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Abstract
We consider a batch active learning scenario
where the learner adaptively issues batches of
points to a labeling oracle. Sampling labels in
batches is highly desirable in practice due to the
smaller number of interactive rounds with the la-
beling oracle (often human beings). However,
batch active learning typically pays the price of a
reduced adaptivity, leading to suboptimal results.
In this paper we propose a solution which requires
a careful trade off between the informativeness
of the queried points and their diversity. We the-
oretically investigate batch active learning in the
practically relevant scenario where the unlabeled
pool of data is available beforehand (pool-based
active learning). We analyze a novel stage-wise
greedy algorithm and show that, as a function
of the label complexity, the excess risk of this
algorithm matches the known minimax rates in
standard statistical learning settings. Our results
also exhibit a mild dependence on the batch size.
These are the first theoretical results that employ
careful trade offs between informativeness and di-
versity to rigorously quantify the statistical perfor-
mance of batch active learning in the pool-based
scenario.

1. Introduction
The aim of Active Learning is to reduce the data require-
ment of training processes through the careful selection
of informative subsets of the data across several interac-
tive rounds. This increased interactive power enables the
adaptation of the sampling process to the actual state of
the learning algorithm at hand, yet this benefit comes at
the price of frequent re-training of the model and increased
interactions with the labeling oracle (which is often just a
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pool of human labelers).

The batch mode of active learning is one where labels
are queried in batches of suitable size, and the models
are re-trained/updated either after each batch or even less
frequently. This sampling mode often corresponds to the
way labels are gathered in practical large-scale processing
pipelines.

Batch active learning tries to strike a reasonable balance
between the benefits of adaptivity and the costs associated
with interaction and re-training. Yet, since the sampling is
split into batches, and model updates can only be performed
at the end of each batch, a batch active learning algorithm
has to prevent to the extent possible the sampling of redun-
dant points. The standard trade-off that arises is then to
ensure that the sampled points are informative enough for
the model, if taken in isolation, while at the same time being
diverse enough so as to avoid sampling redundant labels.

We study batch active learning in the pool-based model,
where an unlabeled pool of data is made available to the
algorithm beforehand, and the goal is to single out a subset
of the data so as to achieve the same statistical performance
as if training were carried out on the entire pool. In this
setting, we describe and analyze novel algorithms that ob-
tain minimax rates of convergence of their excess risk as
a function of the number of requested labels. Interestingly
enough, these optimal rates are retained even if we allow
the batch size to grow with the pool size, the actual trade-off
being ruled by the amount of noise in the data. Another
appealing aspect is that our algorithms guarantee a number
of re-training rounds which is at worst logarithmic, while
being able to automatically adapt to the level of noise.

We operate in specific realizable settings, starting with lin-
ear or generalized linear models, and then extending our
results to the more general non-linear setting. Unlike what
is traditionally done by many algorithmic solutions to ac-
tive learning available in the literature (e.g., (Balcan et al.,
2007; Balcan & Long, 2013; Zhang & Li, 2021)), we do
not formulate strong assumptions on the input distribution.
We establish careful trade-offs between the informativeness
and the diversity of the queried labels, and rigorously quan-
tify the statistical performance on batch active learning in
a noisy pool-based setting. To our knowledge, these are
the first guarantees of this kind that apply to a noisy (hence
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realistic) batch pool-based active learning scenario. See also
the related work contained in Section 3.

1.1. Content and contributions

Our contributions can be described as follows.

1. We present an efficient algorithm for pool-based batch
active learning for noisy linear models (Algorithm 1).
This algorithm generates pseudo-labels by computing
sequences of linear classifiers that restrict their atten-
tion to exponentially small regions of the margin space,
and then trains a single model based on the pseudo-
labels only. The design inspiring the sampling within
each stage is a G-optimal design, computed through a
greedy strategy. We show (Theorem 4.1) that under the
standard i.i.d. assumption of the (input, label) pairs,
the model so trained enjoys an excess risk bound with
respect to the Bayes optimal predictor which is best
possible, when expressed in terms of the total number
of requested labels. The number of re-training stages
(that is, the number of linear classifiers computed to
generate pseudo-labels) is at most logarithmic in the
pool size, and automatically adapts to the noise level
without knowing it in advance.

2. Since the above algorithm does not operate on a con-
stant batch size B, we show in Section 4.2 an easy
adaptation to the constant batch size, and make the
observation that B therein may also scale as T β , for
some exponent β < 1 that depends on the amount of
noise (see comments surrounding Corollary 4.2), still
retaining the above-mentioned optimal rates.

3. We extend in Section 5 our results to the generalized
linear case (specifically, the logistic case), and point
out that restricting to exponentially small regions of the
margin space is also beneficial for obtaining bounds
with a milder dependence on the loss curvature.

4. Last but not least, despite we work out the details
only for (generalized) linear models, our algorithmic
technique can be seen as a skeleton technique that can
be applied to more general situations, provided the
estimators employed at each stage and the diversity
measure guiding the design have matching properties,
as briefly discussed in Section 6.

2. Preliminaries and Notation
We denote by X the input space (e.g., X = Rd), by Y the
output space, and byD an unknown distribution over X ×Y .
The corresponding random variables will be denoted by x
and y. We also denote by DX the marginal distribution of
D over X . Given a function h (also called a hypothesis or a

model) mapping X to Y , the population loss (often referred
to as risk) of h is denoted by L(h), and defined as L(h) =
E(x,y)∼D[loss(h(x), y)], where loss(·, ·) : Y×Y → [0, 1]
is a given loss function. For simplicity of presentation, we
restrict ourselves to a binary classification setting with 0-1
loss, so that Y = {−1,+1}, and loss(ŷ, y) = 11{ŷ 6= y} ∈
{0, 1}, being 11{·} the indicator function of the predicate
at argument. When clear from the surrounding context, we
will omit subscripts like “(x, y) ∼ D” from probabilities
and expectations.

We are given a class of models F = {f : X → [0, 1]} and
the Bayes optimal predictor h∗(x) = sgn (f∗(x)− 1/2),
where

f∗(x) = P(y = 1|x)

is assumed to belong to class F (the so-called realizability
assumption). This assumption is reasonable whenever the
model classF we operate on is wide enough. For instance, a
realizability (or quasi-realizability) assumption seems natu-
ral in overparameterized settings implemented by nowdays’
Deep Neural Networks.

As a simple example, we consider a generalized linear model

f∗(x) = σ(〈w∗,x〉) , (1)

where σ : R → [0, 1] is a suitable sigmoidal function,
e.g., σ(z) = ez

1+ez , w∗ is an unknown vector in Rd, with
bounded (Euclidean) norm ||w|| ≤ R for some R ≥ 1, and
〈·, ·〉 denotes the usual inner product in Rd.

Throughout this paper, we adopt the commonly used low-
noise condition on the marginal distribution DX of Mam-
men & Tsybakov (1999): there are constant c > 0, ε0 ∈
(0, 1] and exponent α ≥ 0 such that for all ε ∈ (0, ε0] we
have

P
(
|f∗(x)− 1/2| < ε/2

)
≤ c εα . (2)

Notice, in particular, that α→∞ gives the so-called hard
margin condition P

(
|f∗(x)− 1/2| < ε

)
= 0. while, at the

opposite end of the spectrum, exponent α = 0 (and c = 1)
corresponds to making no assumptions whatsoever on DX .
For simplicity, we shall assume throughout that the above
low-noise condition holds for c = 1. The noise exponent
α and range constant ε0 are typically unknown, and our
algorithms will not rely on the prior knowledge of them.

We are given a class of models F , and a pool P of T un-
labeled instances x1, . . . ,xT ∈ X , drawn i.i.d. according
to a marginal distribution DX obeying condition (2) (with
c = 1). The associated labels y1, . . . , yT ∈ Y are such that
the pairs (xt, yt), t = 1, . . . , T , are drawn i.i.d. according
toD, the labels being generated according to the conditional
distribution determined by some f∗ ∈ F . The labels are not
initially revealed to us, and the goal of the active learning
algorithm is to come up at the end of training with a model
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ĥ : X → Y whose excess risk L(ĥ)−L(h∗) is as small as
possible, while querying as few labels as possible in P .

The way labels are queried follows the standard batch active
learning protocol. We are given a batch size B ≥ 1. Label
acquisition and learning proceeds in a sequence of stages,
` = 1, 2, . . .. At each stage `, the algorithm is allowed to
query B-many labels by only relying on labels acquired
in the past ` − 1 stages. Notice that each point xt in pool
P can only be queried once, which is somehow equivalent
to assuming that the noise in the corresponding label yt is
persistent. We shall henceforth denote by NT (P) the total
number of labels (sometimes referred to as label complexity)
queried by the algorithm at hand on poolP , and byNT,B(P)
the same quantity if we want to emphasize the dependence
on B.

The analysis of our algorithms hinges upon a suitable mea-
sure of diversity, D(x, S), that quantifies how far off a
data point x ∈ X is from a finite set of points S ⊆ X .
Though many diversity measures may be adopted for practi-
cal purposes (e.g., (Wei et al., 2015; Sener & Savarese, 2018;
Kirsch et al., 2019; Ash et al., 2020; Killamsetty et al., 2020;
Kirsch et al., 2021; Citovsky et al., 2021)), the one enabling
tight theoretical analyses for our algorithms is a spectral-like
diversity measure defined in the finite dimensional caseX =

Rd as D(x, S) = 〈x,x〉
1
2

A−1
S

= ||x||A−1
S

=
√
x>A−1

S x ,

that is, the Mahalanobis norm of x w.r.t. the positive semi-
definite matrix A−1

S , where AS = I +
∑

z∈S zz
> , being I

the d× d identity matrix. Notice that D(x, S) is large when
x is aligned with small eigenvectors of AS , while it is small
if x is aligned with large eigenvectors of that matrix. In par-
ticular, D(x, S) achieves its maximal value ||x||2 when x
is orthogonal to the space spanned by S. Hence, x is “very
different” from S as measured by D(x, S) if x contributes
a direction of the input space which is not already spanned
by S. We denote by |AS | the determinant of matrix AS .

At an intuitive level, since the label requests are batched,
and model updates are typically performed only at the end
of each stage, a batch active learning algorithm is compelled
to operate within each stage by trading off the (predicted)
informativeness of the selected labels against the diversity
of the data points whose labels are requested. Moreover,
the larger the batch size B the less adaptive the algorithm is
forced to be, hence we expect B to somehow play a role in
the performance of the algorithm.

From a practical standpoint, there are indeed two separate
notions of adaptivity to consider. One is the number of
interactive rounds with the labeling oracle, the other is the
number of times we re-train (or update) a model based on
the labels gathered during the interactive rounds. The two
notions need not coincide. While the former essentially
accounts for the cost of interacting with human labelers, the

latter is more related to the cost of re-training/updating a
(potentially very complex) learning system.

3. Related Work
While experimental studies on batch active learning are re-
ported since the early 2000s (see, e.g., (Hoi et al., 2006)),
it is only with the deployment at scale of Deep Neural Net-
works that we have seen a general resurgence of interest
in active learning, and batch active learning in particular.
The batch pool-based model studied here is the one that
has spurred the widest attention, as it corresponds to the
way in practice labels are gathered in large-scale processing
pipelines. This interest has generated a flurry of recent in-
vestigations, mainly of experimental nature, yet containing
a lot of interesting and diverse approaches to batch active
learning. Among these are (Gu et al., 2012; 2014; Sener &
Savarese, 2018; Kirsch et al., 2019; Zhdanov, 2019; Shui
et al., 2020; Ash et al., 2020; Kim et al., 2020; Killam-
setty et al., 2020; Kirsch et al., 2021; Ghorbani et al., 2021;
Citovsky et al., 2021; Kothawade et al., 2021).

On the theoretical side, active learning is a well-studied sub-
field of statistical learning. General references in pool-based
active learning include (Dasgupta, 2004; 2005; Hanneke,
2014; Nowak, 2011; Tosh & Dasgupta, 2017), and specific
algorithms for half-spaces under classes of input distribu-
tions are contained, e.g., in (Balcan et al., 2007; Balcan &
Long, 2013; Zhang & Li, 2021). However, none of these
papers tackle the practically relevant scenario of batch ac-
tive learning. In fact, restricting to theoretical aspects of
batch active learning makes the research landscape far less
populated. Below we briefly summarize what we think are
among the most relevant papers to our work, as directly
related to batch active learning, and then mention recent
efforts in contiguous fields, like adaptive sampling and sub-
set selection, which may serve as a general reference and
inspiration.

Batch active learning in the pool-based scenario is one of the
motivating applications in (Chen & Krause, 2013), where
the main concern is to investigate general conditions under
which a batch greedy policy achieves similar performance
as the optimal policy that operates with the same batch
size. Yet, the authors consider simple noise free scenarios,
while the important observation (Theorem 2 therein) that a
batch greedy algorithm is also competitive with respect to
an optimal fully sequential policy (batch size one) does not
apply to active learning. Chen et al. (2015; 2017) are along
similar lines, with the addition of persistent noise, but do
not tackle batch active learning problems.

A paper with a similar aim as ours, yet operating in the
streaming setting of active learning, is (Amin et al., 2020).
The authors show that some classes of fully sequential ac-
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tive algorithms can be turned into sequential algorithms that
query labels in batches and suffer only an additive (times log
factors) overhead in the label complexity. This transforma-
tion is essentially obtained by freezing the state of the fully
sequential algorithm, but it is unclear whether any notion of
diversity over the batch is enforced by the resulting batch
algorithms.

Very recent stream-based active learning papers that are
worth mentioning are (Katz-Samuels et al., 2021; Camilleri
et al., 2021b)). These papers share similar methods and
modeling assumptions as ours in leveraging optimal design,
but they do not deal with batch active learning. The main
concern there is essentially to improve the performance of
adaptive sampling by reducing the variance of the estima-
tors.

A learning problem similar to pool-based batch active learn-
ing is training subset selection (sometimes called dataset
summarization), whose goal is to come up with a com-
pressed version of a (big) dataset that offers to a given learn-
ing algorithm the same inference capabilities as if applied
to the original dataset. The problem can be organized in
rounds (as in batch active learning) and bridging one to the
other can in practice be done by label hallucination/pseudo-
labeling. Representative works include (Wei et al., 2015;
Killamsetty et al., 2020; Borsos et al., 2021).

4. The Linear Case
We start off by considering a simple linear model of the
form f∗(x) = 1+〈w∗,x〉

2 , where both w∗ and x lie in the d-
dimensional Euclidean unit ball (so that 〈w∗,x〉 ∈ [−1, 1]
and f∗(x) ∈ [0, 1]). Algorithm 1 contains in a nutshell the
main ideas behind our algorithmic solutions, which is to
greedily approximate a G-optimal design in the selection of
points at each stage. The way it is formulated, Algorithm 1
does not operate with a constant batch size B per stage. We
will reduce to the constant batch size case in Section 4.2.

The algorithm takes as input a finite pool of points P of size
T and proceeds across stages ` = 1, 2, . . . by generating
at each stage ` a (linear-threshold) predictor sgn(〈w`,x〉),
where w` is a ridge regression estimator computed only
on the labeled pairs (x`,1, y`,1), . . . , (x`,T` , y`,T`) collected
during that stage. These predictors are used to trim the
current pool P`−1 by eliminating both the points on which
w` is itself confident (set C`) and those whose labels have
just been queried (set Q`). At each stage `, the points x`,t
to query are selected in a greedy fashion by maximizing 1

D(x,Q`) = ||x||A−1
`,t−1

over the current pool P`−1 (exclud-
ing the already selected points Q`, which are contained in
A`,t−1), so as to make x`,t maximally different from Q`.

1As a matter of fact, the chosen x`,t need not be the maximizer
of D(x,Q`), the analysis only requires D(x`,t,Q`) > ε`.

Algorithm 1: Pool-based batch active learning algo-
rithm for linear models.

1 Input: Confidence level δ ∈ (0, 1], pool of instances
P ⊆ Rd of size |P| = T

2 Initialize: P0 = P
3 for ` = 1, 2, . . . ,
4 Initialize within stage `:

• ε` = 2−`/(
√

2 log 2`(`+1)T
δ + 1)

• A`,0 = I , t = 0, Q` = ∅

while P`−1\Q` 6= ∅ and max
x∈P`−1\Q`

‖x‖A−1
`,t
> ε`

• t = t+ 1

• Pick x`,t ∈ argmax
x∈P`−1\Q`

‖x‖A−1
`,t−1

• Update A`,t = A`,t−1 + x`,tx
>
`,t

• Q` = Q` ∪ {x`,t}

Set T` = t, the number of queries made in stage `
if Q` 6= ∅

• Query the labels y`,1, . . . , y`,T` associated with
the unlabeled data in Q`, and compute

w` = A−1
`,T`

T∑̀
t=1

y`,tx`,t

• Set C` = {x ∈ P`−1\Q` : |〈w`,x〉| > 2−`}

• Compute pseudo-labels on each x ∈ C` as
ŷ = sgn〈w`,x〉

else
w` = 0, C` = ∅

Set P` = P`−1\(C` ∪Q`)

if d/2−`+1 > 2−`+1|P`|

• L = `

• Exit the for-loop (L is the total no. of stages)

5 Predict labels in pool P:

• Train an SVM classifier ŵ on ∪L`=1C` via the
generated pseudo-labels ŷ

• Predict on each x ∈ (∪L`=1Q`) ∪ PL through
sgn(〈ŵ,x〉)
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When stage ` terminates, we are guaranteed that we have
collected a set of points Q` such that all remaining points
x in the pool satisfy D(x,Q`) ≤ ε`. Threshold ε`, defined
at the beginning of the stage, is exponentially decaying
with `. It is this threshold that determines the actual length
of the stage, and rules the elimination of unqueried points
from the pool, along with the corresponding generation of
pseudo-labels during the stage.

Algorithm 1 stops generating new stages when the size |P`|
of pool P` triggers the condition d/2−`+1 > 2−`+1|P`|
(which is satisfied, in particular, when P` becomes empty).
In that case, the current stage ` becomes the final stage L.

Finally, the algorithm uses the subset of points ∪L`=1C` and
the associated pseudo-labels ŷ generated during the L stages
to train a linear classifier ŵ (e.g., an SVM) to zero empirical
error on that subset. Our analysis (see Appendix A) shows
that with high probability such a consistent linear classifier
exists. Each point x that remains in the pool, that is, each
x ∈ (∪L`=1Q`)∪PL, is assigned label sgn(〈ŵ,x〉). Notice,
in particular, that ŵ is not trying to fit the queried labels of
∪L`=1Q`, but only the pseudo-labels of ∪L`=1C`.

The fact that the algorithm only uses pseudo-labels to train
its final predictor may look counter-intuitive at first, but
this is due to our proof technique that derives an excess risk
bound out of weighted empirical risk bounds — see, e.g., the
proof sketch of Theorem 4.1. Algorithmically, the queried
labels can be noisy and, in general, we do not know whether
they are consistent with the Bayes optimal predictor w∗. In
this sense, the process of generating pseudo-labels can be
seen as a label denoising process. This is made possible
by our algorithm, which guarantees (with high probability)
that for the selected data points, pseudo-labels generated by
the model are consistent with those of the Bayes optimal
predictor, while labels of other data (including those in the
training data) may not.

Further, notice that the final predictor ŵ need not be an
SVM. Any training algorithm that returns a linear classifier
which is consistent with the pseudo-labels will suffice. From
our analysis we know that such a linear classifier has to exist
(with high probability). Incidentally, this is the main the
reason why relying on (denoised) pseudo-labels facilitates
our statistical analysis, beyond the involved algorithmics.

It is also worth observing how Algorithm 1 resolves the
trade-off between informativeness and diversity we al-
luded to in previous sections. Once we reach stage `,
what remains in the pool are only the points x such that
|〈w`−1,x〉| ≤ 2−`+1 (this is because we have eliminated
in stage `− 1 all the points in C`−1). Hence, the remaining
points which the approximate G-optimal design operates
with in stage ` are those which the previous model w`−1 is
not sufficiently confident on. The algorithm then puts all

these low-confident points on the same footing (that is, they
are considered equally informative if taken in isolation), and
then relies on the approximate G-optimal design scheme
to maximize diversity among them. The set-wise diversity
measure we end up maximizing is indeed a determinant-like
diversity measure. This is easily seen from the fact that∑T`
t=1 ||x`,t||2A−1

`,t−1

≈ log |A`,T` | .

On one hand, this careful selection of points contributes
to keeping the variance of estimator w` under control. On
the other hand, the fact that we stop accumulating labels
when max

x∈P`−1\Q`
‖x‖A−1

`,T`

≤ ε` essentially implies that

sgn(〈w`,x〉) = sgn(〈w∗,x〉) on all points x we generate
pseudo-labels for, which in turn ensures that these pseudo-
labels are consistent with w∗.

Sequential experimental design has become popular, e.g., in
the (contextual) bandits literature, see Ch. 22 in (Lattimore
& Szepesvari, 2020), and is explicitly contained in recent
works on best arm identification (e.g., (Fiez et al., 2019;
Camilleri et al., 2021a)). Notice that in those works a design
is a distribution over the set of actions (which would corre-
spond to pool P in our case), and the algorithm is afforded
to sample a given action xt multiple times, obtaining each
time a fresh reward value yt such that E[yt |xt] = 〈w∗,xt〉.
This is not conceivable in a pool-based active learning sce-
nario where label noise is persistent, and each “action” xt
can only be played once. This explains why the design we
rely upon here is necessarily more restrained than in those
papers.

4.1. Analysis

The following is the main result of this section.2

Theorem 4.1. Let T ≥ d and assume that ‖x‖2 ≤ 1 for all
x ∈ P . Then with probability at least 1−δ over the random
draw of (x1, y1), . . . , (xT , yT ) ∼ D the excess risk L(ŵ)−
L(w∗), the label complexity NT (P), and the number of
stages L generated by Algorithm 1 are simultaneously upper
bounded as follows:

L(ŵ)− L(w∗)

≤ C̄C(δ, T, ε0)

(
max

{(
d

T

)α+1
α+2

,
d

T ε0

}
+

log
(

log T
δ

)
T

)
,

NT (P)

≤ C̄C(δ, T, ε0)

(
max

{
d

α
α+2T

2
α+2 ,

d

ε20

}
+ log2

(
log T

δ

))
,

L ≤ C̄

(
max

{
log
(
T
d

)
α+ 2

, log

(
4

ε0

)}
+ log

(
log T

δ

))
,

2Detailed proofs are deferred to the appendices.
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for an absolute constant C̄ and

C(δ, T, ε0) = log2

(
T

δ

)(
1 + log2

(
1

ε0

))
.

Proof sketch. We first derive a high-probability bound on
the weighted empirical risk

RT (P) =
∑
x∈P

11{sgn〈ŵ,x〉 6= sgn〈w∗,x〉}|〈w∗,x〉| ,

and then turn it into an excess risk bound through a uni-
form convergence argument. In order to bound RT (P), we
partition the points in P into the three subsets

∪L`=1C`, ∪L`=1Q`, PL,

and consider the contribution to RT (P) of each subset sep-
arately.

When x ∈ ∪L`=1C`, we show that the pseudo-labels ŷ gen-
erated by the algorithm are with high probability consis-
tent with those generated by w∗, that is, sgn〈ŵ,x〉 =
sgn〈w∗,x〉, hence those x do not contribute to the weighted
empirical risk.

Any x ∈ Q`, is shown to contribute to RT (P) by at
most 2−`, thus the overall contribution of ∪L`=1Q` can be
bounded by

∑L
`=1 T`/2

`. In turn, by the way points are
picked, T` is roughly bounded by d/ε2` , allowing us to con-
clude that the total contribution of ∪L`=1Q` is bounded by

L∑
`=1

2−`d/ε2` ≈ d/εL .

Next, for x ∈ PL, we show that (with high probability) it
must be |〈w∗,x〉| ≤ 2−L which, combined with the stop-
ping condition defining L implies an overall contribution of
the same form d/εL.

Finally, since L is itself a random variable, we need to
devise high probability upper bounds on it. We rely on the
low noise assumption (2) to conclude that L is with high
probability of the form

max

{
log(T/d)

α+ 2
, log

(
4

ε0

)}
,

which we replace back into the previous bounds yielding a
guarantee of the form

RT (P) . max

{
d
α+1
α+2 T

1
α+2 ,

d

ε0

}
,

hence an excess risk bound of the form

L(ŵ)− L(w∗) ≈ max

{(
d

T

)α+1
α+2

,
d

T ε0

}
.

The analysis of the label complexity NT (P) =
∑L
`=1 T`

follows a similar pattern, but it does not require uniform
convergence.

4.2. Constant batch size

We now describe a simple modification to Algorithm 1 that
makes it work in the constant batch size case. Let us denote
by T` the length of stage ` in Algorithm 1. The modified
algorithm simply runs Algorithm 1: If T` < B the modified
algorithm relies on model w` generated by Algorithm 1
without saturating the budget of B labels at that stage. On
the contrary, if T` ≥ B, the modified algorithm splits stage
` of Algorithm 1 into dT`/Be stages of size B (except,
possibly, for the last one), and then uses the queried set Q`
generated by Algorithm 1 across all those stages. Hence,
in this case, the modified algorithm is not exploiting the
potential benefit of updating the model every B queried
labels. For instance, if B = 100 and T` = |Q`| = 240, the
modified algorithm will split this stage into three successive
stages of size 100, 100, and 40, respectively, and then rely on
the 240 labels queried by Algorithm 1 across the three stages.
In particular, the update of the model w`, and the associated
pseudo-label computation on sets C` is only performed at
the end of the third stage.

Notice that the modified algorithm we just described is a
legitimate pool-based batch active learning algorithm oper-
ating on a constant batch size B, and its analysis is a direct
consequence of the one in Theorem 4.1, after we take care
of the possible over-counting that may arise in the reduction.
Specifically, observe that the final hypothesis ŵ produced
by the modified algorithm is the same as the one computed
by Algorithm 1, hence the same bound on the excess risk
applies. As for label complexity, if we stipulate that a batch
algorithm operating on a constant batch sizeB will be billed
B labels at each stage even if it ends up querying less, then
the label complexity of the modified algorithm will over-
count the number of labels simply due to the rounding off
in dT`/Be. However, at each of the L stages of Algorithm
1, the over-counting is bounded by B, so that, overall, the
label complexity of the constant batch size variant exceeds
the one of Algorithm 1 by at most an additive BL term
which, due to the bound on L in Theorem 4.1, is of the form
max

{
B
α+2 log

(
T
d

)
, B log

(
1
ε0

)}
. This is summarized in

the following corollary.

Corollary 4.2. With the same assumptions and notation
as in Theorem 4.1, with probability at least 1 − δ over
the random draw of (x1, y1), . . . , (xT , yT ) ∼ D the label
complexity NT,B(P) achieved by the modified algorithm
operating on a batch of size B is bounded as follows:

NT,B(P)

≤ C̄C(δ, T, ε0)

(
max

{
d

α
α+2T

2
α+2 ,

d

ε20

}
+ log2

(
log T

δ

))

+BC̄

(
max

{
log
(
T
d

)
α+ 2

, log

(
4

ε0

)}
+ log

(
log T

δ

))
,



Pool-Based Batch Active Learning

where C̄, C(δ, T, ε0) are the same as in Theorem 4.1.

A few comments are in order.

1. An important practical aspect of this modified algo-
rithm (inherited from Algorithm 1) is the very mild
number of re-trainings required to achieve the claimed
performance. Despite the total number of labels can
be as large as T

2
α+2 , the number L of times the model

is actually re-trained is not T
2

α+2 /B, but only loga-
rithmic in T , irrespective of the noise level α (that is,
even when the low-noise assumption (2) is vacuous).
On the other hand, it is also important to observe that
the bound on L shrinks as α increases, that is, when
the problem becomes easier. Overall, these properties
make the algorithm attractive in practical learning sce-
narios where the re-training time turns out to be the
main bottleneck in the data acquisition process, and a
learning procedure is needed that automatically adapts
the re-training effort to the hardness of the problem.

2. Let us disregard lower order terms and only consider
the asymptotic behavior as T → ∞. Comparing the
excess risk bound in Theorem 4.1 to the label com-
plexity bound in Corollary 4.2, one can see that when
B = O(T

2
α+2 ) we have with high probability

L(ŵ)− L(w∗) ≈ 1

(NT,B(P))
1+α
2

, (3)

which is the minimax rate one can achieve for VC
classes3 under the low-noise condition (2) with expo-
nent α (e.g., (Castro & Nowak, 2008; Hanneke, 2009;
Koltchinskii, 2010; Dekel et al., 2012)). Hence, in
order to achieve high-probability minimax rates, one
need not try to make the algorithm more adaptive by
having it operate with an even smaller B: any B as
small as T

2
α+2 will indeed suffice in our learning sce-

nario.

3. Similar minimax bounds on excess risk against label
complexity have been shown in the streaming setting
in (Dekel et al., 2012; Wang et al., 2021), though their
results only hold in the fully sequential case (that is,
B = 1) and only hold in expectation over the random
draw of the data, not with high probability.

The fact that a batch greedy algorithm can be competitive
with a fully sequential policy has also been observed in
problems which are similar in spirit to active learning, like
influence maximization (see, in particular, (Chen & Krause,

3Notice that if we disregard the dependence on the VC-
dimension, and only focus on the dependence on the label com-
plexity NT,B(P), all these rates have the same form (3).

2013)). More recently, in the context of adaptive sequential
decision making, Esfandiari et al. (2021) have proposed an
efficient semi-adaptive policy that performs logarithmically-
many rounds of interaction achieving similar performance
as the fully sequential policy. This paper improves on the
original ideas contained in (Golovin & Krause, 2017). Yet,
when adapted to active learning, these results turn out to
apply to very stylized scenarios that assume lack of noise
in the labels, and/or disregard the computational aspects
associated with maintaining a posterior distribution or a
version space (which would be of size O(T d) in our case).

5. The Logistic Case
We now discuss how to extend the result of the previous
section to the logistic case (the generalized linear model (1)
with σ(z) = ez

1+ez ).

Algorithm 2 is the adaptation to the logistic case of the
algorithm of Section 4, the main difference being that we
now assume the comparison vector w∗ to lie in a Euclidean
ball of (known) radius R, and compute estimators w` as
regularized logistic regressors:

w` = argmin
w : max

x∈Q`
|〈w,x〉|≤2R`−1

[
T∑̀
t=1

Loss(y`,t〈w,x`,t〉)

+
1

8
e−4R`‖w‖2

]
, (4)

where Loss(·) is the logistic function

Loss(a) = log(1 + e−a) .

One of the main concerns in the logistic case is to investigate
how excess risk and label complexity bounds depend on the
complexity R of the comparison class. The following is the
logistic counterpart to Theorem 4.1.

Theorem 5.1. Let T ≥ d and assume that ‖x‖2 ≤ 1 for all
x ∈ P . Then with probability at least 1−δ over the random
draw of (x1, y1), . . . , (xT , yT ) ∼ D the excess risk L(ŵ)−
L(w∗), the label complexity NT (P), and the number of
stages L generated by Algorithm 2 are simultaneously upper
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Algorithm 2: Pool-based batch active learning algo-
rithm for logistic models.

1 Input: Confidence level δ ∈ (0, 1], pool of instances
P ⊆ Rd of size |P| = T , upper bound R > 0 on ||w∗||

2 Initialize: P0 = P
3 for ` = 1, 2, . . . ,
4 Initialize within stage `:

• R` = R 2−`

• ε` = R`/
(

16e8R`

√
d log 2d`(`+1)

δ + 4Re4R`
)

• A`,0 = I , t = 0, Q` = ∅

while P`−1\Q` 6= ∅ and max
x∈P`−1\Q`

‖x‖A−1
`,t
> ε`

• t = t+ 1

• Pick x`,t ∈ argmax
x∈P`−1\Q`

‖x‖A−1
`,t−1

• Update A`,t = A`,t−1 + x`,tx
>
`,t

• Q` = Q` ∪ {x`,t}

Set T` = t, the number of queries made in stage `
if Q` 6= ∅

• Query the labels y`,1, . . . , y`,T` associated with
the unlabeled data in Q`

• Compute w` as in (4)

• Set C` = {x ∈ P`−1\Q` : |〈w`,x〉| > R`}

• Compute pseudo-labels on each x ∈ C` as
ŷ = sgn〈w`,x〉

else
w` = 0, C` = ∅

Set P` = P`−1\(C` ∪Q`)

if d/(2R`) > 2R`|P`|

• L = `

• Exit the for-loop (L is the total no. of stages)

5 Predict labels in pool P:

• Train an SVM classifier ŵ on ∪L`=1C` via the
generated pseudo-labels ŷ

• Predict on each x ∈ (∪L`=1Q`) ∪ PL through
sgn(〈ŵ,x〉)

bounded as follows:

L(ŵ)− L(w∗)

= C̄Cd,R(δ, T, ε0)

(
max

{(
d

T

)α+1
α+2

,
d

T ε0

}

+
log
(

log T
δ

)
+ de8Rdlog2Re

T

)
,

NT (P)

= C̄Cd,R(δ, T, ε0)

(
max

{
d

α
α+2T

2
α+2 ,

d

ε20

}

+
log2

(
log T
δ

)
+ de8Rdlog2Re

T

)
,

L ≤ C̄

(
max

{
log
(
T
d

)
α+ 2

, log

(
4

ε0

)}
+ log

(
R log T

δ

))
,

where C̄ is an absolute constant and

Cd,R(δ, T, ε0) =

(
1 + log2

(
1

ε0

))(
d log

(
T

δ

)
+R2

)
×
(
R+ log

(
T

δ

))
.

In the above bounds, the complexity term R is meant to be
a constant. Notice that the dependence on eR is common to
many logistic bounds, specifically in the bandits literature.
This is due to the nonlinear shape of σ(·) (see, e.g., (Filippi
et al., 2010; Gentile & Orabona, 2012; Li et al., 2017; Faury
et al., 2020), where it takes the form of an upper bound on
1/σ′(·)). In fact, a closer look at the multiplicative depen-
dence on eR above reveals that this factor multiplies only
logarithmic terms in T . This is akin to the more refined self-
concordant analysis of logistic models contained in (Faury
et al., 2020). Since our algorithm is focusing attention to
exponentially shrinking regions of margin values 〈w∗,x〉
around the origin, we have obtained here similar guarantees
without resorting to a self-concordant analysis.

A constant batch size version of Algorithm 2 can also be
devised, and the associated properties spelled out. The
details are very similar to those in Section 4.2, and are
therefore omitted.

6. Conclusions and Ongoing Research
We have described and analyzed novel batch active learning
algorithms in the pool-based setting that achieve minimax
rates of convergence of their excess risk as a function of
the number of queried labels. The minimax nature of our
results is retained also when the batch size B is allowed to
scale polynomially (B ≤ T β , for β ≤ 1) with the size T
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of the training set, the allowed exponent β depending on
the actual level of noise in the data. The algorithms have a
number of re-training rounds which is at worst logarithmic,
and is able to automatically adapt to the noise level.

Our algorithms generate pseudo-labels by restricting to ex-
ponentially small regions of the margin space. In the logis-
tic case, this has the side benefit of delivering performance
bounds where the classical exponential dependence on the
complexity of the comparator w∗ occurs as a multiplicative
factor only in logarithmic terms.

The logistic algorithm we presented in Section 5 has a sub-
optimal dependence on the input dimension d (notice the
extra factor d contained in C1 in the excess risk bound of
Theorem 5.1), and we are currently trying to see if it is
possible to achieve the same result as in the linear case. For
the logistic case, a more computationally efficient algorithm
actually exists that is based on the online Newton step-like
analysis in (Gentile & Orabona, 2012). Yet, this algorithm
will have a similar suboptimal dependence on d.

Related to the above, we are currently investigating to what
extent it is possible to improve the logistic analysis so as
to turn the constrained minimization problem therein into
an unconstrained one. Analyses we are aware of in the
contiguous field of contextual bandits in generalized lin-
ear scenarios (e.g., (Li et al., 2017)) do not seem to help,
given the strong assumptions on the context distribution they
formulate to achieve the optimal dependence on d.

The methods we have presented here are instances of a
more general approach to batch active learning in realizable
settings where, given a diversity measure D(x, S), an esti-
mator f̂ = f̂(S) in fixed design scenarios exists for which
we can guarantee L∞ approximation bounds of the form

|f̂S(x)− f∗(x)| ≤ D(x, S) ∀x . (5)

For instance, our approach can be seamlessly extended to the
case where f∗ belongs to a RKHS, the algorithmic aspects
simply requiring a dual variable formulation of Algorithm 1,
and the statistical ones simply resorting to covering number
bounds (e.g., (Zhou, 2002)) or empirical versions thereof.
As another relevant example, (5) can be shown to hold for
known plug-in estimators, like local polynomial estimators
(e.g., Sect. 1.6.1. in (Tsybakov, 2009)). Hence our general
approach may be extended to those cases as well.
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A. Proofs for Section 4
Consider Algorithm 1, and denote by T` the length of stage `.

We denote for any ε > 0,

Tε = {x ∈ P : |〈w∗,x〉| ≤ ε} .

Recall that in Algorithm 1 variable L counts the total number of stages (a random quantity), while the size of the original
pool |P| is denoted by T .

We first show that on the confident sets, that is, on sets C` where pseudo-labels are generated, the learner has with high
probability no regret. Before giving our key lemma, it will be useful to define the events

E` =

{
max

x∈P`−1\Q`
|〈w` −w∗,x〉| ≤ 2−`

}
,

for ` = 1, . . . , L.

Lemma A.1. For any positive L,

P

(
L⋂
`=1

E`

)
> 1− δ .

Proof. We assume P`−1\Q` is not empty (it could be empty only in the final stage L). We follow the material contained
in Chapters 20 and 21 of Lattimore & Szepesvari (2020). Let ξ`,t = y`,t − 〈w∗,x`,t〉 and notice that ξ`,t are independent
1-sub-Gaussian random variables conditioned on P`−1. Also, observe that, conditioned on past stages 1, . . . , `− 1, we are
in a fixed design scenario, where the x`,t are chosen without knowledge of the corresponding labels y`,t. We can write, for
any x ∈ P`−1,

〈w` −w∗,x〉 = 〈A−1
`,T`

(
T∑̀
t=1

y`,tx`,t

)
−w∗,x〉

= 〈A−1
`,T`

(
T∑̀
t=1

x`,t〈w∗,x`,t〉+ ξ`,tx`,t

)
−w∗,x〉

= 〈A−1
`,T`

(A`,T` − I)w∗ +A−1
`,T`

(
T∑̀
t=1

ξ`,tx`,t

)
−w∗,x〉

= −〈w∗,x〉A−1
`,T`

+

T∑̀
t=1

〈x`,t,x〉A−1
`,T`

ξ`,t .

Since {ξ`,t}T`t=1 are 1-sub-Gaussian and independent conditioned on {x`,t}, the variance term
∑T`
t=1〈x`,t,x〉A−1

`,T`

ξ`,t is√∑T`
t=1〈x`,t,x〉2A−1

`,T`

-sub-Gaussian. We apply lemma C.5

P

∣∣∣ T∑̀
t=1

〈x`,t,x〉A−1
`,T`

ξ`,t

∣∣∣≥
√√√√2

T∑̀
t=1

〈x`,t,x〉2A−1
`,T`

log
2`(`+ 1)T

δ

 ≤ δ

`(`+ 1)T
.

Now observe that

T∑̀
t=1

〈x`,t,x〉2A−1
`,T`

= ‖x‖2
A−1
`,T`

− ‖A−1
`,T`

x‖2 ≤ ‖x‖2
A−1
`,T`

.
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We plug back into the previous inequality to obtain

P

(∣∣∣ T∑̀
t=1

〈x`,t,x〉A−1
`,T`

ξ`,t

∣∣∣≥
√

2‖x‖2
A−1
`,T`

log
2`(`+ 1)T

δ

)
≤ δ

`(`+ 1)T
.

Using a union bound, we get with probability at least 1− δ
`(`+1) ,

∣∣∣ T∑̀
t=1

〈x`,t,x〉A−1
`,T`

ξ`,t

∣∣∣ ≤
√

2‖x‖2
A−1
`,T`

log
2`(`+ 1)T

δ
,

holds uniformly for all x ∈ P`−1. For the bias term 〈w∗,x〉A−1
`,T`

, notice that A`,T` � I implies

|〈w∗,x〉A−1
`,T`

| ≤ ‖x‖A−1
`,T`

‖w∗‖A−1
`,T`

≤ ‖x‖A−1
`,T`

.

Hence with probability at least 1− δ
`(`+1) ,

|〈w` −w∗,x〉| ≤

(√
2 log

2`(`+ 1)T

δ
+ 1

)
‖x‖A−1

`,T`

,

holds uniformly for all x ∈ P`−1.

Notice that by the selection criterion in Algorithm 1, max
x∈P`−1\Q`

‖x‖A−1
`,T`

≤ ε2` . As a consequence, with probability at least

1− δ
`(`+1) ,

max
x∈P`−1\Q`

|〈w` −w∗,x〉| ≤

(√
2 log

2`(`+ 1)T

δ
+ 1

)
ε` .

Recalling the definition of ε` in Algorithm 1 and using an union bound over `, we get the desired result.

As a simple consequence, we have the following lemma.

Lemma A.2. Assume
⋂L
`=1 E` holds. Then Algorithm 1 generates pseudo-labels such that, on all points x ∈ ∪L`=1C`,

sgn(〈w`,x〉) = sgn(〈w∗,x〉).

Proof. Simply observe that if x ∈ ∪L`=1C` is such that sgn(〈w`,x〉) = 1 then 〈w`,x〉 > 2−`, which implies 〈w∗,x〉 > 0
by the assumption that E` holds. Similarly, sgn(〈w`,x〉) = −1 implies 〈w∗,x〉 < 0.

Lemma A.3. The length T` of stage ` in Algorithm 1 is (deterministically) upper bounded as

T` ≤
8d

ε2`
log

(
1

ε`

)
.

Proof. Since in stage ` the algorithm terminates at T`, any round t < T` is such that

||x`,t+1||2A−1
`,t

> ε2` .

We denote | · | as the determinant of the matrix at argument and have the known identity

|A`,t+1| = |A`,t + x`,t+1x
>
`,t+1| = |A`,t| · |I +A−1

`,t x`,t+1x
>
`,t+1| = (1 + ||x`,t+1||2A−1

`,t

)|A`,t| ≤ 2|A`,t| ,

where the third equality holds since I + A
−1/2
`,t x`,t+1x

>
`,t+1A

−1/2
`,t has d − 1 eigenvalues 1 and one eigenvalue 1 +

||x`,t+1||2A−1
`,t

.
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Combining the above equality with the fact that log(1 + x) ≥ x
1+x ≥

x
2 for 0 ≤ x ≤ 1, we get

||x`,t+1||2A−1
`,t

=
|A`,t+1|
|A`,t|

− 1 ≤ 2(log |A`,t+1| − log |A`,t|) .

Therefore,
2(log |A`,t+1| − log |A`,t|) > ε2` .

Summing over t = 0, . . . , T` − 1 yields,

2 log
|A`,T` |
|A`,0|

≥ ε2`T` .

Now, A`,0 = I , so that |A`,0| = 1, and

log |A`,T` | ≤ log (trace(A`,T`)/d)
d ≤ d log

(
1 +

T`
d

)
,

yields
T`
d
≤ 2

ε2`
log

(
1 +

T`
d

)
.

Let G(x) = x
log(1+x) , and notice that G(x) is increasing for x > 0. We have

G

(
T`
d

)
≤ 2

ε2`
< G

(
4

ε2`
log

1

ε2`

)
,

where the second inequality holds since ε` ≤ ε1 < 1
4 .

As a consequence,

T` ≤
8d

ε2`
log

(
1

ε`

)
.

The proof then proceeds by bounding two relevant quantities associated with the behavior of Algorithm 1: the label
complexity

NT (P) =

L∑
`=1

|Q`| ,

and the weighted cumulative regret over pool P of size T , defined as

RT (P) =
∑
x∈P

11{sgn〈ŵ,x〉 6= sgn〈w∗,x〉}|〈w∗,x〉| .

We will first present intermediate bounds on RT (P) and NT (P) as a function of L, and then rely on the properties of the
noise (hence the randomness on P) to complete the proofs. To simplify the math display we denote

KT (δ, `) =

√
2 log

2`(`+ 1)T

δ
+ 1 ,

so that ε` = 1
2`KT (δ,`)

.

Lemma A.3 immediately delivers the following bound on NT (P):

Theorem A.4. For any pool realization P , the label complexity NT (P) of Algorithm 1 operating on a pool P of size T is
bounded deterministically as

NT (P) ≤ 32

3
d log

(
2LKT (δ, L)

)
K2
T (δ, L)4L
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Proof. By definition

NT (P) =

L∑
`=1

T` ≤
L∑
`=1

8d

ε2`
log

(
1

ε`

)

≤8d log

(
1

εL

)
K2
T (δ, L)

L∑
`=1

4`

≤8

3
d log

(
2LKT (δ, L)

)
K2
T (δ, L)4L+1 ,

where the second inequality follows from the fact that both 1
ε`

and KT (δ, `) increase with `, and the last inequality follows

from
∑L
`=1 4` < 4

34L.

As for the regret RT (P), we have the following high probability result.

Theorem A.5. For any pool realization P , the weighted cumulative regret RT (P) of Algorithm 1 operating on a pool P of
size T is bounded as

RT (P) ≤ 64d log
(
2LKT (δ, L)

)
K2
T (δ, L)2L + d 2L−1 ,

assuming
⋂L
`=1 E` holds.

Proof. We decompose the pool P as the union of following disjoint sets

P =
(
∪Ll=1C`

)
∪
(
∪Ll=1Q`

)
∪ PL

and, correspondingly, the weighted cumulative regret RT (P) as the sum of the three components

RT (P) = R(∪Ll=1C`) +R(∪Ll=1Q`) +R(PL) .

Assume
⋂L
`=1 E` holds. First, notice that on C`,

sgn〈ŵ,x〉 = sgn〈w`,x〉 = sgn〈w∗,x〉

under the assumption that E` holds, thus points in ∪L`=1C` do not contribute weighted regret for ŵ, i.e.,

R(∪Ll=1C`) = 0 .

Next, on PL, we have |〈wL,x〉| ≤ 2−L. Combining this with the assumption that EL holds, we get |〈w∗,x〉| ≤ 2−L+1,
which implies that the weighted cumulative regret on PL is bounded as

R(PL) ≤ 2−L+1|PL| < d 2L−1 ,

the second inequality deriving from the stopping condition defining L in Algorithm 1.

Finally, on the queried points ∪Ll=1Q`, it is unclear whether sgn〈ŵ,x〉 = sgn〈w∗,x〉 or not, so we bound the weighted
cumulative regret contribution of each data item x therein by |〈w∗,x〉|. Now, by construction, x ∈ Q` ⊂ P`−1, so that
|〈w`−1,x〉| ≤ 2−`+1 which, combined with the assumption that E`−1 holds, yields |〈w∗,x〉| ≤ 2−`+2. Since |Q`| = T`,
we have

R(∪L`=1Q`) ≤ 4

L∑
`=1

T` 2−`

and Lemma A.3 allows us to write

R(∪Ll=1Q`) ≤ 32d

L∑
l=1

2−`

ε2`
log

(
1

ε`

)
≤ 64d log

(
2LKT (δ, L)

)
K2
T (δ, L)2L ,

the last inequality following from a reasoning similar to the one that lead us to theorem A.4.
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Given any pool realization P , both the label complexity and weighted regret are bounded by a function of L. Adding the
ingredient of the low noise condition (2) helps us leverage the randomness in P and further bound from above the number of
stages L.

Specifically, assume the low noise condition (2) holds for f∗(x) = 1+〈w∗,x〉
2 , for some unknown exponent α ≥ 0 and

unknown constant ε0 ∈ (0, 1]. Using a multiplicative Chernoff bound, it is easy to see that for any fixed ε∗, with probability
at least 1− δ,

|Tε∗ | ≤
3

2
(Tεα∗ + log(1/δ)) ,

the probability being over the random draw of the initial pool P . Now, since εL is itself a random variable (since so is L),
we need to resort to a covering argument. For any positive number M , consider the following set of fixed ε values

KM =
{ ε0

2i/α
: i = 0, . . . ,M

}
.

Then with probability at least 1− δ,

|Tε| ≤
3

2

(
Tεα + log

(
M

δ

))
,

holds simultaneously over ε ∈ KM . Set M = log2 T and assume ε is the smallest value in KM that is bigger than or equal
to ε∗. If ε is not the smallest value in KM , then by construction we have εα∗ ≤ εα < 2εα∗ so that, for all ε∗ > ε0

2M/α
,

|Tε∗ | ≤ |Tε| ≤
3

2

(
Tεα + log

(
M

δ

))
< 3

(
Tεα∗ + log

(
M

δ

))
. (6)

On the other hand if ε∗ ≤ ε0
2M/α

we can write

|Tε∗ | ≤
∣∣∣T ε0

2M/α

∣∣∣≤ 3

2

(
Tεα0
2M

+ log

(
M

δ

))
≤ 3

2

(
1 + log

(
M

δ

))
< 3 log

(
M

δ

)
,

making Eq. (6) hold in this case as well.

We define the event

Ē =
⋂

ε∗∈(0,ε0]

{
|Tε∗ | < 3

(
Tεα∗ + log

(
M

δ

))}
.

Then
P
(
Ē
)
≥ 1− δ , (7)

for M = log2 T .

We set ε∗ to be the unique solution of the equation4

d/ε∗ = 3

(
Tεα+1
∗ + ε∗ log

(
M

δ

))
. (8)

Eq. (6) will be applied, in particular, to the margin value 2−L+2 when 2−L+2 ≤ ε0.

Armed with Eqs. (6) and (8) with M = log2 T , we prove a lemma that upper bounds the number of stages L.

Lemma A.6. Let ε∗ be defined through (8), with T > 2
3d. Assume both Ē and

⋂L
`=1 E` hold. Then the number of stages L

of Algorithm 1 is upper bounded as

L ≤ max

(
log2

(
1

ε∗

)
, log2

(
1

ε0

))
+ 2

≤ max

(
log2

[(
3T

d

) 1
α+2

+ 3

(
1

d

)α+1
α+2

(
1

3T

) 1
α+2

log(
log2 T

δ
)

]
, log2

(
1

ε0

))
+ 2

= max

(
O

(
1

α+ 2
log

(
T

d

)
+ log

(
log T

δ

))
, log

(
4

ε0

))
.

Here the O-notation only omits absolute constants.
4We need to further assume T > 2

3
d so as to make sure the solution exists.
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Proof. If at stage L− 1 the algorithm has not stopped, then we must have

d/2−L+2 ≤ 2−L+2|PL−1| .

Notice that if x ∈ PL−1 then |〈wL−1,x〉| ≤ 2−L+1. Combining it with the assumption that EL−1 holds, we have
|〈w∗,x〉| ≤ 2−L+2 which implies |PL−1| ≤ |T2−L+2 |.

We split the analysis into two cases. On one hand, when 2−L+2 > ε0, this condition gives us directly

L ≤ log2(
1

ε0
) + 2 .

On the other hand if 2−L+2 ≤ ε0, then given Ē holds, |T2−L+2 | is upper bounded as

|T2−L+2 | ≤ 3

(
T 2(−L+2)α + log

(
M

δ

))
,

with M = log2 T . Plugging into the first display results in

d/2−L+2 ≤ 3

(
T2(−L+2)(α+1) + 2−L+2 log(

M

δ
)

)
,

which resembles (8) with 2−L+2 here playing the role of ε∗ therein. Then, from the definition of ε∗ in (8) we immediately
obtain 2−L+2 ≥ ε∗, thus L ≤ log2( 1

ε∗
) + 2. Moreover, from (8) we see that d/ε∗ ≥ 3Tεα+1

∗ , which is equivalent to

ε∗ ≤ ( d
3T )

1
α+2 . Replacing this upper bound on ε∗ back into the right-hand side of (8) and dividing by d yields

1

ε∗
≤
(

3T

d

) 1
α+2

+ 3

(
1

d

)α+1
α+2

(
1

3T

) 1
α+2

log(
M

δ
) ,

which gives the claimed upper bound on L through L ≤ log2( 1
ε∗

) + 2.

Corollary A.7. Let T > d. Then with probability at least 1− 2δ over the random draw of (x1, y1), . . . , (xT , yT ) ∼ D the
label complexity NT (P) and the weighted cumulative regret RT (P) of Algorithm 1 simultaneously satisfy the following:

NT (P) = log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
max

{
d

α
α+2T

2
α+2 ,

d

ε20

}
+ log2

(
log T

δ

))
RT (P) = log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
max

{
d
α+1
α+2T

1
α+2 ,

d

ε0

}
+ log

(
log T

δ

))
.

where the O-notation only omits absolute constants .

Proof. Assume both Ē and
⋂L
`=1 E` hold. Recalling the definition of KT (δ, L), we have

KT (δ, L) = O

(√
log

(
T

δ

)
+ logL

)
= O

(√
log

(
T

δ

)
+ L

)
.

Similar to lemma A.6, we split the analysis into two cases depending on whether or not 2−L+2 is bigger than ε0. If
2−L+2 ≤ ε0, we have

L ≤ log2

[(
3T

d

) 1
α+2

+ 3

(
1

d

)α+1
α+2

(
1

3T

) 1
α+2

log(
log2 T

δ
)

]
,

therefore,

2L = O

((
T

d

) 1
α+2

+

(
1

d

)α+1
α+2

(
1

T

) 1
α+2

log

(
log T

δ

))
.
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Plugging the above bounds into Theorem A.4 gives

NT (P) = O
(
d
(
L+ logK2

T (δ, L)
)
K2
T (δ, L)4L

)
= O

((
L+K2

T (δ, L)
)
K2
T (δ, L)

(
d

α
α+2T

2
α+2 + log2

(
log T

δ

)))
= O

((
L+ log

(
T

δ

))2(
d

α
α+2T

2
α+2 + log2

(
log T

δ

)))

= log2

(
T

δ

)
O

(
d

α
α+2T

2
α+2 + log2

(
log T

δ

))
.

Similarly applying them to Theorem A.5,

RT (P) = O
(
d
(
L+ logK2

T (δ, L)
)
K2
T (δ, L)2L

)
= O

((
L+K2

T (δ, L)
)
K2
T (δ, L)

(
d
α+1
α+2T

1
α+2 + log

(
log T

δ

)))
= O

((
L+ log

(
T

δ

))2(
d
α+1
α+2T

1
α+2 + log

(
log T

δ

)))

= log2

(
T

δ

)
O

(
d
α+1
α+2T

1
α+2 + log

(
log T

δ

))
,

where in the second equality we used the assumption that d < T .

If 2−L+2 > ε0, then 2L ≤ 4
ε0

. Plugging these bounds into Theorem A.4 and Theorem A.5 gives

NT (P) =O

(
log2

(
T

δε0

)
d

ε20

)
= log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
d

ε20

)
RT (P) =O

(
log2

(
T

δε0

)
d

ε0

)
= log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
d

ε0

)
Lastly, (7) and lemma A.1 together yield

P

(
Ē
⋂(

L⋂
`=1

E`

))
≥ 1− 2δ ,

which concludes the proof.

We now turn the bound on the weighted cumulative regret RT (P) in the previous corollary into a bound on the excess risk.
We can write

L(ŵ)− L(w∗) = E(x,y)∼D

[
11{y 6= sgn(〈ŵ,x〉)} − 11{y 6= sgn(〈w∗,x〉)}

]
= Ex∼DX

[
Ey∼DY|X

[
11{y 6= sgn(〈ŵ,x〉)} − 11{y 6= sgn(〈w∗,x〉)}

]]
= Ex∼DX

[
11{sgn(〈ŵ,x〉) 6= sgn(〈w∗,x〉)} |〈w∗,x〉|

]
,

where ŵ is the hypothesis returned by Algorithm 1. Now, simply observe that

11{sgn(〈ŵ,x〉) 6= sgn(〈w∗,x〉)} |〈w∗,x〉|

has the same form as the function φ(ŵ,x) in Appendix C on which the uniform convergence result of Theorem C.4 applies,
with ε̂(δ) therein replaced by the bound on RT (P) borrowed from Corollary A.7. This allows us to conclude that with
probability at least 1− δ

L(ŵ)− L(w∗) = log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

max

{(
d

T

)α+1
α+2

,
d

T ε0

}
+

log
(

log T
δ

)
T

 ,

as claimed in Theorem 4.1 in the main body of the paper.
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B. Proofs for Section 5
We adopt the same notation as in Section A and follow the same proof structure.

Define the loss function
Loss(a) = log(1 + e−a) ,

and the sigmoidal function

σ(a) =
1

1 + e−a
.

The noise model in the main body of the paper can be re-formulated as follows: there exists an unknown vector w∗ belonging
to a Euclidean ball of radius R ≥ 1 such that for any instance x of Euclidean norm at most 1,

P(y = 1 |x) = σ(〈w∗,x〉) .

Therefore we have
E [y | x] = σ(〈w∗,x〉)− σ(−〈w∗,x〉) = 2σ(〈w∗,x〉)− 1 ,

and the noise variable ξ can be written as

ξ := y − E [y | x] =
2y

1 + ey〈w∗,x〉
.

Similar to the linear case, we denote for any ε > 0,

T σε = {x ∈ P : |2σ (〈w∗,x〉)− 1| ≤ ε} .

Now, recall the notation in Algorithm 2. Similar to E` defined in linear case, it will be useful to define the events

E` =

{
max

x∈P`−1\Q`
|〈w` −w∗,x〉| ≤ R`

}
,

where R` = R2−` for ` = 0, . . . , L.

Lemma B.1. For any positive L,

P

(
L⋂
`=1

E`

)
> 1− δ .

Proof. We decompose the above quantity as

P

(
L⋂
`=1

E`

)
= P

(
EL
∣∣∣ L−1⋂
`=1

E`

)
P

(
EL−1

∣∣∣ L−2⋂
`=1

E`

)
. . .P(E2|E1)P(E1) ,

and bound each factor individually.

At the beginning of the stage `, the remaining pool is P`−1, and supx∈P`−1
|〈wl−1,x〉| ≤ R`−1.

For ` ≥ 2, if E`−1 holds then
sup

x∈P`−1

|〈w∗,x〉| ≤ 2R`−1 . (9)

Note that (9) also holds for ` = 1 since ‖w∗‖ ≤ R and ‖x‖ ≤ 1.

Now, for any positive number b, let
Ω`(b) = {w ∈ Rd : max

x∈Q`
|〈w,x〉| ≤ b},

which is a convex compact set of w’s.
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The predictor w` in Eq. (4) in the main body is defined as the solution of the following constraint minimization problem:

w` = argmin
w∈Ω`(2R`−1)

[
T∑̀
t=1

Loss(y`,t〈w,x`,t〉) +
1

8
e−4R`‖w‖2

]
,

For simplicity, from now on we omit the stage index ` from the subscripts of x`,t and y`,t and denote A`,T` as A`. For
t = 1, . . . , T`, denote

gt(w)xt =∇wLoss(yt〈w,xt〉) = − yt
1 + exp(yt〈w,xt〉)

xt

ht(w)xtx
>
t =∇2

wLoss(yt〈w,xt〉) =
1

2
(
1 + cosh(yt〈w,xt〉)

)xtx>t .
Notice that by definition

gt(w
∗) = −1

2
ξt ,

where ξt is the noise term ξt = yt − E[yt |xt]. Since cosh(·) is an even function,

ht(w) =
1

2
(
1 + cosh(〈w,xt〉)

)
does not depend on yt.

Since w∗ ∈ Ω`(2R`−1) (as a consequence of (9)), the assumption that E`−1 holds and the optimality of w` in Ω`(2R`−1)
allow us to write

〈g(w`) +
1

4
e−4R`w`,w

∗ −w`〉 ≥ 0 ,

where

g(w) =

T∑̀
t=1

gt(w)xt .

It follows that

〈g(w∗)− g(w`),w
∗ −w`〉 ≤ 〈g(w∗),w∗ −w`〉+

1

4
e−4R`〈w`,w

∗ −w`〉 . (10)

For each t = 1, . . . , T`, the mean-value theorem insures the existence of a constant µt` ∈ [0, 1] such that for

wt
` = (1− µt`)w` + µt`w

∗ ,

we have
gt(w

∗)− gt(w`) = ht(w
t
`)〈w∗ −w`,xt〉 .

Since
|〈wt

`,xt〉| ≤ (1− µt`)|〈w`,xt〉|+ µt`|〈w∗,xt〉| ≤ 2R`−1 = 4R` ,

we have
ht(w

t
`) =

1

2
(
1 + cosh(〈wt

`,xt〉)
) ≥ 1

4
e−|〈w

t
`,xt〉| ≥ 1

4
e−4R` .

Introduce now the matrix

H` :=

T∑̀
t=1

ht(w
t
`)xtx

>
t +

1

4
e−4R`I ,

where I is the d× d identity matrix. We can write

g(w∗)− g(w`) = (H` −
1

4
e−4R`I)(w∗ −w`) .
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As a consequence, (10) implies

〈H`(w
∗ −w`),w

∗ −w`〉 ≤ 〈g(w∗),w∗ −w`〉+
1

4
e−4R`‖w∗ −w`‖2 +

1

4
e−4R`〈w`,w

∗ −w`〉

= 〈g(w∗) +
1

4
e−4R`w∗,w∗ −w`〉

≤
(
‖g(w∗)‖H−1

`
+

1

4
e−4R`‖w∗‖H−1

`

)
‖w∗ −w`‖H` .

We thus obtain
‖w∗ −w`‖H` ≤ ‖g(w∗)‖H−1

`
+

1

4
e−4R`‖w∗‖H−1

`
≤ 4e4R`‖g(w∗)‖A−1

`
+R ,

where in the second inequality we used H` � 1
4e
−4R`A`.

To bound ‖g(w∗)‖A−1
`

, note that

‖g(w∗)‖2
A−1
`

= ‖
T∑̀
t=1

gt(w
∗)A

−1/2
` xt‖22 =

1

2
‖
T∑̀
t=1

ξtA
−1/2
` xt‖22 .

We plug in A = [A
−1/2
` x1, . . . , A

−1/2
` xT` ], ξ = (ξ1, . . . , ξT`) into lemma C.6 and get with probability at least 1− δ

`(`+1) ,

‖g(w∗)‖2
A−1
`

≤ log
2d`(`+ 1)

δ
tr

(
A
−1/2
`

T∑̀
t=1

xtx
>
t A
−1/2
`

)
=
(
d− tr(A−1

` )
)

log
2d`(`+ 1)

δ
< d log

2d`(`+ 1)

δ
.

Thus for any x ∈ P`−1\Q`, we obtain that with probability at least 1− δ
`(`+1) :

|〈w∗ −w`,x〉| ≤ ‖x‖H−1
`
‖w∗ −w`‖H`

≤ 4e4R`ε`

(
4e4R`‖g(w∗)‖A−1

`
+R

)
≤ ε`

(
16e8R`

√
d log

2d`(`+ 1)

δ
+ 4e4R`R

)
.

Recalling the definition of ε` in Algorithm 2, we have, with probability at least 1− δ
`(`+1) ,

max
x∈P`−1\Q`

|〈w` −w∗,x〉| ≤ R` ,

that is, P(E`|
⋂`−1
s=1 Eσs ) ≥ 1− δ

`(`+1) (for ` = 1 the above analysis gives P (Eσ1 ) ≥ 1− δ
2 ). Hence

P

(
L⋂
`=1

E`

)
≥

L∏
`=1

(
1− δ

`(`+ 1)

)
≥ 1− δ

L∑
`=1

1

`(`+ 1)
> 1− δ ,

thereby concluding the proof.

Similar to linear case, Lemma A.2 and Lemma A.3 also hold for logistic case.

We define the weighted cumulative regret for the logistic case as

RT (P) =
∑
x∈P

11{sgn〈ŵ,x〉 6= sgn〈w∗,x〉}|2σ(〈w∗,x〉)− 1| ,

where ŵ is the model output by Algorithm 2. Notice that since |2σ(x)− 1| ≤ |x|/2 for all x, we alternatively upper bound

RT (P) =
∑
x∈P

11{sgn〈ŵ,x〉 6= sgn〈w∗,x〉}|〈w∗,x〉|/2 ,
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To simplify the math display we denote

Kd(δ, `) =

√
d log

2d`(`+ 1)

δ
,

then ε` = R`
16e8R`Kd(δ,`)+4Re4R`

. Note that here the factor Kd(δ, `) doesn’t depend on T but has a
√
d dependence.

To bound the number of queries note that lemma A.3 still holds, we use this to prove the following result.

Theorem B.2. For any pool realization P , the label complexity NT (P) of Algorithm 2 operating on a pool P of size T is
bounded deterministically as

NT (P) = dmax
`∈[L]

log

(
1

ε`

)
O

(
K2
d(δ, L)e8Rdlog2Re+ e4Rdlog2ReR2 +

K2
d(δ, L) +R2

R2
L

)
,

where the O-notation only omits absolute constants.

Proof. By lemma A.3 and the fact that Kd(δ, `) is an increasing function of `, we get

T` ≤
8d

ε2`
log

(
1

ε`

)
≤ 16d

256e16R`K2
d(δ, L) + 16R2e8R`

R2
`

max
`∈[L]

log

(
1

ε`

)
= dmax

`∈[L]
log

(
1

ε`

)
O

(
e16R`K2

d(δ, L)

R2
`

+
R2e8R`

R2
`

)
.

where the second inequality uses (a+ b)2 ≤ 2a2 + 2b2.

For the terms within the big-oh, once we sum over ` we can write

L∑
`=1

e16R`

R2
`

=
∑
R`>1

e16R`

R2
`

+
∑
R`≤1

e16R`

R2
`

≤e8Rdlog2Re+
e16

RL

∑
R`≤1

1

R`

≤e8Rdlog2Re+
2e16

R2
L

.

And similarly
L∑
`=1

e8R`

R2
`

≤ e4Rdlog2Re+
2e8

R2
L

.

Putting them together gives

NT (P) =

L∑
`=1

T` = dmax
`∈[L]

log

(
1

ε`

)
O

(
K2
d(δ, L)e8Rdlog2Re+ e4Rdlog2ReR2 +

K2
d(δ, L) +R2

R2
L

)
,

as claimed.

The following bound on the weighted cumulative regret is the logistic counterpart to Theorem A.5.

Theorem B.3. For any pool realization P , the weighted cumulative regret RT (P) of Algorithm 2 operating on a pool P of
size T is bounded as

RT (P) = dmax
`∈[L]

log

(
1

ε`

)
O

(
K2
d(δ, L)e8Rdlog2Re+ e4Rdlog2ReR2 +

K2
d(δ, L) +R2

RL

)
.

assuming
⋂L
`=1 E` holds.
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Proof. We follow the same reasoning as in Theorem A.5. We decompose the pool P as the union of following disjoint sets

P =
(
∪Ll=1C`

)
∪
(
∪Ll=1Q`

)
∪ PL ,

and study the weighted cumulative regret components

RT (∪Ll=1C`) , RT (∪Ll=1Q`) , RT (PL) .

Assume
⋂L
`=1 E` holds. First, notice that in C`,

sgn〈ŵ,x〉 = sgn〈w`,x〉 = sgn〈w∗,x〉

under the assumption that E` holds, thus ∪L`=1C` does not contribute weighted regret for ŵ, i.e.,

RT (∪Ll=1C`) = 0 .

Next, on PL, we have |〈wL,x〉| ≤ RL. Combining this with the assumption that EσL holds, we get |〈w∗,x〉| ≤ 2RL, which
implies that the weighted cumulative regret on PL is bounded as

RT (PL) ≤ RL|PL| <
d

4RL
,

the second inequality deriving from the stopping condition defining L in Algorithm 2.

Finally, on the queried points ∪Ll=1Q`, it is unclear whether sgn〈ŵ,x〉 = sgn〈w∗,x〉 or not, so we bound the weighted
cumulative regret contribution of each data item x therein by |〈w∗,x〉|. Now, by construction, x ∈ Q` ⊂ P`−1, so that
|〈w`−1,x〉| ≤ R`−1 which, combined with the assumption that Eσ`−1 holds, yields |〈w∗,x〉| ≤ 2R`−1. Since |Q`| = T`,
we have

RT (∪L`=1Q`) ≤ 2

L∑
`=1

T`R`

and Lemma A.3 allows us to write

RT (∪Ll=1Q`) ≤ 16d

L∑
l=1

R`
ε2`

log

(
1

ε`

)
= dmax

`∈[L]
log

(
1

ε`

)
O

(
e16R`K2

d(δ, L)

R`
+
R2e8R`

R`

)
.

Similar to the argument in theorem A.4, we have

L∑
`=1

e16R`

R`
=
∑
R`>1

e16R`

R`
+
∑
R`≤1

e16R`

R`

≤ e8Rdlog2Re+ e16
∑
R`≤1

1

R`

≤ e8Rdlog2Re+
2e16

RL
.

and
L∑
`=1

e8R`

R`
≤ e4Rdlog2Re+

2e8

RL
.

Piecing together, we conclude that the total regret is bounded as

RT (P) = dmax
`∈[L]

log

(
1

ε`

)
O

(
K2
d(δ, L)e8Rdlog2Re+ e4Rdlog2ReR2 +

K2
d(δ, L) +R2

RL

)
,

thereby concluding the proof.
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As in the linear case, adding the ingredient of the low noise condition (2) helps us exploit the randomness in P to further
bound from above the number of stages L in the logistic case.

Specifically, assume the low noise condition (2) holds for f∗(x) = σ(〈w∗,x〉), for some unknown exponent α ≥ 0 and
unknown constant ε0 ∈ (0, 1]. Similar to linear case we define the event

Ēσ =
⋂

ε∗∈(0,ε0]

{
|T σε∗ | < 3

(
Tεα∗ + log

(
M

δ

))}
.

Then
P
(
Ēσ
)
≥ 1− δ , (11)

for M = log2 T .

Lemma B.4. Let ε∗ be defined through (8), with T > 2
3d. Assume both Ēσ and

⋂L
`=1 E` hold. Then the number of stages L

of Algorithm 2 is upper bounded as

L ≤ max

(
log2

(
R

ε∗

)
, log2

(
R

ε0

))
+ 2

≤ max

(
log2

[
R

((
3T

d

) 1
α+2

+ 3

(
1

d

)α+1
α+2

(
1

3T

) 1
α+2

log(
log2 T

δ
)

)]
, log2

(
R

ε0

))
+ 2

= max

(
O

(
1

α+ 2
log

(
T

d

)
+ log

(
R log T

δ

))
, log2

(
4R

ε0

))
,

where the O-notation only hides absolute constants.

Proof. If at stage L− 1 the algorithm has not stopped, then we must have

d/2RL−1 ≤ 2RL−1|PL−1| .

Notice that if x ∈ PL−1 then |〈wL−1,x〉| ≤ RL−1. Combining it with the assumption that EL−1 holds, we have
|〈w∗,x〉| ≤ 2RL−1, which implies |PL−1| ≤ |T σtanh(RL−1)| ≤ |T

σ
2RL−1

|.

We split the analysis into two cases. On one hand, when 2RL−1 > ε0, this condition gives us directly

L ≤ log2(
R

ε0
) + 2 .

On the other hand if 2RL−1 ≤ ε0, then given that Ēσ holds, |T σ2RL−1
| is upper bounded as

|T σ2RL−1
| ≤ 3

(
T (2RL−1)α + log

(
M

δ

))
,

with M = log2 T . Plugging into the first display results in

d/2RL−1 ≤ 3

(
T (2RL−1)α+1 + 2RL−1 log(

M

δ
)

)
,

which resembles (8) with 2RL−1 here playing the role of ε∗ therein. Then, from the definition of ε∗ in (8) we immediately
obtain 2RL−1 ≥ ε∗, thus L ≤ log2( Rε∗ ) + 2. Moreover, from (8) we see that d/ε∗ ≥ 3Tεα+1

∗ , which is equivalent to

ε∗ ≤ ( d
3T )

1
α+2 . Replacing this upper bound on ε∗ back into the right-hand side of (8), dividing by d and multiply by R

yields
R

ε∗
≤ R

((
3T

d

) 1
α+2

+ 3

(
1

d

)α+1
α+2

(
1

3T

) 1
α+2

log(
M

δ
)

)
,

which gives the claimed upper bound on L through L ≤ log2( Rε∗ ) + 2.
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Corollary B.5. Let T > 2
3d. Then with probability at least 1− 2δ over the random draw of (x1, y1), . . . , (xT , yT ) ∼ D

the label complexity NT (P) and the weighted cumulative regret RT (P) of Algorithm 1 simultaneously satisfy the following:

NT (P) = Cd,R(δ, T, ε0)O

(
max

{
d

α
α+2T

2
α+2 ,

d

ε20

}
+ log2

(
log T

δ

)
+ de8Rdlog2Re

)
,

RT (P) = Cd,R(δ, T, ε0)O

(
max

{
d
α+1
α+2T

1
α+2 ,

d

ε0

}
+ log

(
log T

δ

)
+ de8Rdlog2Re

)
,

where the O-notation hiding absolute constants and

Cd,R(δ, T, ε0) =

(
1 + log2

(
1

ε0

))(
d log

(
T

δ

)
+R2

)(
R+ log

(
T

δ

))
.

Proof. Assume both Ēσ and
⋂L
`=1 E` hold. Recalling the definition of Kd(δ, `), we have

Kd(δ, L) = O

(√
d log

(
d

δ

)
+ L

)
.

Similar to Lemma B.4, we split the analysis into two cases depending on whether or not 2RL−1 is bigger than ε0. If
2RL−1 ≤ ε0, we have

L ≤ log2

[
R

((
3T

d

) 1
α+2

+ 3

(
1

d

)α+1
α+2

(
1

3T

) 1
α+2

log(
log2 T

δ
)

)]
,

therefore
1

RL
= O

((
T

d

) 1
α+2

+

(
1

d

)α+1
α+2

(
1

T

) 1
α+2

log

(
log T

δ

))
.

Moreover, we have

Kd(δ, L) = O

(√
d log

(
d

δ

)
+

√
log

(
T

d

)
+

√
log

(
R log T

δ

))
.

and

max
`∈[L]

log

(
1

ε`

)
≤ log

(
16e4RKd(δ, L) + 4Re2R

RL

)
= O

(
R+ logKd(δ, L) + log

(
T

d

)
+ log

(
R log T

δ

))
= O

(
R+ log

(
T

δ

))
,

where the last equality is because T > 2
3d.

Plugging these bounds together back into factor

K2
d(δ, L)e8Rdlog2Re+ e4Rdlog2ReR2 +

K2
d(δ, L) +R2

R2
L

of Theorem B.2 yields

K2
d(δ, L)e8Rdlog2Re+ e4Rdlog2ReR2 +

K2
d(δ, L) +R2

R2
L

= O

((
K2
d(δ, L) +R2

)(
e8Rdlog2Re+

1

R2
L

))
= O

((
d log

(
T

δ

)
+R2

)((
T

d

) 2
α+2

+

(
1

d

) 2α+2
α+2

(
1

T

) 2
α+2

log2

(
log T

δ

)
+ e8Rdlog2Re

))
,
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where the last equality is due to the assumption that T > 2
3d. Combining the above estimates gives

NT (P) = O

((
d log

(
T

δ

)
+R2

)(
R+ log

(
T

δ

))(
d

α
α+2T

2
α+2 + log2

(
log T

δ

)
+ de8Rdlog2Re

))

A similar argument gives

RT (P) = O

((
d log

(
T

δ

)
+R2

)(
R+ log

(
T

δ

))(
d
α+1
α+2T

1
α+2 + log

(
log T

δ

)
+ de8Rdlog2Re

))
.

If 2RL−1 > ε0, then 1
RL
≤ 4

ε0
. Applying these bounds into Theorem B.2 we get

NT (P) =O

((
d log

(
T

δ

)
+R2 + log

(
1

ε0

))(
R+ log

(
T

δε0

))(
d

ε20
+ de8Rdlog2Re

))
=

(
d log

(
T

δ

)
+R2

)(
R+ log

(
T

δ

))(
1 + log2

(
1

ε0

))
O

(
d

ε20
+ de8Rdlog2Re

)
.

Similarly

RT (P) =

(
d log

(
T

δ

)
+R2

)(
R+ log

(
T

δ

))(
1 + log2

(
1

ε0

))
O

(
d

ε0
+ de8Rdlog2Re

)
.

Lastly, (11) and Lemma B.1 together yield

P

(
Ēσ
⋂(

L⋂
`=1

E`

))
≥ 1− 2δ ,

which concludes the proof.

We now turn the bound on the weighted cumulative regret RT (P) in the previous corollary into a bound on the excess risk.
As in the linear case, we have

L(ŵ)− L(w∗) = E(x,y)∼D

[
11{y 6= sgn(〈ŵ,x〉)} − 11{y 6= sgn(〈w∗,x〉)}

]
= Ex∼DX

[
Ey∼DY|X

[
11{y 6= sgn(〈ŵ,x〉)} − 11{y 6= sgn(〈w∗,x〉)}

]]
= Ex∼DX

[
11{sgn(〈ŵ,x〉) 6= sgn(〈w∗,x〉)} |2σ(〈w∗,x〉)− 1|

]
,

where ŵ is the hypothesis returned by Algorithm 2. Now, simply observe that

11{sgn(〈ŵ,x〉) 6= sgn(〈w∗,x〉)} |2σ(〈w∗,x〉)− 1|

has the same form as the function φ(ŵ,x) in Appendix C on which Theorem C.4 applies, with ε̂(δ) therein replaced by the
bound on RT (P) deriving from Corollary B.5. This allows us to conclude that with probability at least 1− δ

L(ŵ)− L(w∗) = Cd,R(δ, T, ε0)O

max

{(
d

T

)α+1
α+2

,
d

T ε0

}
+

log
(

log T
δ

)
+ de8Rdlog2Re

T

 ,

as claimed in Theorem 5.1 in the main body of the paper.

C. Ancillary Technical Results
This section collects ancillary technical results that are used throughout the appendix.

We first recall the following version of the Hoeffding’s bound.
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Lemma C.1. Let a1, . . . , aT be T arbitrary real numbers, and {σ1, . . . , σT } be T i.i.d. Rademacher variables, each taking
values ±1 with equal probability. Then for any ε ≥ 0

P

(
T∑
t=1

σtat ≥ ε

)
≤ exp

(
− ε2

2
∑T
t=1 a

2
t

)
,

where the probability is with respect to {σ1, . . . , σT }.

Let us consider the linear case first. Define the function φ : Rd × P → [0, 1] as

φ(ŵ,x) = 11{sgn〈ŵ,x〉 6= sgn〈w∗,x〉}ρ(〈w∗,x〉) ,

where ρ(·) has range in [0, 1], and does not depend on ŵ. We have the following standard covering result, which is a direct
consequence of Sauer-Shelah lemma (e.g., (Sauer, 1972)).

Lemma C.2. Consider any given ST = {x1, . . . ,xT } ∈ Rd, and let

Φ(ST ) =
∣∣{[φ(ŵ,x1), . . . , φ(ŵ,xT )] : ŵ ∈ Rd}

∣∣ .
We have, when T ≥ d,

Φ(ST ) ≤
(
eT

d

)d
.

The next result follows from a standard symmetrization argument.

Lemma C.3. Let X = Rd, ST = (x1, . . . ,xT ) be a sample drawn i.i.d. according to DX and S′T = (x′1, . . . ,x
′
T ) be

another sample drawn according to DX , with T ≥ d. Then with probability at least 1− δ

T∑
t=1

φ(ŵ,x′t) ≤ 3

T∑
t=1

φ(ŵ,xt) + 8 log(1/δ) + 8d log(2eT/d) ,

uniformly over ŵ ∈ Rd.

Proof. Let {σ1, . . . , σT } be independent Rademacher variables as in Lemma C.1. We can write, for any ε ≥ 0,
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P

(
∃ŵ ∈ Rd :

T∑
t=1

φ(ŵ,x′t) ≥ 3

T∑
t=1

φ(ŵ,xt) + 2ε

)

= P

(
∃ŵ ∈ Rd :

T∑
t=1

[
φ(ŵ,x′t)− φ(ŵ,xt)

]
≥ 1

2

T∑
t=1

[
φ(ŵ,xt) + φ(ŵ,x′t)

]
+ε

)

= P

(
∃ŵ ∈ Rd :

T∑
t=1

σt

[
φ(ŵ,x′t)− φ(ŵ,xt)

]
≥ 1

2

T∑
t=1

[
φ(ŵ,xt) + φ(ŵ,x′t)

]
+ε

)

≤ P

(
∃ŵ ∈ Rd :

T∑
t=1

σtφ(ŵ,x′t) ≥
1

2

T∑
t=1

φ(ŵ,x′t) +
ε

2

)

+ P

(
∃ŵ ∈ Rd :

T∑
t=1

−σtφ(ŵ,xt) ≥
1

2

T∑
t=1

φ(ŵ,xt) +
ε

2

)

≤ 2 sup
ST

P

(
∃ŵ ∈ Rd :

T∑
t=1

σtφ(ŵ,xt) ≥
1

2

T∑
t=1

φ(ŵ,xt) +
1

2
ε
∣∣∣ST)

≤ 2

(
eT

d

)d
sup

ST ,ŵ∈Rd
P

(
T∑
t=1

σtφ(ŵ,xt) ≥
1

2

T∑
t=1

φ(ŵ,xt) +
1

2
ε
∣∣∣ST)

(from the union bound and Lemma C.2)

≤ 2

(
eT

d

)d
sup

ST ,ŵ∈Rd
exp

(
−

(
∑T
t=1 φ(ŵ,xt) + ε)2

8
∑T
t=1 φ(ŵ,xt)2

)
(from Lemma C.1)

≤ 2

(
eT

d

)d
exp(−ε/4) ,

the last inequality deriving from the fact that, since φ(ŵ,xt) ∈ [0, 1],

(
∑T
t=1 φ(ŵ,xt) + ε)2∑T
t=1 φ(ŵ,xt)2

≥
(
∑T
t=1 φ(ŵ,xt) + ε)2∑T
t=1 φ(ŵ,xt)

≥ 2ε .

Take ε such that δ = 2
(
eT
d

)d
exp(−ε/4), to obtain the claimed bound.

Theorem C.4. With the same notation and assumptions as in Lemma C.3, let ŵ ∈ Rd be a function of ST such that

1

T

T∑
t=1

φ(ŵ,xt) ≤ ε̂(δ)

holds with probability at least 1− δ, for some ε̂(δ) ∈ [0, 1]. Then with probability at least 1− 3δ:

Ex∼Dφ(ŵ,x) ≤ 4ε̂(δ) +
22 log

(
1
δ

)
+ 11d log

(
2eT
d

)
T

.

Proof. Use the multiplicative Chernoff bound

Ex∼Dφ(ŵ,x) ≤ 4

3T

T∑
t=1

φ(ŵ,x′t) +
32

3T
log(1/δ) ,

and then apply Lemma C.3 to further bound the right-hand side.
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To control noise terms, which are 1-subgaussian random variables, we provide the following lemma which is a direct
implication of Chernoff bound.

Lemma C.5. Suppose ξ is a σ-subgaussian random variable, then for any δ > 0,

P
(
|ξ| ≥

√
2σ2 log(2/δ)

)
≤ δ .

Lemma C.6. Let A = [aij ] ∈ Rm×n be a matrix. Suppose ξ1, . . . , ξn are independent σ-subgaussian random variables.
Then for any δ > 0,

P
(
‖Aξ‖2 > 2σ2 log

2m

δ
tr(AA>)

)
≤ δ ,

where ξ = (ξ1, . . . , ξn)>.

Proof. Consider

(Aξ)i =

n∑
j=1

aijξj ,

the ith component of vector Aξ. Note that (Aξ)i is a σ
√∑n

j=1 a
2
ij-subgaussian random variable, by lemma C.5 we have

P

∣∣∣∣∣∣
n∑
j=1

aijξj

∣∣∣∣∣∣ ≥
√√√√2σ2

n∑
j=1

a2
ij log

2m

δ

 ≤ δ

m
.

A union bound over i gives, with probability at least 1− δ, n∑
j=1

aijξj

2

≤ 2σ2
n∑
j=1

a2
ij log

2m

δ
,

uniformly over i = 1, . . . ,m. Therefore, with probability at least 1− δ,

‖Aξ‖2 =

m∑
i=1

 n∑
j=1

aijξj

2

≤ 2σ2 log
2m

δ

∑
i,j

a2
ij = 2σ2 log

2m

δ
tr(AA>) ,

as claimed.


