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Abstract
It is well-known that deep learning models are vul-
nerable to adversarial examples. Existing studies
of adversarial training have made great progress
against this challenge. As a typical trait, they of-
ten assume that the class distribution is overall
balanced. However, long-tail datasets are ubiq-
uitous in a wide spectrum of applications, where
the amount of head class instances is larger than
the tail classes. Under such a scenario, AUC is a
much more reasonable metric than accuracy since
it is insensitive toward class distribution. Moti-
vated by this, we present an early trial to explore
adversarial training methods to optimize AUC.
The main challenge lies in that the positive and
negative examples are tightly coupled in the ob-
jective function. As a direct result, one cannot
generate adversarial examples without a full scan
of the dataset. To address this issue, based on
a concavity regularization scheme, we reformu-
late the AUC optimization problem as a saddle
point problem, where the objective becomes an
instance-wise function. This leads to an end-to-
end training protocol. Furthermore, we provide a
convergence guarantee of the proposed algorithm.
Our analysis differs from the existing studies since
the algorithm is asked to generate adversarial ex-
amples by calculating the gradient of a min-max
problem. Finally, the extensive experimental re-
sults show the performance and robustness of our
algorithm in three long-tail datasets.
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Figure 1. Diagram of ACC and AUC change when the model is
attacked. The upper rectangular boxes represent the score rank
before and after the attack occurs; The lower plots represent the
change of score in the embedding space when the model is at-
tacked.

1. Introduction
Deep learning has recently achieved significant progress on
various machine learning tasks, such as computer vision
(Voulodimos et al., 2018) and natural language processing
(Strubell et al., 2019; Sorin et al., 2020). However, recent
work shows that deep learning models are vulnerable to
adversarial attack (Szegedy et al., 2014; Biggio et al., 2013).
For example, images with human imperceptible perturba-
tions (i.e., adversarial examples) can easily fool even the
well-trained models. The existence of adversarial exam-
ples has raised big security threats to deep neural networks,
which impels extensive efforts to improve the adversarial
robustness (Madry et al., 2018; Zhang et al., 2019b). For ex-
ample, one can resist the adversarial examples by means of
adversarial training (AT). Specifically, AT could be formu-
lated as a min-max problem, where the inner maximization
problem is employed to generate adversarial examples, and
the outer minimization problem is used to learn the model
under the adversarial noise. In this way, AT could be easily
applied to most of the modern architectures in deep learn-
ing, making it one of the most effective measures against
adversarial attack.

The prior art of adversarial training methods focuses on
balanced benchmark datasets. On top of this, the learning
objective is to increase the overall accuracy. However, real-
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world datasets usually exhibit a long-tail distribution that
the proportion of the majority classes examples significantly
dominates the others. For such long-tail problems, accuracy
(ACC) is considered to be a less appropriate performance
metric than another metric named AUC (Area Under the
ROC Curve). Specifically, AUC is the probability of observ-
ing a positive instance with a higher score than a negative
one. It is well-known to be insensitive to class distributions
and costs (Fawcett, 2006; Hand & Till, 2001). Comparing
AUC with ACC, we then ask:

Can we improve the adversarial robustness of AUC by em-
ploying the traditional ACC-based methods?

Unfortunately, the answer might be negative. As shown in
Fig.1, the adversarial examples generated by minimizing
ACC (ACC drops from 0.8 to 0.6), may fail to attack AUC
(AUC here increases from 0.714 to 0.762). In this sense, the
model trained on such adversarial examples cannot improve
the adversarial robustness of AUC. Therefore, more atten-
tion should be paid to AUC when studying the adversarial
robustness against long-tail problems.

Inspired by this fact, we present a very early trial to study
adversarial training in AUC optimization with an end-to-
end framework.

Existing AT methods can be easily implemented in an end-
to-end manner since the inner maximization problem for
generating the adversarial examples can be solved instance-
wisely. However, this is not the case for AUC optimization.
Specifically, in the expression of AUC, every positive in-
stance is coupled with all the negative instances and vice
versa. For a binary class classification problem, this means
that we need to spend O(n− · T ) time for generating the
adversarial example of a positive instance and O(n+ · T )
for a negative one, where n+, n− are the number of positive
and negative instances, and T is complexity for calculating
the gradient for a single positive-negative instance pair. In
this sense, we can hardly implement such a naive training
method on top of even the simplest deep learning frame-
work.

To solve the challenge, this paper proposes an end-to-end ad-
versarial AUC optimization framework with a convergence
guarantee. Specifically, our contribution is as follows:

First, based on a reformulation technique and a concavity
regularizer, we show that the original problem is equivalent
to a min-max problem where the objective function can be
expressed in an instance-wise manner.

Second, we propose an AT algorithm to optimize the min-
max problem, where we alternately invoke a projected-
gradient-descent-like protocol to generate the adversarial
examples, and a stochastic gradient descent-ascent protocol
to train the model parameters. Meanwhile, we also present

a convergence analysis to show the correctness of our al-
gorithm. The proof here is non-trivial since we have to
simultaneously estimate the gradient of the min player and
the max player.

Finally, we conduct a series of empirical analyses of our
proposed algorithm on long-tail datasets. The results demon-
strate the effectiveness of our proposed method.

2. Related Work
2.1. AUC Optimization

As a motivating study, (Cortes & Mohri, 2003) investigates
the inconsistency between AUC maximization and error
rate minimization, which shows the necessity to study di-
rect AUC optimization methods. After that, a series of
algorithms are designed for off-line AUC optimization (Her-
schtal & Raskutti, 2004; Joachims, 2005). To extend the
scalability of AUC optimization, researchers start to explore
the online and stochastic optimization extensions of the
AUC maximization problem. (Zhao et al., 2011) makes the
first attempt for this direction based on the reservoir sam-
pling technique. (Gao et al., 2013) proposes a one-pass AUC
optimization algorithm based on the squared surrogate loss.
After that, (Ying et al., 2016) reformulates the minimiza-
tion problem of the pairwise square loss into an equivalent
stochastic saddle point problem, where the objective func-
tion could be expressed in an instance-wise manner. On top
of the reformulation framework, (Natole et al., 2018) pro-
poses an accelerated version with a faster convergence rate
and (Liu et al., 2019) explores its extension in deep neural
networks. Meanwhile, many researchers provide theoretical
guarantees for AUC optimization algorithms from differ-
ent aspects, such as generalization analysis (Agarwal et al.,
2005; Clémençon et al., 2008; Usunier et al., 2005) and
consistency analysis (Agarwal, 2014; Gao & Zhou, 2015).
Beyond the optimization algorithms and theoretical supports
for AUC, in practice, AUC optimization demonstrates its
effectiveness in various class-imbalanced tasks, such as dis-
ease prediction (Westcott et al., 2019; Gola et al., 2020; Ren
et al., 2018), rare event detection (Feizi, 2020; Robles et al.,
2020) and etc.

Compared with the existing study, we present a very early
trial for the adversarial training problem.

2.2. Adversarial Training

For a long time, machine learning models have proved
vulnerable to adversarial examples (Biggio et al., 2013;
Szegedy et al., 2014; Goodfellow et al., 2014). Numerous
defenses have been proposed to address the security con-
cern raised by the issue (Athalye & Carlini, 2018; Athalye
et al., 2018). Among such studies, adversarial training is one
of the most popular methods (Kurakin et al., 2017; Madry
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et al., 2018; Zhang et al., 2019b). The majority of studies
in this direction follows the min-max formulation proposed
in (Madry et al., 2018), which so far has been improved in
various way (Shafahi et al., 2020; Cai et al., 2018; Tramèr
et al., 2017; Pang et al., 2019; Wang et al., 2019b; Zhang
et al., 2020; Maini et al., 2020; Tramèr & Boneh, 2019).
Furthermore, due to the heavy computational burden of AT,
accelerating the training procedure of AT becomes increas-
ingly urgent. Recently, there has been a new wave to explore
the acceleration of AT, which includes reusing the compu-
tations (Shafahi et al., 2019; Zhang et al., 2019a), adaptive
adversarial steps (Wang et al., 2019a) and one-step training
(Wong et al., 2019). Besides the practical improvements,
there are also some recent advances in theoretical investi-
gations from the perspective of optimization (Wang et al.,
2019a; Bai et al., 2022), generalization (Xing et al., 2021;
Tu et al., 2019), and consistency (Bao et al., 2020).

In this paper, we will present an AT algorithm on top of
the AUC optimization. As shown in the introduction, the
complicated expression of AUC brings new elements into
our model formulation and theoretical analysis.

3. Preliminaries
In this section, we briefly introduce the AUC optimization
problem and the adversarial training framework.

3.1. AUC Optimization Problem

Let X be the feature set. Based on (Hanley & McNeil,
1982), AUC of a scoring function hθ : X → [0, 1] is equiv-
alent to the probability that a positive instance is predicted
with a higher score compared to a negative instance:

AUC(hθ) = Pr
(
hθ(x

+) ≥ hθ(x
−)|y+ = 1, y− = 0

)
,

where (x+, y+) and (x−, y−) represent positive and nega-
tive examples, respectively, and θ is the model parameters.
By employing a differentiable loss ℓ as the surrogate loss,
the unbiased estimation of AUC(hθ) could be expressed as:

ˆAUC(hθ) = 1−
n+∑
i=1

n−∑
j=1

ℓ (hθ(x
+)− hθ(x

−))

n+n− .

where n+ and n− denote the number of positive and nega-
tive examples, respectively. Then AUC maximization prob-
lem is equivalent to the following minimization problem:

(OP0) min
θ

L(θ,x, y) :=
n+∑
i=1

n−∑
j=1

ℓ (hθ(x
+)− hθ(x

−))

n+n− .

3.2. Adversarial Training Framework

Adversarial training is one of the most effective defensive
strategies against adversarial examples (Goodfellow et al.,

Table 1. Notations and their description
Notations Description
n Number of total examples
n+, n− Number of positive (negative) examples
p Proportion of positive examples
x0 Clean Examples
xk Adversarial examples generated in step k
y The label of example
δ Perturbation on samples
Xi Xi = {x|

∥∥x− x0
i

∥∥
∞ ≤ ϵ}

θ Parameters of model
a, b, α Learnable parameters of loss function
w w = (θ, a, b)
f(w, α,x) The surrogate objective function
L(w, α) 1

n

∑n
i=1 f(w, α,x∗

i )
Φ(w) Φ(w) = maxα L(w, α)
B The mini-batch
M The batch size
L max{Lww, Lwx, Lαα, Lαx, Lxw, Lxα}
T The total of training epochs
ĝ(α), ĝ(w) Stochastic gradient
g(α), g(w) Stochastic gradient

2015; Madry et al., 2018), the key idea of which is to directly
optimize the model performance based on the perturbed ex-
amples. Generally speaking, the adversarial training frame-
work can be formalized as

min
θ

1

n

n∑
i=1

max
∥δi∥∞≤ϵ

ℓ(hθ(x
0
i + δi), yi). (1)

Here δi is the perturbation on clean feature vector x0
i , and

xi = x0
i + δi is the resulting adversarial example for the

instance (x0
i , yi), i = 1, 2, · · · , n. The inner maximiza-

tion problem generates such adversarial examples by trying
to hurt the model performance (by maximizing the loss
ℓ(hθ(x

0
i + δi), y)). The constraint ∥δi∥∞ ≤ ϵ makes sure

that the adversarial perturbation is small enough to be im-
perceptible. In this sense, the adversarial example lives in
Xi =

{
x|
∥∥x− x0

i

∥∥
∞ ≤ ϵ

}
. Finally, the outer minimiza-

tion problem is to find a robust model that can resist the
adversarial perturbation.

For the inner maximization problem, K-PGD (Madry et al.,
2018) is a widely used attack method that perturbs the clean
examples x0 iteratively with a total of K steps. At the end
of each iteration, the example will be projected to the ϵ-ball
of x0. Specifically, the adversarial examples generated in
k + 1 step are as follows:

xk+1 = Proj
{
xk + β · sign(∇xℓ(hθ(x

k), yk))
}
, (2)

where Proj is the projection function, and β is the step size.
For the outer minimization problem, gradient descent is
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usually used to solve it. A more detailed introduction of
adversarial attack methods is shown in the Appendix B.

4. Methodology
Before entering into the methodology, we summarize some
useful notations in Tab.3.1 to make our argument easier to
follow.

4.1. Reformulation of Optimization Problem

A naive idea to perform AUC adversarial training is to di-
rectly combine (OP0) with the standard AT framework
(Madry et al., 2018), resulting in the following problem:

min
θ

max
δ1,δ2,··· ,δn

n+∑
i=1

n−∑
j=1

ℓ(hθ(x
+
i + δi)− hθ(x

−
j + δj))

n+n− ,

According to the definition of AUC optimization objective
function L in (OP0) , we know that each pair of positive
examples is inter-dependent with all negative examples, and
vice versa for the negative examples. Thus, the inner maxi-
mization problem for δ1, δ2, · · · , δn cannot be decoupled
into a series of instance-wise maximization problems. In
other words, the following inequality holds in general:

min
θ

max
δ1,δ2,··· ,δn

n+∑
i=1

n−∑
j=1

ℓ(hθ(x
+
i + δi)− hθ(x

−
j + δj))

n+n−

̸=

min
θ

n+∑
i=1

n−∑
j=1

max
δi,δj

ℓ(hθ(x
+
i + δi)− hθ(x

−
j + δj))

n+n− .

In this sense, the generation of adversarial examples cannot
be carried out in a mini-batch fashion. Instead, one update
δ requires a full scan of O(n+n−). This brings a heavy
computational burden towards its application. Therefore,
we need to reformulate the optimization problem.

Fortunately, if we adopt the square loss ℓ(t) = (1− t)2 as
the surrogate loss function, then (Ying et al., 2016; Liu et al.,
2019) proved that (OP0) could be converted in a min-max
problem, as shown in the following proposition:

Proposition 1. The empirical risk of AUC in (OP0) is
equivalent to

L(θ,x, y) = min
a,b

max
α

1

n

n∑
i=1

g(θ, a, b, α, (xi, yi)), (3)

where

g(θ, a, b, α, (xi, yi))

=(1− p)(hθ(xi)− a)2I[yi=1] + p(hθ(xi)− b)2I[yi=0]

+ 2(1 + α)
(
phθ(xi)I[yi=0] − (1− p)hθ(xi)I[yi=1]

)
− p(1− p)α2.

(4)
where a, b, α ∈ R are learnable parameters, and p =
Pr(y = 1).

Remark 1. According to (Ying et al., 2016), a, b, α has the
following closed-form solution: a = Ê[hθ(x)|y = 1], b =
Ê[hθ(x)|y = 0] and α = Ê[hθ(x)|y = 0] − Ê[hθ(x)|y =

1], where Ê is a shorthand for sample mean. If the score hθ

is normalized to the set [0, 1], we can restrict a, b and α to
the following bounded domains:

Ωa,b = {a, b ∈ R|0 ≤ a, b ≤ 1} ,Ωα = {α ∈ R||α| ≤ 1} .

And we can easily verify that g is µ-strongly concave w.r.t.
α in Ωα, i.e., for any α1, α2 ∈ Ωα, it holds that

g(θ,a, b, α1, (x, y)) ≤ g(θ, a, b, α2, (x, y))+

⟨∇αg(θ, a, b, α2, (x, y)), α1 − α2⟩ −
µ

2
∥α1 − α2∥22 .

And we can also verified that g is locally strongly convex in
Ωa,b w.r.t. a and b.

Hence, if we in turn construct an AT problem based on
Prop.1, we can obtain the following optimization problem
with ease:

min
θ

max
δ

min
a,b∈Ωa,b

max
α∈Ωα

1

n

n∑
i=1

g(θ, a, b, α, (xi + δi, yi)).

The good news here is that in the new loss function g, posi-
tive samples and negative samples are independent of each
other. However, the bad news is that the min-max-min-max
problem is still hardly tractable. Through a careful investi-
gation, if we can swap the order of mina,b and maxδ , we
can then obtain a min-max problem which can be solved in
an end-to-end fashion. To realize the idea, we could resort
to the von Neumann’s Minimax theorem (Neumann, 1928;
Sion, 1958):

Theorem 1. Let X ⊂ Rn and Y ⊂ Rm be compact convex
sets. If f : X × Y → R is a continuous function that is
concave-convex, i.e.

f(·,y) : X → R is concave for fixed y,

f(x, ·) : Y → R is convex for fixed x.

Then we have that max
x∈X

min
y∈Y

f(x,y) = min
y∈Y

max
x∈X

f(x,y).

Moreover, we resort to the definition of weak-concavity
(Böhm & Wright, 2021; Liu et al., 2021):
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Definition 1. f(x) : Rd → R is said to be a γ-weakly
concave (γ > 0) function w.r.t. x, if

f(x)− γ

2
||x||22

is a concave function w.r.t. x.

In the following proposition, we find a surrogate objective
function f(w, α,xi + δi) such that the resulting optimiza-
tion problem could be reformulated as a min-max problem:
Proposition 2. Define:

r(a, b,x) = max
α

1

n

n∑
i=1

g(θ, a, b, α, (xi + δi, yi)),

f(w, α,xi + δi) = g(θ, a, b, α, (xi + δi, yi))

− γ ∥xi + δi∥22

If r(a, b,x) is γ∗-weakly concave w.r.t. δ1, δ2, · · · , δn, then
for all γ > γ⋆, we have the following problem:

min
θ

max
δ

min
a,b∈Ωa,b

max
α∈Ωα

1

n

n∑
i=1

f(w, α, (xi + δi, yi))

is equivalent to:

(OP) min
w

max
α

max
δ

1

n

n∑
i=1

[f(w, α,xi + δi)]

= min
w

max
α

1

n

n∑
i=1

max
δi

[f(w, α,xi + δi)] ,

where w = (θ, a, b). Moreover, f(w, α,xi+δi) is strongly
concave w.r.t. δi.
Remark 2. According to (Böhm & Wright, 2021; Liu et al.,
2021), if maxα

1
n

∑n
i=1 [f(w, α,xi + δi)] is smooth and L

gradient Lipschitz, then it is also L-weakly concave. Hence,
the weakly concavity assumption is much weaker than the
strongly-concave assumption (Wang et al., 2019a).

In this sense, we could turn to optimize (OP) in the next
subsection.

4.2. Training Strategy

In this subsection, we continue to propose an adversarial
AUC optimization framework to solve (OP). Specifically,
we design solutions for the inner maximization problem and
the outer min-max problem, respectively.

Inner Maximization Problem: Adversarial Attack. In
this paper, we choose K-PGD (Madry et al., 2018) to gen-
erate adversarial examples. To better control the quality of
adversarial examples, we introduce the First-Order Station-
ary Condition (FOSC) (Wang et al., 2019a) about the inner
maximization problem, which is as follows:

c(xk) = max
x∈X

⟨x− xk,∇xf(w, α,xk)⟩ (5)

Algorithm 1 Adversarial Training for AUC Optimization
Input:Neural network hθ; initial parameters w0 =
{θ0, a0, b0} and α0; step size ηw, ηα; mini-batch B and
its size M ; max FOSC value cmax; training epochs T ;
control epoch T ′; PGD step K; PGD step size β; maxi-
mum perturbation boundary ϵ.
for t = 0 to T do
ct = max(0, cmax − t · cmax/T

′)
for Each batch x0

B do
Mc = 1B; k = 0
while

∑
Mc > 0 & k < K do

xk+1
B = xk

B +Mc · β · sign(∇xℓ(hθ(x
k
B), y))

xk+1
B = clip(xk+1

B ,xk+1
B − ϵ,xk+1

B + ϵ)

Mc = 1B(c(x
k+1
1...M ) ≤ ct)

k = k + 1
end while
αt+1 = αt + ηαĝ(α)
wt+1 = wt − ηwĝ(w) # ĝ: stochastic gradient

end for
end for
return wT , αT

When c(xk) = 0, the optimization problem reaches the
convergence state. Specifically, such a condition can be
achieved when a) ∇xf(w, α,xk) = 0, or b) xk − x0 =
ϵ ·sign

(
∇xf(w, α,xk)

)
. Here a) implies xk is a stationary

point in the inner maximization problem, b) shows that local
maximum point of f(w, α,xk) reaches the boundary of X .
The proof process is shown in Lem.1.

Outer min-max Problem. For the outer min-max prob-
lem, we apply Stochastic Gradient Descent Ascent (SGDA)
to solve the problem. At each iteration, SGDA performs
stochastic gradient descent over the parameter w with the
stepsize ηw, and stochastic gradient ascent over the parame-
ter α with the stepsize ηα.

The total training strategy is presented in Alg.1. This is an
extension of the algorithm proposed in (Wang et al., 2019a),
where the outer level minimization problem now becomes
a min-max problem. The value of FOSC can imply the ad-
versarial strength of adversarial examples, whereas a small
FOSC value implies a high adversarial strength. Due to this
fact, through the FOSC value of current epoch ct, we can
dynamically control the strength of adversarial examples.
Specifically, in the initial stage of training, the value of ct
is large, which means the generated adversarial examples
are not so hard. In the later stage of training, the value of
ct is 0, which allows model to be trained on much stronger
adversarial examples. Consequently, such an algorithm will
allow the model to learn from in a progressive manner. Here,
we use Mc to mask the examples that satisfy the condition
in the Line 9 in Alg.1. By doing so, we can ensure that
the FOSC values of the adversarial examples generated by
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Alg. 1 are all less than cmax. When the adversarial exam-
ples are obtained, we calculate the stochastic gradient of the
parameters w and α. Then we perform stochastic gradient
descent-ascent on w and α respectively.

4.3. Convergence Analysis

Next, we provide a convergence analysis of our proposed
adversarial AUC optimization framework.

We first give the definition and description of some notations.
In detail, let x∗

i (w, α) = argmaxxi∈Xi
f(w, α,xi) where

Xi =
{
x|
∥∥x− x0

i

∥∥
∞ ≤ ϵ

}
. And

L(w, α) =
1

n

n∑
i=1

max
xi∈Xi

f(w, α,xi) =
1

n

n∑
i=1

f(w, α,x∗
i ).

Then x̂i(w, α) is a δ-approximate solution to x∗
i (w, α), if

it satisfies that

max
x∈Xi

⟨x− x̂i(w, α),∇xf(w, α, x̂i(w, α))⟩ ≤ δ. (6)

Furthermore, let ∇L(α) denote the gradient of L(w, α)
w.t.r. α. And let g(α) = 1

M

∑
i∈B ∇αf(w, α,x∗

i ) be the
stochastic gradient of L(w, α) w.r.t. α, where B is mini-
batch and M = |B|. Meanwhile, let ∇αf(w, α, x̂(w, α))
be the gradient of f(w, α, x̂(w, α)) w.r.t. α, and let
ĝ(α) = 1

M

∑
i∈B f(w, α, x̂i) be the approximate stochas-

tic gradient of L(w, α) w.r.t. α. And for w, we have the
same definition as α. In addition, let

Φ(w) = max
α

L(w, α), ∇Φ(w) = ∇wL(w, α∗(w)).

Then, before giving the convergence analysis, we list some
assumptions needed to the analysis.

Assumption 1. The function f(w, α,x) satisfies the gradi-
ent Lipschitz conditions as follows:

sup
α,x

∥∇wf(w, α,x)−∇wf(w′, α,x)∥2 ≤ Lww ∥w −w′∥2

sup
α,w

∥∇wf(w, α,x)−∇wf(w, α,x′)∥2 ≤ Lwx ∥x− x′∥2

sup
α,x

∥∇xf(w, α,x)−∇xf(w
′, α,x)∥2 ≤ Lxw ∥w −w′∥2

sup
w,x

∥∇αf(w, α,x)−∇αf(w, α′,x)∥2 ≤ Lαα ∥α− α′∥2

sup
w,α

∥∇αf(w, α,x)−∇αf(w, α,x′)∥2 ≤ Lαx ∥x− x′∥2

sup
w,x

∥∇xf(w, α,x)−∇xf(w, α′,x)∥2 ≤ Lxα ∥α− α′∥2

where Lαα, Lαx, Lxα, Lww, Lwx, Lxw are positive con-
stants.

Remark 3. The first three gradient Lipschitz conditions in
Asm.1 are made in (Sinha et al., 2018), and the last three

gradient Lipschitz conditions are made in (Liu et al., 2019).
Meanwhile, for the overparameterized deep neural network,
the loss function is semi-smooth (Allen-Zhu et al., 2019; Du
et al., 2019), which helps to justify Asm.1.

Assumption 2. ∥∇wf(w, a,x)∥2 is upper bounded by lw.

Remark 4. Asm.2 is widely used in minimax optimization
problems (Sinha et al., 2018).

Assumption 3. f(w, α,x) is locally µ-strongly concave in
Xi for all i ∈ [n], i.e. for any x1,x2 ∈ Xi, it holds that

f(w,α,x1) ≤ f(w, α,x2)+

⟨∇xf(w, α,x2),x1 − x2⟩ −
µ

2
∥x1 − x2∥22

Remark 5. The strongly concave assumption is equivalent
to weakly concave assumption of r, which is much easier to
be achieved.

Assumption 4. The stochastic gradient g(α) satisfies

E[g(α)−∇L(α)] = 0, E
[
∥g(α)−∇L(α)∥22

]
≤ σ2

E[g(w)−∇L(w)] = 0, E
[
∥g(w)−∇L(w)∥22

]
≤ σ2

Remark 6. Asm.4 is a common assumption used to analyze
the optimization algorithm based on stochastic gradient
(Lin et al., 2020; Liu et al., 2019).

Theorem 2. Under the above assumptions and let the step-
sizes be chosen as ηw = Θ

(
1/κ2L

)
, ηα = Θ(1/L) and

κ ≤ 7
6 , then we have the following inequality:

1

T + 1

(
T∑

t=0

E
[
∥∇Φ(wt)∥22

])

≤ 360κ2L∆Φ + 13κL2D2

T + 1
+

26κσ2

M
+ hδ + h∆

where hδ = 1024
253

(
3κLδ
1024 + 6κ4Lδ + Lδ

8 + L2
√

δ
µ

)
and

h∆ = 384κ4L2∆
253 and ∆Φ = Φ(w0) − minw Φ(w), D =

|Ωα|, L denotes the maximum in Lipschitz constant, and the
condition number κ = L/µ.

Remark 7. On the right side of the inequality, the first term
is an O(1/T ) magnitude, the last three terms behave as the
residuals. The second term 26κσ2

M is related to the batch
size M . As M increases, its value gradually tends to 0. The
third term hδ is due to the use of an approximate solution
x̂ to the inner maximization problem instead of the optimal
solution x∗, and the fourth term h∆ is due to X being a
bounded set. Since all of the residuals are small, we can
find an ϵ-stationary point within a finite number of epochs.

5. Experiments
In this section, we evaluate the performance of our AdAUC
algorithms in three long-tail datasets.
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Table 2. Test AUC and robustness of models trained with various methods. We mark the best performance with Bold and the second best
performance with underscore.

Dataset Method Training Evaluated Against
Clean FSGM PGD-5 PGD-10 PGD-20 C&W AA

CIFAR-10-LT

CE
NT 0.7264 0.4038 0.0753 0.0206 0.0044 0.0009 0.0082
AT1 0.6659 0.5487 0.3335 0.2743 0.2344 0.2330 0.2678
AT2 0.6833 0.6296 0.4870 0.4417 0.4319 0.4310 0.4384

AdAUC
NT 0.7885 0.6606 0.2671 0.1892 0.0064 0.0573 0.0740
AT1 0.7347 0.6646 0.5236 0.4625 0.4224 0.3927 0.4362
AT2 0.7528 0.6952 0.5591 0.5309 0.5283 0.5283 0.5291

CIFAR-100-LT

CE
NT 0.6382 0.1207 0.0271 0.0159 0.0110 0.0102 0.0123
AT1 0.6193 0.5183 0.3195 0.2750 0.2668 0.2630 0.2703
AT2 0.6198 0.5192 0.3183 0.2767 0.2681 0.2647 0.2712

AdAUC
NT 0.6462 0.5161 0.3046 0.1818 0.1214 0.0035 0.1313
AT1 0.6302 0.5301 0.3815 0.3306 0.2989 0.2760 0.3102
AT2 0.6313 0.5798 0.4644 0.4234 0.4065 0.3968 0.4122

MNIST-LT

CE
NT 0.9736 0.7057 0.0116 0.0010 0.0002 0.0000 0.0003
AT1 0.9488 0.9302 0.8733 0.8626 0.8615 0.8611 0.8618
AT2 0.9547 0.9392 0.8912 0.8824 0.8816 0.8813 0.8818

AdAUC
NT 0.9904 0.9309 0.5677 0.4419 0.3913 0.3645 0.4026
AT1 0.9772 0.9695 0.9422 0.9395 0.9382 0.9381 0.9383
AT2 0.9852 0.9774 0.9436 0.9347 0.9323 0.9310 0.9311

5.1. Competitors and Experiment Setting.

We compare the performance of our proposed algorithm
and the AT methods with the classical CE classification loss
function when the datasets have the long tail distribution.

We adopt the WideResNet-28 (Zagoruyko & Komodakis,
2016) as the model architecture. The other detailed settings
are shown in App.C.1. In Tab.2, NT means Natural Train-
ing without adversarial operations, AT1 means adversarial
training without FOSC, and AT2 means algorithm in Alg.1.

To validate the robustness of our algorithm, we adopt FSGM
(Goodfellow et al., 2014), iterative attack PGD (Madry et al.,
2018), C&W (Carlini & Wagner, 2017) and ensemble attack
AA (Croce & Hein, 2020) as attack methods.

5.2. Dataset Description

Binary CIFAR-10-LT Dataset. We construct a long-tail
CIFAR-10 dataset, where the sample size across different
classes decays exponentially and ensure the ratio of sample
sizes of the least frequent to the most frequent class is set to
0.01. Then, we label the first 5 classes as the negative class
and the last 5 classes as positive, which leads that the ratio
of positive class size to negative class size ρ ≈ 1 : 9.

Binary CIFAR-100-LT Dataset. We construct a long-tail
CIFAR-100 dataset in the same way as CIFAR-10-LT, where
we label the first 50 classes as the negative class and the last
50 classes as positive, which leads that the ratio of positive

(a) AdAUC NT on Clean Data (b) AdAUC NT on the Data
generated by PGD-10

(c) AdAUC AT2 on Clean
Data

(d) AdAUC AT2 on the Data
generated by PGD-10

Figure 2. The t-SNE projection of our methods on MNIST-LT
dataset. Red points represent the positive examples, and blue
points represent the negative examples.
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Figure 3. The convergence of AUC on testing data of CIFAR-10-LT, CIFAR-100-LT and MNIST-LT.
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Figure 4. Score distribution of positive and negative examples on MNIST-LT dataset. In each subfigure, the above part represents the
score distribution evaluated against clean data, and the below part represents the score distribution evaluated against PGD-10.

class size to negative class size ρ ≈ 1 : 9.

Binary MNIST-LT Dataset. We construct a long-tail
MNIST dataset from original MNIST dataset (LeCun et al.,
1998) in the same way as CIFAR-10-LT, where the ratio of
positive class size to negative class size ρ ≈ 1 : 9.

5.3. Overall Performance

The performance and robustness of all the involved methods
on three datasets are shown in Tab.2. Consequently, we have
the following observations: 1) On all the datasets, our meth-
ods achieve the best or competitive performance evaluated
against all adversarial attack methods as shown in Tab.2. 2)
Even the AUC optimization with NT has certain robustness
(the AUC will not drop to 0 when evaluated against adversar-
ial examples). This is because the decision surface obtained
by AUC optimization has a greater tolerance for minority
classes than CE. Specifically, the decision surface is far
away from the positive examples. To validate this argument,
we show the score distribution in Fig.4 w.r.t MNIST-LT. For
AdAUC NT, adversarial examples increase the score of the
negative examples, while it has less impact on the positive
examples. However, the perturbation becomes much more
violent. As shown in Fig.4-(a), the adversarial examples
simultaneously increase the score of the negative examples

and decreases the score of the positive examples. The more
results of other datasets are shown in the App.C.2, which
show a similar trend. Moreover, we show the feature visu-
alization of NT and AT2 of our methods for clean data and
adversarial examples. It implies that our AdAUC algorithm
could separate the positive and negative instances well in
the embedding space in Fig.2.

5.4. Convergence Analysis

We report the convergence of test AUC of CE-based meth-
ods and our proposed methods in Fig. 3. We can observe
that our proposed method performs better both on clean
data and adversarial examples. However, due to the high
complexity of the outer min-max problem, it could be seen
that our method converges slightly slower than CE methods,
which is consistent with the analysis of Thm.2.

6. Conclusion
In this paper, we initiate the study on adversarial AUC opti-
mization against long-tail problem. The complexity of AUC
loss function makes the corresponding adversarial training
hardly scalable. To address this issue, we first construct
a reformulation of the AT problem of AUC optimization.
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By further applying a concavity promoting regularizer, we
can reformulate the original problem as a min-max problem
where the objective function can be expressed instance-
wisely. On top of the reformulation, we construct an end-
to-end training algorithm with provable guarantee. Finally,
we conduct a series of empirical studies on three long-tail
benchmark datasets, the results of which demonstrate the
effectiveness of our proposed method.
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A. Proofs of Main Results
In this section, we provide the proofs of the main results.

A.1. Proof of Proposition 2

Proof. According to (Ying et al., 2016), a, b, α have the following closed-form solution:

a = Ê[hθ(x)|y = 1], b = Ê[hθ(x)|y = 0], α = Ê[hθ(x)|y = 0]− Ê[hθ(x)|y = 1].

Then it is easy to check that

r(a, b) = max
α

1

n

n∑
i=1

g(θ, a, b, α, (xi + δi, yi))

is a strongly-convex problem w.r.t. (a, b). However, r is in general not concave w.r.t. δi. In this sense, we then try to find a
surrogate objective to induce the concavity w.r.t δi. Specifically, we adopt a concavity regularization term −γ||xi + δi||22,
and define a surrogate objective:

f(w, α,xi + δi) = g(θ, a, b, α, (xi + δi, yi))− γ ∥xi + δi∥22 .

Therefore, if r is γ⋆-weakly concave w.r.t. δi, i = 1, 2, · · · , n (Liu et al., 2021; Böhm & Wright, 2021), then we can
define γ > γ⋆ to obtain an objective f(w, α,x + δ) such that maxα

1
n

∑n
i=1 f(w, α,xi + δi) is strongly concave w.r.t.

δi, i = 1, 2, · · · , n. Above all, with the weakly concavity assumption, we can instead solve the following surrogate problem
by the von Neumann’s minimax theorem:

(OP) min
w

max
α

max
δ

1

n

n∑
i=1

[f(w, α,xi + δi)]

= min
w

max
α

1

n

n∑
i=1

max
δi

[f(w, α,xi + δi)] ,

(7)

where w = (θ, a, b).

A.2. Proof of Lemma 1

Lemma 1. For all x ∈ X , c(xk) = 0 when 1) ∇xf(w, α,xk) = 0, or 2) xk − x0 = ϵ · sign(∇xf(w, α,xk)).

Proof.
c(xk) = max

x∈X
⟨x− xk,∇xf(w, α,xk)⟩

= max
x∈X

⟨x− x0 + x0 − xk,∇xf(w, α,xk)⟩

= max
x∈X

⟨x− x0,∇xf(w, α,xk)⟩ − ⟨xk − x0,∇xf(w, α,xk)⟩

= ϵ ·
∥∥∇xf(w, α,xk)

∥∥
1
− ⟨xk − x0,∇xf(w, α,xk)⟩

(8)

This completes the proof.

A.3. Proof of Technical Lemmas

In this subsections, we present seven key lemmas which are important for the proof of Theorem 2.
Lemma 2. Under the Asm.1 and 3, we have L(α) is Lα-smooth where Lα = LαxLxα

µ + Lαα. For any α1, α2, it holds

L(α1) ≤ L(α2) + ⟨∇L(α2), α1 − α2⟩+
Lα

2
∥α1 − α2∥22

∥∇L(α1)−∇L(α2)∥2 ≤ Lα ∥α1 − α2∥2 .
(9)

We also have that L(w) is Lw-smooth where Lw = LwxLxw

µ + Lww.
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Proof. Here, since we only focus on α and x when the w is fixed, we abbreviate x∗(w,α) as x∗(α) for convenience.

By the Asm.3, we have

f(w, α2,x
∗
i (α1)) ≤ f(w, α2,x

∗
i (α2)) + ⟨∇xf(w, α2,x

∗
i (α2)),x

∗
i (α1)− x∗

i (α2)⟩ −
µ

2
∥x∗

i (α1)− x∗
i (α2)∥22 , (10)

f(w, α2,x
∗
i (α2)) ≤ f(w, α2,x

∗
i (α1)) + ⟨∇xf(w, α2,x

∗
i (α1)),x

∗
i (α2)− x∗

i (α1)⟩ −
µ

2
∥x∗

i (α1)− x∗
i (α2)∥22 . (11)

Since ⟨∇xf(w, α2,x
∗
i (α2)),x

∗
i (α1)− x∗

i (α2)⟩ ≤ 0, combining (10) and (11), we obtain

µ ∥x∗
i (α1)− x∗

i (α2)∥22 ≤ ⟨∇xf(w, α2,x
∗
i (α1)),x

∗
i (α2)− x∗

i (α1)⟩
≤ ⟨∇xf(w, α2,x

∗
i (α1))−∇xf(w, α1,x

∗
i (α1)),x

∗
i (α2)− x∗

i (α1)⟩
≤ ∥∇xf(w, α2,x

∗
i (α1))−∇xf(w, α1,x

∗
i (α1))∥2 ∥x

∗
i (α2)− x∗

i (α1)∥2
≤ Lxα ∥α1 − α2∥2 ∥x

∗
i (α1)− x∗

i (α2)∥2 ,

(12)

where the second inequality holds because ⟨∇xf(w, α1,x
∗
i (α1)),x

∗
i (α2)− x∗

i (α1)⟩ ≤ 0.

Then (12) immediately yields

∥x∗
i (α1)− x∗

i (α2)∥2 ≤ Lxα

µ
∥α1 − α2∥2 . (13)

Then for i ∈ [n], we have

∥∇αf(w, α1,x
∗
i (α1))−∇αf(w, α2,x

∗
i (α2))∥2 ≤ ∥∇αf(w, α1,x

∗
i (α1))−∇αf(w, α1,x

∗
i (α2))∥2

+ ∥∇αf(w, α1,x
∗
i (α2))−∇αf(w, α2,x

∗
i (α2))∥2

≤ Lαx ∥x∗
i (α1)− x∗

i (α2)∥2 + Lαα ∥α1 − α2∥2

≤
(
LαxLxα

µ
+ Lαα

)
∥α1 − α2∥2 .

(14)

Finally, by the definition of L(α), we have

∥∇L(α1)−∇L(α2)∥2 ≤

∥∥∥∥∥ 1n
n∑

i=1

∇αf(w, α1,x
∗
i (α1))−

1

n

n∑
i=1

∇αf(w, α2,x
∗
i (α2))

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∇αf(w, α1,x
∗
i (α1))−∇αf(w, α2,x

∗
i (α2))∥2

≤
(
LαxLxα

µ
+ Lαα

)
∥α1 − α2∥2 .

(15)

This completes the proof.

Lemma 3. Under the Asm.1, we have Φ(w) is Lw-smooth whereLw = LwαLαw

µ + Lww. For any w1,w2, it holds

Φ(w1) ≤ Φ(w2) + ⟨∇Φ(w2),w1 −w2⟩+
Lw

2
∥w1 −w2∥22

∥∇Φ(w1)−∇Φ(w2)∥2 ≤ Lw ∥w1 −w2∥2 .
(16)

Proof. By the Rem.1, we have

L(w2, α
∗(w1)) ≤ L(w2, α

∗(w2)) + ⟨∇αL(w2, α
∗(w2)), α

∗(w1)− α∗(w2)⟩ −
µ

2
∥α∗(w1)− α∗(w2)∥22 , (17)

L(w2, α
∗(w2)) ≤ L(w2, α

∗(w1)) + ⟨∇αL(w2, α
∗(w1)), α

∗(w2)− α∗(w1)⟩ −
µ

2
∥α∗(w1)− α∗(w2)∥22 . (18)
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Since ⟨∇αL(w2, α
∗(w2)), α

∗(w1)− α∗(w2)⟩ ≤ 0, combining (17) and (18), we obtain

µ ∥α∗(w1)− α∗(w2)∥22 ≤ ⟨∇αL(w2, α
∗(w1)), α

∗(w2)− α∗(w1)⟩
≤ ⟨∇αL(w2, α

∗(w1), )−∇αL(w1, α
∗(w1)), α

∗(w2)− α∗(w1)⟩
≤ ∥∇αL(w2, α

∗(w1))−∇αL(w1, α
∗(w1))∥2 ∥α

∗(w2)− α∗(w1)∥2
≤ Lαw ∥w2 −w1∥2 ∥α

∗(w2)− α∗(w1)∥2 .

(19)

Then (19) yields

∥α∗(w1)− α∗(w2)∥2 ≤ Lαw

µ
∥w1 −w2∥2 . (20)

Then we have for i ∈ [n],

∥∇wL(w1, α
∗(w1))−∇wL(w2, α

∗(w2))∥2 ≤ ∥∇wL(w1, α
∗(w1)))−∇wL(w1, α

∗(w2))∥2
+ ∥∇wL(w1, α

∗(w2))−∇wL(w2, α
∗(w1))∥2

≤ Lwα ∥α∗(w1)− α∗(w2)∥2 + Lww ∥w1 −w2∥2

≤
(LwαLαw

µ
+ Lww

)
∥w1 −w2∥2 .

(21)

Finally, by the definition of Φ(w), we have

∥∇Φ(w1)−∇Φ(w2)∥2 ≤

∥∥∥∥∥ 1n
n∑

i=1

∇wL(w1, α
∗(w1))−

1

n

n∑
i=1

∇wL(w2, α
∗(w2))

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∇αL(w1, α
∗(w1))−∇αL(w2, α

∗(w2))∥2

≤
(LwαLαw

µ
+ Lww

)
∥w1 −w2∥2 .

(22)

This completes the proof.

Lemma 4. Under Asm.1 and 3, the approximate stochastic gradient ĝ(α) satisfies

∥ĝ(α)− g(α)∥2 ≤ Lαx

√
δ

µ
. (23)

We also have

∥ĝ(w)− g(w)∥2 ≤ Lwx

√
δ

µ
. (24)

Proof. We have

∥ĝ(α)− g(α)∥2 ≤

∥∥∥∥∥ 1

|B|
∑
i∈B

(
∇αf(w, α, x̂i(α))−∇αf(w, α,x∗

i (α))
)∥∥∥∥∥

2

≤ 1

|B|
∑
i∈B

∥∇αf(w, α, x̂i(α))−∇αf(w, α,x∗
i (α))∥2

≤ 1

|B|
∑
i∈B

Lαx ∥x̂i(α)− x∗
i (α)∥2 .

(25)

By the Asm.3, we have

µ ∥x̂i(α)− x∗
i (α)∥

2
2 ≤ ⟨∇αf(w, α, x̂i(α))−∇αf(w, α,x∗

i (α)), x̂i(α)− x∗
i (α)⟩. (26)
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Since the x̂i(α) is a δ-approximate solution to x∗
i (α), if it satisfies that

⟨x∗
i (α)− x̂i(α),∇xf(w, α, x̂i(α)⟩ ≤ δ. (27)

Furthermore, we have
⟨x̂i(α)− x∗

i (α),∇xf(w, α,x∗
i (α))⟩ ≤ 0. (28)

Combining (27) and (28), we obtain

⟨x̂i(α)− x∗
i (α),∇xf(w, α,x∗

i (α))−∇xf(α, x̂i)(α)⟩ ≤ δ. (29)

Combining (26) and (29), we obtain
µ ∥x̂i(α)− x∗

i (α)∥
2
2 ≤ δ (30)

Combining (25) and (30), we obtain

∥ĝ(α)− g(α)∥2 ≤ Lαx

√
δ

µ
. (31)

Lemma 5. g(w) = 1
M

∑M
i=1 Gw(wt, αt, ξi) and g(α) = 1

M

∑M
i=1 Gα(wt, αt, ξi) are unbiased and have bounded

variance:

E[g(w)] = ∇wL(wt, αt), E
[
∥g(w)∥22

]
= ∥∇wL(wt, αt)∥22 +

σ2

M
,

E[g(α)] = ∇αL(wt, αt), E
[
∥g(α)∥22

]
= ∥∇αL(wt, αt)∥22 +

σ2

M
.

(32)

Proof. Since ĝ is unbiased, we have

E[g(w)] = ∇wL(wt, αt), E[g(α)] = ∇αL(wt, αt).

Furthermore, we have

E[∥g(w)−∇wL(wt, αt)∥22] = E

∥∥∥∥∥ 1

M

M∑
i=1

Gw(wt, αt, ξi)−∇wL(wt, αt)

∥∥∥∥∥
2

2


=

∑M
i=1 E

[
∥Gw(wt, αt, ξi)−∇wL(wt, αt)∥22

]
M2

≤ σ2

M
.

E[∥g(α)−∇αL(wt, αt)∥22] = E

∥∥∥∥∥ 1

M

M∑
i=1

Gα(wt, αt, ξi)−∇αL(wt, αt)

∥∥∥∥∥
2

2


=

∑M
i=1 E

[
∥Gα(wt, αt, ξi)−∇αL(wt, αt)∥22

]
M2

≤ σ2

M
.

Lemma 6. The iterates {wt}t≥1 satisfy the following inequality:

E[Φ(wt)] ≤ E[Φ(wt−1)]−
(ηw

2
− 2Lwη

2
w

)
E
[
∥∇Φ(wt−1)∥22

]
+ (

ηw
2

+ 2Lwη
2
w)E

[
∥∇Φ(wt−1)−∇wL(wt−1, αt−1)∥22

]
+

Lwη
2
wσ

2

M
+

δLwL
2
wxη

2
w

µ
+ Lwxℓw

√
δ

µ
.

(33)
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Proof. By Lem.2, we have

Φ(wt) ≤ Φ(wt−1) + ⟨∇Φ(wt−1),wt −wt−1⟩+
Lw

2
∥wt −wt−1∥22 . (34)

Plugging wt −wt−1 = −ηwĝ(w) into (34) yields that

Φ(wt) ≤ Φ(wt−1)− ηw⟨∇Φ(wt−1), ĝ(w)⟩+ Lwη
2
w

2
∥ĝ(w)∥22

= Φ(wt−1)− ηw ∥∇Φ(wt−1)∥22 − ηw⟨∇Φ(wt−1), ĝ(w)−∇Φ(wt−1)⟩+
Lwη

2
w

2
∥ĝ(w)∥22

≤ Φ(wt−1)− ηw ∥∇Φ(wt−1)∥22 − ηw⟨∇Φ(wt−1), g(w)−∇Φ(wt−1)⟩+ Lwη
2
w ∥g(w)∥22

+ Lwη
2
w ∥ĝ(w)− g(w)∥22 − ηw⟨∇Φ(wt−1), ĝ(w)− g(w)⟩

= Φ(wt−1)− ηw ∥∇Φ(wt−1)∥22 − ηw⟨∇Φ(wt−1), g(w)−∇wL(wt−1, αt−1)⟩

− ηw⟨∇Φ(wt−1),∇wL(wt−1, αt−1)−∇Φ(wt−1)⟩+ Lwη
2
w ∥g(w)∥22

+ Lwη
2
w ∥ĝ(w)− g(w)∥22 − ηw⟨∇Φ(wt−1), ĝ(w)− g(w)⟩

≤ Φ(wt−1)−
ηw
2

∥∇Φ(wt−1)∥22 − ηw⟨∇Φ(wt−1), g(w)−∇wL(wt−1, αt−1)⟩

+
ηw
2

∥∇Φ(wt−1)−∇wL(wt−1, αt−1)∥22 + Lwη
2
w ∥g(w)∥22 +

δLwL
2
wxη

2
w

µ
+ ηwLwxℓw

√
δ

µ
.

(35)

By Lem.5, taking an expectation on the both sides yields that,

E [Φ(wt)] ≤ E[Φ(wt−1)]−
ηw
2
E
[
∥∇Φ(wt−1)∥22

]
+

ηw
2
E
[
∥∇Φ(wt−1)−∇wL(wt−1, αt−1)∥22

]
+ Lwη

2
w ∥∇wL(wt−1, αt−1)∥22 +

Lwη
2
wσ

2

M
+

δLwL
2
wxη

2
w

µ
+ ηwLwxℓw

√
δ

µ
.

(36)

By the Cauchy-Schwartz inequality, we have

∥∇wL(wt−1, αt−1)∥22 ≤ 2
(
∥∇wL(wt−1, αt−1)−∇Φ(wt−1)∥22 + ∥∇Φ(wt−1)∥22

)
. (37)

Plugging (37) into (36) and taking the expectation of both side, yields that

E[Φ(wt)] ≤ E[Φ(wt−1)]−
(ηw

2
− 2Lwη

2
w

)
E
[
∥∇Φ(wt−1)∥22

]
+
(ηw

2
+ 2Lwη

2
w

)
E
[
∥∇Φ(wt−1)−∇wL(wt−1, αt−1)∥22

]
+

Lwη
2
wσ

2

M
+

δLwL
2
wxη

2
w

µ
+ ηwLwxℓw

√
δ

µ
.

This completes the proof.

Lemma 7. let δt = E
[
∥α∗(wt, x

∗
t )− αt(wt, x̂t)∥22

]
, the following statements holds that

δt ≤
(
1− µ

2Lαw
+

L2
wwL

3
αwη

2
w

2µ3

)
δt−1 +

L3
αwη

2
w

4µ3
E
[
∥∇Φ(wt−1)∥22

]
+

2σ2

L2
αwM

+
L3
αwη

2
wσ

2

4µ3M
+

L3
αwL

2
wxη

2
wσ

2

4µ4
+

LαwL
2
αx∆

8µ3
+

2L2
αxδ

µ3
.

Proof.
δt = E

[
∥α∗(wt, x

∗
t )− α∗(wt, x̂t) + α∗(wt, x̂t)− αt(wt, x̂t)∥22

]
≤ 2E

[
∥α∗(wt, x

∗
t )− α∗(wt, x̂t)∥22

]
+ 2E

[
∥α∗(wt, x̂t)− αt(wt, x̂t)∥22

]
.

(38)



AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems

By Young’s inequality, for any ϵ0 ≤ 0, we have

E
[
∥α∗(wt, x̂t)− αt(wt, x̂t)∥22

]
≤
(
1 +

1

ϵ0

)
E
[
∥α∗(wt−1, x̂t−1)− αt(wt, x̂t)∥22

]
+ (1 + ϵ0)E

[
∥α∗(wt, x̂t)− α∗(wt−1, x̂t−1)∥22

]
.

(39)

By the Rem.1 and ηα = 1/Lαw (refer to (Nesterov, 1998) Theorem 2.3.4), we have

E
[
∥α∗(wt−1, x̂t)− αt(wt, x̂t)∥22

]
≤
(
1− µ

Lαw

)
E
[
∥α∗(wt−1, x̂t−1)− αt−1(wt−1, x̂t−1)∥22

]
+

σ2

L2
αwM

. (40)

By triangle inequality, we have

E
[
∥α∗(wt−1, x̂t−1)− αt−1(wt−1, x̂t−1)∥22

]
≤2E

[∥∥α∗(wt−1, x̂t−1)− α∗(wt−1, x
∗
t−1)

∥∥2
2

]
+ 2E

[∥∥α∗(wt−1, x
∗
t−1)− αt−1(wt−1, x̂t−1)

∥∥2
2

]
.

(41)

Plugging (41) into (40), yields that

E
[
∥α∗(wt−1, x̂t−1)− αt(wt, x̂t)∥22

]
≤ 2

(
1− µ

Lαw

)[
δt−1 + E

[∥∥α∗(wt−1, x̂t−1)− α∗(wt−1, x
∗
t−1)

∥∥2
2

]]
+

σ2

L2
αwM

.

(42)

By triangle inequality, we have

E
[
∥α∗(wt, x̂t)− α∗(wt−1, x̂t−1)∥22

]
≤2E

[
∥α∗(wt, x̂t)− α∗(wt−1, x̂t)∥22

]
+ 2E

[
∥α∗(wt−1, x̂t)− α∗(wt−1, x̂t−1)∥22

]
.

(43)

Since α∗(·) is Lαw

µ -Lipschitz, we have

E
[
∥α∗(wt, x̂t)− α∗(wt−1, x̂t)∥22

]
≤ L2

αw

µ2
E
[
∥wt −wt−1∥22

]
. (44)

Furthermore, we have

E
[
∥wt −wt−1∥22

]
= η2wE

[
∥ĝ(w)∥22

]
= 2η2wE

[
∥g(w)∥22

]
+ 2η2wE

[
∥ĝ(w)− g(w)∥22

]
≤ 2η2w ∥∇wL(wt−1, αt−1)∥22 +

2η2wσ
2

M
+

2δL2
wxη

2
w

µ
(37)

≤ 4η2w

(
∥∇wL(wt−1, αt−1)−∇Φ(wt−1)∥22 + ∥∇Φ(wt−1)∥22

)
+

2η2wσ
2

M
+

2δL2
wxη

2
w

µ

≤ 4L2
wwη

2
wδt−1 + 4η2w ∥∇Φ(wt−1)∥22 +

2η2wσ
2

M
+

2δL2
wxη

2
w

µ
.

(45)

Plugging (44) and (45) into (43) and taking the exception of both side, yields that

E
[
∥α∗(wt, x̂t)− α∗(wt−1, x̂t−1)∥22

]
≤ 8L2

αwL
2
wwη

2
w

µ2
δt−1 +

8L2
αwη

2
w

µ2
E
[
∥∇Φ(wt−1)∥22

]
+

4L2
αwη

2
wσ

2

µ2M

+
4L2

αwL
2
wxη

2
wδ

µ3
+ 2E

[
∥α∗(wt−1, x̂t)− α∗(wt−1, x̂t−1)∥22

]
.

(46)
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Then, plugging (42) and (46) into (39) and let ϵ0 = 8(κ−1)
7−6κ and κ ≤ 7

6 , yields that

E
[
∥α∗(wt, x̂t)− αt(wt, x̂t)∥22

]
≤
(
1

2
− µ

4Lαw
+

L2
wwL

3
αwη

2
w

4µ3

)
δt−1 +

L3
αwη

2
w

4µ3
E
[
∥∇Φ(wt−1)∥22

]
+

σ2

L2
αwM

+
L3
αwη

2
wσ

2

8µ3M
+

L3
αwL

2
wxη

2
wδ

8µ4

+
Lαw

16µ
E
[
∥α∗(wt−1, x̂t)− α∗(wt−1, x̂t−1)∥22

]
.

(47)

Since α∗(·) is Lαx

µ -Lipschitz, we have

E
[
∥α∗(wt−1, x̂t)− α∗(wt−1, x̂t−1)∥22

]
≤ L2

αx

µ2
E
[
∥x̂t − x̂t−1∥22

]
≤ L2

αx

µ2
∆, (48)

E
[
∥α∗(wt, x

∗
t )− α∗(wt, x̂t)∥22

]
≤ L2

αx

µ2
E
[
∥x∗

t − x̂t∥22
]
≤ L2

αxδ

µ3
, (49)

where ∆ is the maximum distance between two adversarial samples on the same sample. We can get the value of ∆ by the
diameter if Xi.

Plugging (46) (47) and (48) into (38), yields that

δt ≤
(
1− µ

2Lαw
+

L2
wwL

3
αwη

2
w

2µ3

)
δt−1 +

L3
αwη

2
w

4µ3
E
[
∥∇Φ(wt−1)∥22

]
+

2σ2

L2
αwM

+
L3
αwη

2
wσ

2

4µ3M
+

L3
αwL

2
wxη

2
wδ

4µ4
+

LαwL
2
αx∆

8µ3
+

2L2
αxδ

µ3
.

Lemma 8. let δt = E[∥α∗(wt, x
∗
t )− αt(wt, x̂t)∥22], the following statements holds that

E[Φ(wt)] ≤ E [Φ(wt−1)]−
ηw
4
E
[
∥∇Φ(wt−1)∥22

]
+

3ηwL
2δt−1

4
+

Lwη
2
wσ

2

M
+

δLwL
2η2w

µ
+ ηwLℓw

√
δ

µ
.

Proof. Let ηw = 1
16(κ+1)2L , where L is the maximum value in the set {Lww, Lwα, Lαw, Lxw, Lwx, Lxα, Lαx}, and κ = L

µ ,
hence

1

4
ηw ≤ ηw

2
− 2Lwη

2
w ≤ ηw

2
+ 2Lwη

2
w ≤ 3

4
ηw. (50)

Then we have

E
[
∥∇Φ(wt−1)−∇wL(wt−1, αt−1)∥22

]
≤ L2δt−1. (51)

Combining (50) (51) and Lem.6 yields that

E[Φ(wt)] ≤ E [Φ(wt−1)]−
ηw
4
E
[
∥∇Φ(wt−1)∥22

]
+

3ηwL
2δt−1

4
+

Lwη
2
wσ

2

M
+

δLwL
2η2w

µ
+ ηwL

2

√
δ

µ
.



AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems

A.4. Proof of Theorem 1

Proof. Throughout this subsection, we define γ = 1− 1
2κ +

L2κ3η2
w

2 . Since δ0 ≤ D2, where D = |Ωα|,we have

δt ≤γtD2 +
κ3η2w
4

t−1∑
j=0

γt−1−jE
[
∥∇Φ(wt−1)∥22

]
+

(
2σ2

L2M
+

κ3η2wσ
2

4M
+

Lκ4η2wδ

4
+

2κ2δ

µ
+

κ3∆

8

)t−1∑
j=0

γt−1−j

 .

(52)

Combining (52) and Lem.8 yields that

E[Φ(wt)] ≤E [Φ(wt−1)]−
ηw
4
E
[
∥∇Φ(wt−1)∥22

]
+

Lwη
2
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2

M
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δLwL
2η2w
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+ ηwL
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√
δ
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+
3ηwL
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3L2κ3η3w
16
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∥∇Φ(wj)∥22

]
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3ηwL
2

4

(
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L2M
+

κ3η2wσ
2

4M
+

Lκ4η2wδ

4
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2κ2δ

µ
+

κ3∆

8

)t−2∑
j=0

γt−2−j


(53)

Summing up (53) over t = 1, 2, · · · , T + 1 and rearranging the terms yields that

E[Φ(wT+1)] ≤E [Φ(w0)]−
ηw
4

T∑
t=0

E
[
∥∇Φ(wt)∥22

]
+ (T + 1)

(
Lwη

2
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2

M
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+ ηwL

2

√
δ
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+
3ηwL

2D2

4

T∑
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∥∇Φ(wj)∥22
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3ηwL
2

4

(
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4M
+

Lκ4η2wδ

4
+

2κ2δ

µ
+

κ3∆

8
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γt−2−j


(54)

Since ηw = 1
16(κ+1)2L , we have γ ≤ 1− 1

4κ and 3L2κ3η3
w

16 ≤ 3ηw

4096κ . This implies that
∑T

t=0 γ
t ≤ 4κ and

T+1∑
t=1

t−2∑
j=0

γt−2−jE
[
∥∇Φ(wj)∥22

]
≤ 4κ

T∑
t=0

E
[
∥∇Φ(wt)∥22

]
T+1∑
t=1

t−2∑
j=0

γt−2−j ≤ 4κ(T + 1)

(55)

Putting these pieces together yields that

E[Φ(wT+1)] ≤E [Φ(w0)]−
253ηw
1024

T∑
t=0

E
[
∥∇Φ(wt)∥22

]
+ ηw (T + 1)

(
σ2

8κM
+

Lδ

8
+ L2

√
δ

µ

)

+ 3ηwκL
2D2 + ηw (T + 1)

(
6σ2κ

M
+

3σ2

1024M
+

3κLδ

1024
+ 6κ4Lδ +

3κ4L2∆

8

) (56)

Futhermore, we have
σ2

8κM
+

6σ2κ

M
+

3σ2

1024M
≤ 6403κσ2

1024M
(57)
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By definition of ∆Φ and plugging (57) into (56), we have

1

T + 1

(
T∑

t=0

E
[
∥∇Φ(wt)∥22

])
≤ 1024∆Φ

253ηw (T + 1)
+

3072L2D2κ

253 (T + 1)
+

6403κσ2

253M

+
1024

253

(
3κLδ

1024
+ 6κ4Lδ +

Lδ

8
+ L2

√
δ

µ

)
+

384κ4L2∆

253

≤ 5∆Φ

ηw (T + 1)
+

13κL2D2

T + 1
+

26κσ2

M
+ hδ + h∆

≤ 360κ2L∆Φ + 13κL2D2

T + 1
+

26κσ2

M
+ hδ + h∆

(58)

where hδ = 1024
253

(
3κLδ
1024 + 6κ4Lδ + Lδ

8 + L2
√

δ
µ

)
and h∆ = 384κ4L2∆

253 and ∆Φ = Φ(w0) −minw Φ(w). On the right

side of (58), the second term 26κσ2

M is due to random sampling, the third term hδ is due to the use of an approximate solution
x̂ to the inner maximization problem instead of the optimal solution x∗, and the fourth term h∆ is due to X being a bounded
set. And their values are very small.

B. Adversarial Attacks
Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) is a single-step attack that generates adversarial examples
through a permutation along the gradient of the loss function with respect to the clean image feature vector as:

x = x+ ϵ · sign (∇xℓ(hθ(x, y))) (59)

Projected Gradient Descent (PGD) (Madry et al., 2018) starts from an initialization point that is uniformly sampled
from the allowed ϵ-ball centered at the clean image, and it expends FSGM by iteratively applying multiple small steps of
permutation updating with respect to the current gradient as:

xk = Proj
(
xk−1 + β · sign

(
∇xℓ(hθ(x

k−1, y))
))

(60)

Carlini & Wagner (C&W) (Carlini & Wagner, 2017) is another powerful attack based on optimization, where an auxiliary
variable ω is induced and an adversarial example constrained by l2 norm is represented by x′ = 1

2 (tanhω + 1). It can be
optimized by:

argmin
ω

{
c · f(x′) + ∥x′ − x∥22

}
(61)

where

f(x) = max

(
max
i ̸=y

Z(x′ − Z(x′)y),−κ

)
(62)

and here κ controls the confidence of the adversarial examples. It can also be extended to other l∞.

Auto Attack (AA) (Croce & Hein, 2020) is a combination of multiple attacks that forms a parameter-free and computationally
affordable ensemble of attacks to evaluate adversarial robustness. The standard attacks include four selected attacks: APGD,
targeted version of APGD-DLR and FAB, and Square Attack.

C. Additional Results
In this section, we provide additional results to further support the conclusions in the main text.

C.1. Experiment Setting

The adversarial training is applied with the maximal permutation ϵ of 8/255 and a step size of 2/255. The max number of
iterations K is set as 10. For CE, we use SGD momentum optimizer, while for ours, we use SGDA momentum optimizer.
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The initial learning rate ηw is set as 0.01 with decay 5× 10−4, and the batch size is 128. And the initial learning rate ηα is
set as 0.1. In the training process, we adopt a learning rate step decay schedules, which cut the learning rate by a constant
factor 0.001 every 30 constant number of epochs for all methods.

C.2. Score Distribution
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Figure 5. Distribution of positive and negative example scores of CE on MNIST-LT dataset. The first row represents the score distribution
against different attacks under Natural Training, and the second row represents the score distribution under Adversarial Training.
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Figure 6. Distribution of positive and negative example scores of our proposed AdAUC on MNIST-LT dataset. The first row represents the
score distribution against different attacks under Natural Training, and the second row represents the score distribution under Adversarial
Training.
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Figure 7. Distribution of positive and negative example scores of CE on CIFAR-10-LT dataset. The first row represents the score
distribution against different attacks under Natural Training, and the second row represents the score distribution under Adversarial
Training.

0

5

10

0.00 0.25 0.50 0.75 1.00
Score

D
en

si
ty

Neg Pos

(a) Clean

0

5

10

0.00 0.25 0.50 0.75 1.00
Score

D
en

si
ty

Neg Pos

(b) FSGM

0

5

10

15

0.00 0.25 0.50 0.75 1.00
Score

D
en

si
ty

Neg Pos

(c) PGD-10

0

5

10

15

0.00 0.25 0.50 0.75 1.00
Score

D
en

si
ty

Neg Pos

(d) PGD-20

0

5

10

0.00 0.25 0.50 0.75 1.00
Score

D
en

si
ty

Neg Pos

(e) Clean

0

5

10

0.00 0.25 0.50 0.75 1.00
Score

D
en

si
ty

Neg Pos

(f) FSGM

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00
Score

D
en

si
ty

Neg Pos

(g) PGD-10

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00
Score

D
en

si
ty

Neg Pos

(h) PGD-20

Figure 8. Distribution of positive and negative example scores of AdAUC on CIFAR-10-LT dataset. The first row represents the score
distribution against different attacks under Natural Training, and the second row represents the score distribution under Adversarial
Training.
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Figure 9. Distribution of positive and negative example scores of CE on CIFAR-100-LT dataset. The first row represents the score
distribution against different attacks under Natural Training, and the second row represents the score distribution under Adversarial
Training.
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Figure 10. Distribution of positive and negative example scores of AdAUC on CIFAR-100-LT dataset. The first row represents the score
distribution against different attacks under Natural Training, and the second row represents the score distribution under Adversarial
Training.


