), i.e.,

Counter-exampleConsider input vectorss;: ::; Xp apd asubsed [n]withjSj=n f suchthak; = xforalli 2 S
wherekxk > 0. If kx; k < kxkforallj 2 Sn[n],and ;,,s% 6 f Xxthen
0 1
1 X
CGE(xl;:::;xn):n f@ xj +(n 2f)xA 6 x:
j2[n]nS

AsXs = x andmax;;; 2s kxj  x; k=0, from above we obtain that, for all 0,

Thus, by De nition 2, CGE imotresilient averaging. O
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D. Additional Information on the Experimental Setup
D.1. Attacks Simulating Byzantine Behavior

In the experiments of this paper, we use four state-of-the-art attacks that we refempies(Xie et al., 2019a)little (Baruch
et al., 2019)sign- ipping (Allen-Zhu et al., 2020), anthbel- ipping (Allen-Zhu et al., 2020). The rst two attacks rely on
the same core idea. Letbe xed a hon-negative real number anddete the attack vector at time stepAt every time
stept, all Byzantine workers serf + a; to the server, wherg is an estimate of the true gradient at stefyhe specic
details of these attacks are mentioned below.

« Fall of Empires. In this attacka; = ;. All Byzantine workers thus send )@ at stept. In our experiments, we
set =1:1for empire corresponding to = 0:1 in the notation of the original paper.

« Little is Enough. In this attacka; = ¢, where ; is the opposite vector of the coordinate-wise standard deviation of
G- In our experiments, we set=1 for little.

The remaining attacks rely on different primitives. Speci cally, they are de ned as follows.

* Sign- ipping. In this attack, every Byzantine worker sends the negative of its gradient to the server.

 Label- ipping. In this attack, every Byzantine worker computes its gradient on ipped labels before sending it to the
server. Since the labels for MNIST, Fashion-MNIST, and CIFAR-10 af@®iad; :::; 99, the Byzantine workers ip
the labels by computin=9 | for every training datapoint of the batch, whéiie the original label antfis the
ipped/modi ed label.

D.2. Dataset Pre-processing

MNIST receives an input image normalization of m&xt307and standard deviatidh3081 Fashion-MNIST is horizon-
tally ipped. CIFAR-10 is horizontally ipped and we apply a per-channel normalization with m@ad14 0:4822 0:4465
and standard deviatio’s2023 0:1994 0:201Q

D.3. Detailed Model Architecture

In this section, we discuss the different models tested in our experimental study. In particular, we experimented with one
convolutionalmodel and one simplieed-forward neural networfor both MNIST and Fashion-MNIST, as well as one
convolutionalmodel for CIFAR-10. In order to present the architecture of the different models, we use the compact notation
introduced in (El Mhamdi et al., 2021b).

L(#outputs) represents fally-connected linear layer, R stands forReLU activation, S stands folog-softmax,
C(#channels) representsudly-connected 2D-convolutional layer(kernel size 3, padding 1, stride 1), M stands|for
2D-maxpool(kernel size 2), B stands ftratch-normalization, and D representiropout (with xed probability 0.25)

Convolutional Model for CIFAR-10. The convolutional model used for CIFAR-10, introduced in (Baruch et al., 2019),
can thus be written in the following way:

(3,32x32)-C(64)-R-B-C(64)-R-B-M-D-C(128)-R-B-C(128)-R-B-M-D-L(128)-R-D-L(10)-S.

Convolutional Model for (Fashion-)MNIST. We adopt the same notation introduced earlier, with the only difference
that C(#channels) now represents a fully-connected 2D-convolutional layer of kernel size 5, padding 0, and stride 1. The
convolutional model we used for MNIST and Fashion-MNIST can thus be written in the following way:

C(20)-R-M-C(20)-R-M-L(500)-R-L(10)-S.

Simple Feed-forward Network for (Fashion-)MNIST. We consider a feed-forward neural network composed of two
fully-connected linear layers of respectively 784 and 100 inputs (for a tothiof9 510 parameters) and terminated by a
softmaxayer of 10 dimensions. ReLU is used between the two linear layers. For this particular model, we used the Cross
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Entropy loss, a total number of workans= 15, a constant learning rate= 0:5, and a clipping paramet€ = 2. We also
add an ,-regularization factor o£0 “. Note that some of these constants are reused from the literature on BR, especially
from (Baruch et al., 2019; Xie et al., 2019a; El Mhamdi et al., 2021b).

E. Additional Experimental Results

Reproducibility. All our experiments (training + graphs) are reproducible in one command. PleasetsdREADME.md
in the supplementary material. Additional graphs are availalytoits/

E.1. Results on Fashion-MNIST

Figure 3.The 1st and2nd rows correspond to experiments performed on Fashion-MNIST witl) and = 0:99, respectively. The
different columns show the performance of the learning undeethgire little, sign- ipping, andlabel- ipping attacks withf =5
Byzantine workers.

We also perform experiments (similar to those described in Section 5) on the Fashion-MNIST dataset. In Figure 3, we
display the top-1 cross accuracies achieved by different aggregation rules on the Fashion-MNIST dataset in a distributed
system comprising = 15 workers, out of whicf =5 are Byzantine executing four different state-of-the-art attacks. We
compare the performances under two momentum settings0 (i.e., momentum is not used) and= 0:99.
We can clearly see from Figure 3 the improvement that momentum brings to the learning in every single Byzantine setting
(i.e., in each of the four attack scenarios), especially for the six resilient averaging aggregation rules (MDA, CWTM,
CWMed, MeaMed, Krum, and GM). However, the performance of CGE seems unaffected by the increase in momentum
especially under thempire little, andsign- ipping attacks. Furthermore, CC displays poor performance uittderfor

=0 and undetabel- ipping for = 0:99, indicating that there always seems to exist at least one setting where CC (and
CGE) display poor performance. All these observations clearly echo the main takeaway of our experiments in Section 5,
where usingoth a(f; )-resilient averaging aggregation rule together with momentum seems to be crucial to mitigate the
effect of Byzantine workers and dramatically improve the learning in an arbitrary adversarial setting (i.e., when the executed
attack is not known beforehand).

E.2. Thecaseof CC- =0:9

In Figure 4, we show the performance of CC (which is noffan )-resilient averaging rule) on the MNIST and Fashion-
MNIST datasets, with = 0:9 andf =5 Byzantine workers. CC displays good performance against all four attacks for
that particular value of . Essentially, CC can consistently work for some values of momentum(:9), while others
signi cantly deteriorate its performance in some cases (see0:99in Figures 1 and 2 of the main paper). Precisely
characterizing the impact of momentum on CC's performance remains arguably an open question.

E.3. Results on MNIST With 7 Byzantine Workers

In this paragraph, we present some learning performances on the MNIST dataset in four adversarial settirfigs Where
out of 15 workers are Byzantine. It turns out that in such an extreme adversarial scenarid wwerhes the maximum
tolerable value of 5 , an even larger value of, and thus more learning steps, are needed to guarantee a good performance
in the presence of Byzantine workers. In Figure 5, we consider two values(fband0:999), and showcase the advantages

of using momentum in such a setting.



