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Abstract
Graph neural networks (GNNs) have demon-
strated superior performance for semi-supervised
node classification on graphs, as a result of their
ability to exploit node features and topologi-
cal information. However, most GNNs implic-
itly assume that the labels of nodes and their
neighbors in a graph are the same or consis-
tent, which does not hold in heterophilic graphs,
where the labels of linked nodes are likely to
differ. Moreover, when the topology is non-
informative for label prediction, ordinary GNNs
may work significantly worse than simply ap-
plying multi-layer perceptrons (MLPs) on each
node. To tackle the above problem, we propose
a new p-Laplacian based GNN model, termed
as pGNN, whose message passing mechanism
is derived from a discrete regularization frame-
work and can be theoretically explained as an
approximation of a polynomial graph filter de-
fined on the spectral domain of p-Laplacians.
The spectral analysis shows that the new mes-
sage passing mechanism works as low-high-pass
filters, thus rendering pGNNs effective on both
homophilic and heterophilic graphs. Empirical
studies on real-world and synthetic datasets val-
idate our findings and demonstrate that pGNNs
significantly outperform several state-of-the-art
GNN architectures on heterophilic benchmarks
while achieving competitive performance on ho-
mophilic benchmarks. Moreover, pGNNs can
adaptively learn aggregation weights and are ro-
bust to noisy edges.

1. Introduction
In this paper, we explore the usage of graph neural net-
works (GNNs) for semi-supervised node classification on
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graphs, especially when the graphs admit strong het-
erophily or noisy edges. Semi-supervised learning on
graphs is ubiquitous in a lot of real-world scenarios, such
as user classification in social media (Kipf & Welling,
2017), protein classification in biology (Velickovic et al.,
2018), molecular property prediction in chemistry (Duve-
naud et al., 2015), and many others (Marcheggiani & Titov,
2017; Satorras & Estrach, 2018). Recently, GNNs have be-
come the de facto choice for processing graph structured
data. They can exploit the node features and the graph
topology by propagating and transforming the features over
the topology in each layer and thereby learn refined node
representations. A series of GNN architectures have been
proposed, including graph convolutional networks (Bruna
et al., 2014; Henaff et al., 2015; Niepert et al., 2016; Kipf
& Welling, 2017; Wu et al., 2019), graph attention net-
works (Velickovic et al., 2018; Thekumparampil et al.,
2018), and other representatives (Hamilton et al., 2017; Xu
et al., 2018; Pei et al., 2020).

Most of the existing GNN architectures work under the
homophily assumption, i.e. the labels of nodes and their
neighbors in a graph are the same or consistent, which is
also commonly used in graph clustering (Bach & Jordan,
2004; von Luxburg, 2007; Liu & Han, 2013) and semi-
supervised learning on graphs (Belkin et al., 2004; Hein,
2006; Nadler et al., 2009). However, recent studies (Zhu
et al., 2020; 2021; Chien et al., 2021) show that in con-
trast to their success on homophilic graphs, most GNNs
fail to work well on heterophilic graphs, in which linked
nodes are more likely to have distinct labels. Moreover,
GNNs could even fail on graphs where their topology is
not helpful for label prediction. In these cases, propagat-
ing and transforming node features over the graph topol-
ogy could lead to worse performance than simply applying
multi-layer perceptrons (MLPs) on each of the nodes inde-
pendently. Several recent works were proposed to deal with
the heterophily issues of GNNs. Zhu et al. (2020) finds that
heuristically combining ego-, neighbor, and higher-order
embeddings improves GNN performance on heterophilic
graphs. Zhu et al. (2021) uses a compatibility matrix to
model the graph homophily or heterphily level. Chien et al.
(2021) incorporates the generalized PageRank algorithm
with graph convolutions so as to jointly optimize node fea-
ture and topological information extraction for both ho-
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mophilic and heterophilic graphs. However, the problem of
GNNs on graphs with non-informative topologies (or noisy
edges) remains open.

Unlike previous works, we tackle the above issues of GNNs
by proposing the discrete p-Laplacian based message pass-
ing scheme, termed as p-Laplacian message passing. It
is derived from a discrete regularization framework and
is theoretically verified as an approximation of a polyno-
mial graph filter defined on the spectral domain of the p-
Laplacian. Spectral analysis of p-Laplacian message pass-
ing shows that it works as low-high-pass filters1 and thus
is applicable to both homophilic and heterophilic graphs.
Moreover, when p ̸= 2, our theoretical results indicate
that it can adaptively learn aggregation weights in terms of
the variation of node embeddings on edges (measured by
the graph gradient (Amghibech, 2003; Zhou & Schölkopf,
2005; Luo et al., 2010)), and work as low-pass or low-high-
pass filters on a node according to the local variation of
node embeddings around the node (measured by the norm
of graph gradients).

Based on p-Laplacian message passing, we propose a new
GNN architecture, called pGNN, to enable GNNs to work
with heterophilic graphs and graphs with non-informative
topologies. Several existing GNN architectures, includ-
ing SGC (Wu et al., 2019), APPNP (Klicpera et al., 2019)
and GPRGNN (Chien et al., 2021), can be shown to be
analogical to pGNN with p = 2. Our empirical stud-
ies on real-world benchmark datasets (homophilic and het-
erophilic datasets) and synthetic datasets (cSBM (Desh-
pande et al., 2018)) demonstrate that pGNNs obtain the
best performance on heterophilic graphs and competitive
performance on homophilic graphs against state-of-the-art
GNNs. Moreover, experimental results on graphs with dif-
ferent levels of noisy edges show that pGNNs work much
more robustly than GNN baselines and even as well as
MLPs on graphs with completely random edges. Addi-
tional experiments (reported in Appendix F.5) illustrate that
intergrating pGNNs with existing GNN architectures (i.e.
GCN (Kipf & Welling, 2017), JKNet (Xu et al., 2018))
can significantly improve their performance on heterophilic
graphs. In conclusion, our contributions can be summa-
rized as below:

(1) New methodologies. We propose p-Laplacian message
passing and pGNN to adapt GNNs to heterophilic graphs
and graphs where the topology is non-informative for label
prediction. (2) Superior performance. We empirically
demonstrate that pGNNs is superior on heterophilic graphs
and competitive on homophilic graphs against state-of-the-
art GNNs. Moreover, pGNNs work robustly on graphs

1Note that if the low frequencies and high frequencies dom-
inate the middle frequencies (the frequencies around the cutoff
frequency), we say that the filter works as a low-high-pass filter.

with noisy edges or non-informative topologies. (3) Theo-
retical justification. We theoretically demonstrate that p-
Laplacian message passing works as low-high-pass filters
and the message passing iteration is guaranteed to converge
with proper settings. (4) New paradigm of designing
GNN architectures. We bridge the gap between discrete
regularization framework and GNNs, which could further
inspire researchers to develop new graph convolutions or
message passing schemes using other regularization tech-
niques with explicit assumptions on graphs. Due to space
limit, we defer the discussions on related work and future
work and all proofs to the Appendix. Code available at
https://github.com/guoji-fu/pGNNs.

2. Preliminaries and Background
Notation. Let G = (V, E ,W) be an undirected graph,
where V = {1, 2, . . . , N} is the set of nodes, E ⊆ V × V
is the set of edges, W ∈ RN×N is the adjacency matrix
and Wi,j = Wj,i, Wi,j > 0 for [i, j] ∈ E , Wi,j = 0,
otherwise. Ni = {j}[i,j]∈E denotes the set of neighbors
of node i, D ∈ RN×N = diag(D1,1, . . . DN,N ) denotes
the diagonal degree matrix with Di,i =

∑N
j=1 Wi,j , for

i = 1, . . . , N . f : V → R and g : E → R are functions
defined on the vertices and edges of G, respectively. FV de-
notes the Hilbert space of functions endowed with the inner
product ⟨f, f̃⟩FV :=

∑
i∈V f(i)f̃(i). Similarly define FE .

We also denote by [K] = {1, 2, . . . ,K},∀K ∈ N and we
use ∥x∥ = ∥x∥2 = (

∑d
i=1 x

2
i )

1/2,∀x ∈ Rd to denote the
Frobenius norm of a vector.

Problem Formulation. Given a graph G = (V, E ,W),
each node i ∈ V has a feature vector Xi,: which is the i-
th row of X and a subset of nodes in G have labels from
a label set L = {1, . . . , L}. The goal of GNNs for semi-
supervised node classification on G is to train a GNN M :
V → L and predict the labels of unlabeled nodes.

Homophily and Heterophily. The homophily or het-
erophily of a graph is used to describe the relation of
labels between linked nodes in the graphs. The level
of homophily of a graph can be measured by H(G) =
Ei∈V

[∣∣{j}j∈Ni,yi=yj

∣∣ /|Ni|
]

(Pei et al., 2020; Chien
et al., 2021), where

∣∣{j}j∈Ni,yi=yj

∣∣ denotes the number
of neighbors of i ∈ V that share the same label as i (i.e.
yi = yj) and H(G) → 1 corresponds to strong homophily
while H(G) → 0 indicates strong heterophily. We say that
a graph is a homophilic (heterophilic) graph if it has strong
homophily (heterophily).

Graph Gradient. The graph gradient of an edge
[i, j], i, j ∈ V is defined to be a measurement of the varia-
tion of a function f 2 : V → R on the edge [i, j].

2f can be a vector function: f : V → Rc for some c ∈ N and
here we use f : V → R for better illustration.

https://github.com/guoji-fu/pGNNs
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Definition 1 (Graph Gradient). Given a graph G = (V, E)
and a function f : V → R, the graph gradient is an operator
∇ : FV → FE defined as for all [i, j] ∈ E ,

(∇f)([i, j]) :=

√
Wi,j

Dj,j
f(j)−

√
Wi,j

Di,i
f(i). (1)

For [i, j] /∈ E , (∇f)([i, j]) := 0. The graph gradient of a
function f at a vertex i, i ∈ [N ] is defined to be ∇f(i) :=
((∇f)([i, 1]), . . . , (∇f)([i,N ])) and its Frobenius norm is
given by ∥∇f(i)∥2 := (

∑N
j=1(∇f)2([i, j]))1/2, which

measures the variation of f around node i. We measure
the variation of f over the whole graph G by Sp(f) where
it is defined as for p ≥ 1,

Sp(f) :=
1

2

N∑
i=1

N∑
j=1

∥(∇f)([i, j])∥p

=
1

2

N∑
i=1

N∑
j=1

∥∥∥∥∥
√

Wi,j

Dj,j
f(j)−

√
Wi,j

Di,i
f(i)

∥∥∥∥∥
p

. (2)

Note that the definition of Sp here is different with the p-
Dirichlet form in Zhou & Schölkopf (2005).

Graph Divergence. The graph divergence is defined to be
the adjoint of the graph gradient:

Definition 2 (Graph Divergence). Given a graph G =
(V, E), and functions f : V → R, g : E → R, the graph
divergence is an operator div : FE → FV which satisfies

⟨∇f, g⟩ = ⟨f,−divg⟩. (3)

The graph divergence can be computed by

(divg)(i) =

N∑
j=1

√
Wi,j

Di,i
(g([i, j])− g([j, i])) . (4)

Fig. 4 in Appendix E.1 gives a tiny example of illustration
of graph gradient and graph divergence.

Graph p-Laplacian Operator. By the definitions of graph
gradient and graph divergence, we reach the definition of
graph p-Laplacian operator as below.

Definition 3 (Graph p-Laplacian3). Given a graph G =
(V, E) and a function f : V → R, the graph p-Laplacian is
an operator ∆p : FV → FV defined by

∆pf := −1

2
div(∥∇f∥p−2∇f), for p ≥ 1. (5)

3Note that the definition adopted is slightly different with
the one used in Zhou & Schölkopf (2005) where ∥ · ∥p−2 is
not element-wise and the one used in some literature such as
Amghibech (2003); Bühler & Hein (2009), where (∆pf)(i) =∑N

j=1

Wi,j

Di,i
|f(i)− f(j)|p−2 (f(i)− f(j)) for p > 1 and p = 1

is not allowed.

where ∥ · ∥p−2 is element-wise, i.e. ∥∇f(i)∥p−2 =
(∥(∇f)([i, 1])∥p−2, . . . , ∥(∇f)([i,N ])∥p−2).

Substituting Eq. (1) and Eq. (4) into Eq. (5), we obtain

(∆pf)(i) =

N∑
j=1

√
Wi,j

Di,i
∥(∇f)([j, i])∥p−2

(√
Wi,j

Di,i
f(i)

−

√
Wi,j

Dj,j
f(j)

)
. (6)

The graph p-Laplacian is semi-definite: ⟨f,∆pf⟩ =
Sp(f) ≥ 0 and we have

∂Sp(f)

∂f

∣∣∣∣
i

= p(∆pf)(i). (7)

When p = 2, ∆2 is refered as the ordinary Laplacian op-
erator and ∆2 = I − D−1/2WD−1/2 and when p =
1, ∆1 is refered as the Curvature operator and ∆1f :=
− 1

2div(∥∇f∥−1∇f). Note that Laplacian ∆2 is a linear
operator, while in general for p ̸= 2, p-Laplacian is nonlin-
ear since ∆p(af) ̸= a∆p(f) for a ∈ R.

3. p-Laplacian based Graph Neural Networks
In this section, we derive the p-Laplacian message passing
scheme from a p-Laplacian regularization framework and
present pGNN, a new GNN architecture developed upon
the new message passing scheme. We demonstrate that p-
Laplacian message passing scheme is guaranteed to con-
verge with proper settings and provide an upper-bounding
risk of pGNNs in Appendix C.1.

3.1. p-Laplacian Regularization Framework
Given an undirected graph G = (V, E) and a signal func-
tion with c (c ∈ N) channels f : V → Rc, let X =
(X⊤

1,:, . . . ,X
⊤
N,:)

⊤ ∈ RN×c with Xi,: ∈ R1×c, i ∈ [N ] de-
noting the node features of G and F = (F⊤

1,:, . . . ,F
⊤
N,:)

⊤ ∈
RN×c be a matrix whose ith row vector Fi,: ∈ R1×c, i ∈
[N ] represents the function value of f at the i-th vertex in
G. We present a p-Laplacian regularization problem whose
cost function is defined to be

Lp(F) := min
F

Sp(F) + µ

N∑
i=1

∥Fi,: −Xi,:∥2, (8)

where µ ∈ (0,∞). The first term of the right-hand side
in Eq. (8) is a measurement of variation of the signal over
the graph based on p-Laplacian. As we will discuss later,
different choices of p result in different smoothness con-
straint on the signals. The second term is the constraint
that the optimal signals F∗ = argminLp(F) should not
change too much from the input signal X, and µ provides
a trade-off between these two constraints.
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Regularization with p = 2. If p = 2, the solution of
Eq. (8) satisfies ∆2F

∗+µ(F∗−X) = 0 and we can obtain
the closed form (Zhou & Schölkopf, 2005)

F∗ = µ(∆2 + µIN )−1X. (9)

Then, we could use the following iteration algorithm to get
an approximation of Eq. (9):

F(k+1) = αD−1/2WD−1/2F(k) + βX, (10)

where k represents the iteration index, α = 1
1+µ and

β = µ
1+µ = 1 − α. The iteration converges to a closed-

form solution as k goes to infinity (Zhou et al., 2003; Zhou
& Schölkopf, 2005). We could relate the the result here
with the personalized PageRank (PPR) (Page et al., 1999;
Klicpera et al., 2019) algorithm:

Theorem 1 (Relation to personalized PageRank (Klicpera
et al., 2019)). µ(∆2 + µIN )−1 in the closed-form solution
of Eq. (9) is equivalent to the personalized PageRank ma-
trix.

Regularization with p > 1. For p > 1, the solution of
Eq. (8) satisfies p∆pF

∗+2µ(F∗−X) = 0. By Eq. (6) we
have that, for all i ∈ [N ],

N∑
j=1

Wi,j√
Di,i

∥(∇f∗)([j, i])∥p−2

(
1√
Di,i

F∗
i,: −

1√
Dj,j

F∗
j,:

)

+
2µ

p

(
F∗

i,: −Xi,:

)
= 0.

Let M(k) ∈ RN×N , α(k) = diag(α
(k)
1,1 , . . . , α

(k)
N,N ),

β(k) = diag(β
(k)
1,1 , . . . , β

(k)
N,N ). Based on which we can

construct a similar iterative algorithm to obtain a solu-
tion (Zhou & Schölkopf, 2005): for all i ∈ [N ],

F
(k+1)
i,: = α

(k)
i,i

N∑
j=1

M
(k)
i,j√

Di,iDj,j

F
(k)
j,: + β

(k)
i,i Xi,:, (11)

for all i, j ∈ [N ],

M
(k)
i,j = Wi,j

∥∥∥∥∥
√

Wi,j

Di,i
F

(k)
i,: −

√
Wi,j

Dj,j
F

(k)
j,:

∥∥∥∥∥
p−2

, (12)

α
(k)
i,i = 1

/ N∑
j=1

M
(k)
i,j

Di,i
+

2µ

p

 , β
(k)
i,i =

2µ

p
α
(k)
i,i . (13)

Note that when
∥∥∥√Wi,j

Di,i
F

(k)
i,: −

√
Wi,j

Dj,j
F

(k)
j,:

∥∥∥ = 0, we set

M
(k)
i,j = 0. It is easy to see that Eq. (10) is the special cases

of Eq. (14) with p = 2.

Remark 1 (Discussion on p = 1). For p = 1, when f
is a real-valued function (c = 1), ∆1f is a step function,
which could make the stationary condition of the objective
function Eq. (8) become problematic. Additionally, ∆1f is
not continuous at ∥(∇f)([i, j])∥ = 0. Therefore, p = 1 is
not allowed when f is a real value function. On the other
hand, note that there is a Frobenius norm in ∆pf . When
f is a vector-valued function (c > 1), the step function in
∆1f only exists on the axes. The stationary condition will
be fine if the node embeddings F are not a matrix of vectors
that has only one non-zero element, which is true for many
graphs. p = 1 may work for these graphs. Overall, we
suggest to use p > 1 in practice but p = 1 may work for
graphs with multiple channel signals as well. We conduct
experiments for p > 1 (p = 1.5, 2, 2.5) and p = 1 in Sec. 5.

3.2. p-Laplacian Message Passing and pGNN
Architecture

p-Laplacian Message Passing. Rewrite Eq. (11) in a ma-
trix form we obtain

F(k+1) = α(k)D−1/2M(k)D−1/2F(k) + β(k)X. (14)

Eq. (14) provides a new message passing mechanism,
named p-Laplacian message passing.
Remark 2. αD−1/2MD−1/2 in Eq. (14) can be regarded
as the learned aggregation weights at each step for mes-
sage passing. It suggests that p-Laplacian message passing
could adaptively tune the aggregation weights during the
course of learning, which will be demonstrated theoreti-
cally and empirically in the later. βX in Eq. (14) can be
regarded as a residual unit, which helps the model escape
from the oversmoothing issue (Chien et al., 2021).

We present the following theorem to show the shrinking
property of p-Laplacian message passing.

Theorem 2 (Shrinking Property of p-Laplacian Message
Passing). Given a graph G = (V, E ,W) with node fea-
tures X, β(k),F(k),M(k),α(k) are updated accordingly to
Equations (11) to (13) for k = 0, 1, . . . ,K and F(0) = X.
Then there exist some positive real value µ > 0 which de-
pends on X,G, p and p > 1 such that

Lp(F
(k+1)) ≤ Lp(F

(k)).

Proof see Appendix D.2. Theorem 2 shows that with some
proper positive real value µ and p > 1, the loss of the
objective function Eq. (8) is guaranteed to decline after
taking one step p-Laplacian message passing. Theorem 2
also demonstrates that the iteration Equations (11) to (13)
is guaranteed to converge for p > 1 with some proper µ
which is chosen depends on the input graph and p.
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pGNN Architecture. We design the architecture of pGNNs
using p-Laplacian message passing. Given node features
X ∈ RN×c, the number of node labels L, the number of
hidden units h, the maximum number of iterations K, and
M, α, and β updated by Equations (12) and (13) respec-
tively, we give the pGNN architecture as following:

F(0) = ReLU(XΘ(1)), (15)

F(k+1) = α(k)D−1/2M(k)D−1/2F(k) + β(k)F(0), (16)

Z = softmax(F(K)Θ(2)), (17)

where k = 0, 1, . . . ,K − 1, Z ∈ RN×L is the output prop-
bability matrix with Zi,j is the estimated probability that
the label at node i ∈ [N ] is j ∈ [L] given features X and
graph G, Θ(1) ∈ Rc×h and Θ(2) ∈ Rh×L are the first- and
the second-layer parameters of the neural network.

Remark 3 (Connection to existing GNN variants). The
message passing scheme of pGNNs is different from that
of several GNN variants (say, GCN, GAT, and GraphSage),
which repeatedly stack message passing layers. In contrast,
it is similar with SGC (Wu et al., 2019), APPNP (Klicpera
et al., 2019), and GPRGNN (Chien et al., 2021). SGC is
an approximation to the closed-form in Eq. (9) (Fu et al.,
2020). By Theorem 1, it is easy to see that APPNP, which
uses PPR to propagate the node embeddings, is analogi-
cal to pGNN with p = 2, termed as 2.0GNN. APPNP and
2.0GNN work analogically and effectively on homophilic
graphs. 2.0GNN can also work effectively on heterophilic
graphs by letting Θ(2) be negative. However, APPNP fails
on heterophilic graphs as its PPR weights are fixed (Chien
et al., 2021). Unlike APPNP, GPRGNN, which adaptively
learn the generalized PageRank (GPR) weights, works
similarly to 2.0GNN on both homophilic and heterophilic
graphs. However, GPRGNN needs more supervised in-
formation in order to learn optimal GPR weights. On the
contrary, pGNNs need less supervised information to ob-
tain similar results because Θ(2) acts like a hyperplane for
classification. pGNNs could work better under weak su-
pervised information. Our analysis is also verified by the
experimental results in Sec. 5.

We also provide an upper-bounding risk of pGNNs by The-
orem 4 in Appendix C.1 to study the effect of the hyper-
parameter µ on the performance of pGNNs. Theorem 4
shows that the risk of pGNNs is upper-bounded by the sum
of three terms: the risk of label prediction using only the
original node features X, the norm of p-Laplacian diffu-
sion on X, and the magnitude of the noise in X. µ con-
trols the trade-off between these three terms. The smaller
µ, the more weights on the p-Laplacian diffusion term and
the noise term and the less weights on the the other term
and vice versa.

4. Spectral Views of p-Laplacian Message
Passing

In this section, we theoretically demonstrate that p-
Laplacian message passing is an approximation of a poly-
nomial graph filter defined on the spectral domain of p-
Laplacian. We show by spectral analysis that p-Laplacian
message passing works as low-high-pass filters.

p-Eigenvalues and p-Eigenvectors of the Graph p-
Laplacian. We first introduce the definitions of p-
eigenvalues and p-eigenvectors of p-Laplacian. Let ϕp :
R → R defined as ϕp(u) = ∥u∥p−2u, for u ∈ R, u ̸= 0.
Note that ϕ2(u) = u. For notational simplicity, we de-
note by ϕp(u) = (ϕp(u1), . . . , ϕp(uN ))⊤ for u ∈ RN and
Φp(U) = (ϕp(U:,1), . . . , ϕp(U:,N )) for U ∈ RN×N and
U:,i ∈ RN is the ith column vector of U.

Definition 4 (p-Eigenvector and p-Eigenvalue). A vector
u ∈ RN is a p-eigenvector of ∆p if it satisfies the equation

(∆pu)i = λϕp(ui), for all i ∈ [N ],

where λ ∈ R is a real value referred as a p-eigenvalue of
∆p associated with the p-eigenvector u.

Definition 5 (p-Orthogonal (Luo, Huang, Ding, and Nie,
2010)). Given two vectors u,v ∈ RN with u,v ̸= 0, we
call that u and v is p-orthogonal if

ϕp(u)
⊤ϕp(v) =

N∑
i=1

ϕp(ui)ϕp(vi) = 0.

Luo et al. (2010) demonstrated that the p-eigenvectors of
∆p are p-orthogonal to each other (see Theorem 5 in Ap-
pendix C.2 for details). Therefore, the space spanned by
the multiple p-eigenvectors of ∆p is p-orthogonal. Addi-
tionally, we demonstrate that the p-eigen-decomposition of
∆p is given by: ∆p = Φp(U)ΛΦp(U)⊤ (see Theorem 6
in Appendix C.3 for details), where U is a matrix of p-
eigenvectors of ∆p and Λ is a diagonal matrix in which the
diagonal is the p-eigenvalues of ∆p.

Graph Convolutions based on p-Laplacian. Based on
Theorem 5, the graph Fourier Transform f̂ of any function
f on the vertices of G can be defined as the expansion of f
in terms of Φ(U) where U is the matrix of p-eigenvectors
of ∆p: f̂ = Φp(U)⊤f . Similarly, the inverse graph Fourier
transform is then given by: f = Φp(U)f̂ . Therefore, a sig-
nal X ∈ RN×c being filtered by a spectral filter gθ can be
expressed formally as: gθ ⋆X = Φp(U)ĝθ(Λ)Φp(U)⊤X,
where Λ denotes a diagonal matrix in which the diagonal
corresponds to the p-eigenvalues {λl}l=0,...,N−1 of ∆p and
ĝθ(Λ) denotes a diagonal matrix in which the diagonal cor-
responds to spectral filter coefficients. Let ĝθ be a polyno-
mial filter defined as ĝθ =

∑K−1
k=0 θkλ

k
l , where the param-

eter θ = [θ0, . . . , θK−1]
⊤ ∈ RK is a vector of polynomial
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coefficients. By the p-eigen-decomposition of p-Laplacian,
we have

gθ ⋆X ≈
K−1∑
k=0

θkΦp(U)ΛkΦp(U)⊤X =

K−1∑
k=0

θk∆
k
pX (18)

Theorem 3. The K-step p-Laplacian message passing is
a K-order polynomial approximation to the graph filter
given by Eq. (18).

Proof see Appendix D.3. Theorem 3 indicates that p-
Laplacian message passing is implicitly a polynomial spec-
tral filter defined on the spectral domain of p-Laplacian.

Spectral Analysis of p-Laplacian Message Passing.
Here, we analyze the spectral propecties of p-Laplacian
message passing. We can approximately view p-
Laplacian message pasing as a filter of a linear combina-
tion of K spectral filters g(Λ)(0), g(Λ)(1), . . . , g(Λ)(K−1)

with each spectral filter defined to be g(Λ)(k) :=

(αD−1/2MD−1/2)k where Mi,j = Wi,j∥
√

Wi,j

Di,i
Fi,: −√

Wi,j

Dj,j
Fj,:∥p−2 for i, j ∈ [N ] and F is the matrix of node

embeddings. We can study the properties of p-Laplacian
message passing by studying the spectral properties of
αD−1/2MD−1/2 as given below.

Proposition 1. Given a connected graph G = (V, E ,W)
with node embeddings F and the p-Laplacian ∆p

with its p-eigenvectors {u(l)}l=0,1,...,N−1 and the
p-eigenvalues {λl}l=0,1,...,N−1. Let gp(λi−1) :=

αi,i

∑
j D

−1/2
i,i Mi,jD

−1/2
j,j for i ∈ [N ] be the fil-

ters defined on the spectral domain of ∆p, where
Mi,j = Wi,j∥∇f([i, j])∥p−2, (∇f)([i, j]) is the graph
gradient of the edge between node i and j and ∥∇f(i)∥ is
the norm of graph gradient at i. Ni denotes the number
of edges connected to i, Nmin = min{Nj}j∈[N ], and

k = argmaxj({|u
(l)
j |/

√
Dl,l}j∈[N ];l=0,...,N−1), then

1. When p = 2, gp(λi−1) works as low-high-pass filters.

2. When p > 2, if ∥∇f(i)∥ ≤ 2(p−1)/(p−2), gp(λi−1)
works as low-high-pass filters on node i and gp(λi−1)
works as low-pass filters on i when ∥∇f(i)∥ ≥
2(p−1)/(p−2).

3. When 1 ≤ p < 2, if 0 ≤ ∥∇f(i)∥ ≤
2(2

√
Nk)

1/(p−2), gp(λi−1) works as low-pass filters
on node i and gp(λi−1) works as low-high-pass filters

on i when ∥∇f(i)∥ ≥ 2
(
2
√
Nk

)1/(p−2)
. Specifically,

when p = 1, Nk can be replaced by Nmin.

Proof see Appendix D.7. Proposition 1 shows that when
p ̸= 2, p-Laplacian message passing adaptively works as

low-pass or low-high-pass filters on node i in terms of the
degree of local node embedding variation around i, i.e.
the norm of the graph gradient ∥∇f(i)∥ at node i. When
p = 2, p-Laplacian message passing works as low-high-
pass filters on node i regardless of the value of ∥∇f(i)∥.
When p > 2, p-Laplacian message passing works as low-
pass filters on node i for large ∥∇f(i)∥ and works as low-
high-pass filters for small ∥∇f(i)∥. Therefore, pGNNs
with p > 2 can work very effectively on graphs with strong
homophily. When 1 ≤ p < 2, p-Laplacian message pass-
ing works as low-pass filters for small ∥∇f(i)∥ and works
as low-high-pass filters for large ∥∇f(i)∥. Thus, pGNNs
with 1 ≤ p < 2 can work effectively on graphs with low
homophily, i.e. heterophilic graphs.

Remark 4. We say that a filter works as a low-pass filter if
the low frequencies dominate the other frequencies and it
works as a low-high-pass filter if the low frequencies and
high frequencies dominate the middle frequencies, i.e., the
frequencies around the cutoff frequency.

Remark 5. Previous works (Wu et al., 2019; Klicpera et al.,
2019) have shown that GCN, SGC, APPNP work as low-
pass filters. The reason is that they have added the self-
loop to the adjacency matrix, which will shrink the spectral
range of the Laplacian from [0, 2] to approximately [0, 1.5]
and causes them work as low-pass filters (Wu et al., 2019).
On the contrary, we did not add self-loop to the adjacancy
matrix and therefore the spectral filter work as low-high-
pass filters in our case for p = 2.

5. Empirical Studies
Here, we empirically study the effectiveness of pGNNs for
semi-supervised node classification using and real-world
benchmark and synthetic datasets with heterophily and
strong homophily. The experimental results are also used
to validate our theoretical findings presented previously.

Datasets and Experimental Setup. We use seven
homophilic benchmark datasets: citation graphs Cora,
CiteSeer, PubMed (Sen et al., 2008), Amazon co-
purchase graphs Computers, Photo, coauthor graphs
CS, Physics (Shchur et al., 2018), and six heterophilic
benchmark datasets: Wikipedia graphs Chameleon,
Squirrel (Rozemberczki et al., 2021), the Actor co-
occurrence graph, webpage graphs Wisconsin, Texas,
Cornell (Pei et al., 2020). The node classifica-
tion tasks are conducted in the transductive setting.
Following Chien et al. (2021), we use the sparse
splitting (2.5%/2.5%/95%) and the dense splitting
(60%/20%/20%) to randomly split the homophilic and
heterophilic graphs into training/validation/testing sets,
respectively. Note that we directly used the data from Py-
torch Geometric library (Fey & Lenssen, 2019) where they
did not transform Chameleon and Squirrel to undirected
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Table 1: Heterophilious results. Averaged accuracy (%) for 100 runs. Best results outlined in bold and the results within
95% confidence interval of the best results are outlined in underlined bold.

Method Chameleon Squirrel Actor Wisconsin Texas Cornell

MLP 48.02±1.72 33.80±1.05 39.68±1.43 93.56±3.14 79.50±10.62 80.30±11.38

GCN 34.54±2.78 25.28±1.55 31.28±2.04 61.93±3.00 56.54±17.02 51.36±4.59

SGC 34.76±4.55 25.49±1.63 30.98±3.80 66.94±2.58 59.99±9.95 44.39±5.88

GAT 45.16±2.10 31.41±0.98 34.11±1.28 65.64±6.29 56.41±13.01 43.94±7.33

JKNet 33.28±3.59 25.82±1.58 29.77±2.61 61.08±3.71 59.65±12.62 55.34±4.43

APPNP 36.18±2.81 26.85±1.48 31.26±2.52 64.59±3.49 82.90±5.08 66.47±9.34

GPRGNN 43.67±2.27 31.27±1.76 36.63±1.22 88.54±4.94 80.74±6.76 78.95±8.52

1.0GNN 48.86±1.95 33.75±1.50 40.62±1.25 95.37±2.06 84.06±7.41 82.16±8.62
1.5GNN 48.74±1.62 33.33±1.45 40.35±1.35 95.24±2.01 84.46±7.79 78.47±6.87
2.0GNN 48.77±1.87 33.60±1.47 40.07±1.17 91.15±2.76 87.96±6.27 72.04±8.22
2.5GNN 48.80±1.77 33.79±1.45 39.80±1.31 87.08±2.69 83.01±6.80 70.31±8.84

graphs, which is different from Chien et al. (2021) where
they did so. Dataset statistics and their levels of homophily
are presented in Appendix E.

Baselines. We compare pGNN with seven models, includ-
ing MLP, GCN (Kipf & Welling, 2017), SGC (Wu et al.,
2019), GAT (Velickovic et al., 2018), JKNet (Xu et al.,
2018), APPNP (Klicpera et al., 2019), GPRGNN (Chien
et al., 2021). We use the Pytorch Geometric library to im-
plement all baselines except GPRGNN. For GPRGNN, we
use the code released by the authors4. The details of hyper-
parameter settings are deferred to Appendix E.3.

Superior Performance on Real-World Heterophilic
Datasets. The results on homophilic benchmark datasets
are deferred to Appendix F.1, which show that pGNNs
obtains competitive performance against state-of-the-art
GNNs on homophilic datasets. Table 1 summarizes
the results on heterophilic benchmark datasets. Table 1
shows that pGNNs significantly dominate the baselines and
1.0GNN obtains the best performance on all heterophilic
graphs except the Texas dataset. For Texas, 2.0GNN is
the best. We also observe that MLP works very well and
significantly outperforms most GNN baselines, which in-
dicates that the graph topology is not informative for label
prediction on these heterophilic graphs. Therefore, propa-
gating and transforming node features over the graph topol-
ogy could lead to worse performance than MLP. Unlike
ordinary GNNs, pGNNs can adaptively learn aggregation
weights and ignore edges that are not informative for la-
bel prediction and thus could work better. It confirms our
theoretical findings presented in previous sections. Note

4https://github.com/jianhao2016/GPRGNN

that GAT can also learn aggregation weights, i.e. the atten-
tion weights. However, the aggregation weights learned by
GAT are significantly distinct from that of pGNNs, as we
will show following.

Interpretability of the Learned Aggregation Weights of
pGNNs. We showcase the interpretability of the learned
aggregation weights αi,iD

−1/2
i,i Mi,jD

−1/2
j,j of pGNNs by

studying its entropy distribution, along with the attention
weights of GAT on real-world datasets. Denote {Ai,j}j∈Ni

as the aggregation weights of node i and its neighbors. For
GAT, {Ai,j}j∈Ni

are referred as the attention weights (in
the first layer) and for pGNNs are αi,iD

−1/2
i,i Mi,jD

−1/2
j,j .

For any node i, {Ai,j}j∈Ni
forms a discrete probability

distribution over all its neighbors with the entropy given
by H({Ai,j}j∈Ni) = −

∑
j∈Ni

Ai,j log(Ai,j). Low en-
tropy means high degree of concentration and vice versa.
An entropy of zero means all aggregation weights or at-
tentions are on one source node. The uniform distribution
has the highest entropy of log(Di,i). Fig. 1 reports the
results on Computers, Wisconsin and we defer more re-
sults on other datasets to Appendix F.2 due to space limit.
Fig. 1 shows that the aggregation weight entropy distribu-
tions of GAT and pGNNs on Computers (homophily) are
both similar to the uniform case. It indicates the original
graph topology of Computers is very helpful for label pre-
diction and therefore GNNs could work very well on Com-
puters. However, for Wisconsin (heterophily), the entropy
distribution of pGNNs is significantly different from that
of GAT and the uniform case. Most entropy of pGNNs is
around zero, which means that most aggregation weights
are on one source node. It states that the original graph
topology of Wisconsin is not helpful for label prediction,

https://github.com/jianhao2016/GPRGNN
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Figure 1: Aggregation weight entropy distribution of graphs. Low entropy means high degree of concentration, vice versa.
An entropy of zero means all aggregation weights are on one source node.
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Figure 2: Averaged accuracy (%) on cSBM (sparse split)
for 20 runs. Best view in colors.

which explains why MLP works well on Wisconsin. On the
contrary, the entropy distribution of GAT is similar to the
uniform case and therefore GAT works similarly to GCN
and is significantly worse than pGNNs on Wisconsin. Sim-
ilar results can be observed on the experiments on more
datasets in Appendix F.2.

Results on cSBM Datasets. We examine the perfor-
mance of pGNNs on heterophilic graphs whose topology
is informative for label prediction using synthetic graphs
generated by cSBM (Deshpande et al., 2018) with ϕ ∈
{−1,−0.75, . . . , 1}. We use the same settings of cSBM
used in Chien et al. (2021). Due to the space limit, we refer
the readers to Chien et al. (2021) for more details of cSBM
dataset. Fig. 2 reports the results on cSBM using sparse
splitting (for results on cSBM with dense splitting see Ap-

pendix F.3). Fig. 2 shows that when ϕ ≤ −0.5 (heterophilic
graphs), 2.0GNN obtains the best performance and pGNNs
and GPRGNN significantly dominate the others. It vali-
dates the effectiveness of pGNNs on heterophilic graphs.
Moreover, 2.0GNN works better than GPRGNN and it
again confirms that 2.0GNN is more superior under weak
supervision (2.5% training rate), as stated in Remark 3.
Note that 1.0GNN and 1.5GNN are not better than 2.0GNN,
the reason could be the iteration algorithms Eq. (11) with
p = 1, 1.5 are not as stable as the one with p = 2. When the
graph topology is almost non-informative for label predic-
tion (ϕ = −0.25, 0), The performance of pGNNs is close
to MLP and they outperform the other baselines. Again, it
validates that pGNNs can erase non-informative edges and
work as well as MLP and confirms the statements in Theo-
rem 4. When the graph is homophilic (ϕ ≥ 0.25), 1.5GNN
is the best on weak homophilic graphs (ϕ = 0.25, 0.5)
and pGNNs work competitively with all GNN baselines on
strong homophilic graphs (ϕ ≥ 0.75).

Results on Datasets with Noisy Edges. We conduct ex-
periments to evaluate the performance of pGNNs on graphs
with noisy edges by randomly adding edges to the graphs
and randomly remove the same number of original edges.
We define the random edge rate as r := #random edges

#all edges . The
experiments are conducted on 4 homophilic datasets (Com-
puters, Photo, CS, Physics) and 2 heterophilic datasets
(Wisconsin, Texas) with r = 0.25, 0.5, 1. Fig. 3 reports the
results on Computers, Wisconsin and we defer more results
to Appendix F.4. Fig. 3 shows that pGNNs significantly
outperform all baselines. Specifically, 1.5GNN obtains the
best performance on Computers, and 1.5GNN and 2.0GNN
even work as well as MLP on Computers with completely
random edges (r = 1). For Wisconsin, 1.0GNN is the best,
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Figure 3: Averaged accuracy (%) on graphs with noisy
edges for 20 runs. Best view in colors.

and 1.0GNN and 1.5GNN significantly dominate the others.
We also observed that APPNP and GPRGNN, whose ar-
chitectures are analogical to 2.0GNN, also work better than
other GNNs. Nevertheless, they are significantly outper-
formed by pGNNs overall. Similar results can be observed
in the experiments conducted on more datasets as presented
in Appendix F.4.

6. Conclusion
We have addressed the problem of generalizing GNNs
to heterophilic graphs and graphs with noisy edges. To
this end, we derived a novel p-Laplacian message pass-
ing scheme from a discrete regularization framework and
proposed a new pGNN architecture. We theoretically
demonstrate our method works as low-high-pass filters and
thereby applicable to both homophilic and heterophilic
graphs. We empirically validate our theoretical results and
show the advantages of our methods on heterophilic graphs
and graphs with non-informative topologies.

Like most existing spectral based GNN models, e.g.,
GCN (Kipf & Welling, 2017), SGC (Wu et al., 2019),
the main restriction of pGNNs is the relatively high space
cost compared to GraphSage (Hamilton et al., 2017), espe-
cially for extremely large graphs. Integrating pGNNs and

p-Laplacian message passing with some popular subgraph
sampling techniques so that pGNNs (or its variants) could
scale to large graphs would be an interesting future work.
We refer the reader to Appendix B for further discussions
on the potential extensions of pGNNs.
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Gülçehre, Ç., Song, H. F., Ballard, A. J., Gilmer, J.,
Dahl, G. E., Vaswani, A., Allen, K. R., Nash, C.,
Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P.,
Botvinick, M., Vinyals, O., Li, Y., and Pascanu, R. Re-
lational inductive biases, deep learning, and graph net-
works. CoRR, abs/1806.01261, 2018.

Belkin, M. and Niyogi, P. Towards a theoretical foundation
for laplacian-based manifold methods. Journal of Com-
puter and System Sciences, 74(8):1289–1308, 2008.

Belkin, M., Matveeva, I., and Niyogi, P. Regularization and
semi-supervised learning on large graphs. In The 17th
Annual Conference on Learning Theory, COLT 2004,
Banff, Canada, July 1-4, 2004, volume 3120, pp. 624–
638, 2004.

Belkin, M., Niyogi, P., and Sindhwani, V. On manifold
regularization. In Cowell, R. G. and Ghahramani, Z.
(eds.), Proceedings of the Tenth International Workshop
on Artificial Intelligence and Statistics, AISTATS 2005,
Bridgetown, Barbados, January 6-8, 2005. Society for
Artificial Intelligence and Statistics, 2005.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
In The 2nd International Conference on Learning Repre-
sentations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, 2014.

Bühler, T. and Hein, M. Spectral clustering based on the
graph p-laplacian. In Danyluk, A. P., Bottou, L., and
Littman, M. L. (eds.), Proceedings of the 26th Annual
International Conference on Machine Learning, ICML
2009, Montreal, Quebec, Canada, June 14-18, 2009,
volume 382 of ACM International Conference Proceed-
ing Series, pp. 81–88. ACM, 2009.

Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with
graph convolutional networks via importance sampling.
In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings, 2018.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive
universal generalized pagerank graph neural network. In
9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information
Processing Systems 29, NeurIPS 2016, December 5-10,
2016, Barcelona, Spain, pp. 3837–3845, 2016.

Deshpande, Y., Sen, S., Montanari, A., and Mossel, E.
Contextual stochastic block models. In Bengio, S., Wal-
lach, H. M., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems 31, NeurIPS 2018, December
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A. Related Work
Graph Neural Networks. Graph neural networks (GNNs) are a variant of neural networks for graph-structured data,
which can propagate and transform the node features over the graph topology and exploit the information in the graphs.
Graph convolutional networks (GCNs) are one type of GNNs whose graph convolution mechanisms or the message passing
schemes were mainly inspired by the field of graph signal processing. Bruna et al. (2014) defined a nonparametric graph
filter using the Fourier coefficients. Defferrard et al. (2016) introduced Chebyshev polynomial to avoid computational
expensive eigen-decomposition of Laplacian and obtain localized spectral filters. GCN (Kipf & Welling, 2017) used
the first-order approximation and reparameterized trick to simplify the spectral filters and obtain the layer-wise graph
convolution. SGC (Wu et al., 2019) further simplify GCN by removing non-linear transition functions between each layer.
Chen et al. (2018) propose importance sampling to design an efficient variant of GCN. Xu et al. (2018) explored a jumping
knowledge architecture that flexibly leverages different neighborhood ranges for each node to enable better structure-aware
representation. Atwood & Towsley (2016); Liao et al. (2019); Abu-El-Haija et al. (2019) exploited multi-scale information
by diffusing multi-hop neighbor information over the graph topology. Wang & Leskovec (2020) used label propagation
to improve GCNs. Klicpera et al. (2019) incorporated personalized PageRank with GCNs. Liu et al. (2021) introduced
a l1 norm-based graph smoothing term to enhance the local smoothnesss adaptivity of GNNs. Hamilton et al. (2017);
Zeng et al. (2020) proposed sampling and aggregation frameworks to extent GCNs to inductive learning settings. Another
variant of GNNs is graph attention networks (Velickovic et al., 2018; Thekumparampil et al., 2018; Abu-El-Haija et al.,
2018), which use attention mechanisms to adaptively learn aggregation weights based on the nodes features. There are
many other works on GNNs (Pei et al., 2020) (Ying et al., 2018; Xinyi & Chen, 2019; Velickovic et al., 2019; Zeng et al.,
2020), we refer to Zhou et al. (2020); Battaglia et al. (2018); Wu et al. (2021) for a comprehensive review. Most GNN
models implicitly assume that the labels of nodes and their neighbors should be the same or consistent, while it does not
hold for heterophilic graphs. Zhu et al. (2020) investigated the issues of GNNs on heterophilic graphs and proposed to
separately learn the embeddings of ego-node and its neighborhood. Zhu et al. (2021) proposed a framework to model the
heterophily or homophily levels of graphs. Chien et al. (2021) incorporated generalized PageRank with graph convolution
to adapt GNNs to heterophilic graphs.

There are also some works on the interpretability of GNNs proposed recently. Li et al. (2018); Ying et al. (2019); Fu et al.
(2020) showed that spectral graph convolutions work as conducting Laplacian smoothing on the graph signals and Wu
et al. (2019); NT & Maehara (2019) demonstrated that GCN, SGC work as low-pass filters. Gama et al. (2020) studied the
stability properties of GNNs. Xu et al. (2019); Oono & Suzuki (2020); Loukas (2020) studied the expressiveness of GNNs.
Verma & Zhang (2019); Garg et al. (2020) work on the generalization and representation power of GNNs.

Graph based Semi-supervised Learning. Graph-based semi-supervised learning works under the assumption that the
labels of a node and its neighbors shall be the same or consistent. Many methods have been proposed in the last decade,
such as Smola & Kondor (2003); Zhou et al. (2003); Belkin et al. (2004) use Laplacian regularization techniques to force the
labels of linked nodes to be the same or consistent. Zhou & Schölkopf (2005) introduce discrete regularization techniques to
impose different regularizations on the node features based on p-Laplacian. Lable propagation (Zhu et al., 2003) recursively
propagates the labels of labeled nodes over the graph topology and use the convergence results to make predictions. To
mention but a few, we refer to Zhou & Schölkopf (2005); van Engelen & Hoos (2020) for a more comprehensive review.
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B. Discussions and Future Work
In this section, we discuss the future work of pGNNs. Our theoretical results and experimental results could lead to several
potential extensions of pGNNs.

New Paradigm of Designing GNN Architectures. We bridge the gap between discrete regularization framework, graph-
based semi-supervised learning, and GNNs, which provides a new paradigm of designing new GNN architectures. Follow-
ing the new paradigm, researchers could introduce more regularization techniques, e.g., Laplacian regularization (Smola
& Kondor, 2003; Belkin et al., 2004), manifold regularization (Sindhwani et al., 2005; Belkin et al., 2005; Niyogi, 2013),
high-order regularization (Zhou & Belkin, 2011), Bayesian regularization (Liu et al., 2014), entropy regularization (Grand-
valet & Bengio, 2004), and consider more explicit assumptions on graphs, e.g. the homophily assumption, the low-density
region assumption (i.e. the decision boundary is likely to lie in a low data density region), manifold assumption (i.e. the
high dimensional data lies on a low-dimensional manifold), to develop new graph convolutions or message passing schemes
for graphs with specific properties and generalize GNNs to a much broader range of graphs. Moreover, the paradigm also
enables us to explicitly study the behaviors of the designed graph convolutions or message passing schemes from the theory
of regularization (Belkin & Niyogi, 2008; Niyogi, 2013; Slepcev & Thorpe, 2017).

Applications of pGNNs to learn on graphs with noisy topologies. The empirical results (as shown in Fig. 3 and Tables 6
and 7) on graphs with noisy edges show that pGNNs are very robust to noisy edges, which suggests the applications of
p-Laplacian message passing and pGNNs on the graph learning scenarios where the graph topology could potentially be
seriously intervened.

Integrating with existing GNN architectures. As shown in Table 9, the experimental results on heterophilic benchmark
datasets illustrate that integrating GCN, JKNet with pGNNs can significantly improve their performance on heterophilic
graphs. It shows that pGNN could be used as a plug-and-play component to be integrated into existing GNN architectures
and improve their performance on real-world applications.

Inductive learning for pGNNs. pGNNs are shown to be very effective for inductive learning on PPI datasets as reported in
Table 10. pGNNs even outperforms GAT on PPI, while using much fewer parameters than GAT. It suggests the promising
extensions of pGNNs to inductive learning on graphs.
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C. Additional Theorems
C.1. Theorem 4 (Upper-Bounding Risk of pGNN)

Theorem 4 (Upper-Bounding Risks of pGNNs). Given a graph G = (V, E ,W) with N nodes, let X ∈ RN×c be the node
features and y ∈ RN be the node labels and M(k),α(k),βk,Fk are updated accordingly by Equations (12) to (14) for
k = 0, 1, . . . ,K − 1 and F(0) = X, K ∈ N. Assume that G is d-regular and the ground-truth node features X∗ = X+ ϵ,
where ϵ ∈ RN×c represents the noise in the node features and there exists a L-Lipschitz function σ : RN×c → RN such
that σ(X∗) = y. let ỹ(k+1) = α(k)D−1/2M(k)D−1/2σ(F(k)) + β(k)σ

(
F(0)

)
, we have

1

N

N∑
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1

N
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β
(K−1)
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Proof see Appendix D.4. Theorem 4 shows that the risk of pGNNs is upper-bounded by the sum of three terms: The first
term of the r.h.s in the above inequation represents the risk of label prediction using only the original node features X, the
second term is the norm of p-Laplacian diffusion on the node features X, and the third term is the magnitude of the noise
in the node features. αi,i and βi,i control the trade-off between these three terms and they are related to the hyperparameter
µ in Eq. (10). The smaller µ, the smaller βi,i and larger αi,i, thus the more important of the p-Laplacian diffusion term but
also the more effect from the noise. Therefore, for graphs whose topological information is not helpful for label prediction,
we could impose more weights on the first term by using a large µ so that pGNNs work more like MLPs which simply learn
on node features. While for graphs whose topological information is helpful for label prediction, we could impose more
weights on the second term by using a small µ so that pGNNs can benefit from p-Laplacian smoothing on node features.

In practice, to choose a proper value of µ one may first simply apply MLPs on the node features to have a glance at the
helpfulness of the node features. If MLPs work very well, there is not much space for the graph’s topological information
to further improve the prediction performance and we may choose a large µ. Otherwise, there could be a large chance for
the graph’s topological information to further improve the performance and we should choose a small µ.

C.2. Theorem 5 (p-Orthogonal Theorem (Luo et al., 2010))

Theorem 5 (p-Orthogonal Theorem (Luo et al., 2010)). If u(l) and u(r) are two eigenvectors of p-Laplacian ∆p associated
with two different non-zero eigenvalues λl and λr, W is symmetric and p ≥ 1, then u(l) and u(r) are p-orthogonal up to
the second order Taylor expansion.

Theorem 5 implies that ϕp(u)
(l)⊤ϕp(u

(r)) ≈ 0, for all l, r = 0, . . . , N − 1 and λl ̸= λr. Therefore, the space spanned by
the multiple eigenvectors of the graph p-Laplacian is p-orthogonal.

C.3. Theorem 6 (p-Eigen-Decomposition of ∆p)

Theorem 6 (p-Eigen-Decomposition of ∆p). Given the p-eigenvalues {λl ∈ R}l=0,1,...,N−1, and the p-eigenvectors
{u(l) ∈ RN}l=0,1,...,N−1 of p-Laplacian ∆p and ∥u(l)∥p = (

∑N
i=1(u

(l)
i )p)1/p = 1, let U be a matrix of p-eigenvectors

with U = (u(0),u(1), . . . ,u(N−1)) and Λ be a diagonal matrix with Λ = diag(λ0, λ1, . . . , λN−1), then the p-eigen-
decomposition of p-Laplacian ∆p is given by

∆p = Φp(U)ΛΦp(U)⊤.

When p = 2, it reduces to the standard eigen-decomposition of the Laplacian matrix.

Proof see Appendix D.5.
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C.4. Theorem 7 (Bounds of p-Eigenvalues)

Theorem 7 (Bounds of p-Eigenvalues). Given a graph G = (V, E ,W), if G is connected and λ is a p-eigenvalue associated
with the p-eigenvector u of ∆p, let Ni denotes the number of edges connected to node i, Nmin = min{Ni}i=1,2,...,N , and
k = argmax({|ui|/

√
Di,i}i=1,2,...,N ), then

1. for p ≥ 2, 0 ≤ λ ≤ 2p−1;

2. for 1 < p < 2, 0 ≤ λ ≤ 2p−1
√
Nk;

3. for p = 1, 0 ≤ λ ≤
√
Nmin.

Proof see Appendix D.6.

D. Proof of Theorems
D.1. Proof of Theorem 1

Proof. Let i be the one-hot indicator vector whose i-th element is one and the other elements are zero. Then, we can obtain
the personalized PageRank on node i, denoted as πPPR(i), by using the recurrent equation (Klicpera et al., 2019):

π
(k+1)
PPR (i) = αD−1/2WD−1/2π

(k)
PPR(i) + βi,

where k is the iteration step, 0 < α < 1 and β = (1 − α) represents the restart probability. Without loss of generality,
suppose π

(0)
PPR(i) = i. Then we have,

π
(k)
PPR(i) = αD−1/2WD−1/2π

(k−1)
PPR (i) + βi

= αD−1/2WD−1/2
(
αD−1/2WD−1/2π

(k−2)
PPR (i) + βi

)
+ βi

=
(
αD−1/2WD−1/2

)2
π

(t−2)
PPR (i) + βαD−1/2WD−1/2i+ βi

=
(
αD−1/2WD−1/2

)k
π

(0)
PPR(i) + β

k−1∑
t=0

(
αD−1/2WD−1/2

)t
i

=
(
αD−1/2WD−1/2

)k
i+ β

k−1∑
t=0

(
αD−1/2WD−1/2

)t
i

Since 0 < α < 1 and the eigenvalues of D−1/2WD−1/2 in [−1, 1], we have

lim
k→∞

(
αD−1/2WD−1/2

)k
= 0,

and we also have

lim
k→∞

k−1∑
t=0

(
αD−1/2WD−1/2

)t
=
(
IN − αD−1/2WD−1/2

)−1

.

Therefore,

πPPR(i) = lim
k→∞

π
(k)
PPR(i) = β

(
IN − αD−1/2WD−1/2

)−1

i

= β (α∆2 + (1− α)IN )
−1

i

= µ(∆2 + µIN )−1i,

where we let α = 1
1+µ and β = µ

1+µ , µ > 0. Then the fully personalized PageRank matrix can be obtained by substituting
i with IN :

ΠPPR = µ(∆2 + µIN )−1.
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D.2. Proof of Theorem 2

Proof. By the definition of Lp(f) in Eq. (8), we have for some positive real value µ, µ > 0

Lp(F) =
1

2

N∑
i=1

N∑
j=1

∥∥∥∥∥
√

Wi,j

Di,i
Fi,: −

√
Wi,j

Dj,j
Fj,:

∥∥∥∥∥
p

+ µ

N∑
i=1

∥Fi,: −Xi,:∥2.

and by Eq. (12),

M
(k)
i,j := Wi,j

∥∥∥∥∥
√

Wi,j

Di,i
F

(k)
i,: −

√
Wi,j

Dj,j
F

(k)
j,:

∥∥∥∥∥
p−2

Then, we have

∂Lp(F
(k))

∂F
(k)
i,:

= p

N∑
j=1

√
Wi,j

Di,i

∥∥∥∥∥
√

Wi,j

Di,i
F

(k)
i,: −

√
Wi,j

Dj,j
F

(k)
j,:

∥∥∥∥∥
p−2(√

Wi,j

Di,i
F

(k)
i,: −

√
Wi,j

Dj,j
F

(k)
j,:

)
+ 2µ(F

(k)
i,: −Xi,:)

= p

 N∑
j=1

M
(k)
i,j

Di,i
F

(k)
i,: −

N∑
j=1

M
(k)
i,j√

Di,iDj,j

F
(k)
j,:

+ 2µ(F
(k)
i,: −Xi,:)

= p

 N∑
j=1

M
(k)
i,j

Di,i
+

2µ

p

F
(k)
i,: −

 N∑
j=1

M
(k)
i,j√

Di,iDj,j

F
(k)
j,: +

2µ

p
Xi,:


=

p

α
(k)
i,i

F
(k)
i,: −

α
(k)
i,i

N∑
j=1

M
(k)
i,j√

Di,iDj,j

F
(k)
j,: + β

(k)
i,i Xi,:


=

p

α
(k)
i,i

(
F

(k)
i,: − F

(k+1)
i,:

)
,

which indicates that

F
(k)
i,: − F

(k+1)
i,: =

α
(k)
i,i

p
· ∂Lp(F

(k))

∂F
(k)
i,:

.

For all i, j ∈ [N ],v ∈ R1×c, denote by

∂Lp(F
(k)
i,: ) :=

∂Lp(F
(k))

∂F
(k)
i,:

,

M
′(k)
i,j := Wi,j

∥∥∥∥∥
√

Wi,j

Di,i
(F

(k)
i,: + v)−

√
Wi,j

Dj,j
F

(k)
j,:

∥∥∥∥∥
p−2

,

α
′(k)
i,i := 1

/ N∑
j=1

M
′(k)
i,j

Di,i
+

2µ

p

 ,

β
′(k)
i,i :=

2µ

p
α
′(k)
i,i

F
′(k+1)
i,: := α

′(k)
i,i

N∑
j=1

M
′(k)
i,j√

Di,iDj,j

F
(k)
j,: + β′

i,iXi,:.
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Then

∥∥∥∂Lp(F
(k)
i,: + v)− ∂Lp(F

(k)
i,: )
∥∥∥

=

∥∥∥∥∥ p

α
′(k)
i,i

(
F

(k)
i,: + v − F

′(k+1)
i,:

)
− p

α
(k)
i,i

(
F

(k)
i,: − F

(k+1)
i,:

)∥∥∥∥∥
≤ p

α
′(k)
i,i

∥v∥+

∥∥∥∥∥ p

α
′(k)
i,i

(
F

(k)
i,: − F

′(k)
i,:

)
− p

α
(k)
i,i

(
F

(k)
i,: − F

(k+1)
i,:

)∥∥∥∥∥
=

p

α
′(k)
i,i

∥v∥+

∥∥∥∥∥
(

p

α
′(k)
i,i

− p

α
(k)
i,i

)
F

(k)
i,: − p

α
′(k)
i,i

F
′(k+1)
i,: +

p

α
(k)
i,i

F
(k+1)
i,:

∥∥∥∥∥
=

p

α
′(k)
i,i

∥v∥+ p

∥∥∥∥∥∥
 N∑

j=1

M
′(k)
i,j

Di,i
−

N∑
j=1

M
(k)
i,j

Di,i

F
(k)
i,: −

N∑
j=1

M
′(k)
i,j√

Di,iDj,j

F
(k)
j,: − 2µ

p
Xi,: +

N∑
j=1

M
(k)
i,j√

Di,iDj,j

F
(k)
j,: +

2µ

p
Xi,:

∥∥∥∥∥∥
=

p

α
′(k)
i,i

∥v∥+ p

∥∥∥∥∥∥
 N∑

j=1

M
′(k)
i,j

Di,i
−

N∑
j=1

M
(k)
i,j

Di,i

F
(k)
i,: −

N∑
j=1

M
′(k)
i,j√

Di,iDj,j

F
(k)
j,: +

N∑
j=1

M
(k)
i,j√

Di,iDj,j

F
(k)
j,:

∥∥∥∥∥∥
=

p

N∑
j=1

M
(k)
i,j

Di,i
+ 2µ

 ∥v∥+ p

N∑
j=1

M
′(k)
i,j −M

(k)
i,j

Di,i
∥v∥+ p

∥∥∥∥∥∥
N∑
j=1

M
′(k)
i,j −M

(k)
i,j

Di,i
F

(k)
i,: −

N∑
j=1

M
′(k)
i,j −M

(k)
i,j√

Di,iDj,j

F
(k)
j,:

∥∥∥∥∥∥
= p

 N∑
j=1

M
(k)
i,j

Di,i
+

2µ

p
+ o (p,v,X,G)

 ∥v∥.

Therefore, there exists some real positive value µ ∈ o (p,v,X,G) > 0 such that

∥∥∥∂Lp(F
(k)
i,: + v)− ∂Lp(F

(k)
i,: )
∥∥∥ ≤ p

( N∑
j=1

M
(k)
i,j

Di,i
+

2µ

p

)
∥v∥ =

p

α
(k)
i,i

∥v∥. (19)

Let γ = (γ1, . . . , γN )⊤ ∈ RN and η ∈ RN×c. By Taylor’s theorem, we have:

Lp(F
(k)
i,: + γiηi,:)

= Lp(F
(k)
i,: ) + γi

∫ 1

0

⟨∂Lp(F
(k)
i,: + ϵγiηi,:),ηi,:⟩dϵ

= Lp(F
(k)
i,: ) + γi⟨ηi,:, ∂Lp(F

(k)
i,: )⟩+ γi

∫ 1

0

⟨∂Lp(F
(k)
i,: + ϵγiηi,:)− ∂Lp(F

(k)
i,: ),ηi,:⟩dϵ

≤ Lp(F
(k)
i,: ) + γi⟨ηi,:, ∂Lp(F

(k)
i,: )⟩+ γi

∫ 1

0

∥∂Lp(F
(k)
i,: + ϵγiηi,:)− ∂Lp(F

(k)
i,: )∥∥ηi,:∥dϵ

≤ Lp(F
(k)
i,: ) + γi⟨ηi,:, ∂Lp(F

(k)
i,: )⟩+

p

2α
(k)
i,i

γ2
i ∥ηi,:∥2

Let η = −∇Lp(F
(k)) and choose some positive real value µ which depends on X,G, p and p > 1, i.e. µ ∈ o (p,X,G).
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By Eq. (19), we have for all i ∈ [N ],

Lp(F
(k)
i,: − γ∂Lp(F

(k)
i,: )) ≤ Lp(F

(k)
i,: )− ⟨γi∂Lp(F

(k)
i,: ), ∂Lp(F

(k)
i,: )⟩+

p

2α
(k)
i,i

γ2
i ∥∂Lp(F

(k)
i,: )∥

2

= Lp(F
(k)
i,: )−

p

2α
(k)
i,i

(
2α

(k)
i,i γi

p
− γ2

i

)
∥∂Lp(Fi,:)∥2

= Lp(F
(k)
i,: )−

p

2α
(k)
i,i


(
α
(k)
i,i

)2
p2

−

(
γi −

α
(k)
i,i

p

)2
 ∥∂Lp(F

(k)
i,: )∥

2.

Then for all i ∈ [N ], when 0 ≤ γi ≤ 2α
(k)
i,i

p , we have Sp(F
(k)
i,: − γi∂Sp(F

(k)
i,: )) ≤ Sp(F

(k)
i,: ) and γi =

α
(k)
i,i

p minimizes

Sp(F
(k)
i,: − γi∂Sp(F

(k)
i,: )). Therefore,

Lp(F
(k+1)) = Lp(F

(k) − 1

p
·α(k)∇Lp(F

(k))) ≤ Lp(F
(k)).

D.3. Proof of Theorem 3

Proof. Without loss of generality, suppose F(0) = X. Denote M̃(k) = D−1/2M(k)D−1/2, by Eq. (14), we have for
K ≥ 2,

F(K) = α(K−1)D−1/2M(K−1)D−1/2F(K−1) + β(K−1)X

= α(K−1)M̃K−1F(K−1) + β(K−1)X

= α(K−1)M̃K−1
(
α(K−2)M̃K−2F(K−2) + β(K−2)X

)
+ β(K−1)X

= α(K−1)α(K−2)M̃K−1M̃K−2F(K−2) +α(K−1)M̃K−1β(K−2)X+ β(K−1)X

=

(
K−1∏
k=0

α(k)

)(
K−1∏
k=0

M̃(k)

)
F(0) +

K−1∑
k=1

(
K−1∏

l=K−k

α(l)M̃(l)

)
β(K−1−k)X+ β(K−1)X

=

(
K−1∏
k=0

α(k)

)(
K−1∏
k=0

M̃(k)

)
X+

K−1∑
k=1

(
K−1∏

l=K−k

α(l)M̃(l)

)
β(K−1−k)X+ β(K−1)X. (20)

Recall Equations (12) and (13), we have

M̃
(k)
i,j =

Wi,j√
Di,iDj,j

∥∥∥∥∥
√

Wi,j

Di,i
F

(k)
i,: −

√
Wi,j

Dj,j
F

(k)
j,:

∥∥∥∥∥
p−2

, for all i, j = 1, 2, . . . , N,

and
α
(k)
i,i =

1∑N
j=1

M
(k)
i,j

Di,i
+ 2µ

p

, for all i = 1, 2, . . . , N.

Note that the eigenvalues of M̃ are not infinity and 0 < αi,i < 1 for all i = 1, . . . , N . Then we have

lim
K→∞

K−1∏
k=0

α(k) = 0,

and

lim
K→∞

(
K−1∏
k=0

α(k)

)(
K−1∏
k=0

M̃(k)

)
= 0.
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Therefore,

lim
K→∞

F(K) = lim
K→∞

(
K−1∑
k=1

(
K−1∏

l=K−k

α(l)M̃(l)

)
β(K−1−k)X+ β(K−1)X

)
. (21)

By Equations (6) and (12), we have

∆pf(i) =

N∑
j=1

Wi,j

Di,i
∥(∇f)([j, i])∥p−2f(i)−

N∑
j=1

Wi,j√
Di,iDj,j

∥(∇f)([j, i])∥p−2f(j)

=

N∑
j=1

Mi,j

Di,i
f(i)−

N∑
j=1

Mi,j√
Di,iDj,j

f(j). (22)

By Eq. (13), we have
N∑
j=1

M
(k)
i,j

Di,i
=

1

α
(k)
i,i

− 2µ

p
. (23)

Equations (22) and (23) show that

∆(k)
p =

((
α(k)

)−1

− 2µ

p
IN

)
− M̃(k), (24)

which indicates
α(k)M̃(k) = IN − 2µ

p
α(k) −α(k)∆(k)

p . (25)

Eq. (25) shows that α(k)M̃(k) is linear w.r.t ∆p and therefore can be expressed by a linear combination in terms of ∆p:

α(k)M̃(k) = θ′(k)∆p, (26)

where θ′ = diag(θ′0, θ
′
1, . . . , θ

′
N−1) are the parameters. Therefore, we have

lim
K→∞

F(K) = lim
K→∞

(
K−1∑
k=1

(
K−1∏

l=K−k

α(l)M̃(l)

)
β(K−1−k)X+ β(K−1)X

)

= lim
K→∞

(
K−1∑
k=1

(
K−1∏

l=K−k

θ′(l)∆p

)
β(K−1−k)X+ β(K−1)X

)

= lim
K→∞

(
K−1∑
k=1

β(K−1−k)

(
K−1∏

l=K−k

θ′(l)

)
∆k

pX+ β(K−1)X

)

= lim
K→∞

K−1∑
k=0

θ′′(k)∆k
pX,

where θ′′(k) = diag(θ
′′(k)
1 , θ

′′(k)
2 , . . . , θ

′′(k)
N ) defined as θ′′(0) = β(K−1) and

θ
′′(k)
i = β

(K−1−k)
i,i

K−1∏
l=K−k

θ
′(l)
i , for k = 1, 2, . . . ,K − 1.

Let θ = (θ0, θ1, . . . , θK−1) defined as θk =
∑N

i=1 θ
′′(k)
i for all k = 0, 1, . . . ,K − 1, then

lim
K→∞

F(K) = lim
K→∞

(
K−1∑
k=1

θk∆
k
pX+ θ0X

)

= lim
K→∞

K−1∑
k=0

θk∆
k
pX.

Therefore complete the proof.
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D.4. Proof of Theorem 4

Proof. The first-order Taylor expansion with Peano’s form of remainder for σ at X∗
i,: is given by:

σ(F
(K−1)
j,: ) = σ(X∗

i,:) +
∂σ(X∗

i,:)

∂X

(
F

(K−1)
j,: −X∗

i,:

)⊤
+ o(∥F(K−1)

j,: −X∗
i,:∥).

Note that in general the output non-linear layer σ(·) is simple. Here we assume that it can be well approximated by the
first-order Taylor expansion and we can ignore the Peano’s form of remainder. For all i = 1, . . . , N , Di,i = Dj,j = d, we
have αi,i

∑N
j=1 D

−1/2
i,i M

(K−1)
i,j D

−1/2
j,j + β

(K−1)
i,i = 1. Then

∣∣∣yi − ỹ
(K)
i

∣∣∣
=

∣∣∣∣∣∣yi − α
(K−1)
i,i

N∑
j=1

M
(K−1)
i,j√
Di,iDj,j

σ
(
FK−1

j,:

)
− β

(K−1)
i,i σ (Xi,:)

∣∣∣∣∣∣
=

∣∣∣∣∣∣yi − β
(K−1)
i,i σ (Xi,:)− α

(K−1)
i,i

N∑
j=1

M
(K−1)
i,j√
Di,iDj,j

(
σ
(
X∗

i,:

)
+

∂σ
(
X∗

i,:

)
∂X

(
F

(K−1)
j,: −X∗

i,:

)⊤)∣∣∣∣∣∣
=

∣∣∣∣∣∣yi − α
(K−1)
i,i

N∑
j=1

M
(K−1)
i,j√
Di,iDj,j

yi − β
(K−1)
i,i σ(Xi,:)− α

(K−1)
i,i

N∑
j=1

M
(K−1)
i,j√
Di,iDj,j

(
∂σ(X∗

i,:)

∂X

(
F

(K−1)
j,: −X∗

i,:

)⊤)∣∣∣∣∣∣
=

∣∣∣∣∣∣β(K−1)
i,i (yi − σ(Xi,:))− α

(K−1)
i,i

N∑
j=1

M
(K−1)
i,j√
Di,iDj,j

(
∂σ(X∗

i,:)

∂X

(
F

(K−1)
j,: −Xi,: − ϵi,:

)⊤)∣∣∣∣∣∣
≤ β

(K−1)
i,i |yi − σ(Xi,:)|+ α

(K−1)
i,i

∣∣∣∣∣∣
N∑
j=1

M
(K−1)
i,j√
Di,iDj,j

∂σ(X∗
i,:)

∂X

(
F

(K−1)
j,: −Xi,:

)⊤∣∣∣∣∣∣+ (1− β
(K−1)
i,i )

∣∣∣∣∂σ(X∗
i,:)

∂X
ϵ⊤i,:

∣∣∣∣
≤ β

(K−1)
i,i |yi − σ(Xi,:)|+ α

(K−1)
i,i

∥∥∥∥∂σ(X∗
i,:)

∂X

∥∥∥∥
∥∥∥∥∥∥

N∑
j=1

M
(K−1)
i,j√
Di,iDj,j

(
F

(K−1)
j,: −Xi,:

)∥∥∥∥∥∥+ (1− β
(K−1)
i,i )

∥∥∥∥∂σ(X∗
i,:)

∂X

∥∥∥∥ ∥ϵi,:∥
≤ β

(K−1)
i,i |yi − σ(Xi,:)|+ α

(K−1)
i,i L

∥∥∥∥∥∥
N∑
j=1

M
(K−1)
i,j

d

(
F

(K−1)
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Therefore,
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D.5. Proof of Theorem 6

Proof. Note that

ϕp(u)
⊤u =

N∑
i=1

ϕp(ui)ui =

N∑
i=1

∥ui∥p−2u2
i =

N∑
i=1

∥ui∥p =

N∑
i=1

|ui|p = ∥u∥pp = 1,

then we have
∆pU = Φp(U)Λ = Φp(U)ΛΦ(U)⊤U.

Therefore, ∆p = Φp(U)ΛΦp(U)⊤.

When p = 2, by Φ2(U) = U, we get ∆2 = Φ2(U)ΛΦ2(U)⊤ = UΛU⊤.

D.6. Proof of Theorem 7

Proof. By the definition of graph p-Laplacian, we have for all i = 1, 2, . . . , N ,
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Let l = argmax{∥ui∥}i=1,2,...,N , the above equation holds for all i = 1, 2, . . . , N , then
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When p = 1,
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where the last inequality holds by using the Cauchy-Schwarz inequality. The above inequality holds for all i = 1, 2, . . . , N ,
therefore,
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When p > 1, we have for i = 1, 2, . . . , N ,
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Without loss of generality, let k = argmax({|ui|/
√

Di,i}i=1,2,...,N ). Because the above inequality holds for all i =
1, 2, . . . , N , then we have
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For p ≥ 2,
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For 1 < p < 2,

λ ≤ 2p−1
N∑
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D.7. Proof of Proposition 1

Proof. We proof Proposition 1 based on the bounds of p-eigenvalues as demonstrated in Theorem 7.

By Eq. (6) and Eq. (12), we have

∆pf(i) =

N∑
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By Eq. (13), we have
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p
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Equations (27) and (28) show that
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p
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)
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which indicates
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p
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p . (30)

For i = 1, 2, . . . , N , let α̃ := (α̃1, . . . , α̃N ), α̃i := 1/
∑N

j=1
Mi,j

Di,i
, then
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Recall the Eq. (12) that

Mi,j = Wi,j

∥∥∥∥∥
√
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√
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∥∥∥∥∥
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= Wi,j∥(∇f)([i, j])∥p−2,

1. When p = 2, for all i = 1, . . . , N , α̃i = 1 and 0 ≤ λi−1 ≤ 2, g2(λi−1) works as low-high-pass filters.

2. When p > 2, by Theorem 7 we have for all i = 1, . . . , N , 0 ≤ λi−1 ≤ 2p−1. If 0 ≤ α̃i ≤ 21−p, then 0 ≤ 1− α̃iλi ≤
1, which indicates that gp(λi−1) works as a low-pass filter; If α̃i > 21−p, then gp(λi−1) works as low-high-pass
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filters. Since

N∑
j=1

Mi,j

Di,i
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N∑
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which indicates that α̃i ≥ ∥∇f(i)∥2−p. 0 ≤ α̃i ≤ 21−p directly implies that 0 ≤ ∥∇f(i)∥2−p ≤ 21−p, i.e.
∥∇f(i)∥ ≥ 2(p−1)/(p−2) and when ∥∇f(i)∥2−p ≥ 21−p, i.e. ∥∇f(i)∥ ≤ 2(p−1)/(p−2), α̃i ≥ 21−p always holds.
Therefore, if ∥∇f(i)∥ ≤ 2(p−1)/(p−2), gp(λi−1) works as low-high-pass filters on node i; If gp(λi−1) works as a
low-pass filter, ∥∇f(i)∥ ≥ 2(p−1)/(p−2).

3. When 1 ≤ p < 2, by Theorem 7 we have for all i = 1, . . . , N , 0 ≤ λi−1 ≤ 2p−1
√
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Specifically, when p = 1, by Theorem 7 we have for all i = 1, . . . , N , 0 ≤ λi−1 ≤ 2p−1
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derivation above we attain if 0 ≤ ∥∇f(i)∥ ≤ 2(2
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E. Dataset Statistics and Hyperparameters
E.1. Illustration of Graph Gradient and Graph Divergence
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(b) Graph divergence.

Figure 4: A tiny example of illustration of graph gradient and graph divergence. Best view in colors.

E.2. Dataset Statistics

Table 2 summarizes the dataset statistics and the levels of homophily H(G) of all benchmark datasets. Note that the ho-
mophily scores here is different with the scores reported by Chien et al. (2021). There is a bug in their code when computing
the homophily scores (doing division with torch integers) which caused their homophily scores to be smaller. Additionally,
We directly used the data from Pytorch Geometric library (Fey & Lenssen, 2019) where they did not transform Chameleon
and Squirrel to undirected graphs, which is different from Chien et al. (2021) where they did so.

Table 2: Statistics of datasets.

Dataset #Class #Feature #Node #Edge Training Validation Testing H(G)
Cora 7 1433 2708 5278 2.5% 2.5% 95% 0.825

CiteSeer 6 3703 3327 4552 2.5% 2.5% 95% 0.717
PubMed 3 500 19717 44324 2.5% 2.5% 95% 0.792

Computers 10 767 13381 245778 2.5% 2.5% 95% 0.802
Photo 8 745 7487 119043 2.5% 2.5% 95% 0.849

CS 15 6805 18333 81894 2.5% 2.5% 95% 0.832
Physics 5 8415 34493 247962 2.5% 2.5% 95% 0.915

Chameleon 5 2325 2277 31371 60% 20% 20% 0.247
Squirrel 5 2089 5201 198353 60% 20% 20% 0.216
Actor 5 932 7600 26659 60% 20% 20% 0.221

Wisconsin 5 251 499 1703 60% 20% 20% 0.150
Texas 5 1703 183 279 60% 20% 20% 0.097

Cornell 5 1703 183 277 60% 20% 20% 0.386

E.3. Hyperparameter Settings

We set the number of layers as 2, the maximum number of epochs as 1000, the number for early stopping as 200, the
weight decay as 0 or 0.0005 for all models. The other hyperparameters for each model are listed as below:

• 1.0GNN, 1.5GNN, 2.0GNN, 2.5GNN:

– Number of hidden units: 16
– Learning rate: {0.001, 0.01, 0.05}
– Dropout rate: {0, 0.5}



p-Laplacian Based Graph Neural Networks

– µ: {0.01, 0.1, 0.2, 1, 10}
– K: 4, 6, 8

• MLP:

– Number of hidden units: 16
– Learning rate: {0.001, 0.01}
– Dropout rate: {0, 0.5}

• GCN:

– Number of hidden units: 16
– Learning rate: {0.001, 0.01}
– Dropout rate: {0, 0.5}

• SGC:

– Number of hidden units: 16
– Learning rate: {0.2, 0.01}
– Dropout rate: {0, 0.5}
– K: 2

• GAT:

– Number of hidden units: 8
– Number of attention heads: 8
– Learning rate: {0.001, 0.005}
– Dropout rate: {0, 0.6}

• JKNet:

– Number of hidden units: 16
– Learning rate: {0.001, 0.01}
– Dropout rate: {0, 0.5}
– K: 10
– α: {0.1, 0.5, 0.7, 1}
– The number of GCN based layers: 2
– The layer aggregation: LSTM with 16 channels and 4 layers

• APPNP:

– Number of hidden units: 16
– Learning rate: {0.001, 0.01}
– Dropout rate: {0, 0.5}
– K: 10
– α: {0.1, 0.5, 0.7, 1}

• GPRGNN:

– Number of hidden units: 16
– Learning rate: {0.001, 0.01, 0.05}
– Dropout rate: {0, 0.5}
– K: 10
– α: {0, 0.1, 0.2, 0.5, 0.7, 0.9, 1}
– dprate: {0, 0.5, 0.7}
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F. Additional Experiments
F.1. Experimental Results on Homophilic Benchmark Datasets

Competitive Performance on Real-World Homophilic Datasets. Table 3 summarizes the averaged accuracy (the micro-
F1 score) and standard deviation of semi-supervised node classification on homophilic benchmark datasets. Table 3 shows
that the performance of pGNN is very close to APPNP, JKNet, GCN on Cora, CiteSeer, PubMed datasets and slightly
outperforms all baselines on Computers, Photo, CS, Physics datasets. Moreover, we observe that pGNNs outperform
GPRGNN on all homophilic datasets, which confirms that pGNNs work better under weak supervised information (2.5%
training rate) as discussed in Remark 3. We also see that all GNN models work significantly better than MLP on all
homophilic datasets. It illustrates that the graph topological information is helpful for the label prediction tasks. Notably,
1.0GNN is slightly worse than the other pGNNs with larger p, which suggests to use p ≈ 2 for homophilic graphs. Overall,
the results of Table 3 indicates that pGNNs obtain competitive performance against all baselines on homophilic datasets.

Table 3: Results on homophilic benchmark datasets. Averaged accuracy (%) for 100 runs. Best results are outlined in bold
and the results within 95% confidence interval of the best results are outlined in underlined bold. OOM denotes out of
memory.

Method Cora CiteSeer PubMed Computers Photo CS Physics

MLP 43.47±3.82 46.95±2.15 78.95±0.49 66.11±2.70 76.44±2.83 86.24±1.43 92.58±0.83

GCN 76.23±0.79 62.43±0.81 83.72±0.27 84.17±0.59 90.46±0.48 90.33±0.36 94.46±0.08

SGC 77.19±1.47 64.10±1.36 79.26±0.69 84.32±0.59 89.81±0.57 91.06±0.05 OOM
GAT 75.62±1.01 61.28±1.09 83.60±0.22 82.72±1.29 90.48±0.57 89.96±0.27 93.96±0.21

JKNet 77.19±0.98 63.32±0.95 82.54±0.43 79.94±2.47 88.29±1.64 89.69±0.66 93.92±0.32

APPNP 79.58±0.59 63.02±1.10 84.80±0.22 83.32±1.11 90.42±0.53 91.54±0.24 94.93±0.06

GPRGNN 76.10±1.30 61.60±1.69 83.16±0.84 82.78±1.87 89.81±0.66 90.59±0.38 94.72±0.16

1.0GNN 77.59±0.69 63.19±0.98 83.21±0.30 84.46±0.89 90.69±0.66 91.46±0.50 94.72±0.37
1.5GNN 78.86±0.75 63.80±0.79 83.65±0.17 85.03±0.90 90.91±0.50 92.12±0.40 94.90±0.16
2.0GNN 78.93±0.60 63.65±1.08 84.19±0.22 84.39±0.85 90.40±0.63 92.28±0.47 94.93±0.14
2.5GNN 78.87±0.57 63.28±0.97 84.45±0.18 83.85±0.87 89.82±0.64 91.94±0.40 94.87±0.11

F.2. Experimental Results of Aggregation Weight Entropy Distribution

Here we present the visualization results of the learned aggregation weight entropy distribution of pGNNs and GAT on
all benchmark datasets. Fig. 5 and Fig. 6 show the results obtained on homophilic and heterophilic benchmark datasets,
respectively.

We observe from Fig. 5 that the aggregation weight entropy distributions learned by pGNNs and GAT on homophilic
benchmark datasets are similar to the uniform cases, which indicates that aggregating and transforming node features over
the original graph topology is very helpful for label prediction. It explains why pGNNs and GNN baselines obtained similar
performance on homophilic benchmark datasets and all GNN models significantly outperform MLP.

Contradict to the results on homophilic graphs shown in Fig. 5, Fig. 6 shows that the aggregation weight entropy distribu-
tions of pGNNs on heterophilic benchmark datasets are very different from that of GAT and the uniform cases. We observe
from Fig. 6 that the entropy of most of the aggregation weights learned by pGNNs are around zero, which means that
most aggregation weights are on one source node. It indicates that the graph topological information in these heterophilic
benchmark graphs is not helpful for label prediction. Therefore, propagating and transforming node features over the graph
topology could lead to worse performance than MLPs, which validates the results in Table 3 that the performance of MLP
is significantly better most GNN baselines on all heterophilic graphs and closed to pGNNs.

F.3. Experimental Results on cSBM

In this section we present the experimental results on cSBM using sparse splitting and dense splitting, respectively. We
used the same settings in Chien et al. (2021) in which the number of nodes n = 5000, the number of features f = 2000,
ϵ = 3.25 for all experiments. Table 4 reports the results on cSBM with sparse splitting setting, which also are presented in
Fig. 2 and discussed in Sec. 5. Table 5 reports the results on cSBM with dense splitting settings.

Table 5 shows that pGNNs obtain the best performance on weak homophilic graphs (ϕ = 0, 0.25) while competitive
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Figure 5: Aggregation weight entropy distribution of homophilic benchmark graphs. Low entropy means high degree of
concentration, vice versa. An entropy of zero means all aggregation weights are on one source node.
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Figure 6: Aggregation weight entropy distribution of heterophilic benchmark graphs. Low entropy means high degree of
concentration and vice versa. An entropy of zero means all aggregation weights are on one source node.

Table 4: Results on cSBM with sparse splitting setting. Average accuracy (%) for 20 runs. Best results are outlined in bold
and the results within 95% confidence interval of the best results are outlined in underlined bold.

Method ϕ = −1 ϕ = −0.75 ϕ = −0.5 ϕ = −0.25 ϕ = 0 ϕ = 0.25 ϕ = 0.5 ϕ = 0.75 ϕ = 1

MLP 49.72±0.36 51.42±1.83 59.21±1.01 61.57±0.38 61.70±0.30 59.92±1.88 57.20±0.62 54.48±0.48 50.09±0.51

GCN 57.24±1.15 58.19±1.46 57.30±1.30 51.97±0.44 54.45±1.38 64.70±2.38 82.45±1.35 91.31±0.54 76.07±3.30
SGC 55.98±1.48 58.56±1.40 56.97±0.54 51.54±0.22 52.69±2.36 64.14±1.05 79.88±1.57 90.37±0.09 75.94±0.92
GAT 59.72±2.23 60.20±2.14 55.38±1.96 50.15±0.55 53.05±1.40 64.00±2.03 81.04±1.71 90.37±1.33 78.24±1.95

JKNet 49.70±0.39 49.75±0.79 49.65±0.52 48.93±0.48 52.36±2.09 62.76±2.54 87.10±1.52 97.43±0.36 97.69±0.52
APPNP 48.45±0.98 49.65±0.46 53.31±0.89 56.58±0.58 60.10±0.65 65.02±2.23 82.95±1.38 95.49±0.43 89.85±0.60

GPRGNN 97.26±0.66 94.81±0.91 82.14±0.47 61.15±2.55 60.20±0.76 62.90±2.22 83.61±1.28 96.96±0.41 98.01±0.71

1.0GNN 95.75±1.21 93.06±1.13 77.39±4.21 61.38±0.39 61.80±0.29 65.73±2.11 85.85±3.24 96.80±0.87 97.40±1.10
1.5GNN 95.90±3.01 94.10±4.57 73.08±2.59 61.44±0.30 61.77±0.35 66.01±1.88 90.57±0.71 97.38±0.43 97.76±0.86
2.0GNN 98.37±0.78 96.32±1.50 84.93±0.39 61.13±0.51 61.79±0.34 63.55±1.73 88.55±1.05 97.56±0.16 97.94±0.39
2.5GNN 97.74±0.99 96.78±0.44 83.21±2.12 61.30±0.41 61.74±0.34 62.88±2.31 79.64±2.15 95.71±0.34 97.25±0.58
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Table 5: Results on cSBM with dense splitting setting. Average accuracy (%) for 20 runs. Best results are outlined in bold
and the results within 95% confidence interval of the best results are outlined in underlined bold.

Method ϕ = −1 ϕ = −0.75 ϕ = −0.5 ϕ = −0.25 ϕ = 0 ϕ = 0.25 ϕ = 0.5 ϕ = 0.75 ϕ = 1

MLP 50.37±0.60 65.22±0.92 75.82±0.65 81.18±0.55 79.86±0.69 79.97±0.57 75.03±0.89 67.53±0.68 51.96±0.69
GCN 83.14±0.49 82.59±0.48 77.17±0.59 58.58±0.41 61.18±1.06 82.59±0.50 92.20±0.27 97.21±0.27 97.10±0.12
SGC 78.35±0.36 82.13±0.09 77.76±0.12 59.14±0.57 60.31±0.63 81.96±0.34 91.68±0.13 96.56±0.09 96.87±0.05
GAT 92.99±0.86 90.89±0.60 87.02±0.80 68.40±1.60 61.98±1.16 82.92±0.51 92.05±0.73 97.28±0.25 98.04±0.46

JKNet 68.95±9.05 79.21±7.67 67.97±5.22 56.12±4.10 58.33±1.70 80.15±0.80 91.21±0.50 97.62±0.25 98.32±0.21
APPNP 49.86±0.39 50.47±0.89 65.28±0.68 73.98±0.64 79.37±0.66 86.60±0.73 92.45±0.39 97.67±0.14 97.65±0.49

GPRGNN 99.06±0.25 97.14±0.31 94.59±0.32 83.84±0.69 78.81±1.30 85.85±1.01 92.08±0.81 97.49±0.22 98.46±0.15

1.0GNN 98.19±0.28 94.38±0.44 86.40±1.00 80.57±0.43 80.21±0.42 87.32±0.47 92.42±0.62 97.52±0.33 98.37±0.26
1.5GNN 98.88±0.16 95.62±0.21 86.87±1.22 80.70±0.71 80.28±0.31 86.29±0.43 92.40±0.24 97.56±0.25 98.24±0.32
2.0GNN 99.21±0.09 96.91±0.16 92.96±0.31 80.83±0.61 80.04±0.49 84.96±0.60 91.18±0.27 97.41±0.14 98.45±0.14
2.5GNN 99.21±0.14 96.94±0.16 93.28±0.37 80.93±0.44 80.28±0.38 83.83±0.70 86.10±0.39 96.28±0.43 97.76±0.18

performance against GPRGNN on strong heterophilic graphs (ϕ = −0.75,−1) and competitive performance with state-of-
the-art GNNs on strong homophilic graphs (ϕ = 0.75, 1). We also observe that GPRGNN is slightly better than pGNNs on
weak heterophilic graphs (ϕ = −0.25,−0.5), which suggests that GPRGNN could work very well using strong supervised
information (60% training rate and 20% validation rate). However, as shown in Table 4, pGNNs work better than GPRGNN
under weak supervised information (2.5% training rate and 2.5%) on all heterophilic graphs. The result is reasonable, as
discussed in Remark 3 in Sec. 3.2, GPRGNN can adaptively learn the generalized PageRank (GPR) weights and it works
similarly to 2.0GNN on both homophilic and heterophilic graphs. However, it needs more supervised information in order
to learn optimal GPR weights. On the contrary, pGNNs need less supervised information to obtain similar results because
Θ(2) acts like a hyperplane for classification. Therefore, pGNNs can work better under weak supervised information.

F.4. Experimental Results on Graphs with Noisy Edges

Here we present more experimental results on graph with noisy edges. Table 6 reports the results on homophilic graphs
(Computers, Photo, CS, Physics) and Table 7 reports the results on heterophilic graphs (Wisconsin Texas). We observe
from Tables 6 and 7 that pGNNs dominate all baselines. Moreover, pGNNs even slightly better than MLP when the
graph topologies are completely random, i.e. the noisy edge rate r = 1. We also observe that the performance of GCN,
SGC, JKNet on homophilic graphs dramatically degrades as the noisy edge rate r increases while they do not change a
lot for the cases on heterophilic graphs. It is reasonable since the original graph topological information is very helpful
for label prediction on these homophilic graphs. Adding noisy edges and remove the same number of original edges
could significantly degrade the performance of ordinary GNNs. On the other hand, since we find that the original graph
topological information in Wisconsin and Texas is not helpful for label prediction. Therefore, adding noisy edges and
removing original edges on these heterophilic graphs would not affect too much their performance.

F.5. Experimental Results of Intergrating pGNNs with GCN and JKNet

Here we further conduct experiments to study whether pGNNs can be intergrated into existing GNN architectures and
improve their performance on heterophilic graphs. We use two popular GNN architectures: GCN (Kipf & Welling, 2017)
and JKNet (Xu et al., 2018).

To incorporate pGNNs with GCN, we use the pGNN layers as the first layer of the combined models, termed as pGNN
+ GCN, and GCN layer as the second layer. Specifically, we use the aggregation weights αD−1/2MD−1/2 learned by
the pGNN in the first layer as the input edge weights of GCN layer in the second layer. To combine pGNN with JKNet,
we use the pGNN layer as the GNN layers in the JKNet framework, termed as pGNN + JKNet. Tables 8 and 9 report the
experimental results on homophilic and heterophilic benchmark datasets, respectively.

We observe from Table 8 that intergrating pGNNs with GCN and JKNet does not improve their performance on homophilic
graphs. The performance of GCN slightly degrade after incorporating pGNNs. The performance of JKNet also slightly
degrade on Cora, CiteSeer, and PubMed but is improved on Computers, Photo, CS, Physics. It is reasonable since GCN
and JKNet can predict well on these homophilic benchmark datasets based on their original graph topology.

However, for heterophilic benchmark datasets, Table 9 shows that there are significant improvements over GCN, and JKNet
after intergrating with pGNNs. Moreover, pGNNs + JKNet obtain advanced performance on all heterophilic benchmark
datasets and even better than pGNNs on Squirrel. The results of Table 9 demonstrate that intergrating pGNNs with GCN
and JKNet can sigificantly improve their performance on heterophilic graphs.
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Table 6: Results on homophilic graphs with random edges. Average accuracy (%) for 20 runs. Best results are outlined in
bold and the results within 95% confidence interval of the best results are outlined in underlined bold. OOM denotes out
of memory.

Method Computers Photo

r = 0.25 r = 0.5 r = 1 r = 0.25 r = 0.5 r = 1

MLP 66.11±2.70 66.11±2.70 66.11±2.70 76.44±2.83 76.44±2.83 76.44±2.83

GCN 74.70±1.72 62.16±2.76 8.95±6.90 81.43±0.76 75.52±3.59 12.78±5.20

SGC 75.15±1.08 66.96±1.05 15.79±7.47 82.22±0.36 77.80±0.49 13.57±3.63

GAT 76.44±1.81 68.34±2.61 11.58±7.70 82.70±1.31 77.20±2.10 13.74±5.14

JKNet 56.74±6.48 46.11±8.43 12.50±6.56 73.46±6.74 64.18±4.06 15.66±6.10

APPNP 78.23±1.84 74.57±2.25 66.67±2.68 87.63±1.05 86.22±1.73 75.55±1.72

GPRGNN 77.30±2.24 77.11±1.80 66.85±1.65 85.95±1.05 85.64±1.22 77.46±1.44

1.0GNN 75.14±14.95 63.26±20.67 41.60±16.17 87.97±0.70 84.47±3.05 41.17±18.15
1.5GNN 81.79±1.33 78.12±2.08 66.04±2.73 88.09±1.18 86.20±1.61 68.78±8.97
2.0GNN 80.34±1.07 76.90±1.93 67.17±1.63 87.65±0.94 87.06±1.50 77.07±1.83
2.5GNN 79.14±1.51 75.49±1.25 64.95±2.27 87.38±0.85 86.11±1.10 76.65±1.46

Method CS Physics

r = 0.25 r = 0.5 r = 1 r = 0.25 r = 0.5 r = 1

MLP 86.24±1.43 86.24±1.43 86.24±1.43 92.58±0.83 92.58±0.83 92.58±0.83

GCN 81.05±0.59 68.37±0.85 7.72±2.39 89.02±0.16 80.45±0.34 19.78±3.94

SGC 83.41±0.01 71.98±0.12 8.00±1.43 OOM OOM OOM
GAT 80.11±0.67 68.66±1.42 8.49±2.39 88.72±0.61 82.05±1.86 22.39±5.04

JKNet 81.35±0.74 71.30±2.14 11.43±1.18 87.98±0.97 81.90±2.27 26.38±5.80

APPNP 88.63±0.68 87.56±0.51 76.90±0.96 93.46±0.12 92.81±0.24 90.49±0.33

GPRGNN 85.77±0.81 83.89±1.54 72.79±2.24 92.18±0.29 90.96±0.48 91.77±0.41

1.0GNN 90.27±0.86 89.56±0.81 86.60±1.22 94.35±0.39 94.23±0.27 92.97±0.36
1.5GNN 91.27±0.40 90.50±0.71 84.40±1.84 94.34±0.21 93.77±0.29 92.51±0.35
2.0GNN 90.97±0.49 89.98±0.50 80.84±1.48 94.14±0.18 93.30±0.31 91.72±0.44
2.5GNN 89.90±0.45 89.00±0.59 76.82±2.11 93.61±0.30 92.77±0.26 91.16±0.47

Table 7: Results on heterophilic graphs with random edges. Average accuracy (%) for 20 runs. Best results are outlined in
bold and the results within 95% confidence interval of the best results are outlined in underlined bold.

Method Wisconsin Texas

r = 0.25 r = 0.5 r = 1 r = 0.25 r = 0.5 r = 1

MLP 93.56±3.14 93.56±3.14 93.56±3.14 79.50±10.62 79.50±10.62 79.50±10.62

GCN 62.31±8.12 59.44±5.76 64.21±4.49 41.56±8.89 44.69±23.05 40.31±18.26

SGC 64.68±7.34 62.36±2.64 51.81±2.63 42.50±5.49 40.94±18.34 23.81±14.54

GAT 65.37±9.04 60.05±9.12 60.05±7.46 39.50±9.29 34.88±21.59 29.38±11.53

JKNet 64.91±13.07 51.39±10.36 57.41±2.57 47.75±7.30 46.62±23.23 40.69±13.57

APPNP 70.19±9.04 60.32±4.70 72.64±4.73 66.69±13.46 63.25±9.87 69.81±7.76

GPRGNN 90.97±3.83 87.50±3.86 87.55±2.97 74.25±7.25 76.75±14.05 80.69±5.87

1.0GNN 94.91±2.73 95.97±2.00 95.97±2.27 81.50±9.24 82.12±11.09 81.81±5.67
1.5GNN 94.58±1.25 95.19±2.18 94.95±2.79 82.50±6.39 78.12±5.30 78.50±7.98
2.0GNN 90.46±2.79 90.97±4.22 91.44±2.27 86.06±5.17 69.38±11.47 63.50±8.90
2.5GNN 82.45±3.93 88.24±2.79 84.40±1.98 80.00±10.83 56.62±10.01 52.31±10.58



p-Laplacian Based Graph Neural Networks

Table 8: The results of pGNNs + GCN and pGNNs + JKNet on homophilic benchmark dataset. Averaged accuracy (%) for
20 runs. Best results are outlined in bold and the results within 95% confidence interval of the best results are outlined in
underlined bold.

Method Cora CiteSeer PubMed Computers Photo CS Physics

GCN 76.23±0.79 62.43±0.81 83.72±0.27 84.17±0.59 90.46±0.48 90.33±0.36 94.46±0.08
1.0GNN + GCN 72.37±1.35 60.56±1.59 82.14±0.31 83.75±1.05 90.24±1.12 89.60±0.46 94.59±0.33
1.5GNN + GCN 72.72±1.39 60.23±1.80 82.21±0.22 83.89±0.74 90.00±0.68 89.48±0.45 94.70±0.18
2.0GNN + GCN 72.39±1.55 60.19±1.60 82.24±0.23 83.92±1.09 90.17±0.83 89.60±0.71 94.51±0.39
2.5GNN + GCN 72.85±1.19 59.68±1.85 82.23±0.34 83.69±0.92 90.02±1.09 89.53±0.68 94.58±0.31

JKNet 77.19±0.98 63.32±0.95 82.54±0.43 79.94±2.47 88.29±1.64 89.69±0.66 93.92±0.32
1.0GNN+JKNet 75.67±1.54 60.38±1.65 81.68±0.44 83.19±1.36 89.71±1.05 90.26±0.72 94.27±0.69
1.5GNN+JKNet 76.40±1.59 60.67±1.93 82.42±0.35 82.78±2.09 90.25±1.03 90.76±0.75 94.82±0.34
2.0GNN+JKNet 76.75±1.26 61.05±1.48 82.50±0.53 82.36±2.39 89.31±1.39 90.33±0.63 94.70±0.33
2.5GNN+JKNet 76.48±1.28 60.97±0.97 82.56±1.04 81.45±1.55 89.21±1.10 89.66±0.68 94.29±0.59

Table 9: The results of pGNNs + GCN and pGNNs + JKNet on heterophilic benchmark dataset. Averaged accuracy (%)
for 20 runs. Best results are outlined in bold and the results within 95% confidence interval of the best results are outlined
in underlined bold.

Method Chameleon Squirrel Actor Wisconsin Texas Cornell

GCN 34.54±2.78 25.28±1.55 31.28±2.04 61.93±3.00 56.54±17.02 51.36±4.59
1.0GNN + GCN 48.52±1.89 34.78±1.11 32.37±3.12 68.52±3.75 67.94±12.60 67.81±7.61
1.5GNN + GCN 48.85±2.13 34.61±1.11 32.37±2.48 66.25±3.95 65.62±11.99 64.88±9.19
2.0GNN + GCN 48.71±2.24 35.06±1.18 32.72±2.02 66.34±4.51 65.94±7.63 68.62±6.55
2.5GNN + GCN 49.53±2.19 34.40±1.60 32.40±3.23 67.18±3.50 68.31±9.18 66.06±9.56

JKNet 33.28±3.59 25.82±1.58 29.77±2.61 61.08±3.71 59.65±12.62 55.34±4.43
1.0GNN + JKNet 49.00±2.09 35.56±1.34 40.74±0.98 95.23±2.43 80.25±6.87 78.38±8.14
1.5GNN + JKNet 48.77±2.22 35.98±0.93 40.22±1.27 94.86±2.00 80.38±9.79 72.25±9.83
2.0GNN + JKNet 48.88±1.63 35.77±1.73 40.16±1.31 88.84±2.78 86.12±5.59 74.75±7.81
2.5GNN + JKNet 49.04±1.95 35.78±1.87 40.00±1.12 85.42±3.86 79.06±7.60 76.81±7.66
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F.6. Experimental Results of pGNNs on PPI Dataset for Inductive Learning

Additionally, we conduct comparison experiments of pGNNs against GAT on PPI dataset (Zitnik & Leskovec, 2017) using
the inductive learning settings as in Velickovic et al. (2018) (20 graphs for training, 2 graphs for validation, 2 graphs for
testing). We use three layers of GAT architecture with 256 hidden units, use 1 attention head for GAT (1 head) and 4
attention heads for GAT (4 heads). We use three pGNN layers and a MLP layer as the first layer for pGNNs, set µ = 0.01,
K = 1, and use 256 hidden units for pGNN-256 and 512 hidden units for pGNN-512. The experimental results are reported
in Table 10.

Table 10: Results on PPI datasets. Averaged micro-F1 scores for 10 runs. Best results are outlined in bold.

Method PPI

GAT (1 head) 0.917± 0.041
GAT (4 heads) 0.972± 0.002

1.0GNN-256 0.961± 0.003
1.5GNN-256 0.967± 0.008
2.0GNN-256 0.968± 0.006
2.5GNN-256 0.973± 0.002
1.0GNN-512 0.978± 0.005
1.5GNN-512 0.977± 0.008
2.0GNN-512 0.981± 0.006
2.5GNN-512 0.978± 0.005

From Appendix F.6 we observe that the results of 2.5GNN on PPI slightly better than GAT with 4 attention heads and
other pGNNs are very close to it. Moreover, all results of pGNNs significantly outperform GAT with one attention head.
The results of pGNNs on PPI is impressive. pGNNs have much less parameters than GAT with 4 attention heads while
obtain very completitive performance on PPI. When we use more hidden units, 512 hidden units, pGNNs-512 significantly
outperform GAT, while pGNNs-512 still have less parameters. It illustrates the superior potential of applying pGNNs to
inducting learning on graphs.

F.7. Experimental Results of pGNNs on OGBN arXiv Dataset

Table 11: Results on OGBN arXiv dataset. Average accuracy (%) for 10 runs. Best results are outlined in bold.

Method OGBN arXiv

MLP 55.50± 0.23
GCN 71.74± 0.29
JKNet (GCN-based) 72.19± 0.21
DeepGCN 71.92± 0.16
GCN + residual (6 layers) 72.86± 0.16
GCN + residual (8 layers) + C&S 72.97± 0.22
GCN + residual (8 layers) + C&S v2 73.13± 0.17

1GNN 72.40± 0.19
2GNN 72.45± 0.20
3GNN 72.58± 0.23
1GNN + residual (6 layers) + C&S 72.96± 0.22
2GNN + residual (6 layers) + C&S 73.13± 0.20
3GNN + residual (6 layers) + C&S 73.23± 0.16

Here we present the experimental of pGNNs on OGBN arXiv dataset (Hu et al., 2020). We use the official data split setting
of OGBN arXiv. We use three layers pGNN architecture and 256 hidden units with µ = 0.5, K = 2. We also combine
pGNNs with correct and smooth model (C&S) (Huang et al., 2021) and introduce residual units. The results of MLP, GCN,
JKNet, DeepGCN (Li et al., 2019), GCN with residual units, C&S model are extracted from the leaderboard for OGBN
arXiv. dataset5. Table 11 summaries the results of pGNNs against the baselines.

5https://ogb.stanford.edu/docs/leader nodeprop/#ogbn-arxiv
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We observe from Table 11 that pGNNs outperform MLP, GCN, JKNet, and DeepGCN. The performance of pGNNs can be
further improved by combining it with C&S model and residual units and 3GNN + residual (6 layers) + C&S obtains the
best performance against the baselines.

F.8. Running Time of pGNNs

Tables 12 and 13 report the averaged running time of pGNNs and baselines on homophilic and heterophilic benchmark
datasets, respectively.

Table 12: Efficiency on homophilic benchmark datasests. Averaged running time per epoch (ms) / averaged total running
time (s). OOM denotes out of memory.

Method Cora CiteSeer PubMed Computers Photo CS Physics

MLP 7.7 ms / 5.27s 8.1 ms / 5.37s 7.8 ms / 5.52s 8.8 ms / 5.45s 8.4 ms / 5.34s 10.5 ms / 8.18s 14.6 ms / 12.78s
GCN 82.2 ms / 6.1s 84.2 ms / 6.1s 85 ms / 6.13s 85.2 ms / 7.07s 83.6 ms / 6.08s 85 ms / 9.68s 90 ms / 13.8s
SGC 89.5 ms / 4.96s 74.7 ms / 4.86s 80.6 ms / 5.28s 109 ms / 5.21s 85.9 ms / 4.96s 213.6 ms / 8.01s OOM
GAT 534.8 ms / 13.06s 313.6 ms / 13.36s 314.6 ms / 13.97s 441.3 ms / 24.62s 309.8 ms / 15.96s 454 ms / 21.87s 436.9 ms / 40.9s

JKNet 95.4 ms / 20.07s 101.1 ms / 19.58s 105.4 ms / 20.8s 106.1 ms / 29.72s 97.9 ms / 21.18s 102.7 ms / 24.94s 119.2 ms / 40.83s
APPNP 86.7 ms / 11.6s 86.3 ms / 11.98s 85.5 ms / 11.97s 92.1 ms / 15.75s 86 ms / 12.19s 90.5 ms / 17.36s 99.6 ms / 25.89s

GPRGNN 86.5 ms / 12.42s 195.8 ms / 12.6s 88.6 ms / 12.59s 93.3 ms / 15.98s 86.7 ms / 12.65s 92 ms / 17.8s 217.1 ms / 26.33s
1.0GNN 96 ms / 20.12s 98.1 ms / 19.81s 100.2 ms / 21.74s 151.4 ms / 64.08s 121.3 ms / 34.07s 109.7 ms / 25.03s 122.9 ms / 49.59s
1.5GNN 98.2 ms / 20.19s 97 ms / 20.26s 100.2 ms / 22.6s 140.3 ms / 64.08s 120 ms / 34.22s 112.3 ms / 25.11s 127.9 ms / 49.54s
2.0GNN 98.1 ms / 20.11s 96.3 ms / 19.97s 99.3 ms / 22.17s 141 ms / 64.04s 129.3 ms / 34.14s 104.7 ms / 24.93s 124.6 ms / 49.35s
2.5GNN 96.6 ms / 20.12s 92.9 ms / 20.16s 103 ms / 22.17s 141.6 ms / 64.01s 128.1 ms / 34.22s 110.8 ms / 25.07s 124 ms / 49.39s

Table 13: Efficiency on heterophilic benchmark datasests. Averaged running time per epoch (ms) / averaged total running
time (s).

Method Chameleon Squirrel Actor Wisconsin Texas Cornell

MLP 7.7 ms / 5.29s 8 ms / 5.44s 8.6 ms / 5.4s 7.7 ms / 5.16s 7.9 ms / 5.22s 7.6 ms / 5.19s
GCN 83.4 ms / 6.1s 83.2 ms / 6.2s 90.7 ms / 6.07s 83.5 ms / 5.94s 80.7 ms / 5.96s 87.1 ms / 5.92s
SGC 78.1 ms / 4.93s 110.9 ms / 5.21s 77.1 ms / 4.71s 73.2 ms / 4.52s 74.2 ms / 4.79s 71.3 ms / 4.8s
GAT 374.9 ms / 13.49s 324.2 ms / 17.15s 420 ms / 13.82s 317.5 ms / 12.68s 357.9 ms / 12.38s 383.3 ms / 12.45s

JKNet 102.4 ms / 21.15s 101 ms / 22.84s 97.2 ms / 21.24s 98.5 ms / 21.07s 103.6 ms / 20.92s 102.2 ms / 20.79s
APPNP 87.1 ms / 12.12s 98.8 ms / 12.41s 87.2 ms / 11.81s 84.2 ms / 11.83s 86 ms / 11.9s 83.1 ms / 11.94s

GPRGNN 93 ms / 12.98s 86.1 ms / 13.01s 94.2 ms / 13.01s 84.3 ms / 12.66s 92 ms / 12.64s 89.1 ms / 12.6s
1.0GNN 107.3 ms / 22.43s 116.3 ms / 30.92s 117.8 ms / 23.6s 94.5 ms / 18.47s 92 ms / 18.83s 92.7 ms / 18.97s
1.5GNN 97.2 ms / 22.54s 115 ms / 31.04s 119.2 ms / 23.47s 93.3 ms / 18.64s 90.8 ms / 19.09s 94.9 ms / 18.88s
2.0GNN 98.7 ms / 22.37s 114.8 ms / 31.14s 100.8 ms / 23.73s 92.2 ms / 19.09s 92.5 ms / 18.72s 98 ms / 18.64s
2.5GNN 97.9 ms / 22.38s 115.9 ms / 31.09s 97.3 ms / 23.77s 92.8 ms / 19.03s 91 ms / 18.84s 90.7 ms / 18.83s

F.9. Experimental Results on Benchmark Datasets for 64 Hidden Units

Table 14: Results on heterophilic benchmark datasets for 64 hidden units. Averaged accuracy (%) for 20 runs. Best results
outlined in bold and the results within 95% confidence interval of the best results are outlined in underlined bold.

Method Chameleon Squirrel Actor Wisconsin Texas Cornell

MLP 46.55±0.90 33.83±0.59 38.40±0.76 93.91±2.47 87.51±8.53 86.75±8.22

GCN 34.74±2.62 25.68±1.17 30.86±1.51 65.93±5.47 58.56±13.28 46.81±4.28

SGC 34.57±4.71 24.39±1.54 35.50±2.09 62.87±8.92 50.62±5.60 29.44±14.83

GAT 43.33±1.53 30.07±0.99 33.44±2.45 66.57±4.69 50.69±12.89 42.62±13.37

JKNet 32.69±4.47 27.18±0.76 25.72±2.75 66.57±10.53 43.88±17.10 47.69±3.25

APPNP 35.09±3.18 28.15±0.93 32.28±1.75 66.30±1.60 69.00±4.53 54.88±3.85

GPRGNN 34.65±2.86 28.56±1.35 34.58±1.45 93.70±3.12 86.50±6.04 84.75±8.38

1.0GNN 49.51±1.32 32.67±1.00 40.70±0.88 95.23±1.60 84.12±7.39 82.56±6.97
1.5GNN 49.52±1.15 33.14±1.10 39.82±1.54 94.03±2.26 86.94±6.99 86.89±6.63
2.0GNN 49.19±0.81 33.78±0.87 39.75±1.26 94.49±1.81 87.62±6.64 85.56±7.25
2.5GNN 48.93±0.74 33.31±1.27 39.47±1.20 92.13±2.16 87.25±5.57 80.56±5.28
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Table 15: Results on homophilic benchmark datasets for 64 hidden units. Averaged accuracy (%) for 20 runs. Best results
are outlined in bold and the results within 95% confidence interval of the best results are outlined in underlined bold. OOM
denotes out of memory.

Method Cora CiteSeer PubMed Computers Photo CS Physics

MLP 49.05±0.82 50.67±1.25 80.32±0.40 70.58±0.82 79.44±0.79 89.48±0.50 92.84±0.62

GCN 77.65±0.42 64.72±0.52 84.13±0.12 84.56±0.79 90.16±0.88 91.14±0.10 94.75±0.04

SGC 70.32±1.87 65.77±0.99 76.27±0.94 83.24±0.81 89.43±1.03 91.11±0.10 OOM
GAT 76.97±1.18 61.28±1.62 83.57±0.23 83.84±1.93 90.54±0.56 89.68±0.42 93.91±0.20

JKNet 78.77±0.79 64.62±0.80 82.82±0.16 82.22±1.32 88.43±0.53 90.48±0.13 93.75±0.32

APPNP 79.95±0.72 65.56±0.64 84.00±0.22 83.83±0.78 90.50±0.59 91.90±0.12 94.84±0.08

GPRGNN 78.17±1.31 61.26±2.14 84.54±0.24 83.77±1.06 89.86±0.63 91.34±0.25 94.63±0.26

1.0GNN 77.11±0.39 63.17±0.89 83.14±0.46 82.64±0.98 89.60±0.69 92.53±0.22 94.86±0.24
1.5GNN 78.69±0.43 63.14±0.93 83.97±0.04 84.64±1.42 90.67±0.67 92.93±0.14 94.93±0.12
2.0GNN 79.06±0.41 63.92±1.14 84.24±0.27 84.57±0.96 90.17±0.88 92.74±0.26 95.05±0.09
2.5GNN 79.15±0.39 63.16±1.25 84.88±0.09 83.84±0.71 89.05±0.85 92.31±0.19 94.92±0.10

F.10. Training Curves for p = 1
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Figure 7: The curves of training loss and testing accuracy for p = 1.



p-Laplacian Based Graph Neural Networks

F.11. Visualization Results of Node Embeddings
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Figure 8: Visualization of node embeddings for Cora dataset using t-SNE (van der Maaten & Hinton, 2008)
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Figure 9: Visualization of node embeddings for Computers dataset using t-SNE.
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Figure 10: Visualization of node embeddings for Chameleon dataset using t-SNE.
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Figure 11: Visualization of node embeddings for Wisconsin Dataset using t-SNE.


	Introduction
	Preliminaries and Background
	p-Laplacian based Graph Neural Networks
	p-Laplacian Regularization Framework
	p-Laplacian Message Passing and pGNN Architecture

	Spectral Views of p-Laplacian Message Passing
	Empirical Studies
	Conclusion
	Related Work
	Discussions and Future Work
	Additional Theorems
	the:the3 (Upper-Bounding Risk of pGNN)
	the:the4 (p-Orthogonal Theorem DBLP:journals/ml/LuoHDN10)
	the:the5 (p-Eigen-Decomposition of p)
	the:the7 (Bounds of p-Eigenvalues)

	Proof of Theorems
	Proof of the:the1
	Proof of the:the2
	Proof of the:the6
	Proof of the:the3
	Proof of the:the5
	Proof of the:the7
	Proof of the:prop1

	Dataset Statistics and Hyperparameters
	Illustration of Graph Gradient and Graph Divergence
	Dataset Statistics
	Hyperparameter Settings

	Additional Experiments
	Experimental Results on Homophilic Benchmark Datasets
	Experimental Results of Aggregation Weight Entropy Distribution
	Experimental Results on cSBM
	Experimental Results on Graphs with Noisy Edges
	Experimental Results of Intergrating pGNNs with GCN and JKNet
	Experimental Results of pGNNs on PPI Dataset for Inductive Learning
	Experimental Results of pGNNs on OGBN arXiv Dataset
	Running Time of pGNNs
	Experimental Results on Benchmark Datasets for 64 Hidden Units
	Training Curves for p=1
	Visualization Results of Node Embeddings


