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Abstract

Although traditional optimization methods focus
on finding a single optimal solution, most objec-
tive functions in modern machine learning prob-
lems, especially those in deep learning, often
have multiple or infinite number of optimal points.
Therefore, it is useful to consider the problem of
finding a set of diverse points in the optimum set
of an objective function. In this work, we frame
this problem as a bi-level optimization problem
of maximizing a diversity score inside the opti-
mum set of the main loss function, and solve it
with a simple population gradient descent frame-
work that iteratively updates the points to max-
imize the diversity score in a fashion that does
not hurt the optimization of the main loss. We
demonstrate that our method can efficiently gener-
ate diverse solutions on multiple applications, e.g.
text-to-image generation, text-to-mesh generation,
molecular conformation generation and ensemble
neural network training.

1. Introduction

Most traditional optimization methods in machine learning
aim to find a single optimal solution for a given objective
function. However, in many practical applications, the objec-
tive functions tend to have multiple or even infinite number
of (local or global) optimum points, for which it is of great
interest to find a set of diverse points that are representative
of the whole optimum set. This is tremendously useful in a
variety of machine learning tasks, including, for example,
ensemble learning (Lakshminarayanan et al., 2016; Pang
et al., 2019), robotics (Cully et al., 2015; Osa, 2020), gener-
ative models (Lee et al., 2018; Shi et al., 2021), latent space
exploration of generation models (Liu et al., 2021; Fontaine
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& Nikolaidis, 2021) robotics and reinforcement learning
(Vannoy & Xiao, 2008; Conti et al., 2017; Parker-Holder
et al., 2020).

Finding diverse solutions is particularly relevant in modern
deep learning applications, in which it is common to use
very large, overparameterized neural networks whose num-
ber of parameters is larger than the size of training data (e.g.
Radford et al., 2021; Fedus et al., 2021; Brown et al., 2020).
In these cases, the set of models that perfectly fit the training
data (and hence optimal w.r.t. the training loss) consist of
low dimensional manifolds of an infinite number of points.
It is hence useful to explore and profile the whole solution
manifold by finding diverse representative points.

A straightforward approach to obtaining multiple optimal
solutions is to run multiple trials of optimization with ran-
dom initialization (e.g. Wu et al., 2017; Toscano-Palmerin &
Frazier, 2018). However, this does not explicitly enforce the
diversity preference. Another approach is to jointly optimize
a set of solutions with a diversity promoting regularization
term (e.g., Pang et al., 2019; Xie et al., 2015; Croce & Hein,
2020; Xie et al., 2016). However, the regularization term
can hurt the optimization of the main objective function
without a careful tuning of the regularization coefficient.
Evolutionary algorithms (e.g. Cully et al., 2015; Flageat &
Cully, 2020; Mouret & Clune, 2015) and genetic algorithms
(e.g. Lehman & Stanley, 2011b; Gomes et al., 2013; Lehman
& Stanley, 2011a) are also useful for finding diverse solu-
tions. However, these black-box algorithms do not leverage
gradient information and tend to require a large number of
query points for large-scale optimization problems.

In this work, we consider this problem with a bi-level op-
timization perspective: we want to maximize a diversity
score of a set of points within the minimum set of a given
objective function (i.e., diversity within the optimum set).
We solve the problem with a simple gradient descent like
approach that iteratively updates a set of points to maxi-
mize the diversity score while minimizing the main loss in a
guaranteed fashion. The key feature of our method is that it
ensures to optimize the main loss as a typical optimization
method while adding diversity score as a secondary loss that
is minimized to the degree that does not hurt the main loss.
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We propose two variants of our method that control the
minimization of the main loss in different ways (by descend-
ing the sum and max of the population loss, respectively).
For the choice of the diversity score, we advocate using
a Newtonian energy, which provides more uniformly dis-
tributed points than typical variance-based metrics. We test
our methods in a variety of practical problems, including
text-to-image, text-to-mesh, molecular conformation gener-
ation, and ensemble neural network training. Our methods
yield an efficient trade-off between diversity and quality,
both quantitatively and qualitatively.

2. Harmless Diversity Promotion

Problem Formulation Let f(X) be a differentiable loss
function f (X) on domain X := RY. Let arg min f be the set
of minima of F, which we assume is non-empty. Our goal
is to find a set of m points (a.k.a. particles) X := Tx;gi%,
in the minimum set arg min f that minimizes a preference
function (X) =
bi-level optimization problem:

min

X) st X
x2Xm &

argmin f: (1)
So we want to minimize  as much as possible, but without
scarifying the main loss . Because practical loss functions,
such as these in deep learning, often have multiple or infinite
numbers of minimum, optimizing inside the optimum
set allows us to gain diversity “for free”, compared with
applying standard optimization methods on f.

can be a general differentiable function that encodes arbi-
trary preference that we have on the particles. In this work,
for encouraging diversity, we consider the Riesz S-energy
(e.g., Gotz, 2003; Kuijlaars et al., 2007),

8, . _
S kxi  Xxjk 7 ifs & 0;
s(X) = < 1
2 log kxi xjk *; ifs=0;
T igj

where S 2 R is a coefficient. Different choices of S yield
different energy-minimizing configurations of points. A
common choice is S = 2, with which g reduces to the
negative variance. On the other hand, whens =d 2 where
d is the dimension of the input X, it reduces to the Newtonian
energy in physics. The case when s = 0 is known as the
logarithm energy. In this work, we advocate using a non-
negative S 0, which places a strong penalty on the small
distances between points, and hence yields more uniformly
distributed points as shown in the experiments and the toy
example blew.

Example 2.1. Consider two sets of points in R:

x = f0; 0; 2g; x! = f0; 1; 2g:

Although X" is clearly more uniformly distributed, one can
show that X has larger variance and hence is preferred by

s Withs = 2. On the other hand, X' is preferred over
X by s with any S 0. In fact, it is easy to see that
sX)=+1L> ((X)for8s 0.

In practice, when X is a structured objective such as image
or text, it is useful to map the input into a feature space
before applying Riesz S-energy, i.e., we define (X)) =
(Xm)), where is a neural network fea-
ture extractor trained separately that maps each X; to a fea-
ture vector.

Main Idea The bi-level optimization problem in (1) is
equivalent to a constrained optimization problem:

min X s:t:
X2Xm ()

f(xi) f; 8i2[m); (2
where T := miny f(X) and the m constraints F(x;)
ensure that all fX;gj; are optima of .

To yield a simple and efficient algorithm, we propose to
combine the M constraints in (2) into a single constraint:

min  (X) st

min. FOO Fi ©

where F = min; F(z2) and F(X) is a utility function
defined such that (2) and (3) are equivalent:
fF(X)

Fg QO ff(xj) f; 8i2[mlg:

In this work, we consider two natural choices of F (X):

Fsum (X) = f (Xi )1

Fmax = f i)
. () max (i)

both of which clearly ensures the equivalence of (2) and (3).

We proceed to develope the two algorithms based on Fgyp
in Section 2.1 and Fp,,x in Section 2.2, respectively. The
idea of both methods is to iteratively update X following a
gradient-based direction which ensures that

1) F (x) is monotonically decreased stably across the itera-
tion, until a (local) optimum is reached;

2) (X) is minimized as the secondary loss to the degree
that it does not conflict with the descent of F (X).

Besides the benefit of obtaining a single constraint, the
introduction of F allows different particles to exchange
loss to decrease  more efficiently: it is possible for some
particles Xj to increase their F(X;) to decrease , once the
overall F is ensured to decrease. As shown in the sequel,
Fmax gives more flexibility for decreasing , and hence
yields more diverse solutions than Fy,,, but with the trade-
off of converging slower.
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Algorithm 1 Diversity-aware Gradient Descerfig(m) Algorithm 2 Diversity-aware Gradient Descen {ax)
Goal: Find a set ofn diversi ed local optima off (x). Goal: Find a set of diversi ed local optima df(x).
Parameters step size , a repulsive coef cient . Parameters step size , a repulsive coef cient .
for Iterationt do v for Iterationt do u

Y . . . ; .
Xt+1 i Xt rf(xe) t irrllmkr f(xmz)kg i X . ) ki k, x
i=1 kgl;i kz

whereg =1y, (y),andy, is de nedin (4),
whereg; =1y, (Y.), andy, isde nedin (4).
end for

S

6= 2 (@ )max fy o+ max f(xg ) fl0xa) s

2.1.Fsum-Descent andff; = f(xg) o krf(xg )k
end for

We now derive a simple algorithm that decreases the sum
of lossFgym monotonically while minimizing as the sec-

ondary loss. See Algorithm 1 for the main procedure. It is clear from

Assume we have, = fxy g, at thet-th iteration of the the derivation that the algorithm monotonically decreases
- 1 Yi=1 H 2

algorithm. To decreadesn, the update directiori+; X FS“mW'Fh Foun(Xt+1)  Feun(X ) (1. ) (=2 ), and

should be suf ciently close to the gradient descent direction@!! Particles converge to a local optimum bfwhen the

Lety, be the result of applying gradient descent for ong?/90rithm terminates.

step onFgym from x In this algorithm, the updates of the different partickes
L N o ) are coupled together due to the minimizatiorFaf, and
Yei = Xt ri(xe); 8i2[mf (4) . AlthoughF¢um decreases monotonically, each individual
where > 0Ois a step size. Assunfeis 1= -smooth: f (xj) does not necessqrily decrease. In fgct, the pgrticl_es
can exchange the loss with each other to gain better diversity:
1 2 we may nd that some particles temporarily increase the
f(x9 FOO+rf(x)>(x° x)+ —kx° xk5: (5 y P P y
( O) () ()7 ( ) 2 2 ) lossf to better decrease, while ensuring the overaltgym
. oo decreases.
for anyx; x%2 X . Applying (5)tox.; and sum over gives
1 2.2.Fmax-Descent
Four(X)  Feum(X¢) + > kx y.ko 25 8x; max
We now derive a version of our algorithm that leverages
Fmad{(X) = max;,m)f (X;) as the descending criterion in
(3). This variant of algorithm focuses on descendingn
the worst-case particle and hence provides larger exibility
o _ for the non-dominate particles to maximize the diversity.
On the other hand, Taylor approximation oony, gives  Note that becaus€ay is non-smooth, we can not directly
use the method fdfg,m. A special consideration is needed

where 2 := kx; y.k> = k r F(x;)k: Therefore, to
ensure thafFg,, decreases, it is suf cient to ensure that
kxt+1 Yk, t.

— > 2y.
()= Cyd+r (y) (x y)+ Otkx yko): to exploit the special structure of tmeax function, sim-
Therefore, we propose to choasg; by solving ilar to what is needed for non-smooth optimization (e.qg.,
n o Hornung, 1982).
— : > . 2 .
Xt+1 —afgggln ry) x st kx ylk; {0 Similar toFsum, We assumé is 1= -smooth. By applying
(5) onx; and taking the max over we get for8x
where 2 (0;1]. The constrainkx ytké 2 en- 1
sures thaFgn, is suf ciently decreased, and the objective Fyax(x) T[aog ft’;i + Z—kxi Vei kg = F—“r;ax(x);
1Zim

r ( y.)” x allows us to promote diversity as much as pos-
sible given the constraint (it approximately minimizés<)  where we de ne

when the step size is small). Here trade-offs the decreas-

ing speed oFsymV.s. . fl=1f(xe) > kr f (xei )KG:
Solving the optimization yields that So here’—“%ax(x) is the upper bound d¥ (X)) implied by
ky, Xk, thel= smoothness df.

ro(y): (6)

Xtv1 = Y
Cokr (ypk, Without considering , the minimum of the upper bound
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Ft_(x) is obviously attained by = vy, following vanilla in nite when different points collapse together. In addition,
max y ¥ =Y g p p g
gradient descer{@) on each particle; . In this case, the if > 0, the linear combination method necessarily scari-

descent ofax is upper bounded by as de ned below: es lossf for diversity. Note tha{7) reduces to the naive
multi-start approach if = 0 andf x; g starts from different
Frayt) FmadXt)  Frad¥1)  FmadXi) random initialization. In comparison, our method does not
= rg?x]ftf‘i Ta)%f (X )= require selecting manually, and does not scarify losgor
i2[m ’ i

diversity by design. A key point that we want to make is
that since the set of optimal solutions almost always consist
of multiple in nite number of points in non-convex, deep
learning, it is feasible and desirable to nd diverse points
inside the optimum set, while gaining diversity for free.

In our algorithm, we want to ensure thata(X¢) is de-
creased by at least an amount of, where 2 (0;1)isa
factor that quanti es how much we are willing to sacri ce
the decreasing df o« for promoting diversity.
Sampling-based methodgrovide another approach to nd-
ing diverse results. From the Gibbs variational principle,
sampling can be viewed as solvi(i with  replaced by

the entropy functional and viewed as the temperature pa-
rameter. A notable example is Stein variational gradient
This is equivalent to descent (Liu & Wang, 2016), which yields an interacting
gradient-based update with repulsive force. Similar to the
linear combination method, these methods require manu-
ally selecting a positive temperatureand yield a “hard”
trade-off between loss and diversity.

Therefore, we choose; .1 by solving

min r (y) x st Frg(x)  Fmadx) o

nlinr ( yt)>x sitt KX kg t2| ; 8i2[m];
where 2 =2 (FmadXt) ¢ fli): Solving this gives

ti . Population black-box optimization algorithms have also
K tik, b been used to nd diverse solutions. Examples include ge-
netic algorithms (e.g. Lehman & Stanley, 2011b; Gomes

See Algorithm 2 for details. It is clear from the derivation €t al., 2013; Lehman & Stanley, 2011a), evolutionary algo-

Xt+1;i = Yi

that we monotonically decrea$gax With Fad(Xt+1) rithms (e.g. Hansen et al., 2003; Cully et al., 2015; Flageat
Fmaxd(Xt) ¢, and the algorithm terminates wheg,,, & Cully, 2020), and Cross-entropy method (CEM) (De Boer
reaches a local minimum &%,ay. et al., 2005). A notable example is tMAP-Elites(Mouret

& Clune, 2015), which nds solutions in different grid cells

Descending Along Contours of a feature space with different selection rules (S kas et al.,

An inFerehstin% featurp IOf using 2021; Gravina et al., 2018). The main bottleneck of these
F”‘I?‘X ISt ﬁtt N part||(; es t;:fn algorithms is the high computation cost. Hence, a differ-
to lie on the contour lines entiable version MAP-Elites (Fontaine & Nikolaidis, 2021)

during the algorithm; see the
right gure and Fig. 3 in Sec-
tion 4. This is because the re- Dynamic Barrier Gradient Descent TheFg,m» method is
pulsive force from the diversity score tends to increase th&imilar to the dynamic barrier algorithm of Gong et al.
lossf of all the non-dominant particles, and as a result(2021), which provides a general algorithm for solving
makes theif loss equal or close to the dominate particle asbilevel optimization of formmin, f (x) s.t.x 2 argming.

was recently proposed to speed up the computation.

they descent on the landscape of A key difference is that we use the quadratic constraint
kx y K 2 to constraint the update direction, while

3. Related Works Gong et>al. (2021) uses t2he inner product con_stralnt of form
x x)7 (e Xt) £. Using the quadratic constraint

Linear Combination Method A naive way to trade-off ~provides a stronger control to descéntand ensures that
two objectives to minimize their linear combination. For the algorithm converges when it is on the optimum set. The

encouraging diversity, we consider Fmax method, on the other hand, is very different from ex-
_ isting approaches by leveraging the special structure of the
min(l  )Fsun(X)+  ( X); (7)  max function.

where 2 [0;1]is a xed coef cient. The main drawback Multi-objective Optimization Standard MOO methods

of this method is that we need to seleatase-by-case, since such as multiple gradient descent (MGD) is not readily
the optimal choice of depends on the relative scalefof  applicable to our problem since multiple gradient descent
and , which may not be on the same scale; this is espezonverges to an arbitrary Pareto point and does not encode
cially the case for Riesg-energy withs > 0 which goesto  our preference thdt is of a higher level priority as .
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4. Experiments

We rst examine and understand our method in some toy

examples, and then appBsum andFnax to more dif cult

deep learning applications: text-to-image (Liu et al., 2021;

Ramesh et al., 2021), text-to-mesh (Michel et al., 2021),

molecular conformation generation (Shi et al., 2021) and

neural network ensemble. In all these cases, we verify and

con rm that our method can serve as a plug-in module

and can obtain 1) visually more diverse examples, and 2)

a better trade-off between main loss (e.g. cross-entroplyigure 2. The lossF vs. diversity score by Fsum andFmaxon a
loss, quality score) and diversity without tuning co-ef cient. 2D example (the orange and green star), and by minimiging

We sets = 0 for Reiszs-energy distance if there is no )Fsm+  with different values of 2 [0;1] (blue triangles).
special instructions, set = 0:5 for Fnay and report We can see thasum achieves a better trade-off.

score to measure diversity. We use initialization with small

variance in toy cases for better visualization. In real-word2, we nd that our method can achieve strictly better re-
experiments, 1) we compare different methods with thesults than the Pareto front of the linear combination method.
same random seed; 2) multiple initialization is just linearCompared to the linear combination (the blue triangles),

combination with = 0. We report the average score over We notice that in the early iterations of the trajectdyim
3 trials for each experiment. andF .« introduce a larger diversity penalty and makes the

particles more diverse.
4.1. Toy Examples

We verify our proposed methods on toy test functions, study
the impact of the Riesg-energy, the trade-off of the targst
function and diversity term, and the trade-off of uskgm
vs. Fmax. We adopt gradient descent with a constant learning
rate5 10 4 and 1,000 iterations.

(b)

(@s= 2 (b)s=d 2=0 (c)Gradient Norr(rc1)

Figure 1. Results on a 2Dd = 2) toy example withFsym. We Fmax Fsum

test two different choices &fin Riesz energy, including= 2 Figure 3. Results on toy examples withnax andFsym. The red
(variance) ang = d 2 =0 (logarithm energy). We can see that and orange stars show the 1000th-iteration and 200th-iteration
the logarithm energy yields more uniformly distributed points. ~ results. The curve shows the value of the target function and

. . . . diversity term during optimization.
Q1: How does the choice of in Riesz energy in uence Y gop

the result? One typical measure of diversity is the variance,Q3: What is difference of usind~max vs. Fsum? As sug-
which corresponds te = 2 in Riesz energy. However, gested in Section Fmax iS expected to generate more di-
1(a) shows that it tends to yield many points that are clos@erse examples, with the trade-off of yielding slower conver-
to very close to each other. This is because variance doegence and potentially worse loss value. To verify this, we
not place a strong penalty on close points once the overatestFmax andFgum in three different kinds of test functions
averaged pairwise distance is large. On the other hand, usirghown in Figure 3, whose optimal set is a connected man-
Rieszs-energy withs 0 tends to yield more uniformly ifold (Figure 3(a)), multiple isolated modes (Figure 3(b)),
distributed points (Figure 1(b)). This is because when0, and a curve (Figure 3(c)). We observe that: 1) Compared
Rieszs-energy places a strong penalty on the points that aréo Fsym, Fmax tends to place a larger diversity penalty, espe-
very close to each other. Figure 1(c) shows zero gradiertially in the early phase of the optimization. 2)Hiay the
norm and indicates the convergence of both cases. particles tend to lie on the contour lines during the optimiza-

Q2: How does our method compare with the linear combi- tion (Figure 3(a) left).

nation method? Varying in the linear combination (e.g. Q4: Initialize ata atregion? By changing the constraint
0,10 4,10 3,0.01, 0.1, 0.5, 1), we can trace a (locally to jjx y.jj> max( 2; ), where is a non-zero con-
optimal) Pareto front of losB and diversity . In Figure  stant, we can avoid stuck case when initialization at a at



