
Large-Scale Graph Neural Architecture Search

Chaoyu Guan 1 Xin Wang 1 Hong Chen 1 Ziwei Zhang 1 Wenwu Zhu 1

Abstract

Graph Neural Architecture Search (GNAS) has
become a powerful method in automatically dis-
covering suitable Graph Neural Network (GNN)
architectures for different tasks. However, exist-
ing approaches fail to handle large-scale graphs
because current performance estimation strategies
in GNAS are computationally expensive for large-
scale graphs and suffer from consistency collapse
issues. To tackle these problems, we propose the
Graph ArchitectUre Search at Scale (GAUSS)
method that can handle large-scale graphs by de-
signing an efficient light-weight supernet and the
joint architecture-graph sampling. In particular, a
graph sampling-based single-path one-shot super-
net is proposed to reduce the computation burden.
To address the consistency collapse issues, we
further explicitly consider the joint architecture-
graph sampling through a novel architecture peer
learning mechanism on the sampled sub-graphs
and an architecture importance sampling algo-
rithm. Our proposed framework is able to smooth
the highly non-convex optimization objective and
stabilize the architecture sampling process. We
provide theoretical analyses on GAUSS and em-
pirically evaluate it on five datasets whose ver-
tex sizes range from 104 to 108. The experi-
mental results demonstrate substantial improve-
ments of GAUSS over other GNAS baselines on
all datasets. To the best of our knowledge, the
proposed GAUSS method is the first graph neu-
ral architecture search framework that can handle
graphs with billions of edges within 1 GPU day1.

1Media and Network Lab, Department of Computer Sci-
ence and Technology, Tsinghua University. Correspondence
to: Wenwu Zhu <wwzhu@tsinghua.edu.cn>, Xin Wang
<xin wang@tsinghua.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1Code is available at https://www.github.com/
THUMNLab/GAUSS.

1. Introduction
Graph Neural Networks (GNNs) become more and more
popular for their abilities to analyze structural relation data
in various real-world applications such as recommender sys-
tems (Zhu et al., 2015; Yang et al., 2021; Cai et al., 2022),
knowledge graphs (Vrandecic & Krötzsch, 2014; Lovelace
et al., 2021; Cao et al., 2021), medical property predic-
tion (Szklarczyk et al., 2019; Wishart et al., 2018), image
processing (Yang et al., 2019), etc. To customize GNN ar-
chitectures for diverse downstream tasks, more and more
research attentions have been paid to develop Graph Neural
Architecture Search (GNAS) methods (Gao et al., 2020; Li
et al., 2021; Zhao et al., 2021; Guan et al., 2021a) in order
to automatically search for the optimal GNN architectures.
Architectures of many recent GNNs are thus automatically
designed via GNAS to further benefit downstream tasks.
However, current GNAS methods can only handle graphs
at a relatively small scale with at most million-scale nodes
and edges. In real-world scenarios, many applications re-
quire handling large-scale graphs with billion-scale nodes
and edges (Lovelace et al., 2021; Hu et al., 2020). Exist-
ing GNAS methods fail to handle such large-scale graphs
because of the severe scalability issues.

In this paper, we study Graph Neural Architecture Search
(GNAS) for large-scale graphs. The bottleneck of the exist-
ing GNAS approaches in terms of scalability is that they de-
pend on computationally expensive performance estimation
strategies with a high time/space complexity for large-scale
graphs. For example, Gao et al.’s (2020) work needs to train
every single model until convergence to derive accurate re-
wards for the Reinforcement Learning (RL) controller, Li
et al.’s (2021) and Zhao et al.’s (2021) works require cal-
culating the output of every operation within the supernet
on the whole graph to estimate reliable architecture parame-
ters. All these performance estimation strategies in existing
works fail to handle large-scale graphs, e.g., graphs with
billion-scale nodes and edges. A straight-forward approach
to solve the above issues is leveraging graph sampling tech-
niques (Chiang et al., 2019; Hamilton et al., 2017; Zeng
et al., 2020). However, directly applying these techniques to
the current supernet training in GNAS will result in consis-
tency collapse issues. Specifically, if we train the supernet
by independently adopting an architecture sampling and a
graph sampling process, the supernet will have poor rank-

https://www.github.com/THUMNLab/GAUSS
https://www.github.com/THUMNLab/GAUSS

Large-Scale Graph Neural Architecture Search

output

input

mp 1 mp 2 mp 3

mp 1 mp 2 mp 3

…

mp 1 mp 2 mp 3

𝜋(𝒢)

Arch Controller Γ(𝜃)

Architecture Importance Sampling

…
…

…

…

Learning Team 𝑇

Best Performer ො𝑎

Optimize

Architecture Peer Learning on Graph

Arch Sampling

Graph Sampling

②

③
④

⑤
⑥

Difficulty Estimation

Supernet Optimization

Sam
p

le
 R

ew
e

igh
tin

g

𝛼𝑡

𝛼𝑡

√

√

√

√

√

√

×

×

𝔼
𝑝 𝑎

𝑞 𝑎
𝛼𝑣ℒ(𝑎, 𝒢𝑠, 𝑣)

Peer Learning Loss

①

Reward

Large-Scale Graph

Figure 1. The joint architecture-graph sampling based supernet training in GAUSS. In each iteration, we 1⃝ first learn a proposal
distribution using an architecture controller on the supernet, and then 2⃝ sample a learning team T from the architecture controller γ(θ).
We next 3⃝ sample a sub-graph from the original large-scale graph following π(G), and 4⃝ leverage the best performer, i.e., architecture
with the best performance, in team T to estimate the node difficulties in the sampled subgraph in order to smooth the optimization
objective. The smoothed objective 5⃝ is then used to estimate the architecture peer learning loss of the whole team, followed by the
supernet optimization 6⃝. The performance of the optimized supernet on the large-scale graph will act as the reward to guide the training
of the architecture controller in the next optimization cycle.

ing correlations between the estimated performances and
ground truth performances. For example, we only observe a
0.2 Kendall’s τ correlation, which is far from satisfaction
(see Section 5 for details). To solve the computation chal-
lenge and avoid consistency collapse issues, in this paper,
we propose Graph ArchitectUre Search at Scale (GAUSS)
method to automatically search GNN architectures for large-
scale graphs. As shown in Figure 1, we address the com-
putation challenge by designing an efficient light-weight
supernet, and explicitly consider the joint sampling between
architectures and graph to avoid the consistency collapse
issues. In particular, we build a supernet based GNN per-
formance estimator to efficiently estimate the performances
of architectures through sharing all the model parameters in
the search space, and utilize graph sampling methods and
single-path formulation to train the supernet on large-scale
graphs. Such a sampling based supernet training paradigm
can enable the time/space cost to be the same as training
a single GNN architecture over the original graph. To ex-
plicitly consider the joint sampling between architecture
and graph, we propose a novel architecture peer learning
mechanism that encourages the architectures with currently
the best performance to smooth optimization objectives
and gradually converges to the original optimization goal.
To further stabilize the supernet optimization process, we
explicitly optimize the architecture distributions based on
current performances of the supernet through reinforcement
learning and importance sampling. Moreover, we propose
to jointly sample architectures and graphs by iteratively

adjusting the optimization objectives and the architecture
distributions. This joint architecture-graph sampling strat-
egy is able to generate a supernet that has better ranking
correlations across candidate architectures with respect to
the ground truth model performances, thus tackling the con-
sistency collapse issues.

We empirically evaluate GAUSS on five datasets whose
node sizes range from 104 to 108. Experimental results
demonstrate that our proposed GAUSS model significantly
outperforms other GNAS baselines in terms of both accuracy
and efficiency. Detailed ablation studies further validate the
design of our proposed method, including the architecture
peer learning on graphs and the architecture importance
sampling. We summarize our main contributions as follows:

• We propose Graph ArchitectUre Search at Scale
(GAUSS) method that can automatically search neural
architectures for large-scale graphs with billion-scale
edges. To the best of our knowledge, GAUSS is the
first graph neural architecture search method capable
of processing graphs with more than one billion edges
within 1 GPU day.

• We propose a joint architecture-graph sampling strat-
egy between graphs and neural architectures to avoid
consistency collapse issues by smoothing the optimiza-
tion process and stabilizing the supernet training on
large-scale graphs.

• We theoretically analyze the correlation property of the
architecture importance sampling in GAUSS. Exten-

Large-Scale Graph Neural Architecture Search

sive experiments on five datasets with different sizes
show that our GAUSS model substantially outperforms
GNAS baselines and further enhance the hand-crafted
models, demonstrating its superiority against state-of-
the-art baselines.

2. Related Works
2.1. Graph Neural Networks at Scale

The current de facto standard design of graph neural net-
works mostly follows the message passing framework (Kipf
& Welling, 2017; Velickovic et al., 2018; Hamilton et al.,
2017; Gilmer et al., 2017). To solve the scalability issues
of training GNNs, many graph sampling methods are pro-
posed to train GNNs only on parts of the graphs. To name a
few, GraphSAGE (Hamilton et al., 2017), FastGCN (Chen
et al., 2018a), and VR-GCN (Chen et al., 2018b) propose
to sample neighbors during each message-passing layer.
GraphSAINT (Zeng et al., 2020) and ClusterGCN (Chiang
et al., 2019) propose to sample sub-graphs to increase the
connection density within the sampled batch.

However, all the sampling methods above are merely de-
signed to scale and stabilize the training of individual GNNs,
which cannot handle the much more complex scenarios dur-
ing training GNAS supernets. Instead, we propose a joint
architecture-graph sampling framework that gradually ad-
justs the optimization objective and explicitly minimizes the
variance for GNAS at scale.

There also exists some related works (Huang et al., 2021;
Wang, 2021) that improve the performance of GNNs on
large-scale graphs through pre-processing, post-processing,
or other techniques during training, which is orthogonal
to our work since our main focus is to find a better GNN
architecture. We show in the ablation study (see Section 5.3)
that these techniques can be leveraged to further boost the
searched GNNs.

2.2. Graph Neural Architecture Search

To automate the design of GNNs, many efforts (Qin et al.,
2021; Wang et al., 2022; Guan et al., 2021b) have been
made to leverage recent advances of NAS. Gao et al. (2020)
design the first NAS search space customized for GNNs.
They leverage Reinforcement Learning (RL) (Zoph & Le,
2017) to search for the optimal architectures. Li et al. (2020)
propose to gradually reduce the search space to ease the
search process. Zhao et al. (2021) propose a differentiable
method and a transfer paradigm to search on a small sub-
graph and transfer back to the original graph. We refer the
reader to the dedicated survey on GNAS (Zhang et al., 2021)
for more details.

All of the existing works conduct their search process on

Algorithm 1 A Basic Version of Scalable Supernet Training
Input: The number of epochs Ttotal, the architecture
space A, the graph G, the graph sampler π(G), the learn-
ing rate γ.
SNet← Initialize Supernet(A,G)
for t ∈ {1, ..., Ttotal} do

Sample Gs according to π(G)
Sample a randomly from A
L = CE(SNet(a,Gs,Vs),Labels)
w← w − γ ∂L

∂w
end for
Ouput: SNet

relatively small-scale graphs, depending on the full-batch
GNN training schema. The most relevant work with ours
is EGAN (Zhao et al., 2021), which scales to moderate-
scale graphs by sampling a small sub-graph as a proxy and
directly searching on it. However, due to the complexity of
the graph structures and the randomness of sampling, only
searching on a small sub-graph cannot guarantee that the
searched architectures suit the original graph. Besides, the
minimal sampling size required by EGAN (15% nodes of
the original graph) is still too computationally-expensive for
large-scale graphs with billions of nodes and edges. Instead,
our proposed method can efficiently and effectively search
architectures for large-scale graphs.

3. Architecture Search for Large-Scale Graphs
To efficiently scale current graph neural architecture search
frameworks to large-scale graphs, we resort to the one-shot
formulation (Bender et al., 2018) to construct a supernet, and
transform the scalability challenge into training the supernet
on large-scale graphs. In this section, we introduce a basic
formulation of scalable GNAS, while our full proposed
method will be introduced in Section 4. We describe the
one-shot graphnas in Section 3.1, and the sampling based
GNAS supernet training in Section 3.2.

3.1. One-shot GNAS

The original goal of GNAS can be written as a bi-level
optimization problem (Liu et al., 2019):

a∗ = argmaxa∈AAccvalid(a,G,w∗(a))

w∗(a) = argminw(a)Ltrain(a,G,w(a)),
(1)

where a is an architecture and A is the search space,
G = {V, E} is the graph that contains a number of nodes
v ∈ V and edges e ∈ E representing their relationships.
w(a) is the learnable parameters determined by architec-
ture a. w∗(a) stands for the best parameters for a. a∗

is the best architectures in the defined search space for G.
Ltrain(a,G,w(a)) is the loss of architecture a on the avail-

Large-Scale Graph Neural Architecture Search

able graph data. For example, for the node classification
task, Ltrain(a,G,w(a)) depends on all the labeled nodes as
follows:

Ltrain(a,G,w(a)) = Ev∈Vtrain
L(a,G,w(a), v) (2)

L(a,G,w(a), v) = CE(ŷv, yv), (3)

where CE means the cross entropy between predicted distri-
bution ŷv and ground truth label yv .

Directly solving Eq. (1) requires time-consuming optimiza-
tions over w(a) for each a, which is unacceptable. We
thus leverage the one-shot paradigm (Bender et al., 2018) to
transform the bi-level optimization problem into a two-step
optimization through weight sharing (Pham et al., 2018):

a∗ = argmaxa∈AAccvalid(a,G,w∗) (4)
w∗ = argminwEa∈ALtrain(a,G,w), (5)

where w denotes the learnable parameters of the supernet.
For each operation in each GNN layer, we maintain only
one set of parameters to reduce the optimization complexity.

After deriving the trained supernet, we leverage regularized
evolution (Real et al., 2019) to solve Eq. (4).

3.2. Sampling-based Supernet Training

Although the one-shot paradigm can greatly reduce the op-
timization complexity, Eq. (5) still needs to estimate the
training loss Ltrain over the full graph G, which is infeasible
due to the computational complexity. We thus leverage sam-
pling techniques (Hamilton et al., 2017; Zeng et al., 2020;
Chiang et al., 2019) to train the proposed supernet at scale2.

Ltrain(a,G) ≈ EGs∼π(G)Ltrain(a,Gs)
Ltrain(a,Gs) = Ev∈Vs

L(a,Gs, v),
(6)

where π(G) is a graph sampling distribution in previous
works, and Vs stands for the labeled nodes in Gs. The
overall supernet optimization objective is then defined as:

L ≜ Ea∈A,Gs∼π(G)Ev∈Vs
L(a,Gs, v). (7)

We use Monte Carlo sampling to optimize the supernet
weights w. At each iteration of the training stage, we sample
a part of the graph following π(G) to limit the message
flow, and an architecture is uniformly sampled from the
search space to estimate the loss. Then, we optimize it using
gradient descents. Note that, because we only optimize a
single model during each iteration, all the graph sampling
methods mentioned above for optimizing individual GNNs
can be applied here. See Algorithm 1 for the pseudo code.

Algorithm 2 GAUSS Supernet Training
Input: The number of epochs Ttotal, the architecture
space A, the graph G, the graph sampler π(G), the team
size n, the learning rate γ.
Controller← Initialize Controller()
SNet← Initialize Supernet(A,G)
for t ∈ {1, ..., Ttotal} do

αt ← αmin × (1− t
Ttotal

) + t
Ttotal

if a controller update epoch then
▷ Architecture Importance Sampling
Optimize the Controller according to Eq. (15)

end if
Sample Gs according to π(G)
▷ Graph Peer Learning
Acc← −inf
SNet.clear gradient()
for a, q(a) in Controller.sample(n) do
out = SNet(a,Gs,Vs)
Acca = Cal Acc(out, labels)
if Acca > Acc then
Acc← Acca

αs ← Gen Mask(αt,out, labels) # Eq. (10)
end if
L̂ = p(a)

q(a)CE(out, labels)⊙αs

L̂.backward()
end for
w← w − γGradient

end for
Ouput: SNet

4. Joint Architecture-Graph Sampling
Although the above straight-forward method can scale the
supernet training to large-scale graphs, the consistency of
the supernet tends to collapse because of a much more non-
convex optimization objective and unstable training proce-
dure induced by two independent sampling processes. To
smooth the optimization objective and stabilize the training
process, we propose a novel peer learning algorithm to first
form a learning group, and then let the best learner decide
a smoother learning objective for the group. We further
propose to use importance sampling to reduce the variance
during architecture sampling to form better learning groups.

4.1. Architecture Peer Learning on Graph

The previous graph sampling methods (Hamilton et al.,
2017; Zeng et al., 2020) are designed for optimizing in-
dividual GNN architectures. When we consider a possibly
huge set of candidate architectures, the objective becomes
highly non-convex to optimize. To help smooth the learning

2We omit w from now on when there is no ambiguity.

Large-Scale Graph Neural Architecture Search

process, we propose to let the architectures help each other
to find proper optimization objectives, imitating the peer
learning process in education (O’Donnell & King, 1999).

To be specific, for each sampled sub-graph, we first ran-
domly sample n architectures as a learning team T . We then
determine a smoother optimization objective for the rest of
the architectures by estimating the difficulty of each node
via the best performer â ∈ T . Specifically, we set a lower
weight αt to the losses of nodes which are misclassified
severely by â so that the learning team can focus more on
easier parts of the objective and gradually progress to the
difficult parts. This is similar to the Proctor model in peer
learning (Boud, 2001), where senior students (â in our case)
pass their knowledge to junior students. We formulate the
optimization objective at the t-th step of optimization as
follows:

L̂ = ET∈An,Gs∼π(G)Ea∈T,v∈Vs
αvL(a,Gs, v) (8)

â = argmaxa∈TAcctrain(a,Gs) (9)

αv =

{
αt l(â, v) ̸= yv and p(â, v) > λ
1 Otherwise

, (10)

where l(â, v) and p(â, v) denotes the predicted label and the
corresponding probabilities of the architecture â on node
v, An denotes the Cartesian product of A, λ is a hyper-
parameter controlling the threshold, and αt ≤ 1 is the
adjusted weight. To gradually recover the original opti-
mization objective, we set αt as follows:

αt = αmin × (1− t

Ttotal
) +

t

Ttotal
, (11)

where αmin < 1 and Ttotal is the total number of optimiza-
tion steps. Therefore, αt will tend to uniformly converge to
1 at the end of optimization.

Note that in the above method, we need to store all the
computational graphs of n sampled architectures, which is
memory-expensive for large-scale graphs. To reduce the
complexity, we further propose a strategy to dynamically
record the difficulty estimation of the current best architec-
tures. In this way, we only need to handle 1 computational
graph at a time. See Algorithm 2 for the pseudo code.

4.2. Architecture Importance Sampling

Even with a smooth optimization objective, the training
process still suffers instability issues induced by sampling
a learning team from An. To further stabilize the training
of the supernet on large-scale graphs, we propose to use
importance sampling to reduce the optimization variance.

When we optimize the weights w of the supernet following
Eq. (5), to avoid overfitting, we should focus on the average
accuracy over the validation dataset, which can be rewritten

as follows3:

Acc(A) ≜ Ea∈AAccvalid(a)

= Ea∼Γ(A)
p(a)

q(a)
Accvalid(a),

(12)

where Γ(A) is a proposal distribution of architectures, p(a)
and q(a) are the probabilities given by the uniform distri-
bution and Γ(A). Using the importance sampling theory,
we have the following property for the optimal proposal
distribution:

Theorem 4.1. The estimator of Acc(A) in Eq. (12) reaches
its minimal variance iff. q(a) ∝ Accvalid(a)

Proof. See Appendix A for the detailed proof.

However, directly calculating the optimal proposal distribu-
tion is intractable because we need to traverse all possible
architectures a in the search space A. We thus propose an
alternative approximation method based on reinforcement
learning. Following the NAS literature (Zoph & Le, 2017;
Gao et al., 2020), we formulate architecture generation as
a Markov Decision Process (MDP). We build a controller
based on GRU (Cho et al., 2014) to simulate the sequential
layer operation choices:

h0 = 0, x0 = <bos>

hl = GRU(Emb(xl−1),hl−1) l ∈ {1, ..., L}
q(xl|x0:l−1) = Softmax(Whl) l ∈ {1, ..., L}

xl = Sample(q(xl|x0:l−1)) l ∈ {1, ..., L}

where h0 ∈ Rd are initial hidden states, x0 is the dummy
layer choice standing for the beginning of the sequence,
hl ∈ Rd and xl with l ∈ {1, ..., L} represent the hidden
state and choice of operations for the time stamp and layer
l, W ∈ Rc×d is a learnable weight matrix that maps the
hidden states hl to the operation distribution in the l-th
layer with c operation choices. GRU, Emb, Softmax, and
Sample are functions and parameterized modules.

The controller can be seen as a parameterized distribution
Γ(θ). According to proposition 4.1, we choose the accuracy
of the sampled architectures as the reward. The optimization
objective of the GRU controller is defined as:

θ = argmaxθR(θ) ≜ argmaxθEa∈Γ(θ)Accvalid(a). (13)

Following REINFORCE (Williams, 1992), we use policy

3We omit G for conciseness.

Large-Scale Graph Neural Architecture Search

gradient to optimize the objective as follows:

∇R(θ) = ∇Ea∼Γ(θ)Accvalid(a)

=
∑
a∈A

Accvalid(a)∇q(a, θ)

=
∑
a∈A

q(a, θ)Accvalid(a)∇ log(q(a, θ))

= Ea∼Γ(θ)Accvalid(a)∇ log(q(a, θ)).

(14)

Note that the global optimal solution to Eq. (13) is a Dirac
distribution that only has non-zero probability on the archi-
tecture(s) with the best accuracy, which is too discrete to
be considered as a proper proposal distribution. To solve
this problem, we add a regularizer term over the learned
distribution. The optimization then becomes:

θ = argmaxθ(R(θ) + βH(Γ(θ))), (15)

where H(Γ(θ)) stands for the entropy of the architecture
distribution, and β > 0 is a hyper-parameter controlling the
smoothness of the learned distribution. The global optimal
solution to Eq. (15) satisfies the following property:

Theorem 4.2. If the optimal solution q∗(a) to Eq. (15) is
injective, i.e., for architecture ai ̸= aj , we have q∗(ai) ̸=
q∗(aj), then the Kendall’s τ correlation of the architecture
probability defined by q∗(a) and the architecture accuracy
from supernet is 1, i.e., for any ai, aj , we have (q∗(ai) −
q∗(aj))(Accvalid(ai)− Accvalid(aj)) ≥ 0.

Proof. Refer to Appendix B for the detailed proof.

We then utilize the proposal distribution Γ(A) to replace the
uniform sampling process in Eq. (8). The objective function
can be written as:

L̂ = ET∼Γn(A),Gs∼π(G)Ea∈T,v∈Vs

p(a)

q(a)
αvL(a,Gs, v). (16)

At each optimization step, we first derive a better proposal
distribution Γ(A), and then formulate a learning team and
reweight the optimization objective. The pseudo code of the
proposed method is shown in Algorithm 2.

5. Experiments
In this section, we empirically evaluate the proposed
GAUSS on graph benchmark datasets with different scales
to demonstrate its efficiency and effectiveness. We also
conduct detailed ablation studies of the proposed architec-
ture peer learning on graphs and the architecture importance
sampling.

Table 1. Statistics of datasets

DATASET #NODES #EDGES

CS 18,333 81,894
PHYSICS 34,493 247,962
ARXIV 169,343 1,166,243
PRODUCTS 2,449,029 61,859,140
PAPERS100M 111,059,956 1,615,685,872

5.1. Datasets and Baselines

We select 5 node classification datasets from OGB (Hu et al.,
2020) and GNN Benchmark (Shchur et al., 2018), including
graphs of different scales to demonstrate the scalability of
our proposed model. The statistics of the used datasets is
listed in Table 1. Note that our largest dataset, Papers100M,
contains over 100 million nodes and 1 billion edges. Refer
to Appendix C for more details.

We select representative hand-crafted state-of-the-art GNN
architectures for comparison, including Graph Convolu-
tional Network (GCN) (Kipf & Welling, 2017), Graph At-
tention Network (GAT) (Velickovic et al., 2018), Graph-
SAGE (Hamilton et al., 2017), and Graph Isomorphism
Network (GIN) (Xu et al., 2019). We also compare repre-
sentative GNAS baselines, including GraphNAS (Gao et al.,
2020), SGAS (Li et al., 2020), DARTS (Liu et al., 2019),
and EGAN (Zhao et al., 2021).

Since the main focus of this paper is to search for the best
GNN architectures, we only compare the performance of
baselines based on their architectures and exclude all the
sophisticated pre-processing or post-processing techniques
and other tricks like Correct and Smooth (C&S) (Huang
et al., 2021), Node2Vec (Grover & Leskovec, 2016), la-
bel reuse (Wang, 2021), self-knowledge distillation (Hin-
ton et al., 2015), etc. In the ablation study, we show that
our searched architectures can also benefit from these tech-
niques.

5.2. Implementation Details

5.2.1. SUPERNET CONSTRUCTION

We choose representative message-passing GNN layers
to form our operation pool, namely GCNConv (Kipf &
Welling, 2017), GATConv (Velickovic et al., 2018), SAGE-
Conv (Hamilton et al., 2017), GINConv (Xu et al., 2019),
GraphConv (Morris et al., 2019), and Linear. We build
the supernet as a sequence of GNN layers, with each layer
following a batch normalization, a ReLU activation, and
a dropout layer. To ensure a fair comparison, we follow
the best practice and use the same set of hyper-parameters
for both the baselines and GAUSS. More details for repro-

Large-Scale Graph Neural Architecture Search

Table 2. The results of our proposed method and baseline methods. We report both the validation and test accuracy [%] over 10 runs with
different seeds. OOT means out-of-time (cannot converge within 1 single GPU day), while OOM means out-of-memory (cannot run on a
Tesla V100 GPU with 32GB memory). The results of the best hand-crafted and automated method are in bold, respectively.

Methods CS Physics Arxiv Products Papers100M
valid test valid test valid test valid test valid test

GCN 94.100.21 93.980.21 96.290.05 96.380.07 72.760.15 71.700.18 91.750.04 80.190.46 70.320.11 67.060.17

GAT 93.740.27 93.480.36 96.250.23 96.370.23 73.190.12 71.850.21 90.750.16 80.590.40 70.260.16 67.260.06

SAGE 95.650.07 95.330.11 96.760.10 96.720.07 73.110.08 71.780.15 91.750.04 80.190.46 70.320.11 67.060.17

GIN 92.000.43 92.140.34 96.030.11 96.040.15 71.160.10 70.010.33 91.580.10 79.070.52 68.980.16 65.780.09

GraphNAS 94.900.14 94.670.23 96.760.10 96.720.07 72.760.15 71.700.18 OOT OOT OOT OOT
SGAS 95.620.06 95.440.06 96.440.10 96.500.11 72.380.11 71.340.25 OOM OOM OOM OOM
DARTS 95.620.06 95.440.06 96.210.16 96.400.21 73.430.07 72.100.25 OOM OOM OOM OOM
EGAN 95.600.10 95.430.05 96.390.18 96.450.19 72.910.25 71.750.35 OOM OOM OOM OOM

Basic 95.130.07 95.450.05 96.250.06 96.530.09 73.280.08 72.060.33 91.790.11 80.560.39 69.490.37 66.240.46

GAUSS 96.080.11 96.490.11 96.790.06 96.760.08 73.630.10 72.350.21 91.600.12 81.260.36 70.570.07 67.320.18

ducibility are provided in Appendix D and Appendix E.

5.2.2. TRAINING DETAILS

For the architecture peer learning on graphs, we set the size
of the team learning group n to 10, and set αmin to 0.6 at
the beginning of the search. At each controller optimiza-
tion cycle, we train the GRU-based controller for 5 epochs
and sample 12 architectures every epoch, using a moving
average baseline with an update ratio 0.1. All the experi-
ments are implemented using PyTorch and are conducted
on a Tesla V100 GPU with 32GB of memory. The supernet
training and search process of all methods are limited to 1
GPU day. Refer to Appendix D for more details.

5.3. Experiment Results

5.3.1. MAIN RESULTS

Table 2 shows the overall comparisons of GAUSS and previ-
ous hand-crafted and automated baselines on all 5 datasets.
We also show the results of the basic version of scalable
supernet training in Section 3. We can observe that the
searched architectures of GAUSS consistently outperform
the hand-crafted baselines, searched architectures, as well
as the basic baseline, demonstrating the effectiveness of the
proposed GAUSS method. Note that, for large-scale graphs
with the node number exceeding 106, i.e., Products and Pa-
pers100M, the current GNAS algorithms are not applicable
for either time or memory reasons. Although the basic scal-
able baseline can run on these datasets, the searched results
are not so competitive with hand-crafted baselines. In com-
parison, the proposed GAUSS can still give superior results
when scaling to even larger datasets like papers100M with
more than 108 nodes and 109 edges, showing the scalability,

Table 3. The results of ablation study on the functional components
of the proposed GAUSS. We report Kendall’s τ [%] correlation
of different training strategies over the sampled architectures on
CS and Physics. APLG stands for Architecture Peer Learning on
Graphs. AIS stands for Architecture Importance Sampling.

Strategy CS Physics

Basic (Uniform Sampling) 23.71 20.35
+ APLG 64.86 53.51
+ APLG + AIS (GAUSS) 72.83 60.72

generality, and expressiveness of the proposed method.

5.3.2. ABLATION STUDIES

To understand and analyze the functional parts of GAUSS,
we further conduct detailed ablation studies on the influ-
ence of the proposed architecture peer learning on graphs
and architecture importance sampling. We take CS and
Arxiv as example ablation study datasets to demonstrate
how these two parts help improve the consistency of the
supernet training.

To be specific, we randomly sample 20 architectures from
the search space, and record their validation accuracy on
the corresponding datasets. Then, we perform different
supernet training methods and compute the rank correla-
tion (Kendall’s τ correlation in this paper) on the sampled
architectures.

Table 3 shows the τ value under different experimental
settings. We can observe that the Architecture Peer Learning
on Graph (APLG) contributes most to the consistency of the
supernet, demonstrating the effectiveness of the proposed

Large-Scale Graph Neural Architecture Search

Table 4. The ablation study on the interaction within the learning
team. We report Kendall τ [%] under different αmin settings.

αmin 0.0 0.2 0.4 0.6 0.8 1.0

CS 63.25 62.30 64.42 72.83 64.43 63.27
Physics 51.13 59.39 58.86 60.72 57.58 57.28

2 4 6 8 10 12 14 16 18
Team Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
en

da
ll

Ta
u

CS
Physics

Figure 2. The ablation study on the influence of the learning team
size. We report Kendall’s τ correlation under different team sizes
on CS and Physics.

team learning and interaction methods. Based on APLG,
the Architecture Importance Sampling (AIS) can further
improve the consistency, showing that a proper proposal
distribution can also be beneficial.

We conduct further analysis on how the APLG and AIS help
boosts the consistency of supernet. Specifically, we exam
key hyper-parameters including the team size n and the min-
imum weight αmin in APLG, and the accuracy estimation
during supernet training through AIS.

Influence of the Team Size. Figure 2 shows the effect of the
team size. We can observe that the Kendall’s τ correlation
gradually increases when there are more students in one
learning team. A plausible reason is that, as the team size
becomes larger, the optimization objective can be more
properly adjusted. However, when the team size is larger
than 10, the consistency of the supernet tends to stabilize
or even begins to drop, which shows that the optimization
objective tends to converge or be misled by the overfitted
top performers on the sampled sub-graphs.

Influence of Interaction within the Learning Team. Table
4 shows the different αmin choices and their correspond-
ing Kendall τ on the two datasets. We can observe that,
the correlation will first increase as αmin increases, and
then gradually drop after it reaches 0.6. Note that when
αmin = 1, the students in one learning group will have
no interaction with each other. The results show that, in
general, the interaction among students is beneficial to the
supernet consistency because of a smoother optimization

20 40 60 80 100
Training Epoch

0.6

0.7

0.8

0.9

1.0

Es
tim

at
ed

 V
al

id
 A

cc
ur

ac
y

Uniform Sampling
+APLG
GAUSS

Figure 3. The ablation study on the variance reduction of archi-
tecture importance sampling. We report the estimated validation
accuracy of sampled architectures at each training epoch of differ-
ent training strategies, with their variance shown in the light color.

Table 5. The compatibility analysis of other techniques. We com-
pare different techniques combination on both the hand-crafted
GCN model and our GAUSS model. We report the accuracy [%]
on the validation dataset of Arxiv.

Models GCN GAUSS

Plain 72.76 73.63
+ Node2Vec 73.51 74.05
+ Node2Vec + label 73.56 74.37
+ Node2Vec + label + C&S 73.78 74.49
+ Node2Vec + label + C&S + KD 73.96 74.55

objective. However, punishing the hard nodes too much (a
smaller αmin setting) will potentially lead to degenerated
consistency because of too much information loss and the
limitation of the best performers on identifying hard nodes.

The Stability and Variance Reduction of AIS. To better
understand how AIS influences the supernet training pro-
cess, we visualize the estimated expectation of accuracies
over the whole architecture search space in Figure 3. We
can see that the proposed AIS can indeed reduce the vari-
ance of the accuracy estimator, especially at the beginning
of the training (e.g., in the first 40 epochs), thus leading to
better consistency convergence of the supernet. In contrast,
the supernet trained using uniform sampling and only us-
ing APLG still suffers from high variances, resulting in a
relatively poor consistency.

Compatibility with Other Techniques. Although the focus
of this paper is on the best GNN architecture, we show that
our searched results can also benefit from some architecture-
agnostic training techniques proposed specifically to boost
the node classification performance. We report the perfor-
mance of our models combined with four such techniques:
Node2vec (Grover & Leskovec, 2016), Label Reuse (Wang,

Large-Scale Graph Neural Architecture Search

2021), C&S (Huang et al., 2021), KD (Hinton et al., 2015).
We report the results and compare it with GCN, where these
techniques are originally used. The results on Arxiv are
shown in Table 5. We can observe that the architecture dis-
covered by GAUSS consistently outperforms hand-crafted
GCN when combined with all these techniques.

6. Conclusion and Future Work
In this paper, we propose a scalable graph neural archi-
tecture search framework GAUSS to automatically search
architectures for large-scale graphs. We propose a graph
sampling based supernet training paradigm to allievate the
computation burden, and develop a joint architecture-graph
sampling methods to avoid consistency collapse problems.
To the best of our knowledge, GAUSS is the first graph neu-
ral architecture search framework that can handle over 108

nodes and 109 edges in 1 GPU day. Future works include
evaluating GAUSS on other large-scale graphs and other
graph tasks like graph classification and link prediction.

Acknowledgement
This work is supported by the National Key Research and
Development Program of China No. 2020AAA0106300
and National Natural Science Foundation of China No.
62102222.

References
Bender, G., Kindermans, P., Zoph, B., Vasudevan, V., and

Le, Q. V. Understanding and simplifying one-shot archi-
tecture search. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, volume 80
of Proceedings of Machine Learning Research, pp. 549–
558. PMLR, 2018.

Boud, D. Making the move to peer learning. Peer Learning
in Higher Education: Learning from and with Each Other,
pp. 1–17, 01 2001.

Cai, J., Wang, X., Guan, C., Tang, Y., Xu, J., Zhong, B.,
and Zhu, W. Multimodal continual graph learning with
neural architecture search. In Proceedings of the ACM
Web Conference 2022, WWW ’22, pp. 1292–1300, 2022.

Cao, Z., Xu, Q., Yang, Z., Cao, X., and Huang, Q. Dual
quaternion knowledge graph embeddings. In AAAI, pp.
6894–6902, 2021.

Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with
graph convolutional networks via importance sampling.
In 6th International Conference on Learning Representa-
tions, ICLR 2018. OpenReview.net, 2018a.

Chen, J., Zhu, J., and Song, L. Stochastic training of graph

convolutional networks with variance reduction. In Dy,
J. G. and Krause, A. (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018,
volume 80 of Proceedings of Machine Learning Research,
pp. 941–949. PMLR, 2018b.

Chiang, W., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C. Cluster-gcn: An efficient algorithm for training deep
and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, pp.
257–266. ACM, 2019.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, pp. 1724–1734. ACL, 2014.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Gao, Y., Yang, H., Zhang, P., Zhou, C., and Hu, Y. Graph
neural architecture search. In Bessiere, C. (ed.), Proceed-
ings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pp. 1403–1409.
ijcai.org, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 1263–1272.
PMLR, 2017.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864. ACM, 2016.

Guan, C., Wang, X., and Zhu, W. Autoattend: Automated
attention representation search. In Proceedings of the 38th
International Conference on Machine Learning, ICML
2021, volume 139 of Proceedings of Machine Learning
Research, pp. 3864–3874. PMLR, 2021a.

Guan, C., Zhang, Z., Li, H., Chang, H., Zhang, Z., Qin, Y.,
Jiang, J., Wang, X., and Zhu, W. AutoGL: A library for
automated graph learning. In ICLR 2021 Workshop on
Geometrical and Topological Representation Learning,
2021b. URL https://openreview.net/forum?
id=0yHwpLeInDn.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In Advances

https://openreview.net/forum?id=0yHwpLeInDn
https://openreview.net/forum?id=0yHwpLeInDn

Large-Scale Graph Neural Architecture Search

in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, pp. 1024–1034, 2017.

Hinton, G. E., Vinyals, O., and Dean, J. Distilling the
knowledge in a neural network. CoRR, abs/1503.02531,
2015.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, 2020.

Huang, Q., He, H., Singh, A., Lim, S., and Benson, A. R.
Combining label propagation and simple models out-
performs graph neural networks. In 9th International
Conference on Learning Representations, ICLR 2021.
OpenReview.net, 2021.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017.
OpenReview.net, 2017.

Li, G., Qian, G., Delgadillo, I. C., Müller, M., Thabet, A. K.,
and Ghanem, B. SGAS: sequential greedy architecture
search. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, pp. 1617–
1627. Computer Vision Foundation / IEEE, 2020.

Li, Y., Wen, Z., Wang, Y., and Xu, C. One-shot graph neural
architecture search with dynamic search space. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, pp. 8510–8517. AAAI Press, 2021.

Liu, H., Simonyan, K., and Yang, Y. DARTS: differentiable
architecture search. In 7th International Conference on
Learning Representations, ICLR 2019. OpenReview.net,
2019.

Lovelace, J., Newman-Griffis, D., Vashishth, S., Lehman,
J. F., and Rosé, C. P. Robust knowledge graph completion
with stacked convolutions and a student re-ranking net-
work. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021,, pp. 1016–1029. Association
for Computational Linguistics, 2021.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In The
Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, pp. 4602–4609. AAAI Press, 2019.

O’Donnell, A. M. and King, A. Cognitive Perspectives on
Peer Learning. Routledge, 1999.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.
Efficient neural architecture search via parameter shar-
ing. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 4092–4101.
PMLR, 2018.

Qin, Y., Wang, X., Zhang, Z., and Zhu, W. Graph differ-
entiable architecture search with structure learning. In
Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, 2021.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized evolution for image classifier architecture search. In
The Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, pp. 4780–4789, 2019.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. Relational
Representation Learning Workshop, NeurIPS 2018, 2018.

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder,
S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T.,
Morris, J. H., Bork, P., Jensen, L. J., and von Mering, C.
STRING v11: protein-protein association networks with
increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res.,
47(Database-Issue):D607–D613, 2019.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In 6th
International Conference on Learning Representations,
ICLR 2018. OpenReview.net, 2018.

Vrandecic, D. and Krötzsch, M. Wikidata: a free collab-
orative knowledgebase. Commun. ACM, 57(10):78–85,
2014.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,
G., Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works. arXiv preprint arXiv:1909.01315, 2019.

Wang, X., Zhang, Z., and Zhu, W. Automated graph
machine learning: Approaches, libraries and directions.
CoRR, abs/2201.01288, 2022.

Wang, Y. Bag of tricks for node classification with graph
neural networks. CoRR, abs/2103.13355, 2021.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach.
Learn., 8:229–256, 1992.

Large-Scale Graph Neural Architecture Search

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu,
A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda,
Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski,
A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le,
D., Pon, A., Knox, C., and Wilson, M. Drugbank 5.0: a
major update to the drugbank database for 2018. Nucleic
Acids Res., 46(Database-Issue):D1074–D1082, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How pow-
erful are graph neural networks? In 7th International
Conference on Learning Representations, ICLR 2019.
OpenReview.net, 2019.

Yang, Z., Xu, Q., Zhang, W., Cao, X., and Huang, Q.
Split multiplicative multi-view subspace clustering. IEEE
Trans. Image Process., 28(10):5147–5160, 2019.

Yang, Z., Xu, Q., Cao, X., and Huang, Q. Task-feature
collaborative learning with application to personalized
attribute prediction. IEEE Trans. Pattern Anal. Mach.
Intell., 43(11):4094–4110, 2021.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. K. Graphsaint: Graph sampling based induc-
tive learning method. In 8th International Conference on
Learning Representations, ICLR 2020. OpenReview.net,
2020.

Zhang, Z., Wang, X., and Zhu, W. Automated machine learn-
ing on graphs: A survey. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence,
IJCAI 2021, pp. 4704–4712. ijcai.org, 2021.

Zhao, H., Wei, L., quanming yao, and He, Z. Efficient
graph neural architecture search, 2021. URL https:
//openreview.net/forum?id=IjIzIOkK2D6.

Zhu, W., Cui, P., Wang, Z., and Hua, G. Multimedia big
data computing. IEEE MultiMedia, 22(03):96–c3, jul
2015. ISSN 1941-0166. doi: 10.1109/MMUL.2015.66.

Zoph, B. and Le, Q. V. Neural architecture search with rein-
forcement learning. In 5th International Conference on
Learning Representations, ICLR 2017. OpenReview.net,
2017.

https://openreview.net/forum?id=IjIzIOkK2D6
https://openreview.net/forum?id=IjIzIOkK2D6

Large-Scale Graph Neural Architecture Search

A. Proof of Theorem 4.1
Proof. We aim to explicitly minimize the estimator p(a)

q(a)Accvalid(a) through applying proper q(a):

minimize
Γ(A)

VΓ(A)
p(a)

q(a)
Accvalid(a) (17)

subject to
∑
a∈A

q(a) = 1. (18)

For the minimization objective, we have:

Va∈Γ(A)
p(a)

q(a)
Accvalid(a) =

∑
a∈A

q(a)

(
p(a)

q(a)
Accvalid(a)−

1

|A|
∑
a∈A

Accvalid(a)

)2

(19)

=
∑
a∈A

q(a)

(
Accvalid(a)

p(a)

q(a)

)2

−

(
1

|A|
∑
a∈A

Accvalid(a)

)2

(20)

=
1

|A|2
∑
a∈A

Acc2
valid(a)

q(a)
−

(
1

|A|
∑
a∈A

Accvalid(a)

)2

. (21)

We introduce the Lagrange Multipliers ζ(ζ ̸= 0) to handle the condition.

L(Γ(A), ζ) = 1

|A|2
∑
a∈A

Acc2
valid(a)

q(a)
−

(
1

|A|
∑
a∈A

Accvalid(a)

)2

+ ζ

(∑
a∈A

q(a)− 1

)
(22)

∂L

∂ζ
=
∑
a∈A

q(a)− 1 = 0 (23)

∂L

∂q(a)
= −Acc

2
valid(a)

|A|2q2(a)
+ ζ = 0, for a ∈ A. (24)

Eq. (24) tell us that the best solution with minimal variance satisfy q(a) ∝ Accvalid(a).

B. Proof of Theorem 4.2
Proof. We can prove by contradiction. Suppose we have reached the optimal distribution q∗(a) which maximizesR(θ) +
βH(Γ(θ)), and there are two architectures ai, aj that do not meet the conclusion of Theorem 4.2, i.e.:

(q∗(ai)− q∗(aj))(Accvalid(ai)− Accvalid(aj)) < 0 (25)

This is equivalent to:

q∗(ai)Accvalid(ai) + q∗(aj)Accvalid(aj) < q∗(aj)Accvalid(ai) + q∗(ai)Accvalid(aj) (26)

In this case, we can derive a new distribution r(a) by only changing the probability of q∗(ai) and q∗(aj):

r(a) =

 q∗(a) a ̸= ai and a ̸= aj
q∗(ai) a = aj
q∗(aj) a = ai

(27)

Large-Scale Graph Neural Architecture Search

Then, we can derive that:

R(r) + βH(r) =Ea∼rAccvalid(a)− βEa∼r log(r(a))

=
∑
a∈A

r(a)Accvalid(a)− β
∑
a∈A

r(a) log(r(a))

=
∑

a∈A−{ai,aj}

r(a)Accvalid(a)− β
∑

a∈A−{ai,aj}

r(a) log(r(a))

+ r(ai)Accvalid(ai) + r(aj)Accvalid(aj)− βr(ai) log r(ai)− βr(aj) log r(aj)

=
∑

a∈A−{ai,aj}

q∗(a)Accvalid(a)− β
∑

a∈A−{ai,aj}

q∗(a) log(r(a))

+ q∗(aj)Accvalid(ai) + q∗(ai)Accvalid(aj)− βq∗(aj) log q
∗(aj)− βq∗(ai) log q

∗(ai)

We can apply the In-equation (26) here:

R(r) + βH(r) ≥
∑

a∈A−{ai,aj}

q∗(a)Accvalid(a)− β
∑

a∈A−{ai,aj}

q∗(a) log(r(a))

+ q∗(ai)Accvalid(ai) + q∗(aj)Accvalid(aj)− βq∗(ai) log q
∗(ai)− βq∗(aj) log q

∗(aj)

=Ea∼q∗Accvalid(a)− βEa∼q∗ log(r(a))

=R(q∗) + βH(q∗)

We can conclude that r(a) is better than the q∗(a), which is contradictory with the supposition that q∗(a) is the optimal
distribution that can maximizeR(θ) + βH(Γ(θ)). Therefore, Theorem 4.2 holds.

C. Datasets
We give the urls to the datasets we have used with their licenses.

• GNN Benchmark https://www.in.tum.de/daml/gnn-benchmark/ with MIT license.

• Open Graph Benchmak https://ogb.stanford.edu/ with MIT license.

D. Detailed Hyper-Parameters

Table 6. Detailed hyper-parameters setting.

Dataset #layer lr epoch dropout hidden size sample controller update epoch

CS 2 0.005 100 0.5 256 Full Batch every 5 epochs
Physics 2 0.005 100 0.5 256 Full Batch every 5 epochs
Arxiv 3 0.01 500 0.5 256 Full Batch every 25 epochs
Products 4 0.001 50 0.5 256 Cluster every 2.5 epochs
Papers100M 3 0.001 25 0.1 1024 Neighbor every 1.25 epochs

We report the detailed hyper-parameters for supernet training and architecture retraining in Table 6. We want to emphasize
that all the hyper-parameters except for CS and Physics are set according to the published codes in OGB Leaderboard (Hu
et al., 2020)4. The hyper-parameters for CS and Physics are set using grid search on single model GCN (Kipf & Welling,
2017).

For Products, we use cluster sub-graph sampling following ClusterGCN (Chiang et al., 2019), with the number of 15000
random partitions and a batch size of 32. For Papers100M, we use neighborhood sampling following GraphSAGE (Hamilton

4https://ogb.stanford.edu/docs/leader_nodeprop/

https://www.in.tum.de/daml/gnn-benchmark/
https://ogb.stanford.edu/
https://ogb.stanford.edu/docs/leader_nodeprop/

Large-Scale Graph Neural Architecture Search

et al., 2017), with every layer sampling 12 and 100 neighbors for train and validation/test respectively. The batch size is set
to 1024.

For the search strategy, we use Regularized Evolution (Real et al., 2019). We maintain a population of 50, and mutate 10 top
architectures each time for 5 epochs.

E. Runtime Environment
All the experiments, including baselines, are conducted on the following environments.

• Operating System: Ubuntu 18.04.5 LTS.

• CPU: Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz.

• GPU: NVIDIA Tesla V100-PCIE-32GB.

• Software: Python 3.7.11, PyTorch 1.10.1, PyTorch Geometric 2.0.3 (Fey & Lenssen, 2019), Deep Graph Library
0.7.2 (Wang et al., 2019), Open Graph Benchmark 1.3.2 (Hu et al., 2020).

