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Abstract

Learning with adversarial robustness has been a
challenge in contemporary machine learning, and
recent years have witnessed increasing attention
on robust decision trees and ensembles, mostly
working with high computational complexity or
without guarantees of provable robustness. This
work proposes the Fast Provably Robust Decision
Tree (FPRDT) with the smallest computational
complexity O(n log n), a tradeoff between global
and local optimizations over the adversarial 0/1
loss. We further develop the Provably Robust
AdaBoost (PRAdaBoost) according to our robust
decision trees, and present convergence analysis
for training adversarial 0/1 loss. We conduct
extensive experiments to support our approaches;
in particular, our approaches are superior to those
unprovably robust methods, and achieve better or
comparable performance to those provably robust
methods yet with the smallest running time.

1. Introduction
A well-trained model may be heavily misled by examples of
adversarial perturbations (Szegedy et al., 2014; Goodfellow
et al., 2015), which has been a big challenge in machine
learning. A large number of defensive algorithms have been
developed to deal with adversarial examples (Goodfellow
et al., 2015; Papernot et al., 2016; Madry et al., 2018; Liu
et al., 2018; Akhtar et al., 2018; Liao et al., 2018), whereas
most are heuristic without theoretical guarantees of robust-
ness. Provably robust training has been an effective method
to guarantee the robustness against adversarial perturbations,
and the basic idea is to exactly optimize the adversarial loss
or its upper bound (Mirman et al., 2018; Raghunathan et al.,
2018a;b; Wong & Kolter, 2018; Wong et al., 2018; Cohen
et al., 2019; Li et al., 2019; Balunović & Vechev, 2020).
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Table 1. Comparisons of computational complexity and provable
robustness for robust decision trees and boosting (n denotes the
number of training data).

Methods Comp. complexity Prov. robustness

Our FPRDT O(n logn) !

Our PRAdaBoost O(n logn) !

ROCT (Vos & Verwer, 2021b) O(exp(n)) !

TREANT (Calzavara et al., 2020) O(n2) !

PRB (Andriushchenko & Hein, 2019) O(n2) !

GROOT (Vos & Verwer, 2021a) O(n logn) %

RIGDT-heuristic (Chen et al., 2019a) O(n logn) %

RGBDT (Chen et al., 2019a) O(n logn) %

AdvBoost (Kantchelian et al., 2016) O(n logn) %

Recent years have witnessed the increasing attention on
robust decision trees and ensembles, from the discoveries
of adversarial examples in tree attacks (Kantchelian et al.,
2016; Chen et al., 2019b; Cheng et al., 2019). Kantchelian
et al. (2016) produced approximated adversarial examples,
and trained decision trees iteratively based on the original
data and new adversarial examples, and Andriushchenko
& Hein (2019) proposed the provably robust boosting via
upper bound of adversarial loss. Chen et al. (2019a) and
Vos & Verwer (2021a) constructed robust decision trees
and ensembles by adversarial Gini impurity or information
gain. Calzavara et al. (2020) presented the provably robust
decision tree with additional constraints over examples, and
Vos & Verwer (2021b) suggested globally optimal robust
decision trees. Table 1 summarizes the provable robustness
and computational complexities for different methods.

This work presents the fast algorithms for provably robust
decision trees and Boosting, and the main contributions can
be summarized as follows:

• We propose the Fast Provably Robust Decision Tree
(FPRDT), a greedy recursive approach on the direct
minimization of the adversarial 0/1 loss. Our approach
makes optimization over all leaves and the splitting
children, which is different from global optimization
over all internal and leaf nodes, and local optimization
over the single splitting node with its children. Our
approach takes O(n log n) computational complexity.
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• We further develop the Provably Robust AdaBoost
(PRAdaBoost), a boosting algorithm to minimize an
upper bound on the adversarial exponential loss, and
the base learners are constructed with our FPRDT with
slight modifications. We present the exponential con-
vergence analysis of the training adversarial 0/1 loss
for our approach, and obtain the smallest O(n log n)
computational complexity.

• We finally present extensive experiments to validate the
effectiveness of our approaches. Specifically speaking,
our approaches are clearly superior to those unprovably
robust methods of decision trees and tree ensembles,
and achieve better or comparable performance to prov-
ably robust methods yet of the smallest running time.

The rest of this work is organized as follows: Section 2
presents some preliminaries. Section 3 proposes the FPRDT
approach. Section 4 develops the PRAdaBoost approach.
Section 5 conducts extensive experiments, and Section 6
concludes with future work.

2. Preliminaries
Let X ⊂ Rd be the instance/input space, and Y = {−1, 1}
denotes the output space for binary classification. Suppose
that D is an underlying distribution over the product space
X ×Y . Distribution D is unknown in practice, and what we
can observe is a training data

Sn = {(x1, y1), (x2, y2), ..., (xn, yn)} ,

where each example is drawn i.i.d. from distribution D. Let
Nϵ(x) denote the ball with center x and radius ϵ under the
L∞ metric, that is,

Nϵ(x) = {z : ∥z − x∥∞ ≤ ϵ} .

LetH be a hypothesis space, and a loss function ℓ(h(x), y))
is introduced to measure the prediction performance with
hypothesis h ∈ H and example (x, y). Given example x,
an adversarial example xadv is given by

xadv ∈ argmax
x′∈Nϵ(x)

{ℓ(h(x′), y)} .

Given training sample Sn, the adversarial robust learning
aims to look for a hypothesis ĥ∗ ∈ H (Madry et al., 2018),
such that

ĥ∗ ∈ argmin
h∈H

{
n∑

i=1

max
x′∈Nϵ(xi)

ℓ(h(x′), yi)

}
. (1)

One feasible method is to solve the inner maximization
of Eqn. (1) approximately at each step, called adversarial
training as mentioned by Goodfellow et al. (2015).

We introduce some notations in this work. Let I[·] denote
the indicator function, which returns 1 if the argument is
true, and 0 otherwise. Let ∅ stand for the empty set, and
denote by [k] = {1, 2, · · · , k} for integer k > 0.

3. Fast Provably Robust Decision Trees
A decision tree can be constructed with some internal and
leaf nodes by partitioning training data recursively, and
the prediction follows the path from root to leaf. For a
decision tree of m leaf nodes, we could associate with m
corresponding rectangle cells B1,B2, . . . ,Bm as follows:

Bj = (aj1, b
j
1]× · · · × (ajd, b

j
d] for j ∈ [m] .

Given example (xi, yi) ∈ Sn and leaf node Bj , we further
introduce the set of adversarial examples of xi, falling into
the j-th leaf node Bj , as follows:

Eij = {x ∈ X : x ∈ Nϵ(xi) and x ∈ Bj} .

Let h(·) denote the prediction function of a decision tree.
We have h(x) = h(x′) for every x,x′ ∈ Bj , and this
follows that h(x) = h(x′) for every x,x′ ∈ Eij .

By traversing all leaf nodes of a decision tree, optimizing
Eqn (1) is equivalent to minimizing the following objective

n∑
i=1

max
j∈[m]

{ℓ(h(x), yi)I[x ∈ Eij ]} , (2)

where ℓ(h(x), yi)I[x ∈ Eij ] = 0 when Eij = ∅ by default.

We directly use the 0/1 loss, rather than traditional surrogate
losses such as square loss and softmax loss, as the splitting
criterion during the construction of decision tree, that is,

ℓ(h(x), yi) = I[h(x) ̸= yi] .

This is because the consistency between those surrogate
losses and 0/1 loss does not hold in the adversarial setting
(Awasthi et al., 2021). Another reason is the efficiency on
the robust optimization of splitting nodes with the O(1) com-
putational complexity, while those surrogate losses would
require the O(n) computational complexity via gradient
descent. The details can be found in Appendix A.

Following the classic method (Rokach & Maimon, 2005),
at one split with previous optimal loss L̂pre of Eqn. (2), we
assume that the p-th leaf node will be split, and let t and η
be the splitting feature and threshold, respectively. For its
left and right child, we denote by vl and vr their respective
values, and Bl and Br represent their associated rectangle
cells. Let vj be the value of the j-th leaf node for j ̸= p.
We could write the objective loss of Eqn. (2) at one split as

L̂(t, η, vl, vr) =
n∑

i=1

max
{
I[vl ̸= yi]I[Eil ̸= ∅],

Kip, I[vr ̸= yi]I[Eir ̸= ∅]
}
,
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Algorithm 1 Fast Provably Robust Decision Tree (FPRDT)
Input: Dataset Sn

Output: A tree T
Initialize: Root of T with the majority class in Sn

L̂ = min {
∑n

i=1 I[yi = 1],
∑n

i=1 I[yi = −1]}
Ei = 0 for the majority class, and 1 otherwise

PRDT-recursive(Sn, T , ϵ, L̂)
Return: T

with Kip = maxj∈[m]\{p} {I[vj ̸= yi]I[Eij ̸= ∅]} ∈ {0, 1}.
Here, we denote by Eil and Eir the sets of Nϵ(xi) ∩ Bl and
Nϵ(xi) ∩ Br, respectively. The one-split goal for robust
training is to solve

{t∗, η∗, v∗l , v∗r} ∈ argmin
t,η,vl,vr

{
L̂(t, η, vl, vr)

}
.

To calculate Kip efficiently, let Ei (i ∈ [n]) be the number
of leaves, including adversarial examples of xi. We have

Ei =
∑
j∈[m]

I[vj ̸= yi]I[Eij ̸= ∅] ,

and this follows that, Kip = 1 if and only if

Ei − I[vp ̸= yi]I[Eip ̸= ∅] ≥ 1 , (3)

where vp denotes the value of the p-th leaf node.

Following the robust decision trees (Vos & Verwer, 2021a),
we traverse all potential features t ∈ [d] and thresholds

η ∈Wt =
⋃n

i=1,Eip ̸=∅

{
xit − ϵ, xit, xit + ϵ

}
. (4)

For any fixed splitting feature t′ and threshold η′, it is easy
to observe that

I[Eil ̸= ∅] = I [Eip ̸= ∅ and xit′ ≤ η′ + ϵ] , (5)
I[Eir ̸= ∅] = I [Eip ̸= ∅ and xit′ > η′ − ϵ] , (6)

where xit′ is the value of the t′-th feature of instance xi.
We then solve the following problem

(v′l, v
′
r) = argmin

vl,vr∈{0,1}

{
L̂(t′, η′, vl, vr)

}
, (7)

where it takes O(1) computational complexity to solve the
above problem based on loss decomposition when Wt is
sorted. Note that it would take O(n) computational com-
plexity if we use other surrogate losses instead. The detailed
solution and discussion can be found in Appendix A.

After traversing potential features and thresholds, and solv-
ing their respective minimizations of Eqn. (7), we can obtain
the final optimal objective loss

L̂∗ = L̂(t∗, η∗, v∗l , v∗r )

= min
t′∈[d],η′∈Wt

{
min

vl,vr∈{0,1}
L̂(t′, η′, vl, vr)

}

Algorithm 2 FPRDT-recursive
Input: Dataset Sn, split leaf p, perturbation size ϵ, previ-
ous optimal loss L̂pre

Output: None
Initialize L̂∗ ← +∞
Compute loss Kip (i ∈ [n]) according to Eqn. (3)
for t′ = 1 to d do

Compute Wt′ according to Eqn. (4)
for η′ in sorted(Wt′ ) do

Compute I[Eil ̸= ∅] and I[Eir ̸= ∅] by Eqns. (5)-(6)
Solve v′l and v′r from Eqn. (7) with optimal loss L̂′

if L̂′ < L̂∗ then
t∗ = t′, η∗ = η′, v∗l = v′l, v

∗
r = v′r, L̂∗ = L̂′

end if
end for

end for
if L̂∗ < L̂pre then

Split leaf p via {t∗, η∗, v∗l , v∗r}, and obtain children l, r
Update Ei (i ∈ [n]) according to Eqn. (8)
FPRDT-recursive(Sn, l, ϵ, L̂∗)
FPRDT-recursive(Sn, r, ϵ, L̂∗)

end if

with the optimal solution {t∗, η∗, v∗l , v∗r}.

We split the p-th leaf node only if L̂∗ < L̂pre, that is, the
current optimal loss L̂∗ is smaller than the previous optimal
loss L̂pre. For a splitting node, we update

Ei = Ei + I[vl ̸= yi]I[Eil ̸= ∅]
+I[vr ̸= yi]I[Eir ̸= ∅]− I[vp ̸= yi]I[Eip ̸= ∅] . (8)

Algorithms 1 and 2 present the detailed description of our
Fast Provably Robust Decision Trees (FPRDT) approach,
where Ei(i ∈ [n]) are defined as global variables.

We now present computational complexity analysis for our
FPRDT approach at one split. It takes O(n) computational
complexity on the update of Ei from Eqn. (8) for i ∈ [n],
as well as O(n) computational complexity for Kip from
Eqn. (3). We have at most 3n splits for each feature from
Eqn. (4), and take O(n log n) computational complexity to
sort Wt. In summary, our proposed FPRDT method takes
the O(n log n) computational complexity.

Comparisons with previous work

Chen et al. (2019a) developed the robust decision trees based
on adversarial Gini impurity, and Vos & Verwer (2021a)
further introduced robust decision trees with better training
efficiency in terms of their closed-form solutions. Yang et al.
(2019) proved the equivalence between Gini impurity and
square loss on the construction of regular decision trees,
whereas we prove that such equivalence does not hold in the
adversarial setting as follows:
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Theorem 3.1. Optimizing the adversarial Gini impurity of
robust decision trees is equivalent to minimizing a lower
bound of

∑n
i=1 maxj∈[m]{(1− h(x)yi)

2I[x ∈ Eij ]}.

From this theorem, we can see that the equivalence does
not hold between adversarial Gini impurity and adversarial
square loss, which proves the unprovable robustness of al-
gorithms via optimizing the adversarial Gini impurity. The
detailed proof of Theorem 3.1 is presented in Appendix B.

Calzavara et al. (2020) introduced provably robust decision
trees of O(n2) computational complexity with additional
constraints over examples, and Vos & Verwer (2021b) gave
the robust optimal decision tree based on mixed-integer
linear program, which is an NP-hard problem with exponen-
tial computational complexity. In comparison, our FPRDT
approach takes the smallest O(n log n) computational com-
plexity in all provably robust methods.

In our FPRDT approach, we introduce the maximal loss Kip

over all leaves except for the splitting leaf. This is different
from the robust optimal decision tree (Vos & Verwer, 2021b),
which takes the global optimization over all internal and leaf
nodes. We also distinguish from local optimization (Chen
et al., 2019a; Vos & Verwer, 2021a), which only focuses on
the splitting leaf with its children, regardless of other leaves.
Our method can be viewed as a trade-off between global
and local optimizations.

4. Provably Robust AdaBoost
The AdaBoost algorithm (Freund et al., 1996) has been one
of the most influential algorithms in machine learning, and
the basic idea is to construct a “strong” classifier from a
sequence of “weak” learners. Essentially, AdaBoost can be
viewed as a procedure on the optimization of exponential
loss (Schapire, 2013). This section focuses on provably
robust guarantees for AdaBoost via an upper bound over the
adversarial exponential loss.

Let Ht(x) =
∑t

i=1 αihi(x) be the output of AdaBoost
with base learners hi ∈ H and corresponding weights αi.
We have the empirical adversarial exponential loss over
training sample Sn as follows:

L̂(h, Sn) =
1

n

n∑
i=1

max
x′

i∈Nϵ(xi)

{
exp(−Ht(x

′
i)yi)

}
.

It is an NP-hard problem to directly optimize the above
empirical adversarial loss for tree ensembles (Kantchelian
et al., 2016), and we resort to an upper bound as follows:

L̂(h, Sn) =
1

n

n∑
i=1

max
x′

i∈Nϵ(xi)

{ t∏
j=1

exp(−yiαjhj(x
′
i))
}

≤ 1

n

n∑
i=1

t∏
j=1

max
x′

i∈Nϵ(xi)

{
exp(−yiαjhj(x

′
i))
}
.

Algorithm 3 Provably Robust AdaBoost (PRAdaBoost)
Input: Dataset Sn, iteration num. T and perturb. size ϵ
Output: Classifier H
Initialize: Instance weights w1,i = 1 (i ∈ [n])
for t = 1 to T do

Solve ht from Eqn. (9) by our modified FPRDT
Calculate ϵt according to Eqn. (11)
if ϵt > 1/2 then

break
end if
Calculate classifier weight αt from Eqn. (10)
Calculate instance weights wt+1,i from Eqn. (12)

end for
Return H(x) = sign(

∑T
t=1 αtht(x))

Such relaxation has also been used by Andriushchenko &
Hein (2019). Let wt,i denote the weight of instance (xi, yi)
after the t− 1-th iteration, and motivated from the original
AdaBoost, we have

wt,i =

t−1∏
j=1

max
x′

i∈Nϵ(xi)

{
exp(−yiαjhj(x

′
i))
}
.

In the t-th iteration, we try to solve the following problem

{αt, ht} ∈ argmin
α,h

{ n∑
i=1

wt,i max
x′

i∈Nϵ(xi)
exp(−yiαh(x′

i))
}
.

We first minimize the following weighted adversarial 0/1
loss to solve ht, for any given αt > 0,

ht = argmin
h

n∑
i=1

wt,i max
x′

i∈Nϵ(xi)
I[h(x′

i) ̸= yi] , (9)

and this can be efficiently solved based on our FPRDT
approach with modification of objective loss in Eqn. (2) to
weighted ones. The details can be found in Appendix C.

We then solve the weight αt from its derivative as follows:

αt =
1

2
× ln(

1− ϵt
ϵt

) , (10)

where

ϵt =

n∑
i=1

wt,i∑n
i=1 wt,i

max
x′

i∈Nϵ(xi)
{I(ht(x

′
i) ̸= yi)} . (11)

We finally calculate instance weights wt,i according to the
following recursive relationship

wt+1,i = wt,i max
x′

i∈Nϵ(xi)

{
exp(−yiαtht(x

′
i))
}
. (12)

Algorithm 3 presents the detailed description of Provably
Robust AdaBoost (PRAdaBoost), and takes the O(n log n)
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computational complexity in each iteration since it requires
O(n) and O(n log n) computational complexities to com-
pute instance weights and base learners, respectively.

We present the convergence analysis on the adversarial 0/1
loss over training dataset for our PRAdaBoost as follows:
Theorem 4.1. Let H(x) = sign(

∑T
t=1 αtht(x)) be the

final classifier of PRAdaBoost with γt = 1/2− ϵt > 0 for
each iteration t ∈ [T ]. We have the empirical adversarial
0/1 loss over training sample Sn as follows:

1

n

n∑
i=1

[
max

x′
i∈Nϵ(xi)

I[H(x′
i) ̸= yi]

]
≤ exp

(
−2

T∑
t=1

γ2
t

)
.

This theorem shows the exponential convergence rate for the
PRAdaBoost approach when every base learner has slightly
better performance than random guess in the adversarial
setting, that is, γt = 1/2 − ϵt ≥ γ for some small γ > 0.
The detailed proof is presented in Appendix D.

Comparisons with previous work

Kantchelian et al. (2016) proposed to train a sequence of
robust decision trees iteratively and recursively, under the
L0 metric, based on the original data and new approximated
adversarial examples. Vos & Verwer (2021a) presented the
robust random forests following the original idea of random
forests (Breiman, 2001).

Andriushchenko & Hein (2019) introduced another robust
boosting algorithm via an upper bound over adversarial
exponential loss with O(n2) computational complexity,
whereas we consider the modified FPRDT to construct the
base learners based on the direct optimization of adversarial
0/1 loss with O(n log n) computational complexity.

Our PRAdaBoost can be viewed as a general learning ap-
proach which can be used in any place where AdaBoost and
robust boostings can be applied. An interesting future work
is to exploit the generalization and consistency of AdaBoost
and the convergence rate of random forests in adversarial
settings, by analogy with the traditional studies (Bartlett &
Traskin, 2006; Gao & Zhou, 2013; 2020).

5. Experiments
We conduct our experiments on 18 datasets1,2, and most
datasets have been used in previous robust decision trees
and ensembles. Table 2 presents the detailed statistical
information, and we take the same perturbation size ϵ as
previous robust studies on decision trees or tree ensembles.
The features have been scaled to [−1, 1] for all datasets.

We take the adversarial accuracy as predictive measure

1
https://www.openml.org/

2
https://www.cs.toronto.edu/˜kriz/cifar.html

Table 2. Datasets

Dataset (Perb.) # Inst. # Feat. Dataset (Perb.) # Inst. # Feat.

ionos (.2) 351 34 cifar10:0v5 (.1) 12,000 3,072

breast (.3) 683 9 cifar10:0v6 (.1) 12,000 3,072

diabet (.05) 768 8 cifar10:4v8 (.1) 12,000 3,072

bank (.1) 1,372 4 mnist2v6 (.4) 13,866 784

Japan3v4 (.1) 3,087 14 mnist3v8 (.4) 13,966 784

har1v2 (.1) 3,266 561 F-mnist2v5 (.2) 14,000 784

spam (.05) 4,601 57 F-mnist3v4 (.2) 14,000 784

GesDvP (.01) 4,838 32 F-mnist7v9 (.2) 14,000 784

wine (.05) 6,497 11 mnist1v7 (.4) 15,170 784

in robust classifications (Goodfellow et al., 2015; An-
driushchenko & Hein, 2019; Vos & Verwer, 2021a;b). For
test data T = {(x1, y1), · · · , (xm, ym)}, we define the test
adversarial accuracy as

1− 1

m

m∑
i=1

max
∥z−xi∥∞≤ϵ

I(h(z) ̸= yi),

following the implementation of (Vos & Verwer, 2021a).

For fair comparisons, we run all experiments on a single
core without parallel optimizations, and experiments are
performed with Python on nodes of a computational cluster
with 20 CPUs (Intel Core i9-10900X 3.7GHz), running
Ubuntu with 128GB main memory.

5.1. Comparisons on Robust Decision Trees

Besides regular decision trees (Safavian & Landgrebe,
1991), we compare with state-of-the-art robust decision
trees as follows:

• RIGBT-h3: Robust decision trees based on adversarial
information gain (Chen et al., 2019a);

• TREANT4: Robust decision trees with constraints over
training examples (Calzavara et al., 2020);

• GROOT5: Robust decision trees based on adversarial
Gini impurity (Vos & Verwer, 2021a);

• ROCT5: Robust decision trees with global optimiza-
tion over all nodes (Vos & Verwer, 2021b);

• PRB tree6: Robust decision trees based on upper bound
of exponential loss (Andriushchenko & Hein, 2019).

We take the maximum depth 4 for TREANT and ROCT due
to high computational complexity, and do not restrict the

3The code is taken from https://github.com/chenhongge.
4The code is taken from https://github.com//gtolomei/treant.
5The code is taken from https://github.com/tudelft-cda-lab.
6The code is taken from https://github.com/max-andr.

https://www.openml.org/
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/chenhongge
https://github.com//gtolomei/treant
https://github.com/tudelft-cda-lab
https://github.com/max-andr
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Table 3. Comparisons of adversarial accuracies (mean±std). •/◦ indicates that our FPRDT is significantly better/worse than the
corresponding methods (pairwise t-tests at 95% significance level). ‘N/A’ means that no results were obtained after running out 12 hours.

Dataset FPRDT Decision tree RIGDT-h GROOT TREANT ROCT PRB tree
ionos .7954 ± .0302 .3100 ± .0549• .7015 ± .0874• .7829 ± .0325• .7232 ± .0434• .7897 ± .0330• .7601 ± .0346•
breast .8765 ± .0290 .2501 ± .0457• .8381 ± .0317• .8744 ± .0273 .8334 ± .0318• .8735 ± .0256 .8706 ± .0258•
diabet .6674 ± .0258 .6333 ± .0346• .5695 ± .0640• .6481 ± .0352• .6695 ± .0228 .6552 ± .0244• .6633 ± .0333
bank .6577 ± .0311 .6333 ± .0346• .4685 ± .0713• .5410 ± .0440• .6092 ± .0259• .6539 ± .0167 .6299 ± .0328•

Japan3v4 .6673 ± .0129 .5751 ± .0377• .5638 ± .0337• .5829 ± .0468• N/A .6671 ± .0170 .5954 ± .0112•
har1v2 .8044 ± .0249 .2316 ± .0434• .7074 ± .0257• .8058 ± .0198 N/A .7786 ± .0165• .7383 ± .0148•
spam .7404 ± .0124 .0006 ± .0012• .4669 ± .1019• .7231 ± .0188• N/A .4813 ± .0469• .6968 ± .0110•

GesDvP .7301 ± .0174 .4783 ± .1390• .5483 ± .1035• .7164 ± .0180• N/A .7071 ± .0126• .7014 ± .0190•
wine .6364 ± .0062 .3515 ± .1430• .4032 ± .0375• .6373 ± .0073 .6388 ± .0079◦ .6117 ± .0343• .6299 ± .0080•

cifar10:0v5 .6878 ± .0177 .2960 ± .0598• .3469 ± .0457• .4847 ± .0608• N/A .6639 ± .0113• .6501 ± .0106•
cifar10:0v6 .6883 ± .0102 .5878 ± .0568• .4771 ± .0168• .5555 ± .0495• N/A .6684 ± .0077• .6833 ± .0051•
cifar10:4v8 .6613 ± .0117 .2561 ± .0784• .4882 ± .0468• .4727 ± .0195• N/A .6319 ± .0114• .6698 ± .0093◦
mnist2v6 .8954 ± .0025 .0178 ± .0320• .8850 ± .0079• .8725 ± .0110• N/A .7842 ± .0222• .8385 ± .0673•
mnist3v8 .8527 ± .0058 .0028 ± .0071• .8102 ± .0102• .7575 ± .0185• N/A .7565 ± .0280• .8030 ± .0235•

F-mnist2v5 .9780 ± .0027 .3214 ± .2143• .9446 ± .0080• .9714 ± .0054• N/A .9394 ± .0128• .9761 ± .0025•
F-mnist3v4 .8652 ± .0056 .0166 ± .0521• .7928 ± .0129• .8193 ± .0104• N/A .8271 ± .0168• .8407 ± .0052•
F-mnist7v9 .8760 ± .0058 .2930 ± .1554• .8100 ± .0108• .8291 ± .0115• N/A .8376 ± .0188• .8399 ± .0106•
mnist1v7 .9633 ± .0034 .0036 ± .0081• .9325 ± .0076• .9457 ± .0052• N/A .8937 ± .0095• .9196 ± .0264•
Average .7802 ± .1090 .2922 ± .2172 .6530 ± .1877 .7233 ± .1494 — .7342 ± .1134 .7503 ± .1075

Win/Tie/Loss 18/0/0 18/0/0 15/3/0 16/1/1 15/3/0 16/1/1

depth for other methods. We set 10 as the minimum number
of instances for a splitting leaf node, and each leaf node
has at least 5 instances. We modify the original TREANT
by adding perturbation ϵ for each feature once time as in
the work of (Vos & Verwer, 2021a). ROCT is initialized
with the return of GROOT, and outputs the final result by
optimizing objective loss within 30 minutes as done by Vos
& Verwer (2021b). More experimental settings and results
can be found in Appendix E.

The performances of the compared methods are evaluated by
five trials of 5-fold cross validation, where test adversarial
accuracies are obtained by averaging over these 25 runs,
as summarized in Table 3. These empirical results clearly
show the effectiveness of our FPRDT. It is obvious that
regular decision tree takes the worst performance without
the consideration of adversarial examples.

Our FPRDT is better than unprovable robust algorithms
RIGDT-h and GROOT experimentally, particularly for large
datasets. The win/tie/loss counts show that FPRDT is clearly
superior to these unprovable robust algorithms, as it wins
for most times and never loses. An intuitive explanation is
that RIGDT-h and GROOT make local optimization over
splitting nodes without guarantee of provable robustness.

In comparison with those provably robust algorithms, our
FPRDT approach achieves better performance in most cases
when they return results. One possible reason is owing to
the high computational complexity without reaching the
optimal solutions, for example, ROCT takes exponential
computational complexity yet returns result in 30 minutes
as done in (Vos & Verwer, 2021b), and TREANT does not
obtain results within 12 hours when datasets’ cardinalities
of features and instances exceed 20 and 1000, respectively;
because it requires some extra computations on constraints
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Figure 1. Comparisons of training adversarial errors in learning
process, where we scale the number of leaf nodes to [0,1].

in implementation (Calzavara et al., 2020). Another possible
reason is the local optimization, such as the PRB tree, which
only focuses on the splitting node with its children. Our
FPRDT approach keeps good balance between local and
global optimizations with more information over leaf nodes.

We further exploit the convergence of adversarial 0/1 errors
during the training process between our FPRDT and those
unprovably robust methods, as shown in Figure 1. It is
clearly observable that our FPRDT can keep adversarial
errors decrease during the whole training process, whereas
those unprovably robust methods, such as RIGDT-h and
GROOT, even increase the training adversarial errors on
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Table 4. Comparisons of adversarial accuracies (mean±std). •/◦ indicates that our PRAdaBoost is significantly better/worse than the
corresponding methods (pairwise t-tests at 95% significance level). ‘N/A’ means that no results were obtained after running out 12 hours.

Dataset PRAdaBoost AdaBoost Random forests RGBDT RIGDT forests GROOT forests PRBoosting
ionos .7960 ± .0329 .0321 ± .0137• .1122 ± .0353• .5276 ± .0472• .6565 ± .0414• .7869 ± .0346 .7755 ± .0370
breast .8793 ± .0263 .0732 ± .0156• .2167 ± .0193• .7034 ± .0648• .8437 ± .0280• .8838 ± .0251 .8694 ± .0282•
diabet .6635 ± .0281 .1352 ± .0156• .4523 ± .0411• .4560 ± .0371• .5999 ± .0371• .6578 ± .0210• .6276 ± .0325•
bank .6680 ± .0361 .4019 ± .0619• .5087 ± .0292• .4427 ± .0333• .5087 ± .0292• .6407 ± .0308• .6195 ± .0403•

Japan3v4 .6816 ± .0165 .4913 ± .0231• .5187 ± .0184• .5885 ± .0099• .6039 ± .0171• .6580 ± .0160• .6874 ± .0167
har1v2 .8601 ± .0162 .0092 ± .0065• .8326 ± .0137• .6417 ± .0165• .4998 ± .0212• .7917 ± .0169• .8653 ± .0130
spam .7540 ± .0129 .0000 ± .0000• .0000 ± .0000• .4888 ± .0349• .6212 ± .0202• .7495 ± .0130• .7312 ± .0101•

GestDvP .7315 ± .0165 .1031 ± .0079• .1887 ± .0086• .2420 ± .0090• .6459 ± .0118• .7314 ± .0127 .7318 ± .0179
wine .6397 ± .0069 .0002 ± .0004• .0910 ± .0112• .1068 ± .0118• .4161 ± .0129• .6329 ± .0008• .6356 ± .0066

cifar10:0v5 .6906 ± .0159 .0083 ± .0035• .3015 ± .0058• .3137 ± .0095• .4413 ± .0094• .5262 ± .0123• N/A
cifar10:0v6 .6958 ± .0092 .0556 ± .0041• .3678 ± .0103• .3446 ± .0091• .5199 ± .0082• .5604 ± .0098• N/A
cifar10:4v8 .6710 ± .0096 .0019 ± .0014• .2956 ± .0074• .2707 ± .0103• .4614 ± .0074• .4983 ± .0068• N/A
mnist2v6 .9437 ± .0046 .0000 ± .0000• .0000 ± .0000• .8442 ± .0266• .8999 ± .0062• .9249 ± .0045• .9365 ± .0044•
mnist3v8 .8829 ± .0106 .0000 ± .0000• .0000 ± .0000• .7155 ± .0147• .7756 ± .0081• .8228 ± .0057• .8680 ± .0082•

F-mnist2v5 .9823 ± .0028 .3852 ± .0552• .4561 ± .0041• .9645 ± .0050• .9654 ± .0040• .9791 ± .0029• .9843 ± .0018◦
F-mnist3v4 .8674 ± .0055 .0000 ± .0000• .0441 ± .0311• .7172 ± .0131• .8063 ± .0064• .8392 ± .0063• .8640 ± .0054
F-mnist7v9 .8691 ± .0066 .0000 ± .0000• .1357 ± .0358• .7401 ± .0164• .8282 ± .0067• .8359 ± .0068• .8779 ± .0069◦
mnist1v7 .9752 ± .0031 .0000 ± .0000• .0000 ± .0000• .7897 ± .1170• .9600 ± .0032• .9668 ± .0031• .9781 ± .0028
Average .7918 ± .1134 .0943 ± .1545 .2512 ± .2279 .5499 ± .2276 .6697 ± .1763 .7492 ± .1422 —

Win/Tie/Loss 18/0/0 18/0/0 18/0/0 18/0/0 15/3/0 9/7/2
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Figure 2. Comparisons of running time (in seconds) for different methods. Notice that the y-axis is in log-scale and full black columns
imply that no result was obtained after running out 12 hours.

datasets F-mnist3v4 and cifar10:0v5, etc. This is because
those methods optimize some lower bounds of adversarial
loss without guarantee of provable robustness.

We also present the comparisons of average CPU time (in
seconds) for our FPRDT and others, as shown in Figure 2.
We can easily observe that our FPRDT takes comparable
running time with local and unprovably robust methods
RIGDT-h and GROOT, and takes the smallest running time
among provably robust methods. This is nicely in agreement
with the analysis of computational complexity in Table 1.

5.2. Experimental Results for Tree ensembles

In addition to original random forests (Breiman, 2001) and
AdaBoost (Freund et al., 1996), we also compare with the
following robust methods:

• RGBDT7: Robust tree ensembles based on the approx-
imated worst loss of GBDT (Chen et al., 2019a);

7The code is taken from https://github.com/chenhongge.

• RIGDT forests8: Random forests with RIGDT-h as the
base learner (Vos & Verwer, 2021a);

• GROOT forests8: Random forests with GROOT as the
base learner (Vos & Verwer, 2021a);

• PRBoosting9: Robust tree ensembles via upper bound
of exponential loss (Andriushchenko & Hein, 2019).

We do not compare with AdvBoost (Kantchelian et al., 2016)
because it considers the attack under L0 metric. We take
at most 100 decision trees for forests ensemble, and select
⌊
√
d⌋ candidate features randomly for splitting in random

forests. We take the maximum depth 8 for PRBoosting due
to high computational complexity, and do not restrict the
depth for other methods. We also set 10 as the minimum
number of instances for a splitting leaf node, and each leaf
node has at least 5 instances.

8The code is taken from https://github.com/tudelft-cda-lab.
9The code is taken from https://github.com/max-andr.

https://github.com/chenhongge
https://github.com/tudelft-cda-lab
https://github.com/max-andr
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Figure 3. Comparisons of running time (in seconds) between different methods. Notice that the y-axis is in log-scale and full black
columns imply that no result was obtained after running out 12 hours.

Figure 4. Visualization of the necessary minimum perturbations to
change models’ predictions. The larger the minimum perturbation,
the better the robust method.

Table 4 presents comparisons of test adversarial accuracies
for our PRAdaBoost and other ensemble methods. Our
PRAdaBoost obviously outperforms original AdaBoost and
random forests, which do not consider adversarial examples
in training process. It is evident that our approach per-
forms better than those unprovable robust methods RGBDT,
RIGDT forests and GROOT forests experimentally, since
the win/tie/loss counts show that our PRAdaBoost wins in
most times and never loses.

From Table 4, it is also observable that our PRAdaBoost
takes comparable performance with provably robust method
PRBoosting, and an intuitive reason is that two methods

optimize the same upper bound over adversarial exponential
loss despite of different base learners. It is noteworthy that
our PRAdaBoost takes smaller computational complexity;
for example, there is no results returned by PRBoosting after
running out 12 hours for dataset cifar10 of 3,072 features.

We also compare the running time of PRAdaBoost with
other methods as shown in Figure 3. It is observable that our
PRAdaBoost approach takes comparable running time with
those unprovably robust methods RGBDT, RIGDT forests
and GROOT forests, whereas our PRAdaBoost approach is
about 10 times faster than the provably robust PRBoosting.
This is in accordance with the analysis of computational
complexity from Table 1.

We finally present the visualization of necessary minimum
perturbations to change the prediction for robust methods, as
shown in Figure 4. Here, perturbation denotes the distance
between adversarial and original example under the L∞
metric, and the larger the minimum perturbation, the better
the robust method. As can be seen, our PRAdaBoost method
takes the largest necessary minimum perturbations, which
implies the strongest robustness to the adversarial defense
under the L∞ metric.

6. Conclusion
Recent years have attracted increasing attention on robust
decision trees and ensembles. This work presents a fast
provably robust decision tree, a tradeoff between global
and local optimizations over the adversarial 0/1 loss. We
also provide provably robust boosting method based on our
decision trees with theoretical guarantees. Extensive experi-
ments are presented to verify the effectiveness and efficiency
of our approaches. An interesting future work is to exploit
other adversarial losses for provably robust decision trees, or
look for practical and tractable upper bound over adversarial
loss for robust tree ensembles methods.
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A. The Detailed Solution of Eqn. (7) and Computational Complexity of Surrogate Losses
The detailed solution of Eqn. (7)

We will show how to determine the optimal (v′l, v
′
r) in Eqn. (7) with O(1) computational complexity when Wt is sorted. We

introduce L̂1(t, η), L̂2(t, η), L̂3(t, η), L̂4(t, η), which are defined as

L̂1(t, η) = F (t, η, 0, 0), L̂2(t, η) = F (t, η, 0, 1)

L̂3(t, η) = F (t, η, 1, 0), L̂4(t, η) = F (t, η, 1, 1)

Once we know the values of L̂1, L̂2, L̂3, L̂4, Eqn. (7) can be solved in O(1) computational complexity. We next show how
to obtain the values of L̂1, L̂2, L̂3, L̂4 in in O(1) computational complexity.

We introduce k1(t, η), k2(t, η), k3(t, η), k4(t, η), k5(t, η), k6(t, η), which are defined as

k1(t, η) =

n∑
i=1

I[Kip ̸= 1]I[Eil ̸= ∅]I[Eir = ∅]I[yi = 0],

k2(t, η) =

n∑
i=1

I[Kip ̸= 1]I[Eil ̸= ∅]I[Eir = ∅]I[yi = 1],

k3(t, η) =

n∑
i=1

I[Kip ̸= 1]I[Eil = ∅]I[Eir ̸= ∅]I[yi = 0],

k4(t, η) =

n∑
i=1

I[Kip ̸= 1]I[Eil = ∅]I[Eir ̸= ∅]I[yi = 1],

k5(t, η) =

n∑
i=1

I[Kip ̸= 1]I[Eil ̸= ∅]I[Eir ̸= ∅]I[yi = 0],

k6(t, η) =

n∑
i=1

I[Kip ̸= 1]I[Eil ̸= ∅]I[Eir ̸= ∅]I[yi = 1].

Then we have

L̂1 = k2 + k4 + k6, L̂2 = k2 + k3 + k5 + k6,

L̂3 = k1 + k4 + k5 + k6, L̂4 = k1 + k3 + k5,

which can be verified by the definition.

Given a splitting feature t′, for a sorted Wt′ = {η1, η2, ..., ηq} in ascending order, we can determine the values of ki(t′, η1)
for i = 1, 2, ..., 6 by the definition. It takes O(n) computational complexity. We will show that ki(t′, ηj) for each j = 2, ..., q
can be determined by iteration in O(1) computational complexity. Notice that q = O(n). Thus it takes average O(1)
computational complexity to determine the values of ki(t′, ηj) for each i = 1, 2, ..., 6 and each j = 1, ..., q

It can be seen that Wt′ is composed of W 1
t′ ,W

2
t′ and W 3

t′ , where

W 1
t′ =

⋃n

i=1,Eip ̸=∅
{xit′ − ϵ}, W 2

t′ =
⋃n

i=1,Eip ̸=∅
{xit′}, W 3

t′ =
⋃n

i=1,Eip ̸=∅
{xit′ + ϵ}

If ηj = xit′ − ϵ ∈W 1
t′ , for yi = 0, we have

k3(t
′, ηj)← k3(t

′, ηj−1)− 1, k5(t
′, ηj)← k5(t

′, ηj−1) + 1 .

And for yi = 1, we have

k4(t
′, ηj)← k4(t

′, ηj−1)− 1, k6(t
′, ηj)← k6(t

′, ηj−1) + 1 .
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If ηj = xit′ + ϵ ∈W 3
t′ , for yi = 0, we have

k5(t
′, ηj)← k5(t

′, ηj−1)− 1, k1(t
′, ηj)← k1(t

′, ηj−1) + 1 .

And for yi = 1, we have

k6(t
′, ηj)← k6(t

′, ηj−1)− 1, k2(t
′, ηj)← k2(t

′, ηj−1) + 1 .

Therefore, ki(t′, ηj) for each j = 2, ..., q can be determined by iteration in O(1) computational complexity. And we can
solve Eqn. (7) in O(1) computational complexity.

The computational complexity of surrogate losses

However, once some convex surrogate losses are used in Eqn. (7), we have to solve it by iterative optimization algorithms,
e.g., gradient decent. It would take O(n) computational complexity to calculate the gradient at each iteration. Thus the total
computational complexity is O(Tn) for T iterations, much higher than O(1) computational complexity.

B. Proof of Theorem. 3.1
Lemma B.1. For a leaf p, let n1 and n−1 represent the number of positive and negative samples respectively, the value of
the leaf is v.

The Gini impurity of the leaf p is defined as

Gini(p) = 1−
(

n−1

n−1 + n1

)2

−
(

n1

n−1 + n1

)2

=
2n1n−1

(n−1 + n1)2
.

The Mean Square loss of the leaf p is

min
v

ℓMSE(p) = min
v

n∑
i=1

(yi − v)2 .

Then the Gini impurity is essentially minimizing the Mean Square loss.

Proof. We have that

min
v

ℓMSE(p) = min
v

n∑
i=1

(yi − v)2

=

n∑
i=1

(yi −
n1 − n−1

n−1 + n1
)2

=

(
n−1(−1−

n1 − n−1

n−1 + n1
)2 + n1(1−

n1 − n−1

n−1 + n1
)2
)

= 2n · 2n1n−1

(n−1 + n1)2

= 2n ·Gini(p)

Therefore, the Gini impurity is essentially minimizing the Mean Square loss.

Theorem B.2. The sum of adversarial Gini impurity over leaves for robust decision trees is essentially minimizing a lower
bound of

n∑
i=1

max
j∈[m]

{(h(x)− yi)
2I[x ∈ Eij ]} . (13)
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Proof. Let vi represents the i-th leaf’s value, Eqn. (13) can be written as

n∑
i=1

max
j∈[m]

{(vj − yi)
2I[Eij ̸= ∅]} .

To optimize the adversarial Gini impurity, at each split of the decision trees, the movement of the examples should make the
Gini impurity worst (Chen et al., 2019a). Let g(xi, p) indicate whether (xi, yi) falls into the p-th leaf after such movement,
i.e., g(xi, p) = 1 if (xi, yi) falls into the p-th leaf after such movement, otherwise g(xi, p) = 0. We have that

g(xi, p) ≤ I[Eip ̸= ∅] .

The adversarial Gini impurity for a leaf p can be defined as

AdvGini(p) =
2n1n−1

(n−1 + n1)2
,

where

n1 =

n∑
i=1

g(xi, p)I[yi = 1], n−1 =

n∑
i=1

g(xi, p)I[yi = −1] .

Because the adversarial loss is defined on a whole tree, thus we consider the sum of the adversarial Gini impurity on a whole
tree, i.e., the sum of the adversarial Gini impurity over all leaf nodes.

We have that

min
v1,...,vm

n∑
i=1

max
j∈[m]

{(vj − yi)
2I[Eij ̸= ∅]}

≥ min
v1,...,vm

n∑
i=1

1

m

m∑
j=1

(vj − yi)
2I[Eij ̸= ∅]

=
1

m

m∑
j=1

min
vj

n∑
i=1

(vj − yi)
2I[Eij ̸= ∅]

≥ 1

m

m∑
j=1

min
vj

n∑
i=1

(vj − yi)
2g(xi, j)

Let Dj = {i : (xi, yi) ∈ Sn and g(xi, j) = 1}, we have that

min
vj

n∑
i=1

(vj − yi)
2g(xi, j) = min

vj

∑
i∈Dj

(vj − yi)
2 .

And AdvGini(j) = 2n1n−1

(n−1+n1)2
, where

n1 =
∑
i∈Dj

I[yi = 1], n−1 =
∑
i∈Dj

I[yi = −1] .

According to Lemma B.1, the adversarial Gini impurity AdvGini(j) is essentially minimizing
∑

i∈Dj
(vj − yi)

2. Take the
sum over j ∈ [m] and we can see that the sum of adversarial Gini impurity is essentially minimizing a lower bound of the
adversarial square loss.

C. Modified FPRDT
In the r-th iteration of PRAdaBoost, the objective loss is a weighted objective loss :

n∑
i=1

wr,i max
j∈[m]

{
ℓ(h(x), yi)I[x ∈ Eij ]

}
,
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We could write the weighted objective loss at one split:

L̂(t, η, vl, vr) =
n∑

i=1

wr,i max
{
I[vl ̸= yi]I[Eil ̸= ∅], I[vr ̸= yi]I[Eir ̸= ∅],Kip

}
,

The one-split goal for robust training is to solve

{t∗, η∗, v∗l , v∗r} ∈ argmin
t,η,vl,vr

{
L̂(t, η, vl, vr)

}
.

The term Kip is calculated as FPRDT. We traverse all possible values of t, η. For any fixed t′ and η′, we solve

(v′l, v
′
r) = argmin

vl,vr∈{0,1}

{
L̂(t′, η′, vl, vr)

}
,

The algorithm to solve it is similar to FPRDT.

Following Appendix A, we just need to change the definition of k1, k2, k3, k4, k5 and k6 as

k1(t, η) =

n∑
i=1

wr,iI[Kip ̸= 1]I[Eil ̸= ∅]I[Eir = ∅]I[yi = 0],

k2(t, η) =

n∑
i=1

wr,iI[Kip ̸= 1]I[Eil ̸= ∅]I[Eir = ∅]I[yi = 1],

k3(t, η) =

n∑
i=1

wr,iI[Kip ̸= 1]I[Eil = ∅]I[Eir ̸= ∅]I[yi = 0],

k4(t, η) =

n∑
i=1

wr,iI[Kip ̸= 1]I[Eil = ∅]I[Eir ̸= ∅]I[yi = 1],

k5(t, η) =

n∑
i=1

wr,iI[Kip ̸= 1]I[Eil ̸= ∅]I[Eir ̸= ∅]I[yi = 0],

k6(t, η) =

n∑
i=1

wr,iI[Kip ̸= 1]I[Eil ̸= ∅]I[Eir ̸= ∅]I[yi = 1].

And the updated rules are changed as

If ηj = xit′ − ϵ ∈W 1
t′ , for yi = 0, we have

k3(t
′, ηj)← k3(t

′, ηj−1)− wr,i, k5(t
′, ηj)← k5(t

′, ηj−1) + wr,i .

And for yi = 1, we have

k4(t
′, ηj)← k4(t

′, ηj−1)− wr,i, k6(t
′, ηj)← k6(t

′, ηj−1) + wr,i .

If ηj = xit′ + ϵ ∈W 3
t′ , for yi = 0, we have

k5(t
′, ηj)← k5(t

′, ηj−1)− wr,i, k1(t
′, ηj)← k1(t

′, ηj−1) + wr,i .

And for yi = 1, we have

k6(t
′, ηj)← k6(t

′, ηj−1)− wr,i, k2(t
′, ηj)← k2(t

′, ηj−1) + wr,i .

Therefore, ki(t′, ηj) for each j = 2, ..., q can be determined by iteration in O(1) computational complexity. And we can
solve Eqn. (7) in O(1) computational complexity.
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D. Proof of Theorem. 4.1
Lemma D.1. For functions fi, i = 1, ...,m with S as their domain. If fi(x) > 0 for all x ∈ S and i ∈ [m], we have that

max
x∈S

m∏
i=1

fi(x) ≤
m∏
i=1

max
x∈S

fi(x) .

Proof. Suppose x∗ ∈ argmaxx∈S

∏m
i=1 fi(x), and x∗

i ∈ maxx∈S fi(x). Thus we have that

fi(x
∗) ≤ fi(x

∗
i )

Therefore, we have that

max
x∈S

m∏
i=1

fi(x) =

m∏
i=1

fi(x
∗) ≤

m∏
i=1

fi(x
∗
i ) =

m∏
i=1

max
x∈S

fi(x) .

Theorem D.2. Let H(x) = sign(
∑T

t=1 αtht(x)) be the final classifier of PRAdaBoost, with γt = 1/2− ϵt > 0 for each
iteration t ∈ [T ]. We have the empirical adversarial 0/1 loss over training sample Sn as follows:

1

n

n∑
i=1

[
max

x′
i∈Nϵ(xi)

I[H(x′
i) ̸= yi]

]
≤ exp

(
−2

T∑
t=1

γ2
t

)
.

Proof. Let F (x) =
∑T

t=1 αtht(x) and define Dt((xi, yi)) = wt,i/
∑n

i=1 wt,i. Therefore, Dt is a distribution over the
training set in the t-th iteration. Notice that w1,i = 1 for i ∈ [n].

We define

Zt =

n∑
i=1

Dt((xi, yi)) max
x′

i∈Nϵ(xi)

{
exp(−yαtht(x

′
i))
}
. (14)

And we have that

Zt =

n∑
i=1

Dt((xi, yi)) max
x′

i∈Nϵ(xi)

{
exp(−yαtht(x

′
i))
}

=

n∑
i=1

wt,i∑n
j=1 wt,j

max
x′

i∈Nϵ(xi)

{
exp(−yαtht(x

′
i))
}

(15)

=

∑n
i=1 wt+1,i∑n
i=1 wt,i

. (16)

Eqn. (15) holds by the definition of Dt. Eqn. (16) use the update rule Eqn. (12).

From Eqn. (16), we have
∑n

i=1 wt+1,i = Zt

∑n
i=1 wt,i, and it follows that

DT+1((x, y)) =
wT+1,i∑n
i=1 wT+1,i

=
wT+1,i

ZT

∑n
i=1 wT,i

= · · · = wT+1,i

(
∏T

t=1 Zt)
∑n

i=1 w1,i

=
1

n

wT+1,i

(
∏T

t=1 Zt)
. (17)

Unraveling the recurrence of Eqn. (12) gives

wT+1,i = max
x′∈Nϵ(x)

exp(−yα1h1(x
′))× · · · × max

x′∈Nϵ(x)
exp(−yαThT (x

′)) . (18)

Combining Equ. (17) and Equ. (18), we obtain that

DT+1((x, y)) =
1

n

maxx′∈Nϵ(x) exp(−yα1h1(x
′))× · · · ×maxx′∈Nϵ(x) exp(−yαThT (x

′))∏T
t=1 Zt

=

∏T
t=1 maxx′

i∈Nϵ(xi)

{
exp(−yiαtht(x

′
i))
}

n
∏T

t=1 Zt

. (19)
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Since H(x) = sign(F (x)), if there exists x′ ∈ Nϵ(x) satisfying H(x′) ̸= y, then minx′∈Nϵ(x) yF (x′) ≤ 0, which implies
that maxx′∈Nϵ(x) exp(−yF (x′)) ≥ 1. That is

max
x′∈Nϵ(x)

I[H(x′) ̸= y] ≤ max
x′∈Nϵ(x)

exp(−yF (x′)) . (20)

For adversarial training loss, we have that

1

n

n∑
i=1

[
max

x′
i∈Nϵ(xi)

I[H(x′
i) ̸= yi]

]

≤ 1

n

n∑
i=1

max
x′

i∈Nϵ(xi)

{
exp(−yiF (x′

i))
}

(21)

=
1

n

n∑
i=1

max
x′

i∈Nϵ(xi)

{ T∏
t=1

exp(−yiαtht(x
′
i))
}

≤ 1

n

n∑
i=1

T∏
t=1

max
x′

i∈Nϵ(xi)

{
exp(−yiαtht(x

′
i))
}

(22)

=

n∑
i=1

DT+1((xi, yi))

T∏
t=1

Zt (23)

=

T∏
t=1

Zt . (24)

Eqn. (21), Eqn. (22) and Eqn. (23) holds by Eqn. (20), Lemma D.1 and Eqn. (19), respectively. Eqn. (24) uses the fact that
DT+1 is a distribution, which sums to 1.

Finally, by the definition Eqn. (14) of Zt , we have that

Zt =

n∑
i=1

Dt((xi, yi)) max
x′

i∈Nϵ(xi)

{
exp(−αtyiht(x

′
i))
}

=
∑
i∈S1

Dt((xi, yi)) exp(−αt) +
∑
i∈S2

Dt((xi, yi)) exp(αt) (25)

= exp(−αt)(1− ϵt) + exp(αt)ϵt (26)

= exp(−αt)(
1

2
+ γt) + exp(αt)(

1

2
− γt) (27)

=
√

1− 4γ2
t (28)

≤ exp(−2γ2
t ) . (29)

where S1 and S2 is defined as

S2 = {i ∈ [n] : min
x′

i∈Nϵ(xi)
yiht(x

′
i) = −1} , S1 = [n] \ S2 .

Eqn. (25) uses the fact that both yi and h(xi) are {−1,+1}-valued. Eqn. (26) and Eqn. (27) follows from the definition
of ϵt and γt, respectively. Eqn. (28) follows from the definition of αt. For Eqn. (29), we simply apply the approximation
1 + x ≤ ex for all real x. Thus, we have that

1

n

n∑
i=1

[
max

x′∈Nϵ(xi)
I[H(x′) ̸= yi]

]
≤ exp

(
−2

T∑
t=1

γ2
t

)
.
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E. Experiments
Experimental settings

The used hyperparameters are summarized in Table 5 and Table 6.

Table 5. Hyperparameters of all tree models used in our experiments. Parameters that were not applicable were left blank.

Parameter FPRDT Decision tree RIGDT-h GROOT TREANT ROCT PRB tree

max depth None None None None 4 4 None
min samples split 10 10 10 10 10 10 10
min samples leaf 5 5 5 5 5 5 5

affine - - - - - - False

Table 6. Hyperparameters of all tree ensemble models used in our experiments. Parameters that were not applicable were left blank.

Parameter PRAdaBoost AdaBoost Random forests RGBDT RIGDT forests GROOT forests PRB

max depth None None None None None None 4
min samples split 10 10 10 - 10 10 10
min samples leaf 5 5 5 - 5 5 5

n estimators 100 100 100 100 100 100 100
η - - - 0.2 - - 0.2
γ - - - 1.0 - - -

min child weight - - - 1 - - -

Except for n estimators and max depth, the values were copied from their original works (Chen et al., 2019a; Andriushchenko
& Hein, 2019; Calzavara et al., 2020; Vos & Verwer, 2021a;b). Note that all methods don’t prune the tree except the PRB
method. We do not prune our trees because our FPRDT generally prefers to generate a shallow tree, which avoids overfitting.

The curve of adversarial loss in the learning process

We present more comparisons of the convergence of adversarial errors during the training process between FPRDT and
other unprovable methods, as shown in Figure 5.
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Figure 5. Comparisons of training adversarial errors between FPRDT and other unprovable methods in learning process, where we scale
the number of leaf nodes to [0,1].

As can be seen, our FPRDT can still keep adversarial errors decrease during the whole training process, whereas those
unprovably robust methods, such as RIGDT-h and GROOT, may increase the training adversarial errors in some datasets.
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The depth of the robust trees

We summarize the average depth of the robust tree methods in Table 7.

Table 7. Average depth over 18 datasets. We use FPRDT as the baseline here.

Methods FPRDT Decision tree RIGDT-h GROOT ROCT PRB tree

Average depth 1x 0.88x 1.84x 1.81x 1.84x 0.89x

We omit TREANT method because it can not be trained successfully on most datasets within 12 hours. Note that the depth
of FPRDT is similar to PRB tree, which is the only method that considers pruning.


