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Abstract
Neural Ordinary Differential Equations model dy-
namical systems with ODEs learned by neural
networks. However, ODEs are fundamentally in-
adequate to model systems with long-range de-
pendencies or discontinuities, which are common
in engineering and biological systems. Broader
classes of differential equations (DE) have been
proposed as remedies, including delay differen-
tial equations and integro-differential equations.
Furthermore, Neural ODE suffers from numerical
instability when modelling stiff ODEs and ODEs
with piecewise forcing functions. In this work, we
propose Neural Laplace, a unified framework for
learning diverse classes of DEs including all the
aforementioned ones. Instead of modelling the
dynamics in the time domain, we model it in the
Laplace domain, where the history-dependencies
and discontinuities in time can be represented as
summations of complex exponentials. To make
learning more efficient, we use the geometrical
stereographic map of a Riemann sphere to induce
more smoothness in the Laplace domain. In the
experiments, Neural Laplace shows superior per-
formance in modelling and extrapolating the tra-
jectories of diverse classes of DEs, including the
ones with complex history dependency and abrupt
changes.

1. Introduction
Learning differential equations that govern dynamical sys-
tems is of great practical interest in the natural and social
sciences. Chen et al. (2018) introduced neural Ordinary Dif-
ferential Equation (ODE) to model the temporal states x(t)
according to an ODE ẋ = f(t,x(t)), where the function f
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Table 1. Families of DEs captured by Neural Laplace.

Model Equation

ODE ẋ = f(t,x(t))
DDE ẋ = f(t,x(t),x(t− τ)), τ ∈ R+

IDE ẋ = f(t,x(t)) +
∫ t

0
h(τ,x(τ))dτ

Forced ODE ẋ = f(t,x(t),u(t))

Stiff ODE ẋ = f(t,x(t)),∃ i, j, ẋi ≫ ẋj

is unknown a priori and is learned by a neural network.

However, there exists much broader classes of DEs, for
which Neural ODE cannot model or describe (Table 1).
These DEs are formulated to capture more general temporal
dynamics, which are beyond an ODE’s modeling capacity.

For example, the delay differential equation (DDE) and the
integro-differential equation (IDE) both include historical
states x(t − τ), ∀τ > 0; they thus offer a natural way of
capturing the impact from history (Forde, 2005; Koch et al.,
2014). In contrast, ODEs are inadequate to represent such
history dependency because they determine the temporal
derivative ẋ by the current state x(t) alone. As a remedy, the
users of ODEs often resort to introducing latent variables or
additional states, which may not have any semantic meaning
or physical interpretation, making the model less transparent
(Dupont et al., 2019; Rubanova et al., 2019).

Furthermore, there also exists sub-classes of ODEs that can-
not be adequately modeled by Neural ODEs. Two prime
examples are forced ODEs and stiff ODEs (Table 1). In
the former case, the system dynamics are influenced by an
external forcing function u(t) which may be only piecewise
continuous in time. In the latter case, the system often in-
volves states operating at different time scales, i.e. ẋi ≫ ẋj

for some i, j. However, in both cases, the numerical solver
employed by Neural ODE would encounter difficulty in
accurately solving the initial value problem (IVP, Equation
1), which causes problems in training and inference.

x(t) = x(0) +

∫ t

0

f(τ,x(τ))dτ = Solve(x(0), f, t) (1)

Prior works have attempted to address these limitations sep-
arately and individually, which leads to a suite of methods
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Figure 1. Comparison between Neural Laplace and Neural ODE’s modeling approaches. Neural Laplace models DE solutions in
the Laplace domain F (s) and uses the inverse Laplace transform to generate the time solution x(t) at any time in the time domain.
The Laplace representation F (s) can represent broader classes of DE solutions than that of an ODE. Neural Laplace further uses a
stereographic projection to remove the singularities ∞ of F (s), forming a continuous and compact domain that improves learning. In
contrast, Neural ODE models ẋ in the time domain using a stepwise numerical ODE solver to generate the time solution.

that are often incompatible with each other. Whilst there
has been some work on adapting Neural ODE to model
DDEs specifically (Anumasa & PK, 2021; Zhu et al., 2020),
their specialized architecture and inference methods rule out
the possibility to model other classes of DEs (e.g. IDE or
forced ODE). Similarly, the works on modeling stiff ODEs
have proposed alternative system parameterizations that are
invalid for other classes of DEs (Biloš et al., 2021).

In this work, we take a holistic approach and propose a
unified framework, Neural Laplace, to learn a broad range
of DEs (Table 1) which have vast applications (Appendix
A). Importantly, Neural Laplace does not require the user to
specify the class of DE a priori (e.g. choosing between ODE
and DDE). Rather with the same network, the appropriate
class of DE will be determined implicitly in a data-driven
way. This significantly extends the flexibility and modeling
capability of the existing works.

Unlike the existing works in Neural ODE, which solve
the ODE in the time domain (Equation 1), Neural Laplace
leverages the Laplace transform and models the DE in the
Laplace domain (Figure 1). This brings two immediate ad-
vantages. First, many classes of DEs including DDE and
IDE can be easily represented and solved in the Laplace do-
main (Cooke, 1963; Yi et al., 2006; Pospisil & Jaros, 2016;
Cimen & Uncu, 2020; Smith, 1997). Secondly, Neural
Laplace bypasses the numerical ODE solver and constructs
the time solution x(t) with global summations of complex
exponentials (through the inverse Laplace transform, Figure
2). It is worth highlighting that the conventional Laplace
transform method is used to solve a known DE with an
analytical form; yet Neural Laplace focuses on learning
an unknown DE with neural networks and leverages the
Laplace transform as a component.

Contributions. We propose Neural Laplace—a unified
framework of learning diverse classes of DEs for modeling
dynamical systems. Unlike Neural ODE, Neural Laplace
uses neural networks to approximate the DEs in the Laplace
domain, which allows it to model general DEs. To facilitate
learning and generalization in the Laplace domain, Neural
Laplace leverages the stereographic projection of the com-
plex plane on the Reimann sphere. Empirically, we show
on diverse datasets that Neural Laplace is able to accurately
predict DE dynamics with complex history dependencies,
abrupt changes, and piecewise external forces, where Neural
ODE falls short.

We have released a PyTorch (Paszke et al., 2017) imple-
mentation of Neural Laplace, including GPU implemen-
tations of several ILT algorithms. The code for this is at
https://github.com/samholt/NeuralLaplace.

2. Related work
Table 2 summarizes the key features of the related works
and compares them with Neural Laplace.

Neural ODEs model temporal dynamics with ODEs learned
by neural networks (Chen et al., 2018). As a result, Neural
ODE inherits the fundamental limitations of ODEs. Specif-
ically, the temporal dynamics ẋ(t) only depends on the
current state x(t) but not on the history. This puts a theo-
retical limit on the complexity of the trajectories that ODEs
can model, and leads to practical consequences (e.g. ODE
trajectories cannot intersect). Some existing works mitigate
this issue by explicitly augmenting the state space (Dupont
et al., 2019), introducing latent variables (Rubanova et al.,
2019) or higher order terms (Yildiz et al., 2019). However,
they still operate in the ODE framework and cannot model

https://github.com/samholt/NeuralLaplace
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Table 2. Comparison with existing works. Neural Laplace is a unified framework of learning diverse classes of DEs.

Quantity Initial Representable classes of DEs
Method Reference Modeled Condition ODE DDE IDE Forced DE Stiff DE

Neural ODE Chen et al. (2018) ẋ(t) x(0) ✓ ✗ ✗ ✗ ✗
ANODE Dupont et al. (2019) ẋ(t), ż(t) x(0),0 ✓ ✗ ✗ ✗ ✗
Latent ODE Rubanova et al. (2019) ż(t) z(0) ✓ ✗ ✗ ✗ ✗
ODE2VAE Yildiz et al. (2019) ẋ(t), ẍ(t) x(0), ẋ(0) ✓ ✗ ✗ ✗ ✗
Neural DDE Zhu et al. (2020) ẋ(t) x(t), t ≤ 0 ✗ ✓ ✗ ✗ ✗
Neural Flow Biloš et al. (2021) x(t) x(0) ✓ ✗ ✗ ✗ ✓
Neural IM Gwak et al. (2020) ẋ(t) x(0) ✓ ✗ ✗ ✓ ✗
Neural Laplace This work F(s) p ✓ ✓ ✓ ✓ ✓

broader classes of DEs. Recently, Zhu et al. (2020) proposes
a specialized neural architecture to learn a DDE, but the
method is unable to learn the more complex IDE and often
suffers from numerical instability. Kidger et al. (2020b) pro-
poses to learn history dependency with controlled DEs, but
the method requires the trajectory to be twice-differentiable
(thus not applicable to systems with abrupt changes).

Another limitation of Neural ODE and extensions is that
they struggle to model certain types of dynamics due to
numerical instability. This is because Neural ODE relies on
a numerical ODE solver (Equation 1) to predict the trajec-
tory (forward pass) and to compute the network gradients
(backward pass). Two common scenarios where standard
numerical ODE solvers fail are (1) systems with piecewise
external forcing or abrupt changes (i.e. discontinuities) and
(2) stiff ODEs (Ghosh et al., 2020), both are common in
engineering and biological systems (Schiff, 1999). Some
existing works address this limitation by using more pow-
erful numerical solvers. Specifically, when modelling stiff
systems, Neural ODE requires special treatment in its com-
putation: either using a very small step size or a specialized
IVP numerical solver (Kim et al., 2021). Both lead to a
substantial increase in computation cost. However, Neural
Laplace does not require special treatment or significant
increase in computation for stiff systems. Biloš et al. (2021)
proposes to model the trajectory x(t) directly with a neural
network, removing the need to use numerical solvers. How-
ever, their method cannot model broader classes of DEs or
trajectories with abrupt changes. Jia & Benson (2019) pro-
pose methods that specifically deal with changing external
forcing functions, but their proposals are not applicable to
other DDEs and IDEs.

Furthermore, the Laplace transform has been used to con-
struct input feature filters in the context of scale space theory
(Lindeberg & Fagerström, 1996; Lindeberg, 2022).

3. Problem and Background
Notation. For a system with D ∈ N+ dimensions, the
state of dimension d at time t is denoted as xd(t),∀d =
1, . . . , D,∀t ∈ R. We elaborate that the trajectory xd :
R → R is a function of time, whereas the state xd(t) ∈
R,∀t ∈ R is a point on the trajectory. Thus the state vector
is x(t) := [x1(t), . . . , xD(t)]T ∈ RD and the vector-valued
trajectory is x := [x1, . . . , xD]. The state observations are
made at discrete times of t ∈ T = {t1, t2, . . . , T}.

Laplace Transform. The Laplace transform of trajectory x
is defined as (Schiff, 1999)

F(s) = L{x}(s) =
∫ ∞

0

e−stx(t)dt, (2)

where s ∈ Cd is a vector of complex numbers and F(s) ∈
Cd is called the Laplace representation. The F(s) may have
singularities, i.e. points where F(s) → ∞ for one compo-
nent (Schiff, 1999). Importantly, the Laplace transform is
well-defined for trajectories that are piecewise continuous,
i.e. having a finite number of isolated and finite disconti-
nuities (Poularikas, 2018). This property allows a learned
Laplace representation to model a larger class of DE solu-
tions, compared to the consistently smooth ODE solutions
given by Neural ODE and variants (Dupont et al., 2019).

Inverse Laplace Transform. The inverse Laplace trans-
form (ILT) is defined as

x̂(t) = L−1{F(s)}(t) = 1

2πi

∫ σ+i∞

σ−i∞
F(s)estds, (3)

where the integral refers to the Bromwich contour integral
in Cd with the contour σ > 0 chosen such that all the
singularities of F(s) are to the left of it (Schiff, 1999). Many
algorithms have been developed to numerically evaluate
Equation 3. On a high level, they involve two steps: (Dubner
& Abate, 1968; De Hoog et al., 1982; Kuhlman, 2013).

Q(t) = ILT-Query(t) (4)

x̂(t) = ILT-Compute
(
{F(s)|s ∈ Q(t)}

)
(5)
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Figure 2. Individual pole points, s = σ+iω and their time complex
exponential reconstructions in blue, illustrated for one dimension
of the s-domain. ω is the frequency along the imaginary axis, and
σ the real component. The complex frequency and its complex
conjugate, mean the representation is symmetrical about the real
axis σ. Also the Laplace transform can be seen as a complex
generalisation of the Fourier transform, as we get the Fourier
transform when σ = 0, i.e. the imaginary axis in our Laplace
representation.

To evaluate x(t) on time points t ∈ T ⊂ R, the algorithms
first construct a set of query points s ∈ Q(T ) ⊂ C (Ap-
pendix B). They then compute x̂(t) using the F(s) evaluated
on these points. The number of query points scales linearly
with the number of time points, i.e. |Q(T )| = b|T |, where
the constant b > 1, denotes the number of reconstruction
terms per time point and is specific to the algorithm. Impor-
tantly, the computation complexity of ILT only depends on
the number of time points, but not their values (e.g. ILT for
t = 0 and t = 100 requires the same amount of computa-
tion). The vast majority of ILT algorithms are differentiable
with respect to F(s), which allows the gradients to be back
propagated through the ILT transform. We further discuss
the selected ILT in Section 4 and Appendix B.

Intuitively, the inverse Laplace transform (ILT) (Equation
3) reconstructs the time solution with the basis functions
of complex exponentials est, which exhibit a mixture of si-
nusoidal and exponential components (Schiff, 1999; Smith,
1997; Kuhlman, 2013). Figure 2 shows an illustration of
these basis function representations.

Solving DEs in the Laplace domain. A key application
of the Laplace transform is to solve broad classes of DEs,
including the ones presented in Table 1 (Podlubny, 1997;
Yousef & Ismail, 2018; Yi et al., 2006; Kexue & Jigen,

2011). Due to the Laplace derivative theorem (Schiff, 1999),
the Laplace transform can convert a DE into an algebraic
equation even when the DE contains historical states x(t−τ)

(as in DDE), integration terms
∫ t

0
h(τ,x(τ))dτ (as in IDE)

or piecewise continuous terms (as in Forced ODE). It also
applies to coupled DEs and can allow decoupled solutions
to coupled DEs for dynamical systems (Åström & Murray,
2010). The resulting algebraic equation can either be solved
analytically or numerically to obtain the solution of the DE,
F(s), in the Laplace domain. Finally, one can obtain the
time solution x(t) by applying the ILT on F(s). As we will
show in the next Section, this approach of solving general
DEs serves as the foundation of Neural Laplace.

There also exist numerical simulation techniques in the
Laplace domain, the Laplace Transform Boundary Element
(LTBE) as a numerical method for solving diffusion-type
PDEs (Kuhlman, 2013; Moridis & Reddel, 1991; Moridis,
1992; Crann, 2005) and the Laplace Transform Finite Dif-
ference (LTFD) for simulation of single-phase compressible
liquid flow through porous media (Moridis & Reddell, 1991;
Moridis et al., 1994; Zahra et al., 2017).

4. Method
Overview of Neural Laplace. The Neural Laplace archi-
tecture involves three main components: 1. an encoder that
learns to infer and represent the initial condition of the tra-
jectory, 2. a Laplace representation network that learns to
represent the solutions of DEs in the Laplace domain, and 3.
an ILT algorithm that converts the Laplace representation
back to the time domain. The block diagram is shown in
Figure 3. We now discuss each component.

Learning to represent initial conditions. The solution
of a DE depends on the initial condition of the trajectory.
Different classes of DEs have different types of initial condi-
tions. For a first-order ODE (e.g. Neural ODE), it is simply
x(0). For a second-order ODE, it is the vector (x(0), ẋ(0)).
And for a DDE with delay τ , it is the function values x(t),
∀ − τ ≤ t ≤ 0. Note that we only observe the trajectories
but do not know the class of DE that generates the data.
Hence, we need to infer the appropriate initial condition,
which implicitly determines the class of DE. To achieve this
goal, Neural Laplace uses an encoder network to learn a
representation of the initial condition. We highlight that the
observations encoded can be at irregular times.

p = hγ((x(t1), t1), (x(t2), t2), . . . , (x(T ), T )) (6)

The vector p ∈ RK is the learned initial condition represen-
tation, where K ≥ D is a hyper-parameter. The encoder h
has trainable weights γ. Neural Laplace is agnostic to the
exact choice of encoder architecture. In the experiments, we
use the reverse time gated recurrent unit, similar to Chen
et al. (2018), for a fair comparison with the benchmarks.
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Figure 3. Block diagram of Neural Laplace. The query points s are given by the ILT algorithm based on the time points to reconstruct or
extrapolate. The gradients can be back-propagated through the ILT algorithm and stereographic projection to train networks hγ and gβ .

Learning DE solutions in the Laplace domain. Given
the initial condition representation p, we need to learn a
function l : RK ×Cb → CD that models the Laplace repre-
sentation of the DE solution, i.e. F(s) = l(p, s). However,
the Laplace representation F(s) often involves singularities
(Schiff, 1999), which are difficult for neural networks to
approximate or represent (Baker & Patil, 1998). We instead
propose to use a stereographic projection (θ, ϕ) = u(s)
to translate any complex number s ∈ C into a coordinate
on the Riemann Sphere (θ, ϕ) ∈ D = (−π, π) × (−π

2 ,
π
2 )

(Rudin, 1987), i.e.

u(s) =

(
arctan

(
Im(s)

Re(s)

)
, arcsin

(
|s|2 − 1

|s|2 + 1

))
(7)

The inverse transform, v : D → C, is given as

s = v(θ, ϕ) = tan

(
ϕ

2
+

π

4

)
eiθ (8)

This produces desirable geometrical properties, that a com-
plex point at ∞ is the north pole of the sphere ϕ = π

2 ,∀θ
(Rudin, 1987). With the stereographic projection, we intro-
duce a feed-forward neural network g to learn the Laplace
representation of the DE solution.

F(s) = v
(
gβ

(
p, u(s)

))
, (9)

where projections u and v are defined in Equations 7 and
8 respectively, the vector p is the output of the encoder
(Equation 6), and β is the trainable weights. Here the neu-
ral network’s inputs and outputs are the coordinates on the
Riemann Sphere, which is bounded and free from singu-
larities. Empirically this aids learning and generalization,
demonstrating that it can reduce the test RMSE dramatically
compared to learning without the map (Section 5.2). The
improved smoothness with the singularity mapping is shown
in Figure 1, and geometry in Figure 4, for the stereographic

projection map of Equation 7. A nice example of this map
is the function of 1/s, which corresponds to a rotation of
the Riemann-sphere 180◦ about the real axis. Therefore a
representation of 1/s under this transformation becomes the
map θ, ϕ 7→ −θ,−ϕ (Rudin, 1987).
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Figure 4. Geometry of the Riemann sphere map for a complex
number C into a spherical co-ordinate representation of θ, ϕ.

Inverse Laplace transform. After obtaining the Laplace
representation F(s) from Equation 9, we compute the pre-
dicted or reconstructed state values x̂(t) using the ILT. We
highlight that we can evaluate x̂(t) at any time t ∈ R as the
Laplace representation is independent of time once learnt. In
practice, we use the well-known ILT Fourier series inverse
algorithm (ILT-FSI), which can obtain the most general time
solutions whilst remaining numerically stable (Dubner &
Abate, 1968; De Hoog et al., 1982; Kuhlman, 2013). In
Appendix B, we provide more details of the ILT-FSI and
comparisons with other ILT algorithms.
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We note that numerically estimating the LT on the obser-
vations x(t) only gives F(s) on a finite set, ∀s ∈ U ⊂ C,
where U is determined by the observation times. Thus,
this cannot generalize for extrapolation or interpolation.
Whereas Neural Laplace learns F(s),∀s ∈ C on the entire
complex domain C.

Loss function. Neural Laplace is trained end-to-end using
the mean squared error loss,

J =
∑
t∈T

∥x̂(t)− x(t)∥22 , (10)

where x̂(t) is the reconstructed trajectory (Equation 5). We
minimize the above loss function J to learn the encoder hγ

and the Laplace representation network gβ . This training is
summarized in Algorithm 1. We can also constrain the ILT
reconstruction frequencies with a low pass filter, smoothing
the reconstructed signal, and we empirically show a toy
noise removal task of this in Appendix C.

Algorithm 1 Neural Laplace Training Procedure
Input: Observed trajectory x(t), t ∈ T
Input: Training iterations I
for i ∈ 1 : I do
p = hγ

(
{x(t)|t ∈ T }

)
Eq. 6

for t ∈ T do
Q = ILT-Query(t) Eq. 4
for s ∈ Q do
F(s) = v

(
gβ

(
p, u(s)

))
Eq. 9

end for
x̂(t) = ILT-Compute

(
{F(s)|s ∈ Q}

)
Eq. 5

end for
J =

∑
t∈T ∥x̂(t)− x(t)∥22 Eq. 10

Compute gradients of J via back propagation.
Update neural network weights γ and β.

end for
Output: the trained neural networks hγ and gβ

Comparison with Neural ODE. Here we articulate the
three main differences between Neural Laplace and Neural
ODE. (1) The encoders of these two frameworks serves dif-
ferent purposes. The Neural ODE encoder is tasked to infer
the initial condition x(0) when it is observed with noise
or unobserved (e.g. measurement starts at t > 0). On the
other hand, the Neural Laplace encoder needs to learn an
appropriate representation of the initial condition and im-
plicitly decide the class of DE to use. The representation p
may include more information than x(0). (2) Neural ODE
uses a neural network to approximate ẋ(t) while Neural
Laplace uses a neural network to approximate F(s) after
the stereographic projection. As a result, Neural ODE can
only model twice-differentiable trajectories x(t) while Neu-
ral Laplace can model non-smooth trajectories. (3) Neural

ODE uses numerical IVP solvers while Neural Laplace uses
ILT algorithms. The ILT algorithms can handle stiff ODEs
and piecewise forcing functions, where most numerical IVP
solvers fail (Biloš et al., 2021). Furthermore, the time com-
plexity of ILT for predicting x(t) does not depend on t,
while numerical IVP solvers do. This brings computational
benefits to Neural Laplace when the application involves a
long time horizon.

5. Experiments
We evaluate Neural Laplace on a broad range of dynami-
cal systems arising from engineering and natural sciences.
These systems are governed by different classes of DEs. We
show that Neural Laplace is able to model and predict these
systems better than the ODE based methods.

Benchmarks. We compare against the standard and aug-
mented Neural ODE (NODE, and ANODE respectively)
with an input fixed initial condition (Dupont et al., 2019;
Chen et al., 2018). We also compare with ODE models with
an encoder-decoder architecture: Latent ODE with an ODE-
RNN encoder (Rubanova et al., 2019), Neural Flows (NF)
Coupling, and Neural Flows ResNet (Biloš et al., 2021). To
ensure a fair comparison, we set the number of hidden units
per layer such that all models have roughly the same number
of total parameters. Further details of hyperparameters and
implementation details are in Appendix D.

Evaluation. To test whether the models are able to accu-
rately uncover the temporal dynamics, we evaluate their
accuracy in predicting the future states of the system, i.e.
the root mean square error (RMSE). We also evaluate
the model’s ability to capture the state space distribution
P (x(t)) by calculating the conditional mutual information
(CMI) between the true and the predicted distributions con-
ditioning on the initial value distribution 1. We split each
sampled trajectory into two equal parts [0, T

2 ], [
T
2 , T ], en-

coding the first half and predicting the second half. For
each dataset equation we sample 1, 000 trajectories of 200
time points in the interval of t ∈ [0, 20], with each sampled
from a different initial condition giving rise to a unique
trajectory defined by the same differential equation system.
We divide the trajectories into a train-validation-test split
of 80 : 10 : 10, for training, hyperparameter tuning, and
evaluation respectively. See Appendix E for details on how
we sampled each DE system.

Dynamical systems for comparison. We selected a broad
range of dynamical systems from applied sciences, and
each have unique properties of interest, see Table 3 for a
comparison. The systems are detailed as follows.

1The state space distribution portrays many key properties of
the dynamical system such as the attractor geometry. It thus has
been routinely examined in the literature (Schmidt et al., 2020).
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Table 3. Each DE system we use for comparison against the benchmarks, and their properties for comparison.

System Piecewise Discontinuous Integro Delay Stiff Periodic
DE differential DE DE solutions solutions

Spiral DDE ✓ ✓ ✗ ✓ ✗ ✗
Lotka-Volterra DDE ✓ ✓ ✗ ✓ ✗ ✗
Mackey–Glass DDE ✓ ✓ ✗ ✓ ✗ ✗
Stiff Van der Pol Oscillator DE ✗ ✓ ✗ ✗ ✓ ✓
ODE with piecewise forcing function ✓ ✗ ✗ ✗ ✗ ✗
Integro DE ✗ ✗ ✓ ✗ ✗ ✗

Spiral DDE, (Zhu et al., 2020) these are common in health-
care and biological systems, for example cardiac tissue
models (Moreira Gomes et al., 2019), biological networks
(Glass et al., 2021) and modelling gene dynamics (Verdugo
& Rand, 2007).

ẋ(t) = A tanh(x(t) + x(t− τ)), t > 0 (11)

with the time delay τ = 2.5 and A ∈ R2×2 a constant
matrix. We generate trajectories by sampling from a grid for
each state dimension of the fixed initial history x(t), t ≤ 0
in the interval [−2, 2].

Lotka-Volterra DDE (Bahar & Mao, 2004), also known
as the predator-prey equations, are fundamental to ecology
and population modeling.

ẋ =
1

2
x(t)(1−y(t−τ)); ẏ =

1

2
y(t)(1−x(t−τ)) (12)

We use a fixed delay of τ = 0.1, generating trajectories by
sampling from a grid for each state dimension of the fixed
initial history x(t), t ≤ 0 in the interval [0.1, 2], and instead
sample time points in the interval of t ∈ [0.1, 2].

Mackey–Glass DDE, (Mackey & Glass, 1977), modified
to exhibit long range dependencies, given the form,

ẋ = β
x(t− τ)

1 + x(t− τ)n
− γx(t) (13)

Using a fixed delay of τ = 10, n = 10, β = 0.25, γ = 0.1,
generating trajectories by uniformly changing the initial
history to be either −1, or 1.1 over the time interval of
[0, 10] for t < 10, as seen in Figure 5.

Stiff Van der Pol Oscillator DE, (Van der Pol & Van
Der Mark, 1927), which exhibits regions of high stiffness
when setting µ =1,000,

ẋ = y; ẏ = µ(1− x2)y − x (14)

We sample initial conditions from x(0) ∈ [0.1, 2], y(0) = 0.

ODE with piecewise forcing function, an ODE with a
ramp loading forcing function (common in engineering ap-
plications) (Boyce et al., 2021). This exhibits piecewise

DE behaviour, i.e. a different ODE in the different forcing
function piecewise regions.

ẍ+ 4x(t) = u(t); u(t) =


0 0 < t ≤ 5
t−5
5 5 < t ≤ 10

1 10 < t < 20

(15)

We sample initial conditions from x(0) ∈ [0, 0.1], ẋ(0) = 0.

Integro DE, Integral and differential system (Bourne, 2018).

ẋ+ 2x(t) + 5

∫ t

0

x(t)dt = u(t) (16)

Where u(t) is the Heaviside step function, sampling initial
conditions from x(0) ∈ [0, 1] and sampling times in the
interval of t ∈ [0, 4].

In Appendix L, we compare our method on periodic wave-
forms that are not governed by a standard DE. We observe
Neural Laplace is better at reconstruction compared to the
benchmarks in extrapolating these non-DE trajectories.

5.1. Results Discussion

The RMSE for each dataset comparing against the bench-
marks, are tabulated in Table 4. Neural Laplace achieves low
RMSE extrapolation test error on all DE datasets analyzed.
The CMI metric follows a similar pattern and is presented
in Appendix F. We also observe a similar pattern on DE
datasets corrupted with noise in Appendix I and on DE
datasets with smaller sizes, of trajectories and observations
in Appendix H. Neural Laplace is able to correctly learn
the DE system using its global complex exponential basis
function representation through encoding the observed tra-
jectory into the initial condition representation for that DE
system, and extrapolating forwards in time. We analyse a
few typical scenarios in detail to gain a better understanding.
See Appendix M for additional analysis and visualization.

Systems with long range dependency. The experiments on
Mackey–Glass DDE offers insight into the model’s ability
to capture long range dependencies. As illustrated in Figure
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Table 4. Test RMSE for datasets analyzed. Best results bolded. Averaged over 5 runs.

Spiral Lotka-Volterra Mackey-Glass Stiff Van der ODE piecewise Integro
Method DDE DDE DDE Pol Oscillator DE forcing function DE

NODE .0389 ± .0029 .3102 ± .0151 .8225 ± .0403 .2833 ± .0032 .2274 ± .0298 .0730 ± .0016
ANODE .0365 ± .0011 .2930 ± .0239 .8214 ± .0415 .2444 ± .0167 .0644 ± .0211 .0036 ± .0003

Latent ODE .0481 ± .0033 .2182 ± .0153 .0385 ± .0217 .1932 ± .0154 .1401 ± .0457 .0109 ± .0009
NF Coupling .6938 ± .1036 .7266 ± .0310 .0539 ± .0181 .1829 ± .0209 .0752 ± .0052 .0042 ± .0013
NF ResNet .1905 ± .0479 .2257 ± .0608 .0350 ± .0223 .1468 ± .0396 .0399 ± .0119 .0027 ± .0004

Neural Laplace .0331 ± .0023 .0475 ± .0061 .0282 ± .0246 .1314 ± .0218 .0035 ± .0004 .0014 ± .0005

Different
history

Same
history

Figure 5. Two test trajectories of the Mackey Glass DDE, with
benchmarks, illustrating examples where the distant history impact
the future trajectory, even though momentarily they may have the
same history for short times, 6 ≤ t ≤ 10.

5, trajectories with the same recent history (6 ≤ t ≤ 10)
but different distant histories (0 ≤ t < 6) evolve very differ-
ently in the future (t > 10). Hence, successful extrapolation
requires the model to keep memory from the distant past.
NODE and ANODE methods fail to capture this because
x(10), the initial condition for the ODE to extrapolate, is
the same for both trajectories—this leads to the same extrap-
olation (Figure 5). Latent ODE and Neural Flow methods
start to encode some history dependency. However they
still fail to capture the true solution, being overly smooth
and unable to capture the piecewise initial history. Whereas
Neural Laplace is able to correctly learn the historical de-
pendency of the DE system. Similar patterns are observed in
other systems with long range dependencies (e.g. Spiral and
Lotka-Volteera DDE) and further illustrated in Appendix M.

Systems with abrupt changes and stiffness. The trajec-
tory plot in Figure 6, of a test trajectory, shows that Neural
Laplace is able to correctly learn the periodic stiff solution,
capturing the discontinuities of the derivative of the solution

Figure 6. Test extrapolation plots with benchmarks for Stiff Van
der Pol Oscillator DE. Neural Laplace is able to correctly extrapo-
late the DE dynamics.

and the periodicity. NODE, ANODE and Latent ODE meth-
ods, correctly capture the periodicity, however fall short
in modelling the derivative discontinuities as they enforce
overly smooth solutions. Neural Flow methods suffer from
similar smoothness behaviour.

5.2. Ablation study and sensitivity analysis

Ablation study for stereographic projection. We investi-
gate how useful the stereographic projection is for learning
a Laplace representation of a DE system. Table 5 (top)
shows the test RMSE with and without it in Neural Laplace.
This demonstrates empirically that using the stereographic
projection Riemann sphere map can allow us to achieve an
order of magnitude reduced test RMSE. This supports our
belief that the stereographic projection improves learning by
inducing a more compact geometry in the Laplace domain.

Sensitivity to dimensionality K. In Neural Laplace, the
encoded representation of the initial condition p ∈ RK

has dimensionality K, a hyperparameter. We explore the
sensitivity of this dimension, reporting the test RMSE in
Table 5. This empirically shows that the performance is not
sensitive to the exact choice of K, as long as it is set to a
large enough value (e.g. K ≥ 2).
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Table 5. Neural Laplace ablation study and sensitivity analysis. RMSE is reported under different study configurations on different
dynamical systems. Averaged over 5 runs.

Lotka-Volterra Stiff Van der ODE piecewise Integro
Study Config. DDE Pol Oscillator DE forcing function DE

Stereographic ✗ .1617 ± .0741 .1836 ± .0586 .0249 ± .0066 .0048 ± .0007
projection ✓ .0614 ± .0469 .1286 ± .0170 .0036 ± .0007 .0013 ± .0003

1 .4416 ± .0898 .1520 ± .0240 .0036 ± .0007 .0010 ± .0002
2 .0405 ± .0113 .1308 ± .0159 .0033 ± .0009 .0012 ± .0002

Dimensionality 4 .0427 ± .0049 .1334 ± .0103 .0038 ± .0013 .0012 ± .0003
K 8 .0408 ± .0134 .1294 ± .0173 .0038 ± .0004 .0010 ± .0002

16 .0380 ± .0053 .1334 ± .0197 .0036 ± .0006 .0012 ± .0005
32 .0398 ± .0045 .1337 ± .0203 .0032 ± .0005 .0013 ± .0003

5.3. Computation time and complexity

Linear forward evaluations Extrapolating to a single time
point at any future time t only uses a single forward eval-
uation in Neural Laplace’s Laplace representation model
gβ

(
p, u(s)), whereas ODE based methods (NODE, AN-

ODE) scale poorly in number of forward evaluations when
extrapolating to any increasing future time t, as they use
numerical stepwise ODE solvers. For comparison Figure
7 (a) shows Neural Laplace can use one thousand times
less NFEs when extrapolating forwards a 100 seconds (Ap-
pendix G). However Neural Laplace does scale in NFEs
linearly with the amount of time points to evaluate at, Fig-
ure 7 (b), which is the same for other integral DE methods
(Biloš et al., 2021). Furthermore, Neural Laplace is empir-
ically at least an order magnitude faster to train per epoch
than ODE based methods, measuring wall clock (Appendix
J), and can comparatively converge faster (Appendix K).

6. Conclusion and Future work
We have shown that through a novel geometrical construc-
tion, it is possible to learn a useful Laplace representation
model for a broad range of DE systems, such as those not
able to be modelled by simple ODE based models, those of
delay DEs, Stiff DEs, Integro DEs and ODEs with piece-
wise forcing functions. Neural Laplace can model the same
systems ODE based methods can as well, whilst being faster
to train and evaluate, using the Inverse Laplace Transform to
generate time solutions instead of using costly, DE stepwise
numerical solvers. We hope this work provides a practical
framework to learn a Laplace representation of a system,
which is immensely useful and popular in the fields of sci-
ence and engineering (Schiff, 1999).

In future work we wish to use the learned Laplace represen-
tation to investigate the other unique properties of this rep-
resentation, such as stability analysis, limiting its frequency
reconstruction terms, and using the Laplace final limit the-

<latexit sha1_base64="fJ2ZO9SeQC+qIFImZH3Gj1l0LBE=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoMQL2FXxMct4MVjBPPAZAmzk04yZHZ2mekVw5K/8OJBEa/+jTf/xkmyB00saCiquunuCmIpDLrut5NbWV1b38hvFra2d3b3ivsHDRMlmkOdRzLSrYAZkEJBHQVKaMUaWBhIaAajm6nffARtRKTucRyDH7KBEn3BGVrpoYPwhGmZnU66xZJbcWegy8TLSIlkqHWLX51exJMQFHLJjGl7box+yjQKLmFS6CQGYsZHbABtSxULwfjp7OIJPbFKj/YjbUshnam/J1IWGjMOA9sZMhyaRW8q/ue1E+xf+alQcYKg+HxRP5EUIzp9n/aEBo5ybAnjWthbKR8yzTjakAo2BG/x5WXSOKt4FxXv7rxUvc7iyJMjckzKxCOXpEpuSY3UCSeKPJNX8uYY58V5dz7mrTknmzkkf+B8/gBN/5Cm</latexit>
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(b)

Figure 7. NFEs (a) for extrapolating to a single future time point,
that is ∆tH in the future, (b) for increasing the number of time
points evaluated within a fixed interval of time.

orem (Schiff, 1999) as an additional regularizer. We note
that we chose the stereographic projection because it is the
simplest and most well-studied bijective map, that maps the
entire complex domain to a compact domain (Rudin, 1987).
Future work could include using other complex bijective
maps instead. It could also be interesting to explore other
integral transforms with a similar geometrical smoothness
map to a compact domain, such as the Mellin transform and
others (Debnath & Bhatta, 2014) that have unique properties
that are advantageous to learn a representation for.
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Code. We have released a PyTorch implementation (Paszke
et al., 2017), including GPU implementations of several ILT
algorithms at https://github.com/samholt/NeuralLaplace.
We also have a research group codebase, which can be
found at https://github.com/vanderschaarlab/NeuralLaplace.

A. Applications of DEs
The families of DEs that Neural Laplace can capture in Table
1 have wide applications with some of their applications
listed in Table 6.

B. Inverse Laplace Transform Algorithms
We use the well-known ILT Fourier series inverse algorithm
(ILT-FSI), as it can obtain the most general time solutions
whilst remaining numerically stable (Dubner & Abate, 1968;
De Hoog et al., 1982; Kuhlman, 2013). Others (Kuhlman,
2013) have shown empirically in a review of ILT methods,
ILT-FSI methods are the most robust, although we do not
get the same convergence guarantees as with other well
known inverse Laplace transforms, such as Tablot’s method.
However these cannot represent frequencies, i.e. poles of the
system that pass its restrictive deformed integral contour of
Eq. 3, leading to only sufficient representation of solutions
of decaying exponentials.

We implemented five inverse Laplace transform algorithms,
choosing them for their good performance, somewhat ease

of implementation and robustness as indicated in the re-
view of (Kuhlman, 2013). Implemented in PyTorch (Paszke
et al., 2017). They are, Fourier Series Inverse (Dubner &
Abate, 1968; De Hoog et al., 1982), de Hoog (De Hoog
et al., 1982), Fixed Tablot (Abate & Valko, 2004), Stehfest
(Stehfest, 1970) and concetrated matrix exponentials (CME)
(Horváth et al., 2020). We compare them in table 7 and in
the following we explain each one, comparing each ILT to
determine which one best suits our purpose of modelling
arbitrary solutions. For a detailed in depth comparison and
description of their properties (excluding CME) see the
review of (Kuhlman, 2013). They are as follows,

Fourier Series Inverse Expands Equation 3 into an ex-
panded Fourier transform, approximating it with the trape-
zoidal rule. This keeps the Bromwich contour parallel to the
imaginary axis, and shifts it along the real axis, following
the definition in Equation 17, i.e. σ ∝ 1

t . It is fairly easy
to implement and scale to multiple dimensions. We denote
s = σ + iω and we can express Equation 3 as,

x(t) =
1

π
eσt

∫ ∞

0

Re
{
F (s)eiωt

}
dω

≈ 1

T
eσt

[
F (σ)

2
+

2N∑
k=1

Re

{
F

(
σ +

ikπ

T

)
e

ikπt
T

}]
(17)

Where we approximate the first Fourier ILT, Equation 17 as
a discretized version, using the trapezoidal rule with step
size π

T (Dubner & Abate, 1968) and evaluating s at the
approximation points sk = σ + ikπ

T in the trapezoidal sum-
mation. We follow (Kuhlman, 2013) to set the parameters
of σ = α− log(ϵ)

T , with α =1e-3, ϵ = 10α, and the scaling
parameter T = 2t. This gives the query function,

sk(t) = 1e-3 − log(1e-2)
2t

+
ikπ

2t

Q(t) = [s0(t), . . . , s2N (t)]T
(18)

Where we model the equation with 2N + 1 reconstruction
terms, setting N = 16 in experiments, and use double point
floating precision to increase the numerical precision of the
ILT.

The ILT-FSI, of Equation 17 provides guarantees that we can
always find the inverse from time t : 0 → ∞, given that the
singularities of the system (i.e. the points at which F (s) →
∞) lie left of the contour of integration, and this puts no
constraint on the imaginary frequency components we can
model. Of course in practice, we often do not model time at
∞ and instead model up to a fixed time in the future, which
then bounds the exponentially increasing system trajectories,
and their associated system poles that we can model σ ∝ 1

t .

de Hoog Is an accelerated version of the Fouier ILT, defined
in Equation 17. It uses a non-linear double acceleration, us-
ing Padé approximation along with a remainder term for the

https://github.com/samholt/NeuralLaplace
https://github.com/vanderschaarlab/NeuralLaplace
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Table 6. Applications of the families of DEs captured by Neural Laplace.
Type Applications

ODE Dynamical systems (Teschl, 2012), Biological systems (Su et al., 2021)
DDE Biological systems (Moreira Gomes et al., 2019; Glass et al., 2021; Verdugo & Rand, 2007), Electrodynamics (López, 2020)
IDE Engineering (Zill, 2016), Epidemiology (Medlock, 2004), Finance (Sachs & Strauss, 2008)
Forced ODE Control Theory (Filippov, 2013), Engineering (Boyce et al., 2021)
Stiff ODE Engineering (Van der Pol & Van Der Mark, 1927), Chemistry (Sandu et al., 1997)

Table 7. Comparison of ILT algorithms that we considered and implemented.

ILT Limitations on F(s) Robust Model Model Supports
x(t) sinusoids exponentials batching

Fourier Series Inverse None Complex ✓ ✓ ✓ ✓
CME None Complex ✓ ✓ ✓ ✓

de Hoog None Complex ✗ ✓ ✓ ✗
Fixed Tablot No medium Complex ✓ ✗ ✓ ✓

/ large frequencies
Stehfest No oscillations, Real part only ✗ ✗ ✓ ✓

no discontinuities in x(t)

series (De Hoog et al., 1982). This is somewhat complicated
to implement, due to the recurrence operations to represent
the Padé approximation, due to this although higher pre-
cision (Kuhlman, 2013), the gradients have to propagate
through many recurrence relation paths, making it slow to
use in practice compared to Fourier (FSI), however more
accurate when we can afford the additional time complexity.

Fixed Tablot Deforms the Bromwich contour around the
negative real axis, where F(s) must not overflow as s →
−∞, and makes the Bromwich contour integral rapidly
converge as s → −∞ causes est → 0 in Equation 3. We im-
plemented the Fixed Tablot method (Abate & Valko, 2004;
Talbot, 1979), which is simple to implement. However it
suffers from not being able to model solutions that have
large sinusoidal components and instead is optimized for
modelling decaying exponential solutions. We note that
whilst it can approximate some small sinusoidal compo-
nents, for an adaptive time contour as in (Kuhlman, 2013),
the sinusoidal components that can be represented decrease
when modelling longer time trajectories, and in the limit for
long time horizons, allow only representations of decaying
exponentials.

Stehfest Uses a discrete version of the Post-Widder formula
(Al-Shuaibi, 2001) that is an approximation for Equation
3 using a power series expansion of real part of s. It has
internal terms that alternate in sign and become large as
the order of approximation is increased, and suffers from
numerical precision issues for large orders of approximation.
It is fairly easy to implement.

CME Concentrated matrix exponential (CME), uses a simi-

lar form to that of the Fourier Series Inverse, approximating
Equation 3 with the trapezoidal rule (Horváth et al., 2020).
This uses the form of,

x(t) ≈ 1

T

2N∑
k=1

ηkF

(
βk

T

)
(19)

The coefficients ηk, βk are determined by a complex proce-
dure, with a numerical optimization step involved (Horváth
et al., 2020). This provides a good approximation for the
reconstruction and the coefficients of up to a pre-specified
order can be pre-computed and cached for low complexity
run time (Horváth et al., 2020). Similarly to Fourier (FSI),
CMEs Bromwich contour remains parallel to the imaginary
axis and is shifted along the real axis, i.e. σ ∝ 1

t . It is
moderately easy to implement when using pre-computed co-
efficients and scale to multiple dimensions. We use N = 16,
to set the reconstruction terms.

The review author of (Kuhlman, 2013) found that for bound-
ary element simulations the Fourier based, ILT Fourier series
algorithms were the most robust and most precise. Our test
comparison in Table 8 confirms this, with de Hoog being the
most precise, however implementing the recurrence opera-
tion in PyTorch, causes it to perform slowly as a decoder due
to the significantly more gradient operators and path length
compared to that of Fourier series inverse ILT. All these
discussed ILT algorithms are implemented and included in
the code for this paper.

Furthermore Table 8 shows that CME is also competitive
compared to Fourier (FSI) ILT algorithm. However we em-
pirically observe in Figure 8, that Neural Laplace converges
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Table 8. Inverse Laplace Transform algorithms compared against
the numerical inversion F (s) = s

s2+1
to it’s analytic time function

of x(t) = cos(t). We evaluate for the times t ∈ [0, 10.0] for 1,000
linearly spaced time points. We fix each algorithm to use 2N + 1
reconstruction terms per time point, with N = 16.

ILT RMSE(x(t), x̂(t)) Forward pass
Algorithm time per t (µs)

Fourier (FSI) 0.0171 2.6331
Tablot 0.4365 3.7520
Stehfest 0.2842 0.5839
de Hoog 7.056E-10 20.3071
CME 0.0069 1.8759

faster when using the Fourier (FSI) ILT algorithm compared
to using the CME ILT algorithm.

Figure 8. Training loss for Lotka-Volterra DDE. Averaged over 3
runs.

C. Limiting reconstruction frequencies
We consider a toy example of a true signal with high fre-
quency noise as,

yuncorrupted = sin(t) + sin(2t)

ycorrupted = yuncorrupted + 0.5 sin(11t)
(20)

We can explicitly filter our reconstruction frequencies before
doing the ILT in Neural Laplace. Here we use a low pass
filter, and only allow reconstruction of frequencies below
3 Hz. We do this by constraining the maximum value of
ϕ that we can learn, by not allowing any s greater than |3|
in the s-domain representation, using Equation 7 to set ϕ.
This also limits the exponentials that we can learn as well.
Empirically when we do this we can recover the true noise
free signal, when training a Neural Laplace model on the
corrupted signal. This is advantageous as the true signal is
recovered and it was never observed, although we added the
prior information that frequencies above a certain threshold
are noise and should be disregarded. A plot of this toy
example can be seen in Figure 9.
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Figure 9. We can limit the frequency that our Neural Laplace
model can learn, by applying a low pass frequency filter, to only be
able to reconstruct frequencies of interest if we know the frequency
range to expect, ideally below the observed noise frequency.

D. Benchmark implementation and
hyperparameters

Table 9. Benchmarks implemented and their number of parameters
for each model.

Method # Parameters

NODE 17,025
ANODE 17,282
Latent ODE 18,565
NF coupling 18,307
NF ResNet 18,307
Neural Laplace 17,194

For our benchmarks, we tune all methods to have the same
number of approximate parameters, as seen in Table 9, to
ensure fair comparison for any gains in modelling complex-
ity. We also set the latent dimension if one exists for each
method to be 2, (although we show in Section 5.2, that
Neural Laplace can benefit with a latent dimension greater
than 2). To aid the ILT numerical stability, we train and
evaluate all models and all data with double point floating
precision, as is recommended when using ILTs (Kuhlman,
2013). We use the Adam optimizer (Kingma & Ba, 2017)
with a learning rate of 1e-3, and batch size of 128. When
training we use early stopping using the validation data set
with a patience of 100, training for 1,000 epochs unless
otherwise stated. These benchmarks are:

Neural ODE (Chen et al., 2018), using their code and im-
plementation provided, setting the ODE function f(t,x(t))
to a 3 layer Multilayer perceptron (MLP), of 128 units, with
tanh activation functions. As NODE does not have an en-
coder, we set the initial value to the last observed trajectory
value at the last observed time. To allow for fair compari-
son we use the semi-norm trick for faster back propagation
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(Kidger et al., 2020a), and use the ’euler’ solver unless oth-
erwise stated. Using the reconstruction MSE for training.

Augmented Neural ODE (Dupont et al., 2019), we also use
their implementation provided, setting the ODE function
f(t,x(t)) to be a 3 layer MLP, of 128 units, with tanh acti-
vation functions, with an additional augmented dimension
of zeros. Again ANODE does not have an encoder, so we
set the initial value to the last observed trajectory value at
the last observed time, and also use the semi-norm trick, and
use the ’euler’ solver unless otherwise stated. Additionally
we use the reconstruction MSE for training.

Latent ODE (Rubanova et al., 2019), which uses an ODE-
RNN encoder and an ODE model decoder. We use their
code provided, setting the units to be 40 for the GRU and
ODE function f(t,x(t)) net, with tanh activation, which
uses the ’dopri5’ solver. We also use their reconstruction
variational loss function for training.

Neural Flows (Biloš et al., 2021), we use their code pro-
vided, with the coupling flow using 31 units, and the ResNet
flow using 26 units. Again we use their reconstruction vari-
ational loss function for training.

Neural Laplace This paper, uses a GRU encoder hγ (Cho
et al., 2014), with 2 layers, with 21 units, with a linear layer
on the final hidden state which outputs the latent initial
condition p. For the Laplace representation model, gβ we
use a 3 layer MLP with 42 units, with tanh activations. We
use tanh on the output to constrain the output domain to
be (θ, ϕ) ∈ D = (−π, π)× (−π

2 ,
π
2 ) for each observation

dimension. For a given trajectory we encode it into p and
concatenate with u(s) as input to gβ , i.e. gβ

(
p, u(s)).

E. Sampling each DE dataset
We test the benchmarks for extrapolation and split each sam-
pled trajectory into two equal parts [0, T

2 ], [
T
2 , T ], encoding

the first half and predicting the second half. For each dataset
equation we sample 1,000 trajectories, each with a different
initial condition giving rise to a different and unique trajec-
tory defined by the same differential equation system. We
use a train-validation-test split of 80:10:10, and train each
model for 1,000 epochs with a learning rate of 1e-3 and
unless otherwise specified we sample each system in the
interval of t ∈ [0, 20] for 200 time points linearly. For each
sequential experiment for the same method we set a differ-
ent random seed. We also use the training set to normalize
the train, val and test set.

To sample the delay DE systems, we use a delay differen-
tial equation solver of Zulko (2019), to sample the Spiral
DDE, Lotka-Volterra DDE, and Mackey–Glass DDE data
sets. We use 2,000 samples in the DDE solver and then
subsampled the generated trajectories to 200 time points in

the time interval defined for the dataset. The Mackey-Glass
DDE dataset was sampled in the time interval [0, 100] and
then scaled down to [0, 20] for equal comparison with the
benchmarks. Trajectories of it can be seen in Figure 5, with
benchmarks trained for 50 epochs. To sample the stiff DEs,
that of the Stiff Van der Pol Oscillator we use the stiff DE
solver of ’ode15s’ (Shampine & Reichelt, 1997), we sam-
pled for a given initial condition between the times of 0 to
4000, generating 200 time points for each trajectory. Once
the trajectories were generated we reduced the time interval
by dividing by 200, to get trajectories from times from 0 to
20, to make it more comparable to other data sets analyzed.

For sampling the Spiral DDE, we set A to

A =

[
−1 1
−1 −1

]
(21)

For sampling the Integro DE, we use the analytical general
solution for a given initial value (solvable with the Laplace
transform method and then inverting back (Bourne, 2018)).
This gives solutions of

x(t)(x(0)) =
1

4
Re

[
e(−1−2i)t

[
(2x(0)+

(x(0)− 1)i)e4it+

(2x(0)− (x(0)− 1)i)
]] (22)

for a given initial value x(0).

We similarly sampled the ODE with piecewise forcing func-
tion using its analytical general solution (which can be gener-
ated by the Laplace transform method). This gives solutions
of

x(t)(x(0)) =x(0) cot(2t)+

1

5
u(t− 5)

1

4
((t− 5)− 1

2
sin(2(t− 5)))+

1

5
u(t− 10)

1

4
((t− 5)− (t− 10)−

1

2
sin(2(t− 5)) +

1

2
sin(2(t− 10))

(23)

for a given initial value x(0) and where u(t) is the Heaviside
step function.

F. Capturing state space distribution
To investigate whether we capture the state space distri-
bution, we empirically measure the mutual information
between the ground truth expected extrapolation and the
predicted extrapolation. We report the conditional mutual
information (CMI) as each extrapolation depends on the ini-
tial condition for the DE system, therefore we condition on
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Table 10. Test conditional mutual information (CMI) between the predicted extrapolation to that of the ground truth extrapolation. Best
results are bolded. Averaged over 5 runs. Higher mutual information score is best.

Mackey-Glass Lotka-Volterra Stiff Van de
Method DDE DDE Pol Oscillator DE

NODE 0.2899 ± 0.0478 3.2479 ± 0.0910 2.8658 ± 0.0142
ANODE 0.2865 ± 0.0502 3.2398 ± 0.0560 2.9679 ± 0.1022
Latent ODE 1.3736 ± 0.1246 3.3908 ± 0.0357 2.7692 ± 0.1446
NF Coupling 1.5569 ± 0.1871 2.1696 ± 0.5000 2.7183 ± 0.1766
NF ResNet 1.5730 ± 0.1615 3.4854 ± 0.1551 3.0832 ± 0.1435
Neural Laplace 1.6011 ± 0.1571 3.7913 ± 0.0359 3.3224 ± 0.1157

the initial condition, Table 10. To compute the conditional
mutual information we used the non-parametric entropy es-
timator toolbox of Ver Steeg (2000). Table 10 shows that
Neural Laplace is able to capture the state space distribution
correctly, that is the extrapolation distribution conditioned
on the input observed (initial history) trajectory.

G. NFE Analysis
Once trained, Neural Laplace can reconstruct anytime with
one forward evaluation. We investigated this by training,
Neural Laplace, NODE and ANODE on the ODE with
piecewise forcing function dataset, using ’dopri5’ in the
ODE numerical solvers. With the trained models we evalu-
ated them for how many NFEs they use to, (a) extrapolate
forwards an increase of ∆tH time from the current last time
observed, t = 10, and (b) extrapolate N time points from
the last time observed t = 10 up to the fixed time horizon
tH = 20. Observing this in Figure 7, we see that we can ex-
trapolate any time t with one forward pass, whereas NODE
methods scale very poorly for long time extrapolation, here
achieving a thousand times less NFEs for extrapolating for-
wards 100 seconds. We also observe that Neural Laplace
does scale linearly in NFEs with the number of time points
to evaluate, which is the same for other integral DE methods
(Biloš et al., 2021).

H. Sample and observation size scaling
Sample size scaling. We also investigated how we compare
to the benchmarks with varying the number of trajectories in
a dataset. We see in Table 11, when varying the dataset tra-
jectory size N , from 1,000 down to 30 (with each trajectory
consisting of 200 time points) on the Lotka-Volterra dataset,
where we trained each dataset for 200 epochs. We observe
that Neural Laplace is able to remain competitive down to
125 trajectories in a dataset compared to the benchmarks,
however with trajectories lower than 125, all benchmarks
compare the same and this continues for lower trajectory
sizes. As expected with smaller numbers of trajectories in a
dataset all methods suffer from increased error (increasing

RMSE), as they have less data to train on.

Observation size scaling. We further varied the number
of observed points for the same extrapolation points on the
Stiff Van de Pol Oscillator DE dataset, shown in Figure
10. Each dataset was trained for 200 epochs, with 1000
sampled trajectories each with Gaussian noise, N (0, 0.01).
Neural Laplace consistently outperforms the benchmarks,
indicating its robustness to the number of observed points.

Figure 10. Test RMSE for Stiff Van de Pol Oscillator DE dataset
analyzed. Averaged over 5 runs. We vary the number of ob-
served points #tobs for each trajectory. Training for 200 epochs
per dataset.

I. Additional Benchmark Results
For fair comparison of the ODE based benchmarks, we also
ran NODE and ANODE with the flexible solver method of
’dopri5’. Table 15 shows the test RMSE results, we observe
Neural Laplace remains competitive.

We also observe the same pattern seen in Table 4, when
we add noise to the sampled DE systems. Table 12 shows
results for Gaussian noise added to all the sampled trajec-
tories of N (0, 0.01), and Figure 19 shows some sampled
test trajectories on one of these (Lotka-Volterra DDE) noise
corrupted datasets.
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Table 11. Test RMSE for Lotka-Volterra DE dataset analyzed. Averaged over 3 runs. We vary the dataset trajectory size N in total from
1,000 trajectories to 30. Best results are bolded. Training for 200 epochs per dataset.
N 1000 500 250 125 62 30

NODE 0.4958 ± 0.0707 0.6519 ± 0.0280 0.6757 ± 0.0818 0.9122 ± 0.0211 0.9196 ± 0.6280 0.9663 ± 0.3946
ANODE 0.4852 ± 0.0127 0.6499 ± 0.0863 0.6816 ± 0.0404 0.9387 ± 0.0547 0.8747 ± 0.5582 0.9682 ± 0.3370
Latent ODE 0.4826 ± 0.0343 0.6629 ± 0.0349 0.6839 ± 0.0497 0.9948 ± 0.1742 0.9550 ± 0.4901 0.9547 ± 0.3125
NF coupling 0.8407 ± 0.0272 0.9336 ± 0.0795 0.9233 ± 0.0834 1.1865 ± 0.0363 1.0881 ± 0.4945 1.0427 ± 0.3416
NF ResNet 0.4646 ± 0.1059 0.8297 ± 0.1302 0.8069 ± 0.0989 1.1484 ± 0.1629 0.9640 ± 0.4599 0.9395 ± 0.2326
Neural Laplace 0.1371 ± 0.0330 0.2581 ± 0.0255 0.3486 ± 0.0275 0.5716 ± 0.0840 0.7715 ± 0.6275 0.9220 ± 0.3086

Table 12. Test RMSE for datasets analyzed, adding Gaussian noise, N (0, 0.1) to each trajectory sampled. Best results are bolded.
Averaged over 3 runs.

Lotka-Volterra Integro ODE piecewise
Method DDE DE forcing function

NODE .6043 ± .1126 .1217 ± .0020 0.2641 ± 0.0073
ANODE .5952 ± .1085 .1191 ± .0027 0.1642 ± 0.0035

Latent ODE .2426 ± .0473 .1002 ± .0005 0.1542 ± 0.0011
NF Coupling .6994 ± .1210 .0999 ± .0006 0.1242 ± 0.0016
NF ResNet .2464 ± .0521 .0998 ± .0004 0.1058 ± 0.0021

Neural Laplace .1328 ± .0228 .0996 ± .0004 0.1006 ± 0.0004

Table 13. Test RMSE for toy waveforms analyzed. Best results are bolded. Averaged over 5 runs.

Method Sine Square Sawtooth

NODE 0.9657 ± 0.0046 0.9769 ± 0.0056 0.9772 ± 0.0109
ANODE 0.7430 ± 0.0632 0.8153 ± 0.0191 0.3001 ± 0.0152

Latent ODE 0.1290 ± 0.2378 0.3443 ± 0.0973 0.3404 ± 0.1016
NF Coupling 0.1060 ± 0.0535 0.2768 ± 0.0340 0.4443 ± 0.0662
NF ResNet 0.1482 ± 0.0712 0.2176 ± 0.0177 0.3790 ± 0.0645

Neural Laplace 0.0063 ± 0.0010 0.1678 ± 0.0067 0.1600 ± 0.0179

Table 14. Average wall clock time taken to train on one epoch,
1,000 trajectories on the Lotka-Volterra DDE dataset.

Method seconds per epoch

NODE (dopri5) 13.78
NODE (euler) 1.92
ANODE (dopri5) 17.23
ANODE (euler) 4.56
Latent ODE 3.56
NF Coupling 10.83
NF ResNet 0.1
Neural Laplace 0.1

J. Benchmark Wall Clock Times
We measured the time to train on one epoch of 1,000 tra-
jectories for each benchmark tested, detailed in Table 14,
averaged over training for a 1,000 epochs. For completeness

Table 15. Test RMSE for datasets analyzed. Best result is bolded.
Averaged over 5 runs.

Lotka-Volterra ODE piecewise
Method DDE forcing function

NODE 0.5880 ± 0.0398 0.1945 ± 0.0134
ANODE 0.5673 ± 0.0744 0.0769 ± 0.0039

Neural Laplace 0.0427 ± 0.0066 0.0037 ± 0.0004

we include ’euler’ and ’dopri5’ solvers for NODE and AN-
ODE methods. We observe that Neural Laplace is at least
one order magnitude faster compared to ODE based solver
methods, and in some cases up two orders of magnitude
faster. We trained and took these readings on a Intel Xeon
CPU @ 2.30GHz, 64GB RAM with a Nvidia Tesla V100
GPU 16GB.
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K. Training Loss Plots
Training loss plots against epochs can be seen in Figure 11.
Empirically we see Neural Laplace can converge faster than
the other benchmark methods.
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Figure 11. Training loss versus epochs, averaged over 5 runs, with
standard deviation bars, training on the (a) ODE with piecewise
forcing function dataset, (b) Lotka-Volterra DDE dataset.

L. Extrapolating Toy Waveforms
We also explore the benchmarks and Neural Laplace at
extrapolating toy waveform signals, that of a sawtooth,
square and sine waveform. These are interesting to ex-
trapolate as they are periodic and some contain disconti-
nuities (square and sawtooth). We sampled each from the
interval of t ∈ [0, 20], with a period of 2π for each wave-
form. We sampled different initial values by sampling a
translation from [0, 2π] to generate different trajectories.
These are given as sawtooth x(t) = t

2π − floor( t
2π ), square

x(t) = 2(1 − floor
(
t
π

)
%2) and sine x(t) = sin(t). The

results of the methods in extrapolating these waveforms can
be seen in Table L, with illustrations in Figures 16, 17, 18.

M. Dataset Plots
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Figure 12. Spiral DDE randomly sampled test state plots.

Figure 13. Lotka-Volterra DDE randomly sampled test state plots.

Figure 14. Stiff Van der Pol Oscillator DE randomly sampled test trajectory plots.
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Figure 15. Mackey–Glass DDE modified to exhibit long range dependencies randomly sampled test trajectory plots.

Figure 16. Square waveform randomly sampled test trajectory plots.

Figure 17. Sine waveform randomly sampled test trajectory plots.
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Figure 18. Sawtooth waveform randomly sampled test trajectory plots.

Figure 19. Lotka-Volterra DDE randomly sampled test state plots, with Gaussian noise added all trajectories of N (0, ϵ), with ϵ = 0.1.


