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Abstract
Many natural language processing (NLP) tasks
appear in dual forms, which are generally solved
by dual learning technique that models the du-
alities between the coupled tasks. In this work,
we propose to further enhance dual learning with
structure matching that explicitly builds struc-
tural connections in between. Starting with the
dual text↔text generation, we perform dually-
syntactic structure co-echoing of the region of in-
terest (RoI) between the task pair, together with
a syntax cross-reconstruction at the decoding side.
We next extend the idea to a text↔non-text setup,
making alignment between the syntactic-semantic
structure. Over 2*14 tasks covering 5 dual learn-
ing scenarios, the proposed structure matching
method shows its significant effectiveness in en-
hancing existing dual learning. Our method can
retrieve the key RoIs that are highly crucial to the
task performance. Besides NLP tasks, it is also
revealed that our approach has great potential in
facilitating more non-text↔non-text scenarios.

1. Introduction
A good number of NLP tasks come in dual forms, such
as neural machine translation (NMT) (He et al., 2016a),
paraphrase generation (Ma et al., 2018), image captioning
(Aneja et al., 2018) vs. text-to-image generation (van den
Oord et al., 2016), text classification (Zhang et al., 2016) vs.
conditioned text generation (Hu et al., 2017), semantic pars-
ing (Gardner et al., 2018) vs. language generation (Wong
& Mooney, 2007), etc. Dual learning therefore has been
proposed to model the duality between the primal and dual
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Figure 1. Left: dual learning framework. Right: dual learning
with alignment of structural supervision.

tasks, by minimizing the gap between joint distributions of
the two tasks respectively (He et al., 2016a; Xia et al., 2017;
2018). Effectively capturing the inline features between
the task pair and bringing significant improvements, dual
learning methods have received increasing research atten-
tion within recent years in relevant communities (Xu et al.,
2018; Su et al., 2019; Cao et al., 2019; Peng & Wang, 2019;
Shen & Feng, 2020).

We notice that the current dual learning scheme, however,
fails to explicitly model the structure correspondence be-
tween two coupled tasks. The integration of structure knowl-
edge has been extensively exploited for enhancing the fea-
ture learning in a wide range of NLP tasks (Eriguchi et al.,
2016; Marcheggiani & Titov, 2017; Ponti et al., 2018; Shi
et al., 2019; Sun et al., 2019; Akoury et al., 2019; Kumar
et al., 2020; Bugliarello & Elliott, 2021), which offers ad-
ditional bias from a lower-level perspective (e.g., syntactic
or linguistic) for better task-semantic inference (Chen et al.,
2019b; Fei et al., 2020a; Goyal & Durrett, 2020; Fei et al.,
2021a; Wu et al., 2021). Unfortunately, the study of struc-
ture integration for dual learning has been kept unexplored.
Given a pair of task, not only do they share the same input
and output (in reverse), but it is often a close correspondence
of the intermediate structures between them. Taking the clas-
sic NMT as example, a source sentence always shares rich
syntactic structure alignments, e.g., the phrasal constituents,
with the target sentence (Stahlberg et al., 2016). There are
also various cases in other dual-learning scenarios that can
benefit from the structure alignments, such as text-to-image,
text-to-audio, etc.

To close the gap, this paper proposes matching the structure
for dual learning. As shown in Figure 1, based on the vanilla
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dual learning framework, we perform structural alignment
unsupvervisedly between the primal and dual tasks, bridging
them with structure connections. Since the textual sentences
naturally come with syntactic structures, we start with the
dual modeling of text↔text for NLP, performing dually-
syntactic structure matching (cf. §4). We use constituency
tree as the underlying structure of each, where the phrases
well represent the compositional semantics of a sentence. At
the fine-grained scope, we encourage each specific region of
interest (i.e., RoI) to align with the corresponding one in the
opposite task as much as possible. The match measurement
is conducted automatically according to the similarity. At
the global scope, we perform structural cross-reconstruction,
generating target text and meanwhile reconstructing the
target syntactic structure.

The above idea is designed for a text↔text case. We next
extend the architecture to the text↔non-text one, so as to
adapt to broader application scenarios and modalities (e.g.,
label, image or audio). As the task of non-text side lacks
explicit syntactic structure, we alternatively take its semantic
structure instead, and match the syntactic structure with the
text-side task, i.e., performing syntactic-semantic structure
aligning (cf. §5). Correspondingly, we conduct the syntactic-
semantic RoI alignment at the local scope and perform
structural unilateral-reconstruction at the global scope.

Our method is verified on numbers of dual applications,
including text↔text, text↔image and text↔label, where
significant improvements are achieved against the vanilla
dual learning. Via further evaluations we gain more findings:
1) Our model effectively retrieves the key RoIs that are
crucial to the task improvements, and strengthens the duality
between dual tasks by correctly aligning the RoIs. 2) The
structural co-echoing offers rich syntactic signals for content
planning in text↔text generation scenarios, leading to better
diversification and grammar correctness. 3) The success of
structure matching can be extended to non-text↔non-text
dual learning. 4) The richer the structural information for the
alignment, the better the improvements our method presents.

Overall, our key contributions are as follows:

• We for the first time introduce the idea of structure co-
echoing for dual learning, reinforcing the structure connec-
tions between two coupled tasks.

•We study dually-syntactic structure matching for the dual
text↔text generation, in which we propose a syntactic RoI
alignment and a structural cross-reconstruction strategies
from two different perspectives, respectively.

• We extend the structure matching architecture for the
text↔non-text dual learning, by measuring the semantic-
syntax structure correspondence. We further empirically ex-
plore the extendibility for non-text↔non-text applications.

• The proposed method gains improvements over 2*14 tasks
spanning 5 dual learning scenarios. Further in-depth analy-
ses and insights are shown.1

2. Related Work
Many a learning task in machine learning areas (e.g., NLP
and computational visual) takes dual forms (Xia et al., 2017;
Ye et al., 2019). The coupled tasks have the same exact
input and output but in reverse. For example, an English-to-
French translation task is the dual task of French-to-English
translation task (He et al., 2016a); the automatic speech
recognition and the text-to-speech (Tjandra et al., 2017)
and the question answering vs. question generation (Sun
et al., 2020) etc. The primal task and the dual task form a
closed loop, generating informative feedback signals that
can actually benefit both two tasks. Correspondingly, dual
learning technique (He et al., 2016a) has been proposed for
exploiting the duality of the task pairs. In the process, two
dual tasks are jointly learned, in which the the intrinsic prob-
abilistic connection in between are explicitly strengthened,
pushing the learning process towards the right direction.
Since it greatly magnifies the effectiveness of the task per-
formances in pair without using additional annotations, the
dual learning has received consistent research attention (Xu
et al., 2018; Su et al., 2019; Shen & Feng, 2020). Several
different paradigms of dual leaning are explored, including
the unsupervised dual leaning He et al. (2016a) and the su-
pervised dual learning (DSL) Xia et al. (2017). This work
follows the line of DSL, taking it as the backbone frame-
work. Our aim is to further reinforce the duality of DSL
by encouraging each fine-grained region of interest of one
task to align with the corresponding regions of interest in
the opposite task as much as possible.

In NLP community, the linguistic syntax structures funda-
mentally describe the underlying working about how the
words or phrases connect to each others, and then compose
into sentence or discourse. Thus, the syntactic information,
e.g., phrasal constituency tree (Aarts & Aarts, 1982) and de-
pendency tree (Hays, 1964), are extensively integrated into
wide range of downstream NLP tasks as types of external
knowledge for performance enhancements (Socher et al.,
2013; Nguyen & Shirai, 2015; Garmash & Monz, 2015;
Marcheggiani & Titov, 2017; Zhang et al., 2018; Fei et al.,
2021b). In this work, we for the first time in literature extend
the success of the integration of syntactic structure informa-
tion into the dual learning. Different from those existing
syntactic-aware works that focus on integrating them into
one singleton task process, we fuse the syntactic knowledge
into both two dual tasks, then match the syntactic structures
of the primal and dual tasks, and reinforce the fine-grained

1Source codes are available at https://github.com/
scofield7419/StruMatchDL

https://github.com/scofield7419/StruMatchDL
https://github.com/scofield7419/StruMatchDL
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structural correspondences (i.e., RoI) in between, by which
we expect to promote the dual learning utility for the both
two sides of the tasks.

3. Dual Learning Backbone
Formally, a dual learning system comprises 1) a primal task
that maps x ∈ X to y ∈ Y , i.e., fθ : x 7→ y; and 2) a
dual task mapping y ∈ Y to x ∈ X , i.e., gϕ : y 7→ x.
Each separate task has its learning object for empirical risk
minimization with cross-entropy loss:

Lθ = Ex,y log p(y|x; θ) , (1)
Lϕ = Ex,y log p(x|y;ϕ) . (2)

Let’s summarize them as LC = Lθ + Lϕ.

The primal and dual tasks should have a joint probabilistic
duality (Xia et al., 2017):

pθ(x, y) = p(x)p(y|x; θ)
≃ pϕ(x, y) = p(y)p(x|y;ϕ) ,∀x&y ,

(3)

where p(x) and p(y) are the marginal distributions which
often are intractable. The dual learning targets encouraging
the task pair to optimize their duality, i.e., narrowing the
gap between their joint distributions:

LD =|| log p̂(x) + log p(y|x; θ)
− log p̂(y)− log p(x|y;ϕ)|| ,

(4)

here we use the estimated marginal distribution p̂(x) and
p̂(y) instead.2

4. Dually-Syntactic Structure Matching
In this section we focus on the text↔text scenario, and
present a dually-syntactic structure matching method for
dual learning. We first demonstrate the detailed method at
§4.1, and then present the experiments at §4.2.

4.1. Method

Dually-Syntactic Structure Encoding The input for both
the primal and dual task is sentential words {w1, · · · , wn}.
Meanwhile we have its syntactic constituency parse T =
{Tk}Kk=1, where Ti is an intermediate constituency phrase
or terminal word, and K denotes the total node number.
Constituency syntax describes the way the words compose
into phrases and the tree, and such phrasal composition char-
acteristic well fits our need for structure matching. At the
encoding phase, the input words are mapped into contextual
representations {h1, · · · ,hn} via a certain text encoder,
e.g., BiLSTM, BERT. Then we use a tree model to en-
code the word representations into structure representations

2Details are elaborated at Appendix A.2.

Figure 2. Symmetrically syntactic structure matching for dual
learning.

R = {r1, · · · , rK}, according to the constituent structure
T . Here we take the N-ary TreeLSTM (Tai et al., 2015) as
the structure encoder. Without losing generality, we denote
the node representation of constituency structure for primal
task as Rθ, for dual task as Rϕ.

Syntactic RoI Alignment The core idea is to build the
fine-grained structure correspondences between primal and
dual tasks, pushing those pairs that serve the similar role in
the context to be closer, i.e, p(Ti|T θ) ≈ p(Tj |T ϕ). Specifi-
cally,

p(Ti|T ) = Sigmoid(FFNs(Att(Ti|T ))) ,

where Att(·) is an attention operation:

Att(Ti|T ) =
k=K∑

j=1,j ̸=i

βj rj ,

βj = Softmax(V T [ri; rj ]) ,

here ri and rj are the representation of RoI Ti and Tj in
T .

Note that only a subset of the structure plays the pivotal
role as rationale for such alignment, i.e., RoI. Technically,
we first compute alignment scores between all pairs of con-
stituents from two sides:

si,j =
(rθi )

T · rϕj
||rθi || ||r

ϕ
j ||

. (5)

With this we obtain a bipartite alignment in between. Also
via a threshold ω we filter out those non-salient alignments
with lower confidence, i.e., p(Ti|T ) < ω, and obtain the
candidate RoI pairs, i.e. Synθ

RoI and Synϕ
RoI. A ranking

loss is then used to pull closer those RoI pairs with higher
similarities:

LM =

{
|si,j | , si,j > σ

max(0,M − |si,k|) , si,j ≤ σ
(6)
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Figure 3. Dually-syntactic RoI alignment.

where M is a margin value, σ ∈ [0, 1] is a self-adaptive
threshold that is trainable during learning.

Contrastive Region Repelling Taking one step further,
we make use of the negative samples; we hope the regions
Ti in T θ that gives lower similarities to the one Tk in T ϕ to
repel each other. Inspired by recent success of contrastive
representation learning (Logeswaran & Lee, 2018; Giorgi
et al., 2021), we replace the ranking loss with:

LM = −
∑

i∈T θ, j∗∈T ϕ

log
exp(si,j∗/τ)

Z
, (7)

Z =
∑

i∈T θ, k∈T ϕ, k ̸=j∗

exp(si,k/τ) , (8)

where τ > 0 is a annealing factor. j∗ means a positive pair
with i, i.e., si,j∗ > σ. Figure 3 show the technical illustra-
tion of the dually-syntactic RoI alignment for text↔text
dual learning.

Structural Cross-Reconstruction On the other hand, dur-
ing the text generation of ŷ we make the model meanwhile
to reproduce the corresponding syntax tree structure T̂ θ.
The syntax structure of the inut text from the opposite side
(i.e, T θ) can serve as a supervised signal. The benefits
of such structural cross-reconstruction are multiple: mak-
ing the structural awareness in the dual modeling more
sufficient, providing additional syntactic contriant for the
procedure, and also ensuring a global view during the gen-
eration. We adopt the representative graph-based method
for constituency parsing (Stern et al., 2017). The process is
to measure the score of each span (i, j) to be a valid con-
stituency phrase as well as the constituent label, based on
the decoder representations {e1, · · · , en}.3 We can summa-
rize the learning objectives for structure reconstructions in

3Appendix §A.5 shows details of constituency parsing.

primal and dual tasks:

LR = Lθ
R + Lϕ

R . (9)

Overall Optimization Figure 2 illustrates the overall in-
put and output of the dual systems with dually-syntactic
structure matching. Putting them all together, the joint learn-
ing target becomes:

L(θ, ϕ) = LC + λ1LD + λ2LM + λ3LR , (10)

where λ∗ refers to a specific coupling co-efficiency. Note
that all the stories of the structural matching happens at train-
ing stage. During inference, the primal and dual tasks make
their own prediction without attendance of the opposite task.

4.2. Exp-I: Text↔Text Applications

We examine the usefulness of the dually-syntactic structure
matching for text↔text dual learning.

Setups We use StanfordNLP (Qi et al., 2018) to tokenize
and lemmatize the texts, and parse the syntactic constituency
trees. We consider two typical text-text generation tasks:
NMT and paraphrase generation. For NMT, we use the
WMT14 EN-DE and EN-FR data, and take the ParaNMT
and QUORA datasets for paraphrase generation. We make
comparisons among four methods:

• M1: ordinary singleton task scheme.
• M2: ordinary singleton task scheme encoding external

constituency syntax feature.
• M3: vanilla dual learning scheme.
• M4: dual learning scheme with our proposed syntactic

structure matching.

We also ablate our M4 by 1) only encoding syntax fea-
ture without matching (ONLYSYN); 2) removing the RoI
alignment (-SALN); 3) without the syntax reconstruction
(-SYREC); 4) changing the aligning algorithm (ranking or
contrastive learning) for RoI alignment.

We take the Transformer-based (Vaswani et al., 2017) gener-
ation architecture. For NMT, we also test with the seq2seq-
based architecture. For paraphrase generation we addition-
ally use the BART PLM representations (Lewis et al., 2020).
Also we compare with several existing strong-performing
works for these tasks. For NMT, we have B1 (Xia et al.,
2018), B2 (Chen et al., 2019a) and B3 (Wang et al., 2021).
For paraphrase generation we include B1 (Iyyer et al., 2018),
B2 (Gupta et al., 2018), B3 (Chen et al., 2019b) and B4
(Kumar et al., 2020). We additionally reimplement these
baselines to obtain the reversed task results. For all experi-
ments, we report the average scores along with the unbiased
standard deviations on five runs with different random seeds.
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WMT14 (EN-DE) WMT14 (EN-FR)

EN→DE EN←DE EN→FR EN←FR

• Baseline
B1 28.04 / 30.91 / 39.44 / 35.32 /
B2 28.22 / 30.72 / 39.68 / 35.90 /
B3 28.57 / 31.00 / 39.80 / 35.85 /

• Seq2seq-based

M1 16.24 / 20.69 / 29.92 / 27.49 /
M2 17.06 +0.82 21.62 +0.93 31.15 +1.23 28.82 +1.33
M3 16.81 / 20.81 / 31.99 / 28.35 /
M4 19.52 +2.71 23.24 +2.43 35.85 +3.86 31.27 +1.92

• Transformer-based

M1 25.24 / 28.42 / 37.21 / 32.08 /
M2 27.07 +1.83 29.84 +1.42 38.73 +1.52 33.95 +1.87
M3 26.46 / 29.17 / 38.10 / 32.52 /
M4(RANK) 29.71 +3.25 33.40 + 4.23 42.28 +4.18 37.09 +4.57
M4(CL) 30.03 +3.57 33.96 +4.79 42.82 +4.72 37.76 +5.24

ONLYSYN 27.90 +1.44 30.81 +1.64 39.03 +0.93 34.60 +2.08
-SALN 28.23 +1.77 31.15 +1.98 39.55 +1.45 35.07 +2.55
-SYREC 29.56 +3.10 32.68 +3.51 41.17 +3.07 36.34 +3.82

Table 1. Results (BLEU scores) on NMT. Two colors indicate the coupled tasks, respectively. Color depth highlights the significance of
the result improvements. ‘+’ means the improvement over the counterpart without using structure knowledge (e.g., M2-M1, M4-M3).

ParaNMT QUORA

B R-1 R-2 R-L B R-1 B R-1 R-2 R-L B R-1

• Baseline

B1 20.4 50.3 25.2 51.6 21.8 46.4 19.5 40.6 22.5 44.6 17.8 44.1
B2 20.8 49.6 28.4 48.6 19.0 45.0 22.3 56.4 26.2 52.3 21.0 52.8
B3 23.6 54.8 32.0 58.3 25.4 48.7 30.4 62.6 42.7 65.4 28.1 60.5
B4 27.5 60.6 36.9 54.5 27.2 53.2 35.8 68.1 45.7 70.2 35.6 65.7

• Transformer-based

M1 24.6 50.3 30.7 45.8 25.4 51.7 29.7 58.5 37.5 59.6 28.0 60.5
M2 27.2 56.4 34.4 50.6 26.1 53.6 33.4 63.4 41.8 63.4 34.8 65.8
M3 26.2 57.1 33.0 53.5 27.8 55.9 32.0 65.7 40.0 66.4 34.0 64.3
M4(RANK) 30.1 61.8 38.9 59.8 30.2 62.5 37.3 70.4 47.2 72.4 37.4 71.2
M4(CL) 30.5 62.4 39.4 60.4 30.6 62.7 37.5 70.5 47.6 72.5 37.5 71.5

ONLYSYN 27.7 58.9 34.9 54.7 28.0 56.2 33.7 66.4 42.0 67.1 35.0 65.8
-SALN 28.0 59.6 35.8 56.0 28.6 57.3 34.6 67.6 43.2 68.9 35.8 67.4
-SYREC 29.7 60.2 37.8 58.3 29.7 61.0 36.1 68.9 45.0 71.4 36.5 69.3

M3+BART 33.8 65.7 41.8 62.8 32.7 64.0 41.5 73.3 49.4 74.2 42.0 71.5
M4+BART 36.7 66.2 43.6 64.0 34.8 64.6 43.0 74.8 52.8 76.8 43.5 72.8

Table 2. Results on paraphrase generation (SRC→TGT, SRC←TGT). B: BLEU, R-X: ROUGE-X .

Results From the results and trends shown in Table 1 and
2 we have the following observations.

First of all, by comparing M2 to M1 and M4 to M3 we
learn that the integration of syntactic structure results in
better performances, either for the singleton or dual learn-
ing. Then, by comparing M3 to M1, it is clear that the dual
learning technique improves the task performances consis-
tently. Such improvements can been witnessed in both the
primal and dual tasks. Third, when performing the proposed
RoI matching (M4 vs. ONLYSYN), the vanilla dual learning
scheme receives very significant enhancements over four
datasets on all metrics, more than any other factors. This
proves the efficacy of our structural matching proposal for

text↔text dual learning.

Further, let’s step into the RoI matching itself. Comparing
the RoI alignment and syntactic structure reconstruction
(M4-SALN vs. M4-SYREC), the former plays the predomi-
nant influences to the entire method. Also, the contrastive
learning can bring better effectiveness than the ranking loss
(M4(CL) vs. M4(RANK)), when performing the RoI align-
ment. This demonstrates the necessity to make use of the
negative samples for the alignment.

Besides, we see that our model (M4) beat all comparing
methods on all tasks and data, including the best-performing
baselines. Also we can notice that, using the pre-trained con-
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Figure 4. Syntactic-semantic structure matching.

textualized word representations (i.e., BART), the improve-
ments by our structure matching strategy can be slightly
limited, even though our method (M4) still keeps the best.
The possible reason can be that, BART already brings rich
external features for enhancing the text understanding, in
which the assistance for achiving better representation learn-
ing by our method of structural matching could consequently
be weakened somewhat.

5. Syntactic-Semantic Structure Matching
In fact, it can be a broader range of NLP scenarios with
dual learning technique where the task pair often includes
non-text modalities, such as labels, image or audio etc. This
makes the structure matching idea for text↔non-text dual
learning non-trivial. This section will natrually extends the
above method of dually-syntactic structure matching to a
method of syntactic-semantic structure matching.

5.1. Method

Since the task of non-text modality comes without explicit
syntactic structure, our main idea is to take the semantic
structure of non-text, and perform syntactic-semantic RoI
alignment instead. Meanwhile, the syntactic structure re-
construction for the global-level benefit becomes structural
unilateral-reconstruction. We show the schematic design
in Figure 4.

Let’s say in the dual system, the primal task coming with
text input; the dual task has non-text as input. Extending
the spirit in text↔text, here we on the one hand encode the
external syntactic structure for the textual part, and yield
structure representations Rθ. On the other hand, we em-
ploy a semantic feature encoder for the non-text part. For
example, for the image input we employ a object detector
to generate a set of object proposals O = {Og}Gg=1 and the
corresponding vectorial embedding Rϕ.

Syntactic Structure 
Encoder

Semantic Feature
Encoder

Syntactic Semantic 

++

: Text
Image / Label / 
Audio / Video … :

++

Figure 5. Syntactic-semantic RoI alignment via contrastive repre-
sentation learning.

Likewise, we first calculate the relatedness between each
pair of syntactic region and semantic region. Instead of
directly taking the Cosine similarity as in Eq. (5), following
Wang et al. (2020) we use a non-linear transformation for
the scoring, as it is naturally a gap between the meaning
spaces of different modalities:

si,j = V T (W θrθi +W ϕrϕj ) . (11)

Next, the automatic threshold ω filters out invalid aligments,
and yields the condidate RoI pairs, i.e. Synθ

RoI and Semϕ
RoI.

Here we inherit the success of the foregoing contrastive
learning (Eq. 7), and perform the syntactic-semantic RoI
alignment, as illustrated in Figure 5.

Meanwhile, we perform structural unilateral-reconstruction,
i.e., letting the dual task at the same time generate text x̂
and T̂ θ from the guidance of primal task’s input. The ob-
jective for the dual learning system with syntactic-semantic
structure matching is aligned with the prior one:

L(θ, ϕ) = LC + λ1LD + λ2LM + λ3LR . (12)

5.2. Exp-II: Text↔Non-Text Applications

Here we present the evaluations of our method in this section
for text↔non-text scenarios.

Setups We mainly consider two cases of text↔image
and text↔label, which represent two common dual learn-
ing applications. For text↔image, we take the MSCOCO
and Flickr30k datasets. For text↔label we use the
Yelp2014 and IMDB datasets. The settings of the com-
paring systems are kept the same as in §4, including M1,
M2, M3 and M4. The text→image backbone architecture
is ControlGAN (Li et al., 2019), and text←image is BUTD
(Anderson et al., 2018). The text→label backbone is Trans-
former and text←label is the VAE model (John et al., 2019).
For more experimental setups and implementations, please
refer to Appendix §A.
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MSCOCO Flickr30k

IS↑ FID↓ B-4 MTR IS↑ FID↓ B-4 MTR

M1 25.6 28.3 32.5 22.8 6.8 36.8 17.6 15.5
M2 27.8 25.5 / / 7.5 35.0 / /
M3 28.4 24.8 36.1 25.1 7.3 34.2 20.1 17.2
M4 30.7 20.6 40.0 29.6 8.0 30.9 22.6 19.5
-SALN 29.0 21.5 37.3 28.3 7.4 33.0 21.3 17.9
-SYREC 29.8 21.3 39.2 29.0 7.7 31.8 21.9 18.6

Table 3. Results on text↔image experiment (TXT→IMG: text-
to-image synthesis, TXT←IMG: image captioning). B-4: BLEU-
4, MTR: METEOR.

Yelp2014 IMDB

ACC B-4 MTR ACC ACC B-4 MTR ACC

M1 60.6 17.8 33.0 53.8 50.6 17.6 36.9 43.6
M2 61.8 / / / 51.9 / / /
M3 62.0 19.4 36.4 56.6 53.8 18.3 41.4 47.3
M4 63.8 21.8 40.8 62.4 55.6 20.2 47.1 50.9
-SALN 63.2 19.9 37.0 57.2 54.2 18.9 44.6 48.4
-SYREC 62.9 20.4 38.5 61.8 55.0 19.5 46.0 49.3

Table 4. Results on Text↔Label experiment (TXT→LB: text
classification, TXT←LB: conditioned text generation).

Results Table 3 and 4 present the results. We find that
the overall trends are kept similar with the ones for the
text↔text cases. The syntactic-semantic structure matching
strategy brings significant improvements for the vanilla dual
learning across total 4 datasets and 8 tasks consistently. This
means that the success of our proposed method can be in-
herited to the dual learning scenarios more than purely texts.
The ablation studies for the syntactic-semantic RoI align-
ment mechanism and structural unilateral-reconstruction
also show the homologous trends as in the foregoing cases.

6. Analysis and Discussion
Previously via numerical evaluations we have verified the
efficacy of the structure matching for dual learning. Here we
further explore several pivotal questions to better understand
its strengths.

Questions

⋆ First, how does structure matching strategy improve
the dual learning?
⋆ Second, for the text generation what are improved
when aligning the structures?
⋆ Third, can the success of the structure alignment be
extented to fully non-text scenarios?
⋆ Fourth, what are the key factors to the structure match-
ing for dual learning?

6.1. Evaluating Structure Matching

Following we examine the underlying machnism of the
structure matching, under the scenario of text↔text and
text↔image cases respectively.

▶ Structure matching helps correctly retrieve and em-
phasize the key RoIs that are crucial to the task improve-
ments. To evaluate the unsupervised matching correctness
of our method, we first construct labels for each data, where
the key correspondences of pairs between the coupled tasks
are explicitly annotated as ‘gold supervision’.4 In the con-
trast experiments, we modify the syntactic-enhanced dual
learning models by emphysizing the syntactic encoding with
the ‘gold RoI’.5 Structure alignment enhances the corre-
spondence of the critical feature region (e.g., textual spans
or image regions) between two dual processes. Intuitively,
more precise of the RoI alignments, the higher the improve-
ments for the dual systems (Xia et al., 2017; Wang et al.,
2020). The results in Table 5 show that our method can
automatically learn the key RoI precisely, i.e., with quite
small gaps to the results that use the gold RoIs.

WMT14 (EN-DE) WMT14 (EN-FR)

EN→DE EN←DE EN→FR EN←FR

+ Auto RoI 29.03 31.96 41.82 36.76
+ Gold RoI 29.51 32.23 42.03 36.98

∆ -0.48 -0.27 -0.31 -0.22
ParaNMT QUORA

SRC→TGT SRC←TGT SRC→TGT SRC←TGT

+ Auto RoI 31.53 30.60 38.66 37.58
+ Gold RoI 31.86 30.85 39.02 38.11

∆ -0.33 -0.25 -0.36 -0.53

Table 5. Results (BLEU) of dual learning with automatically
learned and gold RoI matching respectively.

Taking a step further, we test how exactly correct our method
can align the key RoIs. We evaluate the RoI matching cor-
rectness of our method on dual learning, where the results
for text↔text generation are shown in Figure 6, and the re-
sults for text↔image task are as in Table 6.6 And we see that
our method (STRUMATCHDL) achieves over 85% accuracies
comparing with the gold RoI matching in text↔text. With-
out the RoI alignment (Eq. 7), i.e, with only the structure
reconstruction, the matching effectiveness can be greatly
weakened. Comparatively, the influences from the struc-
ture reconstruction are much milder. We also see from the
text↔image case that our STRUMATCHDL unsupervisedly
learns good text-visual alignments, which are slightly lower

4The annotation details are shown in Appendix §A.7.
5Appendix §A.8 gives full model descriptions.
6Appendix §A.9 details the matching evaluation setups.
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than the supervised visual grounding system.

WMT14
(EN-DE)

WMT14
(EN-FR) ParaNMT QUORA

50

60

70

80

90

A
C

C
(%

)

STRUMATCHDL w/o SALN

Figure 6. Measuring text↔text RoI alignment.

ACC

MAF 61.4
STRUMATCHDL 54.3 ± 0.3

-SYREC 46.7 ± 0.5
-SALN 28.6 ± 0.8

Table 6. Visual grounding results on Flickr30k test set for ver-
ifying text↔image matching. MAF is a supervised visual ground-
ing system (Wang et al., 2020).

▶ Our method strengthens the duality between two dual
tasks by correctly aligning the RoIs. We further plot the
performance correlation between the coupled tasks in Figure
7. The testing results are varied by using different proportion
of training data. By comparing the linear regressions of the
trends respectively, we see that the dual learning systems
with structure matching show higher task correlations.
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(a) WMT14 (EN-DE) (b) Yelp2014

Figure 7. Performance correlation between two coupled tasks.
‘Coef.’ indicates Pearson correlation coefficient.

6.2. Evaluating Generated Text

▶ With syntactic structure co-echoing between the
text↔text dual learning, the generated sentences are
more diversified and grammarly correct. As the major
focus of this work, the text generation are significantly en-
hanced by the structure matching algorithm in dual learning

15.3 10.5 12.6 2.71 1.56 1.20 0.31
10.8 8.10 6.20 10.4 8.10 4.52 3.76
15.3 12.5 4.64 1.10 0.95 0.40 0.09
6.18 9.23 12.2 7.40 9.17 6.35 5.60
1.27 0.57 0.62 0.31 0.00 0.00 0.00
7.40 4.10 8.20 2.40 1.50 1.02 0.76
1.32 0.55 0.06 0.14 0.00 0.03 0.00
5.40 6.70 3.26 1.45 0.12 0.82 0.65
0.60 1.14 0.23 0.10 0.00 0.00 0.00
3.40 2.10 1.20 0.40 2.50 0.72 0.12
0.62 0.24 0.24 0.06 0.00 0.00 0.00
1.47 2.10 1.56 0.46 0.24 0.15 0.00

DUAL STRUMATCHDL

2 3 4 5 6 7 8

Phrase length (word)

ADVP

ADJP

SBAR

PP

VP

NP

Figure 8. Distribution (frequency, %) over different constituency
length of phrases in the generated sentences.

ParaNMT MSCOCO

Gram. Corr. Cont. Gram. Corr. Cont.
HUMAN 4.86 4.92 3.78 4.82 4.15 4.37
BASELINE 1.58 2.20 1.04 0.78 1.23 0.98
DUAL 2.24 2.55 1.46 1.80 2.38 1.25
STRUMATCHDL 3.78∗ 3.67∗ 2.51 3.46∗ 3.27∗ 2.74

-SYREC 2.89 3.21 2.90∗ 2.75 2.89 2.96∗

Table 7. Human evaluation results. Grammaticality (Gram.), cor-
rectness (Corr.), and content richness (Cont.) are rated on Likert
5-scale. ∗ indicates significantly better over the variant (p<0.03).

system. Here we observe the details, figuring out what are
really improved. First, in Figure 8 we plot the phrase type
distribution over different constituent length in the generated
texts on the two paragraph generation datasets. Comparing
with vanilla dual learning that generates short phrases, our
model helps yield a more even and smooth distribution of
the phrase types and comparatively longer phrases.

Further, we ask five proficient English speakers to assess
the quality of generated texts, where the results are shown
in Table 7. We see that our method helps produce more cor-
rect generations both in content and grammarly, compared
to the vanilla dual learning. Also, the syntactic structure
ensures better content planning and better diversification,
which are in line with relevant findings (Kumar et al., 2020;
Bugliarello & Elliott, 2021). Interestingly, we find that
even the syntactic structure reconstruction contributes to
the overall better results, but in the cost of hurting some
diversifications to certain extents.
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Figure 9. Relative task performance growth rates (∆%) after taking the structure matching for dual learning.

6.3. Exploring Extendibility

▶ Non-text↔non-text dual learning can also benefit
from structure matching. The prior experimental results
raise further questions: what if both two sides of tasks comes
without explicit syntax structure, i.e., taking the semantic-
semantic structure alignment. Here we consider performing
the evaluation on two representative tasks: image↔image
(image-image translation) and image↔label (image classifi-
cation vs. conditioned image generation). We can only take
the semantic-semantic RoI alignment. We report the experi-
ments at Appendix §B.1, where the results over four datasets
clearly show that the improvements can be still retained by
our method. For example, the rates of performance rises
for image-image translation are over 9.55% as in Figure
9. However, without the explicit structure reconstruction at
decoding side, the performance raises are not as significant
as that with the reconstruction.

6.4. Insights into Key Influencers

▶ The dual tasks with richer structural information for
the alignments will lead to better improvements. We
further dig into the task improvements of all the dual learn-
ing tasks by our structure matching strategy. In Figure 9
we present the result growth rate on each task.7 The com-
parisons evidently show that those alignments in the dual
framework that come with richer structural information can
provide higher task enhancements. For example, texts and
images carry ampler (constituency or visual regions) struc-
ture than the labels, and thus the text↔text, text↔image and
image↔image receive bigger raises. Also it is interesting to
see that, when one task (say A) comes with richer structure
information than that in the opposite one (say B), B can
benefit more from A. The text↔label and image↔label
prove such case, where the label→* tasks gain much more

7We further add experiments on two text↔image and two
text↔label datasets, cf. Appendix §B.2.

improvements in the dual learning.

7. Conclusion and Future Work
In this work we investigate a structure matching mechanism
for enhancing the duality in dual learning systems. We
propose aligning the syntactic region of interests (RoIs)
between two input sentences of two coupled tasks in the
text↔text dual systems. The syntactic structure reconstruc-
tion at decoding phase is also performed to enhance the
structural awareness. We then extend the structure matching
to the text↔non-text scenarios with the syntactic-semantic
structure alignment. We demonstrate the efficacy of the
structure matching algorithm on a wide range of dual learn-
ing applications and datasets. We prove that our proposal
helps correctly retrieve and reinforce the key structure re-
gions that are critical to the task improvements. Finally,
we reveal the great potential of the structure alignment for
many other non-text↔non-text dual learning scenarios.

This work may limit within the scope of supervised dual
learning. Meanwhile, we make use of the external parse
trees as structural supervisions being encoded by a tree en-
coder for the structure alignment. This pipeline process
may potentially introduce task-irrelevant noises. As a fu-
ture work, we intend to automatically & unsupervised in-
duce structural representations and simultaneously match
the structures for both the supervised unsupervised setups
of dual learning.
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A. Details on Technical and Experimental
Setups

A.1. Task Summary

Dual learning has a wide scope of applications between
different modalities. In Table 8 we summarize some tasks
and duality schemes that are used in this work.

Duality Scheme Direction Representative Application(s)

Text↔Text −→ or←− Neural Machine Translation,
Paraphrase Generation

Text↔Image −→ Text-to-Image Synthesis
←− Image Captioning

Text↔Label −→ Text Classification
←− Conditioned Text Generation

Image↔Label −→ Image Classification
←− Conditioned Image Generation

Image↔Image −→ or←− Image Translation

Table 8. Task summary in the dual viewpoint.

A.2. Marginal Distribution Estimation

A dual learning system seeks calculating the joint distribu-
tion as in Eq. (3). In the prime task side and the dual task
side, the marginal distributions p(x) and p(y) are both re-
quired, but actually cannot be observed directly. Instead, we
estimate these marginal distribution p(x) of x (vice versa
for p(y)) with a surrogate distribution p̂(x), by observing
the target in the scope of the whole data.

• For the target of textual sentences, we use a
Transformer-based state-of-the-art language model that
is trained over the specific data to calculate the p̂(x)
(Xia et al., 2017; Su et al., 2019).

• For the target of images, we follow Xia et al. (2017) and
define the image distribution as p̂(x) =

∏m
i=1 pxi|x<i.

We serialize the image pixels as xi. We use Pixel-
CNN++ (Salimans et al., 2017) to model this distribu-
tion.

• For the target of discrete labels, we simply use the
uniform distribution of each class as p̂(x).

A.3. Relative Task Performance Improvement

In §6.3 we show the task improvements growth rates (∆)
over each prime-dual task pair when taking the structure
matching strategy proposed in this paper. Specifically, the
relative improvement is calculated as follow:

∆ =
||M1 −M2||

M1
,

where M1 refers to the performance (in one specific metric)
of the vanilla dual learning system. M2 denotes the perfor-
mance of the dual learning system enhanced by structure
matching. The primary metric (M ) of each task that is used
to calculate ∆ is listed in Table 9.

Task Direction Metric

Text↔Text −→ or←− BLEU

Text↔Image −→ IS
←− BLEU-4

Text↔Label −→ Accuracy
←− Accuracy

Image↔Label −→ Accuracy
←− IS

Image↔Image −→ or←− FID

Table 9. The primary metric of each task for calculating the ∆.

A.4. Implementation Detail of Model Architecture

There are some commonly used experimental setups. All
the four comparing systems, i.e., M1, M2, M3 and M4, use
the same baseline architecture for the coupled dual tasks,
for fairness. Also for M2 and M4 in text↔* scenarios,
the syntactic structure encoder is kept the same, i.e., N-
ary TreeLSTM (Tai et al., 2015). For all the experiments
we take a two-layer TreeLSTM. The flow in TreeLSTM is
made bidirectional, i.e., bottom-up and top-down, for a full
information interaction. Also the TreeLSTM encodes the
constituency label features.

Technically, for each node k in the tree, we denote the hid-
den state and memory cell of its v-th (v ∈ [1,M ]) branching
child as r↑kv and ckv , and the embedding hπ

k of constituency
label for node k. The bottom-up one computes the represen-
tation r↑k from its children hierarchically:

ik = σ(W (i)[hk;h
π
k ] +

M∑
v=1

U (i)
v r↑kv + b(i)),

fku = σ(W (f)[hk;h
π
k ] +

M∑
v=1

U (f)
uv r↑kv + b(f)),

ok = σ(W (o)[hk;h
π
k ] +

M∑
v=1

U (o)
v r↑kv + b(o)),

uk = Tanh(W (u)[hk;h
π
k ] +

M∑
v=1

U (u)
v r↑kv + b(u)),

ck = ik ⊙ uk +

M∑
v=1

fkv ⊙ ckv,

r↑k = ok ⊙ tanh(ck),

where [;] means the concatenation, W , U and b are param-
eters. hk, ik, ok and fku are the input token representation,
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input gate, output gate and forget gate. Analogously, the
top-down N-ary TreeLSTM calculates the representation r↓k
the same way. We concatenate the representations of two
directions: rk = [r↑k; r

↓
k].

Except the experiments of paraphrase generation where we
use the pre-trained contextualized BART representation8

for enhancements, in other experiments we only take the
fasttext English word embedding9, and most of the word
embedding dimension is set as 300. For text generation
tasks, the byte pair encoding (BPE) technique is used for
subword segmentation, and the vocabulary size is set at
20∼40K depending on specific corpus.

Besides, for facilitating the gounding of image semantic fea-
ture, we use an external object detector, Faster R-CNN (Ren
et al., 2015) to generate object proposals O = {Og}Gg=1,
and extract the visual features with RoI. Specifically, for
all the following models for processing images, we replace
the kernel feature encoder with R-CNN. For each visual
RoI proposal, we use global average pooling to compute
its conv-feature and embed it to a vector (He et al., 2017).

For all the dual learning system, we first pre-train the
two standalone coupled models separately, and then per-
form the joint dual training, so as to avoid cold-start
training that will cause unstable learning or even the
failures of convergence. Once two models in the dual
learning system have been well trained to reach the best
validating performances, during inference these two models
will then make predictions separately without relying on
each other’s representations for RoI matching.

1) Text↔Text Applications For the dual text-to-text trans-
lation/generation task, we adopt the standard Transformer
(Vaswani et al., 2017) as baseline encoder or decoder. For
the NMT, we take the 12-layer configuration, while for para-
phrase generation we take the 6-layer of Transformer. Also
we use the position embedding. Besides, for the NMT task,
we meanwhile implement the sequence-to-sequence base-
line, which is a standard attention-based encoder-decoder
architecture (Bahdanau et al., 2015), with 3-layer BiLSTMs
as encoder and 2-layer LSTM as decoder. We use beam
search with a beam size 5 and length penalty 1.0, so as to
yield 5-best generated texts.

2) Text↔Image Applications For the text-to-image syn-
thesis, we adopt the standard ControlGAN (Li et al., 2019)
as the backbone model, which is a state-of-the-art image
generation system build upon the generative network. For
the image caption task, we take the standard BUTD (Ander-
son et al., 2018), which is a strong and widely-employed

8BART base version, https://huggingface.co/
facebook/bart-base

9https://fasttext.cc/

RNN-based captioning system that implements the bottom-
up and top-down attention mechanism. Also, the captioning
employ the beam size of 5.

3) Text↔Label Applications The system for the text clas-
sification is the 3-layer Transformer model. We adopt the
Adam optimizer with an initial learning rate of 1e-5 for
training the classifier. For the conditioned text generation,
we take the classical text VAE model (John et al., 2019) as
the backbone architecture. The latent variable representa-
tion of text style (sentiment label) has 8 dimensions and the
variable of content space has 128 dimensions, being same
as in (John et al., 2019).

4) Image↔Label Applications For image classification,
we take the standard ResNet-110 (He et al., 2016b), which
is a high-performing visual handling system that uses the
deeply-stacked convolution layers with residual connections.
For the conditional image generation, we take the CGAN
(Miyato & Koyama, 2018), where we use the same configu-
rations as in the raw paper.

5) Image↔Image Applications We use the MSGAN
(Mao et al., 2019) model as our image translation back-
bone architecture. We take the officially-released models
as initiation for warm-start training, and all the settings for
MSGAN are kept the same with the raw paper.

A.5. Constituency Parsing for Syntactic Structure
Reconstruction

In §4.1 we propose performing syntactic structure recon-
struction, i.e., generating p(T̂ θ|x), given the syntax tree
structure from opposite side (i.e, T θ) as supervision. We
take the graph-based method for constituency parsing (Stern
et al., 2017), measuring the score of each span (i, j) to be
a valid constituency phrase as well as the constituent label.
First, we based on the decoder representations {e1, · · · , en}
of each word token create all the text spans iteratively ei,j ,
where i and j represent the start and end indexes of the span.
Next we use two separate feedforward networks (FFNs) to
obtain the scores of the span and its label:

ssp(i, j) = FFNsspan(ei,j) ,

slb(i, j) = FFNslabel(ei,j) .

Here the label score slb(i, j) is a vector, with each dimen-
sion representing the score of the possiblity as the corre-
sponding label l:

slb(i, j, l) = [slb(i, j)]l .

Then we use the CKY-based chart parsing to measure the

https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base
https://fasttext.cc/
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overall score of a tree:

stree(T ) =
∑

(l,(i,j))∈T
[slb(i, j, l) + ssp(i, j)] .

And the best tree with maximum score can be denoted as:

sbest(i, j) = max
l

[slb(i, j, l)]+

max
k

[ssplit(i, k, j) + sbest(i, k) + sbest(k, j)] ,

which is a dynmic programming problem. We take the
max-margin as the training objective:

LR = max(0,∆(T̂ , T ∗)− stree(T ∗) + stree(T̂ )) ,

where T̂ is the gold tree supervision.

A.6. Data and Evaluation Description

Here we give a detailed description on the datasets and
the evaluation settings we used. For all experiments, we
report the average scores along with the unbiased standard
deviations on five runs with different random seeds. For the
improvements by our proposed model over baselines, we use
the paired T-test to examine that the gains are statistically
significant, with p<0.03 or p<0.05.

1) Text↔Text Applications

• WMT14(EN-DE) (Bojar et al., 2014) splits the total
sentences into training (4.6M), developing (3K) and
testing (2K).

• WMT14(EN-FR) (Bojar et al., 2014) splits the sen-
tences into training (36 M), developing (2.6K) and
testing (2.6K).

• ParaNMT (Wieting & Gimpel, 2018) contains 500K
sentence-paraphrase pairs for training. And the rest
1,300 manually labeled sentence pair is further split
into 800 test data and 500 dev data.

• QUORA10 includes 146K parallel paraphrases, 3K and
30K paraphrase pairs are respectively used for valida-
tion and testing, following Miao et al. (2019).

For neural machine translation, we use the standard BLEU
score as the evaluation metric. For paraphrase genera-
tion, we report the precesion-oriented BLEU, recall-oriented
ROUGE-1, ROUGE-2 and ROUGE-L.

10https://www.kaggle.com/c/
quora-question-pairs

2) Text↔Image Applications

• MSCOCO (Lin et al., 2014) contains 113,287 training
images equipped with five sentences each, and 5,000
images for validation and test splits, respectively.

• Flickr30k (Plummer et al., 2015) data contains
224K phrases and 31K images in total, where each
image will be associated with 5 captions and multiple
localized bounding boxes. Following previous work,
we use 30k images ramdomly selected from training
set.

• CUB (Wah et al., 2011) dataset contains 200 classes and
11,788 bird images in total, with 10 visual description
sentences for each image. There are 8,855 and 2,933
images for training and testing.

The evaluation metrics for text-to-image synthesis include
the widely-employed Inception Score (IS) and Fréchet In-
ception Distance (FID). To measure the image captioning,
we take the BLEU-4 and METEOR.

3) Text↔Label Applications

• Yelp2014 (Asghar, 2016) is a 5-class sentiment clas-
sification data, where the splits of training, developing
and testing is 184K, 23K and 23K.

• IMDB data (Maas et al., 2011) labels each text with
a 10-scale sentiment label, including 67.9K training
sentences, 8.5K developing sentences and 8.5K testing
sentences.

• AGNews (Corso et al., 2005) is a topic classification
data with 4 topics, containing 110K training sentences,
10K developing sentences and 7.6K testing sentences.

For the text classification, we employ the accuracy (ACC)
metric. For the conditioned text generation, we follow pre-
vious work (Cao & Wang, 2021) and emply the BLEU-4
and METEOR. Besides, following Wang & Wan (2019), we
take the generated texts as inputs, and use a well-finetuned
BERT classifier to measure the texts against the gold label.
Then we use the accuracy to measure such performance.

4) Image↔Label Applications

• CIFAR-10 (Krizhevsky et al., 2009) consists of 60k
3x32x32 colour images in 10 classes, with 6K images
per class. There are 50k training images and 10K test
images.

• CIFAR-100 (Krizhevsky et al., 2009) also contains
60K images as in CIFAR-10, but it has 100 classes

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
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Figure 10. Left: chunk aligments between a pair of sentence (English↔ French) for NMT. The regions with black box and red cross
represent low-quality and invalid alignments, which will be rejected. Right: the alignments in the view of syntactic structure. For brevity,
the POS tags and some redundant nodes are omitted.

containing 600 images each. There are 500 training
images and 100 testing images per class. Each image
comes with a fine label and a coarse label.

For the image classification, we take the accuracy, and for
the conditioned image generation we use the IS and FID
metrics.

5) Image↔Image Applications

• CelebA-HQ (Karras et al., 2018) contains 30k
celebrity facial images, which are manually split into
17,943 female faces and 10,057 male faces for training,
and the rest 2000 images are evenly divided as testing
data, following Choi et al. (2020).

• AFHQ (Choi et al., 2020) includes 15k animal faces and
is evenly distributed into three challenging domains,
cat, dog and wildlife. Each domain uses 500 images
for testing and the rest for training.

For the image-image translation, we take the FID evaluation
metric.

A.7. Data Construction for RoI Alignment Evaluation

In §6.1 we examine the matching capability of the RoI
between dual task pairs, by using the ‘gold RoI’ data. Here
we illustrate how to construct such data for the Text↔Text
and Text↔Image scenarios, respectively.

1) Dually-Syntactic Structure Pairing for Text↔Text
Tasks

Step 1: Computing aligning score. For the sentence pair
({e1, · · · , en} ↔ {f1 · · · , fm}) in NMT task, inspired by

Fei et al. (2020b), we use the FastAlign tool (Dyer et al.,
2013) to get the aligning probabilities p(fj |ei) from the
source word ei to the target word fj . Besides, we also use
a Part-of-Speech (POS) tagger at target-side language to
obtain the POS tag distribution p(t∗|fj) (t∗ is an arbitrary
POS tag). We then combine the two perspective into a total
aligning score a(ei ↔ fj) = p(fj |ei)p(t∗|fj) for each
word-pair to ensure a comprehensive alignment.

For the sentence pair ({e1, · · · , en} ↔ {f1 · · · , fm}) in
paraphrase generation task, we follow Zhang & Bansal
(2019), and compute each alignment score a(ei ↔ fj).
The score is computed using a weighted mean of the contex-
tual similarity between individual words. Specifically, the
weights are the corpus-level inverse-document frequency
(IDF) score de of the word e (same for target word f ). We
then use the contextual representation from BERT hei to
obtain the BERT-Score as in Zhang et al. (2020). Then, we
compute the alignment between each word pair ei − fj :

a(ei ↔ fj) =
1

2
(

∑
ei
dei maxfj h

T
eihfj∑

ei
dei

+

∑
fj
dfj maxei h

T
fj
hei∑

fj
dfj

.)

Step 2: Ensembling confidence of the RoI. Next we set
a threshold value α to filter out those projections with low
aligning confidence, i.e., a(ei ↔ fj) < α. Note that the
threshold varies depending on the specific task and data. So
we obtain the partial mapping between each sentence pair.
Then, we compose the words (with valid alignment) into
phrases by joining the adjacent words.

Step 3: Aligning in the structure. We next project the
flat alignment into a hierarchy of the constituency structure.
We make pairing for the above valid paired phrases in the
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Figure 11. Left: an iamge with regions of interest annotated in bounding boxes by different colores. Right: five captions describing the
same image, where colored phrases link mentions of the same entities in image regions.

syntactic tree. In Figure 10 we demonstrate the overall
alignment process with a NMT case.

2) Syntactic-Semantic Structure Pairing for
Text↔Image Tasks

For the image captioning scenario, we use the Flickr30k
data, where there are gold annotations for visual ground-
ing. As shown in Figure 11, each key regions of image
are grounded with the corresponding phrases in the caption.
Note that in Flickr30k each image has an average of
5.26 captions sentences, and 7.7 critical regions of interest
(grounding boxes). And we directly use such gold annota-
tions for the evaluation of region-to-phrase correspondence.

A.8. Integration of Gold RoI

By using the above created ‘gold’ RoI11, we can evaluate
the efficacy of our structure alignment method, i.e., test-
ing how accuracy it retrieves key RoIs, as shown in §6.1.
The comparing setup is a model that takes such gold RoIs
for explicit supervision, so as to learn a better feature rep-
resentations for better task performances, and meanwhile
achieving explicit alignments (i.e., via supervised learning).

The comparing dual learning model used here has a mod-
ified syntactic structure encoder, where specifically in the
N-ary TreeLSTM those nodes representing key RoIs are
highly weighted. For those nodes k as key RoIs in the con-
stituency tree, the corresponding weights γk assigned are
higher, and for those nodes k as not key RoIs, the weights
are assigned much lower. Then, we only need to change the
node representations:

rk := γk · rk ,

so as to control the influences of the nodes in the tree en-
coder. By highlighting the critical feature region (e.g., text
spans or image regions) between two dual processes, the

11For the text↔text case, the generated labels of RoI are silver;
for the text↔image case, the RoI are manually annotated gold
labels.

task performances as well as the correlations (or dualities)
between the paired tasks can be enhanced, as in the Table 5.

A.9. Evaluation Detail of RoI Matching

In §6.1 we evaluate the RoI matching correctness of our
method on dual text↔text generation as in Figure 6, and
text↔image task as in Table 6. There we show the evalua-
tion details.

1) on Text↔Text Tasks For the text↔text generation,
we just take the automatically learned alignments from our
model as our prediction of RoIs. We then make compar-
isons with the silver RoIs created at Appendix §A.7 on each
datasets.

2) on Text↔Image Tasks For the text↔image task, we
only need to evaluate the visual grounding performances
on the Flickr30k test set. To show the strengths of our
model, we additionally make comparisons with a supervised
visual grounding system MAF (Wang et al., 2020).

B. Extended Experiments
B.1. Results on Non-Text↔Non-Text Applications

In §6.3 we explore the performances of the structure match-
ing idea for the non-text↔non-text. We perform the eval-
uation on two scenarios and four datasets: image↔image
(image-image translation) and image↔label (image classi-
fication vs. conditioned image generation). In such case
where no explicit structure can be used (e.g., syntactic struc-
ture), we take the semantic-semantic RoI alignment. In
Table 11 and 10 we present the results.

B.2. More Results

We further conduct more evaluations on many other datasets,
so as to gain some consistent observations. In Table 12 and
13 we show the results on text↔image and text↔label cases.
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CIFAR-10 CIFAR-100

IMG→LB IMG←LB IMG→LB IMG←LB

ACC IS↑ FID↓ ACC IS↑ FID↓

M1 93.05 8.62 13.53 72.60 9.34 19.63
M3 93.68 9.83 9.80 73.85 13.64 15.72
M4 94.74 10.64 7.38 74.63 14.65 13.42
∆ +1.06 +0.81 -2.42 +0.78 +1.01 -2.30

Table 10. Image↔Label experiment ( IMG→LB: image classifi-
cation, IMG←LB: conditioned image generation) on CIFAR-10
and CIFAR-100 datasets.

CelebA-HQ AFHQ

IMGA →IMGB IMGA ←IMGB IMGA →IMGB IMGA ←IMGB

M1 26.7 32.7 32.4 40.8
M3 20.0 24.6 26.2 29.6
M4 17.5 20.3 22.0 25.7
∆ -2.5 -4.3 -4.2 -3.9

Table 11. Image↔Image experiment (image-image translation)
on CelebA-HQ and AFHQ datasets. Metrics: FID↓.

IS↑ FID↓ B-4 MTR

M1 2.7 50.6 43.5 26.8
M3 2.9 47.8 47.0 28.3
M4 3.3 42.9 53.7 32.4
∆ +0.4 -4.9 +6.7 +4.1

Table 12. Text↔Image experiment (TXT→IMG, TXT←IMG)
on CUB data.

ACC B-4 MTR ACC

M1 89.3 10.5 21.1 76.4
M3 90.4 14.8 24.8 80.5
M4 92.2 16.7 28.0 88.3
∆ +1.8 +1.9 +3.2 +7.8

Table 13. Text↔Label experiment (TXT→LB, TXT←LB) on
AGnews.


