
How to Fill the Optimum Set?
Population Gradient Descent with Harmless Diversity

Chengyue Gong * 1 Lemeng Wu * 1 Qiang Liu 1

Abstract
Although traditional optimization methods focus
on finding a single optimal solution, most objec-
tive functions in modern machine learning prob-
lems, especially those in deep learning, often
have multiple or infinite number of optimal points.
Therefore, it is useful to consider the problem of
finding a set of diverse points in the optimum set
of an objective function. In this work, we frame
this problem as a bi-level optimization problem
of maximizing a diversity score inside the opti-
mum set of the main loss function, and solve it
with a simple population gradient descent frame-
work that iteratively updates the points to max-
imize the diversity score in a fashion that does
not hurt the optimization of the main loss. We
demonstrate that our method can efficiently gener-
ate diverse solutions on multiple applications, e.g.
text-to-image generation, text-to-mesh generation,
molecular conformation generation and ensemble
neural network training.

1. Introduction
Most traditional optimization methods in machine learning
aim to find a single optimal solution for a given objective
function. However, in many practical applications, the objec-
tive functions tend to have multiple or even infinite number
of (local or global) optimum points, for which it is of great
interest to find a set of diverse points that are representative
of the whole optimum set. This is tremendously useful in a
variety of machine learning tasks, including, for example,
ensemble learning (Lakshminarayanan et al., 2016; Pang
et al., 2019), robotics (Cully et al., 2015; Osa, 2020), gener-
ative models (Lee et al., 2018; Shi et al., 2021), latent space
exploration of generation models (Liu et al., 2021; Fontaine
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& Nikolaidis, 2021) robotics and reinforcement learning
(Vannoy & Xiao, 2008; Conti et al., 2017; Parker-Holder
et al., 2020).

Finding diverse solutions is particularly relevant in modern
deep learning applications, in which it is common to use
very large, overparameterized neural networks whose num-
ber of parameters is larger than the size of training data (e.g.
Radford et al., 2021; Fedus et al., 2021; Brown et al., 2020).
In these cases, the set of models that perfectly fit the training
data (and hence optimal w.r.t. the training loss) consist of
low dimensional manifolds of an infinite number of points.
It is hence useful to explore and profile the whole solution
manifold by finding diverse representative points.

A straightforward approach to obtaining multiple optimal
solutions is to run multiple trials of optimization with ran-
dom initialization (e.g. Wu et al., 2017; Toscano-Palmerin &
Frazier, 2018). However, this does not explicitly enforce the
diversity preference. Another approach is to jointly optimize
a set of solutions with a diversity promoting regularization
term (e.g., Pang et al., 2019; Xie et al., 2015; Croce & Hein,
2020; Xie et al., 2016). However, the regularization term
can hurt the optimization of the main objective function
without a careful tuning of the regularization coefficient.
Evolutionary algorithms (e.g. Cully et al., 2015; Flageat &
Cully, 2020; Mouret & Clune, 2015) and genetic algorithms
(e.g. Lehman & Stanley, 2011b; Gomes et al., 2013; Lehman
& Stanley, 2011a) are also useful for finding diverse solu-
tions. However, these black-box algorithms do not leverage
gradient information and tend to require a large number of
query points for large-scale optimization problems.

In this work, we consider this problem with a bi-level op-
timization perspective: we want to maximize a diversity
score of a set of points within the minimum set of a given
objective function (i.e., diversity within the optimum set).
We solve the problem with a simple gradient descent like
approach that iteratively updates a set of points to maxi-
mize the diversity score while minimizing the main loss in a
guaranteed fashion. The key feature of our method is that it
ensures to optimize the main loss as a typical optimization
method while adding diversity score as a secondary loss that
is minimized to the degree that does not hurt the main loss.
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We propose two variants of our method that control the
minimization of the main loss in different ways (by descend-
ing the sum and max of the population loss, respectively).
For the choice of the diversity score, we advocate using
a Newtonian energy, which provides more uniformly dis-
tributed points than typical variance-based metrics. We test
our methods in a variety of practical problems, including
text-to-image, text-to-mesh, molecular conformation gener-
ation, and ensemble neural network training. Our methods
yield an efficient trade-off between diversity and quality,
both quantitatively and qualitatively.

2. Harmless Diversity Promotion
Problem Formulation Let f(x) be a differentiable loss
function f(x) on domainX := Rd. Let arg min f be the set
of minima of f , which we assume is non-empty. Our goal
is to find a set of m points (a.k.a. particles) x := fxigmi=1

in the minimum set arg min f that minimizes a preference
function �(x) = �(x1; : : : ; xm). Formally, this yields a
bi-level optimization problem:

min
x2Xm

�(x) s:t: x � arg min f: (1)

So we want to minimize � as much as possible, but without
scarifying the main loss f . Because practical loss functions,
such as these in deep learning, often have multiple or infinite
numbers of minimum, optimizing � inside the optimum
set allows us to gain diversity “for free”, compared with
applying standard optimization methods on f .

� can be a general differentiable function that encodes arbi-
trary preference that we have on the particles. In this work,
for encouraging diversity, we consider the Riesz s-energy
(e.g., Götz, 2003; Kuijlaars et al., 2007),

�s(x) =

8>>><>>>:
1

s

X
i 6=j

kxi � xjk�s; if s 6= 0;X
i 6=j

log
�
kxi � xjk�1

�
; if s = 0;

where s 2 R is a coefficient. Different choices of s yield
different energy-minimizing configurations of points. A
common choice is s = �2, with which �s reduces to the
negative variance. On the other hand, when s = d�2 where
d is the dimension of the input x, it reduces to the Newtonian
energy in physics. The case when s = 0 is known as the
logarithm energy. In this work, we advocate using a non-
negative s � 0, which places a strong penalty on the small
distances between points, and hence yields more uniformly
distributed points as shown in the experiments and the toy
example blew.

Example 2.1. Consider two sets of points in R:

x = f0; 0; 2g; x0 = f0; 1; 2g:

Although x0 is clearly more uniformly distributed, one can
show that x has larger variance and hence is preferred by
�s with s = �2. On the other hand, x0 is preferred over
x by �s with any s � 0. In fact, it is easy to see that
�s(x) = +1 > �s(x

0) for 8s � 0.

In practice, when x is a structured objective such as image
or text, it is useful to map the input into a feature space
before applying Riesz s-energy, i.e., we define �(x) =
�s( (x1); : : : ;  (xm)), where  is a neural network fea-
ture extractor trained separately that maps each xi to a fea-
ture vector.

Main Idea The bi-level optimization problem in (1) is
equivalent to a constrained optimization problem:

min
x2Xm

�(x) s:t: f(xi) � f�; 8i 2 [m]; (2)

where f� := minx f(x) and the m constraints f(xi) � f�
ensure that all fxigmi=1 are optima of f .

To yield a simple and efficient algorithm, we propose to
combine the m constraints in (2) into a single constraint:

min
x2Xm

�(x) s:t: F (x) � F �; (3)

where F � := minz F (z) and F (x) is a utility function
defined such that (2) and (3) are equivalent:

fF (x) � F �g () ff(xi) � f�; 8i 2 [m]g :

In this work, we consider two natural choices of F (x):

Fsum(x) =

mX
i=1

f(xi); Fmax(x) = max
i2[m]

f(xi);

both of which clearly ensures the equivalence of (2) and (3).

We proceed to develope the two algorithms based on Fsum
in Section 2.1 and Fmax in Section 2.2, respectively. The
idea of both methods is to iteratively update x following a
gradient-based direction which ensures that

1) F (x) is monotonically decreased stably across the itera-
tion, until a (local) optimum is reached;

2) �(x) is minimized as the secondary loss to the degree
that it does not conflict with the descent of F (x).

Besides the benefit of obtaining a single constraint, the
introduction of F allows different particles to exchange
loss to decrease � more efficiently: it is possible for some
particles xi to increase their f(xi) to decrease �, once the
overall F is ensured to decrease. As shown in the sequel,
Fmax gives more flexibility for decreasing �, and hence
yields more diverse solutions than Fsum, but with the trade-
off of converging slower.
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Algorithm 1 Diversity-aware Gradient Descent (Fsum)
Goal: Find a set ofm diversi�ed local optima off (x).
Parameters: step size� , a repulsive coef�cient� .
for Iterationt do

x t +1 ;i  � x t;i � � r f (x t;i ) � ��

vu
u
t

P m
i =1 kr f (x t;i )k2

2P m
i =1 kgt;i k2

2

gt;i ;

wheregt;i = r y t;i �( y t ), andy t is de�ned in (4).
end for

2.1.Fsum-Descent

We now derive a simple algorithm that decreases the sum
of lossFsum monotonically while minimizing� as the sec-
ondary loss.

Assume we havex t = f x t;i gm
i =1 at thet-th iteration of the

algorithm. To decreaseFsum, the update directionx t +1 � x t

should be suf�ciently close to the gradient descent direction.
Let y t be the result of applying gradient descent for one
step onFsum from x t :

yt;i = x t;i � � r f (x t;i ); 8i 2 [m]; (4)

where� > 0 is a step size. Assumef is 1=� -smooth:

f (x0) � f (x) + r f (x)> (x0 � x) +
1

2�
kx0 � xk2

2 ; (5)

for anyx; x 0 2 X . Applying (5) to x t;i and sum overi gives

Fsum(x ) � Fsum(x t ) +
1

2�

�
kx � y t k

2
2 � � 2

t

�
; 8x ;

where� 2
t := kx t � y t k

2
2 = k� r F (x t )k

2
2 : Therefore, to

ensure thatFsum decreases, it is suf�cient to ensure that
kx t +1 � y t k2 � � t .

On the other hand, Taylor approximation of� ony t gives

�( x ) = �( y t ) + r �( y t )
> (x � y t ) + O(kx � y t k

2
2):

Therefore, we propose to choosex t +1 by solving

x t +1 = arg min
x 2X

n
r �( y t )

> x s:t: kx � y t k
2
2 � �� 2

t

o
;

where� 2 (0; 1]. The constraintkx � y t k
2
2 � �� 2

t en-
sures thatFsum is suf�ciently decreased, and the objective
r �( y t )

> x allows us to promote diversity as much as pos-
sible given the constraint (it approximately minimizes�( x )
when the step size� is small). Here� trade-offs the decreas-
ing speed ofFsum v.s.� .

Solving the optimization yields that

x t +1 = y t � �
ky t � x t k2

kr �( y t )k2
r �( y t ): (6)

Algorithm 2 Diversity-aware Gradient Descent (Fmax)
Goal: Find a set of diversi�ed local optima off (x).
Parameters: step size� , a repulsive coef�cient� .
for Iterationt do

x t +1 ;i  � x t;i � � r f (x t;i ) �
� t;i

kgt;i k2

gt;i ;

wheregt;i = r y t;i �( y t ), andy t is de�ned in (4),

� t;i =

s

2�
�

(1 � � ) max
i 2 [m ]

f /
t;i + � max

i 2 [m ]
f (x t;i ) � f / (x t;i )

�
;

andf /
t;i = f (x t;i ) � �

2 kr f (x t;i )k2
2.

end for

See Algorithm 1 for the main procedure. It is clear from
the derivation that the algorithm monotonically decreases
Fsum with Fsum(x t +1 ) � Fsum(x t ) � (1 � � )� 2

t =(2� ), and
all particles converge to a local optimum off when the
algorithm terminates.

In this algorithm, the updates of the different particlesx i

are coupled together due to the minimization ofFsum and
� . AlthoughFsum decreases monotonically, each individual
f (x i ) does not necessarily decrease. In fact, the particles
can exchange the loss with each other to gain better diversity:
we may �nd that some particles temporarily increase the
lossf to better decrease� , while ensuring the overallFsum

decreases.

2.2.Fmax-Descent

We now derive a version of our algorithm that leverages
Fmax(x ) = max i 2 [m ] f (x i ) as the descending criterion in
(3). This variant of algorithm focuses on descendingf on
the worst-case particle and hence provides larger �exibility
for the non-dominate particles to maximize the diversity.
Note that becauseFmax is non-smooth, we can not directly
use the method forFsum. A special consideration is needed
to exploit the special structure of themax function, sim-
ilar to what is needed for non-smooth optimization (e.g.,
Hornung, 1982).

Similar toFsum, we assumef is 1=� -smooth. By applying
(5) onx i and taking the max overi , we get for8x

Fmax(x ) � max
i 2 [m ]

�
f /

t;i +
1

2�
kx i � yt;i k2

2

�
:= F̂ t

max(x );

where we de�ne

f /
t;i = f (x t;i ) �

�
2

kr f (x t;i )k2
2 :

So hereF̂ t
max(x ) is the upper bound ofFmax(x ) implied by

the1=� smoothness off .

Without considering� , the minimum of the upper bound
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F̂ t
max(x ) is obviously attained byx = y t following vanilla

gradient descent(4) on each particlex t;i . In this case, the
descent ofFmax is upper bounded by� t as de�ned below:

Fmax(y t ) � Fmax(x t ) � F̂ t
max(y t ) � Fmax(x t )

= max
i 2 [m ]

f 4
t;i � max

i 2 [m ]
f (x t;i ) := � � t :

In our algorithm, we want to ensure thatFmax(x t ) is de-
creased by at least an amount of�� t , where� 2 (0; 1) is a
factor that quanti�es how much we are willing to sacri�ce
the decreasing ofFmax for promoting diversity.

Therefore, we choosex t +1 by solving

min
x

�
r �( y t )

> x s:t: F̂ t
max(x ) � Fmax(x t ) � �� t

�
:

This is equivalent to

min
x

r �( y t )
> x s:t: kx i � yt;i k2

2 � � 2
t;i ; 8i 2 [m];

where� 2
t;i = 2 � (Fmax(x t ) � �� t � f /

t;i ): Solving this gives

x t +1 ;i = yt;i �
� t;i

k� t;i k2

� t;i :

See Algorithm 2 for details. It is clear from the derivation
that we monotonically decreaseFmax with Fmax(x t +1 ) �
Fmax(x t ) � �� t , and the algorithm terminates whenFmax

reaches a local minimum ofFmax.

Descending Along Contours
An interesting feature of using
Fmax is that the particles tend
to lie on the contour lines off
during the algorithm; see the
right �gure and Fig. 3 in Sec-
tion 4. This is because the re-
pulsive force from the diversity score tends to increase the
loss f of all the non-dominant particles, and as a result,
makes theirf loss equal or close to the dominate particle as
they descent on the landscape off .

3. Related Works

Linear Combination Method A naive way to trade-off
two objectives to minimize their linear combination. For
encouraging diversity, we consider

min
x

(1 � � )Fsum(x ) + � �( x ); (7)

where� 2 [0; 1] is a �xed coef�cient. The main drawback
of this method is that we need to select� case-by-case, since
the optimal choice of� depends on the relative scale ofF
and� , which may not be on the same scale; this is espe-
cially the case for Rieszs-energy withs > 0 which goes to

in�nite when different points collapse together. In addition,
if � > 0, the linear combination method necessarily scari-
�es loss f for diversity. Note that(7) reduces to the naive
multi-start approach if� = 0 andf x i g starts from different
random initialization. In comparison, our method does not
require selecting� manually, and does not scarify lossf for
diversity by design. A key point that we want to make is
that since the set of optimal solutions almost always consist
of multiple in�nite number of points in non-convex, deep
learning, it is feasible and desirable to �nd diverse points
inside the optimum set, while gaining diversity for free.

Sampling-based methodsprovide another approach to �nd-
ing diverse results. From the Gibbs variational principle,
sampling can be viewed as solving(7) with � replaced by
the entropy functional and� viewed as the temperature pa-
rameter. A notable example is Stein variational gradient
descent (Liu & Wang, 2016), which yields an interacting
gradient-based update with repulsive force. Similar to the
linear combination method, these methods require manu-
ally selecting a positive temperature� and yield a “hard”
trade-off between loss and diversity.

Population black-box optimization algorithms have also
been used to �nd diverse solutions. Examples include ge-
netic algorithms (e.g. Lehman & Stanley, 2011b; Gomes
et al., 2013; Lehman & Stanley, 2011a), evolutionary algo-
rithms (e.g. Hansen et al., 2003; Cully et al., 2015; Flageat
& Cully, 2020), and Cross-entropy method (CEM) (De Boer
et al., 2005). A notable example is theMAP-Elites(Mouret
& Clune, 2015), which �nds solutions in different grid cells
of a feature space with different selection rules (S�kas et al.,
2021; Gravina et al., 2018). The main bottleneck of these
algorithms is the high computation cost. Hence, a differ-
entiable version MAP-Elites (Fontaine & Nikolaidis, 2021)
was recently proposed to speed up the computation.

Dynamic Barrier Gradient DescentTheFsum method is
similar to the dynamic barrier algorithm of Gong et al.
(2021), which provides a general algorithm for solving
bilevel optimization of formminx f (x) s.t. x 2 arg min g.
A key difference is that we use the quadratic constraint
kx � y t k

2 � �� 2
t to constraint the update direction, while

Gong et al. (2021) uses the inner product constraint of form
(x � x t )> (y t � x t ) � �� 2

t . Using the quadratic constraint
provides a stronger control to descentf , and ensures that
the algorithm converges when it is on the optimum set. The
Fmax method, on the other hand, is very different from ex-
isting approaches by leveraging the special structure of the
max function.

Multi-objective Optimization Standard MOO methods
such as multiple gradient descent (MGD) is not readily
applicable to our problem since multiple gradient descent
converges to an arbitrary Pareto point and does not encode
our preference thatF is of a higher level priority as� .
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4. Experiments

We �rst examine and understand our method in some toy
examples, and then applyFsum andFmax to more dif�cult
deep learning applications: text-to-image (Liu et al., 2021;
Ramesh et al., 2021), text-to-mesh (Michel et al., 2021),
molecular conformation generation (Shi et al., 2021) and
neural network ensemble. In all these cases, we verify and
con�rm that our method can serve as a plug-in module
and can obtain 1) visually more diverse examples, and 2)
a better trade-off between main loss (e.g. cross-entropy
loss, quality score) and diversity without tuning co-ef�cient.
We sets = 0 for Reiszs-energy distance if there is no
special instructions, set� = 0 :5 for Fmax and report� �
score to measure diversity. We use initialization with small
variance in toy cases for better visualization. In real-word
experiments, 1) we compare different methods with the
same random seed; 2) multiple initialization is just linear
combination with� = 0 . We report the average score over
3 trials for each experiment.

4.1. Toy Examples

We verify our proposed methods on toy test functions, study
the impact of the Rieszs-energy, the trade-off of the target
function and diversity term, and the trade-off of usingFsum

vs. Fmax. We adopt gradient descent with a constant learning
rate5 � 10� 4 and 1,000 iterations.

(a) s = � 2 (b) s = d � 2 = 0 (c) Gradient Norm

Figure 1. Results on a 2D (d = 2 ) toy example withFsum. We
test two different choices ofs in Riesz energy, includings = � 2
(variance) ands = d � 2 = 0 (logarithm energy). We can see that
the logarithm energy yields more uniformly distributed points.

Q1: How does the choice ofs in Riesz energy in�uence
the result? One typical measure of diversity is the variance,
which corresponds tos = � 2 in Riesz energy. However,
1(a) shows that it tends to yield many points that are close
to very close to each other. This is because variance does
not place a strong penalty on close points once the overall
averaged pairwise distance is large. On the other hand, using
Rieszs-energy withs � 0 tends to yield more uniformly
distributed points (Figure 1(b)). This is because whens � 0,
Rieszs-energy places a strong penalty on the points that are
very close to each other. Figure 1(c) shows zero gradient
norm and indicates the convergence of both cases.

Q2: How does our method compare with the linear combi-
nation method? Varying � in the linear combination (e.g.
0, 10� 4, 10� 3, 0.01, 0.1, 0.5, 1), we can trace a (locally
optimal) Pareto front of lossF and diversity� . In Figure

Figure 2. The lossF vs. diversity score� by Fsum andFmax on a
2D example (the orange and green star), and by minimizing(1 �
� )Fsum + � � with different values of� 2 [0; 1] (blue triangles).
We can see thatFsum achieves a better trade-off.

2, we �nd that our method can achieve strictly better re-
sults than the Pareto front of the linear combination method.
Compared to the linear combination (the blue triangles),
we notice that in the early iterations of the trajectory,Fsum

andFmax introduce a larger diversity penalty and makes the
particles more diverse.

(a)

(b)

(c)

Fmax Fsum

Figure 3. Results on toy examples withFmax andFsum. The red
and orange stars show the 1000th-iteration and 200th-iteration
results. The curve shows the value of the target function and
diversity term during optimization.

Q3: What is difference of usingFmax vs.Fsum? As sug-
gested in Section 2,Fmax is expected to generate more di-
verse examples, with the trade-off of yielding slower conver-
gence and potentially worse loss value. To verify this, we
testFmax andFsum in three different kinds of test functions
shown in Figure 3, whose optimal set is a connected man-
ifold (Figure 3(a)), multiple isolated modes (Figure 3(b)),
and a curve (Figure 3(c)). We observe that: 1) Compared
to Fsum, Fmax tends to place a larger diversity penalty, espe-
cially in the early phase of the optimization. 2) InFmax, the
particles tend to lie on the contour lines during the optimiza-
tion (Figure 3(a) left).

Q4: Initialize at a �at region? By changing the constraint
to jjx � y t jj

2 � max(�� 2
t ; � ), where� is a non-zero con-

stant, we can avoid stuck case when initialization at a �at


