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Abstract

The AutoAttack (AA) has been the most reliable
method to evaluate adversarial robustness when
considerable computational resources are avail-
able. However, the high computational cost (e.g.,
100 times more than that of the project gradient
descent (PGD-20) attack) makes AA infeasible
for practitioners with limited computational re-
sources, and also hinders applications of AA in
the adversarial training (AT). In this paper, we
propose a novel method, minimum-margin (MM)
attack, to fast and reliably evaluate adversarial
robustness. Compared with AA, our method
achieves comparable performance but only costs
3% of the computational time in extensive experi-
ments. The reliability of our method lies in that
we evaluate the quality of adversarial examples
using the margin between two targets that can
precisely identify the most adversarial example.
The computational efficiency of our method lies
in an effective Sequential TArget Ranking Selec-
tion (STARS) method, ensuring that the cost of
the MM attack is independent of the number of
classes. As a better benchmark, the MM attack
opens a new way for evaluating adversarial robust-
ness and provides a feasible and reliable way to
generate high-quality adversarial examples in AT.

1. Introduction

The deep neural network (DNN) has attracted a large num-
ber of researchers from different disciplines such as com-
puter science (Goodfellow et al., 2016; Castelvecchi, 2016;
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Vaswani et al., 2017), physics (DeVries et al., 2018; Huang
etal., 2019; Levine et al., 2019), biology (Maxmen, 2018a;b;
Webb, 2018) and medicine (Hao et al., 2015; Esteva et al.,
2017). The success of DNN mainly lies in its ability to
learn useful high-level features from abundant data (Deng
& Yu, 2014; LeCun et al., 2015). These learned features
have been successfully used to address many difficult tasks.
For example, DNNs can recognize images with high ac-
curacy comparable to human beings (LeCun et al., 1998;
Krizhevsky et al., 2012). In addition, DNNs are also widely
used for speech recognition (Hinton et al., 2012), natural
language processing (Andor et al., 2016), and playing games
(Mnih et al., 2013; Silver et al., 2016).

As the impacts of DNN increase fast, its reliability has
been a key to deploy it in real-world applications (Huang
et al., 2011; Kurakin et al., 2017). Recently, a growing body
of research shows that DNNs are vulnerable to adversar-
ial examples, i.e., test inputs that are modified slightly yet
strategically to cause misclassification (Szegedy et al., 2014;
Nguyen et al., 2015; Kurakin et al., 2017; Carlini & Wagner,
2017a; Finlayson et al., 2019; Wang et al., 2019; Zhang
et al., 2020b;c; Gao et al., 2021; Zhang et al., 2021b). The
existence of such adversarial examples lowers the reliability
of DNNs. Meanwhile, researchers have also been consider-
ing finding a reliable way to evaluate adversarial robustness
of a DNN before deploying it in the real world.

The high-level idea of evaluating adversarial robustness
of a DNN is quite straightforward, i.e., generating adver-
sarial examples and calculating the accuracy of the DNN
on these examples (this kind of accuracy is also known as
adversarial robust accuracy). Szegedy et al. (2014) first
pointed out the existence of adversarial examples and used
a less powerful box-constrained limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method to generate
them. Based on the studies in (Szegedy et al., 2014),
Goodfellow et al. (2015) put forward the fast gradient sign
method (FGSM). One common loss function they used is
cross-entropy (CE) loss, and to maximize the loss function,
FGSM uses its gradient to determine in which direction the
pixel’s intensity should be increased or decreased. Madry
et al. (2018) introduced a simple refinement of the FGSM:
projected gradient descent attack (PGD), where instead of
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(a) Reliability ranking (b) Computational time
Figure 1.Comparison of reliability and computational cost among baselines and different versions of MM attack. MM3, MM5 and MM+
are three versions of our MM attack. The sub gure (a) shows the (sorted) attack success rates of different attacks. The higher the success
rate, the stronger the attack. The sub gure (b) shows the computational cost of these attacks. The less time, the better the attack. AA is an
ensemble of APGD-CE (A-CE for short), APGD-DLR (A-DLR for short), FAB and Square. T-AA considers each target for APGD-DLR
and FAB in AA, and is thus more time-consuming. Compared with AA (or T-AA), our MM3 achieves comparable performance but only
costs 3% (or 2%) of the computational time. The model structure we used is ResNet-18, which follows the adversarial training of (Madry
etal., 2018) on CIFAR-10.

taking a single step of sizein the direction of the gradient 18 model on CIFAR-10 (following the adversarial training
sign, multiple smaller steps are taken. in (Madry et al., 2018)), the computational cost of AA (or
T-AA) is 65 times (or 100 times) more than PGD-20 used in

i)gtsr:g]c? tgvgg:ttgg le?/t:ros(;sri'al F;c?tij Svtvr?essgggggtrz_e (Madry et al., 2018), where T-AA is more time-consuming
since it considers each target for APGD-DLR and FAB

trained DNN(Madry et al., 2018) since adversarial robus:tin AA. Worse still, in the worst case as analyzed in Ap-

e ey i e A e computatonlcost o A or T4 s e
9 ) ' 9 times (or 440 times) more than PGD-20.

examples has already inspired research on trainiofpast
DNN to defend against them, which means that a standard Dilemma Between Reliability and Computational Ef -
trained DNN is not the only DNN we might meet and we ciency. The high computational cost makes AA infeasible
need to evaluate adversarial robustness mfbeust DNN  when considerable computational resources are unavailable.
as well. Unfortunately, as observed by (Carlini & Wag- Unfortunately, such scenarios are common in the real world,
ner, 2017b; Croce & Hein, 2020), PGD has limitations toe.g., as recommended by (Rice et al., 2020), practitioners
reliably evaluate adversarial robustness of a robust DNN. need real-time evaluation at each epoch of the adversarial

Carlini & Wagner (2017b) observed the phenomenon oftralnlng pr?cess 'to nd the robust model with t.he best
checkpoint”, and in this case, such high computational cost

gradient vanishing in the widely used CE loss for the poteni-S unacceptable. Similarly. since a large number of adver-
tial failure of L-BFGS, FGSM and PGD, and replaced the P ' Y 9

CE loss with many possible choices. Croce & Hein (2020)Sa”a| examples need to be generated at each epoch during

claimed that the xed step size and the single attack usegdversanal training(AT), such high computational cost hin-

are the causes of poor evaluations, and they put forwargers applications of AA in AT. In consideration of the high

an ensemble of diverse attacks (consisting of APGD-C ?“ﬁtg{l)'z bﬂ%? g;giuetr?(t;logstl I?) f\/\j:IreerI]i?t/)i(I)iI A;‘Pi?g t\tlvz
APGD-DLR, FAB and Square) calletutoAttack(AA) to 9 P : y ADIALY '

. . . seem to encounterdilemma we have togive up one factor
test adversarial robustness. Until now, AA (Croce & Hein,, "= .. . . )

. r(?llabmty or computational ef ciency) when evaluating the

2020) has been regarded as the most reliable method a|(1 . .
o ) . : adversarial robustness. (Croce & Hein, 2020).
is widely used in the evaluation of adversarial robustness
(Sehwag et al., 2021; Rade & Moosavi-Dezfooli, 2021; Re-Our Reliable and Fast Solution.In this paper, we aim to
buf et al., 2021; Andriushchenko & Flammarion, 2020; achieve reliability and computational ef ciency simultane-
Gowal et al., 2020; Sridhar et al., 2021; Wong et al., 2020pusly. For reliability, we evaluate the quality of adversarial
Engstrom et al., 2019; Carmon et al., 2019; Wang et alexamples using the margin between two targets for precisely
2020; Wu et al., 2020; Zhang et al., 2021a). identifying the most adversarial example. For computational
ef ciency, we propose an effectiv@equential TArget Rank-

;'?::E\ée;'ngg?;?Zfé)&erﬁ;?jnvgﬂligerelasbglﬁ)gvcnnﬁ]egis ing Selection(STARS) method to ensure that the cost of the
g P ' 9VIM attack is independent of the number of classes.

ure 1(b), for evaluating adversarial robustness of a ResNet-
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Figure 2.Minimum margin of probabilityp denotes the predicted probabilipy, andp; are the predicted probability on the true lajpel
and a targeted false labelThe gray shape is the image of the adversarial varidhtgthin the bounded perturbation bl [x] under the
mapping of the network ontpy ; pt); the orange area( > py) indicates the region where the adversarial variants are misclassi ed, or
to say a successful attack, while the blue apga<(p ) indicates the region where the adversarial variants do not attack successfully.

Reliability. To achieve reliability, we investigate the reasons(1,000 classes), the computational cost will increase accord-
behind the failure of PGD. We identify that CE loss, which ingly. To achieve computational ef ciency, we propose a
is based on the probability of the true lalpgl is not an  STARS method to make the computational time indepen-
appropriate measure to the quality of adversarial exampledent of the number of classes. STARS consists of two
In Figure 2, we provide a simple demonstration to this issuestrategies that pre-selecting targets and ranking sequential
in which we consider one targeted false labeAs we can  attack. STARS method only selects a few highest targets and
see, it is much more reasonable to measure the quality afins a sequential attack. Experiments show that, bene ted
adversarial examples in terms of thmargin of probability ~ from STARS, computational time can be saved 76.36% on
Py  Pt. The most adversarial example in Figure 2 then corCIFAR-10, 98.51% on CIFAR-100 and 77.78% on SVHN.
responds to the one with tmeinimum margin of probability

instead of theninimum probabilityp, . Detailed study of the By taking all the above factors into consideration, we pro-

1 pose a novel method, teinimum-margiMM) attack. Its

re}tlonahty of minimum-magrin 1s prowde@ n S_ect|on 3 detailed realization is provided in Section 3. We present
Since the search spa8e of high dimensional images is ; . . . ) .
xtensive experimental results in Section 4, which verify

large (grey area), previous stu'dles use gradient degcgnt memét our MM attack can fast and reliably evaluate adversarial
ods to generate the adversarial example that maximizes the

loss function (Goodfellow et al., 2015; Carlini & Wagner, r%??j:rr;zsnsé;rkl)&arzltlCg(')asrt'sl\g'lﬂ@aflt:ﬁgkciil'i\gzzoc:;f;rir:ble
2017b; Madry et al., 2018). P y P

compared with the current benchmark AA.

Though it looks promising to generate adversarial SXaMip e main contributions of our work are as follows: our

ples via minimizing the margin of probability, we nd that Lo T . . . !
there are still two issues: (a) The probabilitys a kind conceptual contribution lies in using margin to identify the
’ “most adversarial example”; our technical contribution on

of rescaling method to the logiis Croce & Hein (2020) o . ; : :
o . . . . reliability lies in using adaptive step size and searching the
heuristically rescaled the logisusing their proposedif- . .o . S
most adversarial example” with minimum margin; third,

ference of logits ratiqDLR) (de ned at Eq.(4)). We in- our technical contribution on computational ef ciency lies

vestigate the performance of different rescaling methods ™ .
in Section 3.1. We numerically nd that the method using in using STARS method to achieve the targets pre-selected

natural logits, 2 (the meaning of margin) with no rescal- and ranking sequential strategy. Furthermore, as a better

. i : benchmark compared with AA, our proposed MM attack
ing performs the best; (b) For the problem of multi-class ; N . .

L provides a new direction of evaluating adversarial robustness
and untargeted attacks, tharginis thenzy, maxisy z;.

. : and contributes a feasible and reliable method to generate
However, (z, maxisy z;) is notan appropriate loss func- . . . . . 1
. ; : high-quality adversarial examples in adversarial training.
tion, because thmax function only considers one target at

the current step while those unconsidered targets may lead o
to more adversarial examples. Hence, the reliable method. Preliminary
is to minimizez, z for eacht 6 y and take the most

adversarial one (Croce & Hein, 2020). Neural Networks. A neural network is a functiom

R" I [0;1]¢, where is the parameters containedfin

Computational Ef ciency. Although running the attack for andK is normally the number of classes. The output of
each false target is reliable, the computational cost dependble network is computed using the softmax function, which
on the number of classes. For datasets with a large nurensures that the output is a valid probability vector. Namely,
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:(zl pi =1 andp; is the probability that input belongs the loss function at Eg. (3), they claim that scale invariance
to clasd. Before the softmax function, the output of the net-w.r.t. z is necessary, and they proposed an alternative loss:
work is called logits, i.e.,p = softmaxz). The classi er
assigns the labsl = arg max; f (x);.

DLR(X:y) = z,(x9 maxiey zi (X9 .

Projected Gradient Descent Attack (PGD)Madry et al. z,(x9 2,9

(2018) proposed therojected gradient desce(PGD) at-  \yhere s the permutation of the componentszoin de-
tack to generate adversarial examples to mislead a Wel}:’reasing order. For inducing the misclassi cation into a

trained classi erf . Speci cally, they start with setting 5 yet class, they propose another alternative loss function:
X(0) = X, and then in each iteration:
zy(x9  z(x9

(4)

0 — 0 H ~ 0 \- .
X = B (Xgy + sign(r xo " (f (X)) ¥); Targeted-DLRX;y) = :
(t+1) o IR X ® g Ray)= 2 (X9 3 (Z,(x9+ z,(x9)
t=0;1;2;:::, where (5)
Bx]=fx%d (x;x) g For the lack of diversity, they claimed that diverse attacks

. . ) are bene cial for reliability, and then they put forward an
is the closed ball of radius> 0 centered ak; the Xq) ?nsemble of various parameter-free attacks callehAt-
refers to the starting point which corresponds to the nawratack(AA) to test adversarial robustness, where AA contains
examplex (or the natural example perturbed by a sma"APGD—CE APGD-DLR. FAB and SqL’JaréI'argeted Au-
Gaussian or uniformly random noise that ); x( is the toAttack(T’—AA) replaceé APGD-DLR With. the targeted

adversarial example at stép g o () is the projection ,
: . ) . APGD-DLR, and replaces FAB with targeted FAB.
function that projects the adversarial variant back to the P 9

-ball centered ax©@ if necessary; the ; distance metric o
isd; (x;x9 = kx x%; :and iscross entropfCE) loss: 3. The Realization of MM Attack

0 N 1 In this section, we discuss the realization of our MM Attack.
CE(xy)= log(py)= 1z, +log@ eA; (1) In Section 3.1, we verify the rationality of usimginimum
= margin as the loss function and discuss the in uence of
different logits rescaling methods on robustness. In Sec-
P 9 g
wherep; = € = szl € ;i =1;::K,andzis the logits  tion 3.2, we propose an effective STARS method to improve
of the model outputs. computational ef ciency. In Section 3.3, we provide the

- . detailed descriptions of MM attack.
Carlini and Wagner attack (CW). Carlini & Wagner

(2017b) observed the phenomenon of gradient vanishin

in the widely used CE loss for potential failure. The gradi-g'l' The Rationality of Minimum Margin

entw.r.tx in Eq. (1) is given by To understand the rationality of minimum margin, we rst
X look into the situation where no adversarial attack can suc-
r«CE(x;y)=( 1+p)rxzy+ pirxz: (2) ceed. Then we show that the formulation mfnimum
i6] margin is naturally derived from such a situation. We

say that a classi ef is completely robusif 8x°2 B [x],
arg max; f (x9, = argmax; f (x),. The following condi-
ion is necessary and suf cient to the complete robustness:

If py 1 and consequently; O0fori 6 vy, then

r xCE(x;y) 0in Eqg. (2). This gradient vanishing is-
sue can lead to the failure of attacks. Motivated by thist
phenomenon, Carlini & Wagner (2017b) replaced the CECondition 1. Given a natural example with its true label
loss with several possible choices. Among these choicey, theK -class classi erf satis es

the widely used one for the untargeted attack is .

W y) = zy(x°)+ni12;< 2 (X0 - 8x°2 B [x];z,(x9 maxz, x% o (6)

whereB [x] = fx°j di (x;x9 g z(x9 = f(x9,;
AutoAttack (AA). Croce & Hein (2020) claimed thatthe z(x% = f (x9),.
xed step size and the lack of diversity in attack methods
are the main reasons for the limitations of previous studief\ccording to this condition, to reliably evaluate the com-
Motivated by thdine searchmethod (Grippo et al., 1986), plete robustness, the adversarial attacks should nd the ad-
they put forwardauto PGD(APGD) attack. They showed versarial examples with minimurz;,(xo) MaXig y Zi (x9),
that using adaptive step size signi cantly improves the adt.e., the most non-robust data point. Hence, we de ne the
versarial evaluation compared with using xed step size. Formost adversarial example:
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Table 1.Attack success rate (%) of different loss functions. Following (Madry et al., 2018), the attack setting is PGD-20.

Attack | Loss function | CIFAR-10 Diff. | CIFAR-100 Dift. | SVHN Dift. | Tiny-Imagenet Diff.
PGD | log( py) | 4827 300 | 7360 292 | 4189 567 | 78.78 -4.19
oW |z (OYrmax ey zi(x) | 49.13 223 | 7455 197 | 4508 248 | 81.19 1.78
MM | 2, + 2 | 5136 000 | 7652 000 | 4756 0.00 | 82.97 0.00

De nition 1 (The most adversarial examplefiven a nat-  Algorithm 1 MM Attack

ural examplex with its true labely, the most adversarial  1: Input: natural data, true labely, set of false label€, model

examplex within B [x] is de ned as: f, loss function' ym , maximum number of PGD steps,
perturbation bound, initial step size , the number of classes
K, targets selection numb#rs, checkpoints satv ;

2: Output: adversarial data®

3: while Ks > 0do

8x°2B [x];x =arg max (z,(x% rga;xzi(xo)); (7)

whereB [x] = fx%j d; (x;x9  gis the closed ball of g §§ -
radius > 0 centered ax; zy(x9 = f(x9,; z(x9 = 6 fro £ (x9):
oo i elpaRe
. ork=0to (0]

Equation 7 indicates that we should replace the CE loss in9: Xk 8 (x] Xk + sign (r o wm (F (XQ);y;0) ;
Eq. () with (z,(x) maxisy z(x9) as the loss func- 100 if f (X{sy ) > f max then
tion in adversarial attacks. However, as mentioned beforé;!: Xmax  Xkgs

(zy maxiey z) in Eq. (3) is not an appropriate loss func- ;5 enfdmi?x F (X );
tion since it only focuses on the current step. The reliable 4. if k 2 W and (Condition 20r Condition 3)then
method is to minimize, z foreachtarget 6 y andtake 15: =2
the most adversarial one. To verify the rationality of mini-16: XRe1 Ximax ;
mum margin, we conduct experiments on different datasetd’: ~ end if
with (z, z) being the loss function (MM). In Table 1, gnd foé nfcg:

MM performs a more reliable evaluation than PGD and CWyq. argmax;, ¢ f (x9, 6 y then
Although Gowal et al. (2019) proposed such a surrogate1: Ks ;

multi-target loss on the basis of PGD, due to the limitations22:  end if

of PGD, they found that in some examples, the attack'3: Ks Ks 1
performance is worse than CW. The relatively poor perfor—24: end while
mance (Gowal et al., 2019) failed to attract attention of later

researchers. Nowadays, AutoAttack is widely regarded as

the most authoritative evaluation of adversarial robustnes&) AA) reduce the reliability, and the method using natu-
In the current mainstream of the eld, researchers are redal logits (no rescaling) performs the best among the seven
ommended to use DLR loss to achieve better attack succeggethods. The results motivate us to use it as the loss func-
rate and to use an ensemble of various attacks. tion. Note we do not deny that there could be a better
rescaling method, but still, a reasonably good result can be
obtained by no rescaling (natural logits in Table 2).

The comparison with Targeted-DLR. Targeted-DLR
heuristically rescales the logitsin Eq. (5) (Croce & Hein,
2020). For the logit of true targej, and a false target, the We also investigate the difference among different success-
relative magnitude of, andz is constant under different ful sets. The non-empty difference sé§ B; A and
rescaling methods. However, though the rescaling meti [ Bi  Bj in Table 2 suggest that diverse logits rescal-
ods preserve the sign af  z, they may lead to different ings can be considered when considerable computational
adversarial variants. Below, we conduct experiments to infesources are available, we analyze it in Appendix C.
vestigate the difference of using different rescaling methods.

The experimental setting follows (Madry et al., 2018), and3'2' Sequential TArget Ranking Selection (STARS)

we replace the CE loss with seven different logits rescalingAs mentioned in the introduction, for multi-class and untar-
methods. In Table 2, the successful set denotes the numbgeted attacks, the reliable method is to minimize the loss
of examples that can be attacked successfully in the testinction (z, z) for each target 6 y, and then take
set of CIFAR-10 10, 000examples). As shown in Table 2, the most adversarial one (Gowal et al., 2019; Croce & Hein,
inappropriate logits rescaling methods (e.g., Targeted-DLR2020). Since the computational cost of such a solution de-
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Table 2.The successful attack set of different rescaling methods on CIFAR-10. We compare the degree of overlap of the successful
set between 6 different rescaling methods @D;i = 1;2;:::; 6) and no rescaling methods (IB). A[ B; A denotes the number

of instances can be attacked successfully by meByobut failed by methodA. A[ B; B; denotes the number of instances can

be attacked successfully by methadbut failed by method;. For 6 different rescaling methods, largel{ B; A and smaller

A [ Bi Bji mean better rescaling methods. Following (Madry et al., 2018), the attack setting is PGD-20.

ID ‘ Rescaling method ‘ Formulation ‘ Set size ‘ Ranking ‘ diff. ‘ Al Bi A ‘ A[ Bi Bi

A ‘ Natural logits ‘ (zy zv) ‘ 5219 ‘ 1 ‘ 0 ‘ / ‘ /

B, ‘ Softmax ‘ L s ‘ 5172 ‘ 2 ‘ -47 ‘ 4 ‘ 51
i=0

B2 ‘ Max ‘ e ‘ 5165 ‘ =3 ‘ -54 ‘ 5 ‘ 59

Bs ‘ Sum ‘ s ‘ 5165 ‘ =3 ‘ -54 ‘ 5 ‘ 59

B ‘ Min-Max ‘ A ‘ 5121 ‘ 5 ‘ -98 ‘ 3 ‘ 101
1 10

Bs ‘ DLR ‘ gy ‘ 5078 ‘ 6 ‘ 141 ‘ 2 ‘ 143

z43 7 (z 3tz 4)
Bs ‘ Sigmoid ‘ (% ) ‘ 4820 ‘ 7 ‘ -399 ‘ 1 ‘ 400

pends on the number of classes, it is unacceptable for pra8-3. Minimum-Margin Attack
titioners with limited computational resources. Here, we
propose a fast solution STARS which saves a large amou . . .
of running time with little-to-no performance lost. STARS M attack in Algorithm 1. We follow the setting of the

consists of two strategies: pre-selecting targets and rankingdap.t've ste;lj( S';ets\? l‘ith'on 'E gCroce & Hf'nh.zgzt?]) and
sequential attack. pecify checkpoin = Twp = 0wy g at which the

MM attack decides whether to halve the current step size.
Pre-selecting-Targets Strategy.Given a natural inpuk  The two conditions in Algorithm 1 are:
and aK -class classi eff , denoting the predicted probabil-

ith the above strategies, we summarize our scheme of

ity asf (x); for a false label, a natural intuition is that the N ot
false target with a higher value of (x); is more likely to Condition 2. . Lixo, st 9 < (W W)
lead to a successful attack. To verify this intuition, in Fig- =W

ure 3, we compare the performance between only selectingCondition 3. "i * Yicandf it f ok -
the false targets witK ¢ highest predicted probabilities and
selecting all the&K 1 false targets. The results show that P w, 1 .

. _ ; ) 1f (xo,, )>f (x0) counts how many cases sineg 1
only selecting s (e.g.,Ks = 3) highest targets achieves ,, =W 1

the update step,has been successful in incredsitmgde-

comparable performance. Note that the strategy is men- hether Wi 1 1 | h ¢
tioned in (Gowal et al., 2019) but has a poor performancéerm'nefv‘;] et erl i~ f (%0, )>F (xf) 'S_'I_ﬁSSt anha rac-
limited by the used attack with xed step size. For the rank-1on  Oft etogalup a(tﬁsltlem Vé ! &(I: IS azoér())er_
ing of predicted probability (x),, we also investigate the param_ege.r;g( ) )t;m. .,? :)V\;mg (. rqceAI e.':;] 1 ) we
difference of replacing the natural inpxiwith adversarial = V.o Istheinitial step size in Algorithm 1.
examples in Appendix D, which shows that the replacemenfccording to different choices d&f s, we denote MM3 (or
only has limited improvements. For the sake of ef ciency, MM5) as the MM attack wittK s = 3 (or K5 = 5). Our
we recommend to use the rankingfdix), of the natural experiments show that with the help of STARS method,
inputx, which does not need extra computation. MM3 attack saves 76.36% of the computational time on

Ranking-Sequential-Attack Strategy. This strategy aims CIFAR-10, 98.51% on CIFAR-100 and 77.78% on SVHN.

to perform a sequential attack based on the ranking of pré=or one thing, we ar¢he rst to propose searching the
dicted probability on false targets. First, consider the falsemost adversarial example withinimum margincombining
targeti with the highest predicted probabilityx);; ifthe  the loss function of MM attack with adaptive step size to
attack succeeds, then we need to terminate attacks on oth&thieve the proposal i'ew Although some of components
targets; otherwise, we need to continue considering the falsexist in previous research (Carlini & Wagner, 2017b; Gowall
target with the second highest predicted probability. Theet al., 2019; Croce & Hein, 2020he existence is not the
sequential attack strategy is simple and effective for savingnost important and doesn't degrade our novelty about how
computational time in thenulti-target problem best to combine and use existing methaasl we provide
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(a) Acc on CIFAR-10 (b) Acc on CIFAR-100 (c) Acc on SVHN

(d) Time on CIFAR-10 (e) Time on CIFAR-100 (f) Time on SVHN

Figure 3.Reliability and computational time of different selection number. Regarding the performance for all targets as benchmarks,
as shown in the sub gure (a), (b) and (c), pre-selecting 3 (or 5) targets (the rst strategy in STARS) can achieve 99.13% (or 99.78%)
reliability on CIFAR-10, 99.49% (or 99.82%) reliability on CIFAR-100; 98.78% (or 99.67%) reliability on SVHN; as shown in the
sub gure (d), (e) and (f), pre-selecting 3 (or 5) targets only costs 33.58% (or 55.72%) computational time on CIFAR-10, 3.11% (or 5.07%)
computational time on CIFAR-100; 33.33% (or 55.49%) computational time on SVHN.

clear evaluation and analysis why similar methods fail inExperimental Setup. We verify our methods on the
previous works but can succeed in MM attack. For anotheiResNet-18 (He et al., 2016) and the Wide-ResNet-34 (WRN-
our STARS method consists of two novel strategies. AparB4) (Zagoruyko & Komodakis, 2016) using three benchmark
from the pre-selecting-targets strategy, we are the rst tadatasets: CIFAR-10, CIFAR-100, SVHN. Thdversarial
propose the sequential attack strategy whicingple and  training (AT) method follows Madry et al. (2018). The

effectivefor saving computational time. training setup follows previous works (Madry et al., 2018;
Zhang et al., 2019) that all networks are trained T60
4. Experiments epochs using SGD with:9 momentum. The initial learn-

ing rate is0:1 (0.01 for SVHN), and is divided b0 at

Datasets.We conducted experiments on CIFAR-10, SVHN epoch60and90, respectively. The weight decay(0002
and CIFAR-100. We considér; -norm bounded perturba- (0:0035for SVHN). The previous work (Rice et al., 2020)
tion thatjjx  xjj, in both training and evaluations. observed that over tting in robust adversarial training hurts
The images of all datasets are normalized into [0,1]. test set performance. Thus, following Rice et al. (2020),
we compare different methods based on the performance
of the best checkpoint model (results at ep&&h For
generating the adversarial data for updating the network,
we set the; -norm bounded perturbatiof,, = 8=255
the maximum number of PGD stepskis= 10; step size

= yain =10. In testing, unless otherwise speci ed, we
setL; -norm bounded perturbatiogs; = 8 =255

Baselines. We evaluate 3 versions of our MM attack and
compare them with 8 baselines. MM3 (or MM5) is the
version of MM attack with maximum step numbér= 20
and targets selection numbi¢g = 3 (or Kg =5); MM+

is the version of MM attack with maximum step number
K =100 and targets selection numb€g = 9. Baselines
consist of PGD-20 (PGD) (Madry et al., 2018), CW-20
(CW) (Carlini & Wagner, 2017b), APGD-CE-100 (A-CE), For PGD and CW, we follow the setting in (Zhang et al.,
APGD-DLR-100 (A-DLR), FAB, Square, AutoAttack (AA) 2020a): the maximum number of stelis= 20, and the
and Targeted-AutoAttack (T-AA) (Croce & Hein, 2020). step size = =4. For APGD-CE, APGD-DLR, FAB and



Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack

(a) Evaluation on CIFAR-10 (b) Computational time on CIFAR-10
(c) Evaluation on CIFAR-100 (d) Computational time on CIFAR-100
(e) Evaluation on SVHN (f) Computational time on SVHN

Figure 4.Comparison of reliability and computational cost. We compare three versions of our MM attack (MM3, MM5 and MM+
mentioned in Section 4) with 8 baselines. In sub gure (a), (c) and (e), the Y-axis is the accuracy of the attacked model, which means that
the lower the accuracy, the stronger the attack (or to say the better evaluation). In sub gure (b), (d) and (f), the Y-axis is computational
time, which means the less the time, the higher the computational ef ciency.

their corresponding targeted version, we follow the settingand Figure 4, rst, our MM attack can perform better than
in (Croce & Hein, 2020): the maximum number of stepsany single attack of PGD, CW, A-DLR, A-CE and FAB;

K =100. There is a random start in training and testing,second, compared with the ensemble of diverse attacks AA
i.e., uniformly random perturbation$ ( ¢ain ;+ train | and T-AA, our MM attack achieves comparable performance
and[ test;* test ]) are added to natural instances. but only incurs a very small amount of computational time.

Performance Evaluation. In Figure 1 and Figure 4, we In Appendix E, experiments on the large-capacity network
compare our proposed MM attack with 10 baselines. WAVRN-34 are provided. Besides the defense by Madry et al.
report the performance of our MM attack and all baselineg2018), we conduct extensive experiments between our MM
on CIFAR-10, CIFAR-100, SVHN with the model structure attack with baselines on 12 defenses of RobustBench in
chosen as ResNet-18. Following Madry et al. (2018), the~igure 5, Figure 6 and Figure 7 (Appendix F) (Sehwag
threat model is trained by PGD-10. As shown in Figure let al., 2021; Rade & Moosavi-Dezfooli, 2021; Rebuf et al.,
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Table 3.Test accuracy (%) of adversarial training. Robust test accuracy (%) of MM3dtt§ ,(MM5-F20 (ours), MM3 (ours) and
baselines (PGD, CW) on CIFAR-1@iff. represents the difference between the current result and the optimal result in the row. The
model structure of all methods is ResNet-18. Bold values represent the highest accuracy in each row.

Methods | PGD pit. | cw Diff. |  MM3-F10 Dift. | MM3-F20 Dift. | M3 Diff.
PGD (Test) | 51.14 410 | 5147 377 | 5496 028 | 5524 000 | 5504 -0.20
CW(Test) | 4995 189 | 5326 000 | 5118 208 | 5116 210 | 5184 142

ACE(Testy | 4858 392 | 4816 434 | 5155 095 | 5250 000 | 5222 -0.28
ADLR (Test) | 48.85 144 | 5276 000 | 4978 298 | 4988 288 | 5029 247
FAB(Test) | 47.28 122 | 4713 137 | 4783 067 | 4828 022 | 4850 -0.00
Square (Test) |  54.46 066 | 5532 000 | 5480 052 | 5483 049 | 5512 -0.20
AA(Test) | 4643 185 | 4636 192 | 4762 066 | 4784 044 | 4828 -0.00
TAA(Tesy) | 46.12 097 | 4526 183 | 4639 070 | 4673 036 | 4709 -0.00
MM3 (Test) |  46.69 117 | 4877 100 | 4720 066 | 4748 038 | 4786 -0.00
MM (Test) | 46.21 095 | 4536 180 | 4649 067 | 4682 034 | 4716 -0.00
MM+ (Test) | 4612 090 | 4522 180 | 4639 063 | 4668 034 | 4702 -0.00

2021; Andriushchenko & Flammarion, 2020; Gowal et al.,MM attack with 10 (20) xed steps. MM3 denotes AT us-
2020; Sridhar et al., 2021; Wong et al., 2020; Engstronming adversarial examples generated by MM attack with 20
et al., 2019; Carmon et al., 2019; Wang et al., 2020; Wuadaptive steps. We choosé testing methods to evaluate
et al., 2020; Zhang et al., 2021a). Hog-norm bounded the robustness. As shown in Table 3 (Appendix G), by
perturbation thafjx  xjj, , we also compare the per- replacing PGD-generated adversarial examples with MM-
formance on the 6 defenses of RobustBench in Figure &ttack-generated adversarial examples, the robustness of AT
and Figure 9 (Appendix F) (Sehwag et al., 2021; Rade &model is signi cantly improved.

Moosavi-Dezfooli, 2021; Rice et al., 2020; Rebuf et al.,

2021; Engstrom et al., 2019; Augustin et aI.,_2020). Wes  =onclusion

test MM attack and all baselines on the well-trained models

which are available for download in Robustbench. Experin this work, we proposed MM attack, which can reliably
imental results verify the effectiveness of MM attack on and ef ciently evaluate adversarial robustness. For its relia-
diverse trained model in RobustBench. To the best of oubility, we identi ed minimum margiras the key evaluation
knowledge, our MM attack is currel8OTA benchmark criterion for the most adversarial example. For its computa-
which provides a new direction of evaluating adversarialtional ef ciency, we proposed an effective STARS method
robustness. The code of our MM attack is available ato ensure that its computational time is independent of the
github.com/Sjtubrian/MM-attack . number of classes. Our experiments showed that MM at-
. - . S tack achieves comparable performance compared with AA,
Adversarial Training with MM Attack. - By injecting ad- but only costs 3% of the computational time. Its reliability

versarial examples into the training dagayersarial train- . )

ing (AT) methods seek to train an adversarial-robust dee and ef ciency further allow us to extend MM attack into
o . Ust ceeix , which signi cantly improves the quality of adversarial

neural network whose predictions are locally invariant in a

small neighborhood of its inputs. Existing empirical defenseexamples in AT and thus boosts the performance of AT.

methods formulate the adversarial training as a min-max
optimization problem (Madry et al., 2018). Since a largeAcCknowledgements

number of adversarial examples need to be generated dlfl{_ZG JXW, KWZ, BHX and JC were supported by GRF
Ing training, practitioners pay great attention to the ime, > o416 0 the RGC of HKSAR. BH was supported by
cost of adversarial example generation. Compared with AAthe RGC Early Career Scheme No. 22200720, NSFC Young
MM attack contributes a feasible and reliable method to ' '

generate high-quality adversarial examples in AT. Table 3Scientists Fund No. 62006202, and Guangdong Basic and
in Appendix G reports the performance. MM3-F10 (MM3- Applied Basic Research Foundation No. 2022A1515011652.

F20) denotes AT using adversarial examples generated @:{Xﬁjﬂfﬁgp‘%t&g Cbgz‘éi-g ﬁ;:;cceleratlon Research
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A. The Computational Time in the Worst Case

In this section, we discuss the computational time in the worst case. According to their attack mechanism as an ensemble of
diverse attacks, AA and T-AA consider one attack rst. If the attack succeeds, stop other attacks on the current example; else,
continue to consider the next attack in the ensemble. According to the strategy of our STARS method, MM attack considers
the false target with the largest predicted probability rst, if the attack succeeds, stop attacks on other false targets; else,
continue to consider the next target in the ranking of the predicted probability. The computational time of these methods is
in uenced by different datasets and models. Hence, in the worst case that all attacks inside fail to succeed, the computational
time is the sum of the individual time of each attack. Hence, the computational cost of AA (or T-AA) is 109 times (or 440
times ) more than PGD, and 34 times (or 139 times) more than MM3 in this case.

B. The Realization of Adversarial Training of MM Attack

We summarize the adversarial training of MM Attack in Algorithm 2. We use MM3 attack to generate adversarial examples,
and the computational time is about 2 times as much as PGD (Madry et al., 2018), which can be acceptable for most
practitioners.

C. Potential Bene ts of Diverse Rescalings

We investigate the difference among different successful sets of seven rescaling methods mentioned above. In Table 2, the
setting follows (Madry et al., 2018) (withO xed steps). The non-empty difference sét§ B; A andA[ B; B;

suggest that diverse rescaling methods can complement each other. Hence, when considerable computational resources are
available, we recommend practitioners to consider diverse logits rescaling on a strong attack (e.g., our MM attack) rather
than diverse weak attacks. Note that we do not argue that diverse weak attacks is unnecessary but rather that when a reliable
enough attack exists, most relatively weak attacks have limited bene ts other than increased computational cost.

D. The Replacement of Natural Data for the Ranking in STARS

In our STARS method, we also investigate the difference of replacing the naturakimgtht adversarial examples. Table 4
shows that the replacement has limited improvements.

E. Detailed Experimental Results

To verify the rationality of minimum margin, we conduct experiments on different step size, different step number and
differentB [x] in Table 5 and Table 6. We compare the reliability and the computational time between MM attacks and
baselines. In Table 7 and Table 8, unless speci ed, the model structure is ResNet-18. The experiments verify that our MM
attack achieves comparable performance but only incurs a very small amount of computational time.

F. Experimental Results on Diverse Trained Model in RobustBench

We conduct extensive experiments between our MM attack with baselines on 12 defenses of RobustBench in Figure 5,
Figure 6 and Figure 7 (Appendix F) (Sehwag et al., 2021; Rade & Moosavi-Dezfooli, 2021; Rebuf et al., 2021; An-
driushchenko & Flammarion, 2020; Gowal et al., 2020; Sridhar et al., 2021; Wong et al., 2020; Engstrom et al., 2019;
Carmon et al., 2019; Wang et al., 2020; Wu et al., 2020; Zhang et al., 2021al)., frmrm bounded perturbation that

jix xji, ,we alsocompare the performance on the 6 defenses of RobustBench in Figure 8 and Figure 9 (Sehwag et al.,
2021; Rade & Moosavi-Dezfooli, 2021; Rice et al., 2020; Rebuf et al., 2021; Engstrom et al., 2019; Augustin et al., 2020).
Experimental results verify the effectiveness of MM attack on diverse trained model in RobustBench.

G. Experimental Details of Adversarial Training

We choosd 1testing methods to evaluate the robustness of MM attack-based AT. Table 3 reports the performance. MM3-F10
(MM3-F20) denotes AT using adversarial examples generated by MM attack with 10 (20) xed steps. MM3 denotes AT using
adversarial examples generated by MM attack with 20 adaptive steps. As shown in Table 3, by replacing PGD-generated
adversarial examples with MM-attack-generated adversarial examples, the robustness of AT model is signi cantly improved.
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Algorithm 2 Adversarial Training of MM attack.

. Input: network architecturé parametrized by, training datase$, loss functiorl, learning rate , number of epoch¥, batch size
n;

2: Output: Adversarial robust network ;

3: for epoch =1;2;:::;T do

4 for mini-batch=1,2,.. N do

5: Sample a mini-batch(xi; yi)g_, fromS;

6

7

8

9

[EnY

Obtain adversarial data of MM attazR of x; by Algorithm 1;
end for
P, . 0
: iz T (F (X5)5yi)=n;
0: end for
1: end for

Table 4.Test accuracy (%): Replacing natural data with adversarial data in STARS mé&tffodepresents the difference between the
current result and the optimal result in the sub-column. The model structure of all methods is ResNet-18. Bold values represent the lowest
accuracy (the highest attack success rate) in each sub-column.

Dataset ‘ Reference attack ‘ Select- ‘ MM3 Diff. ‘ MM9 Diff.
CIFAR-10 | None | 8/255 | 48.23 -0.42 | 47.81 0.00
CIFAR-10 | FGSM | 8/255 | 48.05 -0.24 | 47.81 0.00
CIFAR-10 | PGD-20 | 8/255 | 47.92 -0.11 | 47.81 0.00
CIFAR-10 | PGD-20 | 6/255 | 47.98 -0.17 | 47.81 0.00
CIFAR-10 | PGD-20 | 4/255 | 48.04 -0.23 | 47.81 0.00

SVHN | None | 8/255 | 52.45 -0.61 | 51.84 0.00

SVHN | FGSM | 8/255 | 52.07 -0.23 | 51.84 0.00

SVHN | PGD-20 | 8/255 | 51.97 -0.13 | 51.84 0.00

SVHN | PGD-20 | 6/255 | 52.00 -0.16 | 51.84 0.00

SVHN | PGD-20 | 4/255 | 52.07 -0.23 | 51.84 0.00
CIFAR-100 | None | 8/255 | 23.92 -0.41 | 2351 0.00
CIFAR-100 | FGSM | 8/255 | 23.63 -0.12 | 2351 0.00
CIFAR-100 | PGD-20 | 8/255 | 2357 -0.06 \ 2351 0.00
CIFAR-100 | PGD-20 | 6/255 | 23.57 -0.06 | 23,51 0.00
CIFAR-100 | PGD-20 | 4/255 | 23.63 -0.12 | 2351 0.00

H. Experimental Resources

We implement all methods on Pyth8t¥ (Pytorchl:7:1) with an NVIDIA GeForce RTX 3090 GPU with AMD Ryzen
Threadripper 3960X 24 Core Processor. The CIFAR-10 dataset, the SVHN and the CIFAR-100 dataset can be downloaded
via Pytorch. Given th&0; 000images from the CIFAR-10 and CIFAR-100 training s&; 257 digits from the SVHN

training set, we conduct the adversarial training on ResNet-18 and Wide ResNet-34 for classi cation.
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Table 5.Test accuracy (%): the rationality of MM under different step sizes and step nunibifirsepresents the difference between
the current result and the optimal result in the row. The model structure of all methods is ResNet-18. Bold values represent the lowest
accuracy (the highest attack success rate) in each row.

Stepsize | Steprum |  PGD-20 Diff. | cw Diff. |  MM3-F Diff. |  MM9-F Diff.
CIFAR-10
0003 | 20 | 5114 333 | 49.95 214 | 4823 042 | 4781 0.00
1255 | 40 | 5016 315 | 4913 212 | 4748 -045 | 4701 0.00
1/255 | 20 | 5028 322 | 4919 213 | 4750 044 | 47.06 0.00
1255 | 40 | 4930 292 | 4845 207 |  46.88 050 |  46.38 0.00
21255 | 10 | 5054 326 | 49.38 210 | 4670 042 | 4728 0.00
2/255 | 20 | 4936 293 | 4848 205 | 46.92 -049 | 4643 0.00
41255 | 10 | 4952 297 | 4860 205 | 47.02 -047 | 4655 0.00
SVHN
0003 | 20 | 5768 584 | 5442 258 | 5245 061 | 5184 0.00
1255 | 40 |  56.03 578 | 5290 -2.65 | 5091 -0.66 | 5025 0.00
1/255 | 20 | 5681 574 |  53.69 262 | 5172 -065 |  51.07 0.00
1255 | 40 | 5549 550 | 5259 -2.60 | 5065 -0.66 | 49.99 0.00
21255 | 10 | 5730 571 | 5412 253 | 5219 -0.60 | 5159 0.00
21255 | 20 | 5545 532 | 5270 257 | 50.79 066 | 5013 0.00
41255 | 10 | 5616 513 | 5352 249 | 5162 059 | 51.03 0.00

Table 6.Test accuracy (%): the rationality of MM under differdht[x]. Diff. represents the difference between the current result and the
optimal result in the row. The model structure of all methods is ResNet-18. Bold values represent the lowest accuracy (the highest attack
success rate) in each row.

|  PGD-20 Diff. | cw Diff. |  MM3F Diff. | MM9-F Diff.
ResNet-18
4 | 67.90 070 |  68.06 -0.86 | 67.23 -0.03 | 67.20 0.00
8 | 51.14 333 | 4995 214 | 48.23 042 | 47.81 0.00
12 | 4553 462 | 4385 2,94 | 41.86 095 | 40.91 0.00
WRN-34
4 | 70.23 030 | 7055 -0.62 | 69.94 001 | 69.93 0.00
8 | 53.69 207 | 5389 221 | 51.95 -0.33 | 51.62 0.00

12 | 46.76 -3.68 | 46.24 316 | 44.05 097 | 43.08 0.00
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(a) Evaluation on Sehwag et al. (2021) (b) Computational time on Sehwag et al. (2021)

(c) Evaluation on Rade & Moosavi-Dezfooli (2021) (d) Computational time on Rade & Moosavi-Dezfooli (2021)

(e) Evaluation on Rebuf et al. (2021) (f) Computational time on Rebuf et al. (2021)

(g) Evaluation on Andriushchenko & Flammarion (2020fh) Computational time on Andriushchenko & Flammarion
(2020)

Figure 5.Comparison of reliability and computational cost on different defense in RobustBench. We compare three versions of our MM
attack (MM3, MM5 and MM+ mentioned in Section 4) with 8 baselines. In sub gure (a), (c),(e) and (g), the Y-axis is the accuracy of the
attacked model, which means that the lower the accuracy, the stronger the attack (or to say the better evaluation). In sub gure (b), (d), (f)

and (h), the Y-axis is computational time, which means the less the time, the higher the computational ef ciency. Experiments are on
CIFAR-10 withL 1 -norm bounded perturbation.



Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack

(a) Evaluation on Gowal et al. (2020) (b) Computational time on Gowal et al. (2020)

(c) Evaluation on Sridhar et al. (2021) (d) Computational time on Sridhar et al. (2021)

(e) Evaluation on Wong et al. (2020) (f) Computational time on Wong et al. (2020)
(g) Evaluation on Engstrom et al. (2019) (h) Computational time on Engstrom et al. (2019)

Figure 6.Comparison of reliability and computational cost on different defense in RobustBench. We compare three versions of our MM
attack (MM3, MM5 and MM+ mentioned in Section 4) with 8 baselines. In sub gure (a), (c),(e) and (g), the Y-axis is the accuracy of the
attacked model, which means that the lower the accuracy, the stronger the attack (or to say the better evaluation). In sub gure (b), (d), (f)

and (h), the Y-axis is computational time, which means the less the time, the higher the computational ef ciency. Experiments are on
CIFAR-10 withL 1 -norm bounded perturbation.



Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack

(a) Evaluation on Carmon et al. (2019) (b) Computational time on Carmon et al. (2019)
(c) Evaluation on Wang et al. (2020) (d) Computational time on Wang et al. (2020)
(e) Evaluation on Wu et al. (2020) (f) Computational time on Wu et al. (2020)
(g) Evaluation on Zhang et al. (2021a) (h) Computational time on Zhang et al. (2021a)

Figure 7.Comparison of reliability and computational cost on different defense in RobustBench. We compare three versions of our MM
attack (MM3, MM5 and MM+ mentioned in Section 4) with 8 baselines. In sub gure (a), (c),(e) and (g), the Y-axis is the accuracy of the
attacked model, which means that the lower the accuracy, the stronger the attack (or to say the better evaluation). In sub gure (b), (d), (f)

and (h), the Y-axis is computational time, which means the less the time, the higher the computational ef ciency. Experiments are on
CIFAR-10 withL 1 -norm bounded perturbation.



