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Abstract
Although traditional optimization methods focus
on finding a single optimal solution, most objec-
tive functions in modern machine learning prob-
lems, especially those in deep learning, often
have multiple or infinite number of optimal points.
Therefore, it is useful to consider the problem of
finding a set of diverse points in the optimum set
of an objective function. In this work, we frame
this problem as a bi-level optimization problem
of maximizing a diversity score inside the opti-
mum set of the main loss function, and solve it
with a simple population gradient descent frame-
work that iteratively updates the points to max-
imize the diversity score in a fashion that does
not hurt the optimization of the main loss. We
demonstrate that our method can efficiently gener-
ate diverse solutions on multiple applications, e.g.
text-to-image generation, text-to-mesh generation,
molecular conformation generation and ensemble
neural network training.

1. Introduction
Most traditional optimization methods in machine learning
aim to find a single optimal solution for a given objective
function. However, in many practical applications, the objec-
tive functions tend to have multiple or even infinite number
of (local or global) optimum points, for which it is of great
interest to find a set of diverse points that are representative
of the whole optimum set. This is tremendously useful in a
variety of machine learning tasks, including, for example,
ensemble learning (Lakshminarayanan et al., 2016; Pang
et al., 2019), robotics (Cully et al., 2015; Osa, 2020), gener-
ative models (Lee et al., 2018; Shi et al., 2021), latent space
exploration of generation models (Liu et al., 2021; Fontaine
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& Nikolaidis, 2021) robotics and reinforcement learning
(Vannoy & Xiao, 2008; Conti et al., 2017; Parker-Holder
et al., 2020).

Finding diverse solutions is particularly relevant in modern
deep learning applications, in which it is common to use
very large, overparameterized neural networks whose num-
ber of parameters is larger than the size of training data (e.g.
Radford et al., 2021; Fedus et al., 2021; Brown et al., 2020).
In these cases, the set of models that perfectly fit the training
data (and hence optimal w.r.t. the training loss) consist of
low dimensional manifolds of an infinite number of points.
It is hence useful to explore and profile the whole solution
manifold by finding diverse representative points.

A straightforward approach to obtaining multiple optimal
solutions is to run multiple trials of optimization with ran-
dom initialization (e.g. Wu et al., 2017; Toscano-Palmerin &
Frazier, 2018). However, this does not explicitly enforce the
diversity preference. Another approach is to jointly optimize
a set of solutions with a diversity promoting regularization
term (e.g., Pang et al., 2019; Xie et al., 2015; Croce & Hein,
2020; Xie et al., 2016). However, the regularization term
can hurt the optimization of the main objective function
without a careful tuning of the regularization coefficient.
Evolutionary algorithms (e.g. Cully et al., 2015; Flageat &
Cully, 2020; Mouret & Clune, 2015) and genetic algorithms
(e.g. Lehman & Stanley, 2011b; Gomes et al., 2013; Lehman
& Stanley, 2011a) are also useful for finding diverse solu-
tions. However, these black-box algorithms do not leverage
gradient information and tend to require a large number of
query points for large-scale optimization problems.

In this work, we consider this problem with a bi-level op-
timization perspective: we want to maximize a diversity
score of a set of points within the minimum set of a given
objective function (i.e., diversity within the optimum set).
We solve the problem with a simple gradient descent like
approach that iteratively updates a set of points to maxi-
mize the diversity score while minimizing the main loss in a
guaranteed fashion. The key feature of our method is that it
ensures to optimize the main loss as a typical optimization
method while adding diversity score as a secondary loss that
is minimized to the degree that does not hurt the main loss.
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We propose two variants of our method that control the
minimization of the main loss in different ways (by descend-
ing the sum and max of the population loss, respectively).
For the choice of the diversity score, we advocate using
a Newtonian energy, which provides more uniformly dis-
tributed points than typical variance-based metrics. We test
our methods in a variety of practical problems, including
text-to-image, text-to-mesh, molecular conformation gener-
ation, and ensemble neural network training. Our methods
yield an efficient trade-off between diversity and quality,
both quantitatively and qualitatively.

2. Harmless Diversity Promotion
Problem Formulation Let f(x) be a differentiable loss
function f(x) on domainX := Rd. Let argmin f be the set
of minima of f , which we assume is non-empty. Our goal
is to find a set of m points (a.k.a. particles) x := {xi}mi=1

in the minimum set argmin f that minimizes a preference
function Φ(x) = Φ(x1, . . . , xm). Formally, this yields a
bi-level optimization problem:

min
x∈Xm

Φ(x) s.t. x ⊆ argmin f. (1)

So we want to minimize Φ as much as possible, but without
scarifying the main loss f . Because practical loss functions,
such as these in deep learning, often have multiple or infinite
numbers of minimum, optimizing Φ inside the optimum
set allows us to gain diversity “for free”, compared with
applying standard optimization methods on f .

Φ can be a general differentiable function that encodes arbi-
trary preference that we have on the particles. In this work,
for encouraging diversity, we consider the Riesz s-energy
(e.g., Götz, 2003; Kuijlaars et al., 2007),

Φs(x) =


1

s

∑
i ̸=j

∥xi − xj∥−s
, if s ̸= 0,∑

i ̸=j

log
(
∥xi − xj∥−1

)
, if s = 0,

where s ∈ R is a coefficient. Different choices of s yield
different energy-minimizing configurations of points. A
common choice is s = −2, with which Φs reduces to the
negative variance. On the other hand, when s = d−2 where
d is the dimension of the input x, it reduces to the Newtonian
energy in physics. The case when s = 0 is known as the
logarithm energy. In this work, we advocate using a non-
negative s ≥ 0, which places a strong penalty on the small
distances between points, and hence yields more uniformly
distributed points as shown in the experiments and the toy
example blew.

Example 2.1. Consider two sets of points in R:

x = {0, 0, 2}, x′ = {0, 1, 2}.

Although x′ is clearly more uniformly distributed, one can
show that x has larger variance and hence is preferred by
Φs with s = −2. On the other hand, x′ is preferred over
x by Φs with any s ≥ 0. In fact, it is easy to see that
Φs(x) = +∞ > Φs(x

′) for ∀s ≥ 0.

In practice, when x is a structured objective such as image
or text, it is useful to map the input into a feature space
before applying Riesz s-energy, i.e., we define Φ(x) =
Φs(ψ(x1), . . . , ψ(xm)), where ψ is a neural network fea-
ture extractor trained separately that maps each xi to a fea-
ture vector.

Main Idea The bi-level optimization problem in (1) is
equivalent to a constrained optimization problem:

min
x∈Xm

Φ(x) s.t. f(xi) ≤ f∗, ∀i ∈ [m], (2)

where f∗ := minx f(x) and the m constraints f(xi) ≤ f∗
ensure that all {xi}mi=1 are optima of f .

To yield a simple and efficient algorithm, we propose to
combine the m constraints in (2) into a single constraint:

min
x∈Xm

Φ(x) s.t. F (x) ≤ F ∗, (3)

where F ∗ := minz F (z) and F (x) is a utility function
defined such that (2) and (3) are equivalent:

{F (x) ≤ F ∗} ⇐⇒ {f(xi) ≤ f∗, ∀i ∈ [m]} .

In this work, we consider two natural choices of F (x):

Fsum(x) =

m∑
i=1

f(xi), Fmax(x) = max
i∈[m]

f(xi),

both of which clearly ensures the equivalence of (2) and (3).

We proceed to develope the two algorithms based on Fsum
in Section 2.1 and Fmax in Section 2.2, respectively. The
idea of both methods is to iteratively update x following a
gradient-based direction which ensures that

1) F (x) is monotonically decreased stably across the itera-
tion, until a (local) optimum is reached;

2) Φ(x) is minimized as the secondary loss to the degree
that it does not conflict with the descent of F (x).

Besides the benefit of obtaining a single constraint, the
introduction of F allows different particles to exchange
loss to decrease Φ more efficiently: it is possible for some
particles xi to increase their f(xi) to decrease Φ, once the
overall F is ensured to decrease. As shown in the sequel,
Fmax gives more flexibility for decreasing Φ, and hence
yields more diverse solutions than Fsum, but with the trade-
off of converging slower.
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Algorithm 1 Diversity-aware Gradient Descent (Fsum)
Goal: Find a set of m diversified local optima of f(x).
Parameters: step size µ, a repulsive coefficient η.
for Iteration t do

xt+1,i ←− xt,i − µ∇f(xt,i)− ηµ

√√√√∑m
i=1 ∥∇f(xt,i)∥22∑m

i=1 ∥gt,i∥
2
2

gt,i,

where gt,i = ∇yt,iΦ(yt), and yt is defined in (4).
end for

2.1. Fsum-Descent

We now derive a simple algorithm that decreases the sum
of loss Fsum monotonically while minimizing Φ as the sec-
ondary loss.

Assume we have xt = {xt,i}mi=1 at the t-th iteration of the
algorithm. To decrease Fsum, the update direction xt+1−xt

should be sufficiently close to the gradient descent direction.
Let yt be the result of applying gradient descent for one
step on Fsum from xt:

yt,i = xt,i − µ∇f(xt,i), ∀i ∈ [m], (4)

where µ > 0 is a step size. Assume f is 1/µ-smooth:

f(x′) ≤ f(x) +∇f(x)⊤(x′ − x) + 1

2µ
∥x′ − x∥22 , (5)

for any x, x′ ∈ X . Applying (5) to xt,i and sum over i gives

Fsum(x) ≤ Fsum(xt) +
1

2µ

(
∥x− yt∥

2
2 − ξ

2
t

)
, ∀x,

where ξ2t := ∥xt − yt∥
2
2 = ∥µ∇F (xt)∥22 . Therefore, to

ensure that Fsum decreases, it is sufficient to ensure that
∥xt+1 − yt∥2 ≤ ξt.

On the other hand, Taylor approximation of Φ on yt gives

Φ(x) = Φ(yt) +∇Φ(yt)
⊤(x− yt) +O(∥x− yt∥

2
2).

Therefore, we propose to choose xt+1 by solving

xt+1 = argmin
x∈X

{
∇Φ(yt)

⊤x s.t. ∥x− yt∥
2
2 ≤ ηξ

2
t

}
,

where η ∈ (0, 1]. The constraint ∥x− yt∥
2
2 ≤ ηξ2t en-

sures that Fsum is sufficiently decreased, and the objective
∇Φ(yt)

⊤x allows us to promote diversity as much as pos-
sible given the constraint (it approximately minimizes Φ(x)
when the step size µ is small). Here η trade-offs the decreas-
ing speed of Fsum v.s. Φ.

Solving the optimization yields that

xt+1 = yt − η
∥yt − xt∥2
∥∇Φ(yt)∥2

∇Φ(yt). (6)

Algorithm 2 Diversity-aware Gradient Descent (Fmax)
Goal: Find a set of diversified local optima of f(x).
Parameters: step size µ, a repulsive coefficient η.
for Iteration t do

xt+1,i ←− xt,i − µ∇f(xt,i)−
ξt,i
∥gt,i∥2

gt,i,

where gt,i = ∇yt,i
Φ(yt), and yt is defined in (4),

ξt,i =

√
2µ

(
(1 − η) max

i∈[m]
f◁
t,i + η max

i∈[m]
f(xt,i) − f◁(xt,i)

)
,

and f◁t,i = f(xt,i)− µ
2 ∥∇f(xt,i)∥

2
2.

end for

See Algorithm 1 for the main procedure. It is clear from
the derivation that the algorithm monotonically decreases
Fsum with Fsum(xt+1) ≤ Fsum(xt)− (1− η)ξ2t /(2µ), and
all particles converge to a local optimum of f when the
algorithm terminates.

In this algorithm, the updates of the different particles xi
are coupled together due to the minimization of Fsum and
Φ. Although Fsum decreases monotonically, each individual
f(xi) does not necessarily decrease. In fact, the particles
can exchange the loss with each other to gain better diversity:
we may find that some particles temporarily increase the
loss f to better decrease Φ, while ensuring the overall Fsum
decreases.

2.2. Fmax-Descent

We now derive a version of our algorithm that leverages
Fmax(x) = maxi∈[m] f(xi) as the descending criterion in
(3). This variant of algorithm focuses on descending f on
the worst-case particle and hence provides larger flexibility
for the non-dominate particles to maximize the diversity.
Note that because Fmax is non-smooth, we can not directly
use the method for Fsum. A special consideration is needed
to exploit the special structure of the max function, sim-
ilar to what is needed for non-smooth optimization (e.g.,
Hornung, 1982).

Similar to Fsum, we assume f is 1/µ-smooth. By applying
(5) on xi and taking the max over i, we get for ∀x

Fmax(x) ≤ max
i∈[m]

{
f◁t,i +

1

2µ
∥xi − yt,i∥22

}
:= F̂ t

max(x),

where we define

f◁t,i = f(xt,i)−
µ

2
∥∇f(xt,i)∥22 .

So here F̂ t
max(x) is the upper bound of Fmax(x) implied by

the 1/µ smoothness of f .

Without considering Φ, the minimum of the upper bound
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F̂ t
max(x) is obviously attained by x = yt following vanilla

gradient descent (4) on each particle xt,i. In this case, the
descent of Fmax is upper bounded by δt as defined below:

Fmax(yt)− Fmax(xt) ≤ F̂ t
max(yt)− Fmax(xt)

= max
i∈[m]

f△t,i − max
i∈[m]

f(xt,i) := −δt.

In our algorithm, we want to ensure that Fmax(xt) is de-
creased by at least an amount of ηδt, where η ∈ (0, 1) is a
factor that quantifies how much we are willing to sacrifice
the decreasing of Fmax for promoting diversity.

Therefore, we choose xt+1 by solving

min
x

{
∇Φ(yt)

⊤x s.t. F̂ t
max(x) ≤ Fmax(xt)− ηδt

}
.

This is equivalent to

min
x
∇Φ(yt)

⊤x s.t. ∥xi − yt,i∥22 ≤ ξ
2
t,i, ∀i ∈ [m],

where ξ2t,i = 2µ(Fmax(xt)− ηδt − f◁t,i). Solving this gives

xt+1,i = yt,i −
ξt,i
∥ϕt,i∥2

ϕt,i.

See Algorithm 2 for details. It is clear from the derivation
that we monotonically decrease Fmax with Fmax(xt+1) −
Fmax(xt) ≤ ηδt, and the algorithm terminates when Fmax
reaches a local minimum of Fmax.

Descending Along Contours
An interesting feature of using
Fmax is that the particles tend
to lie on the contour lines of f
during the algorithm; see the
right figure and Fig. 3 in Sec-
tion 4. This is because the re-
pulsive force from the diversity score tends to increase the
loss f of all the non-dominant particles, and as a result,
makes their f loss equal or close to the dominate particle as
they descent on the landscape of f .

3. Related Works
Linear Combination Method A naive way to trade-off
two objectives to minimize their linear combination. For
encouraging diversity, we consider

min
x

(1− α)Fsum(x) + αΦ(x), (7)

where α ∈ [0, 1] is a fixed coefficient. The main drawback
of this method is that we need to select α case-by-case, since
the optimal choice of α depends on the relative scale of F
and Φ, which may not be on the same scale; this is espe-
cially the case for Riesz s-energy with s > 0 which goes to

infinite when different points collapse together. In addition,
if α > 0, the linear combination method necessarily scari-
fies loss f for diversity. Note that (7) reduces to the naive
multi-start approach if α = 0 and {xi} starts from different
random initialization. In comparison, our method does not
require selecting α manually, and does not scarify loss f for
diversity by design. A key point that we want to make is
that since the set of optimal solutions almost always consist
of multiple infinite number of points in non-convex, deep
learning, it is feasible and desirable to find diverse points
inside the optimum set, while gaining diversity for free.

Sampling-based methods provide another approach to find-
ing diverse results. From the Gibbs variational principle,
sampling can be viewed as solving (7) with Φ replaced by
the entropy functional and α viewed as the temperature pa-
rameter. A notable example is Stein variational gradient
descent (Liu & Wang, 2016), which yields an interacting
gradient-based update with repulsive force. Similar to the
linear combination method, these methods require manu-
ally selecting a positive temperature α and yield a “hard”
trade-off between loss and diversity.

Population black-box optimization algorithms have also
been used to find diverse solutions. Examples include ge-
netic algorithms (e.g. Lehman & Stanley, 2011b; Gomes
et al., 2013; Lehman & Stanley, 2011a), evolutionary algo-
rithms (e.g. Hansen et al., 2003; Cully et al., 2015; Flageat
& Cully, 2020), and Cross-entropy method (CEM) (De Boer
et al., 2005). A notable example is the MAP-Elites (Mouret
& Clune, 2015), which finds solutions in different grid cells
of a feature space with different selection rules (Sfikas et al.,
2021; Gravina et al., 2018). The main bottleneck of these
algorithms is the high computation cost. Hence, a differ-
entiable version MAP-Elites (Fontaine & Nikolaidis, 2021)
was recently proposed to speed up the computation.

Dynamic Barrier Gradient Descent The Fsum method is
similar to the dynamic barrier algorithm of Gong et al.
(2021), which provides a general algorithm for solving
bilevel optimization of form minx f(x) s.t. x ∈ argmin g.
A key difference is that we use the quadratic constraint
∥x− yt∥

2 ≤ ηξ2t to constraint the update direction, while
Gong et al. (2021) uses the inner product constraint of form
(x− xt)

⊤(yt − xt) ≥ ηξ2t . Using the quadratic constraint
provides a stronger control to descent f , and ensures that
the algorithm converges when it is on the optimum set. The
Fmax method, on the other hand, is very different from ex-
isting approaches by leveraging the special structure of the
max function.

Multi-objective Optimization Standard MOO methods
such as multiple gradient descent (MGD) is not readily
applicable to our problem since multiple gradient descent
converges to an arbitrary Pareto point and does not encode
our preference that F is of a higher level priority as Φ.
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4. Experiments
We first examine and understand our method in some toy
examples, and then apply Fsum and Fmax to more difficult
deep learning applications: text-to-image (Liu et al., 2021;
Ramesh et al., 2021), text-to-mesh (Michel et al., 2021),
molecular conformation generation (Shi et al., 2021) and
neural network ensemble. In all these cases, we verify and
confirm that our method can serve as a plug-in module
and can obtain 1) visually more diverse examples, and 2)
a better trade-off between main loss (e.g. cross-entropy
loss, quality score) and diversity without tuning co-efficient.
We set s = 0 for Reisz s-energy distance if there is no
special instructions, set η = 0.5 for Fmax and report −Φ
score to measure diversity. We use initialization with small
variance in toy cases for better visualization. In real-word
experiments, 1) we compare different methods with the
same random seed; 2) multiple initialization is just linear
combination with α = 0. We report the average score over
3 trials for each experiment.

4.1. Toy Examples

We verify our proposed methods on toy test functions, study
the impact of the Riesz s-energy, the trade-off of the target
function and diversity term, and the trade-off of using Fsum
vs. Fmax. We adopt gradient descent with a constant learning
rate 5× 10−4 and 1,000 iterations.

0 500 1000

0.01

0.03

L2
Riesz

(a) s = −2 (b) s = d− 2 = 0 (c) Gradient Norm

Figure 1. Results on a 2D (d = 2) toy example with Fsum. We
test two different choices of s in Riesz energy, including s = −2
(variance) and s = d− 2 = 0 (logarithm energy). We can see that
the logarithm energy yields more uniformly distributed points.

Q1: How does the choice of s in Riesz energy influence
the result? One typical measure of diversity is the variance,
which corresponds to s = −2 in Riesz energy. However,
1(a) shows that it tends to yield many points that are close
to very close to each other. This is because variance does
not place a strong penalty on close points once the overall
averaged pairwise distance is large. On the other hand, using
Riesz s-energy with s ≥ 0 tends to yield more uniformly
distributed points (Figure 1(b)). This is because when s ≥ 0,
Riesz s-energy places a strong penalty on the points that are
very close to each other. Figure 1(c) shows zero gradient
norm and indicates the convergence of both cases.

Q2: How does our method compare with the linear combi-
nation method? Varying α in the linear combination (e.g.
0, 10−4, 10−3, 0.01, 0.1, 0.5, 1), we can trace a (locally
optimal) Pareto front of loss F and diversity Φ. In Figure
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Figure 2. The loss F vs. diversity score Φ by Fsum and Fmax on a
2D example (the orange and green star), and by minimizing (1−
α)Fsum + αΦ with different values of α ∈ [0, 1] (blue triangles).
We can see that Fsum achieves a better trade-off.

2, we find that our method can achieve strictly better re-
sults than the Pareto front of the linear combination method.
Compared to the linear combination (the blue triangles),
we notice that in the early iterations of the trajectory, Fsum
and Fmax introduce a larger diversity penalty and makes the
particles more diverse.

(a)
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Fmax Fsum

Figure 3. Results on toy examples with Fmax and Fsum. The red
and orange stars show the 1000th-iteration and 200th-iteration
results. The curve shows the value of the target function and
diversity term during optimization.

Q3: What is difference of using Fmax vs. Fsum? As sug-
gested in Section 2, Fmax is expected to generate more di-
verse examples, with the trade-off of yielding slower conver-
gence and potentially worse loss value. To verify this, we
test Fmax and Fsum in three different kinds of test functions
shown in Figure 3, whose optimal set is a connected man-
ifold (Figure 3(a)), multiple isolated modes (Figure 3(b)),
and a curve (Figure 3(c)). We observe that: 1) Compared
to Fsum, Fmax tends to place a larger diversity penalty, espe-
cially in the early phase of the optimization. 2) In Fmax, the
particles tend to lie on the contour lines during the optimiza-
tion (Figure 3(a) left).

Q4: Initialize at a flat region? By changing the constraint
to ||x − yt||2 ≤ max(ηξ2t , ϵ), where ϵ is a non-zero con-
stant, we can avoid stuck case when initialization at a flat
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Figure 4. The left column: images generated by Fmax based on different input text. Right column: images generated by Fmax, Fsum and the
linear combination (7) (α = 0.5) from the same input text. The text above each image denotes the text prompt T , and the text under each
image displays the T1 → T2 used to define the diversity score in (9). Better viewed when zoomed in; see Appendix for more examples.

region. We experiment the choices of ϵ but do not find
ϵ > 0 is helpful empirically. Therefore, we do not introduce
additional parameters.

4.2. Latent Space Exploration for Image Generation

Text-Controlled Zero-shot Image Generation We apply
our method to text-controlled image generation. We base
our method on FuseDream (Liu et al., 2021), a training-free
text-to-image generator that works by combining the power
of pre-trained BigGAN (Brock et al., 2019) and the CLIP
model (Radford et al., 2021).

Basic Setup A pre-trained GAN model I = g(x) is a
neural network that takes a latent vector x ∈ Rd and outputs
an image I . The CLIP model (Radford et al., 2021) provides
a score CLIP(T , I) for how an image I is related to a text
prompt T . We use the augmented clip score sAugCLIP(T , I)
from Liu et al. (2021) which improves the robustness by
introducing random augmentation on images.

Liu et al. (2021) generates an image I = g(x) for a given
text T by solving maxx sAugCLIP(T , g(x)). We introduce
diversity on top of Liu et al. (2021). Given text prompt T ,
our goal is to find a diversified set of images I = g(xi),
∀i ∈ [m] that maximize the sAugCLIP score, where x =
{x1, . . . , xm} is obtained by

min
x

Φ(x), s.t. x ⊆ argmax
x′

sAugCLIP(T , g(x′)), (8)

where we define the diversity score by Φ(x) =
Φs(ψ(x1), . . . , ψ(xm)), and ψ is a neural network that an
input image to a semantic space. In particular, we use

ψ(x) =

[
sAugCLIP (T1, g(x)) , sAugCLIP (T2, g(x))

]
, (9)

where T1 and T2 are two text that specify the semantic di-
rections along which we want to diversify. For example, by
taking T1 = ‘White Tiger’ and T2 = ‘Orange Tiger’ (Figure
4), we can find images of tigers that interprets from white to
orange.

For the experiments, We use BigGAN for ImageNet im-
age generation and StyleGAN-v2 for high-resolution image
generation. We apply the Adam (Kingma & Ba, 2014) opti-
mizer with constant 5× 10−3 learning rate. For BigGAN,
the optimizable variable x contains two parts, a feature vec-
tor in the GAN latent space and a class vector representing
the 1K ImageNet classes. We set the number of iterations to
500 following Liu et al. (2021). For StyleGAN-v2 (Karras
et al., 2020), the optimizable variable x is a feature vector
in the GAN latent space. Because StyleGAN-v2 generates
images in higher resolution (e.g. 1024×1024), we set the
number of iterations to 50 to save computation cost.

Qualitative Analysis Figure 4 shows examples of images
generated from our Fmax, Fsum and the linear combination
(α = 0.5) when using StyleGAN-v2 trained on FFHQ (Kar-
ras et al., 2019) and AFHQ (Choi et al., 2020). We can
see that the images generated by ours are both high quality,
semantically related to the prompt T (high sAugCLIP), and
well-diversified along semantic direction specified by T1
and T2 (low Φ(x)). For example, for T =‘a smiling woman
with glasses’, T1=’hat’, T2=’long hair’, our method yields
images with diverse hats and hair lengths. As a comparison,
the α = 0.5 linear combination fails to generate ‘woman’
or ‘glasses’ in some cases.

Quantitative Analysis We present the value of quality
score sAugCLIP and diversity score Φ given by our methods
(Fmax and Fsum) and the linear combination method (7) on an
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T T1 T2
Linear α = 0 Linear α = 0.5 Fsum Fmax
Sc ↑ Div ↑ Sc ↑ Div ↑ Sc ↑ Div ↑ Sc ↑ Div ↑

Test 1 A painting of an either blue or red dog. blue red 0.34 -3.78 0.30 -3.63 0.34 -3.64 0.31 -3.60
Test 2 A campus with river or forest. forest and trees river 0.27 -3.81 0.25 -3.72 0.28 -3.72 0.26 -3.68
Test 3 Red, Blue and Yellow Squares Mondrian Vincent van Gogh 0.31 -3.80 0.26 -3.71 0.30 -3.71 0.26 -3.66
Test 4 Home-cooked meal in Russia. sausage, meat tomato, onion 0.29 -3.80 0.27 -3.64 0.29 -3.65 0.27 -3.61
Test 5 200 random examples 0.32 -3.74 0.28 -3.65 0.32 -3.66 0.31 -3.63

Table 1. The diversity score (Div) and the AugCLIP score (Sc) our different methods on text-to-image generation.
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Figure 5. (a) The AugCLIP score vs. iteration in Test 1 in Table 1. (b)-(d) The (quality, diversity) front of Fsum (blue), Fmax (yellow),
linear combination with α ∈ {0, 0.25, 0.5, 0.75} (red), and ‘finetuned’ linear combination with the same set of α (Cyan). Here ‘finetune’
refers to optimizing the linearly combined loss in (7) for 250 iterations and then optimize sAugCLIP(·) for another 250 iterations with the
diversity term turned off. Fsum and Fmax outperform both variants of linear combination. The result of one random trial is reported in these
figures.

additional set of examples. In Table 1 and Figure 5, we can
see that that Fmax and Fsum always achieve better results than
tuning the coefficient value for the linear combination. Fmax
generates more diverse results while Fsum optimizes the
main loss better. We also find that if we finetune the linear
combination result by turning off the diversity promoting
loss at the end of the optimization, it does not improve the
(quality, diversity) Pareto front (see Figure 5). Figure 6
shows more detailed analysis on the Test 1.

Fmax + Riesz

Fsum + Riesz

Blue - Red
Main Score

0.03
0.29

0.02
0.34 0.30 0.31 0.31

0.00 -0.01 -0.02

Blue - Red
Main Score

0.03
0.33

0.02
0.34 0.34 0.35 0.35

-0.01 -0.02 -0.02

Linear + Riesz

Blue - Red
Main Score

0.01
0.33

-0.01
0.29 0.30 0.34 0.29

-0.01 -0.01 -0.02

Figure 6. Images for Test 1 in Table 1. ‘Linear’ refers to the
linear combination (α = 0.5). There are two numbers under each
image: the numbers on the top row are sAugCLIP (T1, g(xi)) −
sAugCLIP (T2, g(xi)), which reflects the percentage of blue vs. red
colors; the numbers on the second row are sAugCLIP. See Appendix
for more examples.

Test MEGA Fsum
Sc ↑ Div ↑ Hours ↓ Sc ↑ Div ↑ Hours ↓

1 0.35 -3.62

0.97

0.34 -3.64

0.162 0.28 -3.71 0.28 -3.72
3 0.32 -3.69 0.30 -3.71
4 0.29 -3.66 0.29 -3.65

Table 2. Comparison with MEGA. Hours is measured on a NVIDIA
GeForce RTX3090 GPU.

Test
Iteration: 250 Iteration: 500

Gong et al. (2021) Fsum Gong et al. (2021) Fsum
Sc ↑ Div ↑ Sc ↑ Div ↑ Sc ↑ Div ↑ Sc ↑ Div ↑

1 0.26 -3.62 0.31 -3.66 0.32 -3.65 0.34 -3.64
2 0.23 -3.68 0.26 -3.73 0.26 -3.71 0.28 -3.72
3 0.24 -3.67 0.28 -3.71 0.27 -3.71 0.30 -3.71
4 0.23 -3.62 0.26 -3.64 0.27 -3.63 0.29 -3.65

Table 3. Comparison with Gong et al. (2021).

Compare with MEGA We compare with MAP-Elites via
a Gradient Arborescence (MEGA) (Fontaine & Nikolaidis,
2021), a recent improvement of MAP-Elites (Mouret &
Clune, 2015) in Table 2. Compared with MEGA, we find
that our method requires far less optimization time (1 hours
v.s. 10 minutes) and achieves comparable results. See
Appendix for more detailed comparisons.

Compare with Gong et al. (2021) Gong et al. (2021)
provides an off-the-shelf method for solving general lexico-
graphic optimization of form (3). We apply it to the case of
F = Fsum and compare it with our Fsum method in Table 3.
Our Fsum method yields faster convergence on the main loss,
and Gong et al. (2021) also outperforms the linear combina-
tion baseline with α = 0.5 shown in Table 1. On the other
hand, we find that Gong et al. (2021) fails to work when
F = Fmax due to the non-smoothness of the max function.

4.3. Controllable Diverse Generation on Meshes

We apply our method to generate diversified meshes of 3D
objectives from text. We base our method on Text2Mesh
(Michel et al., 2021), and promote the diversity with a CLIP-
based semantic diversity score similar to (9) that is based on
a pair of test T1, T2. See Appendix for more detailed setup.

Figure 7 shows the result of the Fsum, Fmax and the linear
combination method α = 0.5. We set α = 0.5 to have a
similar diversity score with the Fsum, Fmax methods. We run
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Figure 7. Results on Text2Mesh generation form Fsum, Fmax and
linear combination (α = 0.5). See supplementary materials for a
detailed description video.

1,500 iterations for Fsum and Fmax. For the linear combina-
tion method, we apply the diversity term for 750 steps and
finetune for another 750 steps with the diversity promotion
turned off. We can see that Fsum and Fmax generate the 3D
models with different cloth styles in the green and blue col-
ors which satisfy the text prompt. On contrast, the linear
combination baseline fails to keep the reasonable geometry
and provide a reasonable color; see e.g., the overly-thin and
overly-thick mesh displacement on soldier case, and the
non-smoothing meshes and the purple color in vase case.

4.4. Diversified Molecular Conformation Generation

A fundamental problem in computational chemistry is
molecular conformation generation, predicting stable 3D
structures from 2D molecular graphs. The goal is to take
a 2D molecular graph representation G of a molecule and
predict its 3D conformation (i.e., the 3D coordinates of the
atoms in the molecule). Diversity is essential in this problem
since there are multiple possible conformations of a single
molecule and we hope to predict all of them.

Specifically, we are interested in generating a set of possi-
ble conformations x = {x1, . . . xm} of a given molecule,
where xi ∈ R3×d is the 3D coordinates of d atoms in the
molecule. Let E(x) be an energy function of which the true
configurations are local minima, we generate x by solving

min
x

Φs(x), s.t. x ⊆ argminE. (10)

For our experiments, we adopt the energy function from
ConfGF (Shi et al., 2021), which is implicitly defined
with a learnable gradient field trained on the GEOM-QM9
dataset (Axelrod & Gomez-Bombarelli, 2020).

We evaluate the method by comparing the conformations
predicted from (10) with the set of ground truth confor-
mations (denoted by x∗) of the molecule of interest from
GEOM-QM9. Because the 3D coordinates are unique upto
rotation and translation. We measure the difference between
two conformations x, x′ using the root mean square devi-
ation: RMSD(x, x′) = minT ∥T (x)− x′∥2, where T is

minimized on the set of all possible rotations and trans-
lations. For the set of predicted x and ground truth x∗

conformations, we calculate the matching score (MAT) for
evaluating quality and the coverage score (COV) to measure
diversity following Shi et al. (2021),

COV(x,x∗) = ♯{x∗ ∈ x∗|RMSD(x∗, x) < δ, x ∈ x}/♯x∗,

MAT(x,x∗) =
∑
x∈x∗

min
x∈x

RMSD(x∗, x)/♯x∗,

where ♯ denotes the number of elements of a set. Both
COV and MAT measure the precision of the prediction (how
may predictions are found in ground truth list); to measure
recall (how every ground truth conformation is found by
at least a prediction), we also calculate RMAT(x,x∗) :=
MAT(x∗,x), the recall matching score (RMAT).

Baselines We use the same model trained from ConfGF and
use our Fsum and Fmax method as a way to enhance diversifi-
cation during inference. We test two inference strategies for
both our method and the baselines: One is the original Con-
fGF strategy, which randomly initializes 2× ♯x∗ number of
conformations and filters half of them to get 1×♯x∗ number
of predicted conformations. The original inference strategy
of ConfGF can be viewed as a naive multi-initialization
strategy. We also test another strategy that directly predicts
♯x∗ confirmations as x∗. We denote these two baselines as
2×Ref and 1×Ref, respectively.

#Init Method COV (%) ↑ MAT (Å) ↓ RMAT (Å) ↓
Mean Median Mean Median Mean Median

ConfGF 77.7 78.0 0.338 0.346 0.530 0.514
1×Ref Fsum 79.2 80.9 0.332 0.339 0.504 0.490

Fmax 79.4 80.5 0.336 0.340 0.512 0.501
ConfGF 90.0 94.6 0.267 0.269 0.502 0.499

2×Ref Fsum 90.3 94.9 0.270 0.268 0.483 0.475
Fmax 89.8 94.3 0.273 0.271 0.495 0.497

Table 4. Results on diversified molecule conformation generation
using Fsum, Fmax and the linear combination method.
Results See the results in Table 4. We find that both Fsum
and Fmax yield better results than the baseline in all the
metrics (e.g. COV, MAT, and RMAT), and Fsum yields the
best COV diversity score and Pareto front (precision, recall)
among all methods.

4.5. Training Ensemble Neural Networks

Another natural application of our method is learning diver-
sified neural network ensembles. Let θ be the parameter of
a neural network model. We are interested in learning a set
of neural networks θ = (θ1, . . . , θm) by solving

min
θ

Φ(θ), s.t. θ ⊆ argmin ℓtrain, (11)

where ℓtrain(θ) is a standard training loss of the neural net-
work, and Φ(θ) = Ex∼D[Φs(fθ1(x) . . . fθm(x))] is the di-
versity defined w.r.t. the hidden nodes of the last layer fθ of
the neural networks on training data D.
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Linear Combination
Fsum Fmax0.0 0.1 0.9

Single Acc ↑ 91.4 90.9 89.8 91.2 90.7
Ensemble Acc ↑ 92.0 91.4 90.5 92.0 91.3
Diversity ↑ -4.11 -4.04 -4.01 -4.07 -4.03
ECE ↓ 4.03 3.39 3.53 3.38 3.51

Table 5. Results on learning diversified ensemble neural net-
works with Fsum, Fmax and the linear combination with α ∈
{0, 0.1, 0.9}.

Results Table 5 shows the results when we train three
(m = 3) ResNet-56 models on CIFAR-10 dataset. We
observe that the linear combination often hurts the single
network accuracy and hence yields poorer accuracy com-
pared to the case without diversity regularization (α = 0).
In comparison, Fsum improves both the diversity and ECE
score without hurting the model accuracy and achieves the
best accuracy-diversity trade-off.

5. Conclusion
In this work, we propose a framework of gradient-based
optimization methods to find diverse points in the optimum
set of a loss function with a harmless diversity promotion
mechanism. We find that our methods yield both diverse and
high-quality solutions on a broad spectrum of applications.
Another important application that we have not explored is
robotics, finding diverse policies of critically important for
planning and reinforcement learning. We will explore it in
future works.
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A. Details about Generation on Meshes
LetM = g(x) be a mesh generator, and I = P (M) be a differentiable render that generates (a set of) images from the
three objective specified byM. Given a text prompt T , and a diversity score Φ, we want to find a diverse set of meshes
Mi = g(xi) by solving

min
x

Φ(x) s.t. x ∈ argmin
x′

sCLIP(T , P (g(x′))),

where Φ(x) = Ψs(ψ(x)) with ψ defined similar to (9) based on a pair of text T1, T2:

ψ(x) =

[
sCLIP(T1, P (g(x))), sCLIP(T2, P (g(x)))

]
.

We follow the model architecture and generation pipeline in Text2Mesh (Michel et al., 2021). Text2Mesh proposes a neural
style field network, which directly outputs the value displacement on the mesh normal and the color on each vertex. A
differentiable renderer is then rendering multiple 2D views for the styled mesh as the image set. The pipeline wants to get a
higher CLIP-based similarity score between the rendered image set and query text. Similar to image generation, we create
the diversity measure with additional text prompts and hope to make the Text2mesh model generate a variety of different
mesh styles with RGB colors and textures. We apply four same meshes with the zero RGB color and geometry displacement
and then optimize the color and displacement variables with 1,500 steps. We attach videos for the results in Figure 7 in the
supplementary material for a better visualization with more angles.

B. More Examples

Fmax Fsum Gong et al. (2021)
Figure 8. Results on toy examples with Fmax, Fsum and Gong et al. (2021) . We notice that Fmax and Fsum empirically converge faster. For
multi-modal examples, our version captures more modals than Gong et al. (2021).

We display more examples of different methods in this section.

In Figure 8, we compare our method with Lexico (Gong et al., 2021). We notice that by 1) replacing the inner product
constraint with quadratic constraint, 2) changing F function, our approaches yield faster convergence than Lexico, and
capture more local modal for the multiple modal objective.
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Fsum: A campus with blue river or green forest.

Fmax: A campus with blue river or green forest.

MEGA: A campus with blue river or green forest.

Forest and Trees -> River

Figure 9. Results on the test function 2 in Table 1. We notice Fmax, Fsum and MEGA achieve comparable quality and diversity, while Fmax

and Fsum uses less time as shown in Table 2.

In Figure 9, 10 and 11, we list the optimization results for Fmax, Fsum and MEGA, the evolutionary algorithm. Visually,
these methods achieve similar performance, while our approaches spend less time as shown in Section 4.

In Figure 12, we demonstrate the results of Fmax and Fsum, and both achieve good performance. We use the checkpoints
provided by StyleGAN-v2 1. For cats and tigers, we use the checkpoint trained on AFHQ Cat and AFHQ Wild using
adaptive discriminator augmentation.. For people face, we use the checkpoint trained on FFHQ at 1024×1024 resolution.
For portraitures, we use the checkpoint trained on MetFaces at 1024×1024 resolution, which does transfers learning from
FFHQ using adaptive discriminator augmentation.

1https://github.com/NVlabs/stylegan2-ada-pytorch

https://github.com/NVlabs/stylegan2-ada-pytorch
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Fmax: Red, Blue and Yellow Squares.

Fsum: Red, Blue and Yellow Squares.

MEGA: Red, Blue and Yellow Squares.

by Mondrian -> by Vincent van Gogh

Figure 10. Results on the test function 3 in Table 1. We notice Fmax, Fsum and MEGA achieve comparable quality and diversity, while
Fmax and Fsum uses less time as shown in Table 2.

Fmax: Home-cooked meal in Russia.

Fsum: Home-cooked meal in Russia.

MEGA: Home-cooked meal in Russia.

Sausage, Beef -> Tomato, Onion

Figure 11. Results on the test function 4 in Table 1. We notice Fmax, Fsum and MEGA achieve comparable quality and diversity, while
Fmax and Fsum uses less time as shown in Table 2.
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Figure 12. We apply Fmax to pre-trained StyleGAN-v2 checkpoints. The text above each image denotes T , while the text under each
image displays T1 → T2.
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Figure 13. We apply Fmax, Fsum and the linear combination (7) (α = 0.5) to StyleGAN-v2 pre-trained on FFHQ (Karras et al., 2019).
The text above each image denotes T , while the text under each image displays T1 → T2.


