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Abstract
The AutoAttack (AA) has been the most reliable
method to evaluate adversarial robustness when
considerable computational resources are avail-
able. However, the high computational cost (e.g.,
100 times more than that of the project gradient
descent (PGD-20) attack) makes AA infeasible
for practitioners with limited computational re-
sources, and also hinders applications of AA in
the adversarial training (AT). In this paper, we
propose a novel method, minimum-margin (MM)
attack, to fast and reliably evaluate adversarial
robustness. Compared with AA, our method
achieves comparable performance but only costs
3% of the computational time in extensive experi-
ments. The reliability of our method lies in that
we evaluate the quality of adversarial examples
using the margin between two targets that can
precisely identify the most adversarial example.
The computational efficiency of our method lies
in an effective Sequential TArget Ranking Selec-
tion (STARS) method, ensuring that the cost of
the MM attack is independent of the number of
classes. As a better benchmark, the MM attack
opens a new way for evaluating adversarial robust-
ness and provides a feasible and reliable way to
generate high-quality adversarial examples in AT.

1. Introduction
The deep neural network (DNN) has attracted a large num-
ber of researchers from different disciplines such as com-
puter science (Goodfellow et al., 2016; Castelvecchi, 2016;
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Vaswani et al., 2017), physics (DeVries et al., 2018; Huang
et al., 2019; Levine et al., 2019), biology (Maxmen, 2018a;b;
Webb, 2018) and medicine (Hao et al., 2015; Esteva et al.,
2017). The success of DNN mainly lies in its ability to
learn useful high-level features from abundant data (Deng
& Yu, 2014; LeCun et al., 2015). These learned features
have been successfully used to address many difficult tasks.
For example, DNNs can recognize images with high ac-
curacy comparable to human beings (LeCun et al., 1998;
Krizhevsky et al., 2012). In addition, DNNs are also widely
used for speech recognition (Hinton et al., 2012), natural
language processing (Andor et al., 2016), and playing games
(Mnih et al., 2013; Silver et al., 2016).

As the impacts of DNN increase fast, its reliability has
been a key to deploy it in real-world applications (Huang
et al., 2011; Kurakin et al., 2017). Recently, a growing body
of research shows that DNNs are vulnerable to adversar-
ial examples, i.e., test inputs that are modified slightly yet
strategically to cause misclassification (Szegedy et al., 2014;
Nguyen et al., 2015; Kurakin et al., 2017; Carlini & Wagner,
2017a; Finlayson et al., 2019; Wang et al., 2019; Zhang
et al., 2020b;c; Gao et al., 2021; Zhang et al., 2021b). The
existence of such adversarial examples lowers the reliability
of DNNs. Meanwhile, researchers have also been consider-
ing finding a reliable way to evaluate adversarial robustness
of a DNN before deploying it in the real world.

The high-level idea of evaluating adversarial robustness
of a DNN is quite straightforward, i.e., generating adver-
sarial examples and calculating the accuracy of the DNN
on these examples (this kind of accuracy is also known as
adversarial robust accuracy). Szegedy et al. (2014) first
pointed out the existence of adversarial examples and used
a less powerful box-constrained limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method to generate
them. Based on the studies in (Szegedy et al., 2014),
Goodfellow et al. (2015) put forward the fast gradient sign
method (FGSM). One common loss function they used is
cross-entropy (CE) loss, and to maximize the loss function,
FGSM uses its gradient to determine in which direction the
pixel’s intensity should be increased or decreased. Madry
et al. (2018) introduced a simple refinement of the FGSM:
projected gradient descent attack (PGD), where instead of
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(a) Reliability ranking
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(b) Computational time

Figure 1. Comparison of reliability and computational cost among baselines and different versions of MM attack. MM3, MM5 and MM+
are three versions of our MM attack. The subfigure (a) shows the (sorted) attack success rates of different attacks. The higher the success
rate, the stronger the attack. The subfigure (b) shows the computational cost of these attacks. The less time, the better the attack. AA is an
ensemble of APGD-CE (A-CE for short), APGD-DLR (A-DLR for short), FAB and Square. T-AA considers each target for APGD-DLR
and FAB in AA, and is thus more time-consuming. Compared with AA (or T-AA), our MM3 achieves comparable performance but only
costs 3% (or 2%) of the computational time. The model structure we used is ResNet-18, which follows the adversarial training of (Madry
et al., 2018) on CIFAR-10.

taking a single step of size ϵ in the direction of the gradient
sign, multiple smaller steps are taken.

Existing Evaluation Methods. PGD was an effective
method to evaluate adversarial robustness of a standard-
trained DNN (Madry et al., 2018) since adversarial robust
accuracy of a standard-trained DNN is always very low af-
ter using PGD. Nevertheless, the existence of adversarial
examples has already inspired research on training a robust
DNN to defend against them, which means that a standard-
trained DNN is not the only DNN we might meet and we
need to evaluate adversarial robustness of a robust DNN
as well. Unfortunately, as observed by (Carlini & Wag-
ner, 2017b; Croce & Hein, 2020), PGD has limitations to
reliably evaluate adversarial robustness of a robust DNN.

Carlini & Wagner (2017b) observed the phenomenon of
gradient vanishing in the widely used CE loss for the poten-
tial failure of L-BFGS, FGSM and PGD, and replaced the
CE loss with many possible choices. Croce & Hein (2020)
claimed that the fixed step size and the single attack used
are the causes of poor evaluations, and they put forward
an ensemble of diverse attacks (consisting of APGD-CE,
APGD-DLR, FAB and Square) called AutoAttack (AA) to
test adversarial robustness. Until now, AA (Croce & Hein,
2020) has been regarded as the most reliable method and
is widely used in the evaluation of adversarial robustness
(Sehwag et al., 2021; Rade & Moosavi-Dezfooli, 2021; Re-
buffi et al., 2021; Andriushchenko & Flammarion, 2020;
Gowal et al., 2020; Sridhar et al., 2021; Wong et al., 2020;
Engstrom et al., 2019; Carmon et al., 2019; Wang et al.,
2020; Wu et al., 2020; Zhang et al., 2021a).

However, though AA performs well in reliability, it needs
a large amount of computational time. As shown in Fig-
ure 1(b), for evaluating adversarial robustness of a ResNet-

18 model on CIFAR-10 (following the adversarial training
in (Madry et al., 2018)), the computational cost of AA (or
T-AA) is 65 times (or 100 times) more than PGD-20 used in
(Madry et al., 2018), where T-AA is more time-consuming
since it considers each target for APGD-DLR and FAB
in AA. Worse still, in the worst case as analyzed in Ap-
pendix A, the computational cost of AA (or T-AA) is even
109 times (or 440 times) more than PGD-20.

A Dilemma Between Reliability and Computational Effi-
ciency. The high computational cost makes AA infeasible
when considerable computational resources are unavailable.
Unfortunately, such scenarios are common in the real world,
e.g., as recommended by (Rice et al., 2020), practitioners
need real-time evaluation at each epoch of the adversarial
training process to find the robust model with “the best
checkpoint”, and in this case, such high computational cost
is unacceptable. Similarly, since a large number of adver-
sarial examples need to be generated at each epoch during
adversarial training (AT), such high computational cost hin-
ders applications of AA in AT. In consideration of the high
reliability but low computational efficiency of AA, and the
high computational efficiency but low reliability of PGD, we
seem to encounter a dilemma: we have to give up one factor
(reliability or computational efficiency) when evaluating the
adversarial robustness. (Croce & Hein, 2020).

Our Reliable and Fast Solution. In this paper, we aim to
achieve reliability and computational efficiency simultane-
ously. For reliability, we evaluate the quality of adversarial
examples using the margin between two targets for precisely
identifying the most adversarial example. For computational
efficiency, we propose an effective Sequential TArget Rank-
ing Selection (STARS) method to ensure that the cost of the
MM attack is independent of the number of classes.
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Figure 2. Minimum margin of probability. p denotes the predicted probability, py and pt are the predicted probability on the true label y
and a targeted false label t. The gray shape is the image of the adversarial variants x′ within the bounded perturbation ball Bϵ[x] under the
mapping of the network onto (py, pt); the orange area (pt > py) indicates the region where the adversarial variants are misclassified, or
to say a successful attack, while the blue area (pt < py) indicates the region where the adversarial variants do not attack successfully.

Reliability. To achieve reliability, we investigate the reasons
behind the failure of PGD. We identify that CE loss, which
is based on the probability of the true label py, is not an
appropriate measure to the quality of adversarial examples.
In Figure 2, we provide a simple demonstration to this issue,
in which we consider one targeted false label t. As we can
see, it is much more reasonable to measure the quality of
adversarial examples in terms of the margin of probability
py − pt. The most adversarial example in Figure 2 then cor-
responds to the one with the minimum margin of probability
instead of the minimum probability py . Detailed study of the
rationality of minimum-magrin is provided in Section 3.1.
Since the search space Bϵ of high dimensional images is
large (grey area), previous studies use gradient descent meth-
ods to generate the adversarial example that maximizes the
loss function (Goodfellow et al., 2015; Carlini & Wagner,
2017b; Madry et al., 2018).

Though it looks promising to generate adversarial exam-
ples via minimizing the margin of probability, we find that
there are still two issues: (a) The probability p is a kind
of rescaling method to the logits z. Croce & Hein (2020)
heuristically rescaled the logits z using their proposed dif-
ference of logits ratio (DLR) (defined at Eq.(4)). We in-
vestigate the performance of different rescaling methods
in Section 3.1. We numerically find that the method using
natural logits zy−zt (the meaning of margin) with no rescal-
ing performs the best; (b) For the problem of multi-class
and untargeted attacks, the margin is then zy −maxi ̸=y zi.
However, −(zy−maxi ̸=y zi) is not an appropriate loss func-
tion, because the max function only considers one target at
the current step while those unconsidered targets may lead
to more adversarial examples. Hence, the reliable method
is to minimize zy − zt for each t ̸= y and take the most
adversarial one (Croce & Hein, 2020).

Computational Efficiency. Although running the attack for
each false target is reliable, the computational cost depends
on the number of classes. For datasets with a large num-
ber of classes, e.g., CIFAR-100 (100 classes) and Imagenet

(1,000 classes), the computational cost will increase accord-
ingly. To achieve computational efficiency, we propose a
STARS method to make the computational time indepen-
dent of the number of classes. STARS consists of two
strategies that pre-selecting targets and ranking sequential
attack. STARS method only selects a few highest targets and
runs a sequential attack. Experiments show that, benefited
from STARS, computational time can be saved 76.36% on
CIFAR-10, 98.51% on CIFAR-100 and 77.78% on SVHN.

By taking all the above factors into consideration, we pro-
pose a novel method, the minimum-margin (MM) attack. Its
detailed realization is provided in Section 3. We present
extensive experimental results in Section 4, which verify
that our MM attack can fast and reliably evaluate adversarial
robustness. In particular, MM attack achieves comparable
performance but only costs 3% of the computational time
compared with the current benchmark AA.

The main contributions of our work are as follows: our
conceptual contribution lies in using margin to identify the
“most adversarial example”; our technical contribution on
reliability lies in using adaptive step size and searching the
“most adversarial example” with minimum margin; third,
our technical contribution on computational efficiency lies
in using STARS method to achieve the targets pre-selected
and ranking sequential strategy. Furthermore, as a better
benchmark compared with AA, our proposed MM attack
provides a new direction of evaluating adversarial robustness
and contributes a feasible and reliable method to generate
high-quality adversarial examples in adversarial training.

2. Preliminary
Neural Networks. A neural network is a function fθ :
Rn → [0, 1]K , where θ is the parameters contained in fθ
and K is normally the number of classes. The output of
the network is computed using the softmax function, which
ensures that the output is a valid probability vector. Namely,
given an input x ∈ Rn, fθ(x) = [p1, . . . , pK ] = p where
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i=1 pi = 1 and pi is the probability that input x belongs

to class i. Before the softmax function, the output of the net-
work is called logits z, i.e., p = softmax(z). The classifier
assigns the label y = argmaxi f(x)i.

Projected Gradient Descent Attack (PGD). Madry et al.
(2018) proposed the projected gradient descent (PGD) at-
tack to generate adversarial examples to mislead a well-
trained classifier fθ. Specifically, they start with setting
x(0) = x, and then in each iteration:

x′
(t+1) = ΠBϵ[x(0)](x

′
(t) + α sign(∇x′

(t)
ℓ(fθ(x

′
(t)), y)),

t = 0, 1, 2, . . ., where

Bϵ[x] = {x′ | d∞(x, x′) ≤ ϵ},

is the closed ball of radius ϵ > 0 centered at x; the x(0)

refers to the starting point which corresponds to the natural
example x (or the natural example perturbed by a small
Gaussian or uniformly random noise that x+ δ); x(t) is the
adversarial example at step t; ΠBϵ[x(0)](·) is the projection
function that projects the adversarial variant back to the
ϵ-ball centered at x(0) if necessary; the L∞ distance metric
is d∞(x, x′) = ∥x−x′∥∞; and ℓ is cross entropy (CE) loss:

CE(x, y) = − log(py) = −zy + log

 K∑
j=1

ezj

, (1)

where pi = ezi/
∑K

j=1 e
zj , i = 1, ...,K, and z is the logits

of the model outputs.

Carlini and Wagner attack (CW). Carlini & Wagner
(2017b) observed the phenomenon of gradient vanishing
in the widely used CE loss for potential failure. The gradi-
ent w.r.t x in Eq. (1) is given by

∇xCE(x, y) = (−1 + py)∇xzy +
∑
i ̸=j

pi∇xzi. (2)

If py ≈ 1 and consequently pi ≈ 0 for i ̸= y, then
∇xCE(x, y) ≈ 0 in Eq. (2). This gradient vanishing is-
sue can lead to the failure of attacks. Motivated by this
phenomenon, Carlini & Wagner (2017b) replaced the CE
loss with several possible choices. Among these choices,
the widely used one for the untargeted attack is

CW(x, y) = −zy(x
′) + max

i ̸=y
zi(x

′). (3)

AutoAttack (AA). Croce & Hein (2020) claimed that the
fixed step size and the lack of diversity in attack methods
are the main reasons for the limitations of previous studies.
Motivated by the line search method (Grippo et al., 1986),
they put forward auto PGD (APGD) attack. They showed
that using adaptive step size significantly improves the ad-
versarial evaluation compared with using fixed step size. For

the loss function at Eq. (3), they claim that scale invariance
w.r.t. z is necessary, and they proposed an alternative loss:

DLR(x, y) = −zy(x
′)−maxi̸=y zi(x

′)

zπ1
(x′)− zπ3

(x′)
, (4)

where π is the permutation of the components of z in de-
creasing order. For inducing the misclassification into a
target class t, they propose another alternative loss function:

Targeted-DLR(x, y) = − zy(x
′)− zt(x

′)

zπ1(x
′)− 1

2 · (zπ3(x
′) + zπ4(x

′))
.

(5)

For the lack of diversity, they claimed that diverse attacks
are beneficial for reliability, and then they put forward an
ensemble of various parameter-free attacks called AutoAt-
tack (AA) to test adversarial robustness, where AA contains
APGD-CE, APGD-DLR, FAB and Square. Targeted Au-
toAttack (T-AA) replaces APGD-DLR with the targeted
APGD-DLR, and replaces FAB with targeted FAB.

3. The Realization of MM Attack
In this section, we discuss the realization of our MM Attack.
In Section 3.1, we verify the rationality of using minimum
margin as the loss function and discuss the influence of
different logits rescaling methods on robustness. In Sec-
tion 3.2, we propose an effective STARS method to improve
computational efficiency. In Section 3.3, we provide the
detailed descriptions of MM attack.

3.1. The Rationality of Minimum Margin

To understand the rationality of minimum margin, we first
look into the situation where no adversarial attack can suc-
ceed. Then we show that the formulation of minimum
margin is naturally derived from such a situation. We
say that a classifier f is completely robust if ∀x′ ∈ Bϵ[x],
argmaxi f(x

′)i = argmaxi f(x)i. The following condi-
tion is necessary and sufficient to the complete robustness:

Condition 1. Given a natural example x with its true label
y, the K-class classifier f satisfies

∀x′ ∈ Bϵ[x], zy(x
′)−max

i ̸=y
zi(x

′) ≥ 0, (6)

where Bϵ[x] = {x′ | d∞(x, x′) ≤ ϵ}; zy(x
′) = f(x′)y;

zi(x
′) = f(x′)i.

According to this condition, to reliably evaluate the com-
plete robustness, the adversarial attacks should find the ad-
versarial examples with minimum zy(x

′)−maxi ̸=y zi(x
′),

i.e., the most non-robust data point. Hence, we define the
most adversarial example:
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Table 1. Attack success rate (%) of different loss functions. Following (Madry et al., 2018), the attack setting is PGD-20.

Attack Loss function CIFAR-10 Diff. CIFAR-100 Diff. SVHN Diff. Tiny-Imagenet Diff.

PGD − log(py) 48.27 -3.09 73.60 -2.92 41.89 -5.67 78.78 -4.19

CW −zy(x
′) + maxi̸=y zi(x

′) 49.13 -2.23 74.55 -1.97 45.08 -2.48 81.19 -1.78

MM −zy + zt 51.36 0.00 76.52 0.00 47.56 0.00 82.97 0.00

Definition 1 (The most adversarial example). Given a nat-
ural example x with its true label y, the most adversarial
example x∗ within Bϵ[x] is defined as:

∀x′ ∈ Bϵ[x], x
∗ = argmax

x′
−(zy(x

′)−max
i ̸=y

zi(x
′)), (7)

where Bϵ[x] = {x′ | d∞(x, x′) ≤ ϵ} is the closed ball of
radius ϵ > 0 centered at x; zy(x

′) = f(x′)y; zi(x
′) =

f(x′)i.

Equation 7 indicates that we should replace the CE loss in
Eq. (1) with −(zy(x

′) − maxi ̸=y zi(x
′)) as the loss func-

tion in adversarial attacks. However, as mentioned before,
−(zy−maxi ̸=y zi) in Eq. (3) is not an appropriate loss func-
tion since it only focuses on the current step. The reliable
method is to minimize zy−zt for each target t ̸= y and take
the most adversarial one. To verify the rationality of mini-
mum margin, we conduct experiments on different datasets
with −(zy − zt) being the loss function (MM). In Table 1,
MM performs a more reliable evaluation than PGD and CW.
Although Gowal et al. (2019) proposed such a surrogate
multi-target loss on the basis of PGD, due to the limitations
of PGD, they found that in some examples, the attack’s
performance is worse than CW. The relatively poor perfor-
mance (Gowal et al., 2019) failed to attract attention of later
researchers. Nowadays, AutoAttack is widely regarded as
the most authoritative evaluation of adversarial robustness.
In the current mainstream of the field, researchers are rec-
ommended to use DLR loss to achieve better attack success
rate and to use an ensemble of various attacks.

The comparison with Targeted-DLR. Targeted-DLR
heuristically rescales the logits z in Eq. (5) (Croce & Hein,
2020). For the logit of true target zy and a false target zt, the
relative magnitude of zy and zt is constant under different
rescaling methods. However, though the rescaling meth-
ods preserve the sign of zy − zt, they may lead to different
adversarial variants. Below, we conduct experiments to in-
vestigate the difference of using different rescaling methods.

The experimental setting follows (Madry et al., 2018), and
we replace the CE loss with seven different logits rescaling
methods. In Table 2, the successful set denotes the number
of examples that can be attacked successfully in the test
set of CIFAR-10 (10, 000 examples). As shown in Table 2,
inappropriate logits rescaling methods (e.g., Targeted-DLR

Algorithm 1 MM Attack
1: Input: natural data x, true label y, set of false labels C, model

f , loss function ℓMM , maximum number of PGD steps N ,
perturbation bound ϵ, initial step size α, the number of classes
K, targets selection number Ks, checkpoints set W ;

2: Output: adversarial data x′;
3: while Ks > 0 do
4: x′

0 ← x;
5: x′

max ← x;
6: fmax ← f(x′

0);
7: c = argmaxi∈C f(x)i;
8: for k = 0 to N − 1 do
9: x′

k+1 ← ΠBϵ[x]

(
x′
k + αsign(∇x′

k
ℓMM (f(x′

k), y, c)
)
;

10: if f(x′
k+1) > fmax then

11: x′
max ← x′

k+1;
12: fmax ← f(x′

k+1);
13: end if
14: if k ∈W and (Condition 2 or Condition 3) then
15: α← α/2;
16: x′

k+1 ← x′
max;

17: end if
18: end for
19: C ← C \ {c};
20: if argmaxi∈C f(x′)i ̸= y then
21: Ks ← 0;
22: end if
23: Ks ← Ks − 1;
24: end while

in AA) reduce the reliability, and the method using natu-
ral logits (no rescaling) performs the best among the seven
methods. The results motivate us to use it as the loss func-
tion. Note we do not deny that there could be a better
rescaling method, but still, a reasonably good result can be
obtained by no rescaling (natural logits in Table 2).

We also investigate the difference among different success-
ful sets. The non-empty difference sets A ∪ Bi − A and
A ∪ Bi − Bi in Table 2 suggest that diverse logits rescal-
ings can be considered when considerable computational
resources are available, we analyze it in Appendix C.

3.2. Sequential TArget Ranking Selection (STARS)

As mentioned in the introduction, for multi-class and untar-
geted attacks, the reliable method is to minimize the loss
function −(zy − zt) for each target t ̸= y, and then take
the most adversarial one (Gowal et al., 2019; Croce & Hein,
2020). Since the computational cost of such a solution de-
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Table 2. The successful attack set of different rescaling methods on CIFAR-10. We compare the degree of overlap of the successful
set between 6 different rescaling methods (ID: Bi, i = 1, 2, ..., 6) and no rescaling methods (ID: A). A ∪Bi −A denotes the number
of instances can be attacked successfully by method Bi but failed by method A. A ∪ Bi − Bi denotes the number of instances can
be attacked successfully by method A but failed by method Bi. For 6 different rescaling methods, larger A ∪ Bi − A and smaller
A ∪Bi −Bi mean better rescaling methods. Following (Madry et al., 2018), the attack setting is PGD-20.

ID Rescaling method Formulation Set size Ranking diff. A ∪ Bi − A A ∪ Bi − Bi

A Natural logits −(zy − zt) 5219 1 0 / /

B1 Softmax − e
zy−ezt∑K
i=0

ezi
5172 2 -47 4 51

B2 Max − zy−zt
zy

5165 =3 -54 5 59

B3 Sum − zy−zt
zy+zt

5165 =3 -54 5 59

B4 Min-Max − zy−zt
zπ1

−zπ10
5121 5 -98 3 101

B5 DLR − zy−zt

zπ1− 1
2
·(zπ3+zπ4 )

5078 6 -141 2 143

B6 Sigmoid −( e
zy

1+e
zy − ezt

1+ezt
) 4820 7 -399 1 400

pends on the number of classes, it is unacceptable for prac-
titioners with limited computational resources. Here, we
propose a fast solution STARS which saves a large amount
of running time with little-to-no performance lost. STARS
consists of two strategies: pre-selecting targets and ranking
sequential attack.

Pre-selecting-Targets Strategy. Given a natural input x
and a K-class classifier f , denoting the predicted probabil-
ity as f(x)i for a false label i, a natural intuition is that the
false target i with a higher value of f(x)i is more likely to
lead to a successful attack. To verify this intuition, in Fig-
ure 3, we compare the performance between only selecting
the false targets with Ks highest predicted probabilities and
selecting all the K − 1 false targets. The results show that
only selecting Ks (e.g., Ks = 3) highest targets achieves
comparable performance. Note that the strategy is men-
tioned in (Gowal et al., 2019) but has a poor performance
limited by the used attack with fixed step size. For the rank-
ing of predicted probability f(x)i, we also investigate the
difference of replacing the natural input x with adversarial
examples in Appendix D, which shows that the replacement
only has limited improvements. For the sake of efficiency,
we recommend to use the ranking of f(x)i of the natural
input x, which does not need extra computation.

Ranking-Sequential-Attack Strategy. This strategy aims
to perform a sequential attack based on the ranking of pre-
dicted probability on false targets. First, consider the false
target i with the highest predicted probability f(x)i; if the
attack succeeds, then we need to terminate attacks on other
targets; otherwise, we need to continue considering the false
target with the second highest predicted probability. The
sequential attack strategy is simple and effective for saving
computational time in the multi-target problem.

3.3. Minimum-Margin Attack

With the above strategies, we summarize our scheme of
MM attack in Algorithm 1. We follow the setting of the
adaptive step size selection in (Croce & Hein, 2020) and
specify checkpoints W = {w0 = 0, ..., wn} at which the
MM attack decides whether to halve the current step size.
The two conditions in Algorithm 1 are:

Condition 2.
wj−1∑

i=wj−1

1f(x′
i+1)>f(x′

i)
< β · (wj − wj−1).

Condition 3. αwj−1 ≡ αwj and fwj−1
max ≡ fwj

max.

∑wj−1
i=wj−1

1f(x′
i+1)>f(x′

i)
counts how many cases since wj−1

the update step has been successful in increasing f , to de-
termine whether

∑wj−1
i=wj−1

1f(x′
i+1)>f(x′

i)
is less than a frac-

tion β of the total update steps wj −wj−1. The β is a hyper-
parameter in (0,1), and following (Croce & Hein, 2020), we
use β = 0.75. α is the initial step size in Algorithm 1.

According to different choices of Ks, we denote MM3 (or
MM5) as the MM attack with Ks = 3 (or Ks = 5). Our
experiments show that with the help of STARS method,
MM3 attack saves 76.36% of the computational time on
CIFAR-10, 98.51% on CIFAR-100 and 77.78% on SVHN.

For one thing, we are the first to propose searching the
most adversarial example with minimum margin, combining
the loss function of MM attack with adaptive step size to
achieve the proposal is new. Although some of components
exist in previous research (Carlini & Wagner, 2017b; Gowal
et al., 2019; Croce & Hein, 2020), the existence is not the
most important and doesn’t degrade our novelty about how
best to combine and use existing methods, and we provide
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Figure 3. Reliability and computational time of different selection number. Regarding the performance for all targets as benchmarks,
as shown in the subfigure (a), (b) and (c), pre-selecting 3 (or 5) targets (the first strategy in STARS) can achieve 99.13% (or 99.78%)
reliability on CIFAR-10, 99.49% (or 99.82%) reliability on CIFAR-100; 98.78% (or 99.67%) reliability on SVHN; as shown in the
subfigure (d), (e) and (f), pre-selecting 3 (or 5) targets only costs 33.58% (or 55.72%) computational time on CIFAR-10, 3.11% (or 5.07%)
computational time on CIFAR-100; 33.33% (or 55.49%) computational time on SVHN.

clear evaluation and analysis why similar methods fail in
previous works but can succeed in MM attack. For another,
our STARS method consists of two novel strategies. Apart
from the pre-selecting-targets strategy, we are the first to
propose the sequential attack strategy which is simple and
effective for saving computational time.

4. Experiments
Datasets. We conducted experiments on CIFAR-10, SVHN
and CIFAR-100. We consider L∞-norm bounded perturba-
tion that ||x̃ − x||∞ ≤ ϵ in both training and evaluations.
The images of all datasets are normalized into [0,1].

Baselines. We evaluate 3 versions of our MM attack and
compare them with 8 baselines. MM3 (or MM5) is the
version of MM attack with maximum step number K = 20
and targets selection number Ks = 3 (or Ks = 5); MM+
is the version of MM attack with maximum step number
K = 100 and targets selection number Ks = 9. Baselines
consist of PGD-20 (PGD) (Madry et al., 2018), CW-20
(CW) (Carlini & Wagner, 2017b), APGD-CE-100 (A-CE),
APGD-DLR-100 (A-DLR), FAB, Square, AutoAttack (AA)
and Targeted-AutoAttack (T-AA) (Croce & Hein, 2020).

Experimental Setup. We verify our methods on the
ResNet-18 (He et al., 2016) and the Wide-ResNet-34 (WRN-
34) (Zagoruyko & Komodakis, 2016) using three benchmark
datasets: CIFAR-10, CIFAR-100, SVHN. The adversarial
training (AT) method follows Madry et al. (2018). The
training setup follows previous works (Madry et al., 2018;
Zhang et al., 2019) that all networks are trained for 100
epochs using SGD with 0.9 momentum. The initial learn-
ing rate is 0.1 (0.01 for SVHN), and is divided by 10 at
epoch 60 and 90, respectively. The weight decay is 0.0002
(0.0035 for SVHN). The previous work (Rice et al., 2020)
observed that overfitting in robust adversarial training hurts
test set performance. Thus, following Rice et al. (2020),
we compare different methods based on the performance
of the best checkpoint model (results at epoch 60). For
generating the adversarial data for updating the network,
we set the L∞-norm bounded perturbation ϵtrain = 8/255;
the maximum number of PGD steps is K = 10; step size
α = ϵtrain/10. In testing, unless otherwise specified, we
set L∞-norm bounded perturbation ϵtest = 8/255.

For PGD and CW, we follow the setting in (Zhang et al.,
2020a): the maximum number of steps K = 20, and the
step size α = ϵ/4. For APGD-CE, APGD-DLR, FAB and
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Figure 4. Comparison of reliability and computational cost. We compare three versions of our MM attack (MM3, MM5 and MM+
mentioned in Section 4) with 8 baselines. In subfigure (a), (c) and (e), the Y-axis is the accuracy of the attacked model, which means that
the lower the accuracy, the stronger the attack (or to say the better evaluation). In subfigure (b), (d) and (f), the Y-axis is computational
time, which means the less the time, the higher the computational efficiency.

their corresponding targeted version, we follow the setting
in (Croce & Hein, 2020): the maximum number of steps
K = 100. There is a random start in training and testing,
i.e., uniformly random perturbations ([−ϵtrain,+ϵtrain]
and [−ϵtest,+ϵtest]) are added to natural instances.

Performance Evaluation. In Figure 1 and Figure 4, we
compare our proposed MM attack with 10 baselines. We
report the performance of our MM attack and all baselines
on CIFAR-10, CIFAR-100, SVHN with the model structure
chosen as ResNet-18. Following Madry et al. (2018), the
threat model is trained by PGD-10. As shown in Figure 1

and Figure 4, first, our MM attack can perform better than
any single attack of PGD, CW, A-DLR, A-CE and FAB;
second, compared with the ensemble of diverse attacks AA
and T-AA, our MM attack achieves comparable performance
but only incurs a very small amount of computational time.

In Appendix E, experiments on the large-capacity network
WRN-34 are provided. Besides the defense by Madry et al.
(2018), we conduct extensive experiments between our MM
attack with baselines on 12 defenses of RobustBench in
Figure 5, Figure 6 and Figure 7 (Appendix F) (Sehwag
et al., 2021; Rade & Moosavi-Dezfooli, 2021; Rebuffi et al.,
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Table 3. Test accuracy (%) of adversarial training. Robust test accuracy (%) of MM3-F10 (ours), MM5-F20 (ours), MM3 (ours) and
baselines (PGD, CW) on CIFAR-10. Diff. represents the difference between the current result and the optimal result in the row. The
model structure of all methods is ResNet-18. Bold values represent the highest accuracy in each row.

Methods PGD Diff. CW Diff. MM3-F10 Diff. MM3-F20 Diff. MM3 Diff.

PGD (Test) 51.14 -4.10 51.47 -3.77 54.96 -0.28 55.24 0.00 55.04 -0.20

CW (Test) 49.95 -1.89 53.26 0.00 51.18 -2.08 51.16 -2.10 51.84 -1.42

A-CE (Test) 48.58 -3.92 48.16 -4.34 51.55 -0.95 52.50 0.00 52.22 -0.28

A-DLR (Test) 48.85 -1.44 52.76 0.00 49.78 -2.98 49.88 -2.88 50.29 -2.47

FAB (Test) 47.28 -1.22 47.13 -1.37 47.83 -0.67 48.28 -0.22 48.50 -0.00

Square (Test) 54.46 -0.66 55.32 0.00 54.80 -0.52 54.83 -0.49 55.12 -0.20

AA (Test) 46.43 -1.85 46.36 -1.92 47.62 -0.66 47.84 -0.44 48.28 -0.00

T-AA (Test) 46.12 -0.97 45.26 -1.83 46.39 -0.70 46.73 -0.36 47.09 -0.00

MM3 (Test) 46.69 -1.17 46.77 -1.09 47.20 -0.66 47.48 -0.38 47.86 -0.00

MM9 (Test) 46.21 -0.95 45.36 -1.80 46.49 -0.67 46.82 -0.34 47.16 -0.00

MM+ (Test) 46.12 -0.90 45.22 -1.80 46.39 -0.63 46.68 -0.34 47.02 -0.00

2021; Andriushchenko & Flammarion, 2020; Gowal et al.,
2020; Sridhar et al., 2021; Wong et al., 2020; Engstrom
et al., 2019; Carmon et al., 2019; Wang et al., 2020; Wu
et al., 2020; Zhang et al., 2021a). For L2-norm bounded
perturbation that ||x̃ − x||2 ≤ ϵ, we also compare the per-
formance on the 6 defenses of RobustBench in Figure 8
and Figure 9 (Appendix F) (Sehwag et al., 2021; Rade &
Moosavi-Dezfooli, 2021; Rice et al., 2020; Rebuffi et al.,
2021; Engstrom et al., 2019; Augustin et al., 2020). We
test MM attack and all baselines on the well-trained models
which are available for download in Robustbench. Exper-
imental results verify the effectiveness of MM attack on
diverse trained model in RobustBench. To the best of our
knowledge, our MM attack is current SOTA benchmark,
which provides a new direction of evaluating adversarial
robustness. The code of our MM attack is available at
github.com/Sjtubrian/MM-attack.

Adversarial Training with MM Attack. By injecting ad-
versarial examples into the training data, adversarial train-
ing (AT) methods seek to train an adversarial-robust deep
neural network whose predictions are locally invariant in a
small neighborhood of its inputs. Existing empirical defense
methods formulate the adversarial training as a min-max
optimization problem (Madry et al., 2018). Since a large
number of adversarial examples need to be generated dur-
ing training, practitioners pay great attention to the time
cost of adversarial example generation. Compared with AA,
MM attack contributes a feasible and reliable method to
generate high-quality adversarial examples in AT. Table 3
in Appendix G reports the performance. MM3-F10 (MM3-
F20) denotes AT using adversarial examples generated by

MM attack with 10 (20) fixed steps. MM3 denotes AT us-
ing adversarial examples generated by MM attack with 20
adaptive steps. We choose 11 testing methods to evaluate
the robustness. As shown in Table 3 (Appendix G), by
replacing PGD-generated adversarial examples with MM-
attack-generated adversarial examples, the robustness of AT
model is significantly improved.

5. Conclusion
In this work, we proposed MM attack, which can reliably
and efficiently evaluate adversarial robustness. For its relia-
bility, we identified minimum margin as the key evaluation
criterion for the most adversarial example. For its computa-
tional efficiency, we proposed an effective STARS method
to ensure that its computational time is independent of the
number of classes. Our experiments showed that MM at-
tack achieves comparable performance compared with AA,
but only costs 3% of the computational time. Its reliability
and efficiency further allow us to extend MM attack into
AT, which significantly improves the quality of adversarial
examples in AT and thus boosts the performance of AT.
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A. The Computational Time in the Worst Case
In this section, we discuss the computational time in the worst case. According to their attack mechanism as an ensemble of
diverse attacks, AA and T-AA consider one attack first. If the attack succeeds, stop other attacks on the current example; else,
continue to consider the next attack in the ensemble. According to the strategy of our STARS method, MM attack considers
the false target with the largest predicted probability first, if the attack succeeds, stop attacks on other false targets; else,
continue to consider the next target in the ranking of the predicted probability. The computational time of these methods is
influenced by different datasets and models. Hence, in the worst case that all attacks inside fail to succeed, the computational
time is the sum of the individual time of each attack. Hence, the computational cost of AA (or T-AA) is 109 times (or 440
times ) more than PGD, and 34 times (or 139 times) more than MM3 in this case.

B. The Realization of Adversarial Training of MM Attack
We summarize the adversarial training of MM Attack in Algorithm 2. We use MM3 attack to generate adversarial examples,
and the computational time is about 2 times as much as PGD (Madry et al., 2018), which can be acceptable for most
practitioners.

C. Potential Benefits of Diverse Rescalings
We investigate the difference among different successful sets of seven rescaling methods mentioned above. In Table 2, the
setting follows (Madry et al., 2018) (with 20 fixed steps). The non-empty difference sets A ∪ Bi − A and A ∪ Bi − Bi

suggest that diverse rescaling methods can complement each other. Hence, when considerable computational resources are
available, we recommend practitioners to consider diverse logits rescaling on a strong attack (e.g., our MM attack) rather
than diverse weak attacks. Note that we do not argue that diverse weak attacks is unnecessary but rather that when a reliable
enough attack exists, most relatively weak attacks have limited benefits other than increased computational cost.

D. The Replacement of Natural Data for the Ranking in STARS
In our STARS method, we also investigate the difference of replacing the natural input x with adversarial examples. Table 4
shows that the replacement has limited improvements.

E. Detailed Experimental Results
To verify the rationality of minimum margin, we conduct experiments on different step size, different step number and
different Bϵ[x] in Table 5 and Table 6. We compare the reliability and the computational time between MM attacks and
baselines. In Table 7 and Table 8, unless specified, the model structure is ResNet-18. The experiments verify that our MM
attack achieves comparable performance but only incurs a very small amount of computational time.

F. Experimental Results on Diverse Trained Model in RobustBench
We conduct extensive experiments between our MM attack with baselines on 12 defenses of RobustBench in Figure 5,
Figure 6 and Figure 7 (Appendix F) (Sehwag et al., 2021; Rade & Moosavi-Dezfooli, 2021; Rebuffi et al., 2021; An-
driushchenko & Flammarion, 2020; Gowal et al., 2020; Sridhar et al., 2021; Wong et al., 2020; Engstrom et al., 2019;
Carmon et al., 2019; Wang et al., 2020; Wu et al., 2020; Zhang et al., 2021a). For L2-norm bounded perturbation that
||x̃− x||2 ≤ ϵ, we also compare the performance on the 6 defenses of RobustBench in Figure 8 and Figure 9 (Sehwag et al.,
2021; Rade & Moosavi-Dezfooli, 2021; Rice et al., 2020; Rebuffi et al., 2021; Engstrom et al., 2019; Augustin et al., 2020).
Experimental results verify the effectiveness of MM attack on diverse trained model in RobustBench.

G. Experimental Details of Adversarial Training
We choose 11 testing methods to evaluate the robustness of MM attack-based AT. Table 3 reports the performance. MM3-F10
(MM3-F20) denotes AT using adversarial examples generated by MM attack with 10 (20) fixed steps. MM3 denotes AT using
adversarial examples generated by MM attack with 20 adaptive steps. As shown in Table 3, by replacing PGD-generated
adversarial examples with MM-attack-generated adversarial examples, the robustness of AT model is significantly improved.
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Algorithm 2 Adversarial Training of MM attack.
1: Input: network architecture f parametrized by θ, training dataset S, loss function l, learning rate η, number of epochs T , batch size

n;
2: Output: Adversarial robust network fθ;
3: for epoch = 1, 2, . . . , T do
4: for mini-batch = 1,2,. . . ,N do
5: Sample a mini-batch {(xi, yi)}ni=1 from S;
6: for i = 1, 2, . . . , n do
7: Obtain adversarial data of MM attack x′

i of xi by Algorithm 1;
8: end for
9: θ ← θ − η

∑n
i=1∇θℓ (fθ (x

′
i) , yi) /n;

10: end for
11: end for

Table 4. Test accuracy (%): Replacing natural data with adversarial data in STARS method. Diff. represents the difference between the
current result and the optimal result in the sub-column. The model structure of all methods is ResNet-18. Bold values represent the lowest
accuracy (the highest attack success rate) in each sub-column.

Dataset Reference attack Select-ϵ MM3 Diff. MM9 Diff.

CIFAR-10 None 8/255 48.23 -0.42 47.81 0.00

CIFAR-10 FGSM 8/255 48.05 -0.24 47.81 0.00

CIFAR-10 PGD-20 8/255 47.92 -0.11 47.81 0.00

CIFAR-10 PGD-20 6/255 47.98 -0.17 47.81 0.00

CIFAR-10 PGD-20 4/255 48.04 -0.23 47.81 0.00

SVHN None 8/255 52.45 -0.61 51.84 0.00

SVHN FGSM 8/255 52.07 -0.23 51.84 0.00

SVHN PGD-20 8/255 51.97 -0.13 51.84 0.00

SVHN PGD-20 6/255 52.00 -0.16 51.84 0.00

SVHN PGD-20 4/255 52.07 -0.23 51.84 0.00

CIFAR-100 None 8/255 23.92 -0.41 23.51 0.00

CIFAR-100 FGSM 8/255 23.63 -0.12 23.51 0.00

CIFAR-100 PGD-20 8/255 23.57 -0.06 23.51 0.00

CIFAR-100 PGD-20 6/255 23.57 -0.06 23.51 0.00

CIFAR-100 PGD-20 4/255 23.63 -0.12 23.51 0.00

H. Experimental Resources
We implement all methods on Python 3.7 (Pytorch 1.7.1) with an NVIDIA GeForce RTX 3090 GPU with AMD Ryzen
Threadripper 3960X 24 Core Processor. The CIFAR-10 dataset, the SVHN and the CIFAR-100 dataset can be downloaded
via Pytorch. Given the 50, 000 images from the CIFAR-10 and CIFAR-100 training set, 73, 257 digits from the SVHN
training set, we conduct the adversarial training on ResNet-18 and Wide ResNet-34 for classification.
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Table 5. Test accuracy (%): the rationality of MM under different step sizes and step numbers. Diff. represents the difference between
the current result and the optimal result in the row. The model structure of all methods is ResNet-18. Bold values represent the lowest
accuracy (the highest attack success rate) in each row.

Step size Step num PGD-20 Diff. CW Diff. MM3-F Diff. MM9-F Diff.

CIFAR-10

0.003 20 51.14 -3.33 49.95 -2.14 48.23 -0.42 47.81 0.00

1/255 40 50.16 -3.15 49.13 -2.12 47.46 -0.45 47.01 0.00

1/255 20 50.28 -3.22 49.19 -2.13 47.50 -0.44 47.06 0.00

1/255 40 49.30 -2.92 48.45 -2.07 46.88 -0.50 46.38 0.00

2/255 10 50.54 -3.26 49.38 -2.10 46.70 -0.42 47.28 0.00

2/255 20 49.36 -2.93 48.48 -2.05 46.92 -0.49 46.43 0.00

4/255 10 49.52 -2.97 48.60 -2.05 47.02 -0.47 46.55 0.00

SVHN

0.003 20 57.68 -5.84 54.42 -2.58 52.45 -0.61 51.84 0.00

1/255 40 56.03 -5.78 52.90 -2.65 50.91 -0.66 50.25 0.00

1/255 20 56.81 -5.74 53.69 -2.62 51.72 -0.65 51.07 0.00

1/255 40 55.49 -5.50 52.59 -2.60 50.65 -0.66 49.99 0.00

2/255 10 57.30 -5.71 54.12 -2.53 52.19 -0.60 51.59 0.00

2/255 20 55.45 -5.32 52.70 -2.57 50.79 -0.66 50.13 0.00

4/255 10 56.16 -5.13 53.52 -2.49 51.62 -0.59 51.03 0.00

Table 6. Test accuracy (%): the rationality of MM under different Bϵ[x]. Diff. represents the difference between the current result and the
optimal result in the row. The model structure of all methods is ResNet-18. Bold values represent the lowest accuracy (the highest attack
success rate) in each row.

ϵ PGD-20 Diff. CW Diff. MM3-F Diff. MM9-F Diff.

ResNet-18

4 67.90 -0.70 68.06 -0.86 67.23 -0.03 67.20 0.00

8 51.14 -3.33 49.95 -2.14 48.23 -0.42 47.81 0.00

12 45.53 -4.62 43.85 -2.94 41.86 -0.95 40.91 0.00

WRN-34

4 70.23 -0.30 70.55 -0.62 69.94 -0.01 69.93 0.00

8 53.69 -2.07 53.89 -2.27 51.95 -0.33 51.62 0.00

12 46.76 -3.68 46.24 -3.16 44.05 -0.97 43.08 0.00
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(a) Evaluation on Sehwag et al. (2021)
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(b) Computational time on Sehwag et al. (2021)
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(c) Evaluation on Rade & Moosavi-Dezfooli (2021)
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(d) Computational time on Rade & Moosavi-Dezfooli (2021)
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(e) Evaluation on Rebuffi et al. (2021)
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(f) Computational time on Rebuffi et al. (2021)
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(g) Evaluation on Andriushchenko & Flammarion (2020)

������ ��� �� ����� ���� ��� ��� �� ��� ���� ���

�������

�

����

����

����

����

����

����

�
��

��
��
�

����

�� ��
��� ���

����

���

����

���

����

����

(h) Computational time on Andriushchenko & Flammarion
(2020)

Figure 5. Comparison of reliability and computational cost on different defense in RobustBench. We compare three versions of our MM
attack (MM3, MM5 and MM+ mentioned in Section 4) with 8 baselines. In subfigure (a), (c),(e) and (g), the Y-axis is the accuracy of the
attacked model, which means that the lower the accuracy, the stronger the attack (or to say the better evaluation). In subfigure (b), (d), (f)
and (h), the Y-axis is computational time, which means the less the time, the higher the computational efficiency. Experiments are on
CIFAR-10 with L∞-norm bounded perturbation.
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(a) Evaluation on Gowal et al. (2020)
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(b) Computational time on Gowal et al. (2020)
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(c) Evaluation on Sridhar et al. (2021)
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(d) Computational time on Sridhar et al. (2021)
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(e) Evaluation on Wong et al. (2020)
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(f) Computational time on Wong et al. (2020)
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(g) Evaluation on Engstrom et al. (2019)
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(h) Computational time on Engstrom et al. (2019)

Figure 6. Comparison of reliability and computational cost on different defense in RobustBench. We compare three versions of our MM
attack (MM3, MM5 and MM+ mentioned in Section 4) with 8 baselines. In subfigure (a), (c),(e) and (g), the Y-axis is the accuracy of the
attacked model, which means that the lower the accuracy, the stronger the attack (or to say the better evaluation). In subfigure (b), (d), (f)
and (h), the Y-axis is computational time, which means the less the time, the higher the computational efficiency. Experiments are on
CIFAR-10 with L∞-norm bounded perturbation.
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(a) Evaluation on Carmon et al. (2019)
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(b) Computational time on Carmon et al. (2019)
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(c) Evaluation on Wang et al. (2020)
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(d) Computational time on Wang et al. (2020)
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(e) Evaluation on Wu et al. (2020)
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(f) Computational time on Wu et al. (2020)
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(g) Evaluation on Zhang et al. (2021a)
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(h) Computational time on Zhang et al. (2021a)

Figure 7. Comparison of reliability and computational cost on different defense in RobustBench. We compare three versions of our MM
attack (MM3, MM5 and MM+ mentioned in Section 4) with 8 baselines. In subfigure (a), (c),(e) and (g), the Y-axis is the accuracy of the
attacked model, which means that the lower the accuracy, the stronger the attack (or to say the better evaluation). In subfigure (b), (d), (f)
and (h), the Y-axis is computational time, which means the less the time, the higher the computational efficiency. Experiments are on
CIFAR-10 with L∞-norm bounded perturbation.



Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack

������ ��� �� ����� ���� ��� ��� �� ��� ���� ���

�������

��

��

��

��

��

�
��
�
��
��

��
�
�

�����

�����
����� ����� �����

�����
����� ����� ���� ����� �����

(a) Evaluation on Sehwag et al. (2021)
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(b) Computational time on Sehwag et al. (2021)
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(c) Evaluation on Rade & Moosavi-Dezfooli (2021)
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(d) Computational time on Rice et al. (2020)
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(e) Evaluation on Rice et al. (2020)

������ ��� �� ����� ���� ��� ��� �� ��� ���� ���

�������

�

����

����

����

����

�����

�
��

��
��
�

����

�� ��
��� ���

����

���

����

���

����

����

(f) Computational time on Rice et al. (2020)
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(g) Evaluation on Rebuffi et al. (2021)

������ ��� �� ����� ���� ��� ��� �� ��� ���� ���

�������

�

�����

�����

�����

�����

�
��

��
��
�

�����

��� ���
���� ����

����

���

�����

����

�����

����

(h) Computational time on Rebuffi et al. (2021)

Figure 8. Comparison of reliability and computational cost on different defense in RobustBench. We compare three versions of our MM
attack (MM3, MM5 and MM+ mentioned in Section 4) with 8 baselines. In subfigure (a), (c),(e) and (g), the Y-axis is the accuracy of the
attacked model, which means that the lower the accuracy, the stronger the attack (or to say the better evaluation). In subfigure (b), (d), (f)
and (h), the Y-axis is computational time, which means the less the time, the higher the computational efficiency. Experiments are on
CIFAR-10 with L2-norm bounded perturbation.
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(a) Evaluation on Engstrom et al. (2019)
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(b) Computational time on Engstrom et al. (2019)
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(c) Evaluation on Augustin et al. (2020)
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(d) Computational time on Augustin et al. (2020)

Figure 9. Comparison of reliability and computational cost on different defense in RobustBench. We compare three versions of our MM
attack (MM3, MM5 and MM+ mentioned in Section 4) with 8 baselines. In subfigure (a) and (c), the Y-axis is the accuracy of the attacked
model, which means that the lower the accuracy, the stronger the attack (or to say the better evaluation). In subfigure (b) and (d), the
Y-axis is computational time, which means the less the time, the higher the computational efficiency. Experiments are on CIFAR-10 with
L2-norm bounded perturbation.

Table 7. Evaluation: test accuracy (%) on different datasets and model structures. Diff. represents the difference between the current result
and the optimal result in the column. The model structure of the methods that are not specified is ResNet-18. Bold values represent the
lowest accuracy (the highest attack success rate) in each column.

Methods CIFAR-10 Diff. CIFAR-100 Diff. SVHN Diff. [WRN34] CIFAR-10 Diff.

PGD 51.14 -5.03 26.45 -3.92 57.68 -10.39 53.70 -3.88

CW 49.95 -3.84 25.60 -3.07 54.50 -7.21 53.90 -4.08

A-CE 48.58 -2.47 24.71 -2.18 51.55 -4.26 51.00 -1.18

A-DLR 48.85 -2.74 24.85 -2.32 50.64 -3.35 52.24 -2.42

FAB 47.28 -1.17 23.16 -0.63 52.19 -4.90 51.04 -1.22

Square 54.46 -8.35 27.94 -5.41 53.80 -6.51 58.04 -8.22

AA 46.43 -0.32 23.07 -0.54 48.44 -1.15 50.21 -0.39

T-AA 46.12 -0.01 22.53 0.00 47.36 -0.07 49.82 0.00

MM3 46.69 -0.58 22.98 -0.45 49.15 -1.86 50.26 -0.44

MM5 46.34 -0.23 22.72 -0.19 48.69 -1.40 49.99 -0.17

MM+ 46.11 0.00 22.53 0.00 47.29 0.00 49.82 0.00
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Table 8. Evaluation: the computational time (s) on different datasets and model structures. Diff. represents the difference between the
current computational time and the least computational time in the column. The model structure of the methods that are not specified is
ResNet-18. Bold values represent the least computational time in each column.

Methods CIFAR-10 Diff. CIFAR-100 Diff. SVHN Diff. [WRN34] CIFAR-10 Diff.

PGD 60 0 60 0 166 -2 416 -10

CW 62 -2 64 -4 164 0 406 0

A-CE 289 -229 215 -155 777 -613 1910 -1504

A-DLR 305 -245 222 -162 871 -707 1901 -1495

FAB 2181 -2121 1980 -1920 6178 -6014 13809 -13403

Square 3768 -3708 2528 -2468 9506 -9342 22593 -22187

AA 3885 -3825 2187 -2127 11146 -10982 29637 -29231

T-AA 5970 -5910 2967 -2907 25116 -24952 40178 -39772

MM3 126 -66 91 -31 332 -168 796 -390

MM5 182 -122 137 -77 587 -423 1342 -936

MM+ 1421 -1361 746 -686 4431 -4267 10773 -10367


