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Abstract
In this paper, we study gap-dependent regret
guarantees for risk-sensitive reinforcement learn-
ing based on the entropic risk measure. We pro-
pose a novel definition of sub-optimality gaps,
which we call cascaded gaps, and we discuss
their key components that adapt to the underlying
structures of the problem. Based on the cascaded
gaps, we derive non-asymptotic and logarithmic
regret bounds for two model-free algorithms un-
der episodic Markov decision processes. We
show that, in appropriate settings, these bounds
feature exponential improvement over existing
ones that are independent of gaps. We also prove
gap-dependent lower bounds, which certify the
near optimality of the upper bounds.

1. Introduction
We study the problem of risk-sensitive reinforcement learn-
ing (RL) based on the entropic risk measure, in which we
aim to identify a decision making rule (or policy) π̂ that
solves the following optimization problem:

max
π

{
V π =

1

β
log(Eπ eβR)

}
, (1.1)

where R denotes the cumulative reward and β 6= 0 is
the risk parameter that induces risk-seeking learning when
β > 0 and risk-averse learning when β < 0. The (stan-
dard) risk-neutral objective function used in RL, which is
simply Eπ[R], can be recovered from Eq. (1.1) by setting
β → 0. Moreover, the objective of (1.1) in the form of
entropic risk measure admits a Taylor expansion V π =
Eπ[R] + β

2 Varπ(R) + O(β2), which represents a trade-
off between the expectation and the variance (and possi-
bly higher-order statistics) of the reward. Several lines of
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research on related problems have witnessed fruitful appli-
cations in a wide range of domains, including neuroscience
(Niv et al., 2012; Shen et al., 2014), robotics (Nass et al.,
2019; Williams et al., 2016; 2017), economics (Hansen and
Sargent, 2011), etc. The formulation (1.1) has been related
to notions of robustness (Osogami, 2012; Hansen and Sar-
gent, 2011; Föllmer and Knispel, 2011) and bounded ratio-
nality (Simon, 1955; Ortega and Stocker, 2016) in decision
making and behavioral studies. A thermodynamic view on
such formulation has also been proposed for understand-
ing sequential decision making systems (Ortega and Braun,
2013).

For problem (1.1), much recent work has been devoted to
designing algorithms that attain finite-sample regret bounds
under Markov decision processes (MDPs). Although the
existing bounds are nearly optimal in the minimax sense,
they are overly pessimistic as they generally fail to ex-
ploit particular structures of the underlying MDPs, such
as sub-optimality gaps, which quantify the easiness of
learning optimal policies under the MDPs. On the other
hand, while previous work has explored and provided gap-
dependent results for risk-neutral RL, it is unclear how
the sub-optimality gaps should be constructed in the risk-
sensitive setting. In particular, the definition of existing
sub-optimality gaps, as we will elaborate in Section 4, cru-
cially hinges on the linear structures of the risk-neutral
setting, which no longer hold in the risk-sensitive setting
characterized by the non-linear objective (1.1). It there-
fore begs the following natural questions: 1) how sub-
optimality gaps should be characterized in risk-sensitive
RL, and 2) whether we can obtain refined bounds on re-
gret and sample complexity by taking advantage of the gap
structures.

To answer the above questions, we study gap-dependent re-
gret bounds for risk-sensitive RL based on the entropic risk
measure. We begin by identifying two key conditions for
a proper definition of sub-optimality gaps for risk-sensitive
RL: Bellman difference condition and risk consistency con-
dition. The Bellman difference condition states that the
gaps induce a Bellman equation in which they play the role
of reward functions; the risk consistency condition stipu-
lates that the gaps stay on the same order of magnitude for



Cascaded Gaps and Logarithmic Regret for Risk-Sensitive Reinforcement Learning

both risk-averse and risk-seeking settings given fixed risk
sensitivity |β|, and they reduce to risk-neutral gaps as |β|
vanishes. Motivated by the two conditions, we propose
a novel characterization of sub-optimality gaps for risk-
sensitive RL, which we call cascaded gaps. Cascaded gaps
consist of three key components: 1) the difference of re-
wards along trajectories controlled by an optimal policy, 2)
the reward functions evaluated along a free trajectory (not
controlled by any policy), and 3) a normalization factor that
depends on the risk parameter. The first two components
together exhibit a cascading property and address the Bell-
man difference condition, whereas the third component fa-
cilitates risk consistency.

Based on the cascaded gaps, we derive non-asymptotic re-
gret bounds for two existing risk-sensitive RL algorithms,
RSVI2 and RSQ2, that scale logarithmically in the num-
ber of episodes and decay in the cascaded gaps. The proof
is based on a unified framework for both algorithms. We
demonstrate that under proper settings, our regret bounds
attain an exponential improvement over existing results
with respect to the number of episodes, as well as an expo-
nential improvement in terms of risk sensitivity and horizon
over existing sample complexity bounds. We further show
that the provided upper bounds are nearly optimal by de-
riving compatible lower bounds. To the best of our knowl-
edge, this is the first work that studies sub-optimality gaps
in risk-sensitive RL with the entropic risk measure and de-
rives gap-dependent regret bounds.

Contributions. In summary, we make the following the-
oretical contributions in this paper:

1. We propose a novel notion of sub-optimality gaps for
risk-sensitive RL based on the entropic risk measure,
which we call cascaded gaps. We discuss essential
components of cascaded gaps tailored to the unique
structure of risk-sensitive RL, and compare them with
sub-optimality gaps in the risk-neutral setting.

2. We prove logarithmic regret bounds that adapt to the
sub-optimality gaps for two existing risk-sensitive RL
algorithms. The bounds are achieved via a unified
framework for both algorithms, and they imply expo-
nential improvements in both regret and sample com-
plexity under appropriate settings.

3. We further derive lower bounds that nearly match the
upper bounds, thereby showing that the upper bounds
are nearly optimal.

Notation. We write shorthand [n] := 1, . . . , n for any
n ∈ Z+. For any series of variables {vi}i∈[n], we de-
fine the notation poly(v1, . . . , vn) := c0

∏
i∈[n] v

ci
i and

polylog(v1, . . . , vn) := c0
∏
i∈[n] log(vi)

ci for some pos-
itive universal constants {ci}i≥0. For x > 0, we write
Õ(x) to denote O(xpolylog(x)); we define Ω̃(x) in a sim-
ilar way. Unless otherwise specified, log denotes the nat-
ural logarithm and log2 denotes the logarithm with base 2.
For any functions f and g with the same domain, we write
f ≤ g to mean f(y) ≤ g(y) for all y in the domain. We
use notation φ(n) . ϕ(n) (or φ(n) & ϕ(n)) for functions
φ and ϕ that satisfy φ(n) ≤ Cϕ(n) (or φ(n) ≥ cϕ(n))
for every n ∈ Z+ with some universal constant C > 0
(or c > 0); further, we write φ(n) � ϕ(n) to mean
φ(n) . ϕ(n) and φ(n) & ϕ(n).

2. Related Works
Initiated by Howard and Matheson (1972); Jacobson
(1973), risk-sensitive RL based on the entropic risk mea-
sure has been the focus of long-standing research efforts
for the past decades (Eriksson and Dimitrakakis, 2019;
Borkar, 2002; Borkar and Meyn, 2002; Coraluppi and Mar-
cus, 1999; Osogami, 2012; Shen et al., 2013; Whittle,
1990; Mihatsch and Neuneier, 2002; Bäuerle and Rieder,
2014; Cavazos-Cadena and Fernández-Gaucherand, 2000;
Fleming and McEneaney, 1995; Hernández-Hernández and
Marcus, 1996; Di Masi and Stettner, 1999; Borkar, 2001).
Most related to our work are perhaps those by Fei et al.
(2020a; 2021b;a): under the episodic and finite-horizon
MDPs, they propose computationally efficient algorithms
for risk-sensitive RL and provide finite-sample and nearly
optimal regret guarantees in both tabular and linear set-
tings. These results are general, holding without access
to transitions or simulators. However, they fail to exploit
particular structures of the underlying MDPs, such as sub-
optimality gaps, and are therefore overly conservative un-
der certain settings.

For risk-neutral RL, a series of works has established non-
asymptotic and gap-dependent regret bounds for optimistic
algorithms, starting from Simchowitz and Jamieson (2019).
Specifically, logarithmic regret are derived for optimistic
Q-learning (Yang et al., 2021) and value iteration (He
et al., 2021). Despite these recent developments, it re-
mains unclear whether the defintion of sub-optimality gaps
in risk-neutral RL is appropriate for the risk-sensitive set-
ting, which the present work aims to address.

3. Preliminaries
3.1. Episodic and Finite-Horizon MDPs

We focus on the setting of tabular MDPs, represented by a
tuple (S,A, H,K,P, r). Here, S denotes the set of avail-
able states with cardinality |S| = S, A the set of actions
available to the agent with cardinality |A| = A, K the
number of episodes, H the horizon, P = {Ph}h∈[H] the
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set of transition kernels, and r = {rh}h∈[H] the set of re-
ward functions. We assume that reward rh : S×A→ [0, 1]
is deterministic for every step h. Without loss of general-
ity, the agent starts at a fixed state sk1 = s1 in each episode
k ∈ [K]. For episode k ∈ [K] and step h ∈ [H], it takes ac-
tion akh at state skh and receives reward rkh(skh, a

k
h). Then the

environment transitions into skh+1 with probability equal to
Ph(skh+1|skh, akh).

3.2. Risk-Sensitive RL

We define policy π := {πh : S → A} as a collection of
functions that map states to actions. In risk-sensitive RL
based on entropic risk measure, we define the state-value
function with respect to any π:

V πh (s) :=
1

β
log
{
E
[
eβ

∑H
i=h ri(si,πi(si))

]
| sh = s

}
,

for each h ∈ [H] and s ∈ S, where the expectation is taken
over the transition kernel P. The quantity β 6= 0 is the risk
parameter of the entropic risk measure. In particular, β > 0
yields a risk-seeking value function, while β < 0 induces
a risk-averse value function. The risk-neutral definition of
the value function Ṽ πh (s) := E[

∑H
i=h ri(si, πi(si)) | sh =

s] can be recovered through taking β → 0. Similarly, we
define the corresponding action-value function as

Qπh(s, a)

:=
1

β
log
{
E
[
eβ

∑H
i=h ri(si,πi(si))

]
| sh = s, ah = a

}
.

Note that we omit the dependency of V πh and Qπh on β for
simplicity. Consequently, the Bellman equation for risk-
sensitive RL is given by

Qπh(s, a) = rh(s, a) +
1

β
logEs′∼Ph(· | s,a)

[
eβ·V

π
h+1(s′)

]
,

(3.1)

which relates the action-value function Qπh to the state-
value function V πh+1 of the next step. Note that the Bellman
equation is non-linear in the value function due to the non-
linearity of the entropic risk measure. It can be shown that
there always exists an optimal policy π∗ with the optimal
value V ∗h (s) := V π

∗

h (s) = supπ V
π
h (s) for every h ∈ [H]

and s ∈ S; we also write Q∗h := Qπ
∗

h for h ∈ [H].

Under episodic MDPs, the agent aims to learn an opti-
mal policy π∗ by interacting with the environment for K
episodes. We measure the performance of the agent that
follows policies {πk}k∈[K] via the notion of regret, which
is defined as

R(K) :=
∑
k∈[K]

(V ∗1 − V π
k

1 )(sk1).

4. Cascaded Gaps
4.1. Bellman Difference Condition

Since both regret and sub-optimality gaps represent some
notion of sub-optimality with respect to an optimal policy
π∗, it would be instrumental to associate the two through a
unified lens. We do so by introducing the following condi-
tion, which later plays a key role in our analysis.

Condition 4.1 (Bellman Difference Condition). Let
{V̂ πh }h be some value functions and π̂∗ be a corresponding
optimal policy. We say that gap functions {gaph : S×A→
R}h∈[H] satisfy the Bellman difference condition if, for any
policy π and tuple (h, s) ∈ [H]× S, there exists some map
f and Zπh := f(V̂ πh ) such that

Dπ
h(s) = gaph(s, a) + Es′∼Ph(·|s,a)[D

π
h+1(s′)],

where Dπ
h := Z π̂

∗

h − Zπh and a := πh(s).

Condition 4.1 stipulates that for any fixed policy π, the gaps
induce a form of Bellman equation where the action fol-
lows policy π. The function Dπ

h , itself being the differ-
ence of two functionals with respect to π̂∗ (optimal with
respect to {V πh}h) and π, takes the role of the value func-
tion, and the gap takes the role of the reward function. In-
deed, Condition 4.1 associates the sub-optimality induced
by Dπ

h with that embedded in gaph. The condition also
suggests that when π = π̂∗, we have Dπ̂∗

h = 0 and there-
fore gaph(s, π̂∗h(s)) = 0.

As an example, we show that the sub-optimality gaps de-
fined in risk-neutral RL meets Condition 4.1. Recall the
risk-neutral value functions

Q̃πh(s, a) := E

[
H∑
i=h

ri(si, πi(si)) | sh = s, ah = a

]
,

Ṽ πh (s) := Q̃πh(s, πh(s)),

for (h, s, a) ∈ [H] × S × A and policy π, with Q̃∗h and
Ṽ ∗h being the corresponding optimal value functions. In
existing literature, the sub-optimality gaps for risk-neutral
RL are given by

∆̃h(s, a) := Ṽ ∗h (s)− Q̃∗h(s, a), (4.1)

for all (h, s, a) ∈ [H]× S×A (Simchowitz and Jamieson,
2019; Yang et al., 2021; He et al., 2021). Note that the gap
in Eq. (4.1) computes the difference in values between the
optimal action π∗(s) and action a. As stated and proved
below, it satisfies Condition 4.1 in the risk-neutral setting.

Proposition 4.2. The sub-optimality gaps {∆̃h}h∈[H] for
risk-neutral RL satisfy Condition 4.1 with Zπh := Ṽ πh .
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Proof. Recall that in the risk-neutral setting, the Bellman
equation for any policy π is given by

Q̃πh(s, a′) = rh(s, a′) + Es′∼Ph(·|s,a′)[Ṽ
π
h+1(s′)] (4.2)

for any (h, s, a′) ∈ [H] × S × A. We fix a tuple (h, s, a)

where a = πh(s), and letZπh := Ṽ πh so thatDπ
h = Ṽ ∗h −Ṽ πh

in Condition 4.1. From the definition (4.1) of ∆̃h, we have

∆̃h(s, a) = Ṽ ∗h (s)− Q̃∗h(s, a)

= Ṽ ∗h (s)− Ṽ πh (s) + Ṽ πh (s)− Q̃∗h(s, a)

= Ṽ ∗h (s)− Ṽ πh (s) + Q̃πh(s, a)− Q̃∗h(s, a)

(i)
= Ṽ ∗h (s)− Ṽ πh (s)

+
[
rh(s, a) + Es′∼Ph(·|s,a)[Ṽ

π
h+1(s′)]

]
−
[
rh(s, a) + Es′∼Ph(·|s,a)[Ṽ

∗
h+1(s′)]

]
= Ṽ ∗h (s)− Ṽ πh (s)

− Es′∼Ph(·|s,a)[Ṽ
∗
h+1(s′)− Ṽ πh+1(s′)]

= Dπ
h(s)− Es′∼Ph(·|s,a)[D

π
h+1(s′)],

where step (i) is due to the Bellman equation (4.2).

Given Proposition 4.2, a connection between regret and
sub-optimality gaps can be established: since regret in the
risk-neutral setting is defined as R̃(K) :=

∑
k∈[K](Ṽ

∗
1 −

Ṽ π
k

1 )(sk1), we have R̃(K) =
∑
k∈[K]D

πk

1 (sk1) (with Dπk

h

as implied in Proposition 4.2). In words, the regret can be
written as the sum of {Dπk

1 } defined for the Bellman differ-
ence condition, in which sub-optimality gaps take the role
of rewards.

The proof of Proposition 4.2 exploits the Bellman equa-
tions under the risk-neutral setting and, in particular, the
linearity of Q̃πh in terms of rh and Ṽ πh+1. However, such
linear properties are not available in risk-sensitive RL, as
seen in Eq. (3.1), where the non-linearity is induced by
the entropic risk measure X 7→ 1

β log(E[eβX ]). This sug-
gests that a simple definition of sub-optimality gaps such
as Eq. (4.1) may not be appropriate, and an alternative def-
inition is necessary.

4.2. Cascading Structure

To introduce sub-optimality gaps for risk-sensitive RL, we
need a few additional notations. We denote by τ a tra-
jectory of length H , which is a series of state-action pairs
{(sj , aj)}j∈[H], and we let T be the set of all possible tra-
jectories. For any trajectory τ ∈ T and h ∈ [H], we let τh
denote the trajectory that consists of the first h elements in
τ , and we define the set Th := {τh : τ ∈ T}. Note that
τH = τ and TH = T. We also let τ0 be an empty tra-
jectory and T0 := {τ0}. We further define the cumulative

reward function R on trajectories such that R(τ0) := 0 and
R(τh) :=

∑
j∈[h] rj(sj , aj) for h ∈ [H] and τ ∈ T.

Motivated by the discussion in Section 4.1, we propose
the following definition of sub-optimality gaps for risk-
sensitive RL. For any step h and trajectory τ , we let

∆h,β(s, a; τh−1)

:= ψβ · eβ·R(τh−1) · [eβ·V
∗
h (s) − eβ·Q

∗
h(s,a)], (4.3)

where ψβ := 1/β for β > 0 and ψβ := e−βH/β for β < 0.
Here, we slightly abuse the gap definition by augmenting it
with additional dependency on β and τh−1 (based on Con-
dition 4.1). Note that ∆h,β ≥ 0 for any β 6= 0.

Let us remark on several noteworthy properties of this gap
definition. First, in contrast with ∆̃h defined in Eq. (4.1)
for the risk-neutral setting, which only depends on π∗ and
a single state-action pair (s, a) at step h, the gap ∆h,β de-
fined in Eq. (4.3) additionally depends on the trajectory
prior to step h. Specifically, the gap consists of two com-
ponents: the factor eβ·R(τh−1), which is with respect to an
uncontrolled trajectory τh−1 up to step h − 1, as well as
a quantity eβ·V

∗
h (s) − eβ·Q∗h(s,a), which is with respect to

the trajectory controlled by an optimal π∗. This means that
∆h,β contains both uncontrolled and optimally controlled
trajectories. Second, given a trajectory τ and for β >
0, as h increases, the multiplicative factor eβ·R(τh−1) ∈
[1, eβ(h−1)] is non-decreasing in h and the exponential
value functions eβ·V

∗
h (s), eβ·Q

∗
h(s,a) ∈ [1, eβ(H−h+1)] are

non-increasing in h; vice versa for β < 0. See Fig. 1 for an
illustration of this property. In view of their special struc-
ture, we name these gaps as cascaded gaps.

We will soon discuss the factor ψβ , another distinctive and
important feature of cascaded gaps, but for now let us show
that the gaps satisfy Condition 4.1.

Proposition 4.3. For any β 6= 0, we have
that {∆h,β}h∈[H] satisfy Condition 4.1 with
Zπh := eβ(R(τh−1)+V πh (s)).

Proof. Let us consider an arbitrary policy π and fix a tuple
(h, s, a) such that a = πh(s). We also fix a trajectory τ
whose h-th element is (s, a). We have

∆h,β(s, a; τh−1)

= eβ·R(τh−1)[eβ·V
∗
h (s) − eβ·Q

∗
h(s,a)]

= eβ·R(τh−1)[eβ·V
∗
h (s) − eβ·V

π
h (s)]

+ eβ·R(τh−1)[eβ·V
π
h (s) − eβ·Q

∗
h(s,a)]

= eβ·R(τh−1)[eβ·V
∗
h (s) − eβ·V

π
h (s)]

+ eβ·R(τh−1)[eβ·Q
π
h(s,a) − eβ·Q

∗
h(s,a)]

(i)
= eβ·R(τh−1)[eβ·V

∗
h (s) − eβ·V

π
h (s)]
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Cascaded Gaps

h = 1 ψβ · eβ·R(τ0)[eβ·V
∗
1 (s) − eβ·Q∗1(s,a)]

h = 2 ψβ · eβ·R(τ1)[eβ·V
∗
2 (s) − eβ·Q∗2(s,a)]

h = 3 ψβ · eβ·R(τ2)[eβ·V
∗
3 (s) − eβ·Q∗3(s,a)]

Risk-Neutral Gaps

Ṽ ∗1 (s)− Q̃∗1(s, a)

Ṽ ∗2 (s)− Q̃∗2(s, a)

Ṽ ∗3 (s)− Q̃∗3(s, a)

Figure 1. A comparison of the cascaded gaps (4.3) in the risk-sensitive setting (β > 0) and risk-neutral gaps (4.1) for H = 3. The blue
blocks illustrate π∗-controlled trajectories, whereas the red blocks illustrate uncontrolled trajectories. Note that for the top cascaded gap,
the uncontrolled trajectory part eβ·R(τ0) = 1 since R(τ0) = 0 by definition.

+ eβ·R(τh−1)
[
eβ·rh(s,a) Es′∼Ph(·|s,a)[e

β·V πh+1(s′)]
]

− eβ·R(τh−1)
[
eβ·rh(s,a) Es′∼Ph(·|s,a)[e

β·V ∗h+1(s′)]
]

= eβ·R(τh−1)[eβ·V
∗
h (s) − eβ·V

π
h (s)]

− Es′∼Ph(·|s,a)[e
β·R(τh)(eβ·V

∗
h+1(s′) − eβ·V

π
h+1(s′))]

= Dπ
h(s)− Es′∼Ph(·|s,a)[D

π
h+1(s′)],

where step (i) holds by taking exponential on both sides of
the Bellman equation (3.1), and the last step holds by the
definition of Dπ

h in Condition 4.1 and that of Zπh .

The proof crucially exploits the multiplicative property of
the Bellman equation (3.1) raised to exponential1 as well as
the cascading structure of ∆h,β . Based on ∆h,β , we define
the minimal cascaded gap ∆min,β as the minimum non-
zero cascaded gap over tuples (h, s, a) ∈ [H]× S×A and
trajectories τ ∈ T, i.e.,

∆min,β

:= min
h,s,a,τ

{∆h,β(s, a; τh−1) : ∆h,β(s, a; τh−1) 6= 0},

(4.4)

For any fixed β, the minimal gap serves as a measure for the
difficulty of the corresponding MDP problem. We assume
∆min,β > 0 throughout the paper to avoid triviality.

4.3. Normalization for Risk Consistency

One might notice that our notion of cascaded gaps is not
the only gap definition that satisfies Condition 4.1. In-
deed, another candidate for the gap definition would be
∆′h,β(s, a) := sign(β) · eβ·R(τh−1)[eβ·V

∗
h (s) − eβ·Q∗h(s,a)],

with the only difference, compared to ∆h,β , being that it
replaces the normalization factor ψβ with the sign of β. It
is not hard to show that this alternative definition also meets
Condition 4.1.

1The result of the transformation is known as the exponential
Bellman equation (Fei et al., 2021a).

Yet, we demonstrate that the normalizer ψβ is crucial for
the gap ∆h,β to showcase risk consistency: the gap has
the same order of magnitude when |β| is fixed and re-
covers the risk neutral gap ∆̃h as |β| → 0. To illus-
trate this point (as well as the deficiency of the alternative
∆′h,β), let us consider an MDP with arbitrary transition ker-
nels and its reward function satisfying rh(s, a) = 1 for
(h, s, a) ∈ [H−1]×S×A, rH(s, a∗) = 1 for some action
a∗ ∈ A, and rH(s, a) = 0 for A \ {a∗}. That is, this MDP
has all its rewards equal to 1 except for the last step when
sub-optimal actions are taken (which yields zero rewards).

For β > 0, the alternative gap ∆′h,β of the above MDP
is on the order of eβH − 1 (which grows exponentially in
β), but for β < 0, its order is of 1 − eβH (which is upper
bounded by 1 for any β < 0). Therefore, the magnitude
of ∆′h,β is inconsistent under different signs of β. On the
other hand, it can be verified that our definition ∆h,β is on
the same order of (e|β|H − 1)/|β| for all β 6= 0, thanks to
the risk-dependent normalization factor ψβ . In addition, as
β → 0, we have ∆h,β(s, a; τh−1) → V ∗h (s)−Q∗h(s, a) =

∆̃h(s, a) for any (h, s, a, τ) by L’Hospital’s rule, thereby
recovering the definition of sub-optimality gaps in the risk-
neutral setting; nevertheless, ∆′h,β tends to 0 and becomes
degenerate as β → 0.

5. Algorithms
We consider two model-free algorithms for risk-sensitive
RL, RSVI2 (Algorithm 1) and RSQ2 (Algorithm 2), both
of which are proposed in Fei et al. (2021a).

Algorithm 1 is based on value iteration that features an op-
timistic estimate Qh of the action value with a bonus term.
In episode k, we compute at each step h the sample average

wh(s, a)← 1

Nh(s, a)

∑
i∈[k−1]

I{(sih, aih) = (s, a)}

· eβ[rh(s,a)+Vh+1(sih+1)]

(5.1)
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over prior episodes for all visited state-action pairs (s, a).
The bonus is given by

bh(s, a)← c
∣∣∣eβ(H−h+1) − 1

∣∣∣√S log(2SAHK/δ)

Nh(s, a)
,

(5.2)

where c > 0 is a universal constant. It decays in both step h
and the number of visitsNh, thus also known as the doubly
decaying bonus (Fei et al., 2021a), and enforces the princi-
ple of Risk-Sensitive Optimism in the Face of Uncertainty
that encourages more exploration of less frequently visited
state-action pairs. We then compute the optimistic estimate
of the action-value function through

Qh(s, a)← 1

β
log(Gh(s, a)), (5.3)

where

Gh(s, a)

←

{
min{eβ(H−h+1), wh(s, a) + bh(s, a)}, if β > 0;

max{eβ(H−h+1), wh(s, a)− bh(s, a)}, if β < 0.

Note that for β > 0, the addition of the bonus term bh rep-
resents optimism in risk-seeking decision making, whereas
for β < 0 the subtraction of the bonus term corresponds
to optimism in risk-averse decision making. Finally, in the
policy execution stage, action ah is taken following the pol-
icy that maximizes Qh(sh, ·) over A.

Algorithm 1 RSVI2
Require: number of episodes K, confidence level δ ∈

(0, 1], and risk parameter β 6= 0
1: Qh(s, a), Vh(s)← H − h+ 1, wh(s, a)← 0, and

Nh(s, a)← 0 for all (h, s, a) ∈ [H + 1]× S×A

2: for episode k = 1, . . . ,K do
3: for step h = H, . . . , 1 do
4: for (s, a) ∈ S×A such that Nh(s, a) ≥ 1 do
5: Update wh(s, a) following (5.1)
6: Update bh(s, a) following (5.2)
7: Update Qh(s, a) following (5.3)
8: Vh(s)← maxa′∈AQh(s, a′)
9: end for

10: end for
11: for step h = 1, . . . ,H do
12: Take action ah ← arg maxa∈AQh(sh, a) and

observe rh(sh, ah) and sh+1

13: Nh(sh, ah)← Nh(sh, ah) + 1
14: end for
15: end for

On the other hand, Algorithm 2 follows the paradigm of
Q-learning. In step h it computes the (exponential) moving

Algorithm 2 RSQ2
Require: number of episodes K, confidence level δ ∈

(0, 1], and risk parameter β 6= 0
1: Qh(s, a), Vh(s)← H − h+ 1 if β > 0;

Qh(s), Vh(s, a)← 0 if β < 0, for all (h, s, a) ∈
[H + 1]× S×A

2: Nh(s, a)← 0 for all (h, s, a) ∈ [H]× S×A, and
αt ← H+1

H+t for all t ∈ Z+

3: for episode k = 1, . . . ,K do
4: Receive the initial state s1

5: for step h = 1, . . . ,H do
6: Take action ah ← arg maxa′∈AQh(sh, a

′),
and observe rh(sh, ah) and sh+1

7: Nh(sh, ah)← Nh(sh, ah) + 1
8: t← Nh(sh, ah)
9: Update wh(sh, ah) following (5.4)

10: Update bh,t following (5.5)
11: Update Qh(sh, ah) following (5.6)
12: Vh(sh)← maxa′∈AQh(sh, a

′)
13: end for
14: end for

average estimate

wh(sh, ah)← (1− αt)Gh(sh, ah)

+ αt · eβ[rh(sh,ah)+Vh+1(sh+1)]
(5.4)

through online updates instead of batch updates as used in
Algorithm 1. However, it uses a similar doubly decaying
bonus term

bh,t ← c
∣∣∣eβ(H−h+1) − 1

∣∣∣√H log(2SAHK/δ)

t
(5.5)

for some universal constant c > 0, in enforcing optimism
for efficient exploration. Similarly, the optimistic estima-
tion of the value function is set as

Qh(sh, ah)← 1

β
log(Gh(sh, ah)), (5.6)

where the update on the exponential value function and
truncation are given by

Gh(sh, ah)

←

{
min{eβ(H−h+1), wh(sh, ah) + αtbt}, if β > 0;

max{eβ(H−h+1), wh(sh, ah)− αtbt}, if β < 0.

6. Main Results
In this section, we present gap-dependent regret bounds for
risk-sensitive RL. We first provide regret upper bounds for
Algorithms 1 and 2, and then we present a regret lower
bound that any algorithm has to incur. For notational sim-
plicity, we write ∆min := ∆min,β and ∆h := ∆h,β in short
by dropping their dependency on β.
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6.1. Regret Upper Bounds

The following theorem provides the gap-dependent perfor-
mance of Algorithm 1.

Theorem 6.1. For any fixed δ ∈ (0, 1], with probability at
least 1− δ, the regret of Algorithm 1 is upper bounded by

R(K) .
(e|β|H − 1)2H3S2A

|β|2∆min
log(HSAK/δ)2.

Moreover, the expected regret is upper bounded by

E[R(K)] .
(e|β|H − 1)2H3S2A

|β|2∆min
log(HSAK)2.

The proof is provided in Appendix B.2. The above
bounds are general as they hold for any β 6= 0. They
also imply results obtained under the risk-neutral setting
when |β| → 0. This is verified given that (e|β|H −
1)/|β| → H and ∆min → ∆̃min (where we let ∆̃min de-
note the minimal sub-optimality gap for the risk-neutral
setting). It can thus be seen that when |β| → 0, The-
orem 6.1 provides a result that matches the risk-neutral
bound O((H5d3/∆̃min) log(HSAK/δ)2) (where d = SA
under our setting) in He et al. (2021, Theorem 4.4) with
respect to K and H .

Next we provide regret guarantees for Algorithm 2.

Theorem 6.2. For any fixed δ ∈ (0, 1], with probability at
least 1− δ, the regret of Algorithm 2 is upper bounded by

R(K) .
(e|β|H − 1)2H4SA

|β|2∆min
log(HSAK/δ).

Moreover, the expected regret is upper bounded by

E[R(K)] .
(e|β|H − 1)2H4SA

|β|2∆min
log(HSAK).

The proof is provided in Appendix B.3. Note that the above
regret bounds have the same factor (e|β|H−1)2

|β|2∆min
as in Theo-

rem 6.1; we will show in Section 6.2 that such dependency
is nearly optimal. Applying the same argument as for The-
orem 6.1, when |β| → 0, Theorem 6.2 recovers the risk-
neutral bound O((H6SA/∆̃min) log(SAHK)) proved in
Yang et al. (2021, Theorem 3.1) for a Q-learning algorithm.

While the above discussion focuses on the case |β| → 0,
we also have the following result for |β| ≤ 1/H , which is
more general.

Corollary 6.3. For any fixed δ ∈ (0, 1], if |β| ≤ 1
H , then

with probability at least 1 − δ the regret of Algorithms 1
and 2 is upper bounded by

R(K) .

{
H5S2A
∆min

log(HSAK/δ)2, for Algorithm 1;
H6SA
∆min

log(HSAK/δ), for Algorithm 2.

The expected regret of the two algorithms can be bounded
similarly.

Proof. The result follows from Theorems 6.1 and 6.2 by
using the fact that the function f(b) = ebx−1

b is increasing
on (0,∞) for any x > 0 and f( 1

x ) = (e− 1)x . x.

Corollary 6.3 states that as long as |β| is sufficiently small,
the regret of both algorithms can be bounded by quanti-
ties that are polynomial in H (ignoring the possible H-
dependence of ∆min).

Comparison with existing works on risk-sensitive RL.
Let us place Theorems 6.1 and 6.2 into the context of
known results for risk-sensitive RL. For ease of nota-
tion, we define the shorthand poly(H,S,A;K, 1/δ) :=
poly(H,S,A) · polylog(K, 1/δ). Combining our results
with existing regret bounds in Fei et al. (2021a, Theorems
1 and 2), we have

R(K) .
e|β|H − 1

|β|
· poly(H,S,A;K, 1/δ)

·min

{
e|β|H − 1

|β|∆min
,K1/2

}
.

(6.1)

We see that the gap-dependent regret bounds in Theo-
rems 6.1 and 6.2 trade off the polynomial dependency onK
in the Õ(K1/2)-regret (proved by Fei et al. (2021a)) with
a factor of e|β|H−1

|β|∆min
. Since ∆min ∈ (0, 1

|β| (e
|β|H − 1)], we

may write ∆min = µ
|β| (e

|β|H − 1) for some µ ∈ (0, 1].
Then for µ � 1, the above regret bound becomes

R(K) .
e|β|H − 1

|β|
poly(H,S,A;K, 1/δ).

Under this setting, we attain an exponential improvement
in K over the existing regret bounds in (Fei et al., 2021a),
reducing the polynomial dependency onK (specifically the
Õ(K1/2) dependency) to a logarithmic one. In sharp con-
trast, the regret bounds of Fei et al. (2021a) that are inde-
pendent of sub-optimality gaps, i.e.,

R(K)

≤ min

{
HK,

e|β|H − 1

|β|
K1/2 poly(H,S,A;K, 1/δ)

}
.

must incur the exponential factor e|β|H−1
|β| for gaining only

a polynomial improvement in K. When µ . log(K)√
K

, the

regret bound (6.1) is dominated by the existing Õ(K1/2)
bound.

Our gap-dependent regret bounds also imply an exponen-
tial improvement in terms of sample complexity. Based on
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an argument in Jin et al. (2018), our Theorems 6.1 and 6.2
imply that Algorithms 1 and 2 find ε-optimal policies in
the PAC setting with Ω̃

( (e|β|H−1)2

|β|2∆minε
poly(H,S,A)

)
samples

for any ε > 0. On the other hand, the regret bounds in
Fei et al. (2021a) suggest sample complexity bounds on
the order of Ω̃

( (e|β|H−1)2

|β|2ε2 poly(H,S,A)
)
. Hence, when

ε = Õ( |β|∆min

e|β|H−1
), our results translate to an exponential

improvement in |β| and H in sample complexity bounds
compared to those of Fei et al. (2021a).

6.2. Regret Lower Bounds

Below we present regret lower bounds that complement the
upper bounds in Theorems 6.1 and 6.2.

Theorem 6.4. If |β|(H−1) ≥ log 4,H ≥ 2, ∆min ≤ 1
8|β| ,

and K � 1
|β|2∆2

min
(e|β|(H−1) − 1), then for any algorithm

it holds that

E[R(K)] &
e|β|(H−1) − 1

|β|2∆min
;

if |β|(H−1) ≤ logH ,H ≥ 8, ∆min ≤ 1
4|β|H (e|β|(H−1)−

1), and K � 1
H|β|2∆2

min
(e|β|(H−1) − 1)2, then for any al-

gorithm it holds that

E[R(K)] &
H

∆min
.

We provide the proof in Appendix C. When β is sufficiently
large, Theorem 6.4 provides a lower bound with exponen-
tial dependence on |β| and H , thus nearly matching the
upper bound in Theorem 6.1 in terms of the exponential
dependency and up to a logarithmic factor in K. Com-
pared with the upper bound, the lower bound falls short of
a term of e|β|(H−1) − 1 as well as polynomial factors in
other parameters; it is not yet clear whether there exists a
fundamental gap between the two bounds, and we leave the
investigation for future work.

On the other hand, when |β| is sufficiently small, we
achieve a lower bound that depends only polynomially on
H and is independent of β (beyond potential dependence
in ∆min). Consequently, this result nearly matches that of
Corollary 6.3. Compared with existing risk-neutral lower
bound of He et al. (2021, Theorem 5.4), our result spe-
cializes in the tabular setting and holds in the regime of
non-vanishing β, while theirs adapts to linear function ap-
proximation but only in the risk-neutral regime (|β| → 0).

To the best of our knowledge, this work presents the first
non-asymptotic and gap-dependent regret bounds for risk-
sensitive RL based on the entropic risk measure.

6.3. A Unified Framework

In existing literature, algorithms based on value iteration
andQ-learning are often analyzed in independent ways due
to their distinctive characteristics and update mechanism.
We instead employ a unified framework for analyzing the
regret of Algorithms 1 and 2. To that end, we focus on the
high-probability regret bounds, and the expectation bound
can be obtained as a by-product of the analysis. For each
k ∈ [K], let us define τk := {(skh, akh)}h∈[H] to be the
sample trajectory in episode k. Thanks to Proposition 4.3
that the cascaded gaps {∆h} satisfy Condition 4.1, we may
derive the following lemma on regret using a standard con-
centration result.

Lemma 6.5. For Algorithms 1 and 2 and any fixed δ ∈
(0, 1], it holds with probability at least 1− δ/2 that

R(K) .
∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1)

+
e|β|H − 1

|β|
H log(logK/δ).

The proof is given in Appendix B.1. In the above lemma,
the regret R(K) plays a role similar to the expectation of
the random variable

∑
k,h ∆h(skh, a

k
h; τkh−1), while the sec-

ond term on the RHS can be interpreted as the deviation of
the random variable from its expectation. With Lemma 6.5
in place, it remains to bound the first term of RHS for both
algorithms. We do so in the next two lemmas.

Lemma 6.6. For Algorithm 1 and any δ ∈ (0, 1], it holds
with probability at least 1− δ/2 that∑

k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1)

.
(e|β|H − 1)2H3S2A

|β|2∆min
log(2HSAK/δ)2.

Lemma 6.7. For Algorithm 2 and any δ ∈ (0, 1], it holds
with probability at least 1− δ/2 that∑

k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1)

.
(e|β|H − 1)2H4SA

|β|2∆min
log(2HSAK/δ).

We provide the proofs in Appendices B.2.2 and B.3.2. By
combining Lemma 6.5 with Lemmas 6.6 and 6.7, we ar-
rive at Theorems 6.1 and 6.2, respectively. In addition, we
remark that the bounds on expected regret can also be ob-
tained from Lemmas 6.6 and 6.7 for corresponding algo-
rithms by simple calculations.
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7. Conclusion
We study gap-dependent regret for risk-sensitive RL with
the entropic risk measure under episodic and finite-horizon
MDPs. We propose a novel definition of sub-optimality
gaps, named as cascaded gaps, tailored to the unique char-
acteristics of risk-sensitive RL. We prove gap-dependent
lower bounds on the regret to be incurred by any algorithm,
and provide nearly matching upper bounds for two existing
model-free algorithms. Under proper settings, we demon-
strate that our upper bounds imply exponential improve-
ment in bounds of both regret and sample complexity over
existing results.
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A. Additional Definitions
Before diving into the proofs, we would like to provide additional definitions on several notion of gaps. We start with
the definition of policy-controlled trajectories and sample trajectories as series of state-action pairs; we then define several
notions of semi-normalized gaps that we use only in the proofs.

For a policy π, we define the π-controlled trajectory τπ := {(sj , πj(sj))}j∈[H] as a series of state-action pairs where the
action follows π at every state. We define τk be the sample trajectory of episode k, i.e., τk := {(skj , akj )}j∈[H]. Let us
introduce some additional notion of gaps, based upon cascaded gaps, to assist our proofs. Without loss of generality, we
fix β 6= 0, a trajectory τ , and (k, h, s, a) ∈ [K]× [H]× S×A. We define the semi-normalized sub-optimality gap as

∆h(s, a; τh−1) :=
1

β
eβ·

∑h−1
j=1 rj(sj ,aj)

[
eβ·V

∗
h (s) − eβ·Q

∗
h(s,a)

]
,

and we also pair the semi-normalized gap with a semi-normalizer

ψ̄β :=

{
1, β > 0;

e−βH , β < 0.

Note that the cascaded gap ∆h satisfies that ∆h(s, a; τh−1) = ψ̄β ·∆h(s, a; τh−1), which can be regarded as a further level
of normalization. For any policy π, we also define the π-controlled sub-optimality gap as

∆π
h(s, a; τh−1) :=

1

β
eβ·

∑h−1
j=1 rj(sj ,aj)

[
eβ·V

∗
h (s) − eβ·Q

π
h(s,a)

]
,

which characterizes the sub-optimality of policy π with respect to the optimal policy π∗. Similar to the semi-normalized
sub-optimality gap, we define the normalized π-controlled sub-optimality gap to be ∆π

h(s, a; τh−1) := ψ̄β ·∆π
h(s, a; τh−1),

where the semi-normalizer is applied. Notice that V ∗h (s) ≥ Q∗h(s, a) ≥ Qπh(s, a) for any (s, a) ∈ S×A by definition, and
the gaps are always non-negative quantities due to the monotonicity of exponential function and the normalization factor
1
β . The semi-normalizer ψ̄β is designed to keep the gaps on the same magnitude for both β > 0 and β < 0.

We introduce a notion of optimism gap that represents the difference between the optimistic estimationQkh by the algorithm
and the optimal value function V ∗h . Similar to the cascaded gap, we define the semi-normalized optimism gap as

∆k
h(s, a; τh−1) :=

1

β
eβ·

∑h−1
j=1 rj(sj ,aj)

[
eβ·Q

k
h(s,a) − eβ·V

∗
h (s)

]
,

and the normalized optimism gap as ∆k
h(s, a; τh−1) := ψ̄β ·∆k

h(s, a; τh−1), with the same semi-normalizer applied.

Moreover, we define the (semi-normalized) minimal sub-optimality gap to be the minimal non-zero semi-normalized sub-
optimality gap over the tuple (h, s, a, τ):

∆min := min
h,s,a,τ

{∆h(s, a; τh−1) : ∆h(s, a; τh−1) 6= 0}.

Note that the dependency on β is implicit here. With the above definition, we recall the minimal sub-optimality gap from
Eq. (4.4), and have that ∆min = ψ̄β∆min.

In the subsequent proofs we will leverage a peeling argument, for which we define a series of end points {ρn}Nn=1, where
ρn := 2n∆min, and they generate a series of intervals {In}Nn=1 with In := [ρn−1, ρn) for all n ∈ [N ].

Recall that sk1 is defined as the state in the first step of episode k; since we assume fixed initial state s1 for all episodes,
we have sk1 = s1. We introduce the notion of exponential regret that sums over all the episodes the difference between
exponential value functions of the optimal policy π∗ and that of any policy πk. Specifically, for any episodic MDP with K

episodes, the exponential regret of policy {πk}Kk=1 is defined as E(K) := 1
β

∑
k∈[K][e

β·V ∗1 − eβ·V π
k

1 ](sk1).

B. Proofs of Upper Bounds
B.1. Proof of Lemma 6.5

In this proof, we assume β > 0 without loss of generality, the proof where β < 0 can be similarly carried out. Let us

denote Zk :=
∑
h∈[H] ∆h(skh, a

k
h; τkh−1)− 1

β [eβ·V
∗
1 −eβ·V π

k

1 ](sk1). Following from Lemma B.1, we have {Zk}k∈[K] being
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a martingale difference sequence with respect to the filtration Fk that represents all the randomness up to episode k. Further
recall that the semi-normalized sub-optimality gap for any trajectory

∆h(sh, ah; τh−1) =
1

β
eβ·

∑h−1
j=1 rj(sj ,aj)

[
eβ·V

∗
h (sh) − eβ·Q

∗
h(sh,ah)

]
≥ 0,

and we can thus control the magnitude of Zk by

|Zk| ≤
∑
h∈[H]

|∆h(skh, a
k
h; τkh−1)| ≤ H

|β|
|eβH − 1| =: Bβ .

For any trajectory {τkh−1}h,k, if the exponential regret E(K) = 1
β

∑
k∈[K][e

β·V ∗1 − eβ·V π
k

1 ](sk1) ≤ Bβ , then the sum of Zk
can be lower bounded through applying the definition of Zk:∑

k∈[K]

Zk ≥ −
1

β

∑
k∈[K]

(eβ·V
∗
1 − eβ·V

πk

1 )(sk1) ≥ −Bβ .

Otherwise, if E(K) > Bβ , we lower bound the sum
∑
k∈[K] Zk following Freedman inequality from Lemma D.5. More

specifically, notice that given the filtration Fk, the variance χ =
∑
k∈[K] E[Z2

k | Fk] over all Zk’s is upper bounded by

χ
(i)

≤
∑
k∈[K]

E[(Zk +
1

β
(eβ·V

∗
1 − eβ·V

πk

1 )(sk1))2 | Fk]

=
∑
k∈[K]

E
[( ∑

h∈[H]

∆h(skh, a
k
h; τkh−1)

)2

| Fk
]

(ii)

≤
∑
k∈[K]

Bβ · E
[ ∑
h∈[H]

∆h(skh, a
k
h; τkh−1) | Fk

]
= Bβ

∑
k∈[K]

1

β
(eβ·V

∗
1 − eβ·V

πk

1 )(sk1)

= Bβ · E(K),

where step (i) follows from E[(X − EX)2] ≤ EX2 for any random variable X , and step (ii) follows from the fact that∑
h∈[H] ∆h(skh, a

k
h; τkh−1) ≤ Bβ . For any ς > 0 and % ∈ Z+, we let

vi :=
2i

K
Bβ · E(K) = 2i

H

|β|2
(eβH − 1)2

and

ui :=

√
2i+1

H

|β|2
(eβH − 1)2ς +

2H|eβH − 1|ς
3|β|

for each i ∈ [%], and the corresponding concentration inequality P[
∑
k∈[K] Zk ≤ −ui, χ ≤ vi] ≤ e−ς follows from

Lemma D.5. Let us denote the shorthand U := 2
√
E(K) H|β| |eβH − 1|ς + 2H|eβH−1|ς

3|β| and Bβ := 1
|β| |e

βH − 1| ≤ Bβ , then
it holds that

P
[ ∑
k∈[K]

Zk ≤ −U, E(K) > Bβ

]
≤P

[ ∑
k∈[K]

Zk ≤ −U, E(K) > Bβ

]
,

and we can bound the RHS following a peeling argument. Notice that event G ⊆
⋃%
i=1 Gi, where we denote the events

G := { 1
|β| |e

βH − 1| < E(K) ≤ K
|β| |e

βH − 1|} and Gi := { 2i−1

|β| |e
βH − 1| < E(K) ≤ 2i

|β| |e
βH − 1|} for all i ∈ [%]. It

follows the definition that

P
[ ∑
k∈[K]

Zk ≤ −U, E(K) > Bβ

]
(i)
= P

[ ∑
k∈[K]

Zk ≤ −U, χ ≤ Bβ · E(K), G
]
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(ii)

≤
%∑
i=1

P
[ ∑
k∈[K]

Zk ≤ −U, χ ≤ Bβ · E(K), Gi

]
(iii)

≤
%∑
i=1

P
[ ∑
k∈[K]

Zk ≤ −ui, χ ≤ vi
]

≤ %e−ς ,

where step (i) follows from the fact that E(K) ≤ K|eβH − 1|/|β|, step (ii) follows from stratifying the feasible range into
% = dlogKe layers and applying union bound over all i ∈ [%], and step (iii) follows from relaxing the quantity of E(K)
within the stratified range 2i−1|eβH − 1|/|β| < E(K) ≤ 2i|eβH − 1|/|β| for each i ∈ [%]. Combining both cases, with
probability at least 1− % · e−ς , we have a lower bound∑

k∈[K]

Zk ≥ min{−U,−Bβ} ≥ −U −Bβ .

Recall that
∑
k∈[K] Zk =

∑
k∈[K]

∑
h∈[H] ∆h(skh, a

k
h; τkh−1) − E(K). The lower bound on

∑
k∈[K] Zk implies an upper

bound on exponential regret:

E(K) ≤ 2

√
E(K) · H

|β|
|eβH − 1|ς +

∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1) +

2H|eβH − 1|ς
3|β|

+
H

|β|
|eβH − 1|,

and a sufficient condition gives that with probability at least 1− δ/2

E(K) ≤ 2
∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1) +

16H|eβH − 1|ς
3|β|

+
2H

|β|
|eβH − 1|,

where ς = log(2dlogKe/δ). Following Lemma D.1, with probability at least 1− δ/2, the total regret R(K) is bounded by

R(K) ≤ ψ̄β · E(K)

≤ 2ψ̄β
∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1) +

(e|β|H − 1)(16H log(2dlogKe/δ) + 6H)

3|β|

= 2
∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1) +

(e|β|H − 1)(16H log(2dlogKe/δ) + 6H)

3|β|
.

Lemma B.1. The quantity 1
β [eβ·V

∗
1 − eβ·V π

k

1 ](sk1) for episode k ∈ [K] admits the following decomposition:

1

β
[eβ·V

∗
1 − eβ·V

πk

1 ](sk1) = E
[ ∑
h∈[H]

∆h(sh, π
k
h(sh); τπ

k

h−1) | Fk
]
.

Proof. For any episode k ∈ [K], we have

1

β
[eβ·V

∗
1 − eβ·V

πk

1 ](sk1) = ∆1(τπ
k

1 ) +
1

β
eβ·r1(s1,π

k
1 (s1)) Es2 [(eβ·V

∗
2 − eβ·V

πk

2 )(s2) | Fk],

where the equality is due to Proposition 4.3 and the expectation is taken over the transition probability P1(· | s1, π
k
1 (s1))

given the policy πk. We expand the RHS of the equation recursively to get

1

β
[eβ·V

∗
1 − eβ·V

πk

1 ](sk1) =
∑
h∈[H]

E
[
∆h(sh, π

k
h(sh); τπ

k

h−1) | Fk
]
,

where the sub-optimality gap is defined over the entire trajectory τπ
k

h−1 and the expectation is over all trajectories reachable
under the policy πk and transition probability Ph(· | sh, πkh(sh)) for all h ∈ [H].
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In the sections below, we provide for each algorithm a near-optimal upper bound of the sum of cascaded gaps∑
k∈[K]

∑
h∈[H] ∆h(skh, a

k
h; τkh−1) following a peeling argument, a widely used technique for empirical processes (Yang

et al., 2021; He et al., 2021). The final results, i.e., Theorems 6.1 and 6.2, follow from plugging in the upper bounds of the
sum of cascaded gaps into Lemma 6.5.

B.2. Upper Bounds for Algorithm 1

B.2.1. PROOF OF THEOREM 6.1

High-probability regret bound. Following Lemmas 6.5 and 6.6, with probability at least 1− δ we have

R(K) .
∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1) +

(e|β|H − 1)H log(logK/δ)

|β|

.
(e|β|H − 1)2H3S2A log(2HSAK/δ)2

|β|2∆min
,

where the last inequality is due to ∆min ≤ 1
|β| (e

|β|H − 1).

Expected regret bound. Recall from Lemma D.1 that R(K) ≤ ψ̄βE(K). Since Lemma 6.6 holds with probability at
least 1− δ/2, we have

E[R(K)] ≤ ψ̄β E[E(K)]

= ψ̄β E
[ ∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1)

]
=
∑
τkh−1

P[τkh−1]
∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1)

(i)

≤
∑
n∈[N ]

ρn
∑
k∈[K]

∑
h∈[H]

I{∆h(skh, a
k
h; τkh−1) ∈ In}+

δ

2|β|
·HK(e|β|H − 1)

≤
∑
n∈[N ]

ρn
∑
k∈[K]

∑
h∈[H]

I{∆h(skh, a
k
h; τkh−1) ≥ ρn−1}+

δ

2|β|
·HK(e|β|H − 1)

(ii)

.
∑
n∈[N ]

(e|β|H − 1)2H3S2A log(4HSAK)2

2n|β|2∆min
+

δ

|β|
·HK(e|β|H − 1)

.
(e|β|H − 1)2H3S2A

|β|2∆min
log(2HSAK)2,

where step (i) follows from stratifying the range of ∆k
h into N := dlog2( 1

|β| (e
|β|H − 1)/∆min)e slices with end points

{ρn}Nn=1, where we define ρn := 2n∆min and interval In := [ρn−1, ρn) for all n ∈ [N ]; step (ii) follows from Lemma B.3;
the last inequality is due to ∆min ≤ 1

|β| (e
|β|H − 1) and taking δ = 1

HK .

B.2.2. PROOF OF LEMMA 6.6

For any h ∈ [H] and k ∈ [K], we have V ∗h (skh) = Q∗h(skh, π
∗
h(skh)) and ∆h(skh, a

k
h; τkh−1) ≤ 1

|β| (e
|β|H − 1). Let us define

N := dlog2( 1
|β| (e

|β|H − 1)/∆min)e. Following Lemma B.2, with probability at least 1− δ/2, we have

∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1)

(i)

≤
∑
k∈[K]

∑
h∈[H]

∑
n∈[N ]

ρn · I{∆h(skh, a
k
h; τkh−1) ∈ In}

(ii)

≤
∑
n∈[N ]

ρn
∑
k∈[K]

∑
h∈[H]

I{∆πk

h (skh, a
k
h; τkh−1) ≥ ρn−1}
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(iii)

.
∑
n∈[N ]

ρn
(e|β|H − 1)2H3S2A log(2HSAK/δ)2

4n−1|β|2∆2
min

.
(e|β|H − 1)2H3S2A log(2HSAK/δ)2

|β|2∆min
,

where step (i) is due to the peeling argument that stratifies the range of ∆min into N slices with end points {ρn}Nn=1, step
(ii) follows from Q∗h(skh, a

k
h) ≥ Qπh(skh, a

k
h), and step (iii) follows from Lemma B.2.

Lemma B.2. Under Algorithm 1, with probability at least 1− δ/2, we have for any n ∈ Z+∑
k∈[K]

∑
h∈[H]

I{∆πk

h (skh, a
k
h; τkh−1) ≥ ρn} .

(e|β|H − 1)2H3S2A

4n|β|2∆2
min

log(2HSAK/δ)2.

Proof. Let us denoteMh,n to be the number of episodes such that the sub-optimality of the episode at step h is no less than
ρn, i.e., Mh,n :=

∑
k∈[K] I{∆πk

h (skh, a
k
h; τkh−1) ≥ ρn}. Especially, k1 < . . . < kMh,n

< k denote the selected indices of

previous episodes such that ∆πki
h (skih , a

ki
h ; τkih−1) ≥ ρn at step h, and we further define Rkih :=

∑h
j=1 rj(s

ki
j , a

ki
j ) to be the

sum of rewards for the first h steps within the selected episodes. For the convenience of notation, we use ϑ to denote the
logarithmic factor log(2HSAK/δ). Let us also define a shorthand [PhV ](s, a) := Es′ [V (s′)] with respect to Ph for any
value function V : S→ R and state-action pair (s, a) ∈ S×A.

Notice that we can make a recursive upper bound on the gap between the optimistic value functionQkih and policy controlled
value function Qπ

ki

h . Recall that the Bellman equation for each k ∈ [K] is given by

eβQ
πk

h (skh,a
k
h) = Es′∼Ph(· | skh,a

k
h) e

β[rh(skh,a
k
h)+V π

k

h+1(s′)],

and the update rule is

eβQ
k
h(skh, a

k
h) = min{eβ(H−h+1), (wkh + bkh)(skh, a

k
h)},

as specified in the Algorithm 1. In particular, we have

wkh(skh, a
k
h) ≤ Es′∼Ph(· | skh,a

k
h) e

β[rh(skh,a
k
h)+V kh+1(s′)] + bkh(skh, a

k
h)

with high probability due to Lemma D.3. Combining these together, we get

(eβQ
k
h − eβQ

πk

h )(skh, a
k
h) ≤ Es′∼Ph(· | skh,a

k
h) e

β[rh(skh,a
k
h)+V kh+1(s′)] − Es′∼Ph(· | skh,a

k
h) e

β[rh(skh,a
k
h)+V π

k

h+1(s′)] + 2bkh(skh, a
k
h).

Hence, the recursive upper bound is constructed as∑
i∈[Mh,n]

ψ̄βe
β·Rkih−1(eβ·Q

ki
h − eβ·Q

πki
h )(skih , a

ki
h )

(i)

≤ ψ̄β
∑

i∈[Mh,n]

eβ·R
ki
h−1eβ·rh(s

ki
h ,a

ki
h )(eβ·Q

ki
h+1 − eβ·Q

πki
h+1)(skih+1, a

ki
h+1)

+ ψ̄β
∑

i∈[Mh,n]

eβ·R
ki
h−12bkih + ψ̄β

∑
i∈[Mh,n]

eβ·R
ki
h−1ζkih+1

≤
∑

i∈[Mh,n]

ψ̄βe
β·Rkih (eβ·Q

ki
h+1 − eβ·Q

πki
h+1)(skih+1, a

ki
h+1)

+ eβ·(h−1)
∑

i∈[Mh,n]

2ψ̄βb
ki
h + eβ·(h−1)

∑
i∈[Mh,n]

ψ̄βζ
ki
h+1,

where step (i) follows from adding and subtracting Es′ eβ[rh(skh,a
k
h)+V kh+1(s′)] at the same time and the fact that by con-

struction, akh+1 = πkh+1(skh+1) and

V π
k

h+1(skh+1) = Qπ
k

h+1(skh+1, a
k
h+1),
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V kh+1(skh+1) = Qkh+1(skh+1, a
k
h+1).

Recall that for each episode k and step h we defined the bonus term bkh := c|eβ(H−h+1) − 1|
√

Sϑ
max{1,Nkh (skh,a

k
h)} , where c

is a universal constant, and here we also define

ζkh+1 := [Ph(eβ[rh(skh,a
k
h)+V kh+1(s′)] − eβ[rh(skh,a

k
h)+V π

k

h+1(s′)])](skh, a
k
h)

− eβ·rh(skh,a
k
h)(eβ·V

k
h+1 − eβ·V

πk

h+1)(skh+1).

To simplify the notation, we denote nkh := max{1, Nk
h (skh, a

k
h)}. Expanding the recursive inequality, with probability at

least 1− δ/2 we have∑
i∈[Mh,n]

eβ·R
ki
h−1(eβ·Q

ki
h − eβ·Q

πki
h )(skih , a

ki
h ) ≤ 2

∑
h∈[H]

∑
i∈[Mh,n]

eβ·(h−1)ψ̄βb
ki
h +

∑
h∈[H]

∑
i∈[Mh,n]

eβ·(h−1)ψ̄βζ
ki
h+1

(i)

≤ 2c(e|β|H − 1)
√

2H2S2AMh,nϑ2 + (e|β|H − 1)
√

2HMh,nϑ, (B.1)

where step (i) follows from two upper bounds on
∑
h∈[H]

∑
i∈[Mh,n] e

β·(h−1)bkih and
∑
h∈[H]

∑
i∈[Mh,n] e

β·(h−1)ζkih+1.

More specifically, for the summation on bkih we have

∑
h∈[H]

∑
i∈[Mh,n]

eβ·(h−1)bkih ≤
∑
h∈[H]

∑
i∈[Mh,n]

c|eβH − 1|
√
Sϑ

nkih

(i)

≤ c|eβH − 1|
√
Sϑ

∑
h∈[H]

√
Mh,n

√√√√ ∑
i∈[Mh,n]

1

nkih

≤ c|eβH − 1|
√
Sϑ

∑
h∈[H]

√
Mh,n

√√√√√∑
s,a

N
Mh,n
h (s,a)∑
j=1

1

max{1, j}

(ii)

≤ c|eβH − 1|
√
Sϑ
√

2H2SAMh,n,

where step (i) follows from the Cauchy–Schwarz inequality, and step (ii) follows from the pigeonhole principle. Since
each term of eβ(h−1)ζkh can be controlled by |eβ(h−1)ζkh | ≤ |eβH − 1| for all k ∈ [K] and h ∈ [H], the Azuma-Hoeffding
inequality gives

P
[ ∑
h∈[H]

∑
i∈[Mh,n]

eβ·(h−1)ζkih+1 ≥ ε
]
≤ exp

(
− ε2

2HMh,n(eβH − 1)2

)
for any ε > 0, which means with probability at least 1− δ/2,∑

h∈[H]

∑
i∈[Mh,n]

eβ·(h−1)ζkih+1 ≤ |e
βH − 1|

√
2HMh,nϑ.

At the same time, we provide for the optimism gap a lower bound as follows:∑
i∈[Mh,n]

ψ̄βe
β·Rkih−1(eβ·Q

ki
h − eβ·Q

πki
h )(skih , a

ki
h )

(i)

≥ ψ̄β
∑

i∈[Mh,n]

eβ·R
ki
h−1(eβ·Q

ki
h (s

ki
h ,π

∗
h(s

ki
h )) − eβ·Q

πki
h (s

ki
h ,a

ki
h ))

(ii)

≥ ψ̄β
∑

i∈[Mh,n]

eβ·R
ki
h−1(eβ·Q

∗
h(s

ki
h ,π

∗
h(s

ki
h )) − eβ·Q

πki
h (s

ki
h ,a

ki
h ))

=
∑

i∈[Mh,n]

|β|∆πki
h (skih , a

ki
h ; τkih )
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≥ ρn|β|Mh,n, (B.2)

where step (i) is due to the construction of Algorithm 1 and step (ii) follows from Lemma D.2.

Finally, we combine the upper bound (B.1) and lower bound (B.2) of
∑
i∈[Mh,n] ψ̄βe

β·Rh−1(eβ·Q
ki
h − eβ·Qπ

ki
h )(skih , a

ki
h )

to get

ρn|β|Mh,n ≤ 2c(e|β|H − 1)
√

2H2S2AMh,nϑ2 + (e|β|H − 1)
√

2HMh,nϑ.

Solving for Mh,n we get

Mh,n =
∑
k∈[K]

I{∆πk

h (skh, a
k
h; τkh−1) ≥ ρn} .

(e|β|H − 1)2H2S2A log(2HSAK/δ)2

4n|β|2∆2
min

.

B.3. Upper Bounds for Algorithm 2

B.3.1. PROOF OF THEOREM 6.2

High-probability regret bound. By Lemmas 6.5 and 6.7, it holds with probability at least 1− δ that

R(K) .
∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1) +

(e|β|H − 1)H log(logK/δ)

|β|

.
(e|β|H − 1)2H4SA log(2HSAK/δ)

|β|2∆min
,

where the last inequality is due to ∆min ≤ 1
|β| (e

|β|H − 1).

Expected regret bound. From Lemma D.1 we have that R(K) ≤ ψ̄β · E(K) and Lemma 6.7 holds with probability at
least 1− δ/2. The expected regret can be bounded through

E[R(K)] ≤ ψ̄β E[E(K)]

= ψ̄β E

[ ∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τπ

k

h−1)

]

=
∑
τπ
k

h−1

P[τπ
k

h−1]
∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τπ

k

h−1)

(i)

≤
∑
n∈[N ]

ρn
∑
k∈[K]

∑
h∈[H]

I{∆k
h(skh, a

k
h; τπ

k

h−1) ∈ In}+
δ

2|β|
HK(e|β|H − 1)

(ii)

.
∑
n∈[N ]

(e|β|H − 1)2H4SA log(4HSAK)

2n|β|2∆min
+

δ

|β|
HK(e|β|H − 1)

.
(e|β|H − 1)2H4SA

|β|2∆min
log(HSAK),

where step (i) follows from stratifying the range of ∆k
h into N := dlog2( 1

|β| (e
|β|H − 1)/∆min)e slices with end points

{ρn}Nn=1; step (ii) follows from Lemma B.3; the last inequality is due to ∆min ≤ 1
|β| (e

|β|H − 1) and taking δ = 1
HK .

B.3.2. PROOF OF LEMMA 6.7

With the help of Lemma B.3, it holds with probability at least 1− δ/2 that∑
k∈[K]

∑
h∈[H]

I{∆k
h(skh, a

k
h; τπ

k

h−1) ∈ In} .
(e|β|H − 1)2H4SA log(2HSAK/δ)

4n−1|β|2∆2
min

.
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Hence, with probability at least 1− δ/2, the sum of the cascaded gaps is bounded by∑
k∈[K]

∑
h∈[H]

∆h(skh, a
k
h; τkh−1) ≤

∑
n∈[N ]

ρn
∑
k∈[K]

∑
h∈[H]

I{∆k
h(skh, a

k
h; τπ

k

h−1) ∈ In}

.
∑
n∈[N ]

(e|β|H − 1)2H4SA log(2HSAK/δ)

2n−1|β|2∆min

.
(e|β|H − 1)2H4SA log(2HSAK/δ)

|β|2∆min
,

where N := dlog2( 1
|β| (e

|β|H − 1)/∆min)e and the last step follows from an infinite sum of geometric series. Recall the
definition ρn := 2n∆min and interval In := [ρn−1, ρn) for all n ∈ [N ].

Lemma B.3. Under Algorithm 2, with probability at least 1− δ/2, it holds that for any n ∈ Z+∑
k∈[K]

∑
h∈[H]

I{∆k
h(skh, a

k
h; τπ

k

h−1) ∈ In} .
(e|β|H − 1)2H4SA

4n|β|2∆2
min

log(2HSAK/δ).

Proof. We focus on the case of β > 0; the case for β < 0 follows a similar argument. We denote the shorthand ϑ :=
log(2HSAK/δ). For every h ∈ [H] and n ∈ [N ], we define

Mh,n :=
∑
k∈[K]

I{∆k
h(skh, a

k
h; τπ

k

h−1) ∈ In}

to be the number of episodes where the corresponding gap falls into the interval In. For any i ∈ [Mh,n], we denote ki to
be the i-th episode with gap ∆k

h(skh, a
k
h; τπ

k

h−1) lying in the interval In.

Recall that Nk
h (skh, a

k
h) is the number of visits on state-action pair (skh, a

k
h) at step h prior to episode k, and γh,t :=

2
∑
i∈[t] α

i
tbh,i is the corresponding bonus term for any given t. For the time being, we only consider step h, and we will

ignore some of the subscripts on h for simplicity of notation. In particular, we define ti := Nki
h (skih , a

ki
h ) and κ(s, a, j)

to be the episode where (s, a) is visited for the j-th time. We first apply Lemma D.4 to get an upper bound with three
components: ∑

i∈[Mh,n]

β∆ki
h (skih , a

ki
h ; τπ

ki

h−1) ≤ eβ(h−1)
∑

i∈[Mh,n]

(
eβ·Q

ki
h (s

ki
h ) − eβ·Q

∗
h(s

ki
h ,a

ki
h )
)

≤ eβ(h−1)
∑

i∈[Mh,n]

α0
ti(e

β(H−h+1) − 1) + 2eβ(h−1)
∑

i∈[Mh,n]

γh,ti

+ eβ(h−1)
∑

i∈[Mh,n]

∑
`∈[ti]

α`ti ·
(
eβ·V

k`
h+1(s

k`
h+1) − eβ·V

∗
h+1(s

k`
h+1)

)
.

Especially, the first term on the RHS can be bounded by the number of state-action pairs, i.e.,∑
i∈[Mh,n]

α0
ti(e

β(H−h+1) − 1) ≤
∑

i∈[Mh,n]

(eβ(H−h+1) − 1) · I{ti = 0} ≤ (eβ(H−h+1) − 1)SA, (B.3)

where αiti = 1 only if Nki
h (skih , a

ki
h ) = 0, and (skih , a

ki
h ) ∈ S×A only has SA choices. The second term can be similarly

controlled by

2eβ(h−1)
∑

i∈[Mh,n]

γh,ti ≤ 2eβ(h−1)
∑

i∈[Mh,n]

4c(eβ(H−h+1) − 1)

√
Hϑ

ti

≤ 8eβ(h−1)(eβ(H−h+1) − 1)c
√
Hϑ

∑
i∈[Mh,n]

1√
Nki
h (skih , a

ki
h )
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≤ 8eβ(h−1)(eβ(H−h+1) − 1)c
√
Hϑ

∑
(s,a)∈S×A

NKh (s,a)∑
j=2

I{∃i ∈ [Mh,n] : κ(s, a, j) = ki}√
j − 1

,

where for each state-action pair (s, a), the weighted sum
∑NKh (s,a)
i=2 I{∃i ∈ [Mh,n] : κ(s, a, j) = ki}/

√
i− 1 can be

further bounded through

NKh (s,a)∑
i=2

I{∃i ∈ [Mh,n] : κ(s, a, j) = ki}√
j − 1

≤
Ls,a∑
i=1

1√
i
≤ 2
√
Ls,a,

where Ls,a :=
∑NKh (s,a)
j=1 I{∃i ∈ [Mh,n] : κ(s, a, j) = ki}. Then we can also get an upper bound on the second term as

2eβ(h−1)
∑

i∈[Mh,n]

γh,ti ≤ 16eβ(h−1)(eβ(H−h+1) − 1)c
√
Hϑ

∑
(s,a)∈S×A

√
Ls,a

(i)

≤ 16eβ(h−1)(eβ(H−h+1) − 1)c

√
SAMh,nHϑ, (B.4)

where step (i) follows from
∑

(s,a)∈S×A Ls,a = Mh,n. For the third term, by rearranging the order of summations and
taking advantage of the fact that V kh (skh) = Qkh(skh, a

k
h) and V ∗h (skh) ≥ Q∗h+1(skh+1, a

k
h+1), we get∑

i∈[Mh,n]

∑
`∈[ti]

α`ti

(
eβ·V

k`
h+1(s

k`
h+1) − eβ·V

∗
h+1(s

k`
h+1)

)

=
∑
`∈[K]

(
eβ·V

`
h+1 − eβ·V

∗
h+1

)
(s`h+1)

NKh (s`h,a
`
h)∑

j=N`h(s`h,a
`
h)+1

I{∃i ∈ [Mh,n] : κh(s`h, a
`
h, j) = ki} · α

N`h(s`h,a
`
h)+1

j

≤
∑
`∈[K]

(
eβ·Q

`
h+1 − eβ·Q

∗
h+1

)
(s`h+1)

NKh (s`h,a
`
h)∑

j=N`h(s`h,a
`
h)+1

I{∃i ∈ [Mh,n] : κh(s`h, a
`
h, j) = ki} · α

N`h(s`h,a
`
h)+1

j .

Denote φ` :=
∑NKh (s`h,a

`
h)

j=N`h(s`h,a
`
h)+1

I{∃i ∈ [Mh,n] : κh(s`h, a
`
h, j) = ki} · α

N`h(s`h,a
`
h)+1

j , and the above inequality turns into

∑
i∈[Mh,n]

∑
`∈[ti]

α`ti

(
eβ·V

k`
h+1(s

k`
h+1) − eβ·V

∗
h+1(s

k`
h+1)

)
≤
∑
`∈[K]

φ`
(
eβ·Q

`
h+1 − eβ·Q

∗
h+1

)
(s`h+1).

Recall that each element in {φ`}`∈[K] is bounded by 1 + 1
H , and expand the recursive inequality

eβ(h−1)
∑

i∈[Mh,n]

(
eβ·Q

ki
h (s

ki
h ) − eβ·Q

∗
h(s

ki
h ,a

ki
h )
)
≤ (eβH − 1)SA+ 16(eβH − 1)c

√
SAMh,nHϑ

+ eβ(h−1)
∑
`∈[K]

φ`
(
eβ·Q

`
h+1 − eβ·Q

∗
h+1

)
(s`h+1)

to get

eβ(h−1)
∑

i∈[Mh,n]

(
eβ·Q

ki
h (s

ki
h ) − eβ·Q

∗
h(s

ki
h ,a

ki
h )
)
≤
H−h∑
w=0

SA(eβH − 1)

(
1 +

1

H

)w

+

H−h∑
w=0

16(eβH − 1)c(1 + 1/H)w
√
SAMh,nHϑ

≤ eHSA(eβH − 1) + 16eH(eβH − 1)c

√
SAMh,nHϑ. (B.5)
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With (B.3), (B.4), and (B.5), we obtain the complete upper bound∑
i∈[Mh,n]

β∆ki
h (skih , a

ki
h ; τπ

ki

h−1) ≤ eβ(h−1)
∑

i∈[Mh,n]

(
eβ·Q

ki
h (s

ki
h ) − eβ·Q

∗
h(s

ki
h ,a

ki
h )
)

≤ (eβH − 1)(eHSA+ 16eHc

√
SAMh,nHϑ). (B.6)

On the other side, we can also obtain a lower bound on the sum of gaps following the stratification of the empirical gap
∆k
h: ∑

i∈[Mh,n]

β∆ki
h (skih , a

ki
h ; τπ

ki

h−1) ≥ ρn−1βMh,n. (B.7)

We combine both the upper bound (B.6) and the lower bound (B.7) on
∑
i∈[Mh,n] β∆ki

h (skih , a
ki
h ; τπ

ki

h−1) to get

ρn−1βMh,n ≤ (eβH − 1)(eHSA+ 8eHc
√
SAMh,nHϑ), which leads to a sufficient condition

Mh,n =
∑
k∈[K]

I{∆k
h(skh, a

k
h; τπ

k

h−1) ∈ In} .
(eβH − 1)2H3SAϑ

4nβ2∆2
min

.

Recall that ϑ = log(2HSAK/δ). Sum the equation above over h ∈ [H] to get

∑
k∈[K]

∑
h∈[H]

I{∆k
h(skh, a

k
h; τπ

k

h−1) ∈ In} .
(eβH − 1)2H4SA log(2HSAK/δ)

4nβ2∆2
min

.

C. Lower Bounds
C.1. Proof of Theorem 6.4

We prove the two cases of the theorem in Lemmas C.1 and C.2, respectively. We construct two bandit problems such that
for any policy π the maximum regret in these two problems is lower bounded. Let us assume the first bandit machine
BANDIT I has two arms, where the first arm has reward H − 1 with probability pI{β>0}

1 (1− p1)I{β<0} and reward 0 with
probability (1− p1)I{β>0}p

I{β<0}
1 , whereas the second arm has reward H − 1 with probability pI{β>0}

2 (1− p2)I{β<0} and
reward 0 with probability (1−p2)I{β>0}p

I{β<0}
2 . Similarly, the second bandit machine BANDIT II is also assumed to have

two arms with the same Bernoulli-type rewards, with corresponding probabilities q1 and q2, respectively.

It is not hard to see that a K-round bandit problem described above is equivalent to a K-episode and H-step MDP where
the state space S has three elements: initial state s0, absorbing state s1, and absorbing state s2. At the first step, two
actions a1, a2 ∈ A are available to the state s0. More specifically, if one takes action a1, then with probability pI{β>0}

1 (1−
p1)I{β<0} for BANDIT I (or qI{β>0}

1 (1 − q1)I{β<0} for BANDIT II) the environment transitions into state s1 and with
probability (1 − p1)I{β>0}p

I{β<0}
1 for BANDIT I (or (1 − q1)I{β>0}q

I{β<0}
1 for BANDIT II) it transitions into state s2.

Similarly, if one takes action a2, the environment transitions according to p2 for BANDIT I (or q2 for BANDIT II). Moreover,
we define reward function rh(s0, a) = 0, rh(s1, a) = 1, and rh(s2, a) = 0. In short, taking action a1 is equivalent to
pulling the first arm on the corresponding bandit machine and taking action a2 is equivalent to pulling the second arm.

Now we start focusing on the lower bound analysis of the bandit problem. In particular, we define the transition probability
p1, p2, q1, and q2 such that the first arm is optimal on BANDIT I while the second arm is optimal on BANDIT II, i.e.,

p2 = uβ,H , p1 = q1 = p2 + (−1)I{β<0}ξ, q2 = p2 + (−1)I{β<0} · 2ξ,

where we select a positive quantity ξ ≤ 1
4uβ,H . The quantity uβ,H is set to be e−|β|(H−1) for Lemma C.1 and 1

H for
Lemma C.2.
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Due to the design of the MDPs, ∆h(s, a; τh−1) = 0 for any h ≥ 2 and τh−1. For state s1, the minimal sub-optimality gap
is therefore given by ∆1(s1, a) := ∆1(s1, a; τ0) = 1

|β| (e
β·V ∗1 (s1) − eβ·Q∗1(s1,a)) for some action a, which it is by design

determined by a and the randomness of the environment. More specifically, ∆1(s, a) = 0 if it takes the optimal action
a = a∗ and the only non-zero sub-optimality gap is given by the action a = a′ that takes the sub-optimal arm a′, i.e.,

∆min =
1

|β|

∣∣∣eβ·V ∗1 (s1) − eβ·Q
∗
1(s1,a

′)
∣∣∣

=
1

|β|

∣∣∣p1e
β(H−1) + (1− p1)− p2e

β(H−1) − (1− p2)
∣∣∣

=
1

|β|

∣∣∣(p1 − p2)eβ(H−1) − (p1 − p2)
∣∣∣

=
1

|β|
|eβ(H−1) − 1|ξ.

Theorem 6.4 follows directly by combining Lemmas C.1 and C.2.

Lemma C.1. If |β|(H − 1) ≥ log 4, ∆min ≤ 1
8|β| , and K � 1

|β|2∆2
min

(e|β|(H−1) − 1), then the regret of any policy obeys

E[R(K)] &
e|β|(H−1) − 1

|β|2∆min
.

Proof. Applying Lemma C.3 with K = bp2(1− p2)/ξ2c, we get

E[R(K)] &
e|β|(H−1) − 1

|β|
· p2(1− p2)

ξ

(i)

&
e|β|(H−1) − 1

|β|
· p2

ξ

(ii)

&
e|β|(H−1) − 1

|β|
· p2|eβ(H−1) − 1|

|β|∆min

(iii)

&
e|β|(H−1) − 1

|β|
· p2(e|β|(H−1) − 1)

|β|∆min

=
e|β|(H−1) − 1

|β|
· 1− p2

|β|∆min

(iv)

&
e|β|(H−1) − 1

|β|2∆min
,

where step (i) and step (iv) follow from 1 − p2 ≥ 1
2 , step (ii) follows from ∆min = |eβ(H−1) − 1|ξ/|β|, and step (iii) is

due to the definition of ∆min, and the equality follows from p2 = e−|β|(H−1).

Lemma C.2. If H ≥ 8, |β|(H − 1) ≤ logH , ∆min ≤ 1
4|β|H (e|β|(H−1) − 1) and the number of episodes K �

1
H|β|2∆2

min
(e|β|(H−1) − 1)2, the regret of any policy obeys

E[R(K)] ≥ H

∆min
.

Proof. Similar to the proof of Lemma C.1, we have ∆min = 1
|β| |e

β(H−1) − 1|ξ. Note that we have ξ ≤ 1
4H satisfied as

K ≥ 16H . Apply Lemma C.3 and take K = bp2(1− p2)/ξ2c, then it yields

E[R(K)] &
e|β|(H−1) − 1

|β|
· p2(1− p2)

ξ
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(i)

&
e|β|(H−1) − 1

|β|
· 1

Hξ

=
e|β|(H−1) − 1

|β|
· |e

β(H−1) − 1|
H|β|∆min

=
(e|β|(H−1) − 1)2

|β|2H∆min

(ii)

&
(H − 1)2

H∆min

&
H

∆min
,

where step (i) follows from p2 = 1
H and step (ii) follows from ex − 1 ≥ x for x > 0 and e|β|(H−1) ≤ H .

Lemma C.3. For either case of

1. H ≥ 2, |β|(H − 1) ≥ log 4, p2 = e−|β|(H−1), and 0 < ξ ≤ 1
4e
−|β|(H−1);

2. H ≥ 8, |β|(H − 1) ≤ logH , p2 = 1
H , and 0 < ξ ≤ 1

4H ,

the regret of any policy obeys

E[R(K)] ≥ K

64|β|
ξ(e|β|(H−1) − 1) exp

(
− 8Kξ2

p2(1− p2)

)
.

Proof. Given the definition of the MDPs, for uβ,H = e−|β|(H−1), we have

p2 = e−|β|(H−1), p1 = q1 = p2 + (−1)I{β<0}ξ, q2 = p2 + (−1)I{β<0} · 2ξ,

where we select a positive quantity ξ ≤ 1
4e
−|β|(H−1) such that all the quantities listed above are bounded below by 1

2 for
|β|(H − 1) ≥ log 4. Similarly for uβ,H = 1

H , we have

p2 =
1

H
, p1 = q1 = p2 + (−1)I{β<0}ξ, q2 = p2 + (−1)I{β<0} · 2ξ,

where we select a positive quantity ξ ≤ 1
4H such that all the quantities are bounded below by 1

2 for H > 8.

For any such MDP equivalent to the above bandit models and any policy π, let us define Γa to be the reward from taking
action a ∈ A. For notational convenience, we let a∗ denote the optimal arm and a′ denote the sub-optimal arm. The regret
of such MDP in the k-th episode is given by

(V ∗1 − V π
k

1 )(s1) =
∣∣∣ 1
β

logE eβΓa∗ − 1

β
log
(∑
a∈A

P[ak = a]E eβΓa
)∣∣∣

=
1

|β|

∣∣∣∣ log

∑
a∈A P[ak = a]E eβΓa

E eβΓa∗

∣∣∣∣
(i)

≥ 1

|β|
log
(

1 +
P[ak = a′]|E eβΓa′ − E eβΓa∗ |

E eβΓa∗

)
=

1

|β|
log
(

1 + E[I{ak = a′}] |E e
βΓa′ − E eβΓa∗ |
E eβΓa∗

)
(ii)

≥ 1

2|β|
|E eβΓa′ − E eβΓa∗ |

E eβΓa∗
E[I{ak = a′}],
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where step (i) is due to E eβΓa∗ ≥ E eβΓa′ for β > 0, and step (ii) is due to log(1 + x) ≥ x/2 for x ∈ [0, 1] and ξ ≤ 1
4p2.

In particular, we have

|E eβΓa′ − E eβΓa∗ |
E eβΓa∗

=
|(P[a∗]− P[a′])eβ(H−1) − (P[a∗]− P[a′])|

P[a∗]eβ(H−1) + (1− P[a∗])

=
|ξ(eβ(H−1) − 1)|

P[a∗]eβ(H−1) + (1− P[a∗])

(i)

≥ 1

4
ξ(e|β|(H−1) − 1),

where step (i) follows from the definition of the bandits and the assumptions. Notice that the inequalities hold for both
cases where uβ,H = e−|β|(H−1) and uβ,H = 1

H . Notably, 1− P[a∗] dominates the denominator when β > 0 while being
on the order of eβ(H−1) when β < 0.

Let us denote the regret on BANDIT I with RI(K) and that on BANDIT II with RII(K). Combining the two inequalities
above, we have

max{E[RI(K)] + E[RII(K)]}
(i)

≥ 1

2
E[RI(K)] +

1

2
E[RII(K)]

(ii)

≥ 1

16|β|
ξ(e|β|(H−1) − 1)

∑
k∈[K]

(
Ep[I{ak = a′}] + Eq[I{ak = a′}]

)
≥ K

64|β|
ξ(e|β|(H−1) − 1) exp

(
− 8Kξ2

p2(1− p2)

)
,

where step (i) follows from R(K) =
∑
k∈[K](V

∗
1 −V π

k

1 )(s1) for each bandit, and step (ii) follows from Lemma C.4.

Lemma C.4. Under the setup of Lemma C.3, we have∑
k∈[K]

(
Ep[I{ak = a′}] + Eq[I{ak = a′}]

)
≥ K

4
exp

(
− 8Kξ2

p2(1− p2)

)
.

Proof. Notice that∑
k∈[K]

(
Ep[I{ak = a′}] + Eq[I{ak = a′}]

)
= Ep

[ ∑
k∈[K]

I{ak = a′}
]

+ Eq
[ ∑
k∈[K]

I{ak = a′}
]

(i)

≥ K

2
Pp
[ ∑
k∈[K]

I{ak = a1} ≤
K

2

]
+
K

2
Pq
[ ∑
k∈[K]

I{ak = a1} >
K

2

]
,

where step (i) is due to the assumption that the optimal arm of BANDIT I is the first arm and the optimal arm of BANDIT
II is the second arm. Following Bretagnolle-Huber inequality (Lattimore and Szepesvári (2020), Theorem 14.2), we have
a lower bound in the form of an exponential divergence:

Pp
[ ∑
k∈[K]

I{ak = a1} ≤
K

2

]
+ Pq

[ ∑
k∈[K]

I{ak = a1} >
K

2

]
≥ 1

2
exp(−DKL(Pp ‖Pq)),

and the divergence between two probability measures can be upper bounded through the following argument. Let us denote
p̂ = p

I{β>0}
2 (1− p2)I{β<0} and q̂ = q

I{β>0}
2 (1− q2)I{β<0}, then we have

DKL(Pp ‖Pq)
(i)
= Ep

[ ∑
k∈[K]

I{ak = a′}
]
·DKL

(
Ber(p̂)‖Ber(q̂)

)
(ii)

≤ Kp̂ log
(

1 +
p̂− q̂
q̂

)
+K(1− p̂) log

(
1 +

q̂ − p̂
1− q̂

)
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(iii)

≤ Kp̂
p̂− q̂
q̂

+K(1− p̂) q̂ − p̂
1− q̂

=
(q̂ − p̂)2K

q̂(1− q̂)
(iv)

≤ 8ξ2

p2(1− p2)
,

where step (i) follows from Lattimore and Szepesvári (2020, Lemma 15.1), step (ii) follows from Ep[
∑
k∈[K] I{ak =

a′}] ≤ K and the definition of Kullback-Leibler (kl) divergence, step (iii) follows from log(1 + x) ≤ x, and step (iv)
follows from |p2 − q2| = 2ξ and p2 ≤ q2 ≤ 1

2 for β > 0 and 1
2p2 ≤ q2 ≤ p2 ≤ 1

2 for β < 0.

D. Auxiliary Lemmas

Lemma D.1. If V k1 (s1) ≥ V πk1 (s1) for k ∈ [K], then the regret is upper bounded by

R(K) ≤ ψ̄β · E(K).

Proof. Recall that d
dx log x = 1

x for all x > 0. Especially, d
dx log x ≤ 1 for all x ≥ 1 and d

dx log x ≤ e|β|H for all
x ≥ e−|β|H . The regret can be upper bounded by the corresponding exponential regret as follows:

R(K) =
∑
k∈[K]

(V ∗1 − V π
k

1 )(sk1)

(i)

≤
∑
k∈[K]

(V k1 − V π
k

1 )(sk1)

=
∑
k∈[K]

1

β

[
log
(
eβ·V

∗
1 (sk1 )

)
− log

(
eβ·V

πk

1 (sk1 )
)]

(ii)

≤
∑
k∈[K]

ψ̄β
β

[
eβ·V

∗
1 (sk1 ) − eβ·V

πk

1 (sk1 )
]

≤ ψ̄β · E(K),

where step (i) follows from the assumption that V k1 (s) ≥ V π1 (s) and step (ii) follows from mean value theorem. We
provide the proof here for the sake of completeness, and similar proof can be found in Fei et al. (2021a).

Lemma D.2. For all k ∈ [K], h ∈ [H], state s ∈ S, and δ > 0, the following holds with probability at least 1− δ
2 :{

eβ·V
k
h (s) ≥ eβ·V πh (s), β > 0,

eβ·V
k
h (s) ≤ eβ·V πh (s), β < 0.

Proof. This is Fei et al. (2021a, Lemma 4).

Lemma D.3. Define Vh+1 := {V h+1 : S → R | ∀s ∈ S, V h+1(s) ∈ [0, H − h]}. For any δ ∈ (0, 1], there exists a
universal constant c0 > 0 such that with probability 1− δ, we have∣∣∣∣∣∣ 1

Nk
h (s, a)

∑
τ∈[k−1]

Iτh(s, a)
[
eβ[rτh+V (sτh+1)] − Es′∼Ph(· | sτh,aτh)e

β[rτh+V (s′)]
]∣∣∣∣∣∣

≤ c0
(
eβ(H−h+1) − 1

)√ S log(2HSAK/δ)

max
{

1, Nk
h (s, a)

}
for all V ∈ Vh+1 and all (k, h, s, a) ∈ [K]× [H]× S×A that satisfies Nk

h (s, a) ≥ 1 .
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Proof. This is Fei et al. (2021a, Lemma 1).

Lemma D.4. For any episode k ∈ [K], step h ∈ [H], and state-action pair (skh, a
k
h) ∈ S×A such that t = Nk

h (skh, a
k
h) ≥ 1,

let γh,t := 2
∑
i∈[t] α

i
tbh,i and k1, . . . , kt < k be the episodes in which (skh, a

k
h) is visited at step h, then it holds with

probability at least 1− δ for any β > 0 that

0 ≤ (eβ·Q
k
h − eβ·Q

∗
h)(skh, a

k
h) ≤ α0

t

[
eβ(H−h+1) − 1

]
+ 2γh,t +

∑
i∈[t]

αite
β
[
eβ·V

ki
h+1(s

ki
h+1) − eβ·V

∗
h+1(s

ki
h+1)

]
and for any β < 0 that

0 ≤ (eβ·Q
∗
h − eβ·Q

k
h)(skh, a

k
h) ≤ α0

t

[
1− eβ(H−h+1)

]
+ 2γh,t +

∑
i∈[t]

αit

[
eβ·V

∗
h+1(s

ki
h+1) − eβ·V

ki
h+1(s

ki
h+1)

]
.

Proof. This is Fei et al. (2021a, Lemmas 3 and 8).

Lemma D.5 (Freedman Inequality (Cesa-Bianchi and Lugosi (2006), Lemma A.7)). Suppose {Zi}ni=1 be a martingale
difference sequence on filtration {Fi}ni=1 such that Zi is Fi+1-measurable, E[Zi | Fi] = 0, and |Zi| ≤ B for some
constant B. Define χ =

∑n
i=1 E[Z2

i | Fi], and it follows for any u > 0 and v > 0 that

P
[ n∑
i=1

Zi ≥ u, χ ≤ v
]
≤ exp

( −u2

2v + 2uB/3

)
.

Future directions and broad impact. Given recent advancement in the research of deep neural networks, a promising
direction of further research would be to investigate how neural approximation and its generalization properties (Chen
and Xu, 2021; Chen et al., 2020; 2021a; Min et al., 2021a) would benefit risk-sensitive RL. Understanding and designing
efficient algorithms for risk-sensitive RL in other settings, including shortest path problems (Min et al., 2021b), off-policy
evaluation (Min et al., 2021c), offline learning (Chen et al., 2021b), matching (Min et al., 2022) and non-stationary learning
(Fei et al., 2020b), may also be of great interest. Moreover, as risk-sensitive RL is closely related to human learning and
behaviors, it would be intriguing to study how it synthesizes with relevant areas such as meta learning and bio-inspired
learning (Xu et al., 2021; Song et al., 2021). Last but not least, exploring how risk sensitivity could be used to augment
unsupervised learning algorithms (Fei and Chen, 2018a;b; 2020; Ling et al., 2019) would be an important future topic as
well.


