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Abstract
Assembly of multi-part physical structures is both
a valuable end product for autonomous robotics,
as well as a valuable diagnostic task for open-
ended training of embodied intelligent agents. We
introduce a naturalistic physics-based environ-
ment with a set of connectable magnet blocks
inspired by children’s toy kits. The objective is
to assemble blocks into a succession of target
blueprints. Despite the simplicity of this objec-
tive, the compositional nature of building diverse
blueprints from a set of blocks leads to an ex-
plosion of complexity in structures that agents
encounter. Furthermore, assembly stresses agents’
multi-step planning, physical reasoning, and bi-
manual coordination. We find that the combi-
nation of large-scale reinforcement learning and
graph-based policies – surprisingly without any
additional complexity – is an effective recipe for
training agents that not only generalize to com-
plex unseen blueprints in a zero-shot manner,
but even operate in a reset-free setting without
being trained to do so. Through extensive ex-
periments, we highlight the importance of large-
scale training, structured representations, contri-
butions of multi-task vs. single-task learning, as
well as the effects of curriculums, and discuss
qualitative behaviors of trained agents. Our ac-
companying project webpage can be found at:
sites.google.com/view/learning-direct-assembly

1. Introduction
Robotic assembly of objects from a given set of parts is an
incredibly intriguing avenue for research in artificial intel-
ligence (AI). Not only is it a valuable capability we would
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like autonomous robots to possess, but it is a challenging
problem statement with open-ended complexity, touching
upon many fruitful avenues of AI research. Agents that can
assemble structures can reshape their surroundings, which
creates dynamic environments with more possibilities for
open-ended learning (Baker et al., 2019; Wang et al., 2019;
Co-Reyes et al., 2020). A key feature of assembly is that due
to its compositional and modular nature, given a set of parts,
one can create objects on a broad spectrum of complexity.
Furthermore, in order to solve the assembly problem, agents
must acquire a diverse set of skills and capabilities. They
must learn to grasp and attach components in an order that
is amenable to successful completion. They must develop
physical reasoning capabilities to avoid collision, and they
need to learn bi-manual coordination. In addition, once
agents have acquired such skills, it is expected that they can
rapidly learn to create new desired objects.

To study assembly, we create a simulated but naturalistic
environment which consists of blocks of varying shapes
that can be magnetically attached to one-another. Agents
are then tasked with constructing a desired structure from
one of almost 200 pre-designed blueprints (although gener-
ative models can be used to automate this process (Thomp-
son et al., 2020)). In this environment, in lieu of grasping
robotic arms, we enable agents to directly move desired
blocks. Such direct manipulation and the use of magnetic
connections (instead of more complex joining mechanisms)
abstracts away some details of the assembly problem while
retaining many of the challenges that make the problem hard
and interesting. Compared robot manipulation tasks which
emphasize rearrangement and stacking (Li et al., 2020; Ope-
nAI et al., 2021), the compositional nature of assembly from
a set of blocks leads to an agent continually encountering
new structures of varying complexities, which necessitates
developing a richer representation of what constitutes an
“object” (Spelke, 1990). In addition, our magnetic assembly
benchmark stresses multi-step planning, physical reasoning,
and bimanual coordination.

Despite the complexity of this problem, we find that it is
possible to train a single agent that can simultaneously as-
semble all given blueprint tasks, generalize to complex un-

https://sites.google.com/view/learning-direct-assembly/home
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Figure 1. Visualization of trained agent building a blueprint that was not seen during training. The blueprint corresponds to a complex
structure requiring 14 of the available 16 blocks.

Figure 2. Examples of target blueprints we consider. We train on variety of target structures, ranging from structures of 2 to 16 blocks.

seen blueprints in a zero-shot manner, and even operate
in a reset-free manner despite being trained in an episodic
fashion. Our solution relies on a combination of large-scale
reinforcement learning, structured (graph-based) agent rep-
resentations, and simultaneous multi-blueprint training. Si-
multaneously training on diverse blueprints of varying com-
plexity scaffolds the agent’s learning by enabling it to first
make progress of simpler tasks (such as simply joining two
blocks), while structured policy representations enable the
agent to generalize and transfer its solutions towards solving
more complex – and even unseen – blueprints. We empir-
ically observe a progression of learning increasingly large
blueprints - many of which were not solvable with single-
blueprint training. Surprisingly, we find other components
such as planning or hierarchical approaches to be unnec-
essary for this task. Through experiments, we highlight
the contributions of various components such as structured
policies, episodic initial state distribution, curriculum that
emphasize training on harder blueprints, and discuss qual-
itative behaviors and maneuvers discovered by the trained
agents.

Our contributions are as follows:

• We introduce an assembly domain that allows for a
controlled study of generalization in reinforcement
learning (RL).

• We demonstrate a single agent that can simultaneously
solve all seen assembly tasks and generalize to unseen
tasks.

• We demonstrate the importance of combining large-
scale RL, structured policies, and multi-task training
as a route to arrive at generally capable agents.

grippers

magnets

block

Figure 3. Our magnetic assembly domain. Two virtual grippers
directly manipulate the available blocks to magnetically assemble
a desired blueprint structure.

We hope this work further encourages study of assembly
as an open-ended means to develop and evaluate embodied
agent learning.

2. Magnetic Block Assembly Environment
Our goal is to design a minimal tractable assembly envi-
ronment to study generalization in a naturalistic, multi-step,
combinatorial, dynamic problem requiring bi-hand coor-
dination. We construct a three-dimensional environment
containing a fixed set of 16 cuboid blocks of 6 different
types. Blocks contain positive and negative magnet points,
rendered as red and blue respectively, positioned on the
block surface. Positive and negative magnets “snap” to-
gether when sufficiently close, and disconnect when ade-
quate pulling force is applied. Magnets enable creation of ar-
bitrarily complex composed structures from the given build-
ing blocks. Additionally, magnets can be implemented in
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the real-world, unlike more abstract locking constraints (e.g.
instantaneous weld constraints), yet are tolerant enough to
join objects without tackling the problem of high-precision
insertion that would be required for other connection mech-
anisms such as pegs or screws. To simplify the problem,
in lieu of robotic arms we opt for the use of virtual grip-
pers which can directly manipulate desired blocks. More
specifically, each gripper can decide which block to move,
and set its positional and rotational velocities1. The use of
direct manipulation abstracts away the challenges of grasp-
ing and manipulation with a robotic arm, and enables us to
focus on research questions concerning higher-level assem-
bly behaviors such as planning and generalization to unseen
structures. While the number of grippers is parameterizable,
unless otherwise specified, throughout this work we will use
2 virtual grippers.

To specify the assembly task, we designed 165 blueprints
(split into 141 train, 24 test) describing interesting structures
to be built, although the blueprints can potentially be proce-
durally generated (Thompson et al., 2020). The complexity
of the created blueprints range from requiring only a single
magnetic connection, up to challenging structures that make
use of all 16 available blocks. The problem statement in our
magnetic assembly environment is simple to describe: In
each episode, the agent must assemble the blocks to create
the desired blueprint. Each episode begins with either all
blocks randomly scattered around the environment, or from
a randomly sampled pre-constructed blueprint – with unused
blocks dispersed on the ground. Episodes are 100 environ-
ment steps long, translating to a length of 10 seconds in the
real world. In each step agents receive rewards based on how
close blocks are to their intended configurations, as well
as correct and incorrect magnetic connections. Episodes
terminate when exactly correct magnetic connections are
made and blueprint blocks are in the correct relative posi-
tion and orientation, or when 100 steps has passed. Our
simulated assembly task is implemented in the open-source
Mujoco (Todorov et al., 2012) physics engine. A detailed
description of observation space, action space, rewards, and
success criterion used can be found in Appendix B.

3. Methodology
While solving the magnetic assembly task can be ap-
proached through a variety of solutions such as hierarchical
reinforcement learning and geometric planning algorithms
(e.g. RRT (LaValle et al., 2001)), in past work it has been
demonstrated that many tasks which intuitively require com-
plex planning strategies can be solved through large-scale
application of reinforcement learning algorithms using the

1We restrict velocity magnitudes to a range that would be real-
istically achievable if the blocks were being manipulated by real
robot arms.

Figure 4. Diagram depicting our structured agent. Inputs to the
agent are graph-structured block observations as well as gripper
observations. A graph neural network processes the observations
and produces: (1) per block moves and per block attention keys,
(2) per gripper attention queries, (3) a global latent representation.
Using dot-product attention between the keys and queries, the
grippers decide which block to hold, and output its proposed move.
The global latent representation is used to predict a baseline value
for the PPO (Schulman et al., 2017) algorithm.

right training setups, and appropriate neural network archi-
tectures and inductive biases (Silver et al., 2017; Berner
et al., 2019; Vinyals et al., 2019; Baker et al., 2019). Moti-
vated by such results, in this work we explore the ingredients
necessary to train effective agents for magnetic assembly
through RL. In the subsequent sections we describe the
main ingredients of training successful agents and study the
contribution of each component.

4. Agents
In this section we describe our structured agents, including
observations and action spaces, and graph-based network
architecture. The Python code describing our agent archi-
tecture can be found in Appendix C.
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4.1. Structured Observations

The observations provided to the agent can be divided into
two broad categories, those concerning the blocks, and those
concerning the grippers. When designing observations to
provide to agents, we have taken the effort to ensure obser-
vations are invariant to the global position and orientation.
This is a valuable inductive bias that provides agents with
the flexibility build desired blueprint anywhere and in any
rotation.

Block Observations In the assembly task, observations
pertaining to the blocks can be naturally organized into a
directed graph, with each node containing information about
a particular block, and each directed edge representing rel-
ative information about the two blocks. The information
contained in each node is very minimal: the z height of
the block from the ground, and whether it was being held
by each gripper in the previous timestep. The majority of
observations are placed on the directed edges. An edge
connecting two blocks contains the information regarding:
relative position and orientation of their magnets that need
to be connected, change in relative position and orientation
of the blocks needed to match the blueprint, relative posi-
tion of center of mass of the blocks, whether the blocks
are magnetically attached, and whether the blocks should
be magnetically attached according to the blueprint. All
these observations can be automatically extracted from the
simulator state and the target blueprint configuration, and
can realistically be computed in a real-world setting as well
by simply obtaining each blocks position and orientation.
Detailed information regarding exact observations can be
found in Appendix B.

Gripper Observations For each gripper we include its
orientation, positional and rotational velocities, and which
block the gripper was holding in the previous timestep.

4.2. Graph Neural Network Encoder

Given that our magnetic assembly task can be naturally set
up using graph-based observations, prior to extracting ac-
tions and critic values, we first encode inputs using a graph
neural network architecture (Battaglia et al., 2018), specifi-
cally graph attention networks (Veličković et al., 2017). The
two inputs to our encoder are (1) a directed graph containing
all block observations (2) a “global node” containing gripper
observations. After linearly embedding all input features,
they are passed through N = 3 graph attention layers whose
design is inspired by Transformers (Vaswani et al., 2017)
and Graph Attention Networks (Veličković et al., 2017).
Concisely, in each layer, each node aggregates information
by attending to incoming edge and node features, and subse-
quently the global node features are updated by aggregating
information from the graph nodes. An intuitive diagram

describing the architecture used can bee seen in Figure 4.

4.3. Policy

Through experimentation, we have discovered that in addi-
tion to a graph neural network encoder, a key design choice
is how to extract policy actions from the encoded inputs.
The outputs of the graph neural network encoder are hidden
features per node corresponding to the blocks, and hidden
features corresponding to the global node. Using linear
layers, from each block node we obtain 2 vectors: (1) a
vector representing how the block would like to be moved if
a gripper chooses to move it, and (2) a vector representing a
key vector for the block. From the global hidden features,
using linear layers we obtain one query vector per gripper.
To obtain logits representing which gripper decides to move
which block, we use dot-product attention between the block
keys and the gripper query vectors, akin to the popular atten-
tion mechanism used in Transformers (Vaswani et al., 2017).
In addition to the use of graph neural networks, using this
form of decoding from the graph encoder has been a key
enabler in training effective policies.

4.4. Critic

To train our RL agents we also require critic value estimates,
which we obtain by passing global features obtained from
the graph encoder to a 3 layer MLP, with 512 dimensional
hidden layers, and relu activation function.

5. Training and Evaluation
Large-Scale PPO We train our agents using Proximal
Policy Optimization (PPO) (Schulman et al., 2017) and
Generalized Advantage Estimation (GAE) (Schulman et al.,
2015), and follow the practical PPO training advice of
(Andrychowicz et al., 2020a). As will be shown below,
one of the most key ingredient in enabling the training of
our magnetic assembly agents is the scale of training. Un-
less otherwise specified, our agents are trained for 1 Billion
environment timesteps, using 1 Nvidia V100 GPU for train-
ing, and 3000 preemptible CPUs for generating rollouts in
the environment. 1 Billion steps in our setup amounts to
about 48 hours of training. The key libraries used for train-
ing are Jax (Bradbury et al., 2018), Jraph (Godwin* et al.,
2020), Haiku (Hennigan et al., 2020), and Acme (Hoffman
et al., 2020).

Multi-Task Training The blueprints that we have de-
signed range from very simple 2 block structures, up to
complex blueprints containing all blocks. To train assembly
agents, we have split blueprints into training and testing
structures, and unless otherwise specified, agents are trained
on the full training set of blueprints; in each episode, we
sample a training blueprint and task the agent with creating
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that structure.

Initial State Episodes start from either (1) all the blocks
randomly dispersed on the ground, or (2) a randomly chosen
preconstructed blueprint structure with unused blocks ran-
domly arranged on the ground. Resetting from blueprints
increases the diversity of initial states, forces the agent to
learn how to disassemble structures, and as we found en-
ables a reset-free mode of operation where the agent can
continually construct, deconstruct, and reconstruct differ-
ent blueprints. Unless otherwise specified, we reset from
training blueprints with probability 0.2.

Curriculum We have observed that throughout training,
some blueprints can be quickly learned while others can be
much more challenging. We believe an interesting feature of
the assembly problem is that even if a blueprint is currently
unsolvable, due to the modular aspect of building complex
structures, agents can learn more effectively if we emphasize
focus on more challenging blueprints rather than allocating
resources to rolling out policies on blueprints that they are
already capable of solving. For this reason, in each episode
we sample goal blueprints based on a curriculum whose
detailed description can be found in Appendix D.

Performance Evaluation During training, we evaluate
trained policies continuously approximately every 10 min-
utes by freezing the policy and computing average success
rate over 40 episodes. This continuous evaluation is exe-
cuted on both training and test environments. Also, in each
evaluation cycle, we generate a video to visualize the agents’
behavior. Such visualizations have been a valuable asset in
iterating over the design of our agents, observations, reward
functions, and training setups.

6. Experiments
6.1. Importance of Large-Scale Training

We begin by verifying that our training procedure leads to
capable assembly agents. To this end, we train our structured
agents (Section 4), using the training procedure described
in Section 5, for 2.5 billion environment steps to observe
training patterns that may arise over a long period of training.
Figure 5 presents the success rates of our agent (averaged
across two runs) throughout training, on blueprints the agent
was trained on as well as held-out structures (per blueprint
success rates presented in Figure 12 in the appendix).

The first key observation is the compute scale necessary
for effectively training our structured agents using PPO
(Schulman et al., 2017). The simplest 2 block structures can
take up to 100 million steps to be reliably solved, while it
can take up to 500 million environment steps until the first
time some of the most complex blueprints are solved. The

second observation is that after a long period of training,
not only can agents reliably solve all training blueprints, but
they can also generalize well to complex held-out blueprints.

6.2. Multi-Task vs. Single-Task

As noted in Section 5, agents are simultaneously trained to
construct all blueprints in the training split. To understand
the contribution of this “Multi-Task” training, we train three
agents in a “Single-Task” setting: one for learning to con-
struct a particular 6 block blueprint, one for constructing a
particular 12 block blueprint, and one for constructing a par-
ticular 16 block blueprint. The success rates for these three
agents can be found in Figures 15, 16, and 17 respectively.
Our key observations are the following: (1) While the 6
and 12 block blueprints are eventually learned, the 16 block
blueprint is not learned, (2) In the single-task setting, the
12 block blueprint requires approximately 500 million envi-
ronment steps to be learned, while in the multi-task setting
(Figure 12) it is learned within 300 million steps, (3) the
single-task agents can transfer to some blueprints of equal or
lower complexity than they were trained on, but mostly fail
to transfer to any blueprints they were not trained to solve.
This is in sharp contrast to the multi-task agents which can
even transfer to complex held-out blueprints. These results
highlight the necessity of multi-task training, not only for
generalization to unseen blueprints, but for quickly and re-
liably solving complex tasks, despite the fact that agent
architectures are well-matched to the problem domain.

6.3. Structured Agent Architecture

As discussed in section 4, given that state information for
the assembly task can be naturally organized into a graph
representation, the use of graph neural networks imbues
agents with an inductive bias that is well-matched to the
domain. Indeed, prior work (Bapst et al., 2019; Li et al.,
2020) have observed that the use of agents with relational
structures is a key ingredient in solving object-oriented tasks.
In this section we aim to understand the contribution of
various components of our agents’ architecture.

Removing Attention in Graph Layers Figure 11 demon-
strates the effect of removing the attention mechanism in
the graph neural network layers, meaning that while our
agents continue have a graph inductive bias, the hidden rep-
resentations for each block are updated by treating other
blocks equally, rather than deciding which blocks to attend
to. The results in Table 2 and Figure 11 clearly demonstrate
the necessity of the attention mechanism.

Removing Relational Inductive Biases We also attempt
to train agents without relational inductive biases. Instead,
we flatten the environment observations and use a residual
network (He et al., 2016) encoder, with a similar action
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Figure 5. Plot presenting success rates for different groups of blueprints throughout training. Each square represents the success rate on
40 episodes, evaluated at that point in training, averaged across two training runs. Our results demonstrate (1) the key role of scale in
training successful agents, and that (2) after a long period of training, agents generalize well to complex held-out blueprints. Per blueprint
results presented in Figure 12.

Blueprint Size Single-Blueprint Training Multi-Blueprint Training (ours)
Success Rate Steps Until Success Success Rate Steps Until Success

6 Blocks 99.6% 100M 100% 180M
12 Blocks 99.9% 480M 98.8% 220M
16 Blocks 0% – 90.9% 240M

Table 1. Comparison of Single-Blueprint vs. Multi-Blueprint training for blueprints of various complexities. Success rates are calculated
after 1 billion steps of training for the respective agents, and “Steps Until Success” denotes approximately the first timestep at which the
respective agent was able to successfully create the blueprint. While for very small structures single-blueprint training can be effective, for
more complex blueprints, single-blueprint agents take significantly longer or are entirely unable to learn the task within 1 billion timesteps.

and value decoder as described in Section 4. Details of the
residual network architecture are described in Appendix E.
We train three variants of the residual network agents: (1)
trained on the full training set of blueprints, (2) trained on
a subset of the training blueprints requiring ≤ 6 blocks,
and (3) trained on a single training blueprint requiring 6
blocks. Figures 22, 23, and 24 demonstrate that in all three
scenarios, removing the relational inductive bias of graph
neural networks is catastrophic. After 1 billion steps, all
agents have a 0% success rate on all blueprints, and never
accomplish higher than 2.5% success rate on any train or
held-out blueprint.

6.4. Bimanual Manipulation

Compared to most robotics tasks and benchmarks (Levine
et al., 2018; Kalashnikov et al., 2018; Andrychowicz et al.,
2020b; Chen et al., 2021; Huang et al., 2021; Yu et al.,
2020; Li et al., 2020; Batra et al., 2020; OpenAI et al.,
2021), part-based assembly stresses the bimanual coordina-
tion of agents. To verify that our magnetic assembly domain

stresses this skill, we compare success rates between biman-
ual and single-gripper agents in Table 2 and Figure 10. We
find that while our single-gripper agents finds unique strate-
gies to complete some of the structures, its overall success
rate is lower than that of a dual-gripper agent, particularly
on the more complex blueprints. This indicates the necessity
of using two grippers in our domain.

6.5. Reset-Free Evaluation

As described in Section 5, with probability 0.2, the initial
state of an episode is set to be a randomly selected pre-
constructed blueprint, with remaining blocks dispersed on
the ground. This choice has two advantages: (1) it provides
an opportunity for agents to learn how to disassemble in-
correct constructions, and (2) it enables the evaluation of
our agents in a reset-free manner, where we continually task
agents with constructing new blueprints without resetting
the environment to an initial state.

To evaluate the contribution of this choice, we compare
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Agent Type Success Rate
Train 2 - 6 Blocks Train 7 - 11 Blocks Train 12 - 16 Blocks Test 12 - 16 Blocks Test Special

Default 99.9% 97.9% 87.3% 89.6% 77.5%
No Graph Attention 95.3% 43.1% 4.1% 3.6% 4.8%
Non-Graph Network 0% 0% 0% 0% 0%
Single-Gripper 94.6% 77.9% 51.7% 55.4% 42.8%

Table 2. Comparing the success rates of agent ablations, discussed in Sections 6.3 and 6.4, on the various subsets of blueprints. Results
are reported after 1 billion steps of training the respective agents.

the success rate of two agents, one with and one without
blueprint resets, in a reset-free setting. Specifically, within
one reset-free episode we ask agents to build 10 consecutive
blueprints without resetting to an initial state: once an agent
successfully constructs a blueprint, or the maximum of 100
steps has elapsed, we change the target blueprint. As an
additional challenge, we sample blueprints from the training
set structures requiring a minimum of 12 blocks. We report
the success rate aggregated across 50 reset-free episodes
(i.e. 50 × 10 total episodes).

When resetting from blueprints is disabled, our agent
achieves a sucess rate of 69.4%± 17.0%. In constrast, with
blueprint resets, the success rate increases to 93.1%± 7.5%.
This is an exciting finding as it demonstrates a scenario
where episodic training enables agents to be deployed in the
practically-relevant reset-free scenario.

6.6. Curriculum

As described in Section 5, throughout training we make use
of a curriculum that increases the likelihood of sampling
more challenging blueprints. To analyze its contribution,
we compare two runs of agents with curriculum, to an agent
trained without curriculum. Our results in Figures 18 and 19
indicate that our curriculums do not have a clear-cut benefit,
but may be leading to improvements in generalization to
blueprints in the held-out test set.

6.7. Curbing Rapid Switching Between Blocks

Due to the use of direct manipulation, agents can rapidly
switch which block they are holding, which can result in
sometimes unrealistic maneuvers not achievable by physical
robot grippers. Thus, in the event we wanted to transfer
the success from our direct manipulation environment to
more realistic settings using robotic arms, it is important to
understand how one can mitigate this unrealistic behaviors.
To this end, after training an agent using the default training
procedure described in Section 5, we modify the environ-
ment as follows: Whenever a gripper chooses to change the
object it is holding, we disable that gripper for 2 steps. With
this change in place, we continue to train our agent.

Figure 20 demonstrates that while initially the agent’s suc-
cess rate drops very significantly, within less than 100 mil-

lion environment steps the agent recovers its strong perfor-
mance. This is a small amount of steps compared to the 2.5
billion environment steps used to train the initial agent.

Given this result, one might ask whether we could have
started training our agents using this environment modifica-
tion from the beginning. Figure 21 compares this approach
to our default training setup. As can be seen, training agents
from scratch using gripper transition delays is a significantly
more challenging problem, and even after 1.5 billion envi-
ronment steps, the agent is still unable to make significant
progress on many of the blueprints in the training set. These
results demonstrate that an efficient approach towards train-
ing practical agents is to first train agents in the simplest
settings, and continue to finetune those agents in more real-
istic scenarios. Videos demonstrating behaviors of agents
discussed in this section can be found in the accompanying
project webpage.

6.8. Analyzing Learned Solutions

In this section our goal is to obtain a qualitative understand-
ing of the strategies learned by our trained agents.

Learned Attention Patterns As shown in Section 6.3,
the attention mechanism is a key ingredient in the graph
neural network architecture we used. To understand what
the attention heads in the different layers have learned to
focus on, we visualize agents’ attention patterns throughout
different episodes. We observe the following interpretable
patterns: (1) Some attention heads focus on the blocks that
should be connected according to the blueprint, (2) Some
keep account of which blocks are currently connected, and
(3) Some focus on which blocks are currently being held by
the two grippers. Other attention heads, particularly in the
later layers, are more challenging to interpret, but appear to
contain a combination of the previously described attention
motifs. Videos visualizing learned attention patterns can be
found in the accompanying website.

Qualitative Behaviours Rolling out trained agents, we
observe a number of interesting learned behaviors. Exam-
ples of such behaviors include: (1) Despite environment
observations not providing fine-grained detail about free-
space, agents appear to have learned robust collision avoid-
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ance skills. (2) When building complex structures, agents
appear to first build separate smaller substructures, and
subsequently attach the substructures to construct the full
blueprint.

7. Related Work
Assembly and Construction Bapst et al. (2019) previ-
ously studied two-dimensional construction environments,
training an agent to assemble a structure for an open-ended
goal, such as a connecting or a covering structure. Certain
details of assembly are abstracted away, as the agent has the
ability to directly summon a block of choice anywhere in the
scene and weld blocks via an explicit action. By contrast,
our environment contains a fixed set of blocks that must
be moved – or reassembled from a previous structure – in
three-dimensional space, and where block connections are
made via magnet forces. Such a design makes the environ-
ment more easily implementable as a real-world robot setup.
Lee et al. (2019; 2021) also introduce a three-dimensional
assembly environment for furniture design from a blueprint.
By contrast, we use generic blocks, which leads to combi-
natorial complexity in the space of structures, and enables
a more controlled study of generalization. A key point of
differentiation from the above works is that we use assem-
bly as a domain for the study of generalization, and train
a single agent to solve all – seen and unseen – assembly
tasks simultaneously. Additionally, we introduce the use of
multiple grippers in assembly which allows us to evaluate
the bimanual coordination of trained agents. Chung et al.
(2021) present a task where given side view images of a
desired structure, Lego blocks must be stacked to create a
structure with a similar silhouette. At each step, the state of
the Lego structure is encoded using graph neural networks,
and through deep RL, a policy learns where the next Lego
block must be placed. In contrast, in our work we focus on
the dynamic task of assembly, where discrete decisions and
continuous control are solved simultaneously using large-
scale deep RL. Funk et al. (2022) introduce a 3D task where
blocks must be re-arranged to create stable structures that
occupy randomly sampled target regions. They present a
long-horizon manipulation algorithm combining deep re-
inforcement learning and Monte-Carlo tree search, that at
each step decides which block should be moved to which
location. Similar to our work, multi-head attention graph
neural networks are used, which enable generalization to
new settings with larger number of blocks. By comparison,
we train a single policy to jointly consider the low-level ma-
nipulation of the blocks and block selection. Suárez-Ruiz
et al. (2018) studied assembly of a single chair with real-
world bimanual robots using offline planning methods. Kim
& Seo (2019); Cabi et al. (2019) studied real-world insertion
problem, which is an operation in the broader assembly pro-
cess. Hartmann et al. (2021) present a planning system to

solve long-horizon multi-robot construction problems, con-
sisting of stacking parts to create architectural structures. In
contrast, in this work we focused on the assembly problem
and were motivated to understand whether deep reinforce-
ment learning can be used so simultaneously solve discrete
planning and continuous control.

Generalization in Robotic Manipulation Much recent
work in robot manipulation focused on the tasks of object
grasping (Pinto & Gupta, 2016; Mahler et al., 2017; Levine
et al., 2018; Kalashnikov et al., 2018), in-hand object ma-
nipulation (Andrychowicz et al., 2020b; Chen et al., 2021;
Huang et al., 2021), or execution of a motor skill (Yu
et al., 2020), where variation comes from diversity of ob-
ject shapes and arrangements involved. By contrast, while
assembly uses a fixed set of blocks, the compound struc-
tures that must be manipulated have a combinatorial diver-
sity of shape that dynamicaly changes during the episode.
Li et al. (2020); Batra et al. (2020); OpenAI et al. (2021)
propose scene re-arrangement as a universal task for em-
bodied AI. While re-arrangement is general, we caution
that many instances of rearrangement can be solved as a
sequence of largely independent sub-tasks that do not in-
fluence each other, and can be performed in any order. By
contrast, assembly steps are coupled and must be performed
in a specific order that must be discovered by the agent.
Ahmed et al. (2020); Funk et al. (2022) also present robotics
benchmarks based on block rearrangement, with stronger
emphasis on long-horizon planning, learning from struc-
tured representations, and generalization to unseen scenar-
ios. Gupta et al. (2019) introduce a kitchen environment
with an implicit dependency structure among sub-tasks (i.e.
opening a container before putting something in it), but such
pre-conditions are harder to scale.

Structured and Object-Centric Policies Besides our
work, there have been numerous efforts to parameterize
policies through structured models such as graph neural net-
works or Transformers, leveraging intrinsic objectness and
invariances of the physical world (Spelke, 1990). They have
been used for controlling agents of different morphologies
for locomotion and manipulation tasks (Wang et al., 2018;
Sanchez-Gonzalez et al., 2018; Chen et al., 2018; Pathak
et al., 2019; Huang et al., 2020; Kurin et al., 2020), as well
as enabling agents to learn a compositionally-challenging
task like stacking (Li et al., 2020). Other relevant works
include parameterizing manipulation actions, especially of
2D tasks, as object-based spatial actions, which have en-
abled breakthroughs in vision-based manipulation (Zeng
et al., 2020; Noguchi et al., 2021; Shridhar et al., 2022).
While inspired by similar motivations, our work tackles a
uniquely challenging task, 3D bi-manual assembly, com-
pared to single-arm or 2D tasks in prior work (Li et al.,
2020; Zeng et al., 2020).
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8. Limitations, Discussion, & Future
Directions

We introduced a new blueprint assembly environment for
studying bimanual assembly of multi-part physical struc-
tures, and demonstrated training of a single agent that can
simultaneously solve all seen and unseen assembly tasks via
a combination of large-scale RL, structured policies, and
multi-task training. While our work showed that a solution
to our problem exists, it is by no means efficient - requiring
billions of training episodes. It is likely that by incorporat-
ing planning or hierarchical methods, the training time can
be significantly shortened. Additionally, upon maturity of
accelerated simulation engines (Liang et al., 2018; Freeman
et al., 2021; Makoviychuk et al., 2021), our agents may be
trained at a similar compute scale using much more modest
hardware infrastructures. Beyond more efficient training, in
this work we chose to abstract away complexities of manip-
ulation and perception. A more detailed treatment of these
elements, such as constraints that prevent overly aggressive
behaviors, can bring this work closer to robotics applica-
tions. And lastly, while we focused on blueprint assembly in
this work, more open-ended assembly goals as well as multi-
agent interaction present further research opportunities for
developing agents of increasing complexity.
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A. Blueprints
In this section, we describe details of all blueprints. Figure 6 and 7 are used for training while figure 8 and 9 are used for
testing. Table 3 shows distribution for block sizes for different types.

Number of blocks Types
Training Test Test Literal Test Longest Test Tallest

2 14
3 31
4 36
5 5
6 9
7 6
8 6
9 6

10 5 1
11 4
12 4 2 1 1 1
13 3 2 1 1
14 5 2 1 1 1
15 4 2 1 1
16 4 2 1 1 1

Table 3. Number of blueprint block distributions
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Figure 6. All blueprints used for training (of size 1 - 5).
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Figure 7. All blueprints used for training (of size 6 - 16).

Figure 8. All blueprints used for testing (of size 12 - 16).
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Figure 9. Blueprints used for literal, tallest, longest testing.
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B. Descriptions of Observation Space, Action Space, Rewards, Success Criterion
B.1. Observation Space

Per block observations on graph nodes

• z height from ground

• binary indicator for whether the block was being held in the previous timestep by some gripper

Observations on directed graph edge from block A to block B

• change in position for desired magnets to align

• change in orientation for desired magnets to align

• the difference between current block positional delta, and block positional delta in the blueprint

• the difference between current block orientation delta, and block orientation delta in the blueprint

• positional delta

• 0-1 indicator for whether blocks should be connected according to the blueprint

• 0-1 indicator for whether blocks should are currently connected

Per gripper observations

• orientation

• positional velocity

• rotational velocity

• 16-dimensional 0-1 vector showing which block the gripper was holding in the previous timestep

B.2. Action Space

• one 16-dimensional one-hot vector per gripper, representing which block the gripper wants to manipulate

• a 16 × 6 dimensional matrix, representing desired position and rotational velocity per block, were it to be chosen by a
gripper to be manipulated

B.3. Rewards

In each step, the following rewards are computed and added together. The cumulative reward is then subtracted from the
cumulative reward in the prior timestep, and the difference in cumulative rewards is returned as the environment reward for
the current timestep.

• force penalty if two blocks, or a block and the ground, make heavy contact

• -1 for each magnetic connection that should not be connected

• dense reward based on position and orientation of each two magnets that should be connected

• +1 if two magnets that should be connected are connected

• dense reward based on position and orientation of each two blocks that should be attached to one-another
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B.4. Success Criterion

An episode is deemed successful when in some timestep all of the following success criterion are satisfied.

• magnetic connections required by the blueprint are made

• no extra magnets outside the blueprint definition are connected

• all blocks in the blueprint structure are in the correct relative position and orientation

C. Graph Neural Network Architecture
1 import jax
2 import jax.numpy as jnp
3 import haiku as hk
4 import jraph
5

6 def build_GraphNetGAT_ppo_network(environment_spec):
7 action_dim = np.prod(environment_spec.actions.shape, dtype=int)
8

9 #### PPO NETWORK PARAMS
10 NUM_GN_GAT_LAYERS = 3
11 VALUE_MLP_LAYER_SIZES = [512, 512, 512]
12 #### GN_GAT LAYER PARAMS
13 NUM_HEADS = 4
14 NUM_READOUT_HEADS = 4
15 # NUM_HEADS = 8
16 QK_DIM = 64
17 M_DIM = 64
18 NODE_EMBED_DIM = 64
19 EDGE_EMBED_DIM = 64
20 GLOBAL_EMBED_DIM = 64
21 NODE_MLP_HID = 256
22 NODE_MLP_NUM_LAYERS = 1
23 GLOBAL_MLP_HID = 256
24 GLOBAL_MLP_NUM_LAYERS = 1
25

26 def update_edge_fn(edge_features, sender_features, receiver_features, global_features):
27 feats = jnp.concatenate([sender_features, edge_features], axis=-1)
28 m = hk.Linear(NUM_HEADS * M_DIM, with_bias=False, name=’linear_message’)(feats)
29 return (jnp.reshape(m, list(m.shape[:-1]) + [NUM_HEADS, M_DIM]), edge_features)
30

31 def update_node_fn(node_features, sender_features, receiver_features, global_features):
32 receiver_features = jnp.reshape(receiver_features, list(receiver_features.shape[:-2])

+ [-1])
33 x = jnp.concatenate([receiver_features], axis=-1)
34 residual = hk.Linear(node_features.shape[-1], with_bias=False, name=’linear_node’)(x)
35 y = node_features + residual
36 y = hk.LayerNorm(axis=-1, create_scale=True, create_offset=True,)(y)
37

38 h = hk.nets.MLP(
39 output_sizes=[NODE_MLP_HID]*NODE_MLP_NUM_LAYERS + [y.shape[-1]],
40 activation=jax.nn.relu,
41 name=’mlp_node’)(jnp.concatenate([y, global_features], axis=-1))
42 h = h + y
43 h = hk.LayerNorm(axis=-1, create_scale=True, create_offset=True,)(h)
44 return h
45

46 def update_global_fn(node_features, edge_features, global_features):
47 x = jnp.concatenate([global_features, node_features], axis=-1)
48 h = hk.nets.MLP(
49 output_sizes=[GLOBAL_MLP_HID]*GLOBAL_MLP_NUM_LAYERS + [GLOBAL_EMBED_DIM],
50 activation=jax.nn.relu,
51 name=’mlp_global’)(x)
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52 h = h + global_features
53 h = hk.LayerNorm(axis=-1, create_scale=True, create_offset=True,)(h)
54 return h
55

56 def attention_logit_fn(edge_features, sender_features, receiver_features,
global_features):

57 edge_features = edge_features[1]
58 q = hk.Linear(NUM_HEADS * QK_DIM, with_bias=False, name=’linear_query’)(
59 jnp.concatenate([sender_features, edge_features], axis=-1))
60 q = jnp.reshape(q, list(q.shape[:-1]) + [NUM_HEADS, QK_DIM])
61 k = hk.Linear(NUM_HEADS * QK_DIM, with_bias=False, name=’linear_key’)(

receiver_features)
62 k = jnp.reshape(k, list(k.shape[:-1]) + [NUM_HEADS, QK_DIM])
63 return jnp.sum(q * k, axis=-1, keepdims=True) / (QK_DIM**0.5)
64

65 def attention_reduce_fn(edge_features, weights):
66 return edge_features[0] * weights
67

68 def encode_graph(g):
69 return jraph.GraphMapFeatures(
70 embed_edge_fn=hk.Linear(EDGE_EMBED_DIM, name=’linear_embed_edge’),
71 embed_node_fn=hk.Linear(NODE_EMBED_DIM, name=’linear_embed_node’),
72 embed_global_fn=hk.Linear(GLOBAL_EMBED_DIM, name=’linear_embed_global’)
73 )(g)
74

75 @jax.vmap
76 def _ppo_graph_part(g):
77 g = encode_graph(g)
78 enc_edges = g.edges
79

80 for _ in range(NUM_GN_GAT_LAYERS):
81 g = jraph.GraphNetGAT(
82 update_edge_fn=update_edge_fn,
83 update_node_fn=update_node_fn,
84 attention_logit_fn=attention_logit_fn,
85 attention_reduce_fn=attention_reduce_fn,
86 update_global_fn=update_global_fn,
87 )(g)
88 g = g._replace(edges=enc_edges)
89

90 return g
91

92 def _ppo_graph_network(g):
93 input_g = g
94 input_globals = jnp.squeeze(g.globals, axis=1)
95 input_globals = hk.Linear(GLOBAL_EMBED_DIM, with_bias=False)(input_globals)
96

97 g = _ppo_graph_part(g)
98 output_g = g
99 g_globals = jnp.squeeze(g.globals, axis=1)

100 g_nodes = g.nodes # B x n_nodes x NODE_DIM
101

102 ######### The policy part
103 # first predict an action distribution per block
104 # for now lets try without further processing of the g_nodes
105 node_feats = g_nodes
106

107 BLOCK_ACT_DIM = 6
108 block_act_locs = hk.Linear(
109 BLOCK_ACT_DIM,
110 w_init=hk.initializers.VarianceScaling(1e-4),
111 b_init=hk.initializers.Constant(0.))(node_feats)
112 block_act_scales = hk.Linear(
113 BLOCK_ACT_DIM,
114 w_init=hk.initializers.VarianceScaling(1e-4),



Blocks Assemble! Learning to Assemble with Large-Scale Structured Reinforcement Learning

115 b_init=hk.initializers.Constant(0.))(node_feats)
116 block_act_scales = jax.nn.softplus(block_act_scales) + 1e-6
117

118 # now for each gipper generate logits for which block it wants to move
119 # for now lets try without further processing of g_globals
120 global_feats = jnp.concatenate([input_globals, g_globals], axis=-1)
121

122 NUM_GRIPS = 2
123 grip_keys = hk.Linear(NUM_GRIPS * QK_DIM, with_bias=False)(global_feats)
124 grip_keys = jnp.reshape(grip_keys, [grip_keys.shape[0], NUM_GRIPS, 1, QK_DIM]) # B x

G x 1 x QK_DIM
125

126 block_active = jnp.reshape(input_g.globals, [input_g.globals.shape[0], NUM_GRIPS,
-1])

127 block_active = block_active[:, :, -node_feats.shape[1]:]
128 block_active = jnp.transpose(block_active, [0, 2, 1])
129 block_keys = hk.Linear(QK_DIM, with_bias=False)(
130 jnp.concatenate([node_feats, block_active], axis=-1)) # B x n_nodes x QK_DIM
131

132 block_keys = jnp.reshape(block_keys, [block_keys.shape[0], 1, block_keys.shape[1],
QK_DIM]) # B x 1 x n_nodes x QK_DIM

133

134 grip_logits = jnp.sum(grip_keys * block_keys, axis=-1) / (QK_DIM**0.5) # B x G x
n_nodes

135

136 policy_output = PolicyOutput(
137 block_act_locs=block_act_locs,
138 block_act_scales=block_act_scales,
139 grip_logits=grip_logits,)
140

141 ######### The baseline value part
142 # for now just doing it based on the globals
143

144 # get the baseline value
145 input_globals = jnp.squeeze(input_g.globals, axis=1)
146 input_globals = hk.Linear(GLOBAL_EMBED_DIM, with_bias=False)(input_globals)
147 g_globals = jnp.squeeze(output_g.globals, axis=1)
148 g_globals = hk.Linear(GLOBAL_EMBED_DIM, with_bias=False)(g_globals)
149 all_globals = jnp.concatenate([input_globals, g_globals], axis=-1)
150

151

152 # trying something
153 grip_logits_softmax = jax.lax.stop_gradient(jax.nn.softmax(grip_logits, axis=-1)) #

dont want the value loss to influence gripper choice
154 grip_logits_softmax = jnp.reshape(grip_logits_softmax, [grip_logits_softmax.shape[0],

-1])
155 all_globals = jnp.concatenate([all_globals, grip_logits_softmax], axis=-1)
156

157

158 mlp_inputs = all_globals
159

160 value_network = hk.nets.MLP(
161 output_sizes=VALUE_MLP_LAYER_SIZES + [1],
162 activation=jax.nn.relu)
163 value = value_network(mlp_inputs)
164 value = jnp.squeeze(value, axis=-1)
165

166 return (policy_output, value)
167

168 return _ppo_graph_network

D. Curriculum
The following python script represents how our training curriculum is defined.
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1 import numpy as np
2 from scipy import special
3

4 class Curriculum():
5 def __init__(
6 self,
7 tau: float = 0.2,
8 temp: float = 0.5,
9 decay: float = 0.99,

10 curriculum_logdir: str = ’’):
11 self.tau = tau
12 self.temp = temp
13 self.decay = decay
14 self.blueprint_indices = blueprint_indices
15

16 self.success_rates = np.zeros((len(blueprint_indices),), dtype=np.float32)
17

18 self.probs = np.ones((len(blueprint_indices),), dtype=np.float32)
19 self.probs *= 1./float(len(blueprint_indices))
20 self.probs_history = self.probs[None, :].copy()
21

22 self._steps = 0
23

24 def update(self, batch):
25 """Updates the curriculum."""
26 successes = batch[’success’]
27 blueprint_indices = batch[’blueprint_indices’]
28

29 for s, b_i in zip(successes, blueprint_indices):
30 self.success_rates[i] = (1. - self.tau) * self.success_rates[i] + self.tau * s
31

32 self.success_rates *= self.decay # ensures there are not things that never get
sampled

33 self.probs = special.softmax((1. - self.success_rates) / self.temp)
34

35 def sample(self):
36 return int(np.random.choice(np.arange(len(blueprint_indices)), p=self.probs))

E. ResNet Baseline Details
When ablating the role of relation inductive biases in the agent architecture, we replace the graph neural network encoder in
our default agent (described in Section 4) with a residual network encoder defined as follows:

1 import jax
2 import haiku as hk
3

4 NUM_RESNET_BLOCKS = 4
5 HIDDEN_DIM = 1024
6

7 uniform_initializer = hk.initializers.VarianceScaling(
8 scale=0.333, mode=’fan_out’, distribution=’uniform’)
9

10 def residual_block(x):
11 h = x
12 h = hk.Linear(HIDDEN_DIM, w_init=uniform_initializer)(h)
13 h = jax.nn.relu(h)
14 h = hk.Linear(HIDDEN_DIM, w_init=uniform_initializer)(h)
15 x = x + h
16 return hk.LayerNorm(axis=-1, create_scale=True, create_offset=True)(x)
17

18 def resnet_encoder(x):
19 for _ in range(NUM_RESNET_BLOCKS):
20 x = block(x)
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F. Additional Figures

Figure 10. Plot showing bimanual success rate minus single gripper success rate. In our proposed magnetic as-
sembly tasks, agents benefit strongly from having access to 2 grippers compared to 1. Full details in Figure 13.

Figure 11. Plot showing default agent success rate minus no attention agent success rate, clearly demon-
strating the necessity of the graph attention mechanism. Full details in Figure 14.
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G. Full Size Version of All Plots
Due to the large size of the plots, figures appear starting from the next page.
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Figure 12. Plot presenting success rates for each blueprints throughout training, for our default agents (Section 4) and training procedure
(Section 5). Each square represents the success rate on 40 episodes, evaluated at that point in training, averaged across two training runs.
Our results demonstrate (1) the key role of scale in training successful agents, and that (2) after a long period of training, agents generalize
well to complex held-out blueprints.
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Figure 13. Plot showing bimanual success rate minus single gripper success rate. In our proposed magnetic as-
sembly tasks, agents benefit strongly from having access to 2 grippers compared to 1.
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Figure 14. Plot showing default agent success rate minus no attention agent success rate, clearly demon-
strating the necessity of the graph attention mechanism.
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Figure 15. Plot showing success rates when training on only blueprint 6 005.
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Figure 16. Plot showing success rates when training on only blueprint 12 000.
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Figure 17. Plot showing success rates when training on only blueprint 16 001.
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Figure 18. Plot showing with curriculum agent (seed 0) success rate minus no curriculum agent
success rate.
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Figure 19. Plot showing with curriculum agent (seed 1) success rate minus no curriculum agent
success rate.
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Figure 20. Plot showing default agent success rate minus forked agent fine-tuned with gripper
transition delay 2 success rate.
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Figure 21. Plot showing default agent success rate minus agent trained with gripper transition delay
2 from scratch success rate.
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Figure 22. Plot showing the success rate of a residual network architecture trained on the full training set of blueprints.
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Figure 23. Plot showing the success rate of a residual network architecture trained on the subset of the training set of blueprints with ≤ 6
blocks.
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Figure 24. Plot showing the success rate of a residual network architecture trained only on a single blueprint requiring 6 blocks.


