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Abstract
Differentially private (DP) stochastic convex opti-
mization (SCO) is ubiquitous in trustworthy ma-
chine learning algorithm design. This paper stud-
ies the DP-SCO problem with streaming data
sampled from a distribution and arrives sequen-
tially. We also consider the continual release
model where parameters related to private infor-
mation are updated and released upon each new
data. Numerous algorithms have been developed
to achieve optimal excess risks in different `p
norm geometries, but none of the existing ones
can be adapted to the streaming and continual
release setting. We propose a private variant of
the Frank-Wolfe algorithm with recursive gradi-
ents for variance reduction to update and reveal
the parameters upon each data. Combined with
the adaptive DP analysis, our algorithm achieves
the first optimal excess risk in linear time in the
case 1 < p ≤ 2 and the state-of-the-art excess
risk meeting the non-private lower ones when
2 < p ≤ ∞. Our algorithm can also be extended
to the case p = 1 to achieve nearly dimension-
independent excess risk. While previous variance
reduction results on recursive gradient have theo-
retical guarantee only in the i.i.d. setting, we estab-
lish such a guarantee in a non-stationary setting.
To demonstrate the virtues of our method, we de-
sign the first DP algorithm for high-dimensional
generalized linear bandits with logarithmic regret.

1. Introduction
Stochastic convex optimization (SCO) is a fundamental
problem in machine learning, statistics, and operations re-
search. The goal of SCO is to minimize a population loss
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function FP (θ) = Ex∼P [f(θ, x)] over a d-dimensional sup-
port set C, with only access to the i.i.d. samples {xt}nt=1

from some distribution P . The performance of an algo-
rithm is measured in terms of the excess population risk
of its solution θ, i.e., FP (θ)−minv∈C FP (v). In practice,
samples related to users’ profiles might contain sensitive
information; thus, it is important to solve stochastic convex
optimization problems with differential privacy guarantees
(DP-SCO) (Bassily et al., 2014; 2019; 2021a).

In this paper, we consider the DP-SCO with streaming data,
where samples arrive sequentially and cannot be stored in
memory for long. Streaming data has been studied in the
context of online learning (Smale & Yao, 2006; Tarrès &
Yao, 2014), online statistical inference (Vovk, 2001; 2009;
Steinhardt et al., 2014; Fang et al., 2018), and online opti-
mization (Cesa-Bianchi & Lugosi, 2006; Hazan, 2016; Hoi
et al., 2021). In addition, parameter release is concerned due
to privacy requirements. Our method can also accommodate
continual release (Jain et al., 2021; Dwork et al., 2010; Chan
et al., 2011), i.e., receives sensitive data as a stream of input
and releases an output of it immediately after processing
while satisfying DP requirements. A closely related setting
considered as an extension in this paper is so-called online
decision making (Slivkins, 2019; Lattimore & Szepesvári,
2020) where a decision needs to be made at each time, and
the performance is measured in terms of accumulative regret,
the gap between actual reward and the best possible reward,
over the time. Recent work starts introducing streaming
algorithms in (private) SCO into the solution of the online
decision-making (Ding et al., 2021; Han et al., 2021) to
enjoy high computational efficiency and flexibility to handle
different reward structures. In particular, Han et al. (2021)
proposes to solve private contextual bandits with stochastic
gradient descent (SGD). However, the extension of other
streaming algorithms, including the Frank-Wolfe and the
stochastic mirror descent, remains elusive in this setting.

Compared with non-private SCO, private SCO depends on
the dimension d inherently (Agarwal et al., 2012; Bassily
et al., 2021b). Therefore, in DP-SCO, the optimal excess
risk also has a crucial dependence on the space metric. Re-
markable progress has been made in achieving optimal rate
in `p norm with 1 ≤ p ≤ ∞ as shown in Table 1. However,
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no existing rate-optimal DP-SCO algorithms can be adopted
in the streaming and continual release setting. Previous
works mainly rely on either Frank-Wolfe or mirror descent.
Algorithms relying on Frank-Wolfe require a batch size of
Ω̃(n) (Bassily et al., 2021b; Asi et al., 2021) for variance
reduction, which is unacceptable in the streaming setting.
Algorithms based on mirror descent require the same batch
size and need a superlinear number of gradient query of
Ω̃(n3/2) (Asi et al., 2021).

Our Contributions

We present a systematic study on the Frank-Wolfe algorithm
with DP streaming data for various `p geometries (1 ≤ p ≤
∞), as well as an application to private online decision
making. Table 1 summarizes comparisons of our algorithm
and the existing ones in terms of the excess population risk,
the number of queried gradients, and required batch size.
Detailed contributions are discussed below for different
settings, followed by the application to a high dimensional
generalized linear bandit problem with differential privacy.
Note that in the streaming and continual release setting, the
total time steps T equals the sample size n. So we will use
n instead of T for the total number of iterations. Excess risk
bounds denoted by t hold for every time step t ∈ [n], while
those denoted by n only hold after Ω(n) time steps.

Case of 1 < p ≤ 2. We generalize the recursive Frank-
Wolfe algorithm proposed in (Xie et al., 2020) under non-
private setting with `2 norm to private setting with general
`p norm. The key observation is that the recursive variance
reduction scheme can be written as a normalized incremen-
tal summation of gradients. According to this observation,
we apply the tree-based mechanism as in Guha Thakurta &
Smith (2013), and use an adaptive argument to show that
noise with variance Õ( 1

t2ε2 ) is enough to guarantee (ε, δ)-
differential privacy. Such an analysis leads to a variance
reduced gradient error bound of Õ( 1√

t
+
√
d
tε ) with high

probability. The recursive gradient method we used here
is closely related to Bassily et al. (2021b), while their al-
gorithm uses n

2 samples for variance reduction, and their
gradient error may be of the order Õ( 1√

n
+

√
d

εn3/4 ) in the
worst-case. Our improvement on the variance reduction
reduces their Õ( 1√

n
+
√
d

n3/4ε
) excess risk to Õ( 1√

t
+
√
d
tε ),

which is optimal up to a logarithmic factor. Asi et al. (2021)
achieves the optimal rates in terms of n and d at the cost of
O(n3/2) gradient queries while we achieve the same rate
with only O(n) gradient queries. Moreover, their rate will
explode to +∞ when p approaches 1, while our dependency
on p is upper bounded by log d.

Case of 2 < p ≤ ∞. The analysis above can be gen-
eralized to the case of 2 < p ≤ ∞. We achieve a rate of

Õ
(
d1/2−1/p
√
t

+ d1−1/p

tε

)
, which matches the non-private lower

bound Ω
(
d1/2−1/p
√
n

)
and is thus optimal when d = Õ(nε2).

Case of p = 1. The challenge of this case is that the
tree-based mechanism is no longer applicable to achieve a
logarithmic dependence on d because the tree-based method
will lead to an O(

√
d) factor. To overcome the difficulty, we

combine the analysis of adaptive composition and Report
Noisy Max mechanism (Dwork et al., 2014) to show that the
noise with varianceO( log d

tε ) is enough to protect the privacy.
Comparing with the rate-optimal algorithm with excess risk

O
(√

log d
n +

(
log d
nε

)2/3)
proposed in Asi et al. (2021), our

algorithm can only achieve rate of O(
√

log d
t + log d√

tε
) in the

streaming and continual release setting. We emphasize that
such a gap is not due to the variance reduction analysis but
the difficulty of the streaming setting. The analysis in Asi
et al. (2021) relies on the privacy amplification via shuffling
the dataset. However, storage of the whole dataset in the
streaming setting is infeasible due to space constraints.

Strongly Convex. All the above results can be general-
ized to the case that population loss is strongly convex.
Although it is appealing to use a folklore reduction from
convex setting to strongly convex setting as in Asi et al.
(2021); Feldman et al. (2020) to attain O( 1

n ) convergence
rate, the reduction relies on the batch splitting. Specifically,
a batch size in the order of O(n/ log n) is required. How-
ever, the ground-truth time horizon n∗ can hardly be known
in advance in practice. Thus, one may need to overesti-
mate the time horizon to ensure sufficient privacy protection.
Once the estimated time horizon n & n∗/ log n∗, the batch-
based method will fail, and the last iteration only has the
same guarantee as in the convex setting.

Private-Preserving Online Decision Making. A salient
feature of our algorithm is that we provide Õ(1/t) conver-
gence guarantee for each time step while previous works
(e.g., (Asi et al., 2021; Feldman et al., 2020)) can only hold
after observing Ω̃(n) samples. Such a convergence result
is not of purely intellectual interest. It is one of the foun-
dations for extending our algorithm to the online decision-
making setting. Despite the adaptivity of our algorithm to
the streaming nature, it is highly non-trivial to extend the
SCO guarantee to the online decision setting. The recur-
sive gradient variance reduction method needs the stationary
distribution assumption of coming data xt. In contrast, the
distribution of observation xt will depend on the decision at
step t in multi-arm bandit problems, thus varies over time
t. By carefully analyzing the structure of bandit problems,
we establish a new variance reduction guarantee that in-
volves a total-variation term to describe the non-stationarity.
Then we show that under suitable assumptions, such total-
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Table 1. Bounds for excess population risk of (ε, δ)-DP-SCO. † denotes bounds in expectation while ‡ denotes bounds with high
probability. And ∗ denotes bounds without smoothness assumption. Here κ = min{ 1

p−1
, 2 log d}. Most of the DP-SCO algorithms

require large batch size and thus fail to be adopted in streaming data, except for (Feldman et al., 2020). However their algorithm can
only release the last variable for privacy protection and thus contradict to the requirements of continual release. We also compare our
algorithms and some of the algorithms below empirically in Appendix C. And the results are summarized to Tabel 3 and 4.

Loss `p Theorem Gradient Queries Rate Batch Size

Convex

p = 2
Thm. 3.2 (Bassily et al., 2019) O(min{n3/2, n

5/2

d }) O(
√

1
n +

√
d

εn )† O(
√
εn)

Thm. 3.5 (Feldman et al., 2020) O(min{n, n
2

d }) O(
√

1
n +

√
d

εn )† O(
√
d
ε )

p = 1
Thm. 7 (Asi et al., 2021) O(n) Õ(

√
log d
n + ( log d

εn )2/3)† O( n
log2 n

)

Thm. 3.2 (Bassily et al., 2021b) O(n) Õ( log d
ε
√
n

)† O(n2 )
Theorem 3.12 O(n) Õ( log d

ε
√
n

)‡ 1

1 < p < 2 Thm. 5.4 (Bassily et al., 2021b) O(n) Õ( κ√
n

+ κ
√
d

εn3/4 )† O(n2 )

1 < p ≤ 2
Thm. 13 (Asi et al., 2021) O(n3/2) Õ( 1√

(p−1)n
+

√
d

(p−1)nε )†∗ O(n2 )

Theorem 3.5 O(n) Õ(
√

κ
n +

√
κd
nε )‡ 1

2 < p ≤ ∞ Prop. 6.1 (Bassily et al., 2021b) O(n2) Õ(d
1/2−1/p
√
n

+ d1−1/p

εn )†∗ O(n)

Theorem 3.5 O(n) Õ(d
1/2−1/p
√
n

+ d1−1/p

εn )‡ 1

Strongly Convex

p = 1
Thm. 9 (Asi et al., 2021) O(n) Õ( log d

n + ( log d
εn )4/3)† O( n

2 logn )

Theorem 3.13 O(n) Õ( log2 d
ε2n )‡ 1

1 < p ≤ 2 Theorem 3.8 O(n) Õ(κn + κd
ε2n2 )‡ 1

2 < p ≤ ∞ Theorem 3.8 O(n) Õ(d
1−2/p

n + d2−2/p

ε2n2 )‡ 1

variation term decays at a favorable rate to ensure the desired
estimation error guarantee.

While our results generalize easily in the case of 1 < p ≤
∞, we consider the high-dimensional (where p = 1) online
decision-making problem (Bastani & Bayati, 2020), which
has received lots of attention recently, to illustrate the gener-
ality of our method. While several remarkable progress has
been made on the low-dimensional online decision-making
problems with privacy guarantee recently (Chen et al., 2020;
Shariff & Sheffet, 2018), no existing work provides sub-
linear regret bound in the high-dimensional setting even for
linear rewards. Combining the new variance reduction guar-
antee mentioned above, we provide the first regret bound
for DP high-dimensional generalized linear bandits.

2. Preliminaries
Notations. Let (E, ‖·‖) be a normed space of dimension
d, and C ⊆ E is a convex set of diameter D. Let 〈·〉 be
an arbitrary inner product over E (not necessarily induc-
ing the norm ‖·‖). The dual norm over E is defined as
‖y‖∗ := max‖x‖≤1〈x, y〉. With this definition, (E, ‖·‖∗)

is also a d-dimensional normed space. We use [K] to de-
note {1, 2, · · · ,K} and for any Z ∈ Rd we denote Z1:t =
{Z1, Z2, · · · , Zt}. We denote 0 as an all-zero matrix whose
size is adjusted according to the context. We adopt the
standard asymptotic notations. For two non-negative se-
quences {an} and {bn}, we denote {an} = O({bn}) or
{an} . {bn} iff lim supn→∞ an/bn < ∞, an = Ω(bn)
iff bn = O(an), and an = Θ(bn) iff an = O(bn) and
bn = O(an). We also use Õ(·), Ω̃(·) and Θ̃(·) to denote
the respective meanings within multiplicative logarithmic
factors in n and δ.

2.1. SCO with Streaming Data

Given a parameter set C ⊂ Rd, and an unknown distribution
P overX ⊂ Rd and a function f : C×X → R, we consider
the following optimization problem,

min
θ∈C

FP (θ) := Ex∼P [f(θ, x)],

where FP is assumed to be a convex function,

FP (θ) ≥ FP (θ′) + 〈∇FP (θ′), θ − θ′〉, ∀θ, θ′ ∈ C.
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We will abbreviate FP as F when the context is clear for
simplicity. In practice, the population loss F (·) is unknown
and one can only access it via empirical approximation
from a set of i.i.d. samples {xi}ni=1. In the literature, the
study of such SCO problems focuses on designing efficient
algorithms to find a parameter θ over samples {xi}ni=1 such
that the excess population risk is acceptable.

In this work, we consider SCO under streaming and contin-
ual release setting. In each time t round, one sample xt ∼ P
arrives, and our algorithm needs to output a parameter θt
with convergence guarantee regarding F . Here consider the
following standard assumptions (e.g. Liang et al. (2019)).

Assumption 2.1 (Strongly-convex). The population loss
F is said to be µ-strongly convex if ∃µ ≥ 0, F (θ1) ≥
F (θ2)+ 〈∇F (θ2), θ1−θ2〉+

µ

2
‖θ1−θ2‖2 for ∀θ1, θ2 ∈ C.

Assumption 2.2 (Smoothness). For any θ1, θ2 ∈ C and
x ∈ X , the loss function f is saied to be β-smooth if
‖∇f(θ1, x)−∇f(θ2, x)‖∗ ≤ β‖θ1 − θ2‖.
Assumption 2.3. For any θ ∈ C and x ∈ X , the loss
function f satisfies: ‖∇f(θ, x)−∇F (θ)‖∗ ≤ G.

Assumption 2.4 (Lipschitz). For any θ ∈ C and x ∈ X , the
loss function f satisfies: ‖∇f(θ, x)‖∗ ≤ L.

2.2. Differential Privacy

Our work also extends to the privacy-preserving setting,
where the sequence (θ1, . . . , θn) satisfies the differential
privacy constraint (see Definition 2.5) with respect to the
data. Here we recall the definition of (ε, δ)-differential
privacy.

Definition 2.5 (Differential Privacy (Dwork et al., 2014),
(ε, δ)-DP). A randomized algorithm A is said to be (ε, δ)
differentially private if for any pair of datasets D and D′
differing in one entry and any event E in the range of A it
holds that P[A(D) ∈ E ] ≤ eεP[A(D′) ∈ E ] + δ.

To design the DP-SCO algorithm under `p norm with
1 < p ≤ 2, we recall the generalized Gaussian mecha-
nism proposed in (Bassily et al., 2021b) that leverages the
regularity of the dual normed space.

Definition 2.6 (Regular Normed Space). For a normed
space (E, ‖·‖), we say that the norm ‖·‖ is κ-regular as-
sociated with ‖·‖+, if there exists 1 ≤ κ+ ≤ κ so that ‖·‖+
is κ+-smooth and ‖·‖ and ‖·‖+ are equivalent with constant√
κ/κ+:

‖x‖2 ≤ ‖x‖2+ ≤
κ

κ+
‖x‖2, ∀x ∈ E.

`q norm for q ≥ 1 is a important class of regular norms, we
specify the regularity constant κq and the associated smooth
norm ‖·‖q,+ later in Lemma 3.9 and Lemma 3.10.

Lemma 2.7 (Generalized Gaussian Distribution and Mech-
anism (Bassily et al., 2021b)). Given a κ-regular norm ‖·‖
associated with smooth norm ‖·‖+ in d-dimensional space,
and the generalized Gaussian distribution G‖·‖+(µ, σ2) with
density:

g(z;σ) = C(σ, d) exp(−‖z − µ‖2+/[2σ2]),

where C(σ, d) =
(
Area{‖x‖+ = 1} (2σ2)d/2

2 Γ(d/2)
)−1

,
and Area is the (d− 1)-dimension surface measure on Rd,
then for any function f with ‖·‖ sensitivity s > 0, we have
that the mechanism output:

f + G‖·‖+(0, 2κ log(1/δ)s2/ε2)

is (ε, δ)-differentially private.

3. Differential Private SCO
3.1. `p-setup for 1 < p ≤ ∞

In this section, we provide a unified design analysis for
optimization in `p geometry with 1 < p ≤ 2, which can
be generalized to 2 < p ≤ ∞. As a consequence of the
Hölder’s inequality, the dual of `p norm is `q norm, where q
satisfies 1

p + 1
q = 1, i.e., q := p

p−1 .

Algorithm 1 DP-SCO with Streaming Data in `p-setup for
1 < p ≤ ∞.

1: Input: privacy parameters (ε, δ), {ρt}nt=1 =
{ηt}nt=1 = 1

1+t , p considered in `p, and its dual norm
‖·‖q associated with regular norm ‖·‖q,+, initial point
θ0 = θ1 = 0 ∈ C

2: for t = 1 to n do
3: Compute and pass gt in Eq. (1) and σ+(q, ε, δ) ac-

cording to Theorem 3.1 into the tree-based mecha-
nism (Algorithm 4).

4: Get noisy summation G̃t = noisy(
∑t
i=1 gi) from

the tree-based mechanism (Algorithm 4).
5: Set dt = 1

t+1 · G̃t
6: vt = arg minv∈C〈dt, v〉.
7: θt+1 ← θt + ηt(vt − θt).
8: end for

Our proposed algorithm is shown in Algorithm 1. At iter-
ation t, we consider the following recursive gradient esti-
mator dt (Xie et al., 2020) as an unbiased estimator of the
population gradient ∇F (θt):

dt = ∇f(θt, xt) + (1− ρt)(dt−1 −∇f(θt−1, xt)),

where d1 = ∇f(θ1;x1) and ρt = 1
1+t .

A similar recursive gradient scheme is also used in Bassily
et al. (2021b). However, they use additive noise to ensure
the privacy of dt at each iteration, which will accumulate
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linearly in t. To alleviate the influence of the noise induced
by DP, they initialize d1 with the first n2 samples and begin
to take mini-batch updates with batch size

√
n

2 for
√
n iter-

ations, which helps control the sensitivity of dt and lower
the number of noise accumulations. However, this strategy
will lead to a gradient estimation error of O( 1

n1/2 +
√
d

εn3/4 ).
And it will also fail in the streaming setting where only one
sample is available in initialization.

To improve the error rate and fit the streaming setting, our
key observation is that the recursive gradient estimation dt
can be represented as the following summation of empirical
gradients,

dt =
1

t+ 1

t∑
i=1

(
(i+ 1)∇f(θi;xi)− i∇f(θi−1;xi)

)︸ ︷︷ ︸
gi

.

(1)

Now we reduce the problem of privately releasing dt in
every step t to the problem of privately releasing the incre-
mental summation of gi in Eq. (1), which motivates us to
apply the tree-based mechanism in Guha Thakurta & Smith
(2013). In the tree-based mechanism, the leave nodes store
the vectors gi. Each internal node stores a private version of
the summation of all the leaves in its sub-tree. In this case,
any partial summation over gi can be represented by at most
dlog2 ne nodes. This critical property ensures that the noise
induced by DP would not accumulate on dt linearly in t. In
this case, our algorithm fits in the streaming setting, where
a relatively large number of iterations is required.

One difficulty of applying the tree-based mechanism is the
sensitivity analysis. Suppose without loss of generality that
for adjacent datasets D ∼ D′, we have x1 6= x′1. Such
difference will affect the whole trajectory of the parameters:
θi 6= θ′i,∀i ≥ 2. In other words, the sensitivity will be very
large. Fortunately, we can show that such sensitivity can
be dramatically reduced by the adaptive analysis similar to
Guha Thakurta & Smith (2013). It turns out that noise with
variance Õ( 1

t2ε2 ) is enough to maintain (ε, δ)-differential
privacy guarantee when reporting the t-th recursive gradient
over the whole time horizon.

With the tree-based mechanism and the adaptive analy-
sis mentioned above, we achieve a gradient error rate of
Õ( 1√

n
+
√
d
εt ) (see Proposition 3.3). Furthermore, to re-

port private incremental summation
∑t
i=1 gi for all t ∈ [n],

the amount of space required by the tree-based mechanism
is O(log2 n). Detailed description can be found in Algo-
rithm 4 in Appendix.

In the following theorem, we characterize the privacy guar-
antee of Algorithm 1. The proof can be found in Ap-
pendix A.1.
Theorem 3.1 (Privacy Guarantee). Algorithm 1 is (ε, δ)-

differentially private when σ2
+ in is selected to be

σ2
+ =

8(dlog2 ne+ 1)2κq log((dlog2 ne+ 1)/δ)(βD + L)2

ε2
.

(2)

Existing results only concern the excess population risk
in expectation (Bassily et al., 2021b), thus the moment in-
formation of generalized Gaussian mechanism is enough
for their derivation. While in our high-probability analysis,
the tail behaviour of generalized Gaussian mechanism is
characterized.

Lemma 3.2 (Gamma Distribution). Assume that Z ∼
G‖·‖+(0, σ2

+) in d-dimensional space, then ‖Z‖2+ follows
Gamma distribution Γ(d/2, 2σ+). Furthermore, ‖Z‖2+ −
E[‖Z‖2+] follows sub-Gamma(2σ4

+d, 2σ
2
+), which implies

that for any λ > 0, we have

P(‖Z‖2+ > E[‖Z‖2+] + 2
√
σ4

+dλ+ 2σ2
+λ) ≤ exp(−λ).

As a result, we have the following high-probability variance
reduction guarantee for the recursive gradient estimator. The
proof of Lemma 3.2 can be found in Section A.2 while the
proof of Proposition 3.3 is in Appendix A.3.

Proposition 3.3. Under Assumption 2.2 and 2.3, with prob-
ability at least 1− α, for t ∈ [n], Algorithm 1 satisfies:

‖dt −∇F (θt)‖q .
(
√
κq +

√
log(1/α))(βD +G)
√
t+ 1

+
log n · σ+

√
d log(log n/α)

t+ 1
.

Remark 3.4. Noticing that σ+ is in scaling of Õ( 1
ε ), thus our

gradient error for 1 < p ≤ 2 is in scaling of Õ( 1√
t

+
√
d
tε ),

which improves over the O( 1√
n

+
√
d

εn3/4 ) in-expectation one
in Bassily et al. (2021a) under the same condition.

Now we have the following convergence guarantee.

Theorem 3.5 (Convergence Guarantee for General Con-
vexity). Consider Algorithm 1 with convex function F and
assumptions 2.2 to 2.4, for t ∈ [n], we have with probability
at least 1− α,

F (θt)− F (θ∗) .
D(βD +G)

(√
κq +

√
log(n/α)

)
√
t

+
log t

(
βD2 +Dσ+

√
d log(log n/α) log n

)
t

.

Remark 3.6. Later, we will show that the result of Theo-
rem 3.5 is nearly tight for 1 < p ≤ 2 and matches the best
existing convergence rate for 2 < p ≤ ∞.
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One known drawback of Frank-Wolfe is that its convergence
rate is slow when the solution lies at the boundary, and it
cannot be improved in general even the objection function
is strongly convex (Lacoste-Julien & Jaggi, 2015; Garber
& Hazan, 2015). In this case, additional assumption is
necessary to improve the convergence rate of Frank-Wolfe in
the strongly convex setting. In the following, we introduce
a geometric assumption, which is typical for Frank-Wolfe
in the strongly convex setting, even for the non-private case
(Guélat & Marcotte, 1986; Lafond et al., 2015). Denoted by
∂C the boundary set of C.
Assumption 3.7 ((Lafond et al., 2015)). There is a min-
imizer θ∗ of F that lies in the interior of C, i.e., γ :=
infv∈∂C ‖v − θ∗‖ > 0.

Theorem 3.8 (Convergence Guarantee for Strong Convex-
ity). Consider Algorithm 1 with Assumptions 2.1, to 2.4 and
3.7, for 1 < p ≤ ∞ and t ∈ [n], we have with probability
at least 1− α,

F (θt)− F (θ∗)

.
1

γ2µ

D2(βD +G)2(κq + log(n/α))

t

+
1

γ2µ

(
β2D4 + dD2σ2

+ log(log n/α) log2 n
)

log n

t2
.

Discussions about `p-setup for 1 < p ≤ 2

Let recall the following lemma for 1 < p ≤ 2.
Lemma 3.9 (Regularity for q ≥ 2 (Bassily et al., 2021b)).
When 2 ≤ q ≤ ∞ , the `q norm is regular with

κq := min{q − 1, e2(log d− 1)},
‖·‖+ := ‖·‖κq,+ .
κq,+ := min{q − 1, log d− 1}

Now noticing that q = p
p−1 ∈ [2,∞), we plug the κq in

Lemma 3.9 into Theorem 3.5, Theorem 3.8 and Eq. (2) to
get the convergence rate of Algorithm 1 when 1 < p ≤ 2 :

Convex:

F (θt)− F (θ∗) .

√
log(n/α)

t
+

√
d log(log(n)/δ)

tε
(3)

Strongly Convex:

F (θt)− F (θ∗) .
log(n/α)

t
+
d log(log(n)/δ)

t2ε2
(4)

The bound in Eq. (3) is optimal, up to a logarithmic factor,
comparing with the Ω( 1√

t
+
√
d
tε ) lower bound shown in

Bassily et al. (2021b) in the case of 1 < p ≤ 2.

In strongly convex case, Eq. (4) is tight comparing with the
Ω( 1

t + d
t2ε2 ) lower bound shown in Bassily et al. (2014) in

the case of p = 2. And we conjecture that such bound is also
tight for general 1 < p ≤ 2. Deriving the corresponding
lower bound is leaved for future exploration.

Table 2. SubOpt for Algorithm 1, NoisySFW and NoisySGD with
T = 2000, d = 10 and (1, 1/T )-DP.

Algorithm 1 NoisySFW NoisySGD

p = 1.5 0.060± 0.032 0.89± 0.069 N.A.
p =∞ 0.058± 0.013 N.A. 0.038± 0.013

Complexity O(n) O(n) O(n2)

Discussions about `p-setup for 2 < p ≤ ∞.

When 2 < p ≤ ∞, we have 1 ≤ q < 2 and the following
lemma.

Lemma 3.10 (Regularity for 1 ≤ q < 2). When 1 ≤ q < 2,
the `q norm is regular with

κq = d1−2/p, ‖·‖+ = d1/2−1/p‖·‖2.

Despite noticing that regularity constant of `q norm has
a worse dependence on d, we can still get a satisfactory
convergence rate by plugging the constants in Lemma 3.10
to Theorem 3.5 and Theorem 3.8:

Convex:

F (θt)− F (θ∗) . d
1
2
− 1
p

√
log(n/α)

t
+
d
1− 1

p log(log(n)/δ)

tε
.

(5)

Strongly Convex:

F (θt)− F (θ∗) . d
1− 2

p
log(n/α)

t
+
d
2− 2

p log2(log(n)/δ)

t2ε2
.

(6)

Comparing with the optimal non-private lower bound
Ω(d

1/2−1/p
√
n

) (Agarwal et al., 2012) in convex setting when
2 < p ≤ ∞, our result (5) nearly matches the optimal
non-private rate and is optimal when d = Õ(nε2).

The same private-SCO rate is also attained by Bassily et al.
(2021b) using the the multi-pass noisy SGD in Bassily et al.
(2020) for `2-setup. However, the multi-pass SGD has super-
linear complexity while our algorithm incur linear complex-
ity.

Numerical Comparisons

In addition to the theoretical results above, we con-
duct numerical experiments and compare Algorithm 1
with NoisySFW (Algorithm 3 in (Bassily et al., 2021b)),
NoisySGD (Algorithm 2 in (Bassily et al., 2020)), and
LocalMD (Algorithm 6 in (Asi et al., 2021)). Table 2
summarizes typical results with details in Appendix C,
where SubOpt is an empirical estimation of suboptimal-
ity (F (θt) − F (θ∗))/(F (θ0) − F (θ∗)). LocalMD (for
1 < p ≤ 2) is left to Appendix C because its empirical per-
formance is unacceptable. In summary, our algorithm has
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comparable or better empirical performance, wider applica-
tion range, and significantly lower computation complexity.
The code to reproduce our numerical results is shared in
Github Repo.

3.2. `p-setup for p = 1

Algorithm 2 DP-SCO with Streaming Data in `p setup for
p = 1.

1: Input: praivacy parameters (ε, δ), {ρt}nt=1 =
{ηt}nt=1 = 1

1+t , and initial point θ0 = θ1 = 0 ∈ C.
2: for t = 1 to n do
3: if t=1 then
4: dt = ∇f(θt, xt).
5: else
6: dt = ∇f(θt, xt)+(1−ρt)(dt−1−∇f(θt−1, xt)).
7: end if
8: ∀v ∈ C, sample ntv ∼ Lap

(
4D(βD+L)

√
logn·log(1/δ)

ε
√
t

)
.

9: vt = arg minv∈C(〈dt, v〉+ ntv).
10: θt+1 ← θt + ηt(vt − θt).
11: end for

In this section, we consider the `p-setup for p = 1. In
Algorithm 2, we combine the analysis of the adaptive com-
position, and the Report Noisy Max mechanism (Dwork
et al., 2014) to ensure differential privacy, which reduces
the O(

√
d) factor in the excess population risk incurred by

the tree-based mechanism in Section 3.1. In the following,
we characterize the privacy guarantee of Algorithm 2. The
proof can be found in Appendix A.6.
Theorem 3.11 (Privacy Guarantee). Algorithm 2 is (ε, δ)-
differentially private.
Theorem 3.12 (Convergence Guarantee for General Con-
vexity). Consider Algorithm 2 with convex function F ,
Assumption 2.2, 2.3, 2.4 and 3.7, for t ∈ [n], we have with
probability at least 1− α,

F (θt)− F (θ∗) ≤ 3√
t+ 1

(βD2 +A),

where

A = 8D(βD +G)
√

log(8dn/α) + . . .

+
16D(βD + L) log(4dn/α)

√
log n · log(1/δ)

ε
.

The gradient error in our algorithm (see Lemma A.7) is of
the same rate O( 1

n ) as the one in Asi et al. (2021). Com-

paring with their excess population risk of Õ(
√

log d
n +

( log d
nε )2/3), our bound achieves the rate of Õ(

√
log d
t + log d√

tε
).

However, the analysis in Asi et al. (2021) relies on the pri-
vacy amplification via shuffling the dataset, which is un-
acceptable in streaming setting. The proof of the above
theorem can be found in Appendix A.7.

Theorem 3.13 (Convergence Guarantee for Strong Convex-
ity). Consider Algorithm 2 with Assumption 2.1, 2.2, 2.3,
2.4 and 3.7, for t ∈ [n], we have with probability at least
1− α,

F (θt)− F (θ∗) ≤ 1

t+ 1

(
9(βD2 +A)2

γ2µ

)
,

where A is defined in Theorem 3.12.

The above theorem achieves a rate of Õ( log d
t + log2 d

tε ) com-
paring with the rate of Õ( log d

n + ( log d
nε )4/3) in Asi et al.

(2021), which relies on the privacy amplification via shuf-
fling the dataset as we mentioned in the comment under
Theorem 3.12. The proof of this theorem can be found
in Appendix A.7.

4. Application in Generalized Linear Bandits
In this section, we consider the generalized contextual ban-
dits with stochastic contexts, where a decision is made upon
each new data (Li et al., 2017). Our proposed private Frank-
Wolfe algorithm is potential to derive a satisfying estimator
for smart decisions under a wide range of reward structures
while providing sufficient privacy protection in this setting
due to the streaming and continual release feasibility. How-
ever, we face some non-stationarity incurred by the decision
process, which leads to a non-trivial difficulty when apply-
ing the recursive gradient for variance reduction. For the
fluency of the presentation, we first formulate the contextual
bandits model and further explain the difficulty in-depth.

At each time t, with individual-specific context Xt sampled
from some distribution P on X , the decision maker can take
an action at from a finite set (arms) of size K to receive a
reward randomly generated from the distribution depending
on the context Xt and the chosen arm through its parameter
θat via a generalized linear model: rt = ζ(X>t θ

∗
at) + εt,

where ζ(·) is an inverse link function. We assume the noise
εt is sub-Gaussian (Wainwright, 2019) and conditional mean
zero, i.e., Ft = σ(X1:t, r1:t−1) and E[εt|Ft] = 0. We
use the standard notion of pseudo regret to measure the
difference between expected rewards obtained by the action
at and the best achievable expected reward in this round:

Regret(T ) =

T∑
t=1

ζ(X>t θ
∗
a∗t

)− ζ(X>t θ
∗
at),

where a∗t = argmaxi∈[K]X
>
t θ
∗
i .

It is non-trivial to introduce the privacy guarantee in the
design of the bandit algorithms. The standard notion of
DP under continual observation would enforce to select al-
most the same action for different contexts and incur Ω(T )
regret (Shariff & Sheffet, 2018). Here we utilize the more re-
laxed notion of Joint Differential Privacy under continuous
observation (Shariff & Sheffet, 2018).

https://github.com/liangzp/DP-Streaming-SCO
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Definition 4.1 ((ε, δ)-Jointly Differential Privacy (JDP)).
A randomized action policy A = (At)Tt=1 is said to be
(ε, δ)-jointly differentially private under continual obser-
vations if for any t and any pair of sequences D and D′
differing in the t entry and any sequences of actions rang-
ing from time t + 1 to the end of sequence E>t, it holds
for A>t(D) := (As(D))s>t that P[A>t(D) ∈ E>t] ≤
eεP[A>t(D′) ∈ E>t] + δ.

We present some standard assumptions in contextual bandits,
and similar assumptions can be found in Bastani & Bayati
(2020); Goldenshluger & Zeevi (2013); Bastani et al. (2020).

Assumption 4.2 (Optimal Arm Set). We have a partition
[K] = Ksub ∪Kopt, so that for every arm i ∈ Ksub,

P (i = argmaxj∈[K]X
>θ∗j ) = 0.

Moreover, we suppose there exists a hsub > 0 such that

1. maxi∈[K]X
>θ∗i − hsub > X>θ∗j ∀j ∈ Ksub, X ∈

X .

2. For Ui := {X|X>θ∗i − hsub > maxj 6=iX
>θ∗j } we

have P (X ∈ Ui) > u for some u > 0.

Assumption 4.3 (Eigenvalue). We assume that
E[XX>|X ∈ Ui] � λId, ∀i ∈ [K], for some λ > 0.

Assumption 4.4 (Margin Condition). There exists a con-
stant ` so that for the sets

Γi := {θ : ‖θ − θ∗i ‖1 ≤ `},∀i ∈ U,

and for θi ∈ Γi, ∀i ∈ U , we have,

P (X>θ∗it − argmaxj∈Kopt,j 6=i∗tX
>θ∗j ≤ h) ≤ νh,

where i∗t := argmaxi∈KoptX
>
t θ
∗
i for some ν > 0.

Intuitively, Assumption 4.2 implies that the positive prob-
ability for the strictly optimality to holds. Assumptoin 4.4
prohibit small errors in the parameter estimation to incur
wrong decision. Assumption 4.3 is necessary for the esti-
mation error of the underlying parameter to decrease in a
desirable rate ans similar assumptions have been adopted
in (Han et al., 2021). These assumptions all holds for a
very wide class of continuous and discrete covariate distri-
butions (Bastani & Bayati, 2020; Han et al., 2021). Next we
impose the standard regularity assumption on the reverse
link function (Li et al., 2017; Ren et al., 2020; Chen et al.,
2020) which includes widely-used linear model and logistic
regression.

Assumption 4.5. There exist µ and β such that 0 < µ ≤
ζ ′(z) ≤ β for any |z| ≤ C, where C is some given constant.

Based on the above assumptions, we design differentially
private high-dimensional GLM bandits (Algorithm 3). Our

algorithm follows the similar procedure of Bastani & Bayati
(2020) to use two sets of estimators: the forced-sampling
estimators {θt0,j}j∈[K] constructed using i.i.d. samples to
select a pre-selected set of arms; and the all-sample esti-
mators {θt,j}t>t0,j∈[K] to greedily choose the ”best” arm
among the pre-selected set. Another ingredient of our al-
gorithm is the so-called synthetic update, i.e., adding the
noisy all-zero contexts and zero rewards to the collected
samples for the unselected arm. This ingredient is similar
to Han et al. (2021) while they focus on local differential
privacy. For our synthetic update, we have the following

Algorithm 3 Differential Private High Dimensional Bandit
1: Input: time horizon T ; warm up period length t0; pri-

vacy parameter (ε, δ), initial parameters θ0,i, i ∈ [K]
2: Initialize Ii = ∅ for i ∈ [K]
3: for i = 1 to K do
4: for t = 1 to t0 do
5: Observe the context Xit0+t.
6: Pull arm i and receive rit0+t.
7: Add (Xit0+t, rit0+t) to Ii
8: Update θt,i via running the t-th step of Algorithm 2

over Ii .
9: end for

10: end for
11: for t ≥ Kt0 + 1 do
12: Observe the context Xt.
13: Compute the set of pre-selected arms:

K̂t = {i ∈ [K] : ζ(X>t θt0,i) > max
j∈[K]

ζ(X>t θt0,j)−
hsub
2
}

14: Compute the greedy action
at = argmaxa∈K̂tζ(X>t θt,i)

15: Select at-th arm and receive rt.
16: Add (Xt, rt) to Iat . Add (0, ζ(0)) to Ii for i 6= at.
17: Update θt,i via running the t-th step of Algorithm 2

over Ii for all i ∈ [K].
18: end for

privacy guarantee and the proof is deferred to Appendix B.

Theorem 4.6 (Privacy Guarantee). Algorithm 3 is (ε, δ)-
JDP.

Although it is natural to run Algorithm 2 for estimators for
any arm i ∈ [K], we are in fact facing various loss functions,
say Ft(θt) := E[∇ft(θt,i;xt,at , yt)|Ft−1], for each time t.
While all of the loss functions share the same minimizers
θ∗i , dt−1 −∇f(θt−1,i, xt) in Algorithm 2 is not mean zero
and thus the recursive gradient is not an unbiased estimator
for the population gradient. As in the SCO setting, to show
that the norm of the gradient estimation error ∆t = dt −
∇Ft(θt,i) converges to zero sufficiently fast, we reformulate
∆t as the sum of a sequence {ζt,τ}tτ=1. Our SCO results
enjoy the i.i.d. nature of the data and thus {ζt,τ}tτ=1 is a
martingale difference sequence which can be controlled by
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an Azuma-Hoeffding-type concentration inequality. In the
bandits setting, after the forced-sampling period, the sample
distribution for each arm evolves by time, and thus the
sequence is no longer conditional mean zero. To overcome
the difficulty, we develop a new lemma on bridging the
gradient error to the total variance difference of distributions
between each time step.

Lemma 4.7. For each arm i ∈ Kopt, suppose that the
greedy action begins to be picked at t0, then for any t > t0
we have with probability at least 1− α,

‖∆t‖∞ .
√

log((d+ T )/α)

(
(MD + β)√

t
+ . . .

+
βDM

t

(
Csc(

α

d+ t0
)
√
t0 + ν

t∑
τ=t0+1

‖θτ−1,i − θ∗i ‖1
))

where Csc(α) = O(log(dT/α)) is specified in the com-
plete version in Lemma B.2.

Such lemma provides a guideline on tuning the warm-up
stage length of the algorithm. In particular, it implies that
polylog(T ) length of warm-up is sufficient to get a O( 1√

t
)-

decayed gradient estimation error for each arm i ∈ Kopt
if the previous estimators converge to the underlying one
at sufficiently fast rates. Such a low gradient estimation
error is sufficient for the fast parameter convergence in the
consequent time steps.

As far as we know, this is the first attempt to directly apply
variance reduction in a non-stationary environment, which
is sharply contrast to the previous solutions. In reinforce-
ment learning (RL), as pointed out by (Papini et al., 2018),
variance reduction can potentially improve much the sam-
ple efficiency since the collection of the samples requires
the agent to interact with the environment, which could be
costly. However, the sampling trajectories is generated by
an RL algorithm. Thus the direct usage of the variance
reduction also suffer from the changing distribution of the
collected sample once their RL algorithm improves based on
previous experience. This also applies to the bandits setting
which shares the similar spirit in the data collection process.
In overcome this, previous work (Sutton et al., 2016; Papini
et al., 2018; Xu et al., 2020), mainly employ importance
sampling to correct the distribution shift and construct an
unbiased estimator for the policy gradient with respect to
the snapshot policy. However, importance sampling is prone
to high variance, e.g., (Thomas et al., 2015). In contrast, we
carefully exploit the structure of our bandits problem and
shows that the bias of our gradient estimator is implicitly
self-corrected in a satisfying rate, which recovers the con-
vergence rate in the i.i.d. setting in a painless manner in the
algorithm design.

We prove the convergence rate of the estimation error by

induction in Appendix B.1, and here we present the corre-
sponding theorem.

Theorem 4.8 (Estimation Error). For the full-sample esti-
mator θt,i, when t ≥ t0, for every arm i ∈ Kopt, we have
with probability at least 1− α,

λµu‖θt,i − θ∗i ‖21 ≤ Ft(θt,i)− Ft(θ∗i ) ≤ Cin(α)

t
,

for some constant Cin(α) = O( log2(dT/α) log(T )
ε2 ) specified

in Appendix B.1.

Now we are ready to present our regret bound by converting
the estimation error to regret, whose formal proof is given
in Appendix B.2.

Theorem 4.9 (Regret bound). With probability at least 1−α,
Algorithm 3 achieves the following regret bound

Regret(T ) ≤ t0 +M2β2Cin(α/(4|Kopt|)) log(T ) + . . .

+ 2Mβ
√
Cin(α/(4|Kopt|)) log(T ) log(4/α)

= O

(
log2(dT/α) log2 T

ε2

)
.

Remark 4.10. This regret has a sublinear growth rate, and it
is the first regret bound for DP high-dimensional generalized
linear bandits. In particular, the upper bound above has
only a poly-logarithmic growth concerning dimension d, as
desired in high dimensional scenarios. Compared with the
regret bound O(log2(dT )) without DP in Bastani & Bayati
(2020), our upper bound contains an extra O(log2 T ) factor,
which is due to our simplified proof to shed light on the
main idea. We leave the refinement as future directions.
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Appendix For Private Streaming SCO in `p geometry with Applications in High
Dimensional Online Decision Making

A. Proof of Section 3

Algorithm 4 Private Tree based aggregation protocol (Guha Thakurta & Smith, 2013)
1: Input: 〈z1, z2, .., zn ∈ Rd〉 (in an online sequence), noise level σ+(q, ε, δ)
2: Initialization: Define a binary tree A of size 2dlog2 ne+1 − 1 with leaves z1, z2, ..., zn.
3: Online Phase: At each iteration t ∈ [n], execute Steps 4 till 23
4: Accept zt from the data stream.
5: Let path = {zt → · · · → root} be the path from zt to the root.
6: Tree update: Step 7 till 11
7: Λ← First node in path that is left child in the tree. Let pathΛ = {zt → · · · → Λ}.
8: for α in path do
9: α← α+ zt

10: If α ∈ pathΛ, then then α← α+ n where n ∼ G‖·‖q,+(0, σ2
+).

11: end for
12: Output Private Partial Sum: Step 13 till 23
13: Initial Vector v ∈ Rd to zero. Let b← dlog2 ne+ 1-bit binary representation of t.
14: for all i in [dlog2 ne+ 1] do
15: if bit bi = 1 then
16: if i-th node in path (denoted by path(i)) is a left child in A then
17: v ← v + path(i),
18: else
19: v ← v + left sibling

(
path(i)

)
.

20: end if
21: end if
22: end for
23: return The noisy partial sum v.

A.1. Proof of Theorem 3.1

Proof of Theorem 3.1. We expend dt as follow

dt = ∇f(θt, xt) + (1− ρt)(dt−1 −∇f(θt−1, xt))

=

t∑
i=1

( t∏
k=i+1

(1− ρk)∇f(θi, xi)−
t∏
k=i

(1− ρk)∇f(θi−1, xi)

)

=
1

t+ 1

t∑
i=1

(
(i+ 1)∇f(θi, xi)− i∇f(θi−1, xi)

)
,

(7)

where the last inequality is due to the fact that ρt = 1
t+1 . If we consider the tree based mechanism in Algorithm 4, each

sample xi is involved in at most dlog2 ne+ 1 nodes in the tree. And all partial summations can also be determined by at
most dlog2 ne nodes. The privacy analysis of the partial sum now reduces to the privacy analysis of the tree.

Suppose adjacent datasets D and D′ differ by sample xi and x′i, then for any sets B = (B1, B2, ..., B2dlog2 ne+1−1)
corresponding to the post-order traversal of the binary tree, it suffices to prove that

P(A1(D) ∈ B1, ..., A2dlog2 ne+1−1(D) ∈ B2dlog2 ne+1−1) ≤ eεP(A1(D′) ∈ B1, ..., A2dlog2 ne+1−1(D′) ∈ B2dlog2 ne+1−1)+δ.
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For node Am including xi, suppose that it stores the summation
∑l
j=k

(
(j + 1)∇f(θj , xj) − j∇f(θj−1, xj)

)
, we have

then conditioned on A1(D) = A1(D′), ..., Am−1(D) = Am−1(D′), θj(D) = θj(D′) = θj ,∀j ≤ l. Thus the difference
between xi and x′i will cause the difference between

(i+ 1)∇f(θi, xi)− i∇f(θi−1, xi) and (i+ 1)∇f(θi, x
′
i)− i∇f(θi−1, x

′
i).

which has `q sensitivity 2(βD + L) because

‖
(
(i+ 1)∇f(θi, xi)− i∇f(θi−1, xi)

)
−
(
(i+ 1)∇f(θi, x

′
i)− i∇f(θi−1, x

′
i)
)
‖q

≤ 2iβ‖θi − θi−1‖p + ‖∇f(θi, xi)−∇f(θi, x
′
i)‖q

≤ 2(βD + L).

According to the above sensitivity, and the using the fact that ‖ · ‖q,+ is κq,+-smooth, we can now apply the generalized
Gaussian in Lemma 2.7. We add noise G‖·‖+(0, 8(dlog2 ne+ 1)2κq log((dlog2 ne+ 1)/δ)(βD + L)2/ε2) independently
to each node to ensure that each node is (ε/(dlog2 ne+ 1), δ/(dlog2 ne+ 1))-differentially private.

We recall that each sample xi is involved in at most dlog2 ne+ 1 nodes in the tree. We denote the path from xi to the root of
the tree as pathi, where |pathi| ≤ dlog2 ne+ 1. And here we use p to denote the density of (A1(D), ..., A2dlog2 ne+1−1(D))
and p′ for its counterpart regarding dataset D′. Then for any B = (B1, B2, ..., B2dlog2 ne+1−1), we have

P(A1(D) ∈ B1, ..., A2dlog2 ne+1−1(D) = B2dlog2 ne+1−1)

=

∫
B1×,...,×B2dlog2 ne+1−1

p(a1, ..., a2dlog2 ne+1−1)da1...da2dlog2 ne+1−1

=

∫ ∏
m∈pathi

p(am|a1, ..., am−1) ·
∏

m/∈pathi

p(am|a1, ..., am−1)da1...da2dlog2 ne+1−1.

Notice that for any m /∈ pathi, p(am|a1, ..., am−1) = p′(am|a1, ..., am−1). For m ∈ pathi,∫
Bm

p(am|a1, ..., am−1)dam =

∫
Bm

p(am|a1, ..., am−1)− 1 ∧ eε/(dlog2 ne+1)p′(am|a1, ..., am−1)dam + . . .

+

∫
Bm

1 ∧ eε/(dlog2 ne+1)p′(am|a1, ..., am−1)dam

≤ δ/(dlog2 ne+ 1) +

∫
Bm

1 ∧ eε/(dlog2 ne+1)p′(am|a1, ..., am−1)dam.

Applying the above inequality to any node in pathi, we have∫ ∏
m∈pathi

p(am|a1, ..., am−1) ·
∏

m/∈pathi

p(am|a1, ..., am−1)da1...da2dlog2 ne+1−1

≤ eε
∫ ∏

m∈pathi

p′(am|a1, ..., am−1) ·
∏

m/∈pathi

p′(am|a1, ..., am−1)da1...da2dlog2 ne+1−1 + δ

= eεP(A1(D′) ∈ B1, ..., A2dlog2 ne+1−1(D′) = B2dlog2 ne+1−1) + δ,

which concludes the proof.

A.2. Proof of Lemma 3.2

Proof of Lemma 3.2. Since each Zj are i.i.d. G‖·‖+(0, σ2
+), we have

P(‖Zj‖2+ > λ) = C(σ+, d)Area{‖x‖+ = 1}
∫
r2>λ

rd−1 exp(− r2

2σ2
+

)dr

=
1

2
C(σ+, d)Area{‖x‖+ = 1}

∫
r>λ

rd/2−1 exp(− r

2σ2
+

)dr.
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By

C(σ+, d)Area{‖x‖+ = 1} =
1

(2σ2
+)d/2 · Γ(d/2)/2

,

we know that the tail of ‖Zj‖2+ is exactly the tail of Γ(d/2, 2σ2
+) at λ, which means ‖Zj‖2+ follows Γ(d/2, 2σ2

+). Thus
‖Zj‖2+ − E[‖Zj‖2+] is subGamma(2σ4

+d, 2σ
2
+) , then the standard tail bound of sub-Gamma distribution implies

P (‖Zj‖2+ > E[‖Zj‖2+] + 2
√
σ4

+dλ+ 2σ2
+λ) ≤ exp(−λ) (8)

A.3. Proof of Proposition 3.3

Proposition A.1 (Azuma-Hoeffding inequality in regular space). Given the κ-smooth norm ‖·‖ and a vector-valued
martingale difference sequence dt with respect to {Ft}t, we have if

E[exp(‖dt‖2/σ2
t )|Ft−1] ≤ exp(1), ∀t, (9)

then

P
(∥∥∥ t∑

i=1

di

∥∥∥ ≥ (
√

2eκ+
√

2λ)
( t∑
i=1

σ2
i

)1/2
)
≤ 2 exp(−λ2/64).

We provide the a detailed version of Proposition 3.3 in the following proposition.

Proposition A.2. We denote ∆t = dt−∇F (θt). Assume Assumption 2.2 and 2.3, for t ∈ [n], we have that with probability
at least 1− α, Algorithm 1 will satisfies

‖∆t‖q ≤ (
√

2eκq+8
√

4 log(2/α))
2(βD +G)√

t+ 1
+dlog2 ne

σ+

t+ 1

(
d+2

√
d log(2dlog2 ne/α)+2d log(2dlog2 ne/α)

)1/2
.

Proof. We first reformulate ∆t = dt −∇F (θt) as the sum of a martingale difference sequence. We denote Mt the set of
node indices used when reporting dt and Z the noise in the tree based mechanism in Algorithm 4 . For t ≥ 1, we have

∆t =
1

1 + t

∑
j∈Mt

Zj +∇f(θt, xt) + (1− ρt)(dt−1 −∇f(θt−1, xt))−∇F (θt)

=
1

1 + t

∑
j∈Mt

Zj + (1− ρt)∆t−1 + ρt(∇f(θt, xt)−∇F (θt)) + . . .

+ (1− ρt)
(
∇f(θt, xt)−∇f(θt−1, xt)− (∇F (θt)−∇F (θt−1))

)
=

1

1 + t

∑
j∈Mt

Zj +

t∏
k=2

(1− ρk)ε1 +

t∑
τ=2

(
ρτ

t∏
k=τ+1

(1− ρk)
(
∇f(θτ , xτ )−∇F (θτ )

)
+ . . .

+

t∏
k=τ

(1− ρk)
(
∇f(θτ , xτ )−∇f(θτ−1, xτ )− (∇F (θτ )−∇F (θτ−1)

))

,
1

t+ 1

∑
j∈Mt

Zj + ζt,1 +

t∑
τ=2

ζt,τ

(10)

Recall that ∆1 = ∇f(θ1, x1) − ∇F (θ1). And we observe that E[ζt,τ |Fτ−1] = 0 where Fτ is the σ-field generated by
{x1, x2, ..., xτ−1}. Therefore, {ζt,τ}tτ=1 is a martingale difference sequence. In what follows, we derive upper bounds of
‖ζt,τ‖q . We start by observing that for any τ = 1, 2, ..., t,

t∏
k=τ

(1− ρk) =

t∏
k=τ

(1− 1

k + 1
) =

t∏
k=τ

k

k + 1
=

τ

t+ 1
. (11)
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We can bound ‖ζt,1‖q:

‖ζt,1‖q ≤
1

t+ 1
‖∇f(θ1, x1)−∇F (θ1)‖q ≤

G

t+ 1
, ct,1,

where the second inequality follows from Assumption 2.3. For τ > 1,

‖ζt,τ‖q ≤
t∏

k=τ

(1− ρk)
(
‖∇f(θτ , xτ )−∇f(θτ−1, xτ )‖q + ‖∇F (θτ )−∇F (θτ−1)‖q

)
+ . . .

+ ρτ

t∏
k=τ+1

(1− ρk)‖∇f(θτ , xτ )−∇F (θτ )‖q

≤ 2β‖θτ − θτ−1‖p
t∏

k=τ

(1− ρk) +Gρτ

t∏
k=τ+1

(1− ρk)

= 2βητ−1‖vτ−1 − θτ−1‖p
t∏

k=τ

(1− ρk) +Gρτ

t∏
k=τ+1

(1− ρk)

≤ 2(βD +G)

t+ 1
, ct,τ ,

(12)

where the second inequality follows from Assumption 2.2 and 2.3, and the last inequality is due to ητ = ρτ and the definition
of D. Now according to Proposition A.1, we have

P
(∥∥∥∆t −

1

1 + t

∑
j∈Mt

Zj

∥∥∥
q
≥ (
√

2eκq +
√

2λ)
( t∑
τ=1

c2t,τ

)1/2
)
≤ 2 exp(−λ2/64), (13)

We can bound
∑t
τ=1 c

2
t,τ as

t∑
τ=1

c2t,τ = c2t,1 +

t∑
τ=2

c2t,τ =

(
G

t+ 1

)2

+

t∑
τ=2

(
2βD +G

t+ 1

)2

≤
t∑

τ=1

(
2βD + 2G

t+ 1

)2

≤ 4(βD +G)2

t+ 1
.

Plugging the above bound into Eq. (13) and setting

λ = 8
√

log(2/α1),

we have with probability at least 1− α1,∥∥∥∆t −
1

t+ 1

∑
j∈Mt

Zj

∥∥∥
q
≤ (
√

2eκq + 8
√

2 log(2/α1))
2(βD +G)√

t+ 1
.

According to Lemma 3.2, we know that ‖Zj‖2q,+ follows Gamma distribution Γ(d/2, σ+). Selecting λ = log(dlog2 ne/α2),
and by E[‖Zj‖2q,+] = σ2

+d, we get with probability at least 1− α2/dlog2 ne,

‖Zj‖2q,+ ≤ σ2
+d+ 2σ2

+

√
d log(dlog2 ne/α2) + 2σ2

+d log(dlog2 ne/α2).

Thus with probability at least 1− α2, we have

max
j∈Mt

‖Zj‖2q,+ ≤ σ2
+d+ 2σ2

+

√
d log(dlog2 ne/α2) + 2σ2

+d log(dlog2 ne/α2), (14)

here we use the fact that |Mt| ≤ dlog2 ne. Thus with probability at least 1− α2,∥∥∥∥ ∑
j∈Mt

Zj

∥∥∥∥
q,+

≤ dlog2 nemax
j∈Mt

‖Zj‖q,+

≤ dlog2 neσ+

(
d+ 2

√
d log(dlog2 ne/α2) + 2d log(dlog2 ne/α2)

)1/2
.
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According to the norm equivalent property in Definition 2.6, we have

∥∥∥∥ ∑
j∈Mt

Zj

∥∥∥∥
q

≤
∥∥∥∥ ∑
j∈Mt

Zj

∥∥∥∥
q,+

.

As a result, by setting α1 = α2 = α
2 , we have with probability at least 1− α,

‖∆t‖q ≤ (
√

2eκq + 8
√

4 log(2/α))
2(βD +G)√

t+ 1
+
dlog2 neσ+

(
d+ 2

√
d log(2dlog2 ne/α) + 2d log(2dlog2 ne/α)

)1/2
t+ 1

.

A.4. Proof of Theorem 3.5

We provide a detailed version of Theorem 3.5 in the following Theorem.

Theorem A.3. Consider Algorithm 1 with convex function F , Assumption 2.2, 2.3 and 2.4, for t ∈ [n], we have with
probability at least 1− α,

F (θt)− F (θ∗) ≤
2(
√

2eκq + 8
√

4 log(2n/α))D(βD +G)
√
t

+
(log t+ 1)βD2

2t
+ . . .

+
log t

t
·Ddlog2 neσ+

(
d+ 2

√
d log(2ndlog2 ne/α) + 2d log(2ndlog2 ne/α)

)1/2
.

(15)

Proof. We start from β-smoothness:

F (θt+1) ≤ F (θt) + 〈∇F (θt), θt+1 − θt〉+
β

2
‖θt+1 − θt‖2p

≤ F (θt) + ηt〈∇F (θt), vt − θt〉+
η2
t βD

2

2
.

We subtract F (θ∗) from both sides, and denote ht = F (θt)− F (θ∗). We have

ht+1 ≤ ht + ηt〈∇F (θt), vt − θt〉+
η2
t βD

2

2

= ht + ηt〈∇F (θt)− dt, vt − θt〉+ ηt〈dt, vt − θt〉+
η2
t βD

2

2

≤ ht + ηt〈∇F (θt)− dt, vt − θt〉+ ηt〈dt, θ∗ − θt〉+
η2
t βD

2

2

= ht + ηt〈dt −∇F (θt), θ
∗ − vt〉+ ηt〈∇F (θt), θ

∗ − θt〉+
η2
t βD

2

2

≤ ht + ηtD‖dt −∇F (θt)‖q + ηt〈∇F (θt), θ
∗ − θt〉+

η2
t βD

2

2

≤ (1− ηt)ht + ηtD‖dt −∇F (θt)‖q +
η2
t βD

2

2
.

where the second inequality is due to definition of vt. According to Proposition A.2, with probability at least 1− tα′, we
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have

ht+1 ≤ (1− ηt)ht +
βD2

2(t+ 1)2
+ . . .

+
1

t+ 1
D
(2(

√
2eκq + 8

√
4 log(2/α′))(βD +G)
√
t+ 1

+ . . .

+
dlog2 neσ+

(
d+ 2

√
d log(2dlog2 ne/α′) + 2d log(2dlog2 ne/α′)

)1/2
t+ 1

)
≤ (1− ηt)ht +

1

(t+ 1)3/2
2(
√

2eκq + 8
√

4 log(2/α′))D(βD +G)︸ ︷︷ ︸
C1

+ . . .

+
1

(t+ 1)2

(
Ddlog2 neσ+

(
d+ 2

√
d log(2dlog2 ne/α′) + 2d log(2dlog2 ne/α′)

)1/2
+ βD2/2︸ ︷︷ ︸

C2

)
.

Then we have

ht+1 = (1− ηt)ht +
C1

(t+ 1)3/2
+

C2

(t+ 1)2

= h1

t∏
τ=1

(1− ητ ) +

t∑
k=1

(
C1

(k + 1)3/2
+

C2

(k + 1)2

) t∏
τ=k+1

(1− ητ )

=
1

t+ 1
h1 +

t∑
k=1

(
C1

(k + 1)3/2
+

C2

(k + 1)2

) t∏
τ=k+1

(1− ητ )

=
1

t+ 1
h1 +

1

t+ 1

t∑
k=1

(
C1

(k + 1)1/2
+

C2

(k + 1)

)
≤ 1

t+ 1
h1 +

C1√
t+ 1

+
C2 log t

t+ 1
.

Now setting α′ = α
n , and recalling that h1 ≤ βD2

2 according to β-smoothness lead to the desired result.

A.5. Proof of Theorem 3.8

We firstly introduce the following lemma.

Lemma A.4 (Lemma 6 in (Lafond et al., 2015)). Assume Assumption 3.7, and the population loss function F satisfies
Assumption 2.1 and 2.2, then (

max
θ∈C
〈∇F (θt), θt − θ〉

)2

≥ 2µγ2ht and βD2 ≥ γ2µ.

where ht = F (θt)− F (θ∗).

We provide a detailed version of Theorem 3.8 in the following Theorem.

Theorem A.5. Consider Algorithm 1 with Assumption 2.1, 2.2, 2.3, 2.4 and 3.7, for t ∈ [n], we have with probability at
least 1− α,

F (θt)− F (θ∗) ≤ 18

γ2µ

4D2(
√

2eκq + 8
√

4 log(2n/α))2(βD +G)2

t+ 1
+ . . .

+
18

γ2µ

(
Ddlog2 neσ+

(
d+ 2

√
d log(2ndlog2 ne/α) + 2d log(2T dlog2 ne/α)

)1/2
+ βD2/2

)2

log n

(t+ 1)2
.

Proof. We denote ht = F (θt) − F (θ∗), and θ̃t := arg maxθ∈C(〈∇F (θt), θt − θ〉)2 in Lemma A.4. We start from
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β-smoothness:

ht+1 ≤ ht + ηt〈∇F (θt), vt − θt〉+
η2
t βD

2

2

= ht + ηt〈dt, vt − θt〉 − ηt〈dt −∇F (θt), vt − θt〉+
η2
t βD

2

2

≤ ht + ηt〈dt, θ̃t − θt〉 − ηt〈dt −∇F (θt), vt − θt〉+
η2
t βD

2

2

= ht + ηt〈∇F (θt), θ̃t − θt〉+ ηt〈dt −∇F (θt), θ̃t − vt〉+
η2
t βD

2

2

≤ ht + ηt‖dt −∇F (θt)‖qD − ηtγ
√

2µht +
η2
t βD

2

2

(16)

where the first inequality is due to the definition of v and the last inequality comes from Lemma A.4. According to
Proposition A.2, with probability at least 1− tα′, we have

ht+1 ≤
√
ht(
√
ht − ηtγ

√
2µ) +

1

(t+ 1)3/2
2D(

√
2eκq + 8

√
4 log(2/α′))(βD +G)︸ ︷︷ ︸
C1

+ . . .

+
1

(t+ 1)2

(
Ddlog2 neσ+

(
d+ 2

√
d log(2dlog2 ne/α′) + 2d log(2dlog2 ne/α′)

)1/2
+ βD2/2︸ ︷︷ ︸

C2

)
=
√
ht(
√
ht − ηtγ

√
2µ) +

1

(t+ 1)3/2
C1 +

1

(t+ 1)2
C2,

(17)

Now the claim holds by induction. We assume that

ht ≤
1

t+ 1
· 18C2

1

γ2µ
+

1

(t+ 1)2
· 18C2

2 log2 n

γ2µ
,

1

t+ 1
A+

1

(t+ 1)2
B.

For t = 1, according to Eq. (17), we have

h2 ≤ h1 +
C1

2
√

2
+
C2

4
≤ 9C2

1

γ2µ
+

9C2
2

2γ2µ
,

where the second inequality comes from Lemma A.4 that βD2 ≥ γ2µ.

For t ≥ 1. There are two cases.

Case 1.
√
ht − ηtγ

√
2µ ≤ 0 :

Since η = 1
t+1 , Eq. (17) yields,

ht+1 ≤
1

(t+ 1)3/2
C1 +

1

(t+ 1)2
C2 ≤

C2
1

γ2µ(t+ 1)3/2
+

C2
1

γ2µ(t+ 1)2
≤ 1

t+ 1
· 18C2

1

γ2µ
+

1

(t+ 1)2
· 18C2

2 log2 n

γ2µ
.

where the second inequality comes from Lemma A.4 that βD2 ≥ γ2µ.

Case 2.
√
ht − ηtγ

√
2µ > 0 :
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According to Eq. (17) and the assumption that ht ≤ A
t+1 + B

(t+1)2 , we have

ht+1 −
A

t+ 2
− B

(t+ 2)2

≤ A
(

1

t+ 1
− 1

t+ 2

)
+B

(
1

(t+ 1)2
− 1

(t+ 2)2

)
+ . . .

+
C1

(t+ 1)3/2
+

C2

(t+ 1)2
− γ

t+ 1

√
2µ
( A

t+ 1
+

B

(t+ 1)2

)
=

A

(t+ 1)2
+

2B

(t+ 1)3
+

C1

(t+ 1)3/2
+

C2

(t+ 1)2
− γ

2(t+ 1)3/2

√
2µA− γ

2(t+ 1)2

√
2µB

≤ A

(t+ 1)2
+

2B

(t+ 1)3
+

C1

(t+ 1)3/2
+

C2

(t+ 1)2
− 3C1

(t+ 1)3/2
− 3C2 log n

(t+ 1)2

=
A

(t+ 1)2
+

2B

(t+ 1)3
− 2C1

(t+ 1)3/2
− 2C2 log n

(t+ 1)2

≤ 2

(t+ 1)3/2

(
A

(t+ 1)1/2
+

B

(t+ 1)3/2
− C1 −

C2 log n

(t+ 1)1/2

)

(18)

Define

t0 := inf

{
t ≥ 1 :

A

(t+ 1)1/2
+

B

(t+ 1)3/2
− C1 −

C2 log n

(t+ 1)1/2
≤ 0

}
.

According to the definition of A and B, t0 exists. For those t ≥ t0, the RHS of Eq. (18) is negative, then the proof is done.
For those t ≥ t0, we have

C1 +
C2 log n

(t+ 1)1/2
≤ A

(t+ 1)1/2
+

B

(t+ 1)3/2
,

which is equivalent to
C1

(t+ 1)1/2
+
C2 log n

t+ 1
≤ A

t+ 1
+

B

(t+ 1)2
.

To finish the proof, it suffices to prove that

ht ≤
C1

(t+ 1)1/2
+
C2 log n

t+ 1
,

which is demonstrated in Theorem A.3. Now we conclude the proof by setting α′ = α/n.

A.6. Proof of Theorem 3.11

Proof. Consider two adjacent datasets D and D′, and their corresponding dt and d′t. We denote the sensitivity of 〈dt, v〉 as
st, namely st := maxv∈C maxD'D′ |〈dt − d′t, v〉|. Then

st ≤ max
D'D′

D‖dt − d′t‖∞.

Now we upper bound the sensitivity of ‖dt − d′t‖∞. According to Eq. (7), we know that

dt =
1

t+ 1

t∑
i=1

(
(i+ 1)∇f(θi, xi)− i∇f(θi−1, xi)

)
.

If adjacent datasets D and D′ differ in data point xi and x′i, then

‖dt − d′t‖∞ =
1

t+ 1

∥∥∥∥((i+ 1)∇f(θi, xi)− i∇f(θi−1, xi)
)
−
(

(i+ 1)∇f(θi, x
′
i)− i∇f(θi−1, x

′
i)
)∥∥∥∥
∞

=
1

t+ 1

∥∥∥∥i(∇f(θi, xi)−∇f(θi−1, xi)
)
− i
(
∇f(θi, x

′
i)−∇f(θi−1, x

′
i)
)

+
(
∇f(θi, xi)−∇f(θi−1, x

′
i)
)∥∥∥∥
∞

≤ 2

t+ 1
(iβ‖θi − θi−1‖1 + L) ≤ 2

t+ 1
(β‖vt − θi−1‖1 + L)

≤ 2

t+ 1
(βD + L).
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where the first inequality is due to β-smoothness and L-Lipschitz of F . Now we have

st ≤
2D(βD + L)

t+ 1
.

We denote the selected vt in each iteration as random variable At. For any v1, v2, ..., vn ∈ C, we have

log
P(A1 = v1, A2 = v2, ..., An = vT |D)

P(A′1 = v1, A′2 = v2, ..., A′n = vn|D′)
=

n∑
t=1

log
P(At = vt|At−1 = vt−1, ..., A1 = v1,D)

P(A′t = vt|A′t−1 = vt−1, ..., A′1 = v1,D′)
:=

n∑
t=1

ct(vt, ..., v1).

For each ct, since we condition on A1 = v1, A2 = v2, ..., At−1 = vt−1, the randomness of At totally comes from the noise

ntv ∼ Lap
(

2st
√
t·logn·log(1/δ)

ε

)
. According to the Report Noisy Max Mechanism in Claim 3.9 in (Dwork et al., 2014), we

have
|ct| ≤

ε

2
√
t · log n · log(1/δ)

:= εt.

Then according to Lemma 3.18 in (Dwork et al., 2014), we have

E[ct|v1, v2, ..., vt−1] ≤ εt(eεt − 1).

Now, according to Azuma-Hoeffding’s inequality, we have

P
( n∑
t=1

ct ≥
n∑
t=1

εt(e
εt − 1) +

√
2 log(1/δ)

√√√√ n∑
t=1

ε2
t

)
≤ δ.

So we can get (ε′, δ)-DP, where

ε′ =

n∑
t=1

ε2
t +

√
2 log(1/δ)

√√√√ n∑
t=1

ε2
t ≤ ε,

which concludes the proof.

A.7. Proof of Theorem 3.12

Firstly, we would like to introduce a proposition and a lemma.
Proposition A.6. (Theorem 3.5 in (Pinelis, 1994)) Let ζ1, ζ2, ..., ζt ∈ Rd be a vector-valued martingale difference sequence
w.r.t. a filtration {Ft}, i.e. for each τ ∈ 1, 2, ..., t, we have E[ζτ |Fτ−1] = 0. Suppose that ‖ζτ‖2 ≤ cτ almost surely. Then,
∀t ≥ 1,

P
(∥∥∥∥ t∑

τ=1

ζτ

∥∥∥∥
2

≥ λ
)
≤ 4 exp

(
− λ2

4
∑t
τ=1 c

2
τ

)
.

Lemma A.7. Assume Assumption 2.2 and 2.3, for t ∈ [n], we have that with probability at least 1− α1, Algorithm 2 will
statisfies

‖∆t‖∞ := ‖dt −∇F (θt)‖∞ ≤
4(βD +G)

√
log(4d/α1)√

t+ 1
. (19)

Proof of Lemma A.7. This proof is similar to the proof of Lemma 1 in (Xie et al., 2020), except that we consider the ‖ · ‖1
norm and its dual norm ‖ · ‖∞, and apply the Proposition A.6 in a different way. Reformulating ∆t = dt −∇F (θt) as the
sum of a martingale difference sequence. For t ≥ 1, we have

∆t = ∇f(θt, xt) + (1− ρt)(dt−1 −∇f(θt−1, xt))−∇F (θt)

= (1− ρt)εt−1 + ρt(∇f(θt, xt)−∇F (θt)) + . . .

+ (1− ρt)
(
∇f(θt, xt)−∇f(θt−1, xt)− (∇F (θt)−∇F (θt−1))

)
=

t∏
k=2

(1− ρk)ε1 +

t∑
τ=2

(
ρτ

t∏
k=τ+1

(1− ρk)
(
∇f(θτ , xτ )−∇F (θτ )

)
+ . . .

+

t∏
k=τ

(1− ρk)
(
∇f(θτ , xτ )−∇f(θτ−1, xτ )− (∇F (θτ )−∇F (θτ−1)

))
, ζt,1 +

t∑
τ=2

ζt,τ

(20)



Optimal Private Streaming SCO in `p-geometry with Applications in High Dimensional Online Decision Making

Recall that ∆1 = ∇f(θ1, x1) − ∇F (θ1). And we observe that E[ζt,τ |Fτ−1] = 0 where Fτ is the σ-field generated by
{x1, x2, ..., xτ−1}. Therefore, {ζt,τ}tτ=1 is a martingale difference sequence. In what follows, we derive upper bounds of
‖ζt,τ‖∞ . We start by observing that for any τ = 1, 2, ..., t,

t∏
k=τ

(1− ρk) =

t∏
k=τ

(1− 1

k + 1
) =

t∏
k=τ

k

k + 1
=

τ

t+ 1
(21)

We can bound ‖ζt,1‖∞ as follows:

‖ζt,1‖∞ ≤
1

t+ 1
‖∇f(θ1, x1)−∇F (θ1)‖∞ ≤

G

t+ 1
:= ct,1,

where the first inequality is due to Assumption 2.3. For τ > 1,

‖ζt,τ‖∞ ≤
t∏

k=τ

(1− ρk)
(
‖∇f(θτ , xτ )−∇f(θτ−1, xτ )‖∞ + ‖∇F (θτ )−∇F (θτ−1)‖∞

)
+ . . .

+ ρτ

t∏
k=τ+1

(1− ρk)‖∇f(θτ , xτ )−∇F (θτ )‖∞

≤ 2β‖θτ − θτ−1‖1
t∏

k=τ

(1− ρk) +Gρτ

t∏
k=τ+1

(1− ρk)

= 2βητ−1‖vτ−1 − θτ−1‖1
t∏

k=τ

(1− ρk) +Gρτ

t∏
k=τ+1

(1− ρk)

≤ 2βD +G

t+ 1
:= ct,τ .

where the second inequality follows from Assumption 2.2 and 2.3, and the last inequality is due to ητ = ρτ = 1
τ+1 and the

definition of D. Now we denote the i-th element of ∆t as ∆t,i for i ∈ 1, 2, ..., d. According to Proposition A.6, we have

P
(
|∆t,i| ≥ λ

)
≤ 4 exp

(
− λ2

4
∑t
τ=1 c

2
t,τ

)
. (22)

We can bound
∑t
τ=1 c

2
t,τ as

t∑
τ=1

c2t,τ = c2t,1 +

t∑
τ=2

c2t,τ =

(
G

t+ 1

)2

+

t∑
τ=2

(
2βD +G

t+ 1

)2

≤
t∑

τ=1

(
2βD + 2G

t+ 1

)2

≤ 4(βD +G)2

t+ 1
.

Plugging in the above bound and and setting λ =
4(βD+G)

√
log(4d/α1)√

t+1
, for some α1 ∈ (0, 1), we have with probability

1− α1/d,

|∆t,i| ≤
4(βD +G)

√
log(4d/α1)√

t+ 1

Then

P(‖∆t‖∞ ≤ λ) = 1− P(‖∆t‖∞ > λ) ≥ 1−
d∑
i=1

P(|∆t,i| ≥ λ) = 1− α1,

where the first inequality comes from the union bound. In other word, with probability at least 1− α1, we have

‖∆t‖∞ ≤
4(βD +G)

√
log(4d/α1)√

t+ 1
.
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Now we are ready to prove Theorem 3.12.

Proof of Theorem 3.12. We denote ht = F (θt)− F (θ∗), and ṽt := arg minv∈C(dt, v). We start from β-smoothness:

ht+1 ≤ ht + ηt〈∇F (θt), vt − θt〉+
η2
t βD

2

2

= ht + ηt〈dt, vt − θt〉 − ηt〈dt −∇F (θt), vt − θt〉+
η2
t βD

2

2

= ht + ηt〈dt, ṽt − θt〉 − ηt〈dt −∇F (θt), vt − θt〉+
η2
t βD

2

2
+ ηt〈dt, vt − ṽt〉

≤ ht + ηt〈dt, θ∗ − θt〉 − ηt〈dt −∇F (θt), vt − θt〉+
η2
t βD

2

2
+ ηt〈dt, vt − ṽt〉

= ht + ηt〈∇F (θt), θ
∗ − θt〉+ ηt〈dt −∇F (θt), θ

∗ − vt〉+
η2
t βD

2

2
+ ηt〈dt, vt − ṽt〉

≤ (1− ηt)ht + ηtD‖dt −∇F (θt)‖∞ +
η2
t βD

2

2
+ ηt〈dt, vt − ṽt〉.

(23)

To upper bound ηt〈dt, vt − ṽt〉, notice that

〈dt, vt − ṽt〉 = min
v∈C

(
〈v, dt〉+ ntv

)
−min

v∈C
〈v, dt〉 ≤ 2 max

v=1,...,2d
|ntv| (24)

with ntv
i.i.d.∼ Laplace(0,

4D(βD + L)
√

log n · log(1/δ)√
tε

) , we have by integrating the tail density

P(max
v
|ntv| > λ) ≤

2d∑
v=1

P (|ntv| > λ) ≤ 2d exp
(
−

√
tελt

4D(βD + L)
√

log n · log(1/δ)

)
.

selecting λt =
4D(βD + L)

√
log n · log(1/δ)√
tε

· log(2d/α2) we get then with probability at least 1− α2,

max
v
|ntv| ≤

4D(βD + L)
√

log n · log(1/δ)√
tε

· log(2d/α2). (25)

According to Eq. (23), (24), (25) and Lemma A.7, at iteration t, we have with probability at least 1− t(α1 + α2),

ht+1 ≤ (1− ηt)ht +
η2
t βD

2

2
+ . . .

+
ηt√
t+ 1

(
8D(βD +G)

√
log(4d/α1) +

16D(βD + L) log(2d/α2)
√

log n · log(1/δ)

ε

)
︸ ︷︷ ︸

A

= (1− ηt)ht +
βD2

2(t+ 1)2
+

A

(t+ 1)3/2
.

(26)

Now we prove ht ≤ 3√
t+1

(βD2 +A) by induction. For t = 1, we have

h2 ≤
1

2

(
F (θ1)− F (θ∗)

)
+
βD2

8
+

A

33/2
≤ 3√

2
(βD2 +A),

where the last inequality is due to F (θ1)− F (θ∗) ≤ βD2

2 by the smoothness of F . Now we suppose ht ≤ 3√
t+1

(βD2 +A)

for t ≥ 1. For t+ 1, according to Eq. (26), we have

ht+1 −
3√
t+ 2

(βD2 +A) ≤ 3(βD2 +A)

(
1√
t+ 1

− 1√
t+ 2

)
− 2(βD2 +A)

(t+ 1)3/2

≤ 3(βD2 +A)

2(t+ 1)3/2
− 2(βD2 +A)

(t+ 1)3/2
≤ 0,
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where the second inequality is due to 1
(t+1)1/2

− 1
(t+2)1/2

≤ 1
2(t+1)3/2

. And now we conclude the proof by setting
α1 = α2 = α

2n .

A.8. Proof of Theorem 3.13

Proof of Theorem 3.13. We define ṽt := arg minv∈C(dt, v) and θ̃t := arg maxθ∈C(〈∇F (θt), θt−θ〉)2 in Lemma A.4. And
we denote that ht = F (θt)− F (θ∗). According to β-smoothness, we have

ht+1 ≤ F (θt) + ηt〈∇F (θt), vt − θt〉+
η2
t βD

2

2

= ht + ηt〈∇F (θt)− dt, vt − θt〉+ ηt〈dt, ṽt − θt〉+
η2
t βD

2

2
+ ηt〈dt, vt − ṽt〉

≤ ht + ηt‖∇F (θt)− dt‖∞D + ηt〈dt, θ̃t − θt〉+
η2
t βD

2

2
+ ηt〈dt, vt − ṽt〉

≤ ht + 2ηt‖∇F (θt)− dt‖∞D + ηt〈∇F (θt), θ̃t − θt〉+
η2
t βD

2

2
+ ηt〈dt, vt − ṽt〉

≤ ht + 2ηt‖∇F (θt)− dt‖∞D − ηtγ
√

2µht +
η2
t βD

2

2
+ ηt〈dt, vt − ṽt〉,

(27)

where the last inequality follows from Lemma A.4. According to Eq. (24), (25) and (27), Lemma A.7, at iteration t, we have
with probability at least 1− t(α1 + α2),

ht+1 ≤
√
ht(
√
ht − ηtγ

√
2µ) +

η2
t βD

2

2
+ . . .

+
ηt√
t+ 1

(
8D(βD +G)

√
log(4d/α1) +

16D(βD + L) log(2d/α2)
√

log n · log(1/δ)

ε

)
︸ ︷︷ ︸

A

(28)

Now the claim holds by induction. For simplicity, we denote

B :=
9(βD2 +A)2

γ2µ
.

Firstly, for t = 1, according to Eq. (28) we have

h2 ≤ F (θ1)− F (θ∗) +
βD2

8
+

A

33/2
≤ B

2
.

where the last inequality is due to Lemma A.4 and the fact that F (θ1)− F (θ∗) ≤ βD2

2 . Suppose that ht ≤ B
t+1 for some

t ≥ 1. There are two cases.

Case 1.
√
ht − ηtγ

√
2µ ≤ 0:

Then since ηt = 1
t+1 , Eq. (28) yields

ht+1 ≤
βD2

2(t+ 1)2
+

A

(t+ 1)3/2
≤ βD2 +A

t+ 1
≤ 2

t+ 2

(βD2 +A)2

γ2µ
≤ B

t+ 2
.

where the third inequality is due to Lemma A.4 and the last inequality is from the definition of B.

Case 2.
√
ht − ηtγ

√
2µ > 0:
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According to Eq. (28) and the assumption that ht ≤ B
t+1 , we have

ht+1 −
B

t+ 2
≤ B

(
1

t+ 1
− 1

t+ 2

)
+

βD2

2(t+ 1)2
+

A

(t+ 1)3/2
− γ

√
2µB

(t+ 1)3/2

≤ 1

(t+ 1)3/2

(
B

(t+ 1)1/2
+ βD2 +A− γ

√
2µB

)
≤ 1

(t+ 1)3/2

(
B

(t+ 1)1/2
− 3(βD2 +A)

)
,

(29)

where the last inequality comes from the definition of B. Define

t0 := inf{t ≥ 1 :
B

(t+ 1)1/2
− 3(βD2 +A) ≤ 0}.

According to the definition of B, t0 exists. For any t ≥ t0, the RHS of Eq. (29) is negative, and the proof is done. For those
t < t0, we have

3(βD2 +A) ≤ B

(t+ 1)1/2
,

which is equivalent to
3(βD2 +A)

(t+ 1)1/2
≤ B

t+ 1
.

To conclude the proof, it suffices to show that the following inequality holds,

ht ≤
3(βD2 +A)

(t+ 1)1/2
. (30)

which is demonstrated in Theorem 3.12. Finally, we conclude the proof be setting α1 = α2 = α
2n .

B. Proof of Section 4
In this section we establish the privacy protection for our Algorithm 3 and the convergence result for the forced-sample
estimators and full-sample estimators. We prove the convergence of estimators for any given arm i and use θt to represent
θt,i and θ∗ to represent θ∗i for notation simplicity.

Proof of Theorem 4.6

Proof. By post-processing property, we only need to guarantee that the sequence (θ1, . . . , θT ) is (ε, δ) differentially private.
In fact, we have for each sequence {νi+1, . . . , νT } ⊂ C. Suppose condition on ai(D) = ji and ai(D′) = j′i, we have then

P (θi+1 = νi+1, . . . , θT = νT |D)

P (θi+1 = νi+1, . . . , θT = νT |D′)
=

P (θi+1 = νi+1|D)

P (θi+1 = νi+1|D′)

=
P (θi+1,1 = νi+1,1 . . . , θi+1,K = νi+1,K |D)

P (θi+1,1 = νi+1,1 . . . , θi+1,K = νi+1,K |D′)

=
P (θi+1,ji = νi+1,ji , θi+1,j′i

= νi+1,j′i
|D)

P (θi+1,j′i
= νi+1,j′i

, θi+1,ji = νi+1,ji |D′)

Now by the synthetic update method, we have the above ratio is smaller or equal than ε with probability at least 1− δ, which
implies the (ε, δ)-differential privacy guarantee of (θ1, . . . , θT ).

Lemma B.1. Consider the arm i with i ∈ Kopt. Suppose the action aτ (and aτ−1) depend only on θτ (and θτ−1), then we
have for Pi(·|θ) the distribution of Xt,i := Xt1{at = i} condition on θ (in particular, such distribution is independent of t),

‖E[∇Fτ−1(θτ−1)−∇Fτ (θτ−1)|Fτ−1]‖∞ ≤ 2β‖θτ−1 − θ∗‖1M · Eθτ
[
‖Pi(·|θτ−1)− Pi(·|θτ )‖TV |Fτ−1

]
Moreover, when both aτ−1 and aτ are greedy actions, we have

‖Pi(·|θτ−1)− Pi(·|θτ )‖TV ≤ 2βητ−1D.
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Proof. Denote Pi(·|θ) as the distribution of Xt,i under greedy action condition on θ, and Eτ−1[·] the expectation condition
on Fτ−1, then notice that∇f(θ;0, r) = 0 for every θ, r, we have

‖E[Dτ |Fτ−1]‖∞
=
∥∥Eτ−1

Xτ−1,i
[Er[∇f(θτ−1,i;X, r)|X]]− Eτ−1

Xτ,i
[Er[∇f(θτ−1,i;X, r)|X]]

∥∥
∞

=‖
∫
X

(
ζ(x>θτ−1,i)− ζ(x>θ∗i )

)
xdPi(x|θτ−1)−

∫
Θ

∫
X

((
ζ(x>θτ−1,i)− ζ(x>θ∗i )

)
xdPi(x|θτ )dP (θτ )‖∞

≤
∫

Θ

[ ∫
X
|(ζ(x>θτ−1,i)− ζ(x>θ∗i )| · ‖x‖∞ · |pi(x|θτ,i)− pi(x|θτ−1,,i)|dν

]
dP (θτ )

≤2β‖θτ−1,i − θ∗i ‖M · Eτ−1
θτ

[
‖Pi(·|θτ−1)− Pi(·|θτ )‖TV

]
Thus the first part is proved. On the other hand, notice that

‖θτ − θτ−1‖1 = ητ−1‖vτ−1 − θτ−1‖1 ≤ ητ−1D

we get then

‖Pi(·|θτ−1)− Pi(·|θτ )‖TV =
1

2

∫
X
|pi(x|θτ−1)− pi(x|θτ )|dν

≤ 1

2

( ∫
S

+

∫
Sc

)
·
∣∣pi(x|θτ−1)− pi(x|θτ )

∣∣dν
with S :=

{
x ∈ X : 1{a(x|θτ−1) = i} = 1{a(x|θτ ) = i}

}
and a(x|θ) ∈ [K] is the greedy action given context x and

estimator θ, in particular we have 0 ∈ S. Clearly we have the distribution of X1{a(X|θτ ) = i} equals to the distribution of
X1{a(X|θτ−1) = i} on S, thus

1

2

( ∫
S

+

∫
Sc

)
·
∣∣pi(x|θτ−1)− pi(x|θτ )

∣∣dν =
1

2

∫
Sc

∣∣pi(x|θτ−1)− pi(x|θτ )
∣∣dν.

On the other hand, if we denote p(z) the distribution of X , then by 0 /∈ Sc,∫
Sc

∣∣pi(x|θτ−1)− pi(x|θτ )
∣∣dν ≤ 2

∫
X

∫
Sc
pi(x|θτ−1, z)p(z)dνdz

= 2

∫
Sc
p(z)

∫
Sc
pi(x|θτ−1, z)dνdz

≤ 2

∫
Sc
p(z)dz

= 2P (X ∈ Sc).

And by assumption 4.4

P (X ∈ Sc) =P
(
1{a(X|θτ ) = i} 6=d 1{a(X|θτ−1) = i}

)
=P
(
a(X|θτ ) = i, a(X|θτ−1) 6= i

)
+ P

(
a(X|θτ ) 6= i, a(X|θτ−1) = i

)
≤P (max

j 6=i
X>(θτ,i − θτ,j) > 0,max

j 6=i
X>(θτ−1,i − θτ−1,j) ≤ 0)

+ P (max
j 6=i

X>(θτ,i − θτ,j) > 0,max
j 6=i

X>(θτ−1,i − θτ−1,j) ≤ 0)

≤2P (max
j 6=i

X>(θτ−1,i − θτ−1,j) < ητ−1D)

≤2νητ−1D.

We get

‖Pi(·|θτ−1)− Pi(·|θτ )‖TV ≤ 2νητ−1D.
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Lemma B.2. For each arm i ∈ Kopt, suppose that the greedy action begins to be picked at time t0, then for any t > t0 we
have with probability at least 1− α,

∆t .
β

t

(
MD + Csc(α/2(d+ t0))(M +

√
log((d+ T )/α))

√
t0 +DMν

t∑
τ=t0+1

‖θτ−1,i − θ∗i ‖1
)

+
(MD + β)

√
log((d+ T )/α)√
t

,

where

∆t = ‖dt −∇Ft(θt)‖∞,

A(α) = 8D(βD +G)
√

log(8dT/α) +
16D(βD + L) log(4dT/α)

√
log T · log(1/δ)

ε
,

and

Csc(α) =

√
9(βD2 +A(α))2

uµλ
.

Proof. For each arm i, denote Xt,i := Xt1{at = i}, rt,i := rt1{at = i}. Moreover we introduce ft(θ) := f(θ;Xt,at , yt),
Ft(θ) := E[∇ft(θ)|Ft−1] and ∆t := dt −∇Ft(θt). Then

∆t = dt −∇Ft(θt)
= ∇ft(θt) + (1− ρt)(dt−1 −∇ft(θt−1))−∇Ft(θt)
= (1− ρt)εt−1 + ρt(∇ft(θt)−∇Ft(θt))

+ (1− ρt)
(
∇ft(θt)−∇ft(θt−1)− (∇Ft(θt)−∇Ft−1(θt−1))

)
≤

t∏
k=2

(1− ρk)ε1 +

t∑
τ=2

t∏
k=τ

(1− ρk)
(
∇fτ (θτ )−∇fτ (θτ−1)− (∇Fτ (θτ )−∇Fτ−1(θτ−1))

)︸ ︷︷ ︸
Dτ

+

t∑
τ=2

ρτ

t∏
k=τ+1

(1− ρk)
(
∇fτ (θτ )−∇Fτ (θτ )

)
=

t∏
k=2

(1− ρk)ε1 +

t∑
τ=2

t∏
k=τ

(1− ρk)
(
Dτ − E[Dτ |Fτ−1]

)
︸ ︷︷ ︸

I

+

t∑
τ=2

ρτ

t∏
k=τ+1

(1− ρk)
(
∇fτ (θτ )−∇Fτ (θτ )

)
︸ ︷︷ ︸

II

+

t∑
τ=2

E[

t∏
k=τ

(1− ρk)Dτ |Fτ−1]︸ ︷︷ ︸
III

.

(31)

First we bound III. Now by the theorem 3.13, we have with probability at least 1− (t0 − 1)α1,

‖θs,i − θ∗i ‖1 ≤
Csc((t0 − 1)α1)√

s
, ∀s ≤ t0 − 1.

Thus by the Lemma B.1 and the fact that

Eθt0
[
‖Pi(·|θt0−1)− Pi(·|θt0)‖TV |Ft0−1

]
≤ 1,

we have with probability at least 1− (t0 − 1)α1,
t∑

τ=2

t∏
k=τ

(1− ρk)E[Dτ |Fτ−1] =
t0 + 1

t+ 1
2β‖θt0−1 − θ∗‖1M +

t∑
τ=t0+1

τ + 1

t+ 1
2β‖θτ−1 − θ∗‖1M · 2νητ−1D

≤ βM

t+ 1

(
2Csc((t0 − 1)α1) ·

√
t0 + 1 +

t∑
τ=t0+1

(τ + 1)2‖θτ−1 − θ∗‖1 · 2νητ−1D

)
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Now to bound ∆t, it sufficient to bound I+II, i.e.,

t∑
τ=2

t∏
k=τ

(1− ρk)
(
Dτ − E[Dτ |Fτ−1]

)
+

t∑
τ=2

ρτ

t∏
k=τ+1

(1− ρk)
(
∇fτ (θτ )−∇Fτ (θτ )

)
.

For the second summation, we have by the same argument as in proof of Lemma A.7, with probability at least 1− α2

‖
t∑

τ=2

ρτ

t∏
k=τ+1

(1− ρk)
(
∇fτ (θτ )−∇Fτ (θτ )

)
‖∞ ≤

4MD
√

log(4d/α2)√
t+ 1

For the first summation, notice that

‖Dτ‖∞ ≤ 2MDητ + ‖∇Fτ (θτ−1)−∇Fτ−1(θτ−1)‖∞
= 2MDητ + E

[
‖E[∇Fτ (θτ−1)|Fτ−1]−∇Fτ−1(θτ−1)‖∞

]
≤ 2MDητ + 2β‖θτ−1,i − θ∗i ‖1M · E[‖Pi(·|θτ−1)− Pi(·|θτ )‖TV ]

Now by

E[‖Pi(·|θτ−1)− Pi(·|θτ )‖TV ] ≤

 0 τ < t0
1 τ = t0,

Dνητ τ > t0.

And ‖θτ−1,i − θ∗i ‖1 ≤ D we have by setting Mτ = τ
(
Dτ − E[Dτ |Fi−1]

)
, then

‖Mτ‖∞ ≤

 2MD τ < t0
2M(D + βCsc(α1)

√
t0) τ = t0, with probability at least 1− α1

2MD(1 + β) τ > t0.

And thus apply Azuma-Hoeffding’s inequality to each components Mτ,i with Mt0 replaced by M ′t0 := Mt01{Mt0 ≤
2M(D + βCsc(α1)

√
t0)}, we have with probability at least 1− dα1,

|M ′t0,i +
∑
τ 6=t0

Mτ,i| ≤
(

2M

√
t0D2 + (D + βCsc(α1)

√
t0)2 + (t− t0)D2(1 + β)2 + E[M ′t0,i|Ft0−1]

)
·
√

log(1/α1)

≤ 4M
[
D(1 + β)

√
t+ (D + βCsc(α1)

√
t0)
]
·
√

log(1/α1)

normalizing the summation by t and notice that M ′t0 6= Mt0 with probability at most α1, we have then with probability at
least 1− dα1

t∑
τ=2

t∏
k=τ

(1− ρk)
(
Dτ − E[Dτ |Fτ−1]

)
≤
(2MD(1 + β)√

t
+
D + βCsc(α1)

√
t0

t

)
·
√

log(1/α1),∀i ∈ [d]

Now combining all bounds and set α1 = α(d+ t0)/2, α2 = α/2, we get with probability at least 1− α,

‖∆t‖ ≤
MβD

t+ 1
+
(2MD(1 + β)√

t
+
D + Csc(α(d+ t0)/2)β

√
t0

t

)
·
√

log(2(d+ t0)/α) +
4MD

√
log(8d/α)√
t+ 1

+
βM

t+ 1

(
3Csc((t0 − 1)α/(2(d+ t0))) ·

√
t0 + 1 +

t∑
τ=t0+1

(τ + 1)2‖θτ−1,i − θ∗i ‖1 · 2νητ−1D

)

.
β

t

(
MD + Csc((d+ t0)α/2)(M +

√
log((d+ T )/α))

√
t0 +DMν

t∑
τ=t0+1

‖θτ−1 − θ∗‖1
)

+
(MD + β)

√
log((d+ T )/α)√
t

as claimed.
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Lemma B.3. As long as t0 is selected so that with probability at least 1− α,

Csc(α)√
t0
≤ min{ hsub

4βM
, `}.

Then we have with probability at least 1− α, the following claim holds for all t0 ≤ t ≤ T and i ∈ Kopt,

Ût ∩ U c = ∅,
uλ ≤ E[Xt,iX

>
t,i]

a∗t ∈ K̂t.

In particular, that implies the GLM loss

Ft(θ) := E[f(θ;Xt,i, rt,i)|Ft−1]

is µλu-strongly convex in `1-geometry.

Proof. Firstly, notice that as long as supi∈[K]‖θt0,i − θ∗i ‖1 <
hsub
4βM

, we have for each t, denote

it := argmaxi∈[K]ζ(X>t θt0,i), i
∗
t := argmaxi∈[K]ζ(X>t θ

∗
i ),

then

P (K̂t ∩Ksub 6= ∅) = P (∃j ∈ Ksub s.t. ζ(X>t θt0,j) > ζ(X>t θt0,it)− hsub/2)

≤ P (∃j ∈ Ksubc s.t. ζ(X>t θt0,j) > ζ(X>t θt0,i∗t )− hsub/2)

≤ P (∃j ∈ Ksub s.t. ζ(X>t θ
∗
j ) +

hsub
4

> ζ(X>t θ
∗
i∗t

)− 3hsub
4

)

= 0.

Thus the first claim holds.
To prove the second claim, notice that for every t ≥ K ∗ t0, we have condition on the supi∈[K]‖θt0,i − θ∗i ‖1 <

hsub
4βM

, for

every i ∈ Kopt,

P (at = i) ≥ P (K̂t = {i})
≥ P (K̂t = {i}, Xt ∈ Ui)
= P (ζ(X>t θKt0,i) > max

j 6=i
ζ(X>t θKt0,j) + hsub/2, ζ(X>t θ

∗
i ) > max

j 6=i
ζ(X>t θ

∗
j ) + hsub)

≥ P ( sup
i∈[K]

‖θs0,i − θ∗i ‖1 <
hsub
4βM

, ζ(X>t θ
∗
i ) > max

j 6=i
ζ(X>t θ

∗
j ) + hsub)

= P (Xt ∈ Uj) ≥ u.

Thus we have

λu ≤ P (Xt ∈ Ui) · E[XtX
>
t |Xt ∈ Ui] ≤ E[Xt,iX

>
t,i].

To prove the third claim, note that for any it = argmaxi∈[K]X
>
t θt0,i

ζ(X>t θt0,it)− ζ(X>t θt0,i∗t ) = ζ(X>t θt0,it)− ζ(X>t θ
∗
t0,it)

+ ζ(X>t θ
∗
t0,it)− ζ(X>t θ

∗
t0,i∗t

)

+ ζ(X>t θ
∗
t0,i∗t

)− ζ(X>t θt0,i∗t ))

≤ hsub
2

+ ζ(X>t θ
∗
t0,it)− ζ(X>t θ

∗
t0,i∗t

)

≤ hsub
2
.

Thus i∗t ∈ K̂i.
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B.1. Proof of Theorem 4.8

Proof. Suppose at time t, we have with probability at least 1− α that

hτ ≤
Cin(α)

τ
, (thus ‖θτ − θ∗‖1 ≤

√
Cin(α)

uλµτ
), ∀τ ≤ t− 1,

then condition on such event, from Lemma B.2 and the same argument in (25), we have for ht := Ft(θt)− Ft(θ∗), with
probability at least 1− α1 − α2,

ht ≤ ht−1 + 2ηt‖∇Ft(θt)− dt‖∞D − ηtγ
√

2µht−1 +
η2
tLD

2

2
+ ηt〈dt, vt − ṽt〉

≤ ht−1 − ηtγ
√

2µht−1 + 2ηt
Dβ

t

(
MD + Csc(α1/2(d+ t0))(M +

√
log((d+ T )/α1))

√
t0)

+
2ηtDMν

√
tβC

1/2
in√

µt
+

2ηtD(MD + β)
√

log((d+ T )/α1)√
t

+
η2
tLD

2

2

+ ηt
4D(βD + L)

√
log T · log(1/δ)√
tε

· 4 log(2d/α2)

:= ht−1 − ηtγ
√

2µht−1 +
G1C

1/2
in

t3/2
+

G2

t3/2ε
+

G3

t3/2
+
G4

t2
,

where

G1 :=
2βD2Mν
√
µ

,

G2 :=
4D(βD + L)

√
log T · log(1/δ)

ε
· 4 log(2d/α2),

G3 := D(MD + β)
√

log((d+ T )/α1),

G4 := Dβ
(
MD + Csc(α1/2(d+ t0))(M +

√
log((d+ T )/α1))

√
t0
)

+
LD2

2
.

For notation simplicity we abbreviate Cin for Cin(α) below.

Case1: ht−1 − ηtγ
√

2µht−1 ≤ 0 : i.e.

ht ≤
G1C

1/2
in

t3/2
+

G2

t3/2ε
+

G3

t3/2
+
G4

t2
.

To ensure the induction, we need

G1C
1/2
in

t3/2
+

G2

t3/2ε
+

G3

t3/2
+
G4

t2
≤ Cin

t

⇐⇒ G1C
1/2
in

t1/2
+

G2

t1/2ε
+

G3

t1/2
+
G4

t
≤ Cin

As long as t ≥ max{G2
1,

G2
2

log(dT/α) , G
2
3,

G4

log(dT/α)} ⇒ t ≥ log(dT/α) log(T )

ε2
, we can chooseCin = max{4, 9 log2(dT/α)

ε2 }
to satisfy the above inequality.
Case2: ht−1 − ηtγ

√
2µht−1 > 0 :

ht = ht−1 − ηtγ
√

2µht−1 +
G1C

1/2
in

t3/2
+

G2

t3/2ε
+

G3

t3/2
+
G4

t2

≤ Cin
t
− ηtγ

√
2µC

1/2
in√
t

+
G1C

1/2
in

t3/2
+

G2

t3/2ε
+

G3

t3/2
+
G4

t2
,
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i.e.

ht+1 −
Cin
t+ 1

≤
(Cin
t
− Cin
t+ 1

)
− ηtγ

√
2µC

1/2
in√
t

+
G1C

1/2
in

t3/2
+

G2

t3/2ε
+

G3

t3/2
+
G4

t2
,

i.e. we need to choose Cin so that RHS is not greater than zero,

i.e. (γ
√

2µ−G1)C
1/2
in −

Cin
t1/2

≥ G2

t1/2ε
+

G3

t1/2
+
G4

t
.

Choosing γ ≥ 3G1

2
√

2µ
, and as long as

Cin = C̃
log2(dT/α)

ε2
for some C̃ independent of d, T and α,

t ≥ max{ G2
2

log(dT/α)
, G2

3,
G4

log(dT/α)
,

Cin
9 log(dT/α)

} ⇒ t &
log(dT/α) log(T )

ε2
,

the claim holds.

Finally we need to ensure the induction holds when t = t0. Note that when t ≤ t0, the convergence result
is given by Theorem 3.13. Thus to ensure the induction holds we also need Cin ≥ λβµ(Csc(α))2. In conclu-
sion, we choose α1 = α2 = α

2T , Cin = max{4, 9 log(dT )
ε2 , 36 log2(dT )

(εG1)2 , λβµ(Csc(α))2} = O( log2(dT/α) log(T )
ε2 ), and

t0 = max{G2
1,

G2
2

log(dT/α) , G
2
3,

G4

log(dT/α) ,
Cin

9 log(dT/α)} = O( log(dT/α) log(T )
ε2 ) to ensure the induction holds.

B.2. Proof of Theorem 4.9

Proof. We define event

Et,1 :=
{
Ût ∩ U c = ∅, a∗t ∈ Ût

}
,

Et,2 :=
{

sup
i∈Kopt

‖θt,i − θ∗i ‖1 ≤
√
Cin(α/(4|Kopt|)

2
√
t

}
,

Et :=
{
Et,1, Et,2,∆t ≤

Mβ
√
Cin(α/(4|Kopt|))√

t

}
.

and we use Cin for Cin(α/(4|Kopt|)) for notation simplicity in the following. Using the similar argument as in Theorem 4.8,
we can verify that condition on the event supi∈Kopt‖θt,i − θ

∗
i ‖1 ≤

√
Cin

2
√
t

and ∆t ≤ Mβ
√
Cin√
t

, we must have at = a∗t . Thus
with probability at least 1− 3α

4 , the event Et ∪ Ect,1 ∪ Ect,2 holds, thus,

Regret(T ) =
(∑
t≤t0

+
∑
t>t0

)(
ζ(X>t θ

∗
t )− ζ(X>t θ

∗
at)
)

≤
∑
t≤t0

(ζ(X>t θ
∗
t )− ζ(X>t θ

∗
at)) +

∑
t>t0

(ζ(X>t θ
∗
t )− ζ(X>t θ

∗
at))1{Et ∪ E

c
t,1 ∪ Ect,2}.

Note that the choice of t0 = O( log(dT/α) log(T )
ε2 ) as stated in Theorem 4.8 and the range of the reward can be bounded.

Now it remains to bound the second term. Let At = Mβ
√
Cin√
t

1{∆t ≤ Mβ
√
Cin√
t
} and the second term is upper bounded

by
∑
t0<t≤T At. We have

∑
t0<t≤T (Mβ

√
Cin√
t

)2 ≤ M2β2Cin log(T ). Note that P (At = Mβ
√
Cin√
t

) ≤ νMβ
√
Cin√
t

by
Assumption 4.4 and thus E[

∑
t0<t≤T At] ≤ νM2β2Cin log(T ). We apply Hoeffding’s inequality and can conclude that

with probability at least 1− α/4∑
t≥t0

At ≤ νM2β2Cin log(T ) + 2Mβ
√
Cin log(T ) log(4/α).

Putting all the terms together, and we arrive the desired conclusion.
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Table 3. SubOpt for NoisySFW and Algorithm 1 with p = 1.5.

T = 1000, d = 5 T = 1000, d = 10

NoisySFW 0.52± 0.057 0.95± 0.095
Algo. 1 0.017± 0.010 0.20± 0.048

T = 2000, d = 5 T = 2000, d = 10

NoisySFW 0.44± 0.029 0.89± 0.069
Algo. 1 0.0024± 0.001 0.060± 0.032

Table 4. SubOpt for NoisySGD and Algorithm 1 with p =∞.

T = 1000, d = 5 T = 1000, d = 10

NoisySGD 0.026± 0.018 0.053± 0.015
Algo. 1 0.036± 0.022 0.092± 0.021

T = 2000, d = 5 T = 2000, d = 10

NoisySGD 0.013± 0.0037 0.038± 0.013
Algo. 1 0.015± 0.0059 0.058± 0.013

C. Experiments
In this section, we present experiment results to demonstrate the efficacy and efficiency of our algorithm. We consider the
linear regression setting y = X>θ + ε, where the design matrix X ∈ Rd×n, true parameter θ ∈ Rd, output y ∈ Rn, and
ε ∼ N(0, ν2) is a noise vector. We define the loss function as L(θ̂, X) = 1

n

∑n
i=1(yi − 〈xi, θ̂〉)2 for any given estimation

θ̂, where yi is the i-th entry of y and xi is the i-th column of X . Therefore, the excess risk will be F (θ̂) = E[L(θ̂)]. Here
we will use the loss function over a separate testing set as an empirical estimation of the excess risk, which we denote as
L(θ̂, Xtest) . And we further introduce suboptimality as SubOpt = L(θ̂,Xtest)−L(θ,Xtest)

L(θ0,Xtest)−L(θ,Xtest)
, to demonstrate utility intuitively.

Here θ0 is zero vector, serving as the initialization of all algorithms.

We choose p = 1.5 and p = ∞ as our geometries. And (1, 1/T )-DP is guaranteed. We compare our Algorithm 1 with
NoisySFW (Algorithm 3 in Bassily et al. (2021b)), LocalMD (Algorithm 6 in Asi et al. (2021)) when p = 1.5, and with
NoisySGD (Algorithm 2 in Bassily et al. (2020)) when p =∞. We generate T samples i.i.d. from a normal distribution
with mean zero and standard deviation 0.05, and then normalize them by their q-norm to ensure each sample maintain unit
q-norm. We also generate the true underlying parameter θ by setting all its entries to 1 and then normalized it by its p-norm.
The size of the testing set is 10000.

We show the SubOpt in Table 3 and Table 4. All results are based on 10 independent runs. To achieve the best performance
for each algorithm, we will scale their default learning rate by a grid of scaling factors, and report the best SubOpt. One
thing we need to mention is that LocalMD does not converge regardless of the learning rate scaling. We suspect that this is
due to the large constants before their Bregman divergence, and the standard deviation of their Gaussian noise. As we can
see, Algorithm 1 outperforms NoisySFW in p = 1.5. What’s more, it achieves comparable result to NoisySGD in p =∞.
And we recall that the number of gradient query for Algorithm 1 is linear, while that of NoisySGD is superlinear.


