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Abstract

Conditional generative models aim to learn the
underlying joint distribution of data and labels
to achieve conditional data generation. Among
them, the auxiliary classifier generative adversar-
ial network (AC-GAN) has been widely used, but
suffers from the problem of low intra-class diver-
sity of the generated samples. The fundamental
reason pointed out in this paper is that the clas-
sifier of AC-GAN is generator-agnostic, which
therefore cannot provide informative guidance for
the generator to approach the joint distribution,
resulting in a minimization of the conditional en-
tropy that decreases the intra-class diversity. Mo-
tivated by this understanding, we propose a novel
conditional GAN with an auxiliary discrimina-
tive classifier (ADC-GAN) to resolve the above
problem. Specifically, the proposed auxiliary dis-
criminative classifier becomes generator-aware
by recognizing the class-labels of the real data
and the generated data discriminatively. Our the-
oretical analysis reveals that the generator can
faithfully learn the joint distribution even without
the original discriminator, making the proposed
ADC-GAN robust to the value of the coefficient
hyperparameter and the selection of the GAN loss,
and stable during training. Extensive experimen-
tal results on synthetic and real-world datasets
demonstrate the superiority of ADC-GAN in con-
ditional generative modeling compared to state-
of-the-art classifier-based and projection-based
conditional GANs.
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1. Introduction
Generative adversarial networks (GANs) (Goodfellow
et al., 2014) have achieved substantial progress in learn-
ing high-dimensional, complex data distribution such as
images (Brock et al., 2019; Karras et al., 2019; 2020b;a;
Karras et al.). Standard GANs consist of a generator net-
work, which transfers latent codes sampled from tractable
distributions such as Gaussian in the latent space to data
points in the data space, and a discriminator network, which
attempts to distinguish real data and generated data. The
generator is trained in an adversarial game against the dis-
criminator so that it can learn the data distribution at the
Nash equilibrium. Remarkably, training GANs uncondition-
ally is difficult to achieve equilibrium, making the generator
prone to mode collapse (Salimans et al., 2016; Lin et al.,
2018; Chen et al., 2019). In addition, practitioners are in-
terested in being able to control in advance the content of
the generated samples (Yan et al., 2015; Tan et al., 2020) in
practical applications. A promising solution to these issues
is conditioning the generator, leading to conditional GANs.

Conditional GANs (cGANs) (Mirza & Osindero, 2014) is
a family of variants of GANs that leverages the side in-
formation from annotated labels of samples to implement
and train a conditional generator for conditional image gen-
eration from class-labels (Odena et al., 2017; Miyato &
Koyama, 2018; Brock et al., 2019). To implement the con-
ditional generator, the common technique nowadays injects
the conditional information via conditional batch normal-
ization (de Vries et al., 2017; Hou et al., 2021b). To train
the conditional generator, a lot of effort put into effectively
injecting the conditional information into the discriminator
or auxiliary classifier that guides the conditional genera-
tor (Odena, 2016; Miyato & Koyama, 2018; Zhou et al.,
2018; Kavalerov et al., 2021; Kang & Park, 2020; Zhou
et al., 2020). Among them, the auxiliary classifier gener-
ative adversarial network (AC-GAN) (Odena et al., 2017)
has been widely used due to its simplicity and extensibility.
Specifically, AC-GAN utilizes an auxiliary classifier that
first attempts to recognize the labels of data and then teaches
the generator to produce label-consistent (classifiable) data.
However, it has been reported that AC-GAN suffers from the
low intra-class diversity problem in the generated samples,
especially on datasets with a large number of classes (Odena
et al., 2017; Shu et al., 2017; Gong et al., 2019).
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In this study, we point out that the fundamental reason for
the low intra-class diversity problem of AC-GAN is that the
classifier is agnostic to the generated data distribution and
thus cannot provide informative guidance for the generator
to learn the target distribution. Motivated by this understand-
ing, we propose a novel conditional GAN with an auxiliary
discriminative classifier, namely ADC-GAN, to resolve the
above problem by enabling the classifier to be aware of the
generated data distribution as well as the real data distri-
bution. To this end, the discriminative classifier is trained
to distinguish between the real and generated data while
recognizing their class-labels. The discriminative capability
allows the classifier to provide the discrepancy between the
real and generated data distributions like the discriminator,
and the classification capability enables it to capture the de-
pendencies between data and labels. We show in theory that
the generator of our proposed ADC-GAN can learn the joint
data and label distribution under the optimal discriminative
classifier even without the discriminator, making the method
robust to the value of the coefficient hyperparameter and the
selection of the GAN loss and stable during training. We
also highlight the superiority of ADC-GAN compared to
the two most related works (TAC-GAN (Gong et al., 2019)
and PD-GAN (Miyato & Koyama, 2018)) by analyzing their
potential issues and limitations. Results on synthetic data
clearly show that the proposed ADC-GAN successfully re-
solves the problem of AC-GAN by faithfully recovering
the joint distribution of real data and labels. Extensive ex-
periments based on two popular codebases demonstrate the
effectiveness of the proposed ADC-GAN compared with
state-of-the-art cGANs in conditional generative modeling.

2. Preliminaries and Analysis
2.1. Generative Adversarial Networks

Generative adversarial networks (GANs) (Goodfellow et al.,
2014) consist of two types of neural networks: the generator
G : Z → X that maps a latent code z ∈ Z endowed with an
easily sampled distribution PZ to a data point x ∈ X , and
the discriminatorD : X → [0, 1] that distinguishes between
real data that sampled from the real data distribution PX and
fake data that sampled from the generated data distribution
QX = G♯PZ induced by the generator. The goal of the
generator is to confuse the discriminator by producing data
that are as real as possible. Formally, the objective functions
for the discriminator and generator are defined as follows:

min
G

max
D

V (G,D) = Ex∼PX
[logD(x)]

+ Ex∼QX
[log(1−D(x))]. (1)

Theoretically, learning the generator under the optimal
discriminator can be regarded as minimizing the Jensen-
Shannon (JS) divergence between the real data distribution
and the generated data distribution, i.e., minG JS(PX∥QX).

This would enable the generator to restore the real data dis-
tribution at its optimum. However, the training of GANs
on complex natural images is typically unstable (Che et al.,
2016), especially in the absence of supervision such as con-
ditional information. In addtition, the content of the images
generated by GANs cannot be specified in advance.

2.2. Base Method: AC-GAN

Learning GANs with conditional information can not only
improve the training stability but also achieve conditional
generation. As one of the most representative conditional
GANs, AC-GAN (Odena et al., 2017) utilizes an auxiliary
classifier C : X → Y to learn the dependencies between
data and labels endowed with a label prior PY and then
encourages the conditional generator G : Z × Y → X to
generate as much classifiable data as possible. The objective
functions for the discriminator, the auxiliary classifier, and
the generator of AC-GAN1 are defined as follows:

max
D,C

V (G,D) + λ ·
(
Ex,y∼PX,Y

[logC(y|x)]
)
, (2)

min
G

V (G,D)− λ ·
(
Ex,y∼QX,Y

[logC(y|x)]
)
, (3)

where λ > 0 is a coefficient hyperparameter, PX,Y indicates
the joint distribution of real data and labels, and QX,Y =
G♯(PZ ×PY ) denotes the joint distribution of the generated
data and labels induced by the conditional generator.

Proposition 2.1. For fixed generator, the optimal classifier
of AC-GAN has the form of C∗(y|x) = p(x,y)

p(x) .

Theorem 2.2. Given the optimal classifier, at the equilib-
rium point, optimizing the classification task for the genera-
tor of AC-GAN is equivalent to:

min
G

KL(QX,Y ∥PX,Y )−KL(QX∥PX)+HQ(Y |X), (4)

where HQ(Y |X) = −
∫ ∑

y q(x, y) log q(y|x)dx is the
conditional entropy of the generated samples.

The proofs of all theorems are referred to Appendix A. Our
Theorem 2.2 exposes two shortcomings of AC-GAN. Firstly,
maximization of the KL divergence between the marginal
generator and data distributions (maxG KL(QX∥PX)) con-
tradicts the goal of conditional generative modeling that
matches QX,Y with PX,Y . Although this issue can be
mitigated to some extent by the adversarial game be-
tween the discriminator and generator that minimizes
the JS divergence between the two marginal distributions
(minG JS(QX∥PX)), we find that it still has a negative
impact on training stability and generation performance.
Secondly, minimization of the entropy of labels conditioned

1We follow the common practice in the literature to adopt the
stable version instead of the original one. We also provide an
analysis of the original AC-GAN in Appendix B.
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Figure 1: Illustration of discriminators/classifiers of existing cGANs (PD-GAN (Miyato & Koyama, 2018), AC-GAN (Odena
et al., 2017), and TAC-GAN (Gong et al., 2019)) and ADC-GAN. The symbol +/− indicates the GAN labels (real or fake)
and y is the class-label of data x. ADC-GAN is different from PD-GAN by explicitly predicting the label and is different
from AC-GAN and TAC-GAN in that the classifier Cd also distinguishes real from generated, like the discriminator.

on data of the generated distribution (minGHQ(Y |X)) will
result in the label of the generated data being determinis-
tic. In other words, it forces the generated data for each
class away from the classification hyperplane, explaining
the low intra-class diversity of the generated samples in AC-
GAN, especially when the distributions of different classes
have non-negligible overlap, which occurs naturally as the
fact that neither state-of-the-art classifiers nor human be-
ings can achieve 100% classification accuracy on real-world
datasets (Russakovsky et al., 2015). The original AC-GAN,
whose classifier is trained from both real and generated
samples, suffers from the same issue (cf. Appendix B).

3. Proposed Method: ADC-GAN
The goal of conditional generative modeling is to faithfully
learn the joint distribution of real data and labels regardless
of the shape of the joint distribution (whether there is overlap
between the distributions of different classes). We first note
that the reason why AC-GAN fails to learn the target joint
distribution (Theorem 2.2) originates from that the optimal
classifier C∗(y|x) = p(x,y)

p(x) (Proposition 2.1) is agnostic to
the density of the generated (marginal or joint) distribution
(q(x) or q(x, y)). As a result, the classifier cannot pro-
vide the discrepancy between the target distribution and the
generated distribution, resulting in a biased learning objec-
tive of the generator. Recall that the optimal discriminator
D∗(x) = p(x)

p(x)+q(x) is aware of the real data distribution as
well as the generated data distribution (Goodfellow et al.,
2014), and can therefore provide the discrepancy between
the real and generated data distributions p(x)

q(x) = D∗(x)
1−D∗(x) for

faithful generative modeling of the generator. Intuitively, the
distribution-aware ability on both real and generated data
is caused by the fact that the discriminator distinguishes

between the real and generated data with different labels
(real or fake). Motivated by this understanding, we propose
to make the classifier capable of classifying the the real
and generated data with different class-labels, establishing a
discriminative classifier Cd : X → Y+ ∪ Y− (Y+ for real
data and Y− for generated data) that recognizes the label of
the real and generated samples discriminatively. The gen-
erator is encouraged to produce classifiable real data rather
than classifiable fake data. Mathematically, the objective
functions for the discriminator, the discriminative classifier,
and the generator of ADC-GAN are defined as:

max
D,Cd

V (G,D) + λ · (Ex,y∼PX,Y
[logCd(y

+|x)]

+Ex,y∼QX,Y
[logCd(y

−|x)]), (5)
min
G

V (G,D)− λ · (Ex,y∼QX,Y
[logCd(y

+|x)]

−Ex,y∼QX,Y
[logCd(y

−|x)]), (6)

where Cd(y
+|x) = exp(φ+(y)·ϕ(x))∑

ȳ exp(φ+(ȳ)·ϕ(x))+
∑

ȳ exp(φ−(ȳ)·ϕ(x))

(resp. Cd(y
−|x) = exp(φ−(y)·ϕ(x))∑

ȳ exp(φ+(ȳ)·ϕ(x))+
∑

ȳ exp(φ−(ȳ)·ϕ(x)) )
indicates the probability that a data x is classified as the label
y and real (resp. fake) simultaneously by the discriminative
classifier. Here, ϕ : X → Rd is a feature extractor that is
shared with the original discriminator in our implementation
(D = σ ◦ ψ ◦ ϕ with a linear mapping ψ : Rd → R and
a sigmoid function σ : R → [0, 1]), and φ+ : Y → Rd

and φ− : Y → Rd capture learnable embeddings of labels
responsible to the real and generated data, respectively.

At the first glance, the objective function with the discrimi-
native classifier for the generator seems to be redundant as
maximization of logCd(y

+|x) implicitly contains the goal
of minimization of logCd(y

−|x). However, we show below
that the second term is indispensable for accurately learning
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Table 1: Theoretical learning objective for the generator of competing methods under the optimal discriminator and classifier.

METHOD THEORETICAL LEARNING OBJECTIVE FOR THE GENERATOR

AC-GAN (ODENA ET AL., 2017) minG JS(PX∥QX) + λ(KL(QX,Y ∥PX,Y )−KL(QX∥PX) +HQ(Y |X))
TAC-GAN (GONG ET AL., 2019) minG JS(PX∥QX) + λ(KL(QX,Y ∥PX,Y )−KL(QX∥PX))

ADC-GAN (OURS) minG JS(PX∥QX) + λ(KL(QX,Y ∥PX,Y ))
PD-GAN (MIYATO & KOYAMA, 2018) minG JS(QX,Y ∥PX,Y )

the real joint data-label distribution. Arguably, maximiza-
tion of logCd(y

+|x) forces the generator to produce only
few label-consistent data, facilitating the fidelity but losing
the diversity of the generated samples. On the other hand,
minimization of logCd(y

−|x) encourages the generator to
not synthesis the typically label-consistent data, increasing
the diversity but may degrade the fidelity of the generated
samples. In general, the two objectives together assist the
generator in achieving its goal as we proved below.

Proposition 3.1. For fixed generator, the optimal discrimi-
native classifier of ADC-GAN has the form of the following:

C∗
d(y

+|x) = p(x, y)

p(x) + q(x)
, C∗

d(y
−|x) = q(x, y)

p(x) + q(x)
.

Proposition 3.1 shows that the optimal discriminative classi-
fier is aware of the densities of the real and generated joint
distributions, therefore it is able to provide the discrepancy
p(x,y)
q(x,y) =

C∗
d(y

+|x)
C∗

d(y
−|x) to optimize the generator.

Theorem 3.2. Given the optimal discriminative classifier,
at the equilibrium point, optimizing the classification task
for the generator of ADC-GAN is equivalent to:

min
G

KL(QX,Y ∥PX,Y ). (7)

Theorem 3.2 confirms that the discriminative classifier it-
self can guarantee the generator to restore the real joint
distribution at the optimum. In practice, we retain the
discriminator to train the generator for better training sta-
bility and convergence. The overall learning objective
for the generator under the optimal discriminator and dis-
criminative classfier is to minimize the JS divergence be-
tween the marginal data distributions and the reversed
KL divergence bewteen the joint data-label distributions
(minG JS(PX∥QX) + λ · KL(QX,Y ∥PX,Y )). Since the
optimal solution set for generative modeling contains the
optimal solution set for conditional generative modeling
(argminG JS(PX∥QX) ⊇ argminG KL(QX,Y ∥PX,Y )),
the guidance to the generator provided by discriminator
and discriminative classifier are harmonious, which makes
ADC-GAN robust to the value of the hyperparameter λ and
the selection of the GAN loss V (G,D).

4. Analysis on Competing Methods
In this section, we analyze the drawbacks of the two com-
peting methods, TAC-GAN (Gong et al., 2019) and PD-
GAN (Miyato & Koyama, 2018), to show the superiority of
ADC-GAN. We also analyze AM-GAN (Zhou et al., 2018)
in Appendix C. Before diving into the details, we show dia-
grams of the discriminator and classifier of these methods
in Figure 1 and summarize the theoretical learning objec-
tive for the generator under the optimal discriminator and
classifier of these methods in Table 1 for an overview.

4.1. Competing Method: TAC-GAN

TAC-GAN (Gong et al., 2019) addresses the low intra-class
diversity problem of AC-GAN by eliminating the condi-
tional entropy of the generated data distribution HQ(Y |X)
by learning the generator with another classifier Cmi : X →
Y , which is trained with the generated samples. The objec-
tive functions for the discriminator, the twin classifiers, and
the generator of TAC-GAN are defined as follows:

max
D,C,Cmi

V (G,D) + λ · (Ex,y∼PX,Y
[logC(y|x)]

+Ex,y∼QX,Y
[logCmi(y|x)]), (8)

min
G

V (G,D)− λ · (Ex,y∼QX,Y
[logC(y|x)]

−Ex,y∼QX,Y
[logCmi(y|x)]). (9)

Theorem 4.1. Given the twin optimal classifiers, at the
equilibrium point, optimizing the classification tasks for the
generator of TAC-GAN is equivalent to:

min
G

KL(QX,Y ∥PX,Y )−KL(QX∥PX). (10)

Our Theorem 4.1 reveals that the learning objective of the
generator of TAC-GAN, under the twin optimal classifiers,
can be regarded as optimizing contradictory divergences,
i.e., minimization between joint distributions but maximiza-
tion between marginal distributions. Although theoretically
the JS divergence or others (Nowozin et al., 2016; Arjovsky
et al., 2017) introduced through the adversarial training
between the discriminator and generator may remedy this
issue, it is difficult to obtain the optimal discriminator and
classifier in the practical optimization to ensure the elim-
ination of the contradiction. We argue that the training
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instability of TAC-GAN reported in the literature (Kocaoglu
et al., 2018; Han et al., 2020) and found in our experiments
(cf. Figures 3(a) and 5) can be explained by this analysis.

4.2. Competing Method: PD-GAN

PD-GAN (Miyato & Koyama, 2018) injects the conditional
information into the projection discriminatorDp : X×Y →
[0, 1] via the inner-product between the embedding of the
label and the representation of the data to calculate the joint
discriminative score of the data-label pair. In such a way,
PD-GAN inherits the property of convergence point similar
to the standard GAN such that it can avoid the low intra-
class diversity problem of AC-GAN ideally. Specifically,
the objective functions for the projection discriminator and
the generator of PD-GAN are defined as follows:

min
G

max
Dp

V (G,Dp) = Ex,y∼PX,Y
[logDp(x, y)]

+ Ex,y∼QX,Y
[log(1−Dp(x, y))]. (11)

Based on this formulation, the optimal projection discrimi-
nator has the following form:

D∗
p(x, y) =

1

1 + exp(−d∗(x, y))
=

p(x, y)

p(x, y) + q(x, y)

⇒ d∗(x, y) = log
p(x, y)

q(x, y)
= log

p(x)

q(x)
+ log

p(y|x)
q(y|x)

, (12)

where p(y|x) = exp(φ+(y)·ϕ(x))∑
ȳ exp(φ+(ȳ)·ϕ(x)) and q(y|x) =

exp(φ−(y)·ϕ(x))∑
ȳ exp(φ−(ȳ)·ϕ(x)) . And PD-GAN accordingly defines:

r(x) := log
p(x)

q(x)
:= ψ(ϕ(x)),

r(y|x) := log
p(y|x)
q(y|x)

:= (

φ(y)︷ ︸︸ ︷
φ+(y)− φ−(y)) · ϕ(x)︸ ︷︷ ︸

r̂(y|x)

− (13)

log
∑
ȳ∈Y

exp
(
φ+(ȳ) · ϕ(x)

)
+ log

∑
ȳ∈Y

exp
(
φ−(ȳ) · ϕ(x)

)
︸ ︷︷ ︸

a⃝

.

However, PD-GAN actually ignores the partition term a⃝2

in Equation 13 and heuristically constructs the logit of the
projection discriminator in the form of:

d(x, y) = r(x) + r̂(y|x) = ψ(ϕ(x)) + φ(y) · ϕ(x). (14)

Discarding the partition term would make PD-GAN no
longer belong to probability models that are able to model

2PD-GAN discards a⃝ in implementing the projection discrim-
inator based on the hypothesis that a⃝ can be merged into r(x).
However, r(x) does not model any label information, which should
be involved by a⃝. Therefore, it is unreasonable to do this.

the conditional probabilities p(y|x) and q(y|x), resulting
in losing the complete dependencies between data and la-
bels. Particularly, for mismatched data-label pair (x, y) with
probabilities of p(x, y) = 0 and q(x, y) = 0, the projection
discriminator D∗

p(x, y) = p(x,y)
p(x,y)+q(x,y) = 0

0 is undefined
and thus unreliable. Our ADC-GAN can penalize the mis-
matched data-label pair because C∗

d(y
+|x) = p(x,y)

p(x)+q(x) =
0
>0 = 0 (p(x) + q(x) > 0 for valid data x). Moreover,
the optimal projection discriminator constructed according
to the minimax GAN lacks theoretical guarantees on other
GAN loss functions. The proposed ADC-GAN can be flex-
ibly applied to any version of the GAN loss as we do not
require a specific form of the discriminator.

5. Experiments
5.1. Synthetic Data

We first conduct experiments on a one-dimensional synthetic
mixture of Gaussians, following the practices of (Gong
et al., 2019), to qualitatively show the fidelity of distribu-
tion learning capability of ADC-GAN. As shown in Fig-
ure 2(a), the real data distribution consists of three classes
with non-negligible overlaps. Figures 2(b) to 2(d) show the
learned distributions, which are estimated by kernel density
estimation (KDE) (Parzen, 1962) on the generated data of
AC-GAN, TAC-GAN, and ADC-GAN without the original
GAN loss V (G,D), respectively. Figures 2(e) to 2(h) show
the KDE results of PD-GAN, AC-GAN, TAC-GAN, and
ADC-GAN trained with the non-saturating GAN loss (Good-
fellow et al., 2014), respectively. AC-GAN tends to generate
classifiable data so that it decreases the intra-class diversity.
Without the GAN loss V (G,D), AC-GAN outputs nearly
deterministic data for each class. TAC-GAN without the
GAN loss also cannot accurately capture the real data dis-
tribution, verifying the contradiction in Theorem 4.1. Im-
pressively, the proposed ADC-GAN faithfully restores the
real data distribution even without the GAN loss, validating
Theorem 3.2 that the discriminative classfier alone can guide
the generator to learn the real data distribution.

5.2. Experiments based on BigGAN-PyTorch

In this section, we conduct experiments on three common
real-world datasets: CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), and Tiny-ImageNet (Le & Yang, 2015) based
on the BigGAN-PyTorch repository3 with our extensions4.
The optimizer is Adam with learning rate of 2 × 10−4 on
CIFAR-10/100 and 1×10−4 for the generator and 4×10−4

for the discriminator on Tiny-ImageNet. We train all meth-
ods for 1000 and 500 epochs with batch size of 50 and 100

3https://github.com/ajbrock/
BigGAN-PyTorch

4https://github.com/houliangict/adcgan

https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/houliangict/adcgan
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(c) TAC-GAN w/o V (G,D)
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(d) ADC-GAN w/o V (G,D)
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(f) AC-GAN w/ V (G,D)

−2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns
ity

Class_0
Class_1
Class_2
Marginal
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(h) ADC-GAN w/ V (G,D)

Figure 2: Qualitative comparison of distribution modeling results on the one-dimensional synthetic data.

Table 2: FID and Intra-FID and Accuracy (%) comparisons on CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively.

DATASETS METRICS PD-GAN AC-GAN AM-GAN TAC-GAN ADC-GAN

CIFAR-10
FID (↓) 6.23 6.50 6.81 5.83 5.66

INTRA-FID (↓) 48.90 57.67 69.31 56.67 40.45
ACCURACY (↑) 66.22 84.69 83.63 88.27 89.51

CIFAR-100
FID (↓) 8.70 11.24 10.42 10.38 8.12

INTRA-FID (↓) 51.15 83.06 78.11 79.59 49.24
ACCURACY (↑) 37.89 55.26 55.77 60.03 64.24

TINY-IMAGENET
FID (↓) 26.10 25.02 21.34 21.12 19.02

INTRA-FID (↓) 66.23 99.04 90.56 95.48 63.05
ACCURACY (↑) 27.79 44.59 44.67 44.44 48.89

on CIFAR-10/100 and Tiny-ImageNet, respectively. The
discriminator/classifier are updated 4 and 2 times per gen-
erator update step on CIFAR-10/100 and Tiny-ImageNet,
respectively. We follow the practice of (Miyato & Koyama,
2018; Gong et al., 2019) to adopt the hinge loss (Lim
& Ye, 2017; Tran et al., 2017) as the implementation of
V (G,D). The coefficient hyperparameters of AC-GAN and
AM-GAN (Zhou et al., 2018) (cf. Appendix C for analysis)
are set as λ = 0.2 as it performs the best. As for TAC-GAN
and ADC-GAN, the coefficient hyperparameters are set as
λ = 1.0 on CIFAR-10/100 and λ = 0.5 on Tiny-ImageNet.

Image Generation. We use the Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) and Intra-FID (Miyato &
Koyama, 2018) metrics to measure the overall and intra-
class qualities of the generated images, respectively. Table 2
shows that ADC-GAN obtains the best FID and Intra-FID
scores on all three datasets, indicating consistent superiority
over previous cGANs in conditional image generation.

Training Stability. We also note that ADC-GAN yields the
best training stability according to the FID training curves
(cf. Figures 3(a) and 5). Even without the discriminator,
the training stability ADC-GAN (w/o D) still exceeds that
of most competing methods. AC-GAN diverges during
training on all three datasets. TAC-GAN also diverges on
CIFAR-100 and Tiny-ImageNet and achieves a relatively sta-
ble FID training curve only on the simplest dataset, CIFAR-
10. We hence report the results of all methods using the best
checkpoint. These unstable FID training curves implicitly
verify the drawback of existing classifier-based cGANs that
optimize contradictory divergences.

Different Coefficients. To explicitly show the above issues,
we set the objective function of classifier-based cGANs as
(1 − λ′)V (G,D) + λ′VC(G,C), where VC(G,C) is the
task between the generator and classifier. As shown in Fig-
ures 3(b) and 6, ADC-GAN consistently gains superior FID
scores across different coefficient hyperparameters even for
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(a) FID curve (b) FID with different λ′

Figure 3: (a) FID curves during GAN training on CIFAR-
100. (b) FID scores of classifier-based cGANs with different
λ′ on CIFAR-100. The objective function in this experiment
is (1− λ′)V (G,D) + λ′VC(G,C), where VC(G,C) is the
task between the generator and classifier.

(a) PD-GAN (b) ADC-GAN

Figure 4: T-SNE visualization of CIFAR-10 validation data
based on learned representations extracted from the penul-
timate layer in the discriminator/classifier ϕ(x). Different
colors indicate different classes.

λ′ = 1.0 (i.e., without the discriminator), showing strong ro-
bustness with respect toλ′, while AC-GAN and TAC-GAN
perform substantially worse when λ′ becomes larger.

Data-to-Class Relations. To investigate whether the model
captures appropriate data-to-class relations, we conduct im-
age classification experiments based on the learned represen-
tations of the discriminator/classifier ϕ(x). Specifically, we
first train a logistic regression classifier using the scikit-learn
library with the training data and compute the classification
accuracy of the validation data. As reported in Table 2,
ADC-GAN significantly outperforms competing methods
on all datasets in terms of the Accuracy metrics. The rea-
son is that the discriminative classifier needs to recognize
the labels of data while simultaneously distinguishing be-
tween real and fake data, which facilitates the robustness
of the classifier in modeling data-to-class relations. Notice
that PD-GAN obtains the worst results. By comparing the
CIFAR-10 T-SNE (Van der Maaten & Hinton, 2008) visual-
ization results of PD-GAN and ADC-GAN in Figure 4, it is
clear that PD-GAN does not have the ability to learn proper
data-to-class relations as ADC-GAN does, reflecting the
problem caused by the loss of partition terms in PD-GAN.

Table 3: FID and IS comparisons on ImageNet (128× 128).
B.S. means the batch size and Iters. means the training
iterations. Results of BigGAN and ReACGAN are copied
from the ReACGAN paper (Kang et al., 2021).

B.S. ITERS. METHODS IS (↑) FID (↓)

256 500K
BIGGAN 43.97 16.36

REACGAN 68.27 13.98
ADC-GAN 66.96 11.65

2048
200K

BIGGAN 99.71 7.89
REACGAN 92.74 8.23
ADC-GAN 97.47 9.46

500K ADC-GAN 108.10 8.02

5.3. Experiments based on PyTorch-StudioGAN

In this section, we compare ADC-GAN with state-of-
the-art cGANs using the PyTorch-StudioGAN repository5,
of which evaluation protocols are different from that of
the BigGAN-PyTorch repository that we used in Table 2.
Nonetheless, our comparison is fair because the methods in
each experiment follows the same evaluation protocol.

Image Generation on ImageNet. We first conduct experi-
ments on ImageNet (128× 128) following the experimental
settings of ReACGAN (Kang et al., 2021). Table 3 reports
the Inception Score (IS) (Salimans et al., 2016) and FID
results. Our ADC-GAN is comparable with the state-of-the-
art cGANs, BigGAN and ReACGAN (Kang et al., 2021),
in the batch size of 256 and 2048, showing effectiveness
on large-scale high-resolution image datasets. Notice that,
however, we only ran our ADC-GAN once with λ = 1 in
each of the two batch size settings, and did not make other
attempts due to our limited computational resources. We
argue that the results of ADC-GAN can be improved by
choosing an appropriate coefficient hyperparameter λ.

Different GAN Losses. We also investigate the robust-
ness of ADC-GAN with respect to the GAN loss func-
tion V (G,D) by adopting different versions. Table 4 re-
port the qualitative results on CIFAR-100 (cf. Table 5 in
Appendix D for complete results). Impressively, the pro-
posed ADC-GAN achieves the best iFID (intra-FID), re-
call (Kynkäänniemi et al., 2019), and coverage (Naeem et al.,
2020) scores across the non-saturation (Goodfellow et al.,
2014), WGAN-GP (Gulrajani et al., 2017), and hinge (Lim
& Ye, 2017) versions of the GAN loss. The best iFID scores
indicate the best conditional generative modeling perfor-
mance, and the best recall and coverage results reflect the
best (intra-class) diversity of the generated samples.

5https://github.com/POSTECH-CVLab/
PyTorch-StudioGAN

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
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Table 4: IS, FID, iFID, Precision, Recall, Density, and Coverage comparisons with state-of-the-art methods under different
GAN loss functions on CIFAR-100, respectively. The best results are bold and the second best are underlined.

GAN LOSS METHODS IS ↑ FID ↓ IFID ↓ PRECISION ↑ RECALL ↑ DENSITY ↑ COVERAGE ↑

NON-SATURATION

PD-GAN 11.48 11.59 105.38 0.7337 0.6804 0.8646 0.8513
AC-GAN 7.98 49.46 207.56 0.7322 0.0793 0.6225 0.4112

TAC-GAN 11.34 14.47 131.90 0.7429 0.6077 0.8324 0.7887
ADC-GAN 11.88 11.07 104.21 0.7379 0.6972 0.8521 0.8609

CONTRAGAN 11.15 13.54 146.86 0.7390 0.6155 0.8481 0.7729
REACGAN 11.79 13.72 125.21 0.7541 0.5861 0.8695 0.8005

W-GP

PD-GAN 5.66 69.48 − 0.5976 0.1603 0.4310 0.2649
AC-GAN 10.97 19.30 148.40 0.6880 0.5444 0.6770 0.7242

TAC-GAN 11.04 15.56 121.23 0.7023 0.6474 0.7048 0.7535
ADC-GAN 11.01 14.02 101.14 0.7058 0.6804 0.7549 0.7956

CONTRAGAN 6.72 49.77 147.22 0.6498 0.2834 0.5827 0.3549
REACGAN 6.67 47.74 150.7 0.6188 0.3104 0.4806 0.3396

HINGE

PD-GAN 11.76 10.96 108.08 0.7436 0.6812 0.8790 0.8609
AC-GAN 11.66 21.65 168.87 0.7577 0.3649 0.8297 0.7225

TAC-GAN 12.07 12.56 134.75 0.7572 0.6020 0.8957 0.8400
ADC-GAN 11.82 10.73 103.78 0.7387 0.7023 0.8721 0.8707

CONTRAGAN 10.08 13.22 128.50 0.7372 0.6251 0.8356 0.7790
REACGAN 11.80 12.52 140.47 0.7510 0.5982 0.9300 0.8327

6. Related Work
Efforts on developing cGANs (Mirza & Osindero, 2014)
can be divided into two steps. The first is to study how to
implement a conditional generator. Methods in this category
are concatenation (Mirza & Osindero, 2014), conditional
batch normalization (de Vries et al., 2017), and conditional
convolution layers (Sagong et al., 2019). The second is to
study how to train the conditional generator to produce label-
dependent samples, which can be further divided into two
categories, classifier-based and projection-based cGANs.

Classifier-based cGANs. AC-GAN (Odena et al., 2017)
leveraged an auxiliary classifier to identify consistency be-
tween data and labels. MH-GAN (Kavalerov et al., 2021)
improved AC-GAN by replacing the cross-entropy loss of
the classifier with the multi-hinge loss. AM-GAN (Zhou
et al., 2018) replaced the discriminator with a K + 1-way
classifier with an additional “fake” label. Omni-GAN (Zhou
et al., 2020) combined the discriminator with the classi-
fier to construct a K + 2-dimensional multi-label classi-
fier. TAC-GAN (Gong et al., 2019) corrected the biased
learning objective of AC-GAN by introducing another clas-
sifier, which is the multi-class version of Anti-Labeler of
CausalGAN (Kocaoglu et al., 2018). UAC-GAN (Han et al.,
2020) improved the training stability of TAC-GAN with
MINE (Belghazi et al., 2018). ECGAN (Chen et al., 2021)
provides a unified view of cGANs with and without clas-
sifiers. Orthogonally to our work, ContraGAN (Kang &
Park, 2020) and ReACGAN (Kang et al., 2021) modeled
data-to-data relations as well as data-to-class relations using
the conditional contrastive loss and the data-to-data cross-
entropy loss, respectively. However, they did not solve

the low intra-class diversity problem of AC-GAN as they
inherited the generator-agnostic classifier.

Projection-based cGANs. PD-GAN (Miyato & Koyama,
2018) injected the class information into the discriminator
via label projection and achieved the state-of-the-art genera-
tion quality of natural images (Brock et al., 2019; Wu et al.,
2019; Zhang et al., 2020; Zhao et al., 2021). P2GAN (Han
et al., 2021) further improved PD-GAN by compensating
the missed partition term in the objective function.

Discriminative classifiers. Watanabe & Favaro (2021) ex-
ploited the discriminative classifier for training GANs with
any level of labeling but different from us with the objective
function for the generator, which enables ADC-GAN to
faithfully learn the target distribution. SSGAN-LA (Hou
et al., 2021a) presented the similar idea but different loss
functions with ADC-GAN (multi-hinge v.s. cross-entropy)
to tackle the degraded learning objective of self-supervised
GANs, while ADC-GAN is for conditional GANs. More-
over, our analysis of the degradation objective is more accu-
rate and informative than that of SSGAN-LA.

7. Conclusion
In this paper, we present a novel conditional generative ad-
versarial network with an auxiliary discriminative classifier
(ADC-GAN) to achieve faithful conditional generative mod-
eling. We also discuss the differences between ADC-GAN
with competing cGANs and analyze their potential issues
and limitations. Extensive experimental results validate the
theoretical superiority of ADC-GAN compared with state-
of-the-art classifier-based and projection-based cGANs.
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A. Proofs
A.1. Proof of Proposition 2.1

Proposition 2.1. For fixed generator, the optimal classifier of AC-GAN has the form of C∗(y|x) = p(x,y)
p(x) .

Proof.

max
C

Ex,y∼PX,Y
[logC(y|x)] = Ex∼PX

Ey∼PY |X [logC(y|x)] (15)

⇒ min
C

Ex∼PX
Ey∼PY |X [− logC(y|x)] = Ex∼PX

[H(p(y|x)) + KL(p(y|x)∥C(y|x))] (16)

⇒ C∗(y|x) = argmin
C

KL(p(y|x)∥C(y|x)) = p(y|x) = p(x, y)

p(x)
(17)

A.2. Proof of Theorem 2.2

Theorem 2.2. Given the optimal classifier, at the equilibrium point, optimizing the classification task for the generator of
AC-GAN is equivalent to:

min
G

KL(QX,Y ∥PX,Y )−KL(QX∥PX) +HQ(Y |X), (4)

where HQ(Y |X) = −
∫ ∑

y q(x, y) log q(y|x)dx is the conditional entropy of the generated samples.

Proof.

max
G

Ex,y∼QX,Y
[logC∗(y|x)] = Ex,y∼QX,Y

[
log

p(x, y)

p(x)

]
= Ex,y∼QX,Y

[
log

p(x, y)

q(x, y)

q(x)

p(x)

q(x, y)

q(x)

]
(18)

⇒ min
G

Ex,y∼QX,Y

[
log

q(x, y)

p(x, y)

]
− Ex∼QX

[
log

q(x)

p(x)

]
− Ex,y∼QX,Y

[
log

q(x, y)

q(x)

]
(19)

⇒ min
G

KL(QX,Y ∥PX,Y )−KL(QX∥PX) +HQ(Y |X) (20)

A.3. Proof of Proposition 3.1

Proposition 3.1. For fixed generator, the optimal discriminative classifier of ADC-GAN has the form of the following:

C∗
d(y

+|x) = p(x, y)

p(x) + q(x)
, C∗

d(y
−|x) = q(x, y)

p(x) + q(x)
.

Proof.
max
Cd

Ex,y∼PX,Y
[logCd(y

+|x)] + Ex,y∼QX,Y
[logCd(y

−|x)] ⇒ max
Cd

Ex,y∼Pm
X,Y

[logCd(y|x)], (21)

with pm(x, y+) = 1
2p(x, y), p

m(x, y−) = 1
2q(x, y), and pm(x) =

∑
y p

m(x, y) = 1
2p(x) +

1
2q(x).

⇒ max
Cd

Ex∼Pm
X
Ey∼Pm

Y |X
[logCd(y|x)] ⇒ min

Cd

Ex∼Pm
X
Ey∼Pm

Y |X
[− logCd(y|x)] (22)

⇒ min
Cd

Ex∼Pm
X
[H(pm(y|x)) + KL(pm(y|x)∥Cd(y|x))] (23)

⇒ C∗
d(y|x) = argmin

Cd

KL(pm(y|x)∥Cd(y|x)) = pm(y|x) = pm(x, y)

pm(x)
(24)

Therefore, the optimal discriminative classifier of ADC-GAN has the form of C∗
d(y

+|x) = pm(x,y+)
pm(x) = p(x,y)

p(x)+q(x) and

C∗
d(y

−|x) = pm(x,y−)
pm(x) = q(x,y)

p(x)+q(x) that conclude the proof.
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A.4. Proof of Theorem 3.2

Theorem 3.2. Given the optimal discriminative classifier, at the equilibrium point, optimizing the classification task for the
generator of ADC-GAN is equivalent to:

min
G

KL(QX,Y ∥PX,Y ). (7)

Proof.

max
G

Ex,y∼QX,Y

[
logC∗

d(y
+|x)

]
− Ex,y∼QX,Y

[
logC∗

d(y
−|x)

]
(25)

⇒ max
G

Ex,y∼QX,Y

[
log

p(x, y)

p(x) + q(x)

]
− Ex,y∼QX,Y

[
log

q(x, y)

p(x) + q(x)

]
(26)

⇒ min
G

Ex,y∼QX,Y

[
log

q(x, y)

p(x, y)

]
⇒ min

G
KL(QX,Y ∥PX,Y ) (27)

A.5. Proof of Theorem 4.1

Proposition A.1. For fixed generator, the twin optimal classifiers of TAC-GAN have the following forms:

C∗(y|x) = p(x, y)

p(x)
, C∗

mi(y|x) =
q(x, y)

q(x)
. (28)

Proof. The proof is similar to that of Proposition 2.1 in Appendix A.1 by considering C and Cmi as two independent
classifiers with respect to distribution P and Q, respectively.

Theorem 4.1. Given the twin optimal classifiers, at the equilibrium point, optimizing the classification tasks for the
generator of TAC-GAN is equivalent to:

min
G

KL(QX,Y ∥PX,Y )−KL(QX∥PX). (10)

Proof.

max
G

Ex,y∼QX,Y
[logC∗(y|x)]− Ex,y∼QX,Y

[logC∗
mi(y|x)] (29)

⇒ max
G

Ex,y∼QX,Y

[
log

p(x, y)

p(x)

]
− Ex,y∼QX,Y

[
log

q(x, y)

q(x)

]
(30)

⇒ max
G

Ex,y∼QX,Y

[
log

p(x, y)

q(x, y)

]
− Ex∼QX

[
log

p(x)

q(x)

]
(31)

⇒ min
G

KL(QX,Y ∥PX,Y )−KL(QX∥PX) (32)

B. Analysis on the Original AC-GAN
In this section, we show that original AC-GAN whose auxiliary classifier is trained with both real and generated samples
still suffers from the same issue as we proved in Theorem 2.2. Formally, the full objective function of the original AC-GAN
is formulated as the following:

max
D,C

V (G,D) + λ ·
(
Ex,y∼PX,Y

[logC(y|x)] + Ex,y∼QX,Y
[logC(y|x)]

)
, (33)

min
G

V (G,D)− λ ·
(
Ex,y∼QX,Y

[logC(y|x)]
)
. (34)

The objective function for training the classifier can be rewritten as:

max
C

Ex,y∼PX,Y
[logC(y|x)] + Ex,y∼QX,Y

[logC(y|x)] ⇒ max
C

Ex,y∼Pm
X,Y

[logC(y|x)], (35)
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with pm(x, y) = 1
2 (p(x, y) + q(x, y)) and pm(x) =

∑
y p

m(x, y) = 1
2 (p(x) + q(x)). And we can obtain the optimal

classifier according to the following:

max
C

Ex,y∼Pm
X,Y

[logC(y|x)] ⇒ min
C

Ex∼Pm
X ,y∼Pm

Y |X
[− logC(y|x)] (36)

⇒ min
C

Ex∼Pm
X
[H(pm(y|x)) + KL(pm(y|x)∥C(y|x))] (37)

⇒ C∗(y|x) = pm(y|x) = p(x, y) + q(x, y)

p(x) + q(x)
. (38)

Suppose that the conditional generator learns the joint distribution of real data and labels, i.e., q(x, y) = p(x, y) and
q(x) = p(x), the optimal classifier C∗(y|x) = p(x,y)+q(x,y)

p(x)+q(x) = p(x,y)
p(x) also provide the objective stated in Theorem 2.2

for the generator, which contains the conditional entropy of the generated samples HQ(Y |X) that reduces the intra-class
diversity of the generated samples. In other words, the original classifier does not allow the generator to remain on the
desired distribution because it still provides momentum to update the generator, resulting in a biased learning objective
for the generator in the original version of AC-GAN. The essential reason is that the classifier of the original AC-GAN is
incapable of distinguishing the real data from the generated data. Therefore, the classifier of the original AC-GAN cannot
provide the difference between the real and generated joint distributions to optimize the generator.

C. Analysis on AM-GAN
AM-GAN (Zhou et al., 2018) optimizes the following objectives with an label-extended discriminator D+ : X → Y ∪ {0}:

max
D+

Ex,y∼PX,Y
[logD+(y|x)] + Ex,y∼QX,Y

[logD+(0|x)], (39)

min
G

Ex,y∼QX,Y
[logD+(y|x)]. (40)

The objective function for training the discriminator D+ can be rewritten as:

max
D+

Ex,y∼PX,Y
[logD+(y|x)] + Ex,y∼QX,Y

[logD+(0|x)] ⇒ max
D+

Ex,y∼Pm
X,Y

[logD+(y|x)], (41)

where pm(x, y) = 1
2p(x, y),∀y ∈ Y , pm(x, 0) = 1

2q(x), and pm(x) =
∑

y p
m(x, y) = 1

2 (p(x) + q(x)). Then we have:

max
D+

Ex,y∼Pm
X,Y

[logD+(y|x)] ⇒ min
D+

Ex∼Pm
X ,y∼Pm

Y |X
[− logD+(y|x)] (42)

⇒ min
D+

Ex∼Pm
X
[H(pm(y|x)) + KL(pm(y|x)∥D+(y|x))] ⇒ D∗

+(y|x) = pm(y|x) = p(x, y)

p(x) + q(x)
,∀y ∈ Y. (43)

Under the optimal discriminator D∗
+, the generator of AM-GAN can be regarded as optimizing the following:

max
G

Ex,y∼QX,Y
[logD∗

+(y|x)] ⇒ max
G

Ex,y∼QX,Y

[
log

p(x, y)

p(x) + q(x)

]
(44)

⇒ min
G

Ex,y∼QX,Y

[
log

q(x, y)

p(x, y)

p(x) + q(x)

q(x, y)

]
= Ex,y∼QX,Y

[
log

q(x, y)

p(x, y)
+ log

p(x) + q(x)

2
− log q(x, y) + log 2

]
(45)

≥ min
G

Ex,y∼QX,Y

[
log

q(x, y)

p(x, y)
+

1

2
log p(x) +

1

2
log q(x)− log q(x, y) + log 2

]
(46)

⇒ min
G

Ex,y∼QX,Y

[
log

q(x, y)

p(x, y)
− 1

2
log

q(x)

p(x)
− log

q(x, y)

q(x)
+ log 2

]
(47)

⇒ min
G

KL(QX,Y ∥PX,Y )−
1

2
KL(QX∥PX) +HQ(Y |X) + log 2. (48)

In summary, AM-GAN with the original discriminator remained (compared in our experiments) can be considered to be
minimizing an upper bound of JS(QX∥PX) + KL(QX,Y ∥PX,Y )− 1

2KL(QX∥PX) +HQ(Y |X) + log 2.
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D. More Results

(a) FID curves on CIFAR-10 (b) FID curves on Tiny-ImageNet

Figure 5: FID curves during GAN training on CIFAR-10 and Tiny-ImageNet, respectively.

(a) FID with different λ′ on CIFAR-10 (b) FID with different λ′ on Tiny-ImageNet

Figure 6: FID comparisons of classifier-based cGANs with different coefficient hyperparameters λ′ on CIFAR-10 and
Tiny-ImageNet, respectively. The objective function in this experiment is (1−λ′)V (G,D)+λ′VC(G,C), where VC(G,C)
is the task between the generator and classifier.
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Table 5: IS, FID, iFID, Precision, Recall, Density, and Coverage comparisons of competing methods under different GAN
loss functions on CIFAR-10 and CIFAR-100, respectively. The best results are bold and the second best are underlined.

CIFAR-10 METHODS IS ↑ FID ↓ IFID ↓ PRECISION ↑ RECALL ↑ DENSITY ↑ COVERAGE ↑

NON-SATURATION

PD-GAN 9.68 8.93 81.30 0.7581 0.6718 1.0622 0.9208
AC-GAN 9.74 9.21 87.76 0.7592 0.6484 1.0491 0.9147

TAC-GAN 9.61 9.31 81.04 0.7349 0.6717 0.9575 0.8990
ADC-GAN 9.87 8.47 77.69 0.7497 0.6912 0.9968 0.9202

CONTRAGAN 9.60 8.87 120.45 0.7598 0.6595 1.0025 0.9061
REACGAN 9.69 8.51 113.23 0.7648 0.6594 1.0532 0.9242

LEAST SQUARE

PD-GAN 9.99 8.72 80.11 0.7525 0.6771 1.0395 0.9182
AC-GAN 5.01 81.93 176.24 0.7389 0.0037 0.7484 0.2129

TAC-GAN 9.41 10.67 80.92 0.7386 0.6520 0.9159 0.8657
ADC-GAN 9.89 8.61 75.86 0.7405 0.6919 0.9944 0.9223

CONTRAGAN 9.10 12.93 135.75 0.7661 0.5761 1.0236 0.8262
REACGAN 9.80 9.52 125.83 0.7772 0.5988 1.1008 0.9138

W-GP

PD-GAN 5.27 75.24 104.15 0.5569 0.2132 0.3678 0.2141
AC-GAN 8.88 14.77 88.02 0.7015 0.6477 0.7421 0.7798

TAC-GAN 8.93 13.26 76.93 0.6847 0.6705 0.7454 0.8127
ADC-GAN 9.49 11.25 74.98 0.6996 0.7019 0.8182 0.8517

CONTRAGAN 6.38 51.43 137.17 0.5640 0.3995 0.4040 0.2931
REACGAN 6.60 44.62 117.25 0.5813 0.4333 0.4559 0.3287

HINGE

PD-GAN 9.79 8.45 79.40 0.7464 0.6853 1.0083 0.9158
AC-GAN 9.96 8.97 88.40 0.7681 0.6523 1.0250 0.9168

TAC-GAN 9.78 8.80 81.30 0.7446 0.6749 1.0026 0.9103
ADC-GAN 9.63 8.42 75.50 0.7447 0.6882 0.9854 0.9193

CONTRAGAN 9.63 8.89 85.39 0.7582 0.6538 1.0411 0.9098
REACGAN 9.83 8.84 78.07 0.7623 0.6675 1.0003 0.9158

CIFAR-100 METHODS IS ↑ FID ↓ IFID ↓ PRECISION ↑ RECALL ↑ DENSITY ↑ COVERAGE ↑

NON-SATURATION

PD-GAN 11.48 11.59 105.38 0.7337 0.6804 0.8646 0.8513
AC-GAN 7.98 49.46 207.56 0.7322 0.0793 0.6225 0.4112

TAC-GAN 11.34 14.47 131.90 0.7429 0.6077 0.8324 0.7887
ADC-GAN 11.88 11.07 104.21 0.7379 0.6972 0.8521 0.8609

CONTRAGAN 11.15 13.54 146.86 0.7390 0.6155 0.8481 0.7729
REACGAN 11.79 13.72 125.21 0.7541 0.5861 0.8695 0.8005

LEAST SQUARE

PD-GAN 11.32 12.19 101.92 0.7263 0.6903 0.8318 0.8471
AC-GAN 4.93 87.70 252.85 0.7087 0.0007 0.5836 0.2220

TAC-GAN 7.27 49.08 162.58 0.7427 0.2114 0.7210 0.4438
ADC-GAN 11.56 11.85 103.06 0.7334 0.6949 0.8145 0.8526

CONTRAGAN 12.59 15.62 122.71 0.7866 0.4642 1.0109 0.7863
REACGAN 12.90 15.09 164.93 0.7827 0.4672 1.0454 0.8282

W-GP

PD-GAN 5.66 69.48 − 0.5976 0.1603 0.4310 0.2649
AC-GAN 10.97 19.30 148.40 0.6880 0.5444 0.6770 0.7242

TAC-GAN 11.04 15.56 121.23 0.7023 0.6474 0.7048 0.7535
ADC-GAN 11.01 14.02 101.14 0.7058 0.6804 0.7549 0.7956

CONTRAGAN 6.72 49.77 147.22 0.6498 0.2834 0.5827 0.3549
REACGAN 6.67 47.74 150.7 0.6188 0.3104 0.4806 0.3396

HINGE

PD-GAN 11.76 10.96 108.08 0.7436 0.6812 0.8790 0.8609
AC-GAN 11.66 21.65 168.87 0.7577 0.3649 0.8297 0.7225

TAC-GAN 12.07 12.56 134.75 0.7572 0.6020 0.8957 0.8400
ADC-GAN 11.82 10.73 103.78 0.7387 0.7023 0.8721 0.8707

CONTRAGAN 10.08 13.22 128.50 0.7372 0.6251 0.8356 0.7790
REACGAN 11.80 12.52 140.47 0.7510 0.5982 0.9300 0.8327


