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Abstract
We develop a new approach to multi-label confor-
mal prediction in which we aim to output a pre-
cise set of promising prediction candidates with a
bounded number of incorrect answers. Standard
conformal prediction provides the ability to adapt
to model uncertainty by constructing a calibrated
candidate set in place of a single prediction, with
guarantees that the set contains the correct an-
swer with high probability. In order to obey this
coverage property, however, conformal sets can
become inundated with noisy candidates—which
can render them unhelpful in practice. This is par-
ticularly relevant to practical applications where
there is a limited budget, and the cost (monetary or
otherwise) associated with false positives is non-
negligible. We propose to trade coverage for a
notion of precision by enforcing that the presence
of incorrect candidates in the predicted conformal
sets (i.e., the total number of false positives) is
bounded according to a user-specified tolerance.
Subject to this constraint, our algorithm then op-
timizes for a generalized notion of set coverage
(i.e., the true positive rate) that allows for any
number of true answers for a given query (includ-
ing zero). We demonstrate the effectiveness of
this approach across a number of classification
tasks in natural language processing, computer
vision, and computational chemistry.

1 Introduction
For many classification problems, returning a set of plausi-
ble responses instead of a single prediction is a useful way of
representing uncertainty (Gammerman and Vovk, 2007; Lei,
2014; Romano et al., 2020). Conformal prediction (Vovk
et al., 2005) is an increasingly popular method for creating
confident prediction sets that provably contain the correct an-
swer with high probability. Unfortunately, these guarantees
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do not come for free; in order to achieve proper coverage on
difficult tasks, conformal prediction can often be unable to
rule out an overwhelming number of candidates—making
their prediction sets large and inefficient. This can make
conformal predictors unusable in settings in which the cost
of returning false positive predictions is substantial.

As an example, consider in-silico screening for drug discov-
ery (see Figure 1). In-silico screening uses computational
tools to search over millions of molecular compounds to
identify candidates with desired properties. Any identified
candidates are then verified experimentally. While it is often
not necessary to return all possible viable candidates (e.g.,
even identifying just one effective drug can suffice), it is
important to respect budgetary constraints by avoiding false
positive predictions. Too many false positives can quickly
consume available resources (e.g., time, materials, funding,
or other assets). This is especially relevant when a valid
answer, in this case, an effective drug, might not even exist.

In this work, we develop an approach to creating confident
prediction sets that trades off standard coverage guarantees
for practical, provable constraints on the total number of
false positives (FP). In other words, we shift the focus of
our conformal guarantees to be on limiting the number of
incorrect answers in our outputs, with the understanding that
we can potentially fail to recover some proportion of the
true answers—i.e., we may obtain a lower true positive rate
(TPR), which we assume is acceptable for the application.

Concretely, we are interested in a set prediction setting
where we have been given n multi-label classification ex-
amples (Xi, Zi) ∈ X × 2Y , i = 1, . . . n as calibration data,
that have been drawn exchangeably from some underlying
distribution PXZ . Under our assumptions, each observation
Xi can be associated with any number of correct labels (in-
cluding zero, in the case of having no answer at all, or one,
like standard classification). That is, the response variable
Zi is a subset of the full label space Y . For example, in
the above in-silico screening task, Xi would be the current
property being screened for, Y the space of all molecular
candidates that might have this property, and Zi ⊆ Y the set
of molecules that do have it. Let Xn+1 ∈ X be a new ex-
changeable test example for which we would like to predict
the set of correct labels, Zn+1 ⊆ Y . Our goal is to construct
a set predictor Ck(Xn+1) that maximizes recall of Zn+1

(i.e., TPR), while limiting the expected number of false
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Figure 1: A demonstration of our approach to relaxing standard coverage guarantees (“Goal A”) in favor of rigorous limits
on the total number of false positives included in the output Ck,δ (“Goal B”). In the illustrative case of in-silico screening for
drug discovery, limiting false positives is critical when balancing a budget for experimental validation.

positives according to a user-defined tolerance k ∈ R>0:

maximize E
[
|Ck(Xn+1) ∩ Zn+1|

max(|Zn+1|, 1)

]
s.t. E

[
|Ck(Xn+1) \ Zn+1|

]
≤ k.

(1)

As an alternative to bounding the expected number of false
positives, we can also seek a predictor Ck,δ that has more di-
rect control of the probability of exceeding k false positives:

maximize E
[
|Ck,δ(Xn+1) ∩ Zn+1|

max(|Zn+1|, 1)

]
s.t. P

(
|Ck,δ(Xn+1) \ Zn+1| ≤ k

)
≥ 1− δ,

(2)

where δ ∈ (0, 1) is another user-defined tolerance level.
Both constructions define different, but useful, operating
conditions; the first is more straightforward (e.g., for the
general practitioner), while the second offers a finer, two-
parameter level of control. Note that both constraints are
marginal over the choice of calibration and test data.

In order to achieve the desired levels of false positive control,
we present an approach that is based on set classification,
combined with conformal calibration techniques (Shafer
and Vovk, 2008; Papadopoulos, 2008; Alvarsson et al.,
2021). Specifically, we use a set nonconformity measure
F : X × 2Y → R to score candidate output sets, S ∈ 2Y ,
for a given input x ∈ X . Intuitively, a high nonconfor-
mity score (e.g., loss) should reflect the confidence that the
candidate set might contain a high number of false posi-
tives, and vice-versa. We learn this function from separate
multi-label classification training data. As enumerating and
scoring all possible candidate sets is combinatorially hard,
we instead adopt the nested conformal prediction strategy
of Gupta et al. (2019), where we greedily construct pre-
diction sets using a best-first strategy that adds top-ranked
individual labels to a growing, nested output set S . We stop
when its nonconformity score,F(x,S), exceeds a calibrated

threshold—that we find based on our desired false positive
constraints. This greedy approach both allows us to scale to
larger label spaces Y (i.e., where there are many candidate
labels that choose from when composing the prediction set),
and to leverage powerful theory for calibrating expectations
of monotonic losses for nested set predictors (Gupta et al.,
2019; Bates et al., 2020; Angelopoulos et al., 2021b).

In summary, our main contributions are as follows:

• A theoretical adaptation of conformal prediction that pro-
vides rigorous false positive control instead of coverage;

• A simple and effective strategy for constructing valid
output sets with empirically high true positive rates;

• A demonstration of the practical utility of our framework
across a range of diverse classification tasks.

2 Related work
Uncertainty estimation. A large body of work in estimat-
ing model uncertainty focuses on calibrating model-based
conditional probabilities, pθ(ŷn+1|xn+1), such that the ac-
curacy, yn+1 = ŷn+1, is equal to the estimated probabil-
ity (Brier, 1950; Murphy and Epstein, 1967; Niculescu-
Mizil and Caruana, 2005; Kuleshov et al., 2018; Kumar
et al., 2019; Vaicenavicius et al., 2019). In theory, these
estimates could be used to create prediction sets with few
false positives, but they are not always accurate (Guo et al.,
2017; Ashukha et al., 2020; Hirschfeld et al., 2020). In a
similar vein, Bayesian formalisms quantify uncertainty via
computing the posterior predictive distribution over model
parameters (Neal, 1996; Graves, 2011; Hernández-Lobato
and Adams, 2015; Gal and Ghahramani, 2016). However,
the quality of these methods can vary depending on the suit-
ability of the presumed prior and on approximation error.

Conformal prediction. As introduced in §1, conformal
prediction (Vovk et al., 2005) provides a finite-sample,
distribution-free method for obtaining prediction sets C with
guarantees on the event 1{Yn+1 ∈ C(Xn+1)}. Most ef-
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forts in CP focus on improving the predictive efficiency,
E[|C(Xn+1)|], of the conformal sets (Vovk et al., 2016;
Sadinle et al., 2019; Romano et al., 2020; Angelopoulos
et al., 2021c; Fisch et al., 2021a;b; Hoff, 2021). As coverage
is guaranteed by design, improving efficiency will naturally
lead to more precise sets with fewer false positives—but
not to a specifiable level. Cauchois et al. (2021) develop
a conformal approach to multi-label classification that can
guarantee that the prediction set only contains true labels
(i.e., FP = 0), but does not offer fine-grained control. Most
relevant to our work, Bates et al. (2020) develop a flexi-
ble framework for controlling the risk, E[L(Y, T (X))], of
a set-valued predictor T with an arbitrary loss function
L—as long the loss respects a monotonic nesting property,
S ⊂ S ′ ⇒ L(S) ≥ L(S ′), for any two prediction sets S
and S ′. The calibration strategy we use here for marginal
expectations is based on an extension in Angelopoulos et al.
(2021b). Recently, Angelopoulos et al. (2021a) proposed
methods to rigorously control non-monotonic losses, includ-
ing the related false discovery rate (FDR), which normalizes
the number of false positives over the size of the prediction
set. However, as most of our target applications have rel-
atively few true positives, FDR control can lead to many
empty predictions (making controlling total false positives
a more natural fit for this work, see Appendix E). Finally,
though we focus on conformal approaches, our methods
are tightly connected to the broader literature surrounding
distribution-free calibration (Vovk et al., 2004; 2015; Vovk
and Petej, 2014; Gupta et al., 2019; 2020; Barber, 2020).

Multiple testing. Controlling the number of false pos-
itives/discoveries over a collection of hypothesis tests is
well-studied (Dunn, 1961; Benjamini and Hochberg, 1995;
Lehmann and Romano, 2005; Romano and Wolf, 2007).
In fact, the objectives expressed in Eqs. (1) and (2) are es-
tablished concepts in statistics—i.e., PFER, the per-family
error rate, and k-FWER, the familywise error rate (Spjøtvoll,
1972; Romano and Wolf, 2007). Recently, FDR control has
also been studied for outlier detection in a conformal infer-
ence setting (Bates et al., 2021). Classic approaches operate
over p-values for each hypothesis test that have specific
dependency structures (e.g., independent or positively de-
pendent), or otherwise use more conservative corrections.
Though similar, our multi-label setting is slightly different
from standard multiple testing in that there is both (1) an
unknown dependency structure between candidate labels for
the same query, but also (2) an extra layer of exchangeability
over the n+ 1 queries. Our approach is able to ignore (1) by
leveraging (2) within a conformal calibration framework.

Selective classification. In selective classification (El-
Yaniv and Wiener, 2010), models can abstain from answer-
ing. In particular, Geifman and El-Yaniv (2017) propose
a strategy for finding classifiers with specific selective 0/1
risks (i.e., the expected accuracy over answered examples).

In our setting, this is analogous to controlling false positives
using k ≈ 0. If uncertain, the model would have to “abstain”
by outputting an empty set. Our framework generalizes this
behavior to other types of constraints for any positive k.

3 Background
We begin with a brief review of conformal prediction (see
Shafer and Vovk, 2008). Here, and in the rest of the paper,
upper-case letters (X) denote random variables; lower-case
letters (x) denote constants, and script letters (X ) denote
sets, unless otherwise specified. Proofs are in Appendix A.

Given a new example x, for every candidate label y ∈ Y
standard conformal classification (where there is one cor-
rect output) either accepts or rejects the null hypothesis that
the pairing (x, y) is correct. The test statistic for this test
is a nonconformity measure,M ((x, y),D), where D is a
dataset of exchangeable, labeled examples (as is (x, ytrue)).
Informally, a lower value of M reflects that point (x, y)
“conforms” to D, whereas a higher value ofM reflects that
(x, y) is atypical relative to D. A practical choice forM
could be a model-based loss, e.g., − log pθ(y|x), where θ
is a model fit to D. For conformal prediction to work, it is
important to ensure thatM preserves the exchangeability
overD∪(x, ytrue). One such way is to learnM on separate
data. Split conformal prediction (Papadopoulos, 2008) uses
a proper training set Dtrain to learn a fixedM that is not
modified during calibration or prediction. This trivially pre-
serves exchangeability of the calibration and test points, and
is a computationally efficient strategy (which we follow).

To construct a prediction set for the new test point x, the
conformal classifier outputs all y for which the null hypoth-
esis (that pairing (x, y) is correct) is not rejected. This is
achieved by comparing the scores of the test candidate pairs
to the scores computed over n calibration examples.
Theorem 3.1 (Split CP, Vovk et al. (2005); Papadopoulos
(2008)). Assume that examples (Xi, Yi) ∈ X × Y , i =
1, . . . , n+ 1 are exchangeable. For a fixed nonconformity
measureM, let random variable Vi = M(Xi, Yi) be the
nonconformity score of (Xi, Yi). For ε ∈ (0, 1), define the
prediction (based on the first n examples) at x ∈ X as

Cε(x) := (3){
y ∈ Y : M(x, y) ≤ Quantile(1− ε; V1:n ∪ {∞})

}
.

Then Cε(Xn+1) satisfies P(Yn+1 ∈ Cε(Xn+1)) ≥ 1− ε.
Remark 3.2. Cauchois et al. (2021) extend the sin-
gle label conformal prediction formulation to the multi-
label case, where Zn+1 ⊆ Y , by predicting two sets
Cinnerε , Couterε ⊆ Y that fully sandwich Zn+1, i.e., they guar-
antee P(Cinnerε (Xn+1) ⊆ Zn+1 ⊆ Couterε (Xn+1)) ≥ 1− ε.

The motivation for our work is evident from Eq. (3): if we
are unable to reject most candidates based on their noncon-
formity scores, then Cε can contain many false positives.
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4 Set predictions with limited false positives
We now introduce our strategy for limiting the number of
false positives that are contained in our output sets. To
briefly remind the reader of our setting, we assume that we
have been given n exchangeable multi-label classification
examples, (Xi, Zi) ∈ X × 2Y , i = 1, . . . n as calibration
data, that are drawn from a distribution PXZ . We follow
split conformal prediction, and assume that any training data
used is distinct from this calibration data. The responseZi is
treated as a generalized set of correct labels for inputXi, and
is a subset of Y . For example, in the in-silico screening task
from §1, Xi is the current target property being screened
for, Y is the space of all molecular candidates, and Zi ⊆ Y
is the set of molecules that have that property.

For a prediction set C(x) ⊆ Y evaluated at a point x ∈ X
with label set z ⊆ Y , we define the true positive proportion
(TPP) as the ratio of correct labels that are recovered:

TPP(z, C(x)) :=
|C(x) ∩ z|
max(|z|, 1)

(4)

(note that TPR := E[TPP]), and the number of false pos-
itives (FP) as the total count of incorrect labels in C(x):

FP(z, C(x)) := |C(x) \ z|. (5)

Our goal, as stated in §1, is to maximize the expected TPP,
while constraining the FP in either of two ways:
Definition 4.1 (k-FP validity). A conformal classifier pro-
ducing random test prediction Ck(Xn+1) is k-FP valid if it
satisfies E[FP(Zn+1, Ck(Xn+1))] ≤ k.
Definition 4.2 ((k, δ)-FP validity). A conformal classifier
producing random test prediction Ck,δ(Xn+1) is (k, δ)-FP
valid if it satisfies P(FP(Zn+1, Ck,δ(Xn+1)) ≤ k) ≥ 1− δ.

4.1 An oracle set predictor

To motivate our approach, imagine an oracle with access
to PZ|X , the conditional distribution of the multi-label set
Z given the input X . Given this information, for any input
x ∈ X and candidate set S ∈ 2Y , in theory such an oracle
would be able to exactly calculate both the expectation and
the conditional distribution of the number of false (and true)
positives in S given x. In order to maximize the TPR while
meeting k-FP and (k, δ)-FP validity, it could then yield:

Coraclek (x) := (6)

arg max
S∈2Y

{
E[TPP(Z,S) | x] : E[FP(Z,S) | x] ≤ k

}
Coraclek,δ (x) := (7)

arg max
S∈2Y

{
E[TPP(Z,S) | x] : P(FP(Z,S) | x] > k) < δ

}
where ties are settled by smaller set size. Of course, comput-
ing this oracle is not possible, as PZ|X is unknown. Further-
more, enumerating all sets S ∈ 2Y is infeasible for large

Y . Instead, in the following sections we develop a practical
approach for roughly approximating the oracle’s behavior
with three main components:

1. A set function F : X × 2Y → R that directly generates
a score for a candidate set S given x that is predictive of
either E[FP(Z,S) | x] or P(FP(Z,S) | x] > k).

2. A calibrated search strategy for exploring a tractable
number of candidate sets, and identifying valid sets satis-
fying our constraints using predictions from F ;

3. A selection policy for picking a final output set.

Wherever possible, our proposed method will try to balance
simplicity and efficiency with effectiveness. Theoretically,
however, the framework it follows is model-agnostic.

4.2 Scoring candidate sets with set functions

We choose to model F using DeepSets (Zaheer et al.,
2017). DeepSets is a popular method which is known
to be a universal approximator for continuous set func-
tions, which makes it a natural choice for our purpose. Let
{φ(x, y1), . . . , φ(x, y|S|)} featurize a candidate set S ⊆ Y ,
where φ(x, yc) ∈ Rd is a function of (x, yc), for yc ∈ S.
In practice, we find that taking φ(x, yc) to be an estimate
of pθ(yc ∈ Z | x), the marginal likelihood of yc being a
correct label, performs well and is simple to implement.
These one-dimensional prediction scores can be provided
by any base model.1 For example, in our in-silico screening
task, we define φ using a directed MPNN (Yang et al., 2019)
that independently predicts the probability of an individual
molecule having the properties targeted by the screen, or
not. Given φ, the DeepSets model is defined by

Ψ(x,S) := softmax
(

dec
( ∑
yc∈S

enc(φ(x, yc))
))
, (8)

where enc(·) and dec(·) are neural encoder and decoder
models, and softmax(·) is taken over the range of possible
false positives, {0, . . . , |S|}. Ψ is trained to predict the
total number of false positives in S via cross entropy, using
labeled sets sampled from held-out training data, separate
from the split used to learn pθ (used for φ). We then compute
Fk and Fk,δ (for either k-FP or (k, δ)-FP validity) as

Fk(x,S) :=

|S|∑
η=0

η ·Ψ(x,S)η (9)

Fk,δ(x,S) := 1−
min(k,|S|)∑

η=0

Ψ(x,S)η, (10)

where Ψ(x,S)η denotes the η-th index of the softmax (i.e.,
the estimated probability that FP = η). Additional details on

1This is comparable to the 1-d features used by Platt scaling.
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Algorithm 1 Pseudocode for conformal prediction with limited false positives (in expectation case, see Eq. (1)).
Definitions: xn+1 is a test point, Dtrain is a training set, Dcal is a calibration set, k is the tolerance, and B is a parameter for considering
only the top individually ranked candidates, yc ∈ Y . LikelihoodModel is an abstract model that estimates individual label likelihood for
ranking and set item featurization. SetModel is an abstract model that estimates FP (we use DeepSets).
1: # Using a training set, fit both a LikelihoodModel pθ and a SetModel F (§4.2).
2: function TRAIN(Dtrain)
3: D(1)

train,D
(2)
train← SPLIT(Dtrain) # Split the training data into two disjoint sets.

4: pθ(yc ∈ Z | x)← FIT(LikelihoodModel,D(1)
train) # Use one set to estimate individual likelihoods, pθ(yc ∈ Z | x).

5: F(x,S)← FIT(SetModel, pθ,D(2)
train) # Use the other (smaller) set to learn the FP set function, F(x,S).

6: return pθ , F
7: end function

8: # Using the trained pθ and F models, find a set score threshold tk on a calibration set that achieves k-FP validity (§4.3).
9: function CALIBRATE(pθ , F , Dcal, k, B)

10: Tcal = {}
11: for (xi, zi) ∈ Dcal do
12: {yi,π(1), . . . , yi,π(B)} ← SORT(Y, pθ(yc ∈ Zi | xi))1:B # Rank top B candidates by individual likelihood.
13: {Si,1, . . . ,Si,B} ← {yi,π(1:j) : j ∈ {1, . . . , B}} # Construct nested sets using this ordering.
14: {vi,1, . . . , vi,B} ← {F(xi,Si,1), . . .F(xi,Si,B)} # Compute nonconformity scores using F .
15: FPmax(xi, zi, t) ← CACHE(xi, zi, vi,1:B ,Si,1:B) # Cache dependent variables for FPmax(xi, zi, t).
16: Tcal ← Tcal ∪ {FPmax(xi, zi, t)} # Append cached FPmax(xi, zi, t) to the calibration set.
17: end for
18: tk ← FIND_THRESHOLD(Tcal, B, k) # Use Eq. (15) to find a k-FP valid set score threshold.
19: return tk
20: end function

21: # Using trained pθ and F models and calibrated threshold tk, return a TPR-maximizing prediction set for test point xn+1 (§4.4).
22: function PREDICT(xn+1, pθ , F , tk, B)
23: # Repeat lines 12-14 to compute Sn+1,1:B and vn+1,1:B .
24: J ← {j ∈ {1, . . . , B} : vn+1,j < tk} # Identify indices of candidate sets that pass threshold tk.
25: Ck(xn+1) ← Sn+1,maxJ # Choose the largest sized set among filtered candidates.
26: return Ck(xn+1)
27: end function

how to train F are given in Appendix B. In the next sections,
we will now only refer to F as a general function.

4.3 Searching for valid candidate sets

Although our set predictor F is trained to model either the
expected FP or its CDF, it is not necessarily accurate. If F
were simply substituted into Eq. (6) or Eq. (7), it may not
produce valid set predictions. To account for this mismatch,
we must carefully calibrate a threshold for accepting can-
didate sets based on F . At the same time, we also must
efficiently search the combinatorial space of candidate sets.

To efficiently calibrate our predictor, we cast our approach
into a form of nested conformal prediction (Gupta et al.,
2019). First, we greedily identify a sequence of nested
candidate sets, ∅ ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sj , by ranking
individual labels yc ∈ Y according to some auxiliary model,
and including them one by one into the growing output set
Sj+1. Notice that, by construction, the number of false
positives contained in Sj is non-decreasing in index j, i.e.,

j ≤ j′ =⇒ FP(z,Sj) ≤ FP(z,Sj′). (11)

In practice, we find that ranking individual labels by their
estimated marginal likelihoods of being true positives, i.e.,

pθ(yc ∈ Z | x)—the same model used in §4.2—performs
well and avoids the overhead of training an additional scor-
ing model. Importantly, for further efficiency (elaborated on
in Remark 4.5) we only consider sets up to a maximum size
B ≤ |Y|, where B is a hyper-parameter that we can set.

Next, we compute a set nonconformity score vj (assumed
to be finite) for each candidate set Sj using F , where

vj := F(x,Sj). (12)

Finally, we define the worst-case number of false positives
over all nested candidate sets S1:B having nonconformity
scores less than t (given the input x with label set z) as

FPmax(x, z, t) := max
{

FP(z,Sj) : vj < t
}
. (13)

If this set is empty, then FPmax is 0. Due to our nested
construction, this is also simply the number of false positives
contained in the largest set Sj satisfying vj < t. It is simple
to show that FPmax is non-decreasing in t, as stated below.

Lemma 4.3 (Monotonicity). For sets Sj and scores vj and
FPmax(x, z, t) as defined in Eqs. (12) and (13), respectively,

t ≤ t′ =⇒ FPmax(x, z, t) ≤ FPmax(x, z, t′). (14)
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Dataset Input # Examples # Negatives # Positives % Empty

In-silico screening SMILES 5,000 85 (50-97) 15 (3-50) 0.0
Object detection Image 3,000 96 (89-98) 4 (2-11) 1.1
Entity extraction Text 3,453 99 (97-100) 1 (0-3) 20.2

Table 1: Dataset statistics (test split). Numbers are reported with respect to the top B = 100 candidates per example. The
median number of positives and negatives per example is given, in addition to their 16th and 84th percentiles. We also give
statistics for the percentage of examples that have “empty” label sets with no positives (i.e., the label set has |z| = 0).

Using this key property, we can find a maximal threshold t to
use as a “cutoff point” for the sequence of nested candidate
sets such that FPmax is controlled, as formalized next.

Theorem 4.4 (FP-CP). Assume that examples (Xi, Zi) ∈
X × 2Y , i = 1, . . . , n + 1 are exchangeable. For each
example i, let Si,j , j = 1, . . . , B (where B ≤ |Y| is a finite
hyper-parameter) be candidate sets, where finite random
variable Vi,j = F(Xi,Si,j) is a set nonconformity score.
For tolerances k ∈ R>0 and δ ∈ (0, 1) define the random
variables Tk and Tk,δ (based on the first n examples) as

Tk := (15)

sup
{
t ∈ R :

B +
∑n
i=1 FPmax(Xi, Zi, t)

n+ 1
≤ k

}
and

Tk,δ := (16)

sup
{
t ∈ R :

∑n
i=1 1{FPmax(Xi, Zi, t) ≤ k}

n+ 1
≥ 1− δ

}
,

where FPmax is as defined in Eq. (13). Then we have that

E
[
FPmax(Xn+1, Zn+1, Tk)

]
≤ k, and (17)

P
(

FPmax(Xn+1, Zn+1, Tk,δ) ≤ k
)
≥ 1− δ. (18)

Remark 4.5. The hyper-parameter B plays an important
role when controlling for k-FP. Tk may be very conserva-
tive if B = |Y| and |Y| is very large, to the point where
Tk = −∞ always if |Y| > k(n + 1). It can therefore be
beneficial to truncate the considered label space Y for an
example x to only the top B � k(n+ 1) individual candi-
dates, {y1, . . . , yB} ∈ YB . For example, for text generation
tasks (like machine translation), Y is infinite, but we can
restrict our predictions to a subset of the top B beam search
candidates (whereB can still be reasonably large). Still, this
isn’t free: a smaller B may result in fewer true positives.

Remark 4.6. No constraints are placed on the underly-
ing set function F in Theorem 4.4; i.e., it need not be a
DeepSets architecture. If, however, F is a good estima-
tor of FP(Z,S) | X , then our method is more likely to
identify sets that are approximately valid conditioned on
Xn+1 = xn+1, which we investigate empirically in §6.

Remark 4.7. It is useful to note that nestedness of Si,j is
not necessary for the above calibration to hold (it is mainly
used for efficiency). Monotonicity of FPmax is sufficient.

4.4 Selecting the final output set

The main consequence of Theorem 4.4 is that, using the
calibrated nonconformity threshold Tk or Tk,δ = t∗, we
can construct a collection of sets that are simultaneously
valid by keeping all candidate sets with scores less than t∗.
Specifically, we are free to select any set in the filtered set of
candidates Sn+1,j , j ∈ J where J := {j : vn+1,j < t∗},
as a valid output. Ideally, we would be able to follow the
the oracle strategy in returning the smallest set with the
highest number of true positives. This would make our
predictions efficient, in the sense that we are not including
more false positives than necessary (even if the total is still≤
k). A reasonable choice is to then choose Sj∗ where j∗ :=
arg maxj∈J |Sj | − F(x,Sj); but this can be sub-optimal
if F is not accurate. As a greedy, but effective, approach
we simply take the largest set as our final output, which has
maximal TPR. We formalize this in Proposition 4.8.

Proposition 4.8 (Greedy FP-CP). Let T◦ denote either Tk
or Tk,δ. Then random candidate sets Sn+1,j , ∀j ∈ J :=
{j : Vn+1,j < T◦}, are valid. Furthermore, among indices
J , maxJ indexes the nested set with the highest TPR.

We discuss some additional considerations of our method, as
well as potential limitations and extensions, in Appendix E.

5 Experimental setup
In this section, we outline our tasks and models. We also de-
scribe our evaluation and baselines. For all experiments, we
setB to 100. Table 1 provides statistics for the datasets used
in experiments. Appendix C contains additional details.

5.1 Tasks

In-silico screening for drug discovery. As introduced in
§1, the goal of in-silico screening is to identify potentially ef-
fective drugs to manufacture and test. We use the ChEMBL
database (Mayr et al., 2018) to screen molecules for com-
binatorial constraint satisfaction, where given a constraint
such as “has property A but not property B,” we want to iden-
tify the subset of molecules from a given set of candidates
that have the desired attributes. We partition the dataset
both by molecules and property combinations, so that at test
time the model makes predictions on combinations it has
never been tested on before (after being trained on the same



Conformal Prediction Sets with Limited False Positives

properties, but seen only in different combinations), over
a pool of molecules that it has never seen before. Scores
for candidate molecules are obtained via an ensemble of
directed MPNNs (Yang et al., 2019).

Object detection. We consider the task of placing bound-
ing boxes around all objects of a certain type (such as a per-
son) that are present in an image (of which there may be few,
many, or none). We use the MS-COCO dataset (Lin et al.,
2014), a dataset with images of everyday scenes containing
80 object types (e.g., person, bicycle, dog, car, etc). We
extract typed bounding box candidates (i.e., tuples of both
location and category) using an EfficientDet model (Tan
et al., 2020) with non-maximum suppression. True positives
are defined as boxes that have an intersection over union
(IoU) > 0.5 with a matching annotation of the same type.

Entity extraction. In entity extraction, we are interested
in identifying all named entities that appear in a tokenized
sentence x of length l, where x = {w1, . . . , wl}, and clas-
sifying them into appropriate categories. A named en-
tity is a proper noun, demarcated by a contiguous span
{wstart, . . . , wend} ⊆ x of the input sentence, that can be
associated with a particular class of interest (such as a per-
son, location, organization, or product). We report results on
the CoNLL NER dataset (Tjong Kim Sang and De Meulder,
2003), where we use the PURE span-based entity extraction
model of Zhong and Chen (2021) to individually score all
O(l2) candidate spans. We consider exact span predictions
of the correct category to be true positives, and all others to
be false positives. Many sentences contain no entities.

5.2 Evaluation

For each task we learn all models on a training set, perform
model selection on a validation set, and report final results
as the average over 1000 random trials on a test set, where
in each trial we partition the data into 80% calibration (x1:n)
and 20% prediction points (xn+1). To compare across k, we
plot each metric as a function of k (up to k = B), and com-
pute the area under the curve (AUC). Shaded regions show
the 16-84th percentiles across trials. In addition to TPR (our
main metric), as our method already guarantees marginal FP-
validity, we also compute the size-stratified k-FP (SSFPk)
and (k, δ)-FP (SSFPk,δ) violation (Angelopoulos et al.,
2021c), see Appendix C.1. Lower size-stratified violation
suggests that a classifier has better conditional coverage. We
also report average FP results in Table 2.

5.3 Baselines

For all experiments, we compare our FP-CP (NN) method
using a DeepSets-based F to the following baselines:

1. Top-k. We naively take the top k′ fixed predictions for
any xn+1, where k′ is found using average performance
on the calibration set (without any correction factors, so

it is not guaranteed to be valid). Note that k′ can be (and
mostly is) different than the user-specified k for FP.

2. Outer Sets @ 90. We use the (one-sided) multi-label
conformal prediction technique of Cauchois et al. (2021)
to bound P(Zn+1 ⊆ Cε(Xn+1)) ≥ 0.90. Though not di-
rectly comparable, we use this to benchmark our method
against sets that preserve marginal coverage (at a typi-
cal level). For simplicity, we use the direct inner/outer
method without dynamic CQC quantiles.2

3. Inner Sets. Again, we use the (one-sided) method of
Cauchois et al. (2021), this time to bound P(Cε(Xn+1) ⊆
Zn+1) ≥ 1 − ε at level ε = k/B (recall that B ≤ |Y|
is the truncation parameter, and the FP upper bound)
for k-FP control and at level ε = δ for (k, δ)-FP con-
trol. It is straightforward to show that these levels of ε
conservatively achieve k-FP and (k, δ)-FP control.

4. Independent scoring (max). We take F(x,S) to be the
maximum individual label uncertainty in S, max{1 −
pθ(yc ∈ Z | x) : yc ∈ S}. This is equivalent to choosing
labels independently. Calibration uses the same FP-CP
algorithm (it is a drop-in replacement for the NN).

5. Cumulative scoring (sum). We take F(x,S) to be the
cumulative individual label uncertainty in S ,

∑
yc∈S 1−

pθ(yc ∈ Z | x). We calibrate pθ(yc ∈ Z | x) using Platt
scaling (Platt, 1999). As with the max scoring baseline,
calibration uses the same FP-CP algorithm.

Baseline (1) contrasts our approach with what is normally a
“first thought” in practice, (2) and (3) test the efficacy of our
system over existing techniques, and (4) and (5) demonstrate
our FP-CP calibration with simpler alternatives for F .

6 Experimental Results
We now present our empirical results. Figure 3 and Figure 2
present AUC results, computed over all values of ε, for
all tasks. Table 2 reports additional absolute results for
a number of reference k values, focusing on the in-silico
screening task. Appendix D contains additional discussion.

Limiting false positives. The top rows of Figures 2 and
3 show the size-stratified violation for (k, δ)-FP and k-FP,
respectively. Across values of k, FP-CP (NN) typically
achieves substantially lower worst-case violations than ei-
ther max or sum scoring alternatives, (though, in some cases,
the magnitude of SSFP can depend strongly on k). The Top-
k and Inner Sets approaches also prevent large violations
(though, by itself, this result is not necessarily impressive,
as always returning an empty set will lead to SSFP = 0).
When accounting for TPR (bottom rows), we see that our
FP-CP methods demonstrate stronger performance.

2Preliminary experiments indicated that including CQC quan-
tiles did not lead to significantly different (marginal) results.
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(a) In-silico screening (b) Object detection (c) Entity extraction
Figure 2: (k, δ)-FP results as a function of k for δ = 0.1 up to k = B = 100. The top row plots SSFPk,δ violation (lower is
better). The bottom row plots TPR (higher is better). We see that compared to the other baselines, our conformal DeepSets
approach (NN) has the best (or close to) TPR AUC across tasks, while having the lowest (or close to) SSFPk,δ violation.

(a) In-silico screening (b) Object detection (c) Entity extraction
Figure 3: k-FP results as a function of k up to k = B = 100. The top row plots size-stratified k-FP violation (lower is
better). The bottom row plots the TPR (higher is better). As k grows, our methods quickly achieve high TPR. Consistent
with Figure 2, our conformal DeepSets approach (NN) demonstrates high TPR and low SSFPk across tasks.

Maximizing true positive rates. The bottom rows of Fig-
ures 2 and 3 plot TPR rates and AUC across values of k,
while Table 2 details results for several representative indi-
vidual configurations. On the screening task, we see that
our FP-CP (NN) method provides significantly higher TPR

than other baselines. For example, allowing no more than
5 false positives leads to a TPR of 36.1% with k-FP. In
comparison, the TPR of Top-k is only 29.8%. As might be
expected, the advantage of the DeepSets approach underly-
ing FP-CP (NN) over simpler FP-CP scoring mechansims
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Top k Inner Sets FP-CP (Max) FP-CP (Sum) FP-CP (NN)
k-FP:

Avg. FP TPR Avg. FP TPR Avg. FP TPR Avg. FP TPR Avg. FP TPR

k = 5 4.59 29.8 0.14 2.5 4.98 27.5 4.99 34.1 4.98 36.1
k = 15 14.47 53.4 0.88 9.5 14.98 50.7 14.99 58.8 14.99 59.9
k = 25 24.51 68.0 1.49 13.4 24.98 66.8 24.99 73.1 24.99 73.2
k = 35 34.54 78.2 2.45 18.4 34.97 78.4 34.99 82.6 34.99 82.5

(k, δ)-FP with 1− δ = 0.9:
FP ≤ k TPR FP ≤ k TPR FP ≤ k TPR FP ≤ k TPR FP ≤ k TPR

k = 5 100.0 20.5 96.6 6.36 90.0 15.8 90.0 27.2 90.0 31.6
k = 15 94.7 42.4 99.5 6.36 90.0 26.7 90.0 47.4 90.0 55.3
k = 25 96.6 55.7 100.0 6.36 90.0 37.4 90.0 62.3 90.0 69.0
k = 35 97.5 66.2 100.0 6.36 90.0 49.1 90.0 74.0 90.0 79.0

Table 2: Results for the in-silico screening task on the ChEMBL dataset. For k-FP validity, we report the empirical average
of false positives in the prediction sets. For (k, δ)-FP validity we report the percentage of prediction sets with ≤ k false
positives. TPR is expressed as a percent. Our FP-CP methods meet our target thresholds; using the Inner Sets approach
does too, but is conservative (as expected). Applying FP-CP calibration with our DeepSets model (NN) yields substantially
higher TPR across various tolerance levels compared to the other baseline scoring mechanisms.

Task TPR Avg. FP Avg. Size

In-silico screening 97.2 63.6 86.6
Object detection 96.1 32.4 38.2
Entity extraction 75.0 0.77 2.31

Table 3: Outer Sets applied at coverage 0.90 for comparison.
Note that as some examples do not have any positives,
full coverage in the typical sense is not always achievable.
Average FP and set size are reported as absolute values.

is more pronounced for tasks with higher cardinality label
sets, such as in-silico screening versus object detection of
entity extraction (see a comparison of dataset characteristics
in Table 1). Furthermore, since entity extraction contains
a high proportion of examples with “empty” label sets, we
can see that its TPR asymptotes at the natural rate of an-
swerable examples. Nevertheless, in general, all FP-CP
methods (with max, sum, or NN scoring) provide high TPR
(exceeding non FP-CP methods) even at low values of k.

Comparison to conformal coverage methods. Table 3
gives the results of the coverage-seeking Outer Sets method
at level 0.90 (a typical tolerance). Indeed, we achieve strong
TPR (97.2% for the in-silico screening task), but also incur
a high false positive cost in the process (63.6 average FP
for in-silico screening). In contrast, our method allows us
to directly limit false positives, without losing high TPR
empirically (e.g., equivalently controlling for≤ 63.6 FP, we
acheive 97.0% TPR on the in-silico screening task).

7 Conclusion
Conformal prediction, in its standard formulation, already
grants theoretical performance guarantees that can be critical
in many applications. Naively applying CP, however, can

yield disappointing results. Even if the target coverage is
upheld, the predicted sets may be too large, and too noisy, to
be practical. In this paper, we proposed a method for trading
coverage guarantees in favor of strict limits on the number of
false positives contained in our prediction sets. Our results
show that our method yields classifiers that (1) still achieve
strong true positive rates compared to their coverage-seeking
counterparts, and (2) predict meaningful output sets with
effectively controlled numbers of false positives.
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A Mathematical details

A.1 Proof of Theorem 3.1

Proof. This is a well-known result (Vovk et al., 2005; Papadopoulos, 2008; Lei et al., 2018; Romano et al., 2019); we prove
it here for completeness. Since the nonconformity scores Vi are constructed symmetrically, then

((X1, Y1), . . . , (Xn+1, Yn+1))
d
= ((Xσ(1), Yσ(1)), . . . , (Xσ(n+1), Yσ(n+1)))

⇐⇒ (V1, . . . , Vn+1)
d
= (Vσ(1), . . . , Vσ(n+1))

for all permutations (σ(1), . . . σ(n+ 1)). Therefore, if {(Xi, Yi)}n+1
i=1 are exchangeable, then so too are their nonconformal

scores {Vi =M(Xi, Yi)}n+1
i=1 given exchangeability-preserving nonconformity measureM.

By the construction of C, we have

Yn+1 ∈ Ck(Xn+1)⇐⇒ Vn+1 ≤ Quantile(1− ε, V1:n ∪ {∞}).

This implies that Vn+1 is ranked among the d(1− ε) · (n+ 1)e smallest of V1, . . . , Vn,∞. Since Vi are exchangeable, this
happens with probability at least 1− ε.

A.2 Proof of Lemma 4.3

Proof. We will not rely on nestedness of Sj .
Notice that

t ≤ t′ =⇒ {vj : vj < t} ⊆ {vj : vj < t′}. (A.1)

As an immediate consequence,

t ≤ t′ =⇒ {FP(z,Sj) : vj ≤ t} ⊆ {FP(z,Sj) : vj ≤ t} (A.2)
=⇒ max{FP(z,Sj) : vj < t} ≤ max{FP(z,Sj) : vj < t′} (A.3)
=⇒ FPmax(x, z, t) ≤ FPmax(x, z, t′). (A.4)

A.3 Proof of Theorem 4.4

Our proof of Theorem 4.4 builds on marginal RCPS (Angelopoulos et al., 2021b). We restate their results here:

Theorem A.1 (Marginal RCPS). LetLi : R→ R, i = 1, . . . , n+1 be exchangeable functions, whereLi(t) is non-increasing
in t. Also, take g : R→ R where g(x) is non-decreasing in x. Further assume that g ◦ Li is right-continuous, and

inf
t
g(Li(t)) < γ, sup

t
g(Li(t)) ≤ B <∞ almost surely. (A.5)

For any γ ≥ 0, define the random variable T (γ, g) as

T (γ; g) := inf

{
t :

1

n+ 1

n∑
i=1

g(Li(t)) ≤ γ

}
. (A.6)

Then E[g ◦ Ln+1(T (γ; g))] ≤ γ + B
n+1 .

Proof. See Angelopoulos et al. (2021b).

We also restate Corollary 1 of Angelopoulos et al. (2021b).
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Corollary A.2 (Marginal RCPS, adjusted). Under the same setting as in Theorem A.1,

E[g ◦ Ln+1(T̃ (γ; g))] ≤ γ, (A.7)

where

T̃ (γ; g) = inf

{
t :

1

n+ 1

(
B +

n∑
i=1

g(Li(t))

)
≤ γ

}
. (A.8)

Proof. See Angelopoulos et al. (2021b).

Following their analysis, we provide an additional corollary for lower-bounding function Rn+1, where R1, . . . , Rn+1 are
now non-decreasing exchangeable functions (as opposed to the non-increasing).

Corollary A.3 (Marginal RCPS, lower bound, non-decreasing case). Similar to the setting in Theorem A.1, let Ri : R→ R,
i = 1, . . . , n + 1 be exchangeable functions, where Ri(t) is non-decreasing in t. Also, take g : R → R where g(x) is
non-decreasing in x. Further assume that g ◦Ri is right-continuous, and

inf
t
g(Ri(t)) ≥ 0, sup

t
g(Ri(t)) > C ≥ γ almost surely. (A.9)

For any γ ≤ 0, define the random variable T (γ, g) as

T (γ; g) := inf

{
t :

1

n+ 1

n∑
i=1

g(Ri(t)) ≥ γ

}
, (A.10)

where we define inf ∅ =∞. Then E[g ◦Rn+1(T (γ; g))] ≥ γ.

Proof. Let

T ′(γ; g) := inf

{
t :

1

n+ 1

n+1∑
i=1

g(Ri(t)) ≥ γ

}
. (A.11)

Since inft g(Ri(t)) ≥ 0, supt g(Ri(t)) > C ≥ γ, T ′(γ; g) and T (γ, g) are both well-defined almost surely.

Since inft g(Ri(t)) ≥ 0,

1

n+ 1

n∑
i=1

g(Ri(t)) ≥ γ =⇒ 1

n+ 1

n+1∑
i=1

g(Ri(t)) ≥ γ. (A.12)

Thus, T ′(γ; g) ≤ T (γ; g). Since g(Ri(t)) is non-decreasing in t,

E[g ◦Rn+1(T (γ; g))] ≥ E[g ◦Rn+1(T ′(γ; g))]. (A.13)

Let Ef be the unordered set (bag) of {R1, . . . , Rn+1}. Then T ′(γ; g) is a function of Ef , and is a constant conditional on
Ef . Exchangeability of Ri and right-continuity of g ◦Ri imply

E[g ◦Rn+1(T ′(γ; g)) | Ef ] =
1

n+ 1

n+1∑
i=1

g ◦Ri(T ′(γ; g)) ≥ γ. (A.14)

As this is true given any Ef , we can take the expectation over Ef to yield

E[E[g ◦Rn+1(T ′(γ; g)) | Ef ]] ≥ γ. (A.15)

The proof is completed by applying Eq. (A.13).
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We now prove Theorem 4.4.

Proof. By Lemma 4.3, we have that FPmax(x, z, t) is non-decreasing in t. It is also easy to verify that FPmax(x, z, t) is
left-continuous in t and preserves exchangeability, so that FPmax(Xi, Zi, t) are exchangeable functions of t. Next, define

FP−max(x, z, t) := FPmax(x, z,−t), (A.16)

so that FP−max(x, z, t) is non-increasing in t and right-continuous. Define random variables T ′k and T ′k,δ as

T ′k = inf
{
t ∈ R :

B +
∑n
i=1 FP−max(Xi, Zi, t)

n+ 1
≤ k

}
and (A.17)

T ′k,δ = inf
{
t ∈ R :

∑n
i=1 1{FP−max(Xi, Zi, t) ≤ k}

n+ 1
≥ 1− δ

}
. (A.18)

We then have Tk = −T ′k and Tk,δ = −T ′k,δ , which gives

E
[
FPmax(Xn+1, Zn+1, Tk)

]
= E

[
FP−max(Xn+1, Zn+1, T

′
k)
]

and (A.19)

P
(

FPmax(Xn+1, Zn+1, Tk,δ) ≤ k
)

= P
(

FP−max(Xn+1, Zn+1, T
′
k,δ) ≤ k

)
. (A.20)

(Part 1) We first prove E
[
FP−max(Xn+1, Zn+1, T

′
k)
]
≤ k.

Since B is finite, we have that supt FP−max(x, z, t) ≤ maxj |Sj | ≤ B <∞. As we assume nonconformity scores are finite,
we also have inft FP−max(x, z, t) = 0 < k ∈ R>0. Let Li(t) = FP−max(Xi, Zi, t) and g(x) = x. Corollary A.2 gives

E
[
FP−max(Xn+1, Zn+1, T

′
k)
]
≤ k. (A.21)

Substituting Eq. A.19 gives E
[
FPmax(Xn+1, Zn+1, Tk)

]
≤ k.

(Part 2) We now prove P
(

FP−max(Xn+1, Zn+1, T
′
k,δ) ≤ k

)
≥ 1− δ.

Let Li(t) = 1{FP−max(Xi, Zi, t) ≤ k}. Let g(x) = x. As shown earlier, FP−max(Xi, Zi, t) is non-increasing, right-
continuous; as a result Li(t) is non-decreasing, right-continuous. Let γ = 1− δ ∈ (0, 1). Since g(Li(t)) ∈ {0, 1} and Vi,j
are finite, it is easy to see that we have supt g(Li(t)) = 1 ≥ γ and inft g(Li(t)) = 0 ≥ 0.

Applying Corollary A.3 gives

E
[
1{FP−max(Xn+1, Zn+1, T

′
k,δ) ≤ k}

]
= P

(
FP−max(Xn+1, Zn+1, T

′
k,δ) ≤ k

)
(A.22)

≥ γ (A.23)
= 1− δ. (A.24)

Substituting Eq. A.20 gives P
(

FPmax(Xn+1, Zn+1, Tk,δ) ≤ k
)
≥ 1− δ.

A.4 Proof of Proposition 4.8

Proof. We first prove simultaneous validity of candidate sets indexed by j ∈ J . By definition we have

FP(Zn+1,Sj) ≤ FPmax(Xn+1, Zn+1, T◦) ∀j ∈ J , (A.25)

which implies

E
[
FP(Zn+1,Sj)

]
≤ E

[
FPmax(Xn+1, Zn+1, Tk)

]
and (A.26)

P
(

FP(Zn+1,Sj) ≤ k
)
≥ P

(
FPmax(Xn+1, Zn+1, Tk,δ) ≤ k

)
(A.27)
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simultaneously ∀j ∈ J . Theorem 4.4 then implies validity.

We now show maximal TPR (a simple outcome). If Sj ⊆ Sj′ then yc ∈ Sj =⇒ yc ∈ Sj′ for any yc ∈ z ⊆ Y . Therefore

Sj ⊆ Sj′ =⇒ TPP(z,Sj) ≤ TPP(z,Sj′). (A.28)

Since candidate sets are nested,
j ≤ j′ =⇒ Sj ⊆ Sj′ , (A.29)

and
TPP(z,SmaxJ ) ≥ TPP(z,Sj′) ∀j′ ∈ J . (A.30)

Since this is true for all (x, z),

E
[
TPP(Zn+1,SmaxJ )

]
= sup
h∈H

E
[
TPP(Zn+1,Sh◦J )

]
(A.31)

whereH is the space of all possible index selection policies.

B Additional training details
In this section, we provide additional details on how training data is constructed to train F .

First, recall that in our setup we have an input space X and label space Y . For every input x ∈ X , there are (assumed to be)
potentially multiple true positives z ⊆ Y . Referring to Algorithm 1, during training (TRAIN) we split whatever multi-label
training data we have into two sets. The first (larger split) is used to learn a likelihood model (which can either be simply
training independent binary predictors, or something with label dependencies that are explicitly accounted for, e.g., with a
CRF). The second (smaller split) is used to train F . From this second split of data, again, we have inputs x and sets of true
positives z. For every input x, however, we can sample combinatorially many candidate output sets z′ ⊆ Y , and measure the
(ground truth) number of false positives by comparing z′ with z. This (x, z′) candidate is then used as a training instance for
F , where our target is to directly estimate the number of false positives, |z \ z′|.
In practice, we construct candidate sets greedily by ranking output labels individually, and then combining them into nested
sets, i.e., {yπ(1)}, {yπ(1), yπ(2)}, {yπ(1), yπ(2), yπ(3)}, etc. This is aligned with our eventual calibration and inference time
procedure. As with testing, we only train on candidate sequences up to lengthB (recall that B is used as a hyper-parameter for
a cutoff for the maximum number of considered sets—both for efficiency and technical details for ensuring CP guarantees).
This also allows us to train F quite efficiently, since, instead of randomly sampling candidate sets z′, we create them
greedily (as we would during testing). Concretely, suppose for an input x with true label set z we have the set of labels
ranked by individual likelihood, {yπ(1), yπ(2), yπ(3), . . . , yπ(B)}. For each ranked yπ(i), we also have a corresponding
{0, 1} target y′π(i) that indicates if yπ(i) is a false positive, or not. Suppose, in this example, this sequence of labels is
{1, 0, 1, . . . , 1}. Taking the cumulative sum, our total number of FP targets for the batch are then then provided by the set
{1, 1, 2, . . . , B − |z|}. We train F to predict each of these targets by pairing the shared input x with each of the nested
candidate sets {yπ(1), . . . , yπ(k)} ⊆ {yπ(1), . . . , yπ(B)}, paired with the sum of its false positives,

∑
i≤k y

′
π(i). In total, for

a training split of n examples, we will have n×B prediction targets.

C Implementation and dataset details
In-silico screening. We construct a molecular property screening task using the ChEMBL dataset (see Mayr et al., 2018).
Given a specified constraint such as “is active for property A but not property B,” we want to retrieve at least one molecule
from a given set of candidates that satisfies this constraint. The input for each molecule is its SMILES string, a notational
format that specifies its molecular structure. The motivation of this task is to simulate in-silico screening for drug discovery,
where it is often the case where chemists are searching for a new molecule that satisfies several constraints (such as toxicity
and efficacy limits), out of a pool of many possible candidates.

We split the ChEMBL dataset into a 60-20-20 split of molecules, where 60% of molecules are separated into a train set, 20%
into a validation set, and 20% into a test set. Next, we take all properties that have at least 50 positive and negative examples
(to avoid highly imbalanced properties). Of these properties, we take all N choose K combinations that have at least 100
molecules with all K properties labelled (ChEMBL has many missing values). We set K to 2. For each combination, we
randomly sample an assignment for each property (i.e., {active, inactive}K ). We discard combinations for which more than
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90% of labeled molecules satisfy the constraint. We keep 5000 combinations for the test set, 767 for validation, and 4375 for
training. The molecules for each of the combinations are only sourced from their respective splits (i.e., molecular candidates
for constraints in the property combination validation split only come from the molecule validation split). Therefore, at
inference time, given a combination we have never seen before, on a molecules we have never seen before, we must try to
retrieve the molecules that have the desired combination assignment.

Our directed Message Passing Neural Network (MPNN) is implemented using the chemprop3 repository (Yang et al., 2019).
The MPNN model uses graph convolutions to learn a deep molecular representation, that is shared across property predictions.
Each property value (active/inactive) is predicted using an independent classifier head. The final prediction is based on an
ensemble of 5 models, trained with different random seeds. Given a combination assignment (Z1 = z1, . . . , Zk = zk), we
naively compute the joint likelihood independently, i.e.,

pθ(Z1 = z1, . . . , Zk = zk) =
∏

pθ(Zi = zi). (C.1)

Object detection. As discussed in §5, we use the MS-COCO dataset (Lin et al., 2014) to evaluate our conformal object
detection. MS-COCO consists of images of complex everyday scenes containing 80 object categories (such as person,
bicycle, dog, car, etc.), multiple of which may be contained in any given example. Since the official test set is hidden, we
use the 5k examples from the development set and randomly partition them into sets of size 1k, 1k, and 3k for calibration,
validation, and testing, respectively. The EfficientDet model (Tan et al., 2020)4 for extracting bounding boxes uses a
pipeline of three neural networks to extract deep features, and then predict candidates. The model also uses a non-maximum
suppression (NMS) post-processing step to reduce the total number of predictions by keeping only the one with the maximum
score across highly overlapping prediction boxes. We merge the predictions of all classes into a unified set, where each
element is a tuple of (class, bounding box). This means that multiple class predictions can be included for the same bounding
box (i.e., there is class uncertainty), and multiple bounding boxes can be found for the same class (i.e., there are multiple
objects in one image). We define true positives as predictions that have an intersection over union (IoU) value > 0.5 with a
gold bounding box annotation, and that match the annotation’s class.

Entity extraction. Entity extraction is a popular task in natural language processing. Given a sentence, such as “Barack
Obama was born in Hawaii,” the goal is to identify and classify all named entities that appear—i.e., (“Barack Obama”,
Person) and (“Hawaii”, Location). We use the CoNLL NER dataset (Tjong Kim Sang and De Meulder, 2003), and extract
1k examples for calibration out of the 3.3k development set, and report test results on the 3.5k test set. For our base model,
we use the entity extraction module of PURE (Zhong and Chen, 2021), that predicts span scores with a classifier head on
top of Albert-base (Lan et al., 2020) contextual embeddings. The classification head has two non-linear layers and uses
the learned contextual embeddings of the span start and end tokens, concatenated with a learned span width embedding.
We train the model on the training set of the CoNLL NER dataset. We use the official code repository5 and the following
parameters: 1e− 5 learning rate, 5e− 4 task learning rate, 32 train batch size, and 100 context window. Similar to our object
detection task, we treat exact span predictions of the correct category as true positives, and any other entity predictions as
false positives. As illustrated in Table 1, a fairly large number of sentences do not contain any entities at all, while other
sentences may contain several.

C.1 Definition of size-stratified false positive violation

The size-stratified false positive (SSFP) violation measures the worst-case violation of our metric of interest (i.e., expectation
or probability), conditioned on the size of the output set C. Specifically, SSFPk and SSFPk,δ are defined as follows:

SSFPk(C, {A}as=1) := sup
s

max

(
Ê
[
FP(Zn+1, Ck(Xn+1))

∣∣∣ {|Ck(Xn+1)| ∈ As}
]
− k, 0

)
and (C.2)

SSFPk,δ(C, {A}as=1) := sup
s

max

(
Ê
[
1
{

FP(Zn+1, Ck(Xn+1)) > k
} ∣∣∣ {|Ck(Xn+1)| ∈ As}

]
− δ, 0

)
, (C.3)

where {A}as=1 forms a partition of {1, . . . , |Y|}, and Ê denotes the empirical average over our test samples.

Following Angelopoulos et al. (2021c), we show that if conditional validity holds for our objectives, then validity also holds
after stratifying by set-size. Poor SSFP is therefore a symptom of poor conditional validity.

3https://github.com/chemprop/chemprop
4We use tf_efficientdet_d2 from https://github.com/rwightman/efficientdet-pytorch.
5https://github.com/princeton-nlp/PURE.

https://github.com/chemprop/chemprop
https://github.com/rwightman/efficientdet-pytorch
https://github.com/princeton-nlp/PURE
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In the following, we drop dependence on n+ 1 for clarity.

Proposition C.1 (Expectation case). Suppose E[FP(Z, Ck(X)) | X = x] ≤ k for each x ∈ X . Then,

E
[
FP(Z, Ck(X)) | {|Ck(X)| ∈ A}

]
≤ k, for any A ⊂ {0, 1, 2, . . .}. (C.4)

Proof.

E[FP(Z, Ck(X)) | {|Ck(X)| ∈ A}] =
E[FP(Z, Ck(X)) · 1{|Ck(X)| ∈ A}]

P(|Ck(X)| ∈ A)
(C.5)

=
E[E[FP(Z, Ck(X)) · 1{|Ck(X)| ∈ A} | X = x]]

P(|Ck(X)| ∈ A)
(C.6)

=

∫
x
E[FP(Z, Ck(X)) | X = x] · 1{|Ck(x)| ∈ A}dP(x)

P(|Ck(X)| ∈ A)
(C.7)

≤
∫
x
k · 1{|Ck(x)| ∈ A}dP(x)

P(|Ck(X)| ∈ A)
(C.8)

= k. (C.9)

Proposition C.2 (Probability case.). Suppose P(FP(Z, Ck,δ(X)) ≤ k | X = x) ≥ 1− δ for each x ∈ X . Then,

P
(

FP(Z, Ck,δ(X)) ≤ k | {|Ck,δ(X)| ∈ A}
)
≥ 1− δ, for any A ⊂ {0, 1, 2, . . .}. (C.10)

Proof.

P(FP(Z, Ck,δ(X)) ≤ k | {|Ck,δ(X)| ∈ A}) =

∫
x
P(FP(Z, Ck,δ(X)) ≤ k | X = x) · 1{|Ck,δ(x)| ∈ A}dP(x)

P(|Ck,δ(X)| ∈ A)
(C.11)

≥
∫
x
(1− δ) · 1{|Ck,δ(x)| ∈ A}dP(x)

P(|Ck,δ(X)| ∈ A)
(C.12)

= 1− δ. (C.13)

D Additional experimental details
In this section we provide additional discussion of our experimental results.

D.1 Non-smoothness of SSFP results

The top rows of Figure 3 and Figure 2 plot the worst-case size-stratified violation, that is the worst-case exceedance of k,
conditioned on the prediction set being a particular size. As can be seen from the plots, this can “spike” at different values
of ε. We provide an interpretation here. As the false positive allowance k grows, the calibration threshold rises, but not
all prediction sets necessarily grow in size at the same rate. Therefore, the “worst” sets experience discrete jumps in total
false positives at various increments of k. This is most severe when the number of true positives is naturally very low, as
in entity extraction, so that increases in set size often lead to increases in false positives (in the worst case). The exact
behavior depends on the score function used. In the meantime, between these jumps, the worst case deviation will decrease,
as deviation is measured as max(E[false positives | set size]− k, 0), where k is linearly increasing. The average deviation
is much smoother, but less interesting to measure for comparing various methods, which is why we focus on SSFP.

E Practical considerations and limitations
In this section we address a number of practical considerations, limitations, and extensions for our FP-CP method.

E.1 Choosing a suitable k

An outstanding question a practitioner faces is how to choose the value of k for k-FP and (k, δ)-FP objectives. The value of
k in our method has a reliable and easy interpretation: it is the total number of incorrect answers. For many tasks, such as
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in-silico screening, there is a direct relation between the number of noisy predictions (e.g., failed experiments conducted
during wet-lab validation) and total “wasted” cost. Therefore, for example, given some approximate budget Q and cost per
noisy prediction c, a reasonable approach is to then set k ≈ Q/c. Of course, the advantage of our approach is that the user
may set k to whatever they wish—this might change based on their needs, and is not part of our algorithm.

E.2 Choosing between k-fwer and fdr control

A related question to E.1 is when to target k-FWER (i.e., our k-FP and (k, δ)-FP objectives) or FDR (e.g., using Angelopoulos
et al. (2021a)). This choice is well discussed in the multiple testing literature (Lehmann and Romano, 2005; Romano and
Wolf, 2007; Gold et al., 2009). An important aspect to consider is the size of the label space Y , natural rate of true and false
positives, and the efficiency of the base model at separating true positives from false positives. When the total number of
true positives is large and |Y| is large then it is reasonable to control the FDR. If, however, the natural rate of true positives is
low, or they are not well separated from false positives, then the FDR can be high and hard to control. This is especially true
for smaller prediction sets (as the ratio of positive to negative labels can be quickly driven down even with the addition of
only a few false positives). For illustration, suppose for a given example there is one true positive that is ranked 10th by the
base model. For many applications, 10 total predictions (with 9 false positives) is acceptable. Yet, the lowest FDR cutoff that
allows for this positive to be discoverable is 0.9 (which, for other examples, may allow for hundreds of false positives—an
outcome which is undesirable for some applications, even given a high number of accompanying true positives). To satisfy a
lower FDR, the algorithm must output an empty set (with FDR = 0). This remains true even if there are a few (but not many)
other true positives: for instance, in the previous example, if predictions 10-20 were also all true positives then the lowest
FDR is still only 0.5—specifying a FDR tolerances any lower than this would force an empty set prediction.

E.3 Learning more expressive set functions

Our choice of DeepSets model is motivated by its property of being a universal approximator for continuous set functions,
and by its efficient architecture. Of course, its realized accuracy depends on its exact parameterization and optimization.
In terms of input features, in §4.2, we chose a simplistic φ(x, yc) for two reasons: (1) we view it’s low complexity as an
advantage (practitioners can simply plug-in individual multi-label probabilities, or other scalar conformity scores, that most
out-of-the-box methods provide into a general framework without having to do any more work for providing additional
features), and (2) it is easy to train this light-weight model on smaller amounts of data. Still, this approach can discard
potentially helpful information about the input x, and any dependencies between labels yc and y′c. For example, if yc and y′c
are mutually exclusive, then the number of false positives if both are included in S is at least 1. Using more expressive φ
that is able to capture and take advantage of this sort of side information about x and yc is a subject for future work.

E.4 Constructing non-nested candidate sets

We choose to construct nested prediction sets because they are efficient and effective. It is useful to emphasize, however,
that nestedness is not necessary for our calibration framework: our procedure still works even when candidate sets are not
nested. It only relies on FPmax remaining monotonic in t, which is preserved even for non-nested candidate sets. That said,
generally speaking, considering individual candidates in the order of individual likelihood is a good strategy: this maximizes
the expected number of true positives in a set of fixed size. Of course, we are not ranking by the true marginal likelihood,
but rather the estimate, pθ(yc ∈ Z | x), and this may introduce some error. In theory, the set function F may be able to
identify higher quality outputs sets S ∈ 2Y by jointly considering all of the included elements (rather than ranking them
one-by-one). That said, an unconstrained search process over 2Y is expensive. Furthermore, identifying the final output set
with maximal TPR, as we show we do in Proposition 4.8, is no longer trivial. Nevertheless, this is a promising area for
future work, can potentially be combined with efficient search or pruning methods (e.g., such as in Fisch et al. (2021a)).
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