
Byzantine Machine Learning Made Easy
By Resilient Averaging of Momentums

Sadegh Farhadkhani∗ 1 Rachid Guerraoui∗ 1 Nirupam Gupta∗ 1 Rafael Pinot∗ 1 John Stephan∗ 1

Abstract
Byzantine resilience emerged as a prominent topic
within the distributed machine learning commu-
nity. Essentially, the goal is to enhance distributed
optimization algorithms, such as distributed SGD,
in a way that guarantees convergence despite the
presence of some misbehaving (a.k.a., Byzantine)
workers. Although a myriad of techniques ad-
dressing the problem have been proposed, the
field arguably rests on fragile foundations. These
techniques are hard to prove correct and rely on
assumptions that are (a) quite unrealistic, i.e., of-
ten violated in practice, and (b) heterogeneous,
i.e., making it difficult to compare approaches.

We present RESAM (RESilient Averaging of Mo-
mentums), a unified framework that makes it sim-
ple to establish optimal Byzantine resilience, re-
lying only on standard machine learning assump-
tions. Our framework is mainly composed of
two operators: resilient averaging at the server
and distributed momentum at the workers. We
prove a general theorem stating the convergence
of distributed SGD under RESAM. Interestingly,
demonstrating and comparing the convergence of
many existing techniques become direct corollar-
ies of our theorem, without resorting to stringent
assumptions. We also present an empirical evalu-
ation of the practical relevance of RESAM.

1. Introduction
The vast amount of data collected every day, combined with
the increasing complexity of machine learning models, has
led to the emergence of distributed learning schemes (Abadi

1Distributed Computing Laboratory (DCL), School of
Computer and Communication Sciences, École Polytechnique
Fédérale de Lausanne (EPFL), Switzerland. Correspondence
to: Nirupam Gupta <nirupam.gupta@epfl.ch>, Rafael Pinot
<rafael.pinot@epfl.ch>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

et al., 2015; Kairouz et al., 2021). In the now classical
parameter server distributed architecture, the learning proce-
dure consists of multiple data owners (or workers) collabo-
rating to build a global model with the help of a central entity
(the parameter server), typically using the celebrated dis-
tributed stochastic gradient descent (SGD) algorithm (Tsit-
siklis et al., 1986; Bertsekas & Tsitsiklis, 2015). The server
essentially maintains an estimate of the model parameter
which is updated iteratively using the average of the stochas-
tic gradients computed by the workers.

Nevertheless, this algorithm is vulnerable to "misbehaving"
workers that could (either intentionally or inadvertently) sab-
otage the learning by sending arbitrarily bad gradients to the
server (Feng et al., 2015; Su & Vaidya, 2016). These work-
ers are commonly referred to as Byzantine (Lamport et al.,
1982). To address this critical issue, a large body of research
has been devoted to adapting distributed SGD to make it
converge despite the presence of (a fraction of) Byzantine
workers, e.g., (Blanchard et al., 2017; Chen et al., 2017;
El Mhamdi et al., 2018; Yin et al., 2018; Xie et al., 2018;
Alistarh et al., 2018; Diakonikolas et al., 2019b; Allen-Zhu
et al., 2020; Prasad et al., 2020; Karimireddy et al., 2021).
The general idea consists in replacing the averaging step
of the algorithm with a robust aggregation rule, basically
seeking to filter out the bad gradients.

Demonstrating the correctness of the resulting algorithms
reveals however very challenging, and previous works rely
on unusual assumptions. For instance, a large body of work
assumes stochastic gradients that follow a specific distribu-
tion, e.g., sub-Gaussian/exponential (Chen et al., 2017; Feng
et al., 2017; Yin et al., 2018; Prasad et al., 2020). Some
approaches rely on stronger assumptions that are not even
satisfied by a Gaussian distribution, such as almost surely
absolutely boundedness (Alistarh et al., 2018; Diakonikolas
et al., 2019b; Allen-Zhu et al., 2020), or vanishing vari-
ance (Blanchard et al., 2017; Xie et al., 2018; El Mhamdi
et al., 2018; 2021a). Indeed, these assumptions are often vio-
lated in practice, resulting in the failure of these approaches
when some workers behave maliciously (Baruch et al., 2019;
Xie et al., 2019a). Ultimately, the considerable difference in
these assumptions from one approach to another makes it
quite difficult to compare the underlying techniques. Byz



Byzantine Machine Learning Made Easy

In short, whilst Byzantine resilience is considered crucial
to establish robustness in distributed machine learning, the
�eld arguably rests on fragile foundations.

1.1. Our Contributions

We presentRESAM (RESilient Averaging of Momentums),
a general framework for studying Byzantine resilience in dis-
tributed machine learning under minimal assumptions: (1)
unbiasedstochastic gradients withbounded varianceand (2)
�rst-order Lipschitz smoothness.1 RESAM integrates two
main components within distributed SGD, namelyresilient
averaginganddistributed momentum.

(a) We introduce resilient averaging as a new elementary
criterion of robustness for aggregation rules. It can be
veri�ed in an off-line manner and is readily satis�ed by
many existing schemes, under classical assumptions. It
also standardizes the way to measure the robustness of
aggregation rules through a parameter� , that we call
theresilience coef�cient.

(b) We make use of distributed momentum which adapts
the notion of gradient momentum (Polyak, 1964) to
distributed architectures. Speci�cally, at each step of
the algorithm, honest (i.e., non-Byzantine) workers
send the momentums of their stochastic gradients to
the server, instead of simply sending their gradients.

Byzantine resilience.We prove a general theorem establish-
ing �nite-time convergence of distributed SGD enhanced
through RESAM. As an immediate corollary, we make the
following contributions.

(a) We show (for the �rst time) the Byzantine resilience
of several existing schemes, without resorting to non-
standard assumptions. Our result holds as long as the
Byzantine workers represent less than1=2 of the sys-
tem, which is optimal (Alistarh et al., 2018).

(b) We precisely characterize the convergence rates of
these schemes through our framework, enabling com-
parison of their performances on a common theoretical
ground. Essentially, our analysis indicates that using
aggregation rules with smaller resilience coef�cient�
results in faster convergence.

Technical signi�cance.A key observation that enables us
to prove our theorem is that the momentums of honest work-
ers' gradientsconverge toward one anotheras the learning
algorithm proceeds. This signi�cantly mitigates the im-
pact of Byzantine workers when using a resilient averaging

1These assumptions are elementary for analyzing SGD, even
in the non-Byzantine setting (Bottou et al., 2018), and are used in
all prior works on Byzantine resilience.

rule. The caveat is that the conventional techniques used
for analyzing the convergence of SGD do not readily apply,
since the honest workers' momentumsdeviatefrom the true
gradient. To overcome this challenge, we devise a proof
technique based on anovel Lyapunov functionwhich we
also believe to be of independent interest to the distributed
optimization community.

Practical relevance. We report on a comprehensive set
of experiments evaluating RESAM on benchmark image
classi�cation tasks: MNIST, Fashion-MNIST, and CIFAR-
10. We simulate Byzantine behavior using4 state-of-the-art
attacks. We observe that the algorithm works best when
combining resilient averaging and distributed momentum,
but performs poorly against some attacks when using only
one of these notions. This advocates that the combination
proposed by RESAM is critical to Byzantine resilience.

1.2. Closely Related Work

We present below comparisons to closely related work.

Resilient averaging. Whilst the robustness criterion of
C-averaging agreementintroduced in (El Mhamdi et al.,
2021a) shares similarities with our notion of resilient aver-
aging, it is studied under a non-standard setting where the
batch size is monotonically increased over the iterations to
ensurevanishing varianceof the stochastic gradients (and
without exploiting the power of distributed momentum).
Our notion of resilient averaging should also not be con-
fused with the notion of resilience introduced by (Steinhardt
et al., 2018), for the latter is an assumption on the distribu-
tion of honest workers' gradients. Our notion, on the other
hand, is a criterion that can be satis�ed by an aggregation
rule regardless of the distribution of the workers' gradients.

Distributed momentum. The �rst paper to discuss the use-
fulness of distributed momentum for boosting Byzantine
resilience in distributed machine learning is (El Mhamdi
et al., 2021b). Essentially, the paper observes through an ex-
tensive set of experiments that distributed momentum helps
somerobustness techniques counter two state-of-the art at-
tacks, namelylittle (Baruch et al., 2019) andempire(Xie
et al., 2019a). However, the work lacks concrete theoreti-
cal explanations. Moreover, our experimental �ndings go
beyond (El Mhamdi et al., 2021b) by considering a wider
range of attacks and robustness techniques. Another related
work (Karimireddy et al., 2021) attempts to formally demon-
strate that distributed momentum grants provable Byzantine
resilience to the robustness technique they devise, called
centered clipping(CC). While the proof relies on standard
assumptions, the algorithm requires prior knowledge on the
variance of the gradients, which is quite impractical. Further-
more, their result only holds for small fractions of Byzantine
workers less than1=9:7, which is clearly sub-optimal.



Byzantine Machine Learning Made Easy

1.3. Paper Outline

Section 2 formally presents the problem of Byzantine re-
silience in distributed learning. Section 3 introduces RE-
SAM. Section 4 presents our main theorem and its corollary
showing resilience of some prominent existing approaches.
Section 5 presents our experimental results. Section 6 pro-
vides additional related work and discussions. Due to space
constraints, we defer proofs to appendices A, B, and C.

2. Problem Statement

We consider the parameter server architecture withn work-
ersw1; : : : ; wn , and a trusted central server. The workers
only communicate with the server and there is no inter-
worker communication. We letD be an unknown data distri-
bution. For a given parameter� 2 Rd, a data pointx � D
has a real-valued loss functionq(�; x ). The server aims to
compute, by collaborating with the workers, a parameter� �

minimizing the expected loss functionQ(� ) de�ned to be

Q(� ) = Ex �D [q(�; x )] 8� 2 Rd: (1)

We assumeQ to be differentiable and to have a minimum,
i.e.,min � 2 Rd Q(� ) exists and has a �nite value. However,
as the loss functionQ could be non-convex, e.g., when
considering deep neural networks, solving the above op-
timization problem may be NP-hard (Boyd et al., 2004).
Thus, a more reasonable goal is to compute a critical point
of Q, i.e.,� � such thatkr Q(� � )k = 0 wherer Q denotes
thegradientof Q andk�k the Euclidean norm onRd.

2.1. Vanilla Distributed SGD

The traditional way to solve this learning problem is through
a distributed implementation of the classical stochastic gra-
dient descent (SGD) method (Bertsekas & Tsitsiklis, 2015).
This is an iterative algorithm where, in each stept, the server
maintains a parameter vector� t which is broadcast to all the
workers. Each workerwi then returns anunbiasedstochas-
tic estimateg( i )

t of the gradientr Q(� t ). Speci�cally,

g( i )
t = r Q(� t ) + u( i )

t ; (2)

whereu( i )
t is the realization of a random vectorU(� t ), de-

�ned over Rd, that characterizes thenoisein the gradient
computation at� t .

2 Ultimately, the server updates� t by
using the average of the received gradients as follows,

� t +1 = � t �  t
1
n

nX

i =1

g( i )
t ; (3)

where t � 0 is referred to as thelearning rateat stept.

2The noiseU(� t ) is usually assumed to be a result of sampling
data points fromD. However, to keep our discussion more general,
we letU(� t ) follow any distribution subject to Assumption 2.

2.2. Classical Assumptions

When all the workers are honest, i.e., they follow the pre-
scribed instructions correctly, the above iterative algorithm
provably converges to a critical point of functionQ, under
the following assumptions.

Assumption 1(Lipschitz smooth loss function). There ex-
istsL < 1 such that for all�; � 0 2 Rd,


 r Q(� ) � r Q(� 0)


 � L


 � � � 0 :

Assumption 2(Unbiased gradients with bounded variance).
For all � 2 Rd, the random vectorU(� ) characterizing the
gradient noise at� is such thatE [U(� )] = 0 , and there

exists� < 1 such thatE
h
kU(� )k2

i
� � 2.

These assumptions are indeed satis�ed in many learning
problems (Ghadimi & Lan, 2013; Bottou et al., 2018).

2.3. Byzantine Resilience

We study a scenario where up tof workers ofunknown
identitiesmay beByzantine(Lamport et al., 1982). Such
workers may send arbitrarily incorrect information to the
server, preventing it from solving the learning problem (Su
& Vaidya, 2016). The goal is then to design a learning
algorithm that computes a critical point despite the fact that
a fraction of the workers may be Byzantine. Formally, given
f and a real value� > 0, we aim to design an(f; � )-resilient
algorithm, as de�ned below.

De�nition 1 ((f; � )-Resilience).A distributed learning al-
gorithm is said to be(f; � )-resilientif, despite the presence
of up tof Byzantine workers, it enables the server to output
a learning parameterb� such that

E
� 

 r Q

�
b�
� 




2
�

� �;

whereE [�] is de�ned over the randomness of the algorithm.
Moreover, an algorithm is said to beoptimally resilientif it
is (f; � )-resilient for anyf < n= 2 and� > 0.

A standard approach to confer Byzantine resilience to dis-
tributed SGD is to replace the simple averaging of the work-
ers' gradients at the server by a more sophisticated aggre-
gation rule that seeks to mitigate the adversarial impact of
any incorrect information sent by the Byzantine workers. In
particular, consider an aggregation ruleF : Rd� n ! Rd.
Then, at every stept the server updates� t as follows:

� t +1 = � t �  t F
�

g(1)
t ; : : : ; g(n )

t

�
: (4)

Note that the gradientg( i )
t of any Byzantine workerwi need

not follow (2) and may take arbitrary values.



Byzantine Machine Learning Made Easy

Aggregation rule MDA CWTM MeaMed Krum� GM CWMed Lower bound

� 2f
n � f

f
n � f � 2f

n � f � 1 +
q

n � f
n � 2f 1 + n � fp

(n � 2f )n
n

2(n � f ) � f
n � f

� := min f 2
p

n � f ;
p

dg

Table 1.Resilience coef�cients� for various aggregation rules satisfying De�nition 2, whenf < n= 2. Note that the lower bound for� is
f =n � f . Thus, MDA has an order-optimal coef�cient (differs from the lower bound only by a constant factor).

Some notable aggregation rules.In this paper, we con-
sider a wide range of aggregation rules: Krum� 2017,3

geometric median(GM) 2017, minimum diameter av-
eraging (MDA) 2018, coordinate-wise trimmed mean
(CWTM) 2018,coordinate-wise median(CWMed) 2018,
mean-around-median(MeaMed) 2018, centered clip-
ping (CC) 2021, andcomparative gradient elimination
(CGE) 2021. We refer the interested reader to Appendix C
for a detailed description of these aggregation rules.

3. RESilient Averaging of Momentums

Our framework incorporates the notions ofresilient averag-
ing anddistributed momentumin distributed SGD. We �rst
recall distributed momentum, followed by the introduction
of resilient averaging. Finally, we present the skeleton of a
learning algorithm within RESAM.

3.1. Distributed Momentum

At each stept of this scheme, upon receiving the current
learning parameter� t from the server, each honest worker
wi returns thePolyak's momentumof its stochastic gradi-
ent (Polyak, 1964). This momentum is de�ned as

m( i )
t = �m ( i )

t � 1 + (1 � � )g( i )
t ; (5)

wherem( i )
0 = 0 by convention,� 2 [0; 1), andg( i )

t is as
de�ned in (2). We refer to� as themomentum coef�cient.
Recall that for a Byzantine workerwi , the momentumm( i )

t
need not follow(5). Upon receiving workers' momentums,
the server applies the aggregation ruleF to update the pa-
rameter� t . Speci�cally, the server computes

� t +1 = � t �  t F
�

m(1)
t ; : : : ; m(n )

t

�
: (6)

Remark 1. Distributed momentum differs from its central-
ized counterpart in that the momentum operation in the for-
mer is performed by the workers, unlike in the latter where
it is applied by the server after aggregating the gradients.

3.2. Resilient Averaging

The idea behind the notion of resilient averaging is to ensure
that the distance between the result of the aggregation rule

3Krum� is a variant of Krum, described in Appendix C.5.

and the average of honest workers' momentums is bounded
by their diametertimes a factor� . We refer to� as the
resilience coef�cient. Essentially, smaller the� better the
resilience. We formally de�ne this notion below.

De�nition 2 ((f; � )-Resilient averaging). For f < n
and real value� � 0, an aggregation ruleF is called
(f; � )-resilient averagingif for any collection ofn vectors
x1; : : : ; xn , and any setS � f 1; : : : ; ng of sizen � f ,

kF (x1; : : : ; xn ) � xSk � � max
i;j 2 S

kx i � x j k

wherexS := 1
jSj

P
i 2 S x i , andjSj is the cardinality ofS.

Salient features.Resilient averaging is a simple robustness
criterion that is veri�able in an off-line manner, i.e., indepen-
dently of the dynamics of the learning algorithm. Moreover,
this criterion is so elementary that it can be satis�ed by a
wide class of state-of-the-art aggregation rules under only
standard assumptions. This makes it possible to study and
compare their resilience properties on a common theoretical
ground. Indeed, we show (in Proposition 1 below) that all
the aggregation rules mentioned in Section 2.3 satisfy this
criterion, except CC and CGE that we discuss separately.

Proposition 1. Consider an aggregation ruleF 2
f MDA; CWTM; MeaMed; Krum� ; GM; CWMedg. For
any f < n= 2, there exists a resilience coef�cient� for
whichF is (f; � )-resilient averaging.

We list in Table 1 the respective values of� for several
aggregation rules satisfying De�nition 2. Formal derivations
of these coef�cients can be found in Appendix C. It is worth
noting that an(f; � )-resilient averaging rule cannot have a
resilience coef�cient smaller thanf =n � f (Lower bound in
Table 1). Accordingly, the resilience coef�cient we compute
for MDA is order-optimal, i.e., it differs from the lower
bound by a constant factor.

Sanity check.When the inputs of the honest workers are
identical, the output of an(f; � )-resilient averaging rule
is equal to their inputs from De�nition 2 (as the diameter
of at leastn � f inputs is null). This simple yet important
sanity check guarantees that when the gradients of honest
workers are computed without uncertainty (i.e.,U(� ) is null
for all � 2 Rd) the aggregation rule mimics the majority
voting scheme, which is known to be optimal when there is



Byzantine Machine Learning Made Easy

no uncertainty in the correct responses (Lynch, 1996). Note
that satisfying this sanity check is a necessary condition for
being(f; � )-resilient averaging.

The cases of CGE and CC.When studying existing rules
we encountered two special cases, namely CGE and CC.
While CGE clearly does not satisfy the condition of resilient
averaging, CC may only satisfy it approximately. Besides,
CC uses aclipping parameterthat requires a priori knowl-
edge on� , and an initial guess on the average of the honest
vectors withknownbounded error. These are impractical
requirements that are not needed by other rules we consider.
As it is unclear whether CC can satisfy our de�nition under
the classical assumptions, in the remaining we adopt an
agnostic point of view assuming that it does not.

3.3. Skeleton of an Algorithm within RESAM

The overall learning procedure combining distributed mo-
mentum and a resilient averaging rule is captured in Algo-
rithm 1, presented below.

Algorithm 1: Distributed SGD using distributed
momentum and an(f; � )-resilient averaging rule
F

Initialization: Server chooses an arbitrary initial
parameter vector� 1 2 Rd, a set ofT learning rates
f  1; : : : ;  T g, a deterministic aggregation rule
F : Rd� n ! Rd, and sends the momentum
coef�cient � 2 [0; 1) to all the workers. Each
honest workerwi sets its initial momentum
m( i )

0 = 0 .

Algorithm's body: In eachstept = 1 ; : : : ; T .

1. Serverbroadcasts� t to all workers.

2. Eachhonest workerwi sends to the server the
momentumm( i )

t de�ned by (5), i.e.,
m( i )

t = �m ( i )
t � 1 + (1 � � )g( i )

t whereg( i )
t is a

stochastic gradient as de�ned in (2).
(A Byzantine workerwi may send an arbitrary value
for its "momentum"m( i )

t .)

3. Serverupdates the parameter vector as per (6), i.e.,

� t +1 = � t �  t F
�

m(1)
t ; : : : ; m(n )

t

�
.

Output: Server outputs a learning parameterb�
chosen randomly from the setf � 1; : : : ; � T g.

4. General Convergence Theorem

We present below our main technical result demonstrating
the convergence of Algorithm 1 when up tof workers may
be Byzantine. Then, as an immediate corollary, we de-

rive the(f; � )-resilience property of the algorithm. Formal
proofs of the results are deferred to appendices A and B.

4.1. Formal Statements

We �rst present our main result in Theorem 1 below. Essen-
tially, we analyze Algorithm 1 upon assuming a suf�cient
small constant learning rate t for all stepst, provided that
assumptions 1 and 2 hold true. For simpli�ed presentation
of our formal results, we introduce the following notation.

Q� := min
� 2 Rd

Q(� );

ao := 4
�

2 (Q(� 1) � Q� ) +
1

8L
kr Q (� 1)k2

�
;

a1 := 6912L; and a2 := 288L:

Theorem 1. Consider Algorithm 1 with an(f; � )-resilient
averaging rule and a constant learning rate , i.e.,  t =
; 8t where

 =

 s
ao(n � f )

a1� 2(n � f )2 + a2

!
1

�
p

T
:

If T � ao L
12� 2 � 2 (n � f ) and� =

p
1 � 24L , then

E
� 

 r Q

�
b�
� 




2
�

� 2

s �
a1� 2(n � f ) +

a2

n � f

�
ao� 2

T

+
�

a2�
n � f

�  s
ao(n � f )

a1� 2(n � f ) + a2

!
1

T 3=2
:

Idea of the Proof.Recall thatm( i )
t denotes the momentum

of workerwi at stept. Below, we denote bymt the average
momentum of all the honest workers at stept. Our proof of
Theorem 1 rests on two key observations, detailed below.

(a) At every stept of Algorithm 1, the growth of the loss
function (i.e.,Q(� t +1 ) � Q(� t )) depends positively on

both thedrift of each honest workerwi (i.e.,m( i )
t � mt )

and thedeviationof the honest workers from the true
gradient (i.e.,mt � r Q(� t )). Essentially, to prove
convergence, we need the accumulation of both the
drift and the deviation to be inversely proportional to
T, when scaled by the learning rate .

(b) Upon analyzing these two quantities separately, we ob-
serve that whilst increasing the momentum coef�cient
� decreases the accumulation of drift, it increases the
accumulation of deviation. Hence, we need to care-
fully determine an appropriate value for� to establish



Byzantine Machine Learning Made Easy

Aggregation rule MDA CWTM MeaMed Krum� GM CWMed

� 2 O
� r

� 2

T

�
1

n � f + �
� �

f 2

(n � f )
f 2

(n � f ) � 2 f 2

(n � f ) � 2 (n � f )2

n � 2f
(n � f )3

(n � 2f )n
n 2

(n � f ) � 2

# 2 (0; 1) and � := min f 2
p

n � f ;
p

dg

Table 2.Rates of convergence, as de�ned in Corollary 1, for several(f; � )-resilient averaging rules whenf < n= 2. Note that the rates
only differ in the� term. For simplicity, we only present the values of� for the different rules.

the convergence of Algorithm 1. However, the tradi-
tional Lyapunov function ofE [Q(� t )] turns out to be
inadequate for solving this problem.

To address this issue, we devise a novel Lyapunov function

Vt := E
�
2Q(� t ) +

1
8L 2 kmt � r Q(� t )k

2
�

:

By analyzing the growth ofVt along the steps of Algo-
rithm 1, we show that setting the momentum coef�cient
� =

p
1 � 24L yields the stated �nite-time convergence.

Note that this momentum coef�cient is well de�ned (i.e.,
it belongs to[0; 1)) as soon asT � ao L

12� 2 � 2 (n � f ) , which
explains the condition onT in Theorem 1.

Using Theorem 1, we can show that Algorithm 1 is(f; � )-
resilient. Speci�cally, by ignoring the higher-order term in
T, and the constants, we obtain the following corollary.

Corollary 1. Suppose that assumptions 1 and 2 hold true.
Then, Algorithm 1 with an(f; � )-resilient averaging rule,
and parameters t , T and� as de�ned in Theorem 1, is is
(f; � )-resilient with

� 2 O

 s
� 2

T

�
1

n � f
+ � 2(n � f )

� !

:

Basically, we can obtain an arbitrarily small� if the algo-
rithm is run for a suf�ciently large number of steps. In
particular, we can use Corollary 1 to determine, for any
f < n= 2 and� > 0, the number of stepsT and the momen-
tum coef�cient � for which Algorithm 1 is(f; � )-resilient,
for any of the six aggregation rules listed in Table 1. This
shows that, by De�nition 1, Algorithm 1 isoptimally re-
silient for any of these rules. In Table 2, we summarize
the rates of convergence (i.e., order of� ) for the aggrega-
tion rules we consider. These rates are simply computed by
substituting in Corollary 1 the values of� from Table 1.

4.2. Analysis & Discussion

Impact of the fraction of Byzantine workers. From Ta-
ble 2 we note that the order of� grows proportionally to

f=n for all the aggregation rules listed, except for CWMed.
Basically, a smaller fraction of Byzantine workers enables
faster convergence to Algorithm 1 when using an appropri-
ate resilience averaging rule.

Comparison of convergence rates.The rate of conver-
gence of Algorithm 1, shown in Corollary 1, matches that of
vanilla distributed SGD (Lei et al., 2019) in terms of the total
number of stepsT.4 Moreover, when the Byzantine work-
ers are very few, i.e.,f � n, the rate for MDA, CWTM,
and MeaMed isO ( � =

p
nT ). Thus, their rate improves with

largern in a similar manner as vanilla distributed SGD (Lian
et al., 2015). However, in the same scenario, the rate for
Krum� , GM and CWMed isO ( �

p
n=

p
T ), i.e., it is directly

proportional ton.

This phenomenon could be explained by the fact that Krum� ,
CWMed, and GM are simplymedian-basedaggregation
rules, without any averaging operation. Thus, the variance
of their outputs grows withn, as suggested by the standard
bounds fromorder statistics(Arnold & Groeneveld, 1979;
Bertsimas et al., 2006). On the contrary, MDA, CWTM,
and MeaMed perform an averaging operation after �ltering
out dubious vectors, thus mimicking the variance reduction
property of the averaging scheme traditionally used in the
vanilla distributed SGD.

5. Empirical Evaluation

To investigate the practical relevance of RESAM, we re-
port on a comprehensive set of experiments evaluating it
on benchmark image classi�cation tasks under four differ-
ent Byzantine threats. We implement Algorithm 1 with
six different resilient averaging rules and six momentum
coef�cients. To verify the bene�ts of our framework, we
also run the same set of experiments using twononresilient
averaging rules. Essentially, our experiments suggest that
combining resilient averaging and distributed momentum is
critical to Byzantine resilience even in practice.

4Vanilla distributed SGD refers to the case when the server
uses the simple averaging rule and there are no Byzantine workers.



Byzantine Machine Learning Made Easy

Figure 1.We report on experiments performed on MNIST withf = 5 Byzantine amongn = 15 workers. The1st and2nd rows depict the
results for� = 0 and� = 0 :99, respectively. The columns depict the performance of the learning under theempire, little, sign-�ipping,
andlabel-�ipping attacks, respectively.

Figure 2.We report on experiments performed on CIFAR-10 withf = 5 Byzantine amongn = 25 workers. The1st and2nd rows
depict the results for� = 0 and� = 0 :99, respectively. The columns depict the performance of the learning under theempire, little,
sign-�ipping, andlabel-�ipping attacks, respectively.

5.1. Experimental Setup

Datasets.We use MNIST (LeCun & Cortes, 2010), Fashion-
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky
et al., 2009). The datasets are pre-processed as in (Baruch
et al., 2019) and (El Mhamdi et al., 2021b).

Architectures and �xed hyperparameters. For MNIST
and Fashion-MNIST, we consider a convolutional neural net-
work (CNN) with two convolutional layers followed by two
fully-connected layers. To train the model, we use a Cross
Entropy loss, a total number of workersn = 15, a constant
learning rate = 0 :75, and a clipping parameterC = 2 .
We also add aǹ2-regularization factor of10� 4. Finally, we
use a mini-batch size ofb = 25. For CIFAR-10, we use
a CNN with 4 convolutional layers and 2 fully-connected
layers, a Cross Entropy loss, and an`2-regularization factor
of 10� 2. We setn = 25,  = 0 :25, C = 5 , andb = 50.
Refer to Appendix D.3 for more details on our models.

Varying hyperparameters. We vary the number of Byzan-

tine workersf in f 1; 3; 5; 6; 7g for MNIST and Fashion-
MNIST, and f 5; 11g for CIFAR-10. We also vary the
attack implemented by the Byzantine workers. Speci�-
cally, we considerlittle (Baruch et al., 2019),empire(Xie
et al., 2019a),sign-�ipping (Allen-Zhu et al., 2020), and
label-�ipping (Allen-Zhu et al., 2020). We consider six re-
silient aggregation rules (MDA, CWTM, CWMed, Krum� ,
MeaMed, and GM), and two that are not resilient averaging
(CGE and CC). As benchmark, we also use theaveraging
aggregation rule without Byzantine workers (denoted by
“No attack”). Finally, we vary the momentum coef�cient�
in f 0; 0:6; 0:8; 0:9; 0:99; 0:999g.

Intractability of MDA and GM. Although MDA presents
anorder-optimalresilience coef�cient, it is computationally
demanding. As pointed out in (El Mhamdi et al., 2020), its

time complexity is inO
� � n

f

�
+ dn2

�
. Additionally, GM

does not have a closed-form solution. Existing methods
implementing GM, such as (Cohen et al., 2016; Pillutla



Byzantine Machine Learning Made Easy

et al., 2019) and references therein, are iterative and only ap-
proximate GM. Moreover, these methods require expensive
computations, e.g., determining eigenvalues and eigenvec-
tors ofd � d matrices (Cohen et al., 2016) in each iteration.
Here, we use the approximation algorithm from (Pillutla
et al., 2019) to compute GM and only implement MDA
whenever its computational complexity is not prohibitive,
i.e., when neither

� n
f

�
nordn2 are too large.

Reproducibility and reusability. Each experiment is
repeated 5 times using seeds from 1 to 5 for reproducibil-
ity purposes. Overall, we performed over1; 512 ex-
periments (7; 560 runs), of which we provide a brief
overview below. Additional plots and code base to re-
produce our experiments are available in the supplemen-
tary material. Our implementation will also be made
accessible online.

5.2. Experimental Results

We present in Figures 1 and 2 the top-1 cross-accuracy
achieved on MNIST and CIFAR-10 when running dis-
tributed SGD for 800 and 2500 steps respectively for differ-
ent aggregation rules and Byzantine attacks. We consider
f = 5 Byzantine workers in both cases. Due to space
limitations, we only show here the results for MNIST and
CIFAR-10. Similar results for Fashion-MNIST are deferred
to Appendix E.1.

Themain takeawayof our experiments is that RESAM is
crucial to Byzantine resilience in practice. For all datasets
considered, we observe from Figures 1 and 2 that combining
resilient averaging rules (identi�ed by blue points) and dis-
tributed momentum (with� = 0 :99) consistently provides
similar cross-accuracies as the benchmark (“No attack”) in
all attack scenarios. However, when using a resilient av-
eraging rule without momentum (� = 0 ), the Byzantine
workers can deteriorate the learning (e.g., see second col-
umn,little attack). Furthermore, using momentum by itself
might not suf�ce either. For instance, on CIFAR-10, using
CGE (which is not resilient averaging) results in equally-bad
cross-accuracies both when� = 0 and when� = 0 :99.

The case of CC.In Figure 2, we observe that CC does not
present a consistent behavior regarding momentum. In fact,
setting� = 0 :99 clearly mitigates the impact of thelittle
attack, but drastically deteriorates the performance of the
algorithm againstlabel-�ipping. Similar inconsistencies
are observed for MNIST. Note however that although CC
does not behave as a resilient averaging rule, it can present
good performances when combined with other levels of
momentum (e.g., see� = 0 :9 in Appendix E.2).

6. Additional Related Work & Discussion

We discuss hereafter other work that we believe to be related
to ours, as well as some possible extensions of our approach.

Applicability to robust estimation. The problem of robust
estimation with corrupted data (Lai et al., 2016; Charikar
et al., 2017; Diakonikolas et al., 2017; 2019a;b; Steinhardt
et al., 2018) can be treated as a special case of Byzantine
resilience in distributed machine learning where a Byzantine
worker behaves just like an honest worker, except that its
stochastic gradients may correspond to an incorrect data
distribution (instead ofD). RESAM can thus be readily
used for robust estimation over an arbitrary distributionD.

Momentum variants. Besides Polyak's momentum, which
we considered, it would be interesting to study the impact
of the recently proposedmomentum-based variance reduc-
tion (MVR) technique, which has been shown to have op-
timal convergence rate in non-convex learning (Cutkosky
& Orabona, 2019). However, to apply this technique, the
gradients (of honest workers) must be de�ned in a different
way than in(2). Basically,U(� ) cannot have an arbitrary
distribution subject to Assumption 2 anymore.

Second-order stationarity.Although a critical point, i.e.,
a �rst-order stationary point, represents a global minimum
when the loss functionQ is convex, this need not be true
in general. Indeed, a critical point may not even represent
a local minimum whenQ is non-convex, and theoretically
speaking, our algorithm may get entrapped atsaddle points.
Thus, a stronger learning goal would be to output a second-
order stationary point, assumingQ to be second-order Lip-
schitz smooth. Previous works achieving this goal in the
presence of Byzantine workers include (Allen-Zhu et al.,
2020; Yin et al., 2019). However, they again resort to non-
standard assumptions for stochastic gradients. Showing
second-order convergence via RESAM under only standard
assumptions represents an interesting future work.

Non-identical workers. When honest workers do not have
identical data distributions, Byzantine resilience becomes
much more challenging (Su & Shahrampour, 2019; Gupta &
Vaidya, 2020; Data & Diggavi, 2021). In this case, the goal
changes to minimizing the average of the honest workers'
loss functions (Su & Vaidya, 2016). More importantly, we
cannot achieve a desirable level of resilience anymore unless
there is some redundancy in the data (Liu et al., 2021). Apart
from using a robust aggregation rule, there has been some
work on the use of̀1-norm regularization (Li et al., 2019).
Recently, (Karimireddy et al., 2020) also proposed a meta
scheme calledbucketingthat helps in this setting. Extending
RESAM to incorporate non-identical honest workers is an
interesting future direction.

Knowledgeable server. There is some work studying
Byzantine resilience in "non-standard" distributed learning



Byzantine Machine Learning Made Easy

settings where the server either has prior knowledge on spe-
ci�c veri�ed datapoints (Cao & Lai, 2019; Yao et al., 2019;
Xie et al., 2019b; 2020; Regatti et al., 2020), or has control
over the sampling of datapoints (Chen et al., 2018; Rajput
et al., 2019; Gupta & Vaidya, 2019; Data et al., 2020). In the
latter case, we can simply useerror-correction coding. In
the former case, we can also tolerate a majority of Byzantine
workers. While these solutions might reveal impractical, de-
riving an optimal condition to overcome the limit of1=2
Byzantine workers remains an interesting future direction.

Acknowledgments

Sadegh and Nirupam are partly supported by Swiss National
Science Foundation (SNSF) project 200021_200477, con-
trolling the spread of Epidemics. John is partly supported
by SNSF project 200021_182542, machine learning. Rafaël
is partly supported by an Ecocloud postdoctoral fellowship.
The authors are thankful to Pierre-Louis Roman for fruitful
discussion on the introduction, to Youssef Alouah for proof-
reading the technical part, and to the anonymous reviewers
of ICML 2022 for their constructive comments.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. Tensor�ow: Large-
scale machine learning on heterogeneous distributed sys-
tems, 2015.

Alistarh, D., Allen-Zhu, Z., and Li, J. Byzantine stochas-
tic gradient descent. InProceedings of the 32nd Inter-
national Conference on Neural Information Processing
Systems, pp. 4618–4628, 2018.

Allen-Zhu, Z., Ebrahimianghazani, F., Li, J., and Alistarh,
D. Byzantine-resilient non-convex stochastic gradient
descent. InInternational Conference on Learning Repre-
sentations, 2020.

Arnold, B. C. and Groeneveld, R. A. Bounds on expecta-
tions of linear systematic statistics based on dependent
samples.The Annals of Statistics, pp. 220–223, 1979.

Baruch, M., Baruch, G., and Goldberg, Y. A little is enough:
Circumventing defenses for distributed learning. InAd-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing

Systems 2019, 8-14 December 2019, Long Beach, CA,
USA, 2019.

Bertsekas, D. and Tsitsiklis, J.Parallel and distributed com-
putation: numerical methods. Athena Scienti�c, 2015.

Bertsimas, D., Natarajan, K., and Teo, C.-P. Tight bounds on
expected order statistics.Probability in the Engineering
and Informational Sciences, 20(4):667–686, 2006.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer,
J. Machine learning with adversaries: Byzantine tolerant
gradient descent. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R. (eds.),Advances in Neural Information Processing
Systems 30, pp. 119–129. Curran Associates, Inc., 2017.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning.Siam Review,
60(2):223–311, 2018.

Boyd, S., Boyd, S. P., and Vandenberghe, L.Convex opti-
mization. Cambridge university press, 2004.

Cao, X. and Lai, L. Distributed gradient descent algo-
rithm robust to an arbitrary number of byzantine attackers.
IEEE Transactions on Signal Processing, 67(22):5850–
5864, 2019.

Charikar, M., Steinhardt, J., and Valiant, G. Learning from
untrusted data. InProceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 47–60,
2017.

Chen, L., Wang, H., Charles, Z. B., and Papailiopoulos,
D. S. DRACO: byzantine-resilient distributed training
via redundant gradients. In Dy, J. G. and Krause, A.
(eds.),Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 ofPro-
ceedings of Machine Learning Research, pp. 902–911.
PMLR, 2018.

Chen, Y., Su, L., and Xu, J. Distributed statistical machine
learning in adversarial settings: Byzantine gradient de-
scent. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 1(2):1–25, 2017.

Cohen, M. B., Lee, Y. T., Miller, G., Pachocki, J., and
Sidford, A. Geometric median in nearly linear time. In
Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pp. 9–21, 2016.

Cutkosky, A. and Orabona, F. Momentum-based variance
reduction in non-convex sgd.Advances in Neural Infor-
mation Processing Systems, 32:15236–15245, 2019.



Byzantine Machine Learning Made Easy

Data, D. and Diggavi, S. Byzantine-resilient high-
dimensional sgd with local iterations on heterogeneous
data. InInternational Conference on Machine Learning,
pp. 2478–2488. PMLR, 2021.

Data, D., Song, L., and Diggavi, S. N. Data encoding
for byzantine-resilient distributed optimization.IEEE
Transactions on Information Theory, 67(2):1117–1140,
2020.

Diakonikolas, I., Kane, D. M., and Stewart, A. Statisti-
cal query lower bounds for robust estimation of high-
dimensional gaussians and gaussian mixtures. In2017
IEEE 58th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 73–84. IEEE, 2017.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A.,
and Stewart, A. Robust estimators in high-dimensions
without the computational intractability.SIAM Journal
on Computing, 48(2):742–864, 2019a.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Steinhardt,
J., and Stewart, A. Sever: A robust meta-algorithm for
stochastic optimization. InInternational Conference on
Machine Learning, pp. 1596–1606. PMLR, 2019b.

El Mhamdi, E. M., Guerraoui, R., and Rouault, S. The
hidden vulnerability of distributed learning in byzantium,
2018.

El Mhamdi, E. M., Guerraoui, R., Guirguis, A., Hoang,
L. N., and Rouault, S. Genuinely distributed byzantine
machine learning. InProceedings of the 39th Symposium
on Principles of Distributed Computing, pp. 355–364,
2020.

El Mhamdi, E. M., Farhadkhani, S., Guerraoui, R., Guirguis,
A., Hoang, L. N., and Rouault, S. Collaborative learning
in the jungle (decentralized, byzantine, heterogeneous,
asynchronous and nonconvex learning). InThirty-Fifth
Conference on Neural Information Processing Systems,
2021a.

El Mhamdi, E. M., Guerraoui, R., and Rouault, S. Dis-
tributed momentum for byzantine-resilient stochastic gra-
dient descent. In9th International Conference on Learn-
ing Representations, ICLR 2021, Vienna, Austria, May
4–8, 2021. OpenReview.net, 2021b.

Feng, J., Xu, H., and Mannor, S. Distributed robust learning,
2015.

Feng, J., Xu, H., and Mannor, S. Outlier robust online
learning.CoRR, abs/1701.00251, 2017.

Ghadimi, S. and Lan, G. Stochastic �rst-and zeroth-order
methods for nonconvex stochastic programming.SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Gupta, N. and Vaidya, N. H. Randomized reactive redun-
dancy for byzantine fault-tolerance in parallelized learn-
ing. arXiv preprint arXiv:1912.09528, 2019.

Gupta, N. and Vaidya, N. H. Fault-tolerance in distributed
optimization: The case of redundancy. InProceedings of
the 39th Symposium on Principles of Distributed Com-
puting, pp. 365–374, 2020.

Gupta, N., Liu, S., and Vaidya, N. Byzantine fault-tolerant
distributed machine learning with norm-based compara-
tive gradient elimination. In2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks Workshops (DSN-W), pp. 175–181. IEEE, 2021.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Ben-
nis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cor-
mode, G., Cummings, R., D'Oliveira, R. G. L., Eichner,
H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z.,
Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Har-
chaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu,
J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konecný,
J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint,
T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A.,
Pagh, R., Qi, H., Ramage, D., Raskar, R., Raykova, M.,
Song, D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T.,
Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu,
Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S. Advances
and open problems in federated learning.Foundations
and Trends® in Machine Learning, 14(1–2):1–210, 2021.
ISSN 1935-8237. doi: 10.1561/2200000083.

Karimireddy, S. P., He, L., and Jaggi, M. Byzantine-robust
learning on heterogeneous datasets via bucketing.arXiv
preprint arXiv:2006.09365, 2020.

Karimireddy, S. P., He, L., and Jaggi, M. Learning from
history for byzantine robust optimization.International
Conference On Machine Learning, Vol 139, 139, 2021.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-100 (canadian
institute for advanced research). 2009.

Lai, K. A., Rao, A. B., and Vempala, S. Agnostic estimation
of mean and covariance. In2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 665–674. IEEE, 2016.

Lamport, L., Shostak, R., and Pease, M. The byzantine
generals problem.ACM Trans. Program. Lang. Syst., 4
(3):382–401, July 1982. ISSN 0164-0925. doi: 10.1145/
357172.357176.

LeCun, Y. and Cortes, C. MNIST handwritten digit database.
2010.



Byzantine Machine Learning Made Easy

Lei, Y., Hu, T., Li, G., and Tang, K. Stochastic gradient
descent for nonconvex learning without bounded gradient
assumptions.IEEE transactions on neural networks and
learning systems, 31(10):4394–4400, 2019.

Li, L., Xu, W., Chen, T., Giannakis, G. B., and Ling, Q.
Rsa: Byzantine-robust stochastic aggregation methods
for distributed learning from heterogeneous datasets. In
Proceedings of the AAAI Conference on Arti�cial Intelli-
gence, pp. 1544–1551, 2019.

Lian, X., Huang, Y., Li, Y., and Liu, J. Asynchronous
parallel stochastic gradient for nonconvex optimization.
Advances in Neural Information Processing Systems, 28:
2737–2745, 2015.

Liu, S., Gupta, N., and Vaidya, N. H. Approximate byzan-
tine fault-tolerance in distributed optimization. InPro-
ceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, PODC'21, pp. 379–389, New
York, NY, USA, 2021. Association for Computing Ma-
chinery. ISBN 9781450385480. doi: 10.1145/3465084.
3467902.

Lynch, N. A. Distributed algorithms. Elsevier, 1996.

Mhamdi, E. M. E., Farhadkhani, S., Guerraoui, R., and
Hoang, L. N. On the strategyproofness of the geometric
median.CoRR, abs/2106.02394, 2021.

Pillutla, K., Kakade, S. M., and Harchaoui, Z. Robust
aggregation for federated learning, 2019.

Polyak, B. Some methods of speeding up the convergence
of iteration methods.USSR Computational Mathematics
and Mathematical Physics, 4:1–17, 12 1964. doi: 10.
1016/0041-5553(64)90137-5.

Prasad, A., Suggala, A. S., Balakrishnan, S., and Ravikumar,
P. Robust estimation via robust gradient estimation.Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 82(3):601–627, 2020.

Rajput, S., Wang, H., Charles, Z., and Papailiopoulos, D.
Detox: A redundancy-based framework for faster and
more robust gradient aggregation. InInternational Con-
ference on Machine Learning, 2019.

Regatti, J., Chen, H., and Gupta, A. Bygars: Byzantine
sgd with arbitrary number of attackers.arXiv preprint
arXiv:2006.13421, 2020.

Rousseeuw, P. J. Multivariate estimation with high break-
down point.Mathematical statistics and applications, 8
(37):283–297, 1985.

Steinhardt, J., Charikar, M., and Valiant, G. Resilience: A
criterion for learning in the presence of arbitrary outliers.

In 9th Innovations in Theoretical Computer Science Con-
ference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

Su, L. and Shahrampour, S. Finite-time guarantees for
byzantine-resilient distributed state estimation with noisy
measurements.IEEE Transactions on Automatic Control,
65(9):3758–3771, 2019.

Su, L. and Vaidya, N. H. Fault-tolerant multi-agent op-
timization: optimal iterative distributed algorithms. In
Proceedings of the 2016 ACM symposium on principles
of distributed computing, pp. 425–434, 2016.

Tsitsiklis, J., Bertsekas, D., and Athans, M. Distributed
asynchronous deterministic and stochastic gradient op-
timization algorithms.IEEE transactions on automatic
control, 31(9):803–812, 1986.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms.arXiv preprint arXiv:1708.07747, 2017.

Xie, C., Koyejo, O., and Gupta, I. Generalized byzantine-
tolerant sgd, 2018.

Xie, C., Koyejo, O., and Gupta, I. Fall of empires: Breaking
byzantine-tolerant SGD by inner product manipulation.
In Proceedings of the Thirty-Fifth Conference on Uncer-
tainty in Arti�cial Intelligence, UAI 2019, Tel Aviv, Israel,
July 22-25, 2019, pp. 83, 2019a.

Xie, C., Koyejo, S., and Gupta, I. Zeno: Distributed stochas-
tic gradient descent with suspicion-based fault-tolerance.
In Chaudhuri, K. and Salakhutdinov, R. (eds.),Proceed-
ings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 ofProceedings of Machine
Learning Research, pp. 6893–6901. PMLR, 2019b.

Xie, C., Koyejo, S., and Gupta, I. Zeno++: Robust fully
asynchronous sgd. InInternational Conference on Ma-
chine Learning, pp. 10495–10503. PMLR, 2020.

Yao, X., Huang, T., Zhang, R.-X., Li, R., and Sun, L. Feder-
ated learning with unbiased gradient aggregation and con-
trollable meta updating.arXiv preprint arXiv:1910.08234,
2019.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantine-
robust distributed learning: Towards optimal statistical
rates. InInternational Conference on Machine Learning,
pp. 5650–5659. PMLR, 2018.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Defending
against saddle point attack in byzantine-robust distributed
learning. InInternational Conference on Machine Learn-
ing, pp. 7074–7084. PMLR, 2019.



Byzantine Machine Learning Made Easy

Appendix

A. Skeleton of the Proof for Theorem 1

A.1. Preliminary Notations

A.2. Momentum Drift

A.3. Momentum Deviation

A.4. Growth of Loss Function

B. Proof of Formal Statements

B.1. Proof of Lemma 1

B.2. Proof of Lemma 2

B.3. Proof of Lemma 3

B.4. Proof of Lemma 4

B.5. Proof of Theorem 1

B.6. Proof of Corollary 1

C. Resilience coef�cient for several aggregation rules (Proof of Proposition 1)

C.1. Lower Bound

C.2. Minimum Diameter Averaging (MDA)

C.3. Coordinate-Wise Trimmed Mean (CWTM)

C.4. Mean around Median (MeaMed)

C.5. (Multi-)Krum

C.6. Geometric Median (GM)

C.7. Coordinate-Wise Median (CWMed)

C.8. Centered Clipping (CC)

C.9. Comparative Gradient Elimination (CGE)

D. Additional Information on the Experimental Setup

D.1. Attacks Simulating Byzantine Behavior

D.2. Dataset Pre-processing

D.3. Detailed Model Architecture

E. Additional Experimental Results

E.1. Results on Fashion-MNIST

E.2. The case of CC

E.3. Results on MNIST With 7 Byzantine Workers



Byzantine Machine Learning Made Easy

A. Skeleton of the Proof for Theorem 1

Our formal analysis of Algorithm 1 constitutes of three critical elements

1. Themomentum drift(see Section A.2)

2. Themomentum deviation(see Section A.3)

3. Thegrowth of loss functionQ (see Section A.4)

Ultimately, we combine these elements to obtain the �nal convergence result stated in Theorem 1. Essentially, the proof of
Theorem 1, deferred to Appendix B.5, is obtained by combining the three sub-results presented by lemmas 2, 3 and 4 below.

A.1. Preliminary Notations

For a positive integerT, we let[T ] denote the setf 1; : : : ; Tg. For a �nite setS, we letjSj denote its cardinality. For each
stept, we denote byRt the output of aggregation ruleF , i.e.,

Rt := F
�

m(1)
t ; : : : ; m(n )

t

�
: (7)

We denote byPt the history from steps1 to t. Speci�cally,

Pt :=
n

� 1; : : : ; � t ; m( i )
1 ; : : : ; m( i )

t � 1; i = 1 ; : : : ; n
o

:

By convention,P1 = f � 1g. We denote byEt [�] andE [�] the conditional expectationE [� Pt ] and the total expectation,
respectively. Thus,E [�] = E1 [� � � ET [�]].

A.2. Momentum Drift

We �rst note that at any stept, given the historyPt , the momentumsm( i )
t of the honest workers need not be identically

distributed, even when the said property is true for their stochastic gradientsg( i )
t . Nevertheless, we show in Lemma 1 below

that thedrift between the honest workers' momentums can be controlled up to a certain extent by tuning the momentum
coef�cient � . We consider an arbitrary subsetH � [n] of n � f honest workers, i.e.,jHj = n � f andi 2 H only if wi is
an honest worker. Such a set always exists as there are at leastn � f honest workers in the system. Then, de�ning

mt := 1=(n � f )
X

i 2H

m( i )
t ; (8)

we can demonstrate the following. (Proof of Lemma 1 can be found in Appendix B.1.)

Lemma 1. Suppose that Assumption 2 holds true. Consider Algorithm 1. For eachi 2 H andt 2 [T], we obtain that

E
� 

 m( i )

t � mt





2
�

� 2� 2 (1 � � )2� 2( t � 1) + 2
�

1 � �
1 + �

� �
1 +

1
n � f

�
� 2:

Not that the above result holds even whenF is not a resilient averaging rule, as it only analyzes the behavior of the worker's
momentum. By building upon this �rst lemma, we can obtain a bound on the distance between the actual output ofF and
the average momentum of honest workers for the case whenF is (f; � )-resilient averaging. Speci�cally, when de�ning

� t := Rt � mt ; (9)

we get the following. (Proof of Lemma 2 can be found in Appendix B.2.)

Lemma 2. Suppose that Assumption 2 holds true. Consider Algorithm 1 whenF is (f; � )-resilient averaging. For each
stept 2 [T], we obtain that

E
h
k� t k

2
i

� 8� 2� 2(n � f )(1 � � )2� 2( t � 1) + 8
�

1 � �
1 + �

�
(n � f + 1) � 2 � 2:



Byzantine Machine Learning Made Easy

A.3. Momentum Deviation

Next, we study the distance between the average honest momentummt and the true gradientr Q(� t ). Speci�cally, we
de�ne deviationto be

� t := mt � r Q (� t ) ; (10)

and obtain in Lemma 3 below an upper bound on the growth of the deviation over the learning stepst 2 [T]. (Proof of
Lemma 3 can be found in Appendix B.3.)

Lemma 3. Suppose that assumptions 1 and 2 hold true. Consider Algorithm 1 withT > 1. For all t > 1 we obtain that

E
h
k� t k

2
i

� � 2� t � 1 E
h
k� t � 1k2

i
+ 4  t � 1L(1 +  t � 1L)� 2 E

h
 r Q(� t � 1)


 2

i
+ (1 � � )2 � 2

(n � f )

+ 2  t � 1L(1 +  t � 1L)� 2 E
h
k� t � 1k2

i
:

where� t := (1 +  t L) (1 + 4  t L).

A.4. Growth of Loss Function

Finally, we analyze the third element, i.e., the growth of cost functionQ(� ) along the trajectory of Algorithm 1. From(6)
and (7), we obtain that for each stept

� t +1 = � t �  t Rt = � t �  t mt �  t (Rt � mt ) :

Furthermore, by (9),Rt � mt = � t . Thus, for allt,

� t +1 = � t �  t mt �  t � t : (11)

This means that Algorithm 1 can actually be treated as distributed SGD with a momentum term that is subject to perturbation
proportional to� t at each stept. This perspective leads us to the following result. (Proof of Lemma 4 can be found in
Appendix B.4.)

Lemma 4. Suppose that Assumption 1 holds true. Consider Algorithm 1. For allt 2 [T], we obtain that

E
�
2Q(� t +1 ) � 2Q(� t )

�
� �  t (1 � 4 t L) E

h
kr Q(� t )k

2
i

+ 2  t (1 + 2  t L) E
h
k� t k

2
i

+ 2  t (1 +  t L) E
h
k� t k

2
i

:



Byzantine Machine Learning Made Easy

B. Proof of Formal Statements

We now present technical proof for both the aforementioned Lemmas as well as Theorem 1 and Corollary 1.

B.1. Proof of Lemma 1

Lemma 1. Suppose that Assumption 2 holds true. Consider Algorithm 1. For eachi 2 H andt 2 [T], we obtain that

E
� 

 m( i )

t � mt





2
�

� 2� 2 (1 � � )2� 2( t � 1) + 2
�

1 � �
1 + �

� �
1 +

1
n � f

�
� 2:

Proof. Recall thatH � f 1; : : : ; ng is a set ofn � f honest workers, i.e.,jHj = n � f andi 2 H only if wi is an honest
worker. Also, recall from (8) that

mt := 1=(n � f )
X

i 2H

m( i )
t :

We consider an arbitraryi 2 H . For simplicity we de�ne

em( i )
t := m( i )

t � mt ;

and

gt := 1=(n � f )
X

j 2H

g( j )
t : (12)

Now, we consider an arbitrary stept 2 [T]. Substituting from(5), i.e.,m( i )
t = � m ( i )

t � 1 + (1 � � ) g( i )
t for all i 2 H , in (8),

i.e.,mt = 1=(n � f )
P

i 2H m( i )
t , we obtain that

mt = � mt � 1 + (1 � � ) gt

wherem0 = 0 , asm( i )
0 = 0 for all honestwi by convention. Thus,

em( i )
t = � em( i )

t � 1 + (1 � � )
�

g( i )
t � gt

�
: (13)

Recall that for any vectorv, kvk2 = hv; vi . From above we obtain that



 em( i )

t





2
= � 2



 em( i )

t � 1





2
+ (1 � � )2



 g( i )

t � gt





2
+ 2 � (1 � � )

D
em( i )

t � 1; g( i )
t � gt

E
:

Upon taking conditional expectationEt [�] on both sides, and using the fact thatem( i )
t � 1 is a deterministic function of the

historyPt , we obtain that

Et

� 

 em( i )

t





2
�

= � 2Et

� 

 em( i )

t � 1





2
�

+ (1 � � )2Et

� 

 g( i )

t � gt





2
�

+ 2 � (1 � � ) Et

hD
em( i )

t � 1; g( i )
t � gt

Ei

= � 2


 em( i )

t � 1





2
+ (1 � � )2Et

� 

 g( i )

t � gt





2
�

+ 2 � (1 � � )
D

em( i )
t � 1; Et

h
g( i )

t � gt

iE
:

Due to Assumption 2 and the de�nition ofgt in (12), Et

h
g( i )

t � gt

i
= Et

h
g( i )

t

i
� Et [gt ] = r Q(� t ) � r Q(� t ) = 0 . Thus,

from above we obtain that

Et

� 

 em( i )

t





2
�

= � 2


 em( i )

t � 1





2
+ (1 � � )2Et

� 

 g( i )

t � gt





2
�

:



Byzantine Machine Learning Made Easy

Assumption 2 also implies thatEt

� 

 g( i )

t � r Q(� t )




2
�

� � 2 for all i 2 H . As g( j )
t 's for j 2 H are independent of each

other, we haveEt

h
kgt � r Q(� t )k

2
i

� � 2=(n � f ). Therefore,Et

� 

 g( i )

t � gt





2
�

� 2 (1 + 1=(n � f )) � 2. Substituting this

above we obtain that

Et

� 

 em( i )

t





2
�

� � 2


 em( i )

t � 1





2
+ 2(1 � � )2

�
1 +

1
n � f

�
� 2:

Taking total expectation on both sides we obtain that

E
� 

 em( i )

t





2
�

� � 2 E
� 

 em( i )

t � 1





2
�

+ 2(1 � � )2
�

1 +
1

n � f

�
� 2:

As the above holds true for an arbitraryt 2 [T], by telescopic expansion we obtain for allt 2 [T] that

E
� 

 em( i )

t





2
�

� � 2( t � 1) E
� 

 em( i )

1





2
�

+ 2(1 � � )2
�

1 +
1

n � f

�
� 2

t � 2X

� =0

� 2�

= � 2( t � 1) E
� 

 em( i )

1





2
�

+ 2(1 � � )2
�

1 +
1

n � f

�
� 2

�
1 � � 2( t � 1)

1 � � 2

�
:

As 0 � � < 1, we have1 � � 2( t � 1) � 1. Thus, from above we obtain for allt 2 [T] that

E
� 

 em( i )

t





2
�

� � 2( t � 1) E
� 

 em( i )

1





2
�

+ 2
�

1 � �
1 + �

� �
1 +

1
n � f

�
� 2: (14)

From (13), for eachi 2 H we have (upon recalling thatm( i )
0 = 0 for all i 2 H ),

em( i )
1 = (1 � � )

�
g( i )

1 � g1

�
:

By de�nition of gt in (12),

E
� 

 em( i )

1





2
�

= (1 � � )2 E
� 

 g( i )

1 � g1





2
�

= (1 � � )2 E

2

6
4








1
(n � f )

X

j 2H

�
g( i )

1 � g( j )
1

�







2
3

7
5 :

Thus, by applying Jensen's inequality,

E
� 

 em( i )

1





2
�

�
(1 � � )2

(n � f )

X

j 2H

E
� 

 g( i )

1 � g( j )
1





2
�

:

By Assumption 2, as gradients of honest workers are pair-wise independent,E
� 

 g( i )

1 � g( j )
1





2
�

� 2� 2. Substituting this

above we obtain that for eachi 2 H ,

E
� 

 em( i )

1





2
�

� 2� 2(1 � � )2:

Substituting from above in (14) proves the lemma, i.e., for allt 2 [T],

E
� 

 em( i )

t





2
�

� 2� 2 (1 � � )2� 2( t � 1) + 2
�

1 � �
1 + �

� �
1 +

1
n � f

�
� 2:



Byzantine Machine Learning Made Easy

B.2. Proof of Lemma 2

Lemma 2. Suppose that Assumption 2 holds true. Consider Algorithm 1 whenF is (f; � )-resilient averaging. For each
stept 2 [T], we obtain that

E
h
k� t k

2
i

� 8� 2� 2(n � f )(1 � � )2� 2( t � 1) + 8
�

1 � �
1 + �

�
(n � f + 1) � 2 � 2:

Proof. Recall from (7) and (9), respectively, that

Rt := F
�

m(1)
t ; : : : ; m(n )

t

�
and � t := Rt � mt :

We consider an arbitrary stept. As F is assumed(f; � )-resilient averaging, by De�nition 2 we obtain that

k� t k
2 = kRt � mt k

2 � � 2 max
i; j 2H



 m( i )

t � m( j )
t





2
: (15)

Note that for any pairi; j 2 H , from triangle inequality we have


 m( i )

t � m( j )
t



 �



 m( i )

t � mt



 +



 m( j )

t � mt



 .

As 2ab � a2 + b2, we also have


 m( i )

t � m( j )
t





2
� 2



 m( i )

t � mt





2
+ 2



 m( j )

t � mt





2
� 4 maxi 2H



 m( i )

t � mt





2
.

Therefore,

max
i; j 2H



 m( i )

t � m( j )
t





2
� 4 max

i 2H



 m( i )

t � mt





2
:

As maxi 2H



 m( i )

t � mt





2
�

P
i 2H



 m( i )

t � mt





2
, from above we obtain that

max
i; j 2H



 m( i )

t � m( j )
t





2
� 4

X

i 2H



 m( i )

t � mt





2
:

Substituting from above in(15)we obtain thatk� t k
2 � 4� 2 P

i 2H



 m( i )

t � mt





2
. Upon taking total expectations on both

sides we obtain that

E
h
k� t k

2
i

� 4� 2
X

i 2H

E
� 

 m( i )

t � mt





2
�

: (16)

From Lemma 1, under Assumption 2, we have for alli 2 H that

E
� 

 m( i )

t � mt





2
�

� 2� 2 (1 � � )2� 2( t � 1) + 2
�

1 � �
1 + �

� �
1 +

1
n � f

�
� 2:

As jHj = n � f , Substituting from above in (16) proves the lemma, i.e., we obtain that

E
h
k� t k

2
i

� 8� 2� 2(n � f )(1 � � )2� 2( t � 1) + 8 � 2
�

1 � �
1 + �

�
(n � f + 1) � 2:

B.3. Proof of Lemma 3

Lemma 3. Suppose that assumptions 1 and 2 hold true. Consider Algorithm 1 withT > 1. For all t > 1 we obtain that

E
h
k� t k

2
i

� � 2� t � 1 E
h
k� t � 1k2

i
+ 4  t � 1L(1 +  t � 1L)� 2 E

h
 r Q(� t � 1)


 2

i
+ (1 � � )2 � 2

(n � f )

+ 2  t � 1L(1 +  t � 1L)� 2 E
h
k� t � 1k2

i
:

where� t := (1 +  t L) (1 + 4  t L).



Byzantine Machine Learning Made Easy

Proof. Recall from De�nition (10) that

� t := mt � r Q (� t ) :

Consider an arbitrary stept > 1. By De�nitions (5) and (8), we obtain that

� t = � mt � 1 + (1 � � ) gt � r Q (� t ) :

Upon adding and subtracting� r Q(� t � 1) and� r Q(� t ) on the R.H.S. above we obtain that

� t = � mt � 1 � � r Q(� t � 1) + (1 � � ) gt � r Q (� t ) + � r Q(� t ) + � r Q(� t � 1) � � r Q(� t )

= �
�
mt � 1 � r Q(� t � 1)

�
+ (1 � � ) gt � (1 � � )r Q (� t ) + �

�
r Q(� t � 1) � r Q(� t )

�
:

As mt � 1 � r Q(� t � 1) = � t � 1 (by De�nition (10)), from above we obtain that

� t = �� t � 1 + (1 � � ) (gt � r Q (� t )) + �
�
r Q(� t � 1) � r Q(� t )

�
:

Therefore,

k� t k
2 = � 2 k� t � 1k2 + (1 � � )2 kgt � r Q (� t )k

2 + � 2

 r Q(� t � 1) � r Q(� t )


 2

+ 2 � (1 � � ) h� t � 1; gt � r Q (� t )i

+ 2 � 2 

� t � 1; r Q(� t � 1) � r Q(� t )

�
+ 2 � (1 � � )



gt � r Q (� t ) ; r Q(� t � 1) � r Q(� t )

�
:

By taking conditional expectationEt [�] on both sides, and recalling that� t � 1, � t and� t � 1 are deterministic values when the
historyPt is given, we obtain that

Et

h
k� t k

2
i

= � 2 k� t � 1k2 + (1 � � )2Et

h
kgt � r Q (� t )k

2
i

+ � 2

 r Q(� t � 1) � r Q(� t )


 2

+

2� (1 � � ) h� t � 1; Et [gt ] � r Q (� t )i + 2 � 2 

� t � 1; r Q(� t � 1) � r Q(� t )

�

+ 2 � (1 � � )


Et [gt ] � r Q (� t ) ; r Q(� t � 1) � r Q(� t )

�
:

Recall thatgt := 1=(n � f )
P

j 2H g( j )
t . Thus, owing to Assumption 2,Et [gt ] = r Q(� t ). Using this above we obtain that

Et

h
k� t k

2
i

= � 2 k� t � 1k2 + (1 � � )2Et

h
kgt � r Q (� t )k

2
i

+ � 2

 r Q(� t � 1) � r Q(� t )


 2

+ 2 � 2 

� t � 1; r Q(� t � 1) � r Q(� t )

�
:

Also, by Assumption 2 and the fact thatg( j )
t 's for j 2 H are independent of each other, we haveEt

h
kgt � r Q (� t )k

2
i

�
� 2

(n � f ) . Thus,

Et

h
k� t k

2
i

� � 2 k� t � 1k2 + (1 � � )2 � 2

(n � f )
+ � 2


 r Q(� t � 1) � r Q(� t )


 2

+ 2 � 2 

� t � 1; r Q(� t � 1) � r Q(� t )

�
:

By Cauchy-Schwartz inequality,


� t � 1; r Q(� t � 1) � r Q(� t )

�
� k � t � 1k


 r Q(� t � 1) � r Q(� t )


 . By Assumption 1,

 r Q(� t � 1) � r Q(� t )

 � L


 � t � � t � 1


 . Recall from (6) that� t = � t � 1 �  t � 1Rt � 1. Thus,

 r Q(� t � 1) � r Q(� t )

 �  t � 1L kRt � 1k. Using this above we obtain that

Et

h
k� t k

2
i

� � 2 k� t � 1k2 + (1 � � )2 � 2

(n � f )
+  2

t � 1� 2L 2 kRt � 1k2 + 2  t � 1� 2L k� t � 1k kRt � 1k :

As 2ab � a2 + b2, from above we obtain that

Et

h
k� t k

2
i

� � 2 k� t � 1k2 + (1 � � )2 � 2

(n � f )
+  2

t � 1� 2L 2 kRt � 1k2 +  t � 1L� 2
�

k� t � 1k2 + kRt � 1k2
�

= (1 +  t � 1L)� 2 k� t � 1k2 + (1 � � )2 � 2

(n � f )
+  t � 1L(1 +  t � 1L)� 2 kRt � 1k2 : (17)



Byzantine Machine Learning Made Easy

By de�nition of Rt in (9), Rt � 1 = � t � 1 + mt � 1. Thus, owing to the triangle inequality and the fact that2ab � a2 + b2,
we havekRt � 1k2 � 2k� t � 1k2 + 2 kmt � 1k2. Similarly, by de�nition of � t in (10), we havekmt � 1k2 � 2k� t � 1k2 +
2


 r Q(� t � 1)


 2

. Thus,kRt � 1k2 � 2k� t � 1k2 + 4 k� t � 1k2 + 4

 r Q(� t � 1)


 2

. Using this in (17) we obtain that

Et

h
k� t k

2
i

� (1 +  t � 1L)� 2 k� t � 1k2 + (1 � � )2 � 2

(n � f )

+ 2  t � 1L(1 +  t � 1L)� 2
�

k� t � 1k2 + 2 k� t � 1k2 + 2

 r Q(� t � 1)


 2

�
:

By re-arranging the terms on the R.H.S. we get

Et

h
k� t k

2
i

� � 2(1 +  t � 1L) (1 + 4  t � 1L) k� t � 1k2 + 4  t � 1L(1 +  t � 1L)� 2

 r Q(� t � 1)


 2

+ (1 � � )2 � 2

(n � f )

+ 2  t � 1L(1 +  t � 1L)� 2 k� t � 1k2 :

Substituting� t � 1 = (1 +  t � 1L) (1 + 4  t � 1L) above we obtain that

Et

h
k� t k

2
i

� � 2� t � 1 k� t � 1k2 + 4  t � 1L(1 +  t � 1L)� 2

 r Q(� t � 1)


 2

+ (1 � � )2 � 2

(n � f )
+ 2  t � 1L(1 +  t � 1L)� 2 k� t � 1k2 :

Recall thatt in the above is an arbitrary value in[T] greater than1. Hence, upon taking total expectation on both sides above
proves the lemma.

B.4. Proof of Lemma 4

Lemma 4. Suppose that Assumption 1 holds true. Consider Algorithm 1. For allt 2 [T], we obtain that

E
�
2Q(� t +1 ) � 2Q(� t )

�
� �  t (1 � 4 t L) E

h
kr Q(� t )k

2
i

+ 2  t (1 + 2  t L) E
h
k� t k

2
i

+ 2  t (1 +  t L) E
h
k� t k

2
i

:

Proof. Consider an arbitrary stept. Due to Assumption 1 (i.e., Lipschitz continuity ofr Q(� )), we have (see (Bottou et al.,
2018))

Q(� t +1 ) � Q(� t ) �


� t +1 � � t ; r Q(� t )

�
+

L
2


 � t +1 � � t


 2

:

Substituting from (11), i.e.,� t +1 = � t �  t mt �  t � t , we obtain that

Q(� t +1 ) � Q(� t ) � �  t hmt ; r Q(� t )i �  t h� t ; r Q(� t )i +  2
t

L
2

k mt + � t k
2 :

= �  t hmt � r Q(� t ) + r Q(� t ); r Q(� t )i �  t h� t ; r Q(� t )i +  2
t

L
2

k mt + � t k
2 :

By De�nition (10), mt � r Q(� t ) = � t . Thus, from above we obtain that (scaling by factor of2)

2Q(� t +1 ) � 2Q(� t ) � � 2 t kr Q(� t )k
2 � 2 t h� t ; r Q(� t )i � 2 t h� t ; r Q(� t )i +  2

t L k mt + � t k
2 : (18)

Now, we consider the last three terms on the R.H.S. separately. Using Cauchy-Schwartz inequality, and the fact that
2ab � 1

c a2 + cb2 for anyc > 0, we obtain that (by substitutingc = 2 )

2 jh� t ; r Q(� t )ij � 2k� t k kr Q(� t )k �
2
1

k� t k
2 +

1
2

kr Q(� t )k
2 : (19)



Byzantine Machine Learning Made Easy

Similarly,

2 jh� t ; r Q(� t )ij � 2k� t k kr Q(� t )k �
2
1

k� t k
2 +

1
2

kr Q(� t )k
2 : (20)

Finally, using triangle inequality and the fact that2ab � a2 + b2 we have

k mt + � t k
2 � 2 kmt k

2 + 2 k� t k
2 = 2 kmt � r Q(� t ) + r Q(� t )k

2 + 2 k� t k
2

� 4 k� t k
2 + 4 kr Q(� t )k

2 + 2 k� t k
2 : [since mt � r Q(� t ) = � t ] (21)

Substituting from (19), (20) and (21) in (18) we obtain that

2Q(� t +1 ) � 2Q(� t ) � � 2 t kr Q(� t )k
2 +  t

�
2k� t k

2 +
1
2

kr Q(� t )k
2
�

+  t

�
2k� t k

2 +
1
2

kr Q(� t )k
2
�

+  2
t L

�
4 k� t k

2 + 4 kr Q(� t )k
2 + 2 k� t k

2
�

:

Upon re-arranging the terms in the R.H.S. we obtain that

2Q(� t +1 ) � 2Q(� t ) � �  t (1 � 4 t L) kr Q(� t )k
2 + 2  t (1 + 2  t L) k� t k

2 + 2  t (1 +  t L) k� t k
2 :

As t is arbitrarily chosen from[T], taking expectation on both sides above proves the lemma.

B.5. Proof of Theorem 1

We recall the theorem statement below for convenience.

Theorem 1. Suppose that assumptions 1 and 2 hold true. Let us denote

Q� = min
� 2 Rd

Q(� ); ao = 4
�

2 (Q(� 1) � Q� ) +
1

8L
kr Q (� 1)k2

�
; a1 = 6912L; anda2 = 288L: (22)

Consider Algorithm 1 with an(f; � )-resilient averaging rule and a constant learning rate of . Speci�cally, for all t,
 t =  where

 =

 s
ao(n � f )

a1� 2(n � f )2 + a2

!
1

�
p

T
: (23)

If T � ao L
12� 2 � 2 (n � f ) and� =

p
1 � 24L , then

E
� 

 r Q

�
b�
� 




2
�

� 2

s �
a1� 2(n � f ) +

a2

n � f

�
ao� 2

T
+

�
a2�

n � f

�  s
ao(n � f )

a1� 2(n � f ) + a2

!
1

T 3=2
:

Proof. De�ne

 o :=
1

18L
: (24)

Note that as speci�ed in the theorem statement,

T �
aoL

12� 2� 2(n � f )
�

576aoL 2

12� 576� 2� 2(n � f )L
>

576aoL 2(n � f )
6912� 2� 2(n � f )2L + 288L� 2 =

576L 2ao(n � f )
(a1� 2(n � f )2 + a2) � 2

This implies that for the learning rate de�ned in (23),

 =

 s
ao(n � f )

a1� 2(n � f )2 + a2

!
1

�
p

T
<

1
24L

<
1

18L
=  o: (25)



Byzantine Machine Learning Made Easy

This also implies

24L < 1

Therefore� =
p

1 � 24L (as de�ned in the theorem) is a well-de�ned real value in(0; 1).

To obtain the convergence result we de�ne the Lyapunov function to be

Vt := E
h
2Q(� t ) + z k� t k

2
i

andz =
1

8L
: (26)

We consider an arbitraryt 2 [T].

Invoking Lemma 3. Upon substituting t =  in Lemma 3, we obtain that

E
h
z k� t +1 k2 � z k� t k

2
i

� z� 2� E
h
k� t k

2
i

+ 4zL (1 + L )� 2 E
h
kr Q(� t )k

2
i

+ z(1 � � )2 � 2

n � f

+ 2zL (1 + L )� 2 E
h
k� t k

2
i

� z E
h
k� t k

2
i

: (27)

Recall that

� = (1 + L ) (1 + 4 L ) = 1 + 5 L + 4  2L 2: (28)

Invoking Lemma 4. By the same substitution in Lemma 4 we obtain that

E
�
2Q(� t +1 ) � 2Q(� t )

�
� �  (1 � 4L ) E

h
kr Q(� t )k

2
i

+ 2  (1 + 2 L ) E
h
k� t k

2
i

+ 2  (1 + L ) E
h
k� t k

2
i

(29)

Substituting from (27) and (29) in (26) we obtain that

Vt +1 � Vt = E
�
2Q(� t +1 ) � 2Q(� t )

�
+ E

h
z k� t +1 k2 � z k� t k

2
i

� �  (1 � 4L ) E
h
kr Q(� t )k

2
i

+ 2  (1 + 2 L ) E
h
k� t k

2
i

+ 2  (1 + L ) E
h
k� t k

2
i

+ z� 2� E
h
k� t k

2
i

+ 4zL (1 + L )� 2 E
h
kr Q(� t )k

2
i

+ z(1 � � )2 � 2

n � f

+ 2zL (1 + L )� 2 E
h
k� t k

2
i

� z E
h
k� t k

2
i

: (30)

Upon re-arranging the R.H.S. in (30) we obtain that

Vt +1 � Vt � � 
�
(1 � 4L ) � 4zL(1 + L )� 2�

E
h
kr Q(� t )k

2
i

+ z(1 � � )2 � 2

n � f

+
�
2 (1 + 2 L ) + z� 2� � z

�
E

h
k� t k

2
i

+ 2 
�
1 + L + zL(1 + L )� 2�

E
h
k� t k

2
i

:

For simplicity, we de�ne

A := (1 � 4L ) � 4zL(1 + L )� 2; (31)

B := 2  (1 + 2 L ) + z� 2� � z; (32)

and

C := 2 
�
1 + L + zL(1 + L )� 2�

: (33)



Byzantine Machine Learning Made Easy

Thus,

Vt +1 � Vt � � A E
h
kr Q(� t )k

2
i

+ B E
h
k� t k

2
i

+ C E
h
k� t k

2
i

+ z(1 � � )2 � 2

n � f
: (34)

We now analyse below the termsA, B andC.

Term A. Recall from(25) that �  o = 1
18L . Upon using this in(31), and the facts thatz = 1

8L and� 2 < 1, we obtain that

A � 1 � 4 oL �
4L
8L

(1 +  oL) �
1
2

�
9 oL

2
�

1
4

: (35)

Term B . Substituting� from (28) in (32) we obtain that

B = 2  (1 + 2 L ) + z� 2 �
1 + 5L + 4  2L 2�

� z

= �
�
1 � � 2�

z + 
�
2 + 4L + 5z� 2L + 4z� 2LL

�
:

Using the facts that� 2 � 1 and �  o � 1
18L , and then substitutingz = 1

8L we obtain that

B �
� (1 � � 2)

8L
+ 

�
2 +

4
18

+
5
8

+
4

18� 8

�
�

� (1 � � 2)
8L

+ 3 

�
� (1 � � 2) + 24 L

8L
= 0 ; (36)

where in the last equality we used the fact that1 � � 2 = 24L .

Term C. Substitutingz = 1
8L in (33), and then using the fact that� 2 < 1, we obtain that

C = 2 
�

1 + L +
1
8

(1 + L )
�

�
9
4

(1 + L ) :

As  �  o � 1
18L , from above we obtain that

C �
9
4

�
1 +

1
18

�
� 3: (37)

Combining terms A, B and C. Finally, substituting from(35), (36)and(37) in (34) (and recalling thatz = 1
8L ) we obtain

that

Vt +1 � Vt � �

4

E
h
kr Q(� t )k

2
i

+ 3  E
h
k� t k

2
i

+ (1 � � )2 � 2

8L(n � f )
:

As the above is true for an arbitraryt 2 [T], by taking summation on both sides fromt = 1 to t = T we obtain that

VT +1 � V1 � �

4

TX

t =1

E
h
kr Q(� t )k

2
i

+ 3 
TX

t =1

E
h
k� t k

2
i

+ (1 � � )2 � 2

8L(n � f )
T:

Thus,


4

TX

t =1

E
h
kr Q(� t )k

2
i

� V1 � VT +1 + 3 
TX

t =1

E
h
k� t k

2
i

+ (1 � � )2 � 2

8L(n � f )
T: (38)

Note that, as� > 0, and1 � � 2 = 24L , we have

(1 � � )2 =

�
1 � � 2

� 2

(1 + � )2 �
�
1 � � 2� 2

= 576 2L 2:



Byzantine Machine Learning Made Easy

Substituting from above in (38) we obtain that


4

TX

t =1

E
h
kr Q(� t )k

2
i

� V1 � VT +1 + 3 
TX

t =1

E
h
k� t k

2
i

+
576 2L 2� 2

8L(n � f )
T:

Multiplying both sides by4= we obtain that

TX

t =1

E
h
kr Q(� t )k

2
i

�
4 (V1 � VT +1 )


+ 12

TX

t =1

E
h
k� t k

2
i

+
288L� 2

(n � f )
T: (39)

Next, we use Lemma 2 to derive an upper bound on
P T

t =1 E
h
k� t k

2
i
.

Invoking Lemma 2. Recall from Lemma 2 that asF is assumedf -resilient averaging we have for allt 2 [T],

E
h
k� t k

2
i

� 8� 2� 2(n � f )(1 � � )2� 2( t � 1) + 8
�

1 � �
1 + �

�
(n � f + 1) � 2� 2:

By taking summation overt from 1 to T, we obtain that

TX

t =1

E
h
k� t k

2
i

� 8� 2� 2(n � f )(1 � � )2
TX

t =1

� 2( t � 1) + 8
�

1 � �
1 + �

�
(n � f + 1) � 2 � 2T

= 8 � 2� 2(n � f )(1 � � )2
�

1 � � 2T

1 � � 2

�
+ 8

�
1 � �
1 + �

�
(n � f + 1) � 2 � 2T

= 8 � 2� 2(n � f )
�

1 � �
1 + �

�
�
1 � � 2T �

+ 8
�

1 � �
1 + �

�
(n � f + 1) � 2 � 2T

As 0 < � < 1, we have
�
1 � � 2T

�
� 1. Thus, as1 � n � f � (n � f )T , from above we obtain that

TX

t =1

E
h
k� t k

2
i

� 8� 2� 2(n � f )
�

1 � �
1 + �

�
+ 16

�
1 � �
1 + �

�
(n � f )� 2� 2T = 24� 2� 2(n � f )T

�
1 � �
1 + �

�
: (40)

As � > 0, and the fact that1 � � 2 = 24L , we have

1 � �
1 + �

=
1 � � 2

(1 + � )2 � 1 � � 2 = 24L:

Substituting the above in (40), we obtain that

TX

t =1

E
h
k� t k

2
i

� (24 � 24)� 2� 2L (n � f )T = 576� 2� 2L (n � f )T:

Substituting from above in (39) we obtain that

TX

t =1

E
h
kr Q(� t )k

2
i

�
4 (V1 � VT +1 )


+ (12 � 576)� 2� 2L (n � f )T +

288L� 2

(n � f )
T

Recall that

a1 = (12 � 576)L = 6912L; anda2 = 288L:

Thus, from above we obtain that

TX

t =1

E
h
kr Q(� t )k

2
i

�
4 (V1 � VT +1 )


+ a1� 2(n � f )� 2T +

a2� 2

(n � f )
T:



Byzantine Machine Learning Made Easy

Diving both sides byT we obtain that

1
T

TX

t =1

E
h
kr Q(� t )k

2
i

�
4 (V1 � VT +1 )

T
+ a1� 2(n � f )� 2  +

a2� 2

(n � f )
: (41)

Analysing Vt . Recall thatQ� = min � 2 Rd Q(� ). Note that for an arbitraryt, by de�nition of Vt in (26),

Vt � 2Q� = 2 E [Q(� t ) � Q� ] + z E
h
k� t k

2
i

� 0 + z E
h
k� t k

2
i

� 0:

Thus,

V1 � VT +1 = V1 � 2Q� � (VT +1 � 2Q� ) � V1 � 2Q� : (42)

Moreover,

V1 = 2Q(� 1) + z E
h
k� 1k2

i
: (43)

By de�nition of � t in (10), and the de�nition ofmt in (8),we obtain that

E
h
k� 1k2

i
= E

h
km1 � r Q(� 1)k2

i
= E

h
k(1 � � )g1 � r Q(� 1)k2

i

wheregt , de�ned in (12), is the average ofn � f honest workers' stochastic gradients in step1. Expanding the R.H.S. above
we obtain that

E
h
k� 1k2

i
= (1 � � )2 E

h
kg1 � r Q(� 1)k2

i
+ � 2 kr Q(� 1)k2 � 2� (1 � � ) hE [g1] � r Q(� 1); r Q(� 1)i :

Under Assumption 2, we haveE [g1] = r Q(� 1) andE
h
kg1 � r Q(� 1)k2

i
� � 2=(n � f ). Therefore,

E
h
k� 1k2

i
�

(1 � � )2� 2

(n � f )
+ � 2 kr Q(� 1)k2 :

Substituting the above in (43) we obtain that

V1 � 2Q(� 1) + z
�

(1 � � )2� 2

(n � f )
+ � 2 kr Q(� 1)k2

�
:

Recall that(1 � � )2 �
�
1 � � 2

� 2
= 576 2L 2. Using this, and the facts that� 2 < 1 andz = 1

8L , we obtain that

V1 � 2Q(� 1) +
1

8L
kr Q (� 1)k2 +

576 2L 2� 2

8L(n � f )

= 2Q(� 1) +
1

8L
kr Q (� 1)k2 +

72 2L� 2

(n � f )
:

Recall thata2 = 288L. Therefore,

V1 � 2Q(� 1) +
1

8L
kr Q (� 1)k2 +

a2� 2

4(n � f )
 2:

Substituting the above in (42) we obtain that

V1 � VT +1 � 2Q(� 1) � 2Q� +
1

8L
kr Q (� 1)k2 +

a2� 2

4(n � f )
 2:

Substituting from above in (41) we obtain that

1
T

TX

t =1

E
h
kr Q(� t )k

2
i

�
4

�
2 (Q(� 1) � Q� ) + kr Q( � 1 )k2

8L

�

T
+

�
a2� 2

n � f

�

T

+ a1� 2(n � f )� 2  +
a2� 2

(n � f )
:



Byzantine Machine Learning Made Easy

Upon re-arranging the terms on R.H.S. above we obtain that

1
T

TX

t =1

E
h
kr Q(� t )k

2
i

�
4

�
2 (Q(� 1) � Q� ) + kr Q( � 1 )k2

8L

�

T
+

�
a1� 2(n � f ) +

a2

n � f

�
� 2 +

�
a2� 2

n � f

�

T

:

Recall thatao = 4
�

2 (Q(� 1) � Q� ) + kr Q( � 1 )k2

8L

�
, we obtain that

1
T

TX

t =1

E
h
kr Q(� t )k

2
i

�
ao

T
+

�
a1� 2(n � f )2 + a2

n � f

�
� 2 +

�
a2� 2

n � f

�

T

: (44)

Final step. Recall that

 =

 s
ao(n � f )

a1� 2(n � f )2 + a2

!
1

�
p

T
:

Substituting this value of in (44) we obtain that

1
T

TX

t =1

E
h
kr Q(� t )k

2
i

� 2

s �
a1� 2(n � f ) +

a2

n � f

�
ao� 2

T
+

�
a2�

n � f

�  s
ao(n � f )

a1� 2(n � f )2 + a2

!
1

T 3=2
:

Finally, recall from Algorithm 1 thatb� is chosen randomly from the set of computed parameter vectorsf � 1; : : : ; � T g. Thus,

E
� 

 r Q

�
b�
� 




2
�

= 1
T

P T
t =1 E

h
kr Q(� t )k

2
i
. Substituting this above proves the theorem.

B.6. Proof of Corollary 1

Corollary 1. Suppose that assumptions 1 and 2 hold true. Then, Algorithm 1 with an(f; � )-resilient averaging rule,
and parameters t , T and� as de�ned in Theorem 1, is is(f; � )-resilient with

� 2 O

 s
� 2

T

�
1

n � f
+ � 2(n � f )

� !

:

Proof. Owing to Theorem 1, we have

E
� 

 r Q

�
b�
� 




2
�

� 2

s �
a1� 2(n � f ) +

a2

n � f

�
ao� 2

T
+

�
a2�

n � f

�  s
ao(n � f )

a1� 2(n � f )2 + a2

!
1

T 3=2
;

where

ao = 4
�

2 (Q(� 1) � Q� ) +
1

8L
kr Q (� 1)k2

�
; a1 = 6912L; anda2 = 288L:

Thus, by De�nition 1, Algorithm 1 is(f; � )-resilient where

� = E
� 

 r Q

�
b�
� 




2
�

� 2

s �
a1� 2(n � f ) +

a2

n � f

�
ao� 2

T
+

�
a2�

n � f

�  s
ao(n � f )

a1� 2(n � f )2 + a2

!
1

T 3=2
:

Upon ignoring constants, includingao, a1 anda2, and the higher-order term ofT 3=2 , we obtain that

� 2 O

 s �
� 2(n � f ) +

1
n � f

�
� 2

T

!

:

Hence, the proof.



Byzantine Machine Learning Made Easy

C. Resilience coef�cient� for several aggregation rules (Proof of Proposition 1)

In this section, we �rst present a lower bound in Section C.1 on the resilience coef�cient for any deterministic(f; � )-resilient
averaging rule. Then, we present the aggregation rules listed in Table 1 and derive their resilience coef�cients. More
precisely, we compute the resilience coef�cients of the following rules.

• Minimum diameter averaging(MDA) in Section C.2

• Coordinate-wise trimmed mean(CWTM) in Section C.3

• Mean-around-median(MeaMed) in Section C.4

• (Multi-)Krum� in Section C.5

• Geometric median(GM) in Section C.6

• Coordinate-wise median(CWMed) in Section C.7.

As an immediate corollary of the result we get for theses aggregation rules, we obtain Proposition 1, that we recall below.

Proposition 1. Consider an aggregation ruleF 2 f MDA; CWTM; MeaMed; Krum� ; GM; CWMedg. For anyf < n= 2,
there exists a resilience coef�cient� for whichF is (f; � )-resilient averaging.

Besides computing the aforementioned resilience coef�cients, we also discuss the case ofcentred clipping(CC) and
comparative gradient elimination(CGE) in Section C.8 and Section C.9 respectively.

C.1. Lower Bound

Proposition 2. For 0 � f < n , there cannot exist an(f; � )-resilient averaging rule for� < f
n � f .

Proof. Consider an arbitrary value off 2 f 0; : : : ; n � 1g. Let F be an(f; � )-resilient averaging aggregation rule. Consider
a set ofn one dimensional vectorsx1; : : : ; xn such thatx1 = : : : = xn � f = 0 , andxn � f +1 = : : : = xn = 1 . Let us �rst
consider a setS0 = f 1; : : : ; n � f g. SincejS0j = n � f , by De�nition 2, we have

kF (x1; : : : ; xn ) � xS0 k � � max
i;j 2 S0

kx i � x j k = 0 :

Thus,F (x1; : : : ; xn ) = xS0 = 0 . Now, consider another setS1 = f f + 1 ; : : : ; ng. Note thatxS1 = f
n � f . Thus,

kF (x1; : : : ; xn ) � xS1 k =
f

n � f
: (45)

As F is assumed to be an(f; � )-resilient averaging rule, by De�nition 2 we have

kF (x1; : : : ; xn ) � xS1 k � � max
i;j 2 S1

kx i � x j k = �:

If � < f
n � f then the above contradicts (45). This concludes the proof.

C.2. Minimum Diameter Averaging (MDA)

Given a set ofn vectorsx1; : : : ; xn , the MDA algorithm, originally proposed in (Rousseeuw, 1985) and reused in (El Mhamdi
et al., 2018), �rst chooses a setS� of cardinalityn � f with the smallestdiameter, i.e.,

S� 2 argmin
S�f 1;:::; n

j S j = n � f
g

�
max
i;j 2 S

kx i � x j k
�

: (46)



Byzantine Machine Learning Made Easy

Then the algorithm outputs, the average of the inputs in setS� . Speci�cally it outputs

MDA(x1; : : : ; xn ) :=
1

n � f

X

i 2 S �

x i : (47)

Proposition 3. If f < n= 2 thenMDA is an(f; � )-resilient averaging rule for� = 2f
n � f .

Proof. Let S be an arbitrary subset off 1; : : : ; ng such thatjSj = n � f . To prove the proposition we �rst show that

kMDA(x1; : : : ; xn ) � xSk �
f

n � f
max

i 2 S;j 2 S �
kx i � x j k

wherexS := 1
jSj

P
i 2 S x i .

In doing so , we note thatjS� n Sj = jS� [ Sj � j Sj � n � (n � f ) = f . The same observation holds forjS n S� j. Hence
we obtain that

kMDA(x1; : : : ; xn ) � xSk =







1
n � f

X

i 2 S �

x i �
1

n � f

X

i 2 S

x i







=
1

n � f








X

i 2 S � nS

x i �
X

i 2 SnS �

x i








�
max(jS� n Sj ; jS n S� j)

n � f
max

i 2 S � ;j 2 S
kx i � x j k �

f
n � f

max
i 2 S;j 2 S �

kx i � x j k : (48)

As we assume thatf < n= 2, we also have

jS� \ Sj = jSj + jS� j � j S� [ Sj � (n � f ) + ( n � f ) � n � n � 2f > 0:

Therefore,S� \ S 6= ; . Let i � be an arbitrary index that belongs to bothS andS� . From triangle inequality, we obtain that,
for anyi y 2 S� andj y 2 S,


 x i y � x j y


 � k x i y � x i � k +


 x i � � x j y


 � max

i;j 2 S �
kx i � x j k + max

i;j 2 S
kx i � x j k :

By de�nition of S� in (46),maxi;j 2 S � kx i � x j k � maxi;j 2 S kx i � x j k. Thus, from above we obtain that

 x i y � x j y


 � 2 max

i;j 2 S
kx i � x j k : (49)

As i y andj y above are arbitrary elements inS� andS, respectively, from above we obtain that

max
i 2 S;j 2 S �

kx i � x j k � 2 max
i;j 2 S

kx i � x j k :

Combining the above with (49) we obtain that

kMDA(x1; : : : ; xn ) � xSk �
2f

n � f
max
i;j 2 S

kx i � x j k :

As S is an arbitrary subset of[n] of sizen � f , the above proves the proposition.

C.3. Coordinate-Wise Trimmed Mean (CWTM)

Let x 2 Rd, we denote by[x]k , thek-th coordinate ofx. Given the input vectorsx1; : : : ; xn (in Rd), we let� k denote a
permutation on[n] that sorts thek-coordinate of the input vectors in non-decreasing order, i.e.,[x � k (1) ]k � [x � k (2) ]k �
: : : � [x � k (n ) ]k . Then, the CWTM ofx1; : : : ; xn , denoted byCWTM(x1; : : : ; xn ), is a vector inRd whosek-th coordinate
is de�ned as follows,

[CWTM(x1; : : : ; xn )]k :=
1

n � 2f

X

j 2 [f +1 ;n � f ]

[x � k ( j ) ]k :



Byzantine Machine Learning Made Easy

To obtain the resilience coef�cient of CWTM, we recall show in Lemma 5 below how thediameterof a set of vectors is
related to theircoordinate-wise diameter. This lemma also proves useful to other coordinate-wise aggregation rules, e.g.,
CWMed.

Lemma 5. For a non-empty set ofd-dimensional vectorsS, we have
vu
u
t

dX

k=1

�
max
i;j 2 S

j[x i ]k � [x j ]k j
� 2

� min
n

2
p

jSj;
p

d
o

max
i;j 2 S

kx i � x j k :

Proof. Special case of Lemma 18 in (El Mhamdi et al., 2021a) forr = 2 .

We can now formally state the proposition proving that CWTM is an(f; � )-resilient averaging rule.

Proposition 4. If f < n= 2 thenCWTM is an(f; � )-resilient averaging rule for� = f
n � f min

n
2
p

n � f ;
p

d
o

.

Proof. The idea of the proof is similar to that of Theorem 5 in (El Mhamdi et al., 2021a). Consider an arbitrary set
S � [n] such thatjSj = n � f > f . For each coordinatek 2 [d], let � S

k denote a permutation onS such that
[x � S

k (1) ]k � [x � S
k (2) ]k � : : : � [x � S

k ( jSj ) ]k . Let c = CWTM(x1; : : : ; xn ). Then, by De�nition of the permuations� k , for
eachk we have that

1
n � 2f

n � 2fX

i =1

[x � S
k ( i ) ]k �

1
n � 2f

n � fX

j = f +1

[x � k ( j ) ]k = [ c]k : (50)

Note that for allj 2 S andk 2 [d], we have

[x j ]k = [ x j ]k +
1

n � 2f

n � 2fX

i =1

[x � S
k ( i ) ]k �

1
n � 2f

n � 2fX

i =1

[x � S
k ( i ) ]k

=
1

n � 2f

n � 2fX

i =1

[x � S
k ( i ) ]k +

1
n � 2f

n � 2fX

i =1

�
[x j ]k � [x � S

k ( i ) ]k
�

:

Substituting from (50) above we obtain for allj 2 S andk 2 [d] that

[x j ]k � [c]k +
1

n � 2f

n � 2fX

i =1

�
[x j ]k � [x � S

k ( i ) ]k
�

� [c]k + max
l;m 2 S

j[x l ]k � [xm ]k j : (51)

Recall thatxS := 1=jSj
P

i 2 S x i . From (50) and (51) we obtain that

[xS ]k =
1

n � f

X

i 2 [n � f ]

[x � S
k ( i ) ]k =

1
n � f

n � 2fX

i =1

[x � S
k ( i ) ]k +

1
n � f

n � fX

i = n � 2f +1

[x � S
k ( i ) ]k

�
n � 2f
n � f

[c]k +
f

n � f
([c]k + max

i;j 2 S
j[x i ]k � [x j ]k j) = [ c]k +

f
n � f

max
i;j 2 S

j[x i ]k � [x j ]k j : (52)

Now, similar to (50), we obtain for allk 2 [d] that

1
n � 2f

n � fX

i = f +1

[x � S
k ( i ) ]k �

1
n � 2f

n � fX

j = f +1

[x � k ( j ) ]k = [ c]k : (53)

In a similar manner to (51), we obtain for allj 2 S andk 2 [d] that

[x j ]k � [c]k � max
l;m 2 S

j[x l ]k � [xm ]k j : (54)



Byzantine Machine Learning Made Easy

From (53) and (54), in a similar manner to (52), we obtain that

[xS ]k � [c]k �
f

n � f
max
i;j 2 S

j[x i ]k � [x j ]k j : (55)

Owing to (52) and (55) we obtain that, for allk 2 [d],

j[xS ]k � [c]k j �
f

n � f
max
i;j 2 S

j[x i ]k � [x j ]k j :

Thus,

kxS � ck =
s X

k2 [d]

j[xS ]k � [c]k j2 �
f

n � f

vu
u
t

X

k2 [d]

�
max
i;j 2 S

j[x i ]k � [x j ]k j
� 2

:

Recall thatc = CWTM(x1; : : : ; xn ). Thus, using Lemma 5 we obtain that

kxS � CWTM(x1; : : : ; xn )k �
f

n � f
min

n
2
p

n � f ;
p

d
o

max
i;j 2 S

kx i � x j k :

As S is an arbitrary subset of[n] of sizen � f , concludes the proof.

C.4. Mean around Median (MeaMed)

Let x 2 Rd, we denote by[x]k , thek-th coordinate ofx. Given the input vectorsx1; : : : ; xn (in Rd), MeaMed computes
the average of then � f closest elements to the median in each dimension. Speci�cally, for eachk 2 [d], m 2 [n], let i m ;k

be the index of the input vector withk-th coordinate that ism-th closest to Median([x1]k ; : : : ; [xn ]k ). Let Ck be the set of
n � f indices de�ned as

Ck = f i 1;k ; : : : ; i n � f ;k g:

Then we have

[MeaMed(x1; : : : ; xn )]k =
1

n � f

X

i 2 Ck

[x i ]k ;

where MeaMed(x1; : : : ; xn ) denotes the output of the aggregation rule.

Proposition 5. If f < n= 2, thenMeaMedis an(f; � )-resilient averaging for� = 2f
n � f min

n
2
p

n � f ;
p

d
o

.

Proof. Consider an arbitrary setS such thatjSj = n � f . SincejSj > n= 2, by the de�nition of the median, for eachk 2 [d],
we have

min
i 2 S

[x i ]k � Median([x1]k ; : : : ; [xn ]k ) � max
i 2 S

[x i ]k :

Accordingly, for anyj 2 S andk 2 [d], we have

jMedian([x1]k ; : : : ; [xn ]k ) � [x j ]k j � max
i 2 S

[x i ]k � min
i 2 S

[x i ]k : (56)

In particular, this means that there exist at leastn � f vectors within[x1]k ; : : : ; [xn ]k , whose absolute deviation from
Median([x1]k ; : : : ; [xn ]k ) is upper-bound bymaxi 2 S [x i ]k � min i 2 S [x i ]k . Therefore, by the de�nition ofCk , for any
j 2 Ck , we have

jMedian ([x1]k ; : : : ; [xn ]k ) � [x j ]k j � max
i 2 S

[x i ]k � min
i 2 S

[x i ]k : (57)

Combining (56) and (57), then implies that for anyl 2 S andm 2 Ck , we have

j[x l ]k � [xm ]k j � 2 max
i;j 2 S

([x i ]k � [x j ]k ):



Byzantine Machine Learning Made Easy

Also note thatjS n Ck j = jCk n Sj = jCk [ Sj � j Sj � n � (n � f ) = f . Hence we get

j[MeaMed(x1; : : : ; xn )]k � [xS ]k j =
1

n � f

�
�
�
�
�

X

i 2 Ck

[x i ]k �
X

i 2 S

[x i ]k

�
�
�
�
�

=
1

n � f

�
�
�
�
�
�

X

i 2 Ck nS

[x i ]k �
X

i 2 SnCk

[x i ]k

�
�
�
�
�
�

�
2f

n � f
max
i;j 2 S

([x i ]k � [x j ]k ):

Finally, by using Lemma 5, we get

kxS � MeaMed(x1; : : : ; xn )k �
2f

(n � f )

vu
u
t

X

k2 [d]

�
max
i;j 2 S

j[x i ]k � [x j ]k j
� 2

(58)

�
2f

(n � f )
minf 2

p
n � f ;

p
dg max

i;j 2 S
kx i � x j k : (59)

The above concludes the proof.

C.5. (Multi-)Krum �

In this section, we study a slight adaptation of the Multi-Krum algorithm �rst introduced in (Blanchard et al., 2017). This
adaptation, called Multi-Krum� , is mainly changing one step of the procedure to enhance the tolerance of the method from
f < (n � 2)=2 (needed for the original method) tof < n= 2 (i.e., the optimal tolerance threshold).

Essentially, given the input vectorsx1; : : : ; xn , Multi-Krum� outputs an average of the vectors that are the closest to their
neighbors upon discardingf 5 farthest vectors. Speci�cally, for eachi 2 [n] andk 2 [n � 1], let i k 2 [n] n f ig be the index
of thek-th closest input vector fromx i , i.e., we havekx i � x i 1 k � : : : �


 x i � x i n � 1


 with ties broken arbitrarily. LetCi

be the set ofn � f � 1 closest vectors tox i , i.e.,

Ci = f i 1; : : : ; i n � f � 1g:

Then, for eachi 2 [n], we de�nescore(i ) :=
P

j 2 C i
kx i � x j k2. Finally, Multi-Krum�

q outputs the average ofq input
vectors with the smallest scores, i.e.,

Multi-Krum �
q (x1; : : : ; xn ) =

1
q

X

i 2 M (q)

x i ;

whereM (q) is the set ofq vectors with the smallest scores. We call by Krum� the special case of Multi-Krum�q for q = 1 .

Before analyzing Multi-Krum�
q, we prove the following lemma.

Lemma 6. Consider a setS � [n] such thatjSj = n � f . Supposeq � n � f . For anyk 2 M (q) andl 2 S, we have

kxk � x l k �

 

1 +

s
n � f
n � 2f

!

max
i;j 2 S

kx i � x j k :

Proof. To demonstrate this result, we study two cases separately;case i)k 2 S, andcase ii)k 62S.

Case i)Let l 2 S, if k 2 S, by de�nition we have

kxk � x l k � max
i;j 2 S

kx i � x j k : (60)

Thus, (6) trivially holds in case i).

5As opposed tof + 1 in the original version.



Byzantine Machine Learning Made Easy

Case ii) Let us now consider thatk 62S. SincejM (q)j = q � n � f , there exists at least an indexm 2 S such that
m =2 M (q). Then by the de�nitions of the score functionscore(�) and of the setCm , we get that

score(m) =
X

j 2 Cm

kxm � x j k2 �
X

j 2 S

kxm � x j k2 � (n � f ) max
i;j 2 S

kx i � x j k2 : (61)

Sincem =2 M (q), we havescore(k) � score(m). Accordingly, we have that

score(k) =
X

j 2 Cm

kxk � x j k2 � score(m): (62)

Note thatjCk \ Sj = jCk j + jSj � j Ck [ Sj � (n � f ) + ( n � f ) � n = n � 2f . As f < n= 2, we getCk \ S 6= ; . Now,
asCk \ S � Ck , we have

P
j 2 Ck \ S kxk � x j k2 �

P
j 2 Ck

kxk � x j k2. Thus, from (62) we obtain that

X

j 2 Ck \ S

kxk � x j k2 � score(m):

Substituting from (61) above, we obtain that
X

j 2 Ck \ S

kxk � x j k2 � (n � f ) max
i;j 2 S

kx i � x j k2 :

As jCk \ Sj � n � 2f ,
P

j 2 Ck \ S kxk � x j k2 � (n � 2f ) min j 2 S kxk � x j k2. Thus, from above we obtain that

(n � 2f ) min
j 2 S

kxk � x j k2 � (n � f ) max
i;j 2 S

kx i � x j k2 :

This implies that

min
j 2 S

kxk � x j k �

s
n � f
n � 2f

max
i;j 2 S

kx i � x j k : (63)

Let l 2 S andj � 2 arg minj 2 S kxk � x j k. By the triangle inequality, we then obtain that

kxk � x l k = kxk � x j � + x j � � x l k � k xk � x j � k + kx j � � x l k (64)

Substituting from above in (63) and using the fact thatkx j � � x l k � maxi;j 2 S kx i � x j k, we then obtain that

kxk � x l k �

 

1 +

s
n � f
n � 2f

!

max
i;j 2 S

kx i � x j k : (65)

The above proves (6) in case ii).

As (6) holds true in either case (see (60) and (65)), the lemma holds true.

We present below a proposition characterizing the resilient averaging property of Multi-Krum�
q. Note that the resilience

coef�cient of Krum� can be immediately derived from this proposition by substitutingq = 1 .

Proposition 6. If f < n= 2, andq � n � f then Multi-Krum�
q is an(f; � )-resilient averaging rule for

� =

 

1 +

s
n � f
n � 2f

!

� min
�

1;
n � q
n � f

�
:

Proof. Consider a set of vectorsS such thatjSj = n � f . As in the proof of Lemma 6, we consider two different cases
separately;case i)q � f , andcase ii)q > f .



Byzantine Machine Learning Made Easy

Case i)Let q � f . By triangle inequality and Lemma 6, we obtain that


 Multi-Krum �

q (x1; : : : ; xn ) � xS

 =








1
q

X

i 2 M (q)

x i � xS








�
1
q

X

i 2 M (q)

kx i � xSk �
1
q

X

i 2 M (q)







x i �

1
n � f

X

j 2 S

x j








�
1

q(n � f )

X

i 2 M (q)

X

j 2 S

kx i � x j k

�
1

q(n � f )

X

i 2 M (q)

X

j 2 S

 

1 +

s
n � f
n � 2f

!

max
i;j 2 S

kx i � x j k

=

 

1 +

s
n � f
n � 2f

!

max
i;j 2 S

kx i � x j k :

Thus, the proposition holds true in case i).

Case ii)Let us now considerq > f . We havejS \ M (q)j = jSj + jM (q)j � j S [ M (q)j � (n � f ) + q � n = q � f > 0.
Therefore, there exists a setP with cardinalityq � f such thatP � S \ M (q). Hence we get


 Multi-Krum �

q (x1; : : : ; xn ) � xS

 =








1
n � f

X

i 2 S

x i �
1
q

X

i 2 M (q)

x i








(66)

=








1
n � f

X

i 2 SnP

x i �
1
q

X

i 2 M (q)nP

x i �
�

1
q

�
1

n � f

� X

i 2 P

x i








(67)

=
1

q(n � f )







q

X

i 2 SnP

x i �

0

@(n � f )
X

i 2 M (q)nP

x i + ( n � f � q)
X

i 2 P

x i

1

A








=
1

q(n � f )
kA � B k ; (68)

where

A := q
X

i 2 SnP

x i and B :=

0

@(n � f )
X

i 2 M (q)nP

x i + ( n � f � q)
X

i 2 P

x i

1

A : (69)

SincejS n Pj = ( n � f ) � (q � f ) = n � q, A is a sum ofq(n � q) (potentially repetitive) vectors all of which belong to
S. Also, f (n � f ) + ( n � f � q)(q � f ) = q(n � q). Thus,B is also a sum ofq(n � q) (potentially repetitive) vectors all
of which belong toM (q). We now match each vector inA to a vector inB . Using the triangle inequality and Lemma 6, we
the obtain

kA � B k � q(n � q)

 

1 +

s
n � f
n � 2f

!

max
i;j 2 S

kx i � x j k : (70)

Combining above with (68), we then obtain


 Multi-Krum �

q (x1; : : : ; xn ) � xS

 �

n � q
n � f

 

1 +

s
n � f
n � 2f

!

max
i;j 2 S

kx i � x j k : (71)

This shows that the proposition holds true in case ii).

Combing the conclusions for cases i) and ii) concludes the proof

C.6. Geometric Median (GM)

For input vectorsx1; : : : ; xn , their geometric median, denoted byGM(x1; : : : ; xn ), is de�ned to be a vector that minimizes
the sum of the distances to these vectors. Speci�cally, we have

GM(x1; : : : ; xn ) 2 argmin
z2 Rd

nX

i =1

kz � x i k :



Byzantine Machine Learning Made Easy

For obtaining the resilience coef�cient of GM, we make use of the following three lemmas. Below, we denote by
Conv(x1; : : : ; xn ) theconvex hullof x1; : : : ; xn , i.e.,

Conv(x1; : : : ; xn ) =

(
nX

i =1

ai x i

nX

i =1

ai = 1 ; ai � 0; 8i 2 [n]

)

Lemma 7. Let y andz be any two points inConv(x1; : : : ; xn ). Then,ky � zk � maxi; j 2 [n ] kx i � x j k.

Proof. By de�nition, suppose thaty =
P n

i =1 ai x i andz =
P n

i =1 bi x i such that
P n

i =1 ai = 1 ,
P n

i =1 bi = 1 , andai � 0,
bi � 0 for i 2 [n]. We then obtain

ky � zk =







nX

i =1

ai x i � z







=







nX

i =1

ai (x i � z)







=








nX

i =1

ai

0

@x i �
nX

j =1

bj x j

1

A








=








nX

i =1

ai

0

@
nX

j =1

bj (x i � x j )

1

A








:

Using triangle inequality we obtain that

ky � zk �
nX

i =1

ai

0

@
nX

j =1

bj kx i � x j k

1

A �
nX

i =1

ai

0

@
nX

j =1

bj max
k; l 2 [n ]

kxk � x l k

1

A = max
k; l 2 [n ]

kxk � x l k
nX

i =1

ai

0

@
nX

j =1

bj

1

A

= max
k; l 2 [n ]

kxk � x l k :

Hence, the proof.

Lemma 8(Proposition 6 in (Mhamdi et al., 2021)). For any input vectorsx1; : : : ; xn 2 Rd, the following holds true:

GM(x1; : : : ; xn ) 2 Conv(x1; : : : ; xn ):

For a non-empty setS � [n]. In the remaining, we denote byf x i gi 2 S the set of vectors which index is inS, i.e.,f x i ; i 2 Sg.

Lemma 9(Theorem 1 (Part 1) in (Mhamdi et al., 2021)). For any setS � [n] such thatjSj > n= 2,

kGM(x1; : : : ; xn ) � GM (f x i gi 2 S )k �
1

q
1 � (n �j Sj )2

jSj2

max
j 2 S

kx j � GM (f x i gi 2 S )k :

By combing the above lemmas, we can devise the following result.

Proposition 7. If f < n= 2 then theGM is an(f; � )-resilient averaging rule for� = 1 + n � fp
(n � 2f )n

:

Proof. Consider any setS � [n] such thatjSj = n � f > n= 2. By triangle inequality we obtain that

kGM(x1; : : : ; xn ) � xSk � k GM(x1; : : : ; xn ) � GM (f x i gi 2 S )k + kGM (f x i gi 2 S ) � xSk :

Substituting from Lemma 9 above we obtain that

kGM(x1; : : : ; xn ) � xSk �
n � f

p
(n � 2f )n

max
j 2 S

kx j � GM (f x i gi 2 S )k + kGM (f x i gi 2 S ) � xSk : (72)

From Lemma 8, we know that GM(f x i gi 2 S ) 2 Conv(f x i gi 2 S ). Thus, owing to Lemma 7, we have

kx j � GM (f x i gi 2 S )k � max
k;l 2 S

kxk � x l k ; 8j 2 S:

Similarly, asxS 2 Conv(f x i gi 2 S ), we get

kGM (f x i gi 2 S ) � xSk � max
k;l 2 S

kxk � x l k :



Byzantine Machine Learning Made Easy

Using these in (72) we obtain that

kGM(x1; : : : ; xn ) � xSk �
n � f

p
(n � 2f )n

max
i;j 2 S

kx i � x j k + max
i;j 2 S

kx i � x j k =

 

1 +
n � f

p
(n � 2f )n

!

max
i;j 2 S

kx i � x j k :

As S is an arbitrary subset of[n] of sizen � f , by De�nition 2, the above proves the proposition.

C.7. Coordinate-Wise Median (CWMed)

For input vectorsx1; : : : ; xn , their coordinate-wise median, denoted byCWMed(x1; : : : ; xn ), is de�ned to be a vector
whosek-th coordinate, for allk 2 [d], is de�ned to be

[CWMed(x1; : : : ; xn )]k := Median([x1]k ; : : : [xn ]k ) : (73)

Before analyzing CWMed, we prove a useful lemma for the median operator.

Lemma 10. Consider a set ofn real numbersf y1; : : : ; yn g. If f < n= 2 then for any subsetS � [n] with jSj = n � f we
obtain that

jf i 2 S yi � Median(y1; : : : ; yn )gj �
n
2

� f and jf i 2 S yi � Median(y1; : : : ; yn )gj �
n
2

� f: (74)

Proof. Consider an arbitrary setS � [n] with jSj = n � f . By the de�nition of the median operator, we have

jf i 2 [n] yi � Median(y1; : : : ; yn )gj �
n
2

and jf i 2 S yi � Median(y1; : : : ; yn )gj �
n
2

:

x As jSj = n � f > f , the proof follows immediately from above.

Proposition 8. If f < n= 2 thenCWMedis an(f; � )-resilient averaging rule for� = n
2(n � f ) min

n
2
p

n � f ;
p

d
o

.

Proof. Consider aS � [n] such thatjSj = n � f . As f < n= 2, from Lemma 10 we obtain that

min
i 2 S

[x i ]k � Median([x1]k ; : : : [xn ]k ) � max
i 2 S

[x i ]k :

This implies that
Median([x1]k ; : : : [xn ]k ) � (max

i 2 S
[x i ]k � min

i 2 S
[x i ]k ) � min

i 2 S
[x i ]k : (75)

Note that, by Lemma 10, at leastn=2 � f values inf yi ; i 2 Sg are greater than or equal toMedian([x1]k ; : : : [xn ]k ). Thus,
as the remainingn=2 values inf yi ; i 2 Sg are greater than or equal tomin i 2 S [x i ]k , we obtain that

[xS ]k =
1

n � f

X

i 2 S

[x i ]k �
1

n � f

� � n
2

� f
�

Median([x1]k ; : : : [xn ]k ) +
n
2

min
i 2 S

[x i ]k

�

Substituting from (75) above we obtain that

[xS ]k �
1

n � f

� � n
2

� f
�

Median([x1]k ; : : : [xn ]k ) +
n
2

�
Median([x1]k ; : : : [xn ]k ) � (max

i 2 S
[x i ]k � min

i 2 S
[x i ]k )

��

= Median([x1]k ; : : : [xn ]k ) �
n

2(n � f )
(max

i 2 S
[x i ]k � min

i 2 S
[x i ]k ): (76)

Similarly, we can show that

[xS ]k � Median([x1]k ; : : : [xn ]k ) +
n

2(n � f )
(max

i 2 S
[x i ]k � min

i 2 S
[x i ]k ): (77)



Byzantine Machine Learning Made Easy

From (76) and (77) we obtain that

j[xS ]k � Median([x1]k ; : : : [xn ]k )j �
n

2(n � f )
max
i;j 2 S

([x i ]k � [x j ]k ):

Finally, substituting from Lemma 5 we obtain that

kxS � CWMed(x1; : : : ; xn )k =
s X

k2 [d]

j[xS ]k � Median([x1]k ; : : : [xn ]k )j2

�
n

2(n � f )

vu
u
t

X

k2 [d]

�
max
i;j 2 S

j[x i ]k � [x j ]k j
� 2

�
n

2(n � f )
min

n
2
p

n � f ;
p

d
o

max
i;j 2 S

kx i � x j k :

The above concludes the proof.

C.8. Centered Clipping (CC)

This aggregation rule was proposed by (Karimireddy et al., 2021). Speci�cally, given the input vectorsx1; : : : ; xn 2 Rd,
upon choosing aclipping parameterc� � 0, we compute a sequence of vectorsv0; : : : ; vL in Rd such that for alll 2 [L ],

vl  � vl � 1 +
1
n

X

i 2 [n ]

(x i � vl � 1) min
�

1;
c�

kx i � vl � 1k

�

wherev0 may be chosen arbitrary. Then, CC(x1; : : : ; xn ) = vL .

According to Karimireddy et al. (2021), by setting speci�c values for parametersc� andL, CC can satisfy the condition
of (f; � )-resilient averaging for� = 20

p
10f=n whenf < n= 9:7. However, they rely on extra information that is often

not possible in practice. Speci�cally, the values for parametersc� andL depend on the maximal variance of the honest

gradients� , and we must also know a bound on the initial estimate errorE
h
kxH � v0k2

i
wherexH is the average of the

honest vectors. Analyzing CC under standard assumptions and without any extra information remains an open question.

C.9. Comparative Gradient Elimination (CGE)

For input vectorsx1; : : : ; xn , let � denote a permutation on[n] that sorts the input vectors based on their norm and in
non-decreasing order, i.e.,


 x � (1)


 �


 x � (2)


 � : : : �


 x � (n )


 . CGE outputs the average of then � f vectors with

smallest norm (Gupta et al., 2021), i.e.,

CGE(x1; : : : ; xn ) =
1

n � f

n � fX

i =1

x � ( i ) :

In general, CGE isnot resilient averaging as shown below using a counter-example.

Counter-example.Consider input vectorsx1; : : : ; xn and a subsetS � [n] with jSj = n � f such thatx i = x for all i 2 S
wherekxk > 0. If kx j k < kxk for all j 2 S n [n], and

P
j 2 [n ]nS x j 6= f � x then

CGE(x1; : : : ; xn ) =
1

n � f

0

@
X

j 2 [n ]nS

x j + ( n � 2f ) x

1

A 6= x:

As xS = x andmaxi; j 2 S kx i � x j k = 0 , from above we obtain that, for all� � 0,

kCGE(x1; : : : ; xn ) � xSk = kCGE(x1; : : : ; xn ) � xk > 0 = � max
i; j 2 S

kx i � x j k :

Thus, by De�nition 2, CGE isnot resilient averaging.



Byzantine Machine Learning Made Easy

D. Additional Information on the Experimental Setup

D.1. Attacks Simulating Byzantine Behavior

In the experiments of this paper, we use four state-of-the-art attacks that we refer to asempire(Xie et al., 2019a),little (Baruch
et al., 2019),sign-�ipping (Allen-Zhu et al., 2020), andlabel-�ipping (Allen-Zhu et al., 2020). The �rst two attacks rely on
the same core idea. Let� be �xed a non-negative real number and letat be the attack vector at time stept. At every time
stept, all Byzantine workers sendgt + �a t to the server, wheregt is an estimate of the true gradient at stept. The speci�c
details of these attacks are mentioned below.

• Fall of Empires. In this attack,at = � gt . All Byzantine workers thus send(1 � � )gt at stept. In our experiments, we
set� = 1 :1 for empire, corresponding to� = 0 :1 in the notation of the original paper.

• Little is Enough. In this attack,at = � � t , where� t is the opposite vector of the coordinate-wise standard deviation of
gt . In our experiments, we set� = 1 for little.

The remaining attacks rely on different primitives. Speci�cally, they are de�ned as follows.

• Sign-�ipping. In this attack, every Byzantine worker sends the negative of its gradient to the server.

• Label-�ipping. In this attack, every Byzantine worker computes its gradient on �ipped labels before sending it to the
server. Since the labels for MNIST, Fashion-MNIST, and CIFAR-10 are inf 0; 1; :::; 9g, the Byzantine workers �ip
the labels by computingl0 = 9 � l for every training datapoint of the batch, wherel is the original label andl0 is the
�ipped/modi�ed label.

D.2. Dataset Pre-processing

MNIST receives an input image normalization of mean0:1307and standard deviation0:3081. Fashion-MNIST is horizon-
tally �ipped. CIFAR-10 is horizontally �ipped and we apply a per-channel normalization with means0:4914; 0:4822; 0:4465
and standard deviations0:2023; 0:1994; 0:2010.

D.3. Detailed Model Architecture

In this section, we discuss the different models tested in our experimental study. In particular, we experimented with one
convolutionalmodel and one simplefeed-forward neural networkfor both MNIST and Fashion-MNIST, as well as one
convolutionalmodel for CIFAR-10. In order to present the architecture of the different models, we use the compact notation
introduced in (El Mhamdi et al., 2021b).

L(#outputs) represents afully-connected linear layer, R stands forReLU activation, S stands forlog-softmax,
C(#channels) represents afully-connected 2D-convolutional layer(kernel size 3, padding 1, stride 1), M stands for
2D-maxpool(kernel size 2), B stands forbatch-normalization, and D representsdropout (with �xed probability 0.25).

Convolutional Model for CIFAR-10. The convolutional model used for CIFAR-10, introduced in (Baruch et al., 2019),
can thus be written in the following way:

(3,32×32)-C(64)-R-B-C(64)-R-B-M-D-C(128)-R-B-C(128)-R-B-M-D-L(128)-R-D-L(10)-S.

Convolutional Model for (Fashion-)MNIST. We adopt the same notation introduced earlier, with the only difference
that C(#channels) now represents a fully-connected 2D-convolutional layer of kernel size 5, padding 0, and stride 1. The
convolutional model we used for MNIST and Fashion-MNIST can thus be written in the following way:

C(20)-R-M-C(20)-R-M-L(500)-R-L(10)-S.

Simple Feed-forward Network for (Fashion-)MNIST. We consider a feed-forward neural network composed of two
fully-connected linear layers of respectively 784 and 100 inputs (for a total ofd = 79 510 parameters) and terminated by a
softmaxlayer of 10 dimensions. ReLU is used between the two linear layers. For this particular model, we used the Cross



Byzantine Machine Learning Made Easy

Entropy loss, a total number of workersn = 15, a constant learning rate = 0 :5, and a clipping parameterC = 2 . We also
add aǹ 2-regularization factor of10� 4. Note that some of these constants are reused from the literature on BR, especially
from (Baruch et al., 2019; Xie et al., 2019a; El Mhamdi et al., 2021b).

E. Additional Experimental Results

Reproducibility. All our experiments (training + graphs) are reproducible in one command. Please seecode/README.md
in the supplementary material. Additional graphs are available inplots/ .

E.1. Results on Fashion-MNIST

Figure 3.The1st and2nd rows correspond to experiments performed on Fashion-MNIST with� = 0 and� = 0 :99, respectively. The
different columns show the performance of the learning under theempire, little, sign-�ipping, andlabel-�ipping attacks withf = 5
Byzantine workers.

We also perform experiments (similar to those described in Section 5) on the Fashion-MNIST dataset. In Figure 3, we
display the top-1 cross accuracies achieved by different aggregation rules on the Fashion-MNIST dataset in a distributed
system comprisingn = 15 workers, out of whichf = 5 are Byzantine executing four different state-of-the-art attacks. We
compare the performances under two momentum settings:� = 0 (i.e., momentum is not used) and� = 0 :99.
We can clearly see from Figure 3 the improvement that momentum brings to the learning in every single Byzantine setting
(i.e., in each of the four attack scenarios), especially for the six resilient averaging aggregation rules (MDA, CWTM,
CWMed, MeaMed, Krum� , and GM). However, the performance of CGE seems unaffected by the increase in momentum
especially under theempire, little, andsign-�ipping attacks. Furthermore, CC displays poor performance underlittle for
� = 0 and underlabel-�ipping for � = 0 :99, indicating that there always seems to exist at least one setting where CC (and
CGE) display poor performance. All these observations clearly echo the main takeaway of our experiments in Section 5,
where usingboth a (f; � )-resilient averaging aggregation rule together with momentum seems to be crucial to mitigate the
effect of Byzantine workers and dramatically improve the learning in an arbitrary adversarial setting (i.e., when the executed
attack is not known beforehand).

E.2. The case of CC -� = 0 :9

In Figure 4, we show the performance of CC (which is not an(f; � )-resilient averaging rule) on the MNIST and Fashion-
MNIST datasets, with� = 0 :9 andf = 5 Byzantine workers. CC displays good performance against all four attacks for
that particular value of� . Essentially, CC can consistently work for some values of momentum (� = 0 :9), while others
signi�cantly deteriorate its performance in some cases (see� = 0 :99 in Figures 1 and 2 of the main paper). Precisely
characterizing the impact of momentum on CC's performance remains arguably an open question.

E.3. Results on MNIST With 7 Byzantine Workers

In this paragraph, we present some learning performances on the MNIST dataset in four adversarial settings wheref = 7
out of 15 workers are Byzantine. It turns out that in such an extreme adversarial scenario wheref reaches the maximum
tolerable value of

�
n
2

�
, an even larger value of� , and thus more learning steps, are needed to guarantee a good performance

in the presence of Byzantine workers. In Figure 5, we consider two values for� (0 and0:999), and showcase the advantages
of using momentum in such a setting.


