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Abstract
We study reinforcement learning with linear func-
tion approximation where the transition probabil-
ity and reward functions are linear with respect to
a feature mapping ϕps, aq. Specifically, we con-
sider the episodic inhomogeneous linear Markov
Decision Process (MDP), and propose a novel
computation-efficient algorithm, LSVI-UCB`,
which achieves an rOpHd

?
T q regret bound where

H is the episode length, d is the feature dimen-
sion, and T is the number of steps. LSVI-UCB`

builds on weighted ridge regression and upper
confidence value iteration with a Bernstein-type
exploration bonus. Our statistical results are ob-
tained with novel analytical tools, including a
new Bernstein self-normalized bound with conser-
vatism on elliptical potentials, and refined analysis
of the correction term. To the best of our knowl-
edge, this is the first minimax optimal algorithm
for linear MDPs up to logarithmic factors, which
closes the

?
Hd gap between the best known up-

per bound of rOp
?
H3d3T q in (Jin et al., 2020)

and lower bound of ΩpHd
?
T q for linear MDPs.

1. Introduction
Reinforcement Learning (RL) has demonstrated phenom-
enal empirical success in many areas, including games,
robotic control, etc., where improving sample complexity
is always an important topic. When the state space and
action space are finite, the Markov decision process (MDP)
has been proven to achieve nearly minimax optimal sample-
complexity with the generative model in (Azar et al., 2013).
For harder RL settings, nearly minimax optimal sample-
complexities are obtained in (Azar et al., 2017) for finite
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horizon episodic MDPs, and (He et al., 2021; Tossou et al.,
2019) for infinite horizon MDPs1. However, MDPs are
known to suffer from the curse-of-dimensionality due to
large and possibly infinite state and action space.

Function approximation is an essential approach for han-
dling large MDPs, which assumes that the problem structure
has a compact representation concerning state or state-action
pairs and enables the development of nearly minimax opti-
mal theoretical guarantees for RL problems. Linear func-
tion approximation is one of the most fundamental function
approximations. It has a significant impact since many prob-
lems can be linearly-parameterized structurally or combined
with embedding, where linear MDPs and linear mixture
MDPs are two of the most popular models. Representative
works for these two settings are presented in Table 1, from
which we find that the best regret upper bound for linear
MDPs and linear mixture MDPs are rOp

?
H3d3T q by LSVI-

UCB in (Jin et al., 2020) and rOp
?
H2d2T ` H3dT q by

UCRL-VTR` in (Zhou et al., 2021), respectively. However,
the best-known lower bound for these two settings are both
ΩpHd

?
T q according to (Zhou et al., 2021), which means

the following fundamental question remains open:

Does there exist a computation-efficient and minimax opti-
mal algorithm for RL with linear function approximation?

We answer this question affirmatively for linear MDPs by
designing the LSVI-UCB` algorithm, which reaches mini-
max optimal regret up to logarithmic factors. LSVI-UCB`

overcomes barriers to nearly minimax optimality in existing
works (Jin et al., 2020; Wang et al., 2020b; Zanette et al.,
2020b; Wang et al., 2020a) for linear MDPs and their varia-
tions, including overly aggressive exploration and extra cost
for building a uniform convergence argument by covering
net. It constructs a Bernstein-type bonus to perform efficient
exploration, which enables a

?
H factor reduction in regret.

Besides, the extra
?
d dependency from building the uni-

form convergence argument can be removed by our novel
technique of bounding the correction term ppP´PqppV ´V ˚q.
Notably, minimax optimal algorithms (Azar et al., 2017;
Zanette & Brunskill, 2019) for tabular MDPs also utilize the

1An algorithm is nearly minimax optimal if its sample complex-
ity matches the minimax lower bound up to logarithmic factors.
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Table 1. Theoretical results on RL with linear function approxima-
tion, where : denotes that rewards are adversarial, and the lower
bound holds for both settings.

Algorithm Regret

Linear MDP

OPT-RLSVI (Zanette et al., 2020a) rOpH2d2
?
T q

LSVI-UCB (Jin et al., 2020) rOp
?
H3d3T q

LSVI-UCB` (this paper) rOpHd
?
T q

Linear Mixture MDP

OPPO: (Cai et al., 2020) rOp
?
H3d2T q

UCRL-VTR (Ayoub et al., 2020) rOp
?
H3d2T q

UCRL-VTR` (Zhou et al., 2021) rOp
?
H2d2T ` H3dT q

Lower Bound (Zhou et al., 2021) ΩpHd
?
T q

Bernstein-type bonus for exploration with refined consider-
ation of the correction term in analysis. However, results
for tabular MDPs cannot be applied directly to our settings
due to the need for building the Bernstein inequality for
vector-valued martingales in linear settings. It is worth men-
tioning that the above Bernstein inequality has been studied
in (Zhou et al., 2021), where the UCRL-VTR` is nearly
minimax optimal when d ě H for linear mixture MDPs.
By contrast, our proposed LSVI-UCB` algorithm achieves
nearly minimax optimal regret without requiring this as-
sumption for linear MDPs and can be further generalized to
linear mixture MDPs such that the nearly minimax optimal
regret can also be obtained without d ě H . This is because
our proposed Bernstein inequality (Theorem 7.1) is sharper
by considering the conservatism on elliptical potentials. Our
contributions are summarized below:

• We develop a novel Bernstein bound of rOpσ
?
d `

Rq for self-normalized martingales, which is sharper
than the analog inequalities in (Zhou et al., 2021). By
utilizing the conservatism on elliptical potentials, the
bound can be further improved to rOpσ

?
dq, which

serves as a new analytical tool for RL.

• We propose the LSVI-UCB` algorithm based on a
Bernstein-type exploration bonus and weighted ridge
regression, with weights determined by value function
variances and exploration uncertainty. LSVI-UCB`

achieves an rO
`

Hd
?
T
˘

regret, and is minimax opti-
mal up to logarithmic factors in large-sample regime.

• We improve the analytical framework of statistical
complexity for linear MDPs by bounding the correction
term ppP ´ PqppV ´ V q. Combined with the Bernstein
self-normalized bound, this new analytical framework
can remove the extra dependencies on H and d, which
is very different from the traditional Hoeffding bound
used in (Jin et al., 2020; Wang et al., 2020b;a).

Notations Scalars are denoted in lower case letters, and
vectors/matrices are denoted in boldface letters. Denote
}x}2Λ “ xJΛx for vector x and positive definite matrix Λ.
Denote t1, ..., nu as rns and the truncated value of x in ra, bs
interval as rxsra,bs for a ď b. Define an “ Opbnq if there
exists an absolute constant c ą 0 such that an ď cbn holds
for all n ě 1 and define an “ Ωpbnq for inverse direction.
rOp¨q further suppresses the polylogarithmic factors in Op¨q.

2. Related Work
Linear Bandits Linear stochastic bandits can be regarded
as a special case of linearly-parameterized MDPs with
episode length 1. (Dani et al., 2008) proposes an algo-
rithm with Opd

a

T log3 T q regret by building confidence
ball with Freedman inequality (Freedman, 1975). (Abbasi-
Yadkori et al., 2011) improves the regret to Opd

a

T log2 T q

with a self-normalized tail inequality, derived by the method
of mixture (Victor et al., 2009). (Li et al., 2021) further
proposes an algorithm with Opd

?
T log T polyplog log T qq

regret by bounding the supremum of self-normalized
processes, which matches the lower bound up to a
polyplog log T q factor. The self-normalized tail inequalities
for linear bandits in these works are all Hoeffding-type, i.e.,
only consider sub-Gaussian noises. However, for linear RL,
Bernstein-type inequalities considering the sub-exponential
noise, are necessary for sharper statistical results.

RL with Linear Function Approximation Recent works
have focused on designing statistically and/or computation-
ally efficient algorithms for RL with linear function approxi-
mation. The first sample efficient algorithm is introduced by
(Jiang et al., 2017), where low Bellman rank is considered.
Subsequent works on this setting include (Dann et al., 2018;
Sun et al., 2019). (Yang & Wang, 2019) develops the first
statistically and computationally efficient algorithm for lin-
ear MDPs with a simulator, where the transition probability
and reward functions are linear concerning a feature map-
ping ϕps, aq. Subsequently, (Jin et al., 2020) considers RL
settings for linear MDPs and propose LSVI-UCB algorithm
reaching rOp

?
H3d3T q regret. Concurrently, (Zanette et al.,

2020a) provides a Thompson sampling based algorithm with
regret bound of rOpd2H2

?
T q. More works generalize lin-

ear MDPs includes (Zanette et al., 2020b) for low inherent
bellman error, (Wang et al., 2020b) for linear Q function,
and (Wang et al., 2020a) for bounded Eluder dimension.

Another popular linearly-parameterized MDP is the lin-
ear mixture MDP, where transition probability is linear to
the feature function over (state, action, next state) triples.
(Modi et al., 2020) firstly considers the statistical com-
plexity of this setting and (Yang & Wang, 2020) pro-
vides an rOpH2d log T

?
T q regret with special case of low-

dimensional representation of the transition matrix. Sub-
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sequently, (Jia et al., 2020; Ayoub et al., 2020) proposes
UCRL-VTR algorithm with rOp

?
H3d2T q regret, and (Cai

et al., 2020) considers adversarial rewards setting, giving
same regret. Notably, the nearly minimax optimal regret for
linear mixture MDP is first obtained by UCRL-VTR` in
(Zhou et al., 2021) under d ě H case.

3. Preliminaries
We consider episodic finite horizon MDP M “

tS,A, H, tPhuh, trhuhu, where S is the state space, A is
the action space, H P Z` is the length of each episode,
Ph : S ˆ A Ñ ∆pSq and rh : S ˆ A Ñ r0, 1s are time-
dependent transition probability and deterministic reward
function. We assume that S is a measurable space with
possibly infinite number of elements and A is a finite set.

For a time-inhomogeneous MDP, the policy is time-
dependent, which is denoted as π “ tπ1, ..., πHu. Here
πhpsq is the action that agent takes at state s at the h-th step.
The value function V π

h : S Ñ R is the expected value of
cumulative rewards received under policy π when starting
from a state at h-th step, given as

V π
h psq :“ E

«

H
ÿ

h1“h

rh1 psh1 , πh1 psh1 qq | sh “ s, π

ff

,

for any s P S, h P rHs. The state-action function Qπ
h :

S ˆA Ñ R gives the expected value of cumulative rewards
starting from a state-action pair at h-th step, defined as

Qπ
hps, aq “ E

«

H
ÿ

h1“h

rh1 psh1 , ah1 q | sh “ s, ah “ a, π

ff

,

for any ps, aq P S ˆ A, h P rHs. For any function
V : S Ñ R, we denote PhV ps, aq “ Es1„Php¨|s,aqV ps1q

and rVhV s ps, aq “ PhV
2ps, aq ´ rPhV ps, aqs2, where V 2

stands for the function whose value at s is V 2psq. The
Bellman equation associated with a policy π is

Qπ
hps, aq “rhps, aq ` PhV

π
h`1ps, aq

V π
h psq “Qπ

hps, πhpsqq

for any ps, aq P S ˆ A, h P rHs. Since the action space
and the episode length are both finite, there always exists an
optimal policy π˚ such that V ‹

h psq “ supπ V
π
h psq for any

s P S, h P rHs, with Bellman optimality equation as

Q‹
hps, aq “rhps, aq ` PhV

‹
h`1ps, aq

V ‹
h psq “max

aPA
Q‹

hps, aq

for any ps, aq P S ˆ A, h P rHs.

The structural assumption we make in this paper is a linear
structure in both transition and reward, which has been
considered in (Yang & Wang, 2019; Jin et al., 2020; Zanette
et al., 2020a). The formal definition is as follows.

Definition 3.1 (Linear MDP). A MDP M “

tS,A, H, tPhuh, trhuhu is a linear MDP with a known
feature mapping ϕ : S ˆ A Ñ Rd, if for any h P rHs,
there exist |S| unknown d-dimensional measures
µh “ pµhp1q, ..., µhp|S|qq P Rdˆ|S| and an unknown
vector θh P Rd, such that for any ps, aq P S ˆ A, we have

Php¨ | s, aq “ xϕps, aq,µhp¨qy, rhps, aq “ xϕps, aq,θhy.

We make the following assumptions, similar to existing
literature (Jin et al., 2020; Agarwal et al., 2019). Specifically,
for any h P rHs, (i) sups,a }ϕpx, aq}2 ď 1, (ii) }µhv}2 ď
?
d for any vector v P R|S| with }v}8 ď 1, (iii) }θh}2 ď

W , and (iv) rhps, aq P r0, 1s for all ps, aq P S ˆ A.

In this paper, we focus on the setting where the reward func-
tion trhuhPrHs, i.e., tθhuhPrHs is known, but our algorithm
can readily be extended to handle unknown rewards.

Learning Protocol In every episode k, the learner first
proposes a policy πk based on all history information up
to the end of episode k ´ 1. The learner then executes
πk to generate a single trajectory τk “ tskh, a

k
huHh“1 with

akh “ πk
hpskhq and skh`1 „ Php¨|skh, a

k
hq. The goal of the

learner is to learn the optimal policy by interacting with the
environment during K episodes. For the k-th episode, the
initial state sk1 is picked by the adversary and the optimal
policy will minimize the cumulative regret over K episodes:

RegretpKq “

K
ÿ

k“1

rV ‹
1 psk1q ´ V πk

1 psk1qs.

4. Strategic Exploration in Linear MDP
Section 4.1 illustrates the standard ways of strategic ex-
ploration in linear MDPs in existing works, i.e., optimistic
value iteration with parameters estimated by linear ridge
regression. Next, we point out in Section 4.2 barriers to
minimax optimality in existing algorithms, which also helps
explain our algorithm design Section 5.

4.1. Optimistic Learning in Linear MDPs

Optimistic learning evolves in an episodic fashion. In
episode k, the agent first estimates unknown parameters
of the linear MDP by historical data up to episodes k ´ 1.
One standard approach is estimating the parameter ω˚

h “

θh ` µhV
˚
h`1 by linear ridge regression, as LSVI-UCB in

(Jin et al., 2020) and its variants in (Wang et al., 2020b;a),
since the optimal Q function Q˚

hps, aq “ xω˚
h,ϕps, aqy ac-

cording to Proposition 2.3 in (Jin et al., 2020). Subsequently,
an optimistic Q function Qk,h in Eq. (2) is constructed
with the learned parameter ωk,h and the exploration bonus
β}ϕp¨, ¨q}Λ´1

k,h
. The agent then follows a greedy policy πk
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of Qk,h to interact with the environment and repeat the
above procedure in the next episode.

We illustrate two major steps of linear ridge regression and
the construction of the optimistic Q function below.

Linear Ridge Regression To estimate the optimal ω˚
h, the

following regularized least-squares problem is proposed:

min
ωPRd

k´1
ÿ

i“1

rVk,h`1psih`1q ´ ωJϕpsih, a
i
hqs2 ` λ}ω}22 (1)

The closed-form solution to Eq. (1) is

ωk,h “ Λ´1
k,h

k´1
ÿ

i“1

ϕpsih, a
i
hqJVk,h`1psih`1q

where Λk,h “
řk´1

i“1 ϕpsih, a
i
hqϕpsih, a

i
hqJ ` λI, and

Vk,hp¨q is given in Eq. (3).

Optimistic Estimator ωk,h is then used to build an op-
timistic state-action function in Eq. (2) with exploration
bonus β}ϕp¨, ¨q}Λ´1

k,h
to encourage exploration, and opti-

mistic value function is given in Eq. (3) as well. Notice that
these two functions are built in a backwards fashion from
stage H to 1, such that named as optimistic value iteration.

Qk,hp¨, ¨q “xωk,h,ϕp¨, ¨qy ` β}ϕp¨, ¨q}Λ´1
k,h

(2)

Vk,hp¨q “max
aPA

Qk,hp¨, aq (3)

In particular, denote the optimistic confidence set Ck,h :“
tω : }ω ´ ωk,h}Λk,h

ď βu such that Qk,hp¨, ¨q “

maxωPCk,h
xω,ϕp¨, ¨qy. Notably, confidence set Ck,h is an

ellipsoid centered at ωk,h, with shape parameter Λk,h and
radius β (usually named as the exploration radius). It can
be proved that with high probability, ω˚

h P Ck,h by using
self-normalized tail inequalities for vector-valued martin-
gales, e.g., Theorem 1 in (Abbasi-Yadkori et al., 2011), used
broadly in the analysis of linear bandits or RL with linear
function approximation. Consequently, functions in Eq. (2),
(3) obtains optimism in high probability.

4.2. Barriers to Minimax Optimality

The above optimistic learning based value iteration is a com-
monly adopted paradigm of RL with linear function approx-
imation in existing works, e.g., (Jin et al., 2020; Wang et al.,
2020b;a). However, the best-known regret upper bound
for linear MDPs is rOp

?
H3d3T q by LSVI-UCB algorithm

in (Jin et al., 2020), while the best known lower bound is
ΩpHd

?
T q according to (Zhou et al., 2021). As shown in

Section 6, the lower bound is tight. We analyze where the?
Hd gap comes from and then propose corresponding so-

lutions, which immediately sheds light on designing the
efficient LSVI-UCB` algorithm in the next section.

4.2.1. OVERLY AGGRESSIVE EXPLORATION

The tradeoff between exploitation and exploration is a cen-
tral task for RL algorithms, implemented by designing ex-
ploration bonuses in optimistic learning. The current

?
H

gap stems from the overly aggressive exploration, which
means that the current exploration radius β “ rOpHdq in
existing works, e.g., (Jin et al., 2020; Wang et al., 2020b;
Ayoub et al., 2020) is too large and leads to insufficient
exploitation. The underlying reason remains that a bonus
with rOpHdq radius is intrinsically Hoeffding-type since it
has the order of the magnitude of the considered martingale
difference sequence (MDS). We prove that a Bernstein-type
bonus, based on the variance of the MDS, combined with the
Law of Total Variance (LTV) (Lattimore & Hutter, 2012),
can reduce one

?
H factor of regrets in linear MDPs. The

motivation for this improvement comes from prior works
(Azar et al., 2017; Jin et al., 2018; Zanette & Brunskill,
2019) for tabular MDPs, which succeeded in achieving

?
H

regret reduction by introducing a Bernstein-type bonus. For
linear mixtures MDPs, UCRL-VTR` in (Zhou et al., 2021)
firstly introduces a Bernstein-type bonus and also achieves a?
H regret reduction. However, a direct adaption of UCRL-

VTR` in linear MDPs will not improve the regret due to the
extra cost of building a uniform convergence argument.

4.2.2. EXTRA UNIFORM CONVERGENCE COST

Introducing a ε-covering net is a common approach to
build a uniform convergence argument over a function class.
Many algorithms for RL with linear function approximation
achieve polynomial sample complexity with this approach.
However, this brings extra dependency on d in the regret, as
presented in prior analysis, e.g., LSVI-UCB in (Jin et al.,
2020) and its variants in (Wang et al., 2020b;a). Specif-
ically, when bounding the deviation term ppP ´ PqpV , the
self-normalized tail inequality cannot be applied directly
since pV is not well-measurable. Prior works fix a value
function V p¨q P pV , where pV is the function class contains
all possible pV , and build a uniform convergence argument
by taking uniform bound over all functions in the ε-covering
net pNε of pV . In this way, a self-normalized bound concern-
ing pV can be established (refer to proof of Lemma C.8 in
Appendix for details). However, the covering number of pNε

highly depends on the feature space dimension, resulting
in extra dependency on d in the regret. We propose a novel
technique of bounding the deviation term by dominant term
ppP ´ PqV ˚ and the correction term ppP ´ PqppV ´ V ˚q sep-
arately, to remove the extra dependency on d. Note that
bounding the correction term is also required for RL al-
gorithms in tabular MDPs to achieve minimax optimality.
However, adopting this idea to linear MDPs is nontrivial
since we need to build the self-normalized bound for vector-
valued martingale other than the well-studied scalar bound
in tabular MDPs.
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5. Optimal Exploration for linear MDPs
In this section, we present the proposed LSVI-UCB` algo-
rithm (Algorithm 1), where the optimistic value iteration is
performed in lines 6-14, and the learned policy is executed
in line 17. The remaining parts of Algorithm 1 are respon-
sible for estimating parameter µh by linear weighted ridge
regression. Specifically, the estimated variance is given in
line 15, whose lower bound is controlled in lines 18-24, and
the solution to the regression is given in line 25.

Algorithm 1 LSVI-UCB` for Linear MDPs

Require: Regularization parameter λ, pβ, qβ.
1: for step h “ H, ..., 1 do
2: pΛ1,h, rΛ1,h Ð λI; pµ1,h Ð 0
3: end for
4: for episode k “ 1, ...,K do
5: pVk,H`1p¨q, qVk,H`1p¨q Ð 0
6: for step h “ H, ..., 1 // Optimistic value iteration do
7: 9

uQk,hp¨, ¨q “ rhp¨, ¨q ` xpµk,h
pV k,h`1,ϕp¨, ¨qy `

3pβ}ϕp¨, ¨q}
pΛ´1

k,h
// Over-optimistic Q function

8: pQk,hp¨, ¨q “ rhp¨, ¨q ` xpµk,h
pV k,h`1,ϕp¨, ¨qy `

pβ}ϕp¨, ¨q}
pΛ´1

k,h
// Optimistic Q function

9: qQk,hp¨, ¨q “ rhp¨, ¨q ` xpµk,h
qV k,h`1,ϕp¨, ¨qy ´

qβ}ϕp¨, ¨q}
pΛ´1

k,h
// Pessimistic Q function

10: 9
uVk,hp¨q Ð min

␣

maxaPA
9
uQk,hp¨, aq, H

(

11: pVk,hp¨q Ð min
␣

maxaPA pQk,hp¨, aq, H
(

12: qVk,hp¨q Ð max
␣

maxaPA qQk,hp¨, aq, 0
(

13: πk
hp¨q Ð argmaxaPA

9
uQk,hp¨, aq

14: end for
15: Receive the initial state sk1 .
16: for step h “ 1, ...,H do
17: akh Ð πk

hpskhq, and observe skh`1 „ Php¨|skh, a
k
hq.

18: rσk,h Ð
b

maxtH, dEk,h, rpVk,h
pVk,h`1spskh, a

k
hq ` Uk,hu

according to Eq. (9) and Lemma 7.5.
19: rΛk`1,h Ð rΛk,h ` rσ´2

k,hϕpskh, a
k
hqϕpskh, a

k
hqJ

20: if }rσ´1
k,hϕpskh, a

k
hq}

rΛ´1
k,h

ď 1{pHd3q then
21: ςk,h Ð

?
H

22: else
23: ςk,h Ð H

?
d3 // Enlarge ςk if necessary

24: end if
25: pσk,h Ð

b

maxtς2k,h, dEk,h, rpVk,h
pVk,h`1spskh, a

k
hq ` Uk,hu

26: pΛk`1,h Ð pΛk,h ` pσ´2
k,hϕpskh, a

k
hqϕpskh, a

k
hqJ

27: pµk`1,h Ð pΛ´1
k`1,h

řk
i“1 pσ

´2
i,hϕpsih, a

i
hqδpsih`1qJ

//Solution to weighted ridge regression
28: end for
29: end for

LSVI-UCB` is an optimistic algorithm similar to existing
works (Yang & Wang, 2019; Jin et al., 2020; Ayoub et al.,
2020), but upgrading the Hoeffding-type bonus to a carefully
designed Bernstein-type one. The exploration radius in
LSVI-UCB` is proportional to the standard deviation of
the optimal value function conditioned on some state-action
pair, which accounts for two key novelties of LSVI-UCB`:

(i) We replace the linear ridge regression in prior works
(Yang & Wang, 2019; Jin et al., 2020; Ayoub et al., 2020)
with a carefully designed weighted version such that LTV
can be applied. Note that the linear weighted ridge regres-
sion estimator was originally built for linear bandits with het-
eroscedastic noises, e.g., (Lattimore et al., 2015; Kirschner
& Krause, 2018). Besides, the regression is performed to
estimate µh, i.e., transition matrix, instead of estimating in-
direct variables, e.g., ω˚

h of LSVI-UCB in (Jin et al., 2020).

(ii) A variance estimator, based on the estimated parameter
pµk,h, is built for the optimal value function to determine the
weights in regression. UCRL-VTR` in (Zhou et al., 2021)
also introduces weighted ridge regression for linear mixture
MDPs, and weights are determined by variances of the
constructed optimistic value function. However, the weights
in LSVI-UCB` are very different from those in UCRL-
VTR`, since our variances are estimated with respect to the
optimal value function, not the constructed value function.

5.1. Linear Weighted Ridge Regression

Denote δpsq P R|S| as a one-hot vector that is zero ev-
erywhere except that the entry corresponding to state s is
one, and define ϵkh :“ Php¨ | skh, a

k
hq ´ δpskh`1q. Since

Erϵkh | Fk,hs “ 0, δpskh`1q is an unbiased estimate of
Php¨ | skh, a

k
hq “ µJ

hϕpskh, a
k
hq. Thus, µh can be learned

via regression from ϕpskh, a
k
hq to δpskh`1q. In addition, sam-

ples are normalized by the estimated standard deviation
pσk,h. Thus, the estimated parameter pµk,h in line 27 of Al-
gorithm 1 is the solution to the following weighted ridge
regression problem:

minµPRdˆ|S|

k´1
ÿ

i“1

›

›

›

“

µJ
hϕpskh, a

k
hq ´ δpsih`1q

‰

pσ´1
i,h

›

›

›

2

2
` λ}µ}2F ,

where } ¨ }F denotes Frobenius norm. The solution is

pµk,h “ pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqδpsih`1qJ, (4)

where pΛk,h “
řk´1

i“1 pσ´2
i,hϕpsih, a

i
hqϕpsih, a

i
hqJ `λI. Thus,

the estimated transition probability is denoted as

pPk,hp¨ | s, aq “ pµJ
k,hϕps, aq

for any ps, aq P S ˆ A. After estimating the transition
matrix, line 8 in Algorithm 1 constructs an optimistic state-
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action function, which is equivalent to

pQk,hp¨, ¨q “ max
µP pCk,h

rhp¨, ¨q ` xµ pV k,h`1,ϕp¨, ¨qy, (5)

where the optimistic confidence set is given by

pCk,h :“
␣

µ : }pµ ´ pµk,hq pV k,h`1}
pΛk,h

ď pβ
(

, (6)

and pβ is the exploration radius. In addition, the pessimistic
state-action function in line 9 is equivalent to

qQk,hp¨, ¨q “ min
µP qCk,h

rhp¨, ¨q ` xµ qV k,h`1,ϕp¨, ¨qy, (7)

where the pessimistic confidence set is

qCk,h :“
␣

µ : }pµ ´ pµk,hq qV k,h`1}
qΛk,h

ď qβ
(

. (8)

Monotonicity Apart from optimistic and pessimistic Q
functions, we also construct a over-optimistic Q function
9
uQk,hp¨, ¨q. Subsequently, corresponding value functions can
be proved to have

qVk,hpsq ď V ˚
h psq ď pVk,hpsq ď min

iPrks
t 9
uVi,hpsqu, @s P S

in high probability. In particular, the pessimistic value func-
tion is required for estimating the variance upper bound later,
while the over-optimistic value function is also necessary
for bounding the correction term.

5.2. Variance Estimation

After estimating the transition matrix in Eq. (4), LSVI-
UCB` estimates the variance of the optimal value func-
tion rVhV

˚
h`1spskh, a

k
hq and the variance of sub-optimality

gap rVhppVk,h`1 ´ V ˚
h`1qspskh, a

k
hq. This is a major differ-

ence with prior UCRL-VTR` algorithm in (Zhou et al.,
2021) for linear mixture MDPs, which only estimates
the variance of the constructed optimistic value function
rVh

pVk,h`1spskh, a
k
hq. The purpose to estimate these two

variances remains that we utilize Bernstein self-normalized
tail inequality in Theorem 7.1 to bound the dominant
term rppPk,h ´ PhqV ˚

h`1spskh, a
k
hq and the correction term

rppPk,h´PhqppVk,h`1´V ˚
h`1qspskh, a

k
hq separately to remove

the extra dependency of regrets, such that we need to esti-
mate these two variance, which are illusated below.

Variance of Optimal Value Function We first consider
the case where the transition matrix and optimal value func-
tion V ˚

h`1p¨q were given. In this case, the variance of the
optimal value function is given by

rVhV
˚
h`1spskh, a

k
hq “ PhV

˚
h`1

2
pskh, a

k
hq ´ rPhV

˚
h`1pskh, a

k
hqs2

However, only empirical estimation pµk,h and optimistic
value function pVk,h are obtainable, which means we only
have the empirical variance of the optimistic value function:

rpVk,h
pVk,h`1spskh, a

k
hq “ pPk,h

pV 2
k,h`1pskh, a

k
hqr0,H2s

´rpPk,h
pVk,h`1pskh, a

k
hqr0,Hss

2.
(9)

To ensure the accuracy of the estimation, we introduce
an offset term Uk,h to guarantee that |rVhV

˚
h`1spskh, a

k
hq ´

rpVk,h
pVk,h`1spskh, a

k
hq| ď Uk,h with high probability. More-

over, the exact form of offset term Uk,h is specified in
Lemma 7.5, which requires accessing the pessimistic value
functions as detailed in Lemma C.13 in Appnedix.

Variance of Sub-optimality Gap In particular, we try to
build a upper bound for the variance of the sub-optimality
gap, which is given as

rVhppVk,h`1 ´ V ˚
h`1qspskh, a

k
hq

“rPhppVk,h`1 ´ V ˚
h`1q2spskh, a

k
hq ´

”

rPhppVk,h`1 ´ V ˚
h`1qspskh, a

k
hq

ı2

ďrPhppVk,h`1 ´ V ˚
h`1q2spskh, a

k
hq ď HrPhppVk,h`1 ´ V ˚

h`1qspskh, a
k
hq

ďHrPhppVk,h`1 ´ qVk,h`1qspskh, a
k
hq

where the second and last inequalities holds by the opti-
mism and pessimism of pVk,h`1 and qVk,h`1, respectively.
Thus, it suffices to upper bound the deviation rPhppVk,h`1 ´

pVk,h`1qspskh, a
k
hq. In addition, the upper bound of the vari-

ance of the sub-optimality gap is denoted as Ek,h, specified
in Lemma 7.5.

Putting two variances together, the weight pσk,h in Algo-
rithm 1 is given by

pσk,h “

b

maxtς2k,h, dEk,h, rpVk,h
pVk,h`1spskh, a

k
hq ` Uk,hu,

which is the maximum over the weight lower bound ςk,h,
the variance upper bound of the optimal value function, the
variance of the sub-optimality gap with a factor d scaling.
Here ςk,h controls the lower bound of pσk,h and is dynam-
ically determined in lines 18-24. In particular, we try to
keep the magnitude of the considered MDS to be small by
adaptively enlarging ςk,h, which is detailed in Remark 7.4.

6. Main Results
This section presents the results of the statistical, space, and
computational complexities of the LSVI-UCB` algorithm.
In particular, LSVI-UCB` firstly reaches nearly minimax
optimal regret in linear MDPs, while the space and compu-
tational complexities are no worse than prior works.

6.1. Statistical Complexity

We first present the regret upper bound of LSVI-UCB` in
Theorem 6.1.
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Theorem 6.1 (Regret Upper Bound). Set λ “ 1{pH2
?
dq.

Then, with probability at least 1 ´ 10δ, the regret of LSVI-
UCB` is upper bounded by

RegretpKq “ rO
´

Hd
?
T ` H3d6 `

?
H7d7

¯

, (10)

where T “ KH .
Proof Sketch. We prove the result conditioning on the con-
clusion of Lemma 7.5. Initially, with the standard regret
decomposition, we can show that the total regret is bounded
by the summation of the exploration bonus, i.e.,

RegretpKq ď

K
ÿ

k“1

H
ÿ

h“1

pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

“

K
ÿ

k“1

H
ÿ

h“1

pβpσk,h}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

ďpβ

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

looooooomooooooon

rO
´?

HT`c
?
T
¯

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

}pσ´1
k,hϕpskh, a

k
hq}2

pΛ´1
k,h

loooooooooooooooooomoooooooooooooooooon

rOp
?
Hdq

(11)

where the second inequality holds by Cauchy-Schwarz
inequality and c is a constant. The summation of
}pσ´1

k,hϕpskh, a
k
hq}2

pΛ´1
k,h

can be addressed by Elliptical Poten-

tial Lemma (Lemma F.5 in Appendix), and the summation
of pσ2

k,h can be bounded by
K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ď

K
ÿ

k“1

H
ÿ

h“1

ς2k,h `

K
ÿ

k“1

H
ÿ

h“1

rdEk,h ` Uk,hs

`

K
ÿ

k“1

H
ÿ

h“1

rpVk,h
pVk,h`1spskh, a

k
hq ď rO

´

HT ` c
?
T
¯

,

where the first inequality holds by definition of pσk,h,
and the second inequality holds by

řK
k“1

řH
h“1 ς

2
k,h ď

rOpHT q due to the conservatism of elliptical potentials,
řK

k“1

řH
h“1rdEk,h`Uk,hs ď rOpc

?
T q due to the Elliptical

Potential Lemma, and
řK

k“1

řH
h“1rpVk,h

pVk,h`1spskh, a
k
hq ď

rOpHT q due to the LTV. Besides, the exploration radius
pβ “ rOp

?
dq, which determined by the upper bound of

ppPk,h ´ PhqpVk,h`1pskh, a
k
hq, detailed in Section 7.3. The

full proof is given in Appendix D.

Theorem 6.1 is proved under the event that the optimistic
confidence set pCk,h holds, which is built in Lemma 7.5.
In addition, we find that the exploration radius pβ of the
optimistic confidence set pCk,h determines the sharpness of
the final regret, as shown in Eq. (11) .
Remark 6.2. When2 T ě maxtH4d10, H5d5u, the regret in
Eq. p10q can be simplified to rOpHd

?
T q, which improves

2Large-sample regime conditions are required in many RL al-
gorithms to obtain satisfactory statistical complexities, e.g. UCRL-
VTR` in (Zhou et al., 2021) requires T ě d4H2

` d3H3.

the rO
´?

H3d3T
¯

regret of LSVI-UCB (Jin et al., 2020)

by a factor of
?
Hd. Moreover, our algorithm design an

analytical tools including Theorem 7.1 and Lemma 7.3 in
next sections can further improve the regret bound of UCRL-
VTR` in (Zhou et al., 2021) for linear mixture MDPs to
rOpHd

?
T q from existing rOp

?
H2d2T ` H3dT q, such that

it is minimax optimal up to logarithmic factor without large
dimension assumption that d ě H in (Zhou et al., 2021).

Lower Bound We formalize a linear MDP instance in Ap-
pendix E to establish an ΩpHd

?
T q regret lower bound of

linear MDPs. This linear MDP instance is firstly proposed
in Remark 23 in (Zhou et al., 2021), which shares the same
regret lower bound of a linear mixture MDP instance. This
class of MDP is hard due to the intrinsical sparsity of reward
and indistinguishability of large action space, which can be
regarded as an extension of hard instances in linear bandits
literature (Dani et al., 2008; Lattimore & Szepesvári, 2020).
According to Theorem 8 in (Zhou et al., 2021), linear mix-
ture MDPs have regret lower bound of ΩpHd

?
T q. Thus

linear MDPs have the same regret lower bound. The lower
bound, together with the upper bound of LSVI-UCB` in
Theorem 6.1 show that LSVI-UCB` is minimax optimal up
to logarithmic factors when T ě maxtH4d10, H5d5u.

6.2. Space and Computational Complexities

As stated above, LSVI-UCB` reaches minimax optimal re-
gret up to logarithmic factors, which is also computationally
efficient. In particular, the space and computational com-
plexities of LSVI-UCB` are briefly stated below, which are
both the same as LSVI-UCB in (Jin et al., 2020).

Space Complexity Although pµk,h P Rdˆ|S| and
|S| can be infinitely large, we do not store it ex-
plicitly, as Algorithm 1 only utilizes indirect variables
pµk,hV “ pΛ´1

k,h

řk´1
i“1 pσ´2

i,hϕpsih, a
i
hqV psih`1q where V P

tpVk,h`1,
9
uVk,h`1, pV

2
k,h`1,

qVk,h`1u. In episode k P rKs, Al-
gorithm 1 only stores pµk,hV , pΛk,h, rΛk,h, pσk,h, rσk,h for
all h P rHs, and tϕpsk

1

h , aquaPA for all pk1, hq P rks ˆ rHs,
which means LSVI-UCB` requires Opd2H`d|A|T q space.

Computational Complexity Assume pµk,hV is given for

some V P tpVk,h`1,
9
uVk,h`1, pV

2
k,h`1,

qVk,h`1u, then each
evaluation of V psq takes Opd2|A|q operations. Thus, cal-
culating pµk,hV takes Opd2|A|qK operations. Besides,
pΛk,h, rΛk,h can be computed by Sherman-Morrison formula
(Hager, 1989) with Opd2q operations and other steps take
less operations. Thus, LSVI-UCB` has a running time of
Opd2|A|KT q, which is computationally efficient since its
running time is polynomial on d,K,H, |A|, and does not
depend on |S|, which can be possibly infinite.
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7. Mechanism Towards Minimax Optimality
In this section, we highlight our technical contributions
in building the sharp optimistic confidence set pCk,h. We
first present two novel analytical tools, a sharp Bernstein
self-normalized tail inequality for vector-valued martingales
in Section 7.1, the conservatism of elliptical potentials in
Section 7.2. Together, these two analytical tools remove
the additional dependency of regret on H in the regret of
the LSVI-UCB` algorithm. In addition, we also upper
bounds the correction term of the form ppP ´ PqppV ´ V ˚q

to avoid extra cost from the covering net such that the addi-
tional dependency of regret on d is removed as well. Conse-
quently, the sharp confidence set pCk,h is built in Lemma 7.5
in Section 7.3. These technical contributions together en-
able LSVI-UCB` to achieve nearly minimax optimal regret
and have the potential to improve other statistical results of
algorithms for RL with linear function approximation.

7.1. Sharp Bernstein Self-normalized Bound

Most existing self-normalized concentrations used in prior
works for RL with linear function approximation (Jin et al.,
2020; Wang et al., 2020b;a; Ayoub et al., 2020) are all
Hoeffding-type, i.e., they consider sub-Gaussian noises.
Our self-normalized bound below considers sub-exponential
noises, which is a Bernstein-type one.

Theorem 7.1 (Bernstein self-normalized bound). Let
tGtu

8
t“1 be a filtration, and txt, ηtutě1 be a stochastic pro-

cess such that xt P Rd is Gt-measurable and ηt P R is
Gt`1-measurable. Define Zt “ λI `

řt
i“1 xix

J
i for t ě 1

and Z0 “ λI. If }xt}2 ď L, and ηt satisfies Erηt | Gts “ 0,
Erη2t | Gts ď σ2, and |ηt ¨ mint1, }xt}Z´1

t´1
u| ď R for

all t ě 1. Then, for any 0 ă δ ă 1, with probability at least
1 ´ δ, we have:

@t ą 0,

›

›

›

›

›

t
ÿ

i“1

xiηi

›

›

›

›

›

Z´1
t

ď rOpσ
?
d ` Rq.

Proof. Please refer to Appendix B.

Remark 7.2. The proof of Theorem 7.1 in Appendix B
shows that bounding the self-normalized vector-valued mar-
tingales is equivalent to bounding a scalar-valued MDS
tηt ¨ mint1, }xt}Z´1

t´1
u,Gt`1u, where ηt is scaled by the

factor of mint1, }xt}Z´1
t´1

u. In particular, }xt}Z´1
t´1

“
b

xJ
t Z

´1
t´1xt is denoted as the elliptical potential, which is

common in online learning literature (Cesa-Bianchi & Lu-
gosi, 2006). Notice that Elliptical Potential Lemma shows
that mint1, }xt}Z´1

t´1
u can be roughly regarded as an atten-

uated sequence. Theorem 7.1 looks similar to but is sharper
than Theorem 2 in (Zhou et al., 2021), because it pay extra
attentions on elliptical potentials }xt}Z´1

t´1
. However, the

scaling factor mint1, }xt}Z´1
t´1

u is crudely deflated to 1 in
Theorem 2 in (Zhou et al., 2021), such that the attenuation of
the MDS is neglected, which is highlighted in Lemma D.8.

7.2. Conservatism of Elliptical Potentials

Notice the self-normalized bound in Theorem 7.1 will deter-
mine the order of exploration radius pβ. We try to keep the
second term R, the magnitude of the MDS, in Theorem 7.1
smaller than the first σ

?
d by utilizing the conservatism

of elliptical potentials. Specifically, the following lemma
characterizes the conservatism of elliptical potentials, i.e.,
elliptical potentials are usually small. This lemma is firstly
proposed at Exercise 19.3 in (Lattimore & Szepesvári, 2020)
for case c “ 1, and we generalize it to case c ą 0.

Lemma 7.3 (Elliptical Potentials are Usually Small). Given
λ ą 0 and sequence txtu

T
t“1 Ă Rd with }xt}2 ď L for

all t P rT s, define Zt “ λI `
řt

i“1 xix
J
i for t ě 1 and

Z0 “ λI. The number of times }xt}Z´1
t´1

ě c is at most

3d

logp1 ` c2q
log

ˆ

1 `
L2

λ logp1 ` c2q

˙

for any t P rT s, where c ą 0 is a constant.

Proof. Please refer to Lemma D.8 in Appendix.

On the one hand, for some stage h P rHs, the noise
ηk “ pσ´1

k,hV
Jϵkh for some value function V as detailed

in Appendix C. On the other hand, in Theorem 7.1, R is
the absolute bound of |ηk ¨ mint1, }pσ´1

k,hϕpskh, a
k
hq}

pΛ´1
k,h

u|.
Lemma 7.3 reveals that R is intrinsically small since the
elliptical potential }pσ´1

k,hϕpskh, a
k
hq}2

pΛ´1
k,h

is small in most

episodes. In addition, we only need to enlarge the lower
bound of pσk,h,i.e., ςk,h, when }pσ´1

k,hϕpskh, a
k
hq}2

pΛ´1
k,h

is large

such that R can remain small uniformly, which is detailed
in the following remark.
Remark 7.4. Lines 18-25 of Algorithm 1 ensure the fol-
lowing facts for any pk, hq P rKs ˆ rHs by introducing
indicator variable }rσ´1

i,hϕpsih, a
i
hq}

rΛ´1
i,h

:

(i) In most cases, we have }rσ´1
i,hϕpsih, a

i
hq}

rΛ´1
i,h

ď 1{pHd3q,

then ςk,h “
?
H such that pσi,h “ rσi,h. We can prove that

the elliptical potential }pσ´1
k,hϕpsih, a

i
hq}

pΛ´1
k,h

is small;

(ii) Otherwise, ςk,h “ H
?
d3, such that pσk,h ě H

?
d3. In

this case, the R is still small since pσk,h is large.

Notice that always enlarging ςk,h for any k P rKs is a simple
method to keep R small, but contributing to final regret lin-
early since it is an additive term in

řK
k“1

řH
h“1 pσk,h. Never-

theless, the enlarging operation in case (ii) only contributes
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an additive constant term to the regret, since the elliptical po-
tential }rσ´1

k,hϕpskh, a
k
hq}2

rΛ´1
k,h

is small in most episodes such

that the enlarging operation in case (ii) happens rarely.
As a consequence, the R in Theorem 7.1 can be controlled
to be smaller than the σ

?
d in the LSVI-UCB` algorithm,

such that the exploration radius pβ in LSVI-UCB` is rOp
?
dq.

However, analog Bernstein self-normalized bounds, such as
Theorem 2 in (Zhou et al., 2021) and Theorem 1 in (Faury
et al., 2020), cannot lead to such exploration radius in the
SVI-UCB` algorithm, while that of Theorem 2 in (Zhou
et al., 2021) is rOp

?
d `

?
Hd2q, and Theorem 1 in (Faury

et al., 2020) is rOp
a

H
?
d5q.

7.3. Building Confidence Set with Correction Term

This subsection explains critical steps of building a sharp op-
timistic confidence set pCk,h with the correction term. Specif-
ically, the exploration bonus pβ}ϕpskh, a

k
hq}

pΛ´1
k,h

is the upper

bound of the deviation term rppPk,h ´ PhqpVk,h`1spskh, a
k
hq,

which is the basis of optimistic learning. Specifically, the
deviation term can be decomposed by triangle inequality as
the sum of dominant term and correction term:

rppPk,h ´ PhqV ˚
h`1spskh, a

k
hq

looooooooooooooomooooooooooooooon

Dominant term with respect to pV ˚
h`1

` rppPk,h ´ PhqppVk,h`1 ´ V ˚
h`1qspskh, a

k
hq

looooooooooooooooooooooomooooooooooooooooooooooon

Correction Term

ď}pµ ´ pµk,hqV ˚
h`1}

pΛk,h
}ϕpskh, a

k
hq}

pΛ´1
k,h

` }pµ ´ pµk,hqp pV k,h`1 ´ V ˚
h`1q}

pΛk,h
}ϕpskh, a

k
hq}

pΛ´1
k,h

ďpβp1q}ϕpskh, a
k
hq}

pΛ´1
k,h

` pβp2q}ϕpskh, a
k
hq}

pΛ´1
k,h

“pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

,

where the first inequality holds by Cauchy-Schwarz inequal-
ity, the second inequality holds since
pCp1q

k,h “tµ : }pµ ´ pµk,hqV ˚
h`1}

pΛk,h
ď pβp1qu

pCp2q

k,h “tµ : }pµ ´ pµk,hqp pV k,h`1 ´ V ˚
h`1q}

pΛk,h
ď pβp2qu,

and the last equality holds since pβ “ pβp1q ` pβp2q. In the
following, we briefly illustrate how to use Theorem 7.1 to
build confidence sets pCp1q

k,h and pCp2q

k,h. Initially, by
›

›

`

pµk,h ´ µh

˘

V
›

›

pΛk,h
À }

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V }

pΛ´1
k,h

(12)
for some fixed function V in Lemma F.7, building a confi-
dence set with respect to V is equivalent to building a self-
normalized bound for }

řk´1
i“1 pσ´2

i,hϕpsih, a
i
hqϵih

J
V }

pΛ´1
k,h

.

Building pCp1q

k,h: We build confidence set pCp1q

k,h by applying
the Bernstein self-normalized inequality in Theorem 7.1

with dynamic control of MDS magnitude, highlighted in
Remark 7.2. Thus, Uk,h is specified in Lemma 7.5 to guaran-
tee that pσk,h upper bounds VhV

˚
h`1pskh, a

k
hq, and ςk,h is set

dynamically. Besides, the uniform convergence argument
by covering net in (Jin et al., 2020; Wang et al., 2020b;a)
is not required, since now V “ V ˚

h`1 in Eq. (12) is a fixed
function and there is no measurability issue. Consequently,
we get pβp1q

k “ rOp
?
dq, which is detailed in Lemma C.16.

Building pCp2q

k,h: We apply also Theorem 7.1 with dynamic

control of MDS magnitude to build pCp2q

k,h as well. Similarly,
Ek,h is specified in Lemma 7.5 to guarantee that pσk,h up-
per bounds rVhppVk,h`1 ´ V ˚

h`1qspskh, a
k
hq, and ςk,h is set

dynamically to keep the MDS magnitude R in Theorem 7.1
small. Since now V “ pVk,h`1 ´ V ˚

h`1 in Eq. (12) suffers
from the measurability issue, a uniform convergence argu-
ment by covering net is still required, which bring extra
dependency on d in the exploration radius pβp2q. That is why
we enlarge Ek,h with a d factor in pσk,h.

Putting everything together gives the following key technical
lemma that builds the sharp optimistic confidence set pCk,h.

Lemma 7.5. Set pβ “ pβp1q ` pβp2q, then there exists an
absolute constant c ą 0 such that for any δ P p0, 1q, with
probability at least 1 ´ 7δ, we have that simultaneously for
any k P rKs and any h P rHs,

µh P pCk,h X qCk,h,

and
ˇ

ˇrpVk,h
pVk,h`1spskh, a

k
hq ´ rVhV

˚
h`1spskh, a

k
hq
ˇ

ˇ ď Uk,h,
rVhppVk,h`1 ´ V ˚

h`1qspskh, a
k
hq ď Ek,h where pβp1q, pβp2q,

Uk,h, Ek,h are specified in Lemma C.18 in Appendix.

Proof. Please refer to Appendix C.4.

8. Conclusion
This paper presents a computationally and statistically ef-
ficient algorithm, LSVI-UCB`, which builds on linear
weighted ridge regression and upper confidence value itera-
tion with a Bernstein-type exploration bonus. LSVI-UCB`

is the first algorithm to reach minimax optimal regret bound
up to logarithmic factors for linear MDPs. Our sharp result
builds on a novel Bernstein self-normalized bound with the
conservatism of elliptical potentials, and refined analysis of
the correction term, which serve as new analytical tools for
RL with linear function approximation.
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In the appendix, we present some additional results and supporting materials to supplement the statements, theorems and
proofs in the main papers. There are 6 sections in appendix:

• Appendix A presents additional comparisons with related works.

• Appendix B presents the proof of our proposed sharp Bernstein tail inequality for self-normalized vector-valued
martingales.

• Appendix C presents the construction of several high probability confidences sets.

• Appendix D presents the former proof of the regret upper bound of LSVI-UCB` algorithm, with conclusion given in
Theorem 6.1.

• Appendix E constructs a hard-to-learn MDP to build a regret lower bound for linear MDPs.

• Appendix F presents auxiliary lemmas necessary for proofs in above sections and important properties that will be
helpful in algorithm design.
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A. Additional Comparisons of Related Works
Table 2 serves as a more complete table compared to Table 1 in the main paper, which lists some representative works
in RL with linear function approximation. The top part of Table 2 lists representative works for the linear MDP and its
generalizations and the buttom part is for the linear mixture MDP and its generalizations.

Table 2. Theoretical results on RL with linear function approximation, where : denotes that rewards are adversarial, and dh is the
dimension of the feature mapping at the h-th stage within the episodes and K is the number of episodes.

Setting Algorithm Technique Regret

Linear MDP OPT-RLSVI (Zanette et al., 2020a) Hoeffding+Covering rOpH2d2
?
T q

Linear MDP LSVI-UCB (Jin et al., 2020) Hoeffding+Covering rOp
?
H3d3T q

Linear MDP LSVI-UCB` (this paper) Bernstein+Covering rOpHd
?
T q

Linear Q Function LSVI-UCB˚ (Wang et al., 2020b) Hoeffding+Covering rOp
?
d3T q

Low Bellman Error ELEANOR (Zanette et al., 2020b) Hoeffding+Covering rOp
řH

h“1 dh
?
Kq

Bounded Eluder Dimension F -LSVIpδq (Wang et al., 2020a) Hoeffding+Covering rOppolypdHq
?
T q

Linear Mixture MDP UCRL-VTR (Jia et al., 2020; Ayoub et al., 2020) Hoeffding rOp
?
H3d2T q

Linear Mixture MDP UCRL-VTR` (Zhou et al., 2021) Bernstein rOp
?
H2d2T ` H3dT q

Feature Space MatrixRL (Yang & Wang, 2020) Hoeffding rOpH2d log T
?
T q

Linear Mixture MDP: OPPO (Cai et al., 2020) Hoeffding rOp
?
d2H3T q

From Table 2, we can find that existing algorithms for the linear MDP and its generalizations all use a classical Hoeffding
self-normalized bound such as Theorem 1 in (Abbasi-Yadkori et al., 2011) with the covering net argument, while our work
is the first to introduce a Bernstein self-normalized bound with a covering net argument. Moreover, building a covering net
argument in our work does not brings extra dependency on feature space dimension d since we only consider covering net
argument in bounding the correction term which can be made small.

As for the linear mixture MDP and its generalizations, the covering net argument is not required due to the structure of
the linear mixture MDP. In addition, prior works (Yang & Wang, 2020; Jia et al., 2020; Ayoub et al., 2020; Cai et al.,
2020) utilize Hoeffding self-normalized bound to build confidence sets, while (Zhou et al., 2021) considers the Bernstein
self-normalized bound for the first time in the setting of linear mixture MDP. Compared with regret bound of rOp

?
H3d2T q

obtained in (Jia et al., 2020; Ayoub et al., 2020) for linear mixture MDPs, the regret bound rOp
?
H2d2T ` H3dT q in (Zhou

et al., 2021) is better and a
?
H factor is further saved if d ě H .

B. Sharp Bernstein Self-Normalized Bound
In this section, we prove the proposed sharp Bernstein tail inequality for self-normalized vector-valued martingales. Our
proof diagram is based on the proof of Theorem 1 in (Zhou et al., 2021), which is firstly proposed in the proof of Lemma 14
in (Dani et al., 2008). However, our Bernstein self-normalized bound is sharper than Theorem 1 in (Zhou et al., 2021) with
critical changes of the attenuation of the martingale difference sequence.

Specifically, tmint1, }xt}Z´1
t´1

uutPrT s can be roughly considered as an attenuated sequence since we can prove
řT

t“1 mint1, }xt}Z´1
t´1

u “ Opd log T q by Elliptical Potential Lemma. On the contrary, mint1, }xt}Z´1
t´1

u is deflated
to 1 in Theorem 1, (Zhou et al., 2021) such that the bound is looser than ours. In the following proof, we do not deflate
mint1, }xt}Z´1

t´1
u to 1, and we take into account the elliptical potential }xt}Z´1

t´1
in our algorithm design, which is one of

the major contributions in this paper.

Firstly, we give the following definitions to simplifying notations during the proof.
Definition B.1.

dt :“
t
ÿ

i“1

xiηi,

Zt :“ }dt}Z´1
t

,
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wt :“ }xt}Z´1
t´1

,

βt :“8σ
a

d log p1 ` tL2{pdλqq log p4t2{δq ` 4R log
`

4t2{δ
˘

,

Et :“1 t0 ď s ď t, Zs ď βsu ,

for t ě 1 and d0 “ 0, Z0 “ 0, β0 “ 0 for t “ 0.

Measurability With the assumptions in Theorem 7.1, xt is Gt-measurable and ηt is Gt`1-measurable. Thus, wt is
Gt-measurable, and dt, Zt and Et are Gt`1-measurable.

Our goal is to upper bound Zt. By definition of Zt, we have

Z2
t “ pdt´1 ` xtηtq

J
Z´1

t pdt´1 ` xtηtq

“ dJ
t´1Z

´1
t dt´1 ` 2ηtx

J
t Z

´1
t dt´1 ` η2tx

J
t Z

´1
t xt

ď Z2
t´1 ` 2ηtx

J
t Z

´1
t dt´1

loooooooomoooooooon

I1

` η2tx
J
t Z

´1
t xt

looooomooooon

I2

where the inequality holds since Zt ľ Zt´1.

Since Zt “ Zt´1 ` xtx
J
t , by the Sherman–Morrison formula (Hager, 1989), we obtain

Z´1
t “ Z´1

t´1 ´
Z´1

t´1xtx
J
t Z

´1
t´1

1 ` w2
t

, for t ě 1.

Subsequently,

I1 “ 2ηt

˜

xJ
t Z

´1
t´1dt´1 ´

xJ
t Z

´1
t´1xtx

J
t Z

´1
t´1dt´1

1 ` w2
t

¸

“ 2ηt

˜

xJ
t Z

´1
t´1dt´1 ´

w2
tx

J
t Z

´1
t´1dt´1

1 ` w2
t

¸

“
2ηtx

J
t Z

´1
t´1dt´1

1 ` w2
t

I2 “ η2t

˜

xJ
t Z

´1
t´1x

J
t ´

xJ
t Z

´1
t´1xtx

J
t Z

´1
t´1xt

1 ` w2
t

¸

“ η2t

ˆ

w2
t ´

w4
t

1 ` w2
t

˙

“
η2tw

2
t

1 ` w2
t

Therefore, we have

Z2
t ď

t
ÿ

i“1

2ηix
J
i Z

´1
i´1di´1

1 ` w2
i

`

t
ÿ

i“1

η2iw
2
i

1 ` w2
i

(13)

Now we try to bound the two summation terms on the r.h.s. of Eq. (13) in Lemma B.3 and Lemma B.4, respectively. Before
that, we present a uniform Bernstein bound required for proving Lemma B.3 and Lemma B.4.

Lemma B.2 (Uniform Bernstein Bound). Let txi,Fiu be a martingale difference sequence with @i ě 1, E pxi | Fi´1q “ 0,
E
`

x2
i | Fi´1

˘

“ σ2
i , V 2

i “
ři

j“1 σ
2
j . Furthermore, assume that P p|xi| ď c | Fi´1q “ 1 for any 0 ă c ă 8.

Then, for any δ ą 0, with probability at least 1 ´ δ, simultaneously for any t ě 1, it holds that

t
ÿ

i“1

di ď

b

2V 2
t logp2t2{δq `

2c logp2t2{δq

3
.

Proof. By Freedman’s inequality in Lemma F.2, for any δ ą 0 and some t ě 1, with probability at least 1 ´ δ{p2t2q, we
have:

t
ÿ

i“1

di ď

b

2V 2
t logp1{δq `

2

3
c logp1{δq. (14)

Taking a union bound for Eq. (14) from t “ 1 to 8 and using the fact that
ř8

t“1 t
´2 ă 2 complete the proof.
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Next, we bound the first summation term on the r.h.s. of Eq. (13) in Lemma B.3.

Lemma B.3. Under assumptions in Theorem 7.1 and Definition B.1, with probability at least 1 ´ δ{2, simultaneously for
all t ě 1 it holds that

t
ÿ

i“1

2ηix
J
i Z

´1
i´1di´1

1 ` w2
i

Ei´1 ď 3β2
t {4

Proof. Define

ℓi “
2ηix

J
i Z

´1
i´1di´1

1 ` w2
i

Ei´1,

and we will give a uniform upper bound of
řt

i“1 li by Lemma B.2 below.

Firstly, for any 1 ď i ď t,

Erℓi | Gis “
2xJ

i Z
´1
i´1di´1

1 ` w2
i

Ei´1Erηi | Gis “ 0.

Besides, we have

ˇ

ˇ

ˇ

ˇ

ˇ

2xJ
i Z

´1
i´1di´1

1 ` w2
i

Ei´1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2 }xi}Z´1

i´1

”

}di´1}Z´1
i´1

Ei´1

ı

1 ` w2
i

ď
2wiβi´1

1 ` w2
i

ď 2min t1, wiuβi´1 (15)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due to the definition of Ei´1,
and the last inequality holds by algebra. Thus,

|ℓi| “ |2ηi ¨ min t1, wiuβi| ď 2Rβi ď 2Rβt

where the last inequality holds since tβiuiPrts is an increasing sequence.

Secondly, we also have
t
ÿ

i“1

E
“

ℓ2i | Gi

‰

ď σ2
t
ÿ

i“1

˜

2xJ
i Z

´1
i´1di´1

1 ` w2
i

Ei´1

¸2

ď σ2
t
ÿ

i“1

r2min t1, wiuβi´1s
2

ď 4σ2β2
t

t
ÿ

i“1

min
␣

1, w2
i

(

ď 8σ2β2
t d log

`

1 ` tL2{pdλq
˘

where the first inequality holds since E
“

η2i | Gi

‰

ď σ2, the second inequality holds due to Eq. (15), the third inequality
holds since tβiuiPrts is an increasing sequence, and the last inequality holds due to Lemma F.5.

Therefore, using Lemma B.2, simultaneously for all t ě 1, with probability at least 1 ´ δ{
`

4t2
˘

, it holds that

t
ÿ

i“1

ℓi ď

b

16σ2β2
t d log p1 ` tL2{pdλqq log p4t2{δq ` 2{3 ¨ 2Rβt log

`

4t2{δ
˘

ď
β2
t

4
` 16σ2d log

`

1 ` tL2{pdλq
˘

log
`

4t2{δ
˘

`
β2
t

4
` 4R2 log2

`

4t2{δ
˘

ď β2
t {2 `

1

4

´

8σ
a

d log p1 ` tL2{pdλqq log p4t2{δq ` 4R log
`

4t2{δ
˘

¯2

“ 3β2
t {4

where the first inequality holds due to Lemma B.2, the second inequality holds due to 2
a

|ab| ď |a| ` |b|, and the last
equality follows from the definition of βt.
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Accordingly, the second summation terms on the r.h.s. of Eq. (13) is bounded in Lemma B.4.

Lemma B.4. Under assumptions in Theorem 7.1 and Definition B.1, with probability at least 1 ´ δ{2, simultaneously for
all t ě 1 it holds that

t
ÿ

i“1

η2iw
2
i

1 ` w2
i

ď β2
t {4

Proof. Define

ℓi “
η2iw

2
i

1 ` w2
i

´ E
„

η2iw
2
i

1 ` w2
i

| Gi

ȷ

.

We will give a uniform upper bound of
řt

i“1 li by Lemma B.2, similar to Lemma B.3.

Clearly, for any 1 ď i ď t, we have E rℓi | Gis “ 0. We further have that

t
ÿ

i“1

E
“

ℓ2i | Gi

‰

ď

t
ÿ

i“1

E

«

η4iw
4
i

p1 ` w2
i q

2 | Gi

ff

ď R2
t
ÿ

i“1

E
„

η2iw
2
i

1 ` w2
i

| Gi

ȷ

ď R2σ2
t
ÿ

i“1

w2
i

1 ` w2
i

ď 2R2σ2d log
`

1 ` tL2{pdλq
˘

where the first inequality holds due to the fact EpX ´ EXq2 ď EX2, the second inequality holds since |ηi ¨ min t1, wiu| ď

R, the third inequality holds since E
“

η2i | Gi

‰

ď σ2, and the fourth inequality holds due to the fact w2
i {

`

1 ` w2
i

˘

ď

min
␣

1, w2
i

(

and Lemma F.5.

Furthermore, using the fact that |ηi ¨ min t1, wiu| ď R holds almost surely under filtration Gi, we obtain

ˇ

ˇ

ˇ

ˇ

η2iw
2
i

1 ` w2
i

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇη2i ¨ min
␣

1, w2
i

(
ˇ

ˇ “ |ηi ¨ min t1, wiu|
2

“ R2,

and

|ℓi| ď

ˇ

ˇ

ˇ

ˇ

η2iw
2
i

1 ` w2
i

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

E
„

η2iw
2
i

1 ` w2
i

| Gi

ȷ
ˇ

ˇ

ˇ

ˇ

ď 2R2.

Therefore, by Lemma B.2, simultaneously for all t ě 1, with probability at least 1 ´ δ{
`

4t2
˘

, it holds that

t
ÿ

i“1

η2iw
2
i

1 ` w2
i

ď

t
ÿ

i“1

E
„

η2iw
2
i

1 ` w2
i

| Gi

ȷ

`
a

4R2σ2d log p1 ` tL2{pdλqq log p4t2{δq ` 4{3 ¨ R2 log
`

4t2{δ
˘

ď σ2
t
ÿ

i“1

w2
i

1 ` w2
i

` 2Rσ
a

d log p1 ` tL2{pdλqq log p4t2{δq ` 2R2 log
`

4t2{δ
˘

ď 2σ2d log
`

1 ` tL2{pdλq
˘

` 2Rσ
a

d log p1 ` tL2{pdλqq log p4t2{δq ` 2R2 log
`

4t2{δ
˘

ď 1{4 ¨

´

8σ
?
d
a

log p1 ` tL2{pdλqq log p4t2{δq ` 4R log
`

4t2{δ
˘

¯2

“ β2
t {4

where the first inequality holds due to Lemma B.2, the second inequality holds due to E
“

η2i | Gi

‰

ď σ2, the third inequality
holds due to the fact w2

i {
`

1 ` w2
i

˘

ď min
␣

1, w2
i

(

and Lemma 12, and the last inequality holds due to the definition of
βt.
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B.1. Proof of Theorem 7.1

Proof of Theorem 7.1. Consider the case when conclusions of Lemma B.3 and Lemma B.4 hold. Conditioning on this event,
we claim Zt ď βt for any t ě 0.

We prove this by induction on t. Initially, the base case of t “ 0 holds since β0 “ 0 “ Z0 by definition. Now fix some t ě 1
and assume that for all 0 ď i ď t ´ 1, we have Zi ď βi. This implies that E1 “ E2 “ ¨ ¨ ¨ “ Et´1 “ 1. Then, by Eq. (13),
we have

Z2
t ď

t
ÿ

i“1

2ηix
J
i Z

´1
i´1di´1

1 ` w2
i

`

t
ÿ

i“1

η2iw
2
i

1 ` w2
i

“

t
ÿ

i“1

2ηix
J
i Z

´1
i´1di´1

1 ` w2
i

Ei´1 `

t
ÿ

i“1

η2iw
2
i

1 ` w2
i

. (16)

Since the conclusions of Lemma B.3 and Lemma B.4 hold, we have

t
ÿ

i“1

2ηix
J
i Z

´1
i´1di´1

1 ` w2
i

Ei´1 ď 3β2
t {4, (17)

t
ÿ

i“1

η2iw
2
i

1 ` w2
i

ď β2
t {4. (18)

Therefore, substituting Eq. (17) and (18) into Eq. (16), we have Zt ď βt, which ends the induction. Taking the union bound
of the events in Lemma B.3 and Lemma B.4 implies that with probability at least 1 ´ δ, Zt ď βt holds for any t ě 1.

C. High Probability Events
In this section, we define some high probability events, i.e., confidence sets concerning the parameter µh, and show
how to build them. The goal of this section is to build the sharp optimistic confidence set pCk,h in Lemma 7.5 for all
pk, hq P rKs ˆ rHs.

We lists all confidence sets encountered during the proof in the following. Confidence sets sCk,h, 9
uCk,h, rCk,h, qCk,h are called

independent confidence sets, since they can be built by applying self-normalized concentration inequality directly without
conditioning on other events. Instead, confidence sets pCp1q

k,h,
pCp2q

k,h,
pCk,h are called dependent confidence sets since they can

only be built by conditioning on other confidence sets, apart from self-normalized concentration inequalities.

Definition C.1 (Confidence Set). • Independent Confidence Sets:

sCk,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘

pV k,h`1

›

›

›

pΛk,h

ď sβ

*

9
uCk,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘ 9
uV k,h`1

›

›

›

pΛk,h

ď
9
uβ

*

rCk,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘

pV
2

k,h`1

›

›

›

pΛk,h

ď rβ

*

qCk,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘

qV k,h`1

›

›

›

pΛk,h

ď qβ

*

• Dependent Confidence Sets:

pCp1q

k,h “

!

µ :
›

›

`

µ ´ pµk,h

˘

V ˚
h`1

›

›

pΛk,h
ď pβp1q

)

pCp2q

k,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘

´

pV k,h`1 ´ V ˚
h`1

¯
›

›

›

pΛk,h

ď pβp2q

*

pCk,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘

pV k,h`1

›

›

›

pΛk,h

ď pβp1q ` pβp2q “ pβ

*

To simplify notations during the proof, we further define the following events that optimistic and pessimistic confidence sets
hold in multiple stages under some episode k P rKs or all episodes.
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Definition C.2 (Optimism Event).

pΨk,h :“
!

@h ď h1 ď H : µh1 P pCk,h1

)

pΨh :“
!

@i P rKs,@h ď h1 ď H : µh1 P pCi,h1

) (19)

Definition C.3 (Pessimism Event).

qΨk,h :“
!

@h ď h1 ď H : µh1 P qCk,h1

)

qΨh :“
!

@i P rKs,@h ď h1 ď H : µh1 P qCi,h1

) (20)

In this section, independent confidence sets sCk,h, 9
uCk,h, rCk,h, qCk,h are built in Lemma C.8, C.9, C.10, and C.11 respectively

in Appendix C.1. These independent confidence sets are built to upper bound the variance of the considered value function.
Specifically, the difference between the estimated variance of the constructed optimistic value function and the real variance
of the optimal value function, i.e.,

ˇ

ˇrVhV
˚
h`1spskh, a

k
hq ´ rpVk,h

pVk,h`1spskh, a
k
hq
ˇ

ˇ, is upper bounded in high probability in

Lemma C.13. In addition, the variance rVhp 9
uVk,h`1 ´ V ˚

h`1qspskh, a
k
hq is also upper bounded in Lemma C.14. Subsequently,

dependent confidence sets pCp1q

k,h,
pCp2q

k,h can be built based on the independent confidence sets in Lemma C.16, C.17 respectively

in Appendix C.3. Thus, the confidence set pCk,h, the goal of this section, holds trivially if pCp1q

k,h,
pCp2q

k,h both hold. Finally,
Lemma 7.5 in the main paper is proved in Appendix C.4.

Before the formal proof begins, we give some necessary definitions. We first give definitions about-measurable space and
filtration required for our proofs.

Measurable Space Note that the stochasticity in the transition probability of the MDP are the only source of randomness.
Denote P as the gather of the distributions over state-action pair sequence pS ˆ AqN, induced by the interconnection of
policy obtained from LSVI-UCB` algorithm and the episodic linear MDP M. Denote E as the corresponding expectation
operator. Hence, all random variables can be defined over the sample space Ω “ pS ˆ AqN. Thus, we work with the
probability space given by the triplet pΩ,F ,Pq, where F is the product σ-algebra generated by the discrete σ-algebras
underlying S and A.
Definition C.4 (Filtration). For any k P rKs and any h P rHs, let Fk,h be the σ-algebra generated by the random variables
representing the state-action pairs up to and including that appears in stage h of episode k.

Measurability Thus, rpVk,h
pVk,h`1spskh, a

k
hq, Uk,h, Ek,h, ςk,h, rσk,h, pσk,h, pΛk`1,h are Fk,h-measurable, pµk`1,h is Fk,h`1-

measurable, pQk,h,
9
uQk,h, qQk,h, pVk,h,

9
uVk,h, qVk,h, π

k
h are Fk´1,H -measurable, but not Fk´1,h-measurable due to their back-

wards construction.

C.1. Independent Confidence Sets

In this subsection, independent confidence sets sCk,h, 9
uCk,h, rCk,h, qCk,h are built in Lemma C.8, C.9, C.10, C.11, respectively.

During the construction of these confidence sets, it is unavoidable to build a uniform convergence argument by covering
net of the encountered function class. Thus, we also present the definition of possibly encountered function classes in the
following.
Definition C.5 (Optimistic Value Function Class). Let pV denote a class of functions mapping from S to R with following
parametric form

pV p¨q “ min

"

max
a

wJϕp¨, aq ` β
b

ϕp¨, aqJΛ´1ϕp¨, aq, H

*

,

where the parameters pw, β,Λq satisfy }w}2 ď L, β P r0, Bs, the minimum eigenvalue satisfies λminpΛq ě λ, and
sups,a }ϕps, aq}2 ď 1.

Definition C.6 (Squared Optimistic Value Function Class). Let pV2 denote a class of functions mapping from S to R with
following parametric form

pV 2p¨q “

„

min

"

max
a

wJϕp¨, aq ` β
b

ϕp¨, aqJΛ´1ϕp¨, aq, H

*ȷ2

,
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where the parameters pw, β,Λq satisfy }w}2 ď L, β P r0, Bs, the minimum eigenvalue satisfies λminpΛq ě λ, and
sups,a }ϕps, aq}2 ď 1.

Definition C.7 (Pessimistic Value Function Class). Let qV denote a class of functions mapping from S to R with following
parametric form

qV p¨q “ max

"

max
a

wJϕp¨, aq ´ β
b

ϕp¨, aqJΛ´1ϕp¨, aq, 0

*

,

where the parameters pw, β,Λq satisfy }w}2 ď L, β P r0, Bs, the minimum eigenvalue satisfies λminpΛq ě λ, and
sups,a }ϕps, aq}2 ď 1.

Now we are ready to build four independent confidence sets sCk,h, 9
uCk,h, rCk,h, qCk,h. Since radius of independent confidence

sets, i.e., sβ, 9
uβ, rβ, qβ, will not become dominant terms in the final regret bound, we build these four confidence sets with

traditional Hoeffding inequality (Lemma F.3) with covering net arguments.

Lemma C.8. In Algorithm 1, for any δ P p0, 1q, any k P rKs fixed h P rHs, with probability at least 1 ´ δ{H:

µh P sCk,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘

pV k,h`1

›

›

›

pΛk,h

ď sβ

*

,

where

sβ “
?
H

g

f

f

ed log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` d log

ˆ

1 `
4KL

H
?
λ

˙

` d2 log

˜

1 `
8K2

pB2
?
d

H2λ2

¸

` H
?
λd ` 2.

Here L “ W ` K{λ and pB is a constant satisfying pβ ď pB with pβ given in Lemma C.18.

Proof. Initially, note that we have
›

›

›

`

pµk,h ´ µh

˘

pV k,h`1

›

›

›

pΛk,h

“

›

›

›

›

›

pΛ´1
k,h

«

´λµh `

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J

ff

pV k,h`1

›

›

›

›

›

pΛk,h

“

›

›

›

›

›

´λµh
pV k,h`1 `

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pV k,h`1

›

›

›

›

›

pΛ´1
k,h

ď

›

›

›
´λµh

pV k,h`1

›

›

›

pΛ´1
k,h

`

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pV k,h`1

›

›

›

›

›

pΛ´1
k,h

ď
1

?
λ

¨ λH
?
d `

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pV k,h`1

›

›

›

›

›

pΛ´1
k,h

,

(21)

where the first equality is due to Eq. (62) in Lemma F.7, the first inequality is due to triangle inequality, and the second
inequality holds since }µh

pV k,h`1}2 ď H
?
d and the minimum eigenvalue of pΛk,h is no less than λ.

Thus, we bound }
řk´1

i“1 pσ´2
i,hϕpsih, a

i
hqϵih

J
pV k,h`1}

pΛ´1
k,h

in the following. However, pVk,h`1 is Fk,h-measurable, which
brings obstacles in directly applying self-normalized bound for martingales. We need to build a uniform convergence
argument for pVk,h`1.

For any pk, hq P ˆrKs ˆ rHs, pVk,hp¨q “ mintmaxaxθh ` pµk,h
pV k,h`1,ϕp¨, ¨qy ` pβ}ϕp¨, aq}

pΛ´1
k,h

, Hu in Algorithm 1.
Moreover, we have

›

›

›
θh ` pµk,h

pV k,h`1

›

›

›

2
“

›

›

›

›

›

θh ` pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqpVk,h`1psih`1q

›

›

›

›

›

2
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ďW `

›

›

›

›

›

pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqpVk,h`1psih`1q

›

›

›

›

›

2

ďW `
H

p
?
Hq2

›

›

›

›

›

pΛ´1
k,h

k´1
ÿ

i“1

ϕpsih, a
i
hq

›

›

›

›

›

2

ď W ` K{λ,

where the first inequality holds due to triangle inequality, the second inequality holds since pVk,h`1p¨q ď H and pσi,h ě
?
H

for any i P rks, and the last inequality holds since λminpΛk,hq ě λ and sups,a }ϕps, aq}2 ď 1. Subsequently, we claim
pVk,h P pV , where pV is defined in Definition C.5, with L “ W ` K{λ and B “ pB. Here, pB is a constant satisfying pβ ď pB

with pβ specified in Lemma C.18.

Then, we fix a function V p¨q P pV : S ÞÑ r0, Hs. Let Gi “ Fi,h, xi “ pσ´1
i,hϕpsih, a

i
hq and ηi “ pσ´1

i,hϵ
i
h

J
V “

pσ´1
i,hxµhV ,ϕpsih, a

i
hqy ´ pσ´1

i,hV psih`1q. It is clear that xi is Gi-measurable and ηi is Gi`1-measurable. Since ςi ě
?
H , we

have pσi,h ě
?
H . Besides, we have }xi}2 ď 1{

?
H , Erηi | Gis “ 0, |ηi| ď

?
H and Erη2i | Gis ď H . By Lemma F.3, we

obtain that, with probability at least 1 ´ δ{H , for any k P rKs and fixed h P rHs,
›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V

›

›

›

›

›

pΛ´1
k,h

ď
?
H

d

d log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

.

Denote the ε-cover of function class pV as pNε. Consider an arbitrary f P pV . From the definition of ε-cover, we know
that for f , there exists a V P pNε, such that }f ´ V }8 ď ε. Since }ϵih

J
pf ´ V q}2 ď }ϵih}1}f ´ V }8 ď 2ε and

}
řk´1

i“1 pσ´2
i,hϕpsih, a

i
hq}

pΛ´1
k,h

ď K{pH
?
λq, we have

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pf ´ V q

›

›

›

›

›

pΛ´1
k,h

ď
2εK

H
?
λ
. (22)

This further implies the following inequality holds with probability at least 1 ´ δ{H:
›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
f

›

›

›

›

›

pΛ´1
k,h

ď

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V

›

›

›

›

›

pΛ´1
k,h

`

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pf ´ V q

›

›

›

›

›

pΛ´1
k,h

ď

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V

›

›

›

›

›

pΛ´1
k,h

`
2εK

H
?
λ

ď
?
H

d

d log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` log
ˇ

ˇ

ˇ

pNε

ˇ

ˇ

ˇ
`

2εK

H
?
λ
.

(23)

where the first inequality is due to the triangle inequality, the second one holds by Eq. (22), and the third inequality holds by
a union bound over all functions in pNε with

log
ˇ

ˇ

ˇ

pNε

ˇ

ˇ

ˇ
ď d log

ˆ

1 `
4L

ε

˙

` d2 log

˜

1 `
8 pB2

?
d

λε2

¸

according to Lemma F.9.

Note that Eq. (21) holds and pVk,h`1p¨q P pV . We have with probability at least 1 ´ δ{H , for any k P rKs and fixed h P rHs:

›

›

›

`

pµk,h ´ µh

˘

pV k,h`1

›

›

›

pΛk,h

ď

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pV k,h`1

›

›

›

›

›

pΛ´1
k,h

` H
?
λd
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ď
?
H

g

f

f

ed log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` d log

ˆ

1 `
4KL

H
?
λ

˙

` d2 log

˜

1 `
8K2

pB2
?
d

H2λ2

¸

` H
?
λd ` 2

“sβ,

where the last inequality holds by Eq. (23) and setting ε “ H
?
λ{K.

After building the confidence set sCk,h in Lemma C.8, confidence sets 9
uCk,h, rCk,h and qCk,h can be built similarly.

Lemma C.9. In Algorithm 1, for any δ P p0, 1q, any k P rKs and fixed h P rHs, with probability at least 1 ´ δ{H:

µh P 9
uCk,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘ 9
uV k,h`1

›

›

›

pΛk,h

ď
9
uβ

*

,

where

9
uβ “

?
H

g

f

f

ed log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` d log

ˆ

1 `
4KL

H
?
λ

˙

` d2 log

˜

1 `
8K2 9

uB2
?
d

H2λ2

¸

` H
?
λd ` 2.

Here L “ W ` K{λ and 9
uB is the solution of the inequality 3pβ ď 9

uB concerning 9
uB, where pβ is specified in Lemma C.18.

Proof. Notice 9
uVk,hp¨q “ mintmaxaxθh ` pµk,h

pV k,h`1,ϕp¨, ¨qy ` 3pβ}ϕp¨, aq}
pΛ´1

k,h
, Hu in Algorithm 1 for any pk, hq P

ˆrKs ˆ rHs. The proof is the same as that for Lemma C.8, except the considered function class pV is slightly different, i.e.,
the B is set as 9

uB, which is the solution of the inequality 3pβ ď 9
uB concerning 9

uB, where pβ is specified in Lemma C.18.

Lemma C.10. In Algorithm 1, for any δ P p0, 1q, any k P rKs and fixed h P rHs, with probability at least 1 ´ δ{H:

µh P rCk,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘

pV
2

k,h`1

›

›

›

pΛk,h

ď rβ

*

,

where

rβ “
?
H3

g

f

f

ed log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` d log

ˆ

1 `
8KL
?
λ

˙

` d2 log

˜

1 `
32K2

pB2
?
d

λ2

¸

` H2
?
λd ` 2.

Here L “ W ` K{λ and and pB is a constant satisfying pβ ď pB with pβ given in Lemma C.18.

Proof. The proof of this lemma is almost the same as that of Lemma C.8, except for replacing pVk,h`1, pV , and pNε by pV 2
k,h`1,

pV2, and pN 2
ε , respectively. Here

log
ˇ

ˇ

ˇ

pN 2
ε

ˇ

ˇ

ˇ
ď d log

ˆ

1 `
8LH

ε

˙

` d2 log

˜

1 `
32 pB2H2

?
d

λε2

¸

,

where L “ W ` k{λ and pB is a constant satisfying pβ ď pB with pβ given in Lemma C.18.

After setting ε “ H
?
λ{K, it can be proved that with probability at least 1 ´ δ{H , for any k P rKs and fixed h P rHs:

›

›

›

`

pµk,h ´ µh

˘

pV
2

k,h`1

›

›

›

pΛk,h

ď
?
H3

g

f

f

ed log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` d log

ˆ

1 `
8KL
?
λ

˙

` d2 log

˜

1 `
32K2

pB2
?
d

λ2

¸

` H2
?
λd ` 2

“rβ.
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Lemma C.11. In Algorithm 1, for any δ P p0, 1q, any k P rKs and fixed h P rHs, with probability at least 1 ´ δ{H:

µh P qCk,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘

qV k,h`1

›

›

›

pΛk,h

ď qβ

*

,

where

qβ “
?
H

g

f

f

ed log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` d log

ˆ

1 `
4KL

H
?
λ

˙

` d2 log

˜

1 `
8K2

qB2
?
d

H2λ2

¸

` H
?
λd ` 2. (24)

Here L “ W ` K{λ and qB is a constant satisfying qβ ď qB.

Proof. The proof of this lemma is similar to that of Lemma C.8 except for replacing pVk,h`1, pV , and pNε by qVk,h`1, qV , and
qNε, respectively, where

log
ˇ

ˇ

ˇ

qNε

ˇ

ˇ

ˇ
ď d log

ˆ

1 `
4L

ε

˙

` d2 log

˜

1 `
8 qB2

?
d

λε2

¸

.

Here L “ W ` K{λ and qB is a constant satisfying qβ ď qB with qβ specified in Eq. (24).

After setting ε “ H
?
λ{K, it can be proved that with probability at least 1 ´ δ{H , for any k P rKs and fixed h P rHs:

›

›

›

`

pµk,h ´ µh

˘

qV k,h`1

›

›

›

pΛk,h

ď
?
H

g

f

f

ed log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` d log

ˆ

1 `
4KL

H
?
λ

˙

` d2 log

˜

1 `
8K2

qB2
?
d

H2λ2

¸

` H
?
λd ` 2

“qβ.

C.2. Variance Upper Bound

In this section, we prove some necessary lemmas to build upper bounds of value function variances, including variances
of V ˚

h`1p¨q and r 9
uVk,h`1 ´ V ˚

h`1sp¨q. Specifically, we present Lemma C.13 in Appendix C.2.1 to bound the difference
between the estimated variance of the constructed optimistic value function and the real variance of the optimal value
function, i.e.,

ˇ

ˇrVhV
˚
h`1spskh, a

k
hq ´ rpVk,h

pVk,h`1spskh, a
k
hq
ˇ

ˇ, with high probability. In addition, we also present Lemma C.14

in Appendix C.2.2 to upper bound the variance rVhp 9
uVk,h`1 ´ V ˚

h`1qspskh, a
k
hq.

C.2.1. VARIANCE OF V ˚
h`1p¨q

Before proving Lemma C.13, we first present Lemma C.12, which upper bounds |rPhppVk,h`1 ´ V ˚
h`1qspskh, a

k
hq| under

optimism and pessimism events pΨk,h`1 X qΨk,h`1, and serves as the building block for Lemma C.13.

Lemma C.12. In Algorithm 1, for any k P rKs and any h P rHs, under pΨk,h`1 X qΨk,h`1, we have
ˇ

ˇ

ˇ
xµh

pV k,h`1,ϕpskh, a
k
hqy ´ xµhV

˚
h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
xppµk,h ´ µhq pV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
xpµk,h

pV k,h`1 ´ pµk,h
qV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
xppµk,h ´ µhq qV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
.

Proof. By definition, we have
ˇ

ˇ

ˇ
xµh

pV k,h`1,ϕpskh, a
k
hqy ´ xµhV

˚
h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
Ph

pVk,h`1pskh, a
k
hq ´ PhV

˚
h`1pskh, a

k
hq

ˇ

ˇ

ˇ
“ Ph

pVk,h`1pskh, a
k
hq ´ PhV

˚
h`1pskh, a

k
hq
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ďPh
pVk,h`1pskh, a

k
hq ´ Ph

qVk,h`1pskh, a
k
hq “

ˇ

ˇ

ˇ
Ph

pVk,h`1pskh, a
k
hq ´ Ph

qVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ
,

where the second equality holds since Ph is a valid distribution and pVk,h`1p¨q ě V ˚
h`1p¨q under pΨk,h`1 by Lemma D.1, the

first inequality holds since Ph is a valid distribution plus V ˚
h`1p¨q ě qVk,h`1p¨q under qΨk,h`1by Lemma D.1, and the last

equality holds since Ph is a valid distribution plus pVk,h`1p¨q ě qVk,h`1p¨q under pΨk,h`1 X qΨk,h`1 by Lemma D.1.

Therefore,
ˇ

ˇ

ˇ
Ph

pVk,h`1pskh, a
k
hq ´ PhV

˚
h`1pskh, a

k
hq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
Ph

pVk,h`1pskh, a
k
hq ´ Ph

qVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
Ph

pVk,h`1pskh, a
k
hq ´ pPk,h

pVk,h`1pskh, a
k
hq ` pPk,h

pVk,h`1pskh, a
k
hq ´ pPk,h

qVk,h`1pskh, a
k
hq

` pPk,h
qVk,h`1pskh, a

k
hq ´ Ph

qVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
Ph

pVk,h`1pskh, a
k
hq ´ pPk,h

pVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

pPk,h

”

pVk,h`1 ´ qVk,h`1

ı

pskh, a
k
hq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

pPk,h
qVk,h`1pskh, a

k
hq ´ Ph

qVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xppµk,h ´ µhq pV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
xpµk,hp pV k,h`1 ´ qV k,h`1q,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
xppµk,h ´ µhq qV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
.

Based on Lemma C.12, we are ready to present Lemma C.13.

Lemma C.13. In Algorithm 1, for any k P rKs and any h P rHs, under pΨk,h`1 X qΨk,h`1, we have

ˇ

ˇ

ˇ

“

VhV
˚
h`1

‰

pskh, a
k
hq ´

”

pVk,h
pVk,h`1

ı

pskh, a
k
hq

ˇ

ˇ

ˇ
ďmin

"

›

›

›
ppµk,h ´ µhq pV

2

k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` 4H∆k,h, 2H
2

*

,

where

∆k,h “

›

›

›
ppµk,h ´ µhq pV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

`

ˇ

ˇ

ˇ
xpµk,hp pV k,h`1 ´ qV k,h`1q,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

`

›

›

›
ppµk,h ´ µhq qV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

.

Proof. By definition, we have

ˇ

ˇ

ˇ

“

VhV
˚
h`1

‰

pskh, a
k
hq ´

”

pVk,h
pVk,h`1

ı

pskh, a
k
hq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xµhV

˚
h`1

2
,ϕpskh, a

k
hqy ´

”

xpµk,h
pV

2

k,h`1,ϕpskh, a
k
hqy

ı

r0,H2s

`

"

”

xpµk,h
pV k,h`1,ϕpskh, a

k
hqy

ı

r0,Hs

*2

´
“

xµhV
˚
h`1,ϕpskh, a

k
hqy

‰2
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

”

xpµk,h
pV

2

k,h`1,ϕpskh, a
k
hqy

ı

r0,H2s
´ xµhV

˚
h`1

2
,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ˇ

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

I1

`

ˇ

ˇ

ˇ

ˇ

ˇ

"

”

xpµk,h
pV k,h`1,ϕpskh, a

k
hqy

ı

r0,Hs

*2

´
“

xµhV
˚
h`1,ϕpskh, a

k
hqy

‰2

ˇ

ˇ

ˇ

ˇ

ˇ

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

I2
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where the inequality holds due to the triangle inequality. We bound I1 first.

I1 “

ˇ

ˇ

ˇ

ˇ

”

xpµk,h
pV

2

k,h`1,ϕpskh, a
k
hqy

ı

r0,H2s
´ xµhV

˚
h`1

2
,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

”

xpµk,h
pV

2

k,h`1,ϕpskh, a
k
hqy

ı

r0,H2s
´ xµh

pV
2

k,h`1,ϕpskh, a
k
hqy

` xµh
pV

2

k,h`1,ϕpskh, a
k
hqy ´ xµhV

˚
h`1

2
,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

”

xpµk,h
pV

2

k,h`1,ϕpskh, a
k
hqy

ı

r0,H2s
´ xµh

pV
2

k,h`1,ϕpskh, a
k
hqy

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
xµh

pV
2

k,h`1,ϕpskh, a
k
hqy ´ xµhV

˚
h`1

2
,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
xppµk,h ´ µhq pV

2

k,h`1,ϕpskh, a
k
hqy

ˇ

ˇ

ˇ
` 2H

ˇ

ˇ

ˇ
xµh

pV k,h`1,ϕpskh, a
k
hqy ´ xµhV

˚
h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
xppµk,h ´ µhq pV

2

k,h`1,ϕpskh, a
k
hqy

ˇ

ˇ

ˇ
` 2H

”
ˇ

ˇ

ˇ
xppµk,h ´ µhq pV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
xpµk,hp pV k,h`1 ´ qV k,h`1q,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
xppµk,h ´ µhq qV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ı

ď

›

›

›
ppµk,h ´ µhq pV

2

k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` 2H
”
›

›

›
ppµk,h ´ µhq pV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

`

ˇ

ˇ

ˇ
xpµk,hp pV k,h`1 ´ qV k,h`1q,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
`

›

›

›
ppµk,h ´ µhq qV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ı

(25)

where the first inequality holds due to the triangle inequality, the second inequality holds since Php¨ | skh, a
k
hq “

xµhp¨q,ϕpskh, a
k
hqy is valid distribution and pVk,h`1p¨q, V ˚

h`1p¨q P r0, Hs, the third inequality holds due to Lemma C.12
under pΨk,h`1 X qΨk,h`1, and the last inequality holds due to the Cauchy-Schwarz inequality.

For I2, we have

I2 “

ˇ

ˇ

ˇ

ˇ

ˇ

"

”

xpµk,h
pV k,h`1,ϕpskh, a

k
hqy

ı

r0,Hs

*2

´
“

xµhV
˚
h`1,ϕpskh, a

k
hqy

‰2

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

”

xpµk,h
pV k,h`1,ϕpskh, a

k
hqy

ı

r0,Hs
` xµhV

˚
h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

”

xpµk,h
pV k,h`1,ϕpskh, a

k
hqy

ı

r0,Hs
´ xµhV

˚
h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ˇ

ď2H

ˇ

ˇ

ˇ

ˇ

”

xpµk,h
pV k,h`1,ϕpskh, a

k
hqy

ı

r0,Hs
´ xµhV

˚
h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ˇ

ď2H
”
ˇ

ˇ

ˇ
xppµk,h ´ µhq pV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
xpµk,hp pV k,h`1 ´ qV k,h`1q,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
xppµk,h ´ µhq qV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ı

ď2H
”
›

›

›
ppµk,h ´ µhq pV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

`

ˇ

ˇ

ˇ
xpµk,hp pV k,h`1 ´ qV k,h`1q,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

`

›

›

›
ppµk,h ´ µhq qV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ı

(26)

where the first inequality holds since 0 ď rxpµk,h
pV k,h`1,ϕpskh, a

k
hqysr0,Hs ď H , 0 ď PhV

˚
h`1pskh, a

k
hq “

xµhV
˚
h`1,ϕpskh, a

k
hqy ď H , the second inequality holds due to Lemma C.12 under pΨk,h`1 X qΨk,h`1, and the third

inequality holds due to the Cauchy-Schwarz inequality. Combining Eq. (25) and (26) and using the fact that I1 and I2 are
both bounded by H2 give the final result.
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C.2.2. VARIANCE OF r 9
uVk,h`1 ´ V ˚

h`1sp¨q

Lemma C.14. In Algorithm 1, for any k P rKs and any h P rHs, under pΨk,h`1 X qΨk,h`1, we have V ˚
h`1p¨q ď 9

uVk,h`1p¨q.

Moreover, for any function V : S ÞÑ r0, Hs satisfying V ˚
h`1p¨q ď V p¨q ď 9

uVk,h`1p¨q, we have

“

VhpV ´ V ˚
h`1q

‰

pskh, a
k
hq ď min

!

H
”

xpµk,h
9
uV k,h`1,ϕpskh, a

k
hqy ´ xpµk,h

qV k,h`1,ϕpskh, a
k
hqy

`

›

›

›
ppµk,h ´ µhq 9

uV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ı

`

›

›

›
ppµk,h ´ µhq qV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ı

, H2
)

.

Proof. Initially, we have V ˚
h`1p¨q ď pVk,h`1p¨q ď 9

uVk,h`1p¨q, where the first inequality holds by Lemma D.1 under pΨk,h`1,

the second inequality holds by definitions of pVk,h`1p¨q and 9
uVk,h`1p¨q in Algorithm 1.

Denote rV p¨q “ V p¨q ´ V ˚
h`1p¨q. By definition of the variance, we have

rVhpV ´ V ˚
h`1qspskh, a

k
hq “ rVh

rV spskh, a
k
hq “ Ph

rV 2pskh, a
k
hq ´ rPh

rV pskh, a
k
hqs2 ď Ph

rV 2pskh, a
k
hq

ďH ¨ Ph
rV pskh, a

k
hq ď H ¨

”

Ph
9
uVk,h`1pskh, a

k
hq ´ PhV

˚
h`1pskh, a

k
hq

ı

ď H ¨

”

Ph
9
uVk,h`1pskh, a

k
hq ´ Ph

qVk,h`1pskh, a
k
hq

ı

,

(27)

where the first inequality holds trivially, the second inequality holds since V ˚
h`1p¨q ď V p¨q ď 9

uVk,h`1p¨q ď H , the

third inequality holds since V p¨q ď 9
uVk,h`1p¨q, and the last inequality holds since qVk,h`1p¨q ď V ˚

h`1p¨q under qΨk,h`1 by
Lemma D.1.

On the other hand, by Cauchy-Schwarz inequality, we have
ˇ

ˇ

ˇ
Ph

9
uVk,h`1pskh, a

k
hq ´ pPk,h

9
uVk,h`1pskh, a

k
hq

ˇ

ˇ

ˇ
ď

›

›

›
ppµk,h ´ µhq 9

uV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

(28)
ˇ

ˇ

ˇ
Ph

qVk,h`1pskh, a
k
hq ´ pPk,h

qVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ
ď

›

›

›
ppµk,h ´ µhq qV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

(29)

Combining Eq (27), Eq (28), Eq (29) and using the fact that rVhpV ´ V ˚
h`1qspskh, a

k
hq ď H2 give the final result.

C.3. Dependent Confidence Sets

Based on independent confidence sets sCk,h, 9
uCk,h, rCk,h, qCk,h built above and Lemma C.13, C.14, dependent confidence sets

pCp1q

k,h,
pCp2q

k,h are built in Lemma C.16, C.17, respectively. As a results, the confidence set pCk,h, the goal of this section, holds

trivially if pCp1q

k,h,
pCp2q

k,h both hold. We build confidence sets pCp1q

k,h and pCp2q

k,h elegantly because the radius of the confidence set
pCk,h will exactly determine the sharpness of the regret obtained by LSVI-UCB` algorithm. In particular, we utilize the
conservatism of elliptical potentials, which is detailed in Remark 7.4 in the main paper. To formally utilize this property, we
first present Lemma C.15 to keep the magnitude of the considered MDS small with the conservatism of elliptical potentials.

Lemma C.15. In Algorithm 1, for any k P rKs and any h P rHs, we have

pσ´1
k,h ¨ min

"

1,
›

›

›
pσ´1
k,hϕpsih, a

i
hq

›

›

›

pΛ
´1

k,h

*

ď
1

H
?
d3

.

Proof. In Algorithm 1, for any k P rKs and any h P rHs, we have following two cases:

• If
›

›

›
rσ´1
i,hϕpsih, a

i
hq

›

›

›

rΛ´1
i,h

ď 1{pHd3q, then ςk,h “
?
H such that pσi,h “ rσi,h. In this case, we have

›

›

›
pσ´1
k,hϕpsih, a

i
hq

›

›

›

pΛ´1
k,h

“

›

›

›
rσ´1
k,hϕpsih, a

i
hq

›

›

›

pΛ´1
k,h

ď
?
Hd3

›

›

›
rσ´1
k,hϕpsih, a

i
hq

›

›

›

rΛ´1
k,h

ď
?
Hd3{pHd3q ď 1{

?
Hd3.
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where the inequality holds since Hd3 ¨ pΛk,h ľ rΛk,h by following facts:

Hd3 ¨ pΛk,h “ Hd3 ¨

˜

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϕpsjh, a

j
hqJ ` λI

¸

ľ

k´1
ÿ

i“1

rσ´2
i,hϕpsih, a

i
hqϕpsih, a

i
hqJ ` λI “ rΛk,h,

where the inequality holds since pσi,h ď
?
Hd3rσi,h in Algorithm 1, which implies Hd3 ¨ pΛk,h ´ rΛk,h is a semi-positive

definite matrix.

Therefore, the conclusion holds in this case since pσk,h ě
?
H .

• Otherwise, ςk,h “ H
?
d3, such that pσk,h ě H

?
d3. In this case, the conclusion still holds since

mint1, }pσ´1
k,hϕpsih, a

i
hq}

pΛ
´1

k,h

u ď 1.

Now we are ready to prove Lemma C.16 which builds the dependent confidence set pCp1q

k,h, based on independent confidence

sets sCk,h X rCk,h X qCk,h and Lemma C.13. Indeed, the confidence set pCp1q

k,h corresponds to the deviation term of the form

rppPk,h ´ PhqV ˚
h`1spskh, a

k
hq in the main paper.

Lemma C.16. In Algorithm 1, for any δ P p0, 1q, any k P rKs and fixed h P rHs, under pΨh`1 X qΨh`1, with probability at
least 1 ´ 4δ{H:

µh P pCp1q

k,h X sCk,h X rCk,h X qCk,h,

where

pCp1q

k,h “

!

µ :
›

›

`

µ ´ pµk,h

˘

V ˚
h`1

›

›

pΛk,h
ď pβp1q

)

,

pβp1q “8

d

d log

ˆ

1 `
K

Hdλ

˙

log

ˆ

4K2H

δ

˙

` 4 log

ˆ

4K2H

δ

˙

` H
?
λd. (30)

Proof. Let Gi “ Fi,h, xi “ pσ´1
i,hϕpsih, a

i
hq, Zi “ λI `

ři
j“1 xix

J
i , and ηi “ pσ´1

i,hϵ
i
h

J
V ˚

h`1 ¨ 1tµh P sCi,h X rCi,h X

qCi,hu ¨ 1tpΨi,h`1 X qΨi,h`1u. Now that V ˚
h`1 is a fixed function and 1tµh P sCi,h X rCi,h X qCi,hu ¨ 1tpΨi,h`1 X qΨi,h`1u is

Gi-measurable, it is clear that xi are Gi-measurable and ηi is Gi`1-measurable.

Besides, we have Erηi | Gis “ 0. Since pσi,h ě ςi,h ě
?
H , |ηi| ď

?
H and }xi}2 ď 1{

?
H . In particular, we claim

|ηi ¨ mint1, }xi}Z´1
i´1

u| ď 1 because of the following three facts: (i) |ϵih
J
V ˚

h`1 ¨ 1tµh P sCi,h X rCi,h X qCi,hu ¨ 1tpΨi,h`1 X

qΨi,h`1u| ď H holds by |Vh`1 ˚ p¨q| ď H; (ii) pσ´1
i,h ¨ mint1, }xi}Z´1

i´1
u ď 1{pH

?
d3q holds by Lemma C.15; and (iii)

|1tµh P sCi,h X rCi,h X qCi,hu ¨ 1tpΨi,h`1 X qΨi,h`1u| ď 1.

Furthermore, it holds that

Erη2i | Gis “pσ´2
i,h ¨ 1

!

µh P sCi,h X rCi,h X qCi,h
)

¨ 1
!

pΨi,h`1 X qΨi,h`1

)

rVhV
˚
h`1spsih, a

i
hq

ďpσ´2
i,h ¨ 1

!

µh P sCi,h X rCi,h X qCi,h
) ” ”

pVi,h
pVi,h`1

ı

psih, a
i
hq

` min

"

›

›

›

`

pµi,h ´ µh

˘

pV
2

i,h`1

›

›

›

pΛi,h

›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

` 4H∆i,h, 2H
2

*

ı

ďpσ´2
i,h

” ”

pVi,h
pVi,h`1

ı

psih, a
i
hq ` min

!

rβ
›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

` 4Hδi,h, 2H
2
) ı

ď1,

where the first inequality holds due to Lemma C.13 under pΨi,h`1 X qΨi,h`1, the second inequality holds due to the definition
of indicator function, and the last inequality holds due to the definition of pσi,h. Here ∆i,h and δi,h are given by

∆i,h “

›

›

›

`

pµi,h ´ µh

˘

pV i,h`1

›

›

›

pΛi,h

›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

`

ˇ

ˇ

ˇ
xpµi,h

´

pV i,h`1 ´ qV i,h`1

¯

,ϕpsih, a
i
hqy

ˇ

ˇ

ˇ
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`

›

›

›

`

pµi,h ´ µh

˘

qV i,h`1

›

›

›

pΛi,h

›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

,

δi,h “sβ
›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

`

ˇ

ˇ

ˇ
xpµi,h

´

pV i,h`1 ´ qV i,h`1

¯

,ϕpsih, a
i
hqy

ˇ

ˇ

ˇ
` qβ

›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

.

Then, by Lemma F.4, with probability at least 1 ´ δ{H , for all k P rKs and fixed h P rHs,
›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V ˚

h`11
!

µh P sCi,h X rCi,h X qCi,h
)

1
!

pΨi,h`1 X qΨi,h`1

)

›

›

›

›

›

pΛ´1
k,h

ď8

d

d log

ˆ

1 `
K

Hdλ

˙

log

ˆ

4K2H

δ

˙

` 4 log

ˆ

4K2H

δ

˙

.

(31)

Denote Ep1q

h as the event that µh P XkPrKs
sCk,h X rCk,h X qCk,h and Eq. (31) hold, which happens with probability at least

1 ´ 4δ{H by taking a union bound. In addition, we claim that with probability at least 1 ´ 4δ{H , for all k P rKs and fixed
h P rHs,

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V ˚

h`1 ¨ 1
!

µh P sCi,h X rCi,h X qCi,h
)

¨ 1
!

pΨi,h`1 X qΨi,h`1

)

›

›

›

›

›

pΛ´1
k,h

“

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V ˚

h`1 ¨ 1
!

pΨi,h`1 X qΨi,h`1

)

›

›

›

›

›

pΛ´1
k,h

ď8

d

d log

ˆ

1 `
K

Hdλ

˙

log

ˆ

4K2H

δ

˙

` 4 log

ˆ

4K2H

δ

˙

,

where the equality holds since under event Ep1q

h , for any i P rKs, 1tµh P sCi,h X rCi,h X qCi,hu “ 1. Moreover, if we further
assume pΨh`1 X qΨh`1 holds, which means 1tpΨi,h`1 X qΨi,h`1u “ 1 for any i P rks, then with probability at least 1´4δ{H ,
for any k P rKs and fixed h P rHs:

›

›

`

pµk,h ´ µh

˘

V ˚
h`1

›

›

pΛk,h
ď 8

d

d log

ˆ

1 `
K

Hdλ

˙

log

ˆ

4K2H

δ

˙

` 4 log

ˆ

4K2H

δ

˙

` H
?
λd “ pβ

p1q

k .

since

›

›

`

pµk,h ´ µh

˘

V ˚
h`1

›

›

pΛk,h
ď H

?
λd `

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V ˚

h`1

›

›

›

›

›

pΛ´1
k,h

with a similar argument as in Eq. (21). Thus, we conclude that for any k P rKs and fixed h P rHs, under pΨh`1 X qΨh`1,
with probability at least 1 ´ 4δ{H:

µh P pCp1q

k,h X sCk,h X rCk,h X qCk,h.

Subsequently, we prove Lemma C.17 which builds the dependent confidence set pCp2q

k,h, based on independent confidence sets
9
uCk,h X qCk,h and Lemma C.14. The confidence set pCp2q

k,h corresponds to the deviation term of the form rppPk,h ´PhqppVk,h`1 ´

V ˚
h`1qspskh, a

k
hq in main paper, which is controlled to be small in LSVI-UCB`.

Lemma C.17. In Algorithm 1, for any δ P p0, 1q, any k P rKs and fixed h P rHs, under pΨh`1 X qΨh`1, with probability at
least 1 ´ 3δ{H:

µh P pCp2q

k,h X 9
uCk,h X qCk,h.
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where

pCp2q

k,h “

"

µ :
›

›

›

`

µ ´ pµk,h

˘

´

pV k,h`1 ´ V ˚
h`1

¯›

›

›

pΛk,h

ď pβp2q

*

,

pβp2q “8

g

f

f

e

1

d
log

ˆ

1 `
K

Hdλ

˙

«

log

ˆ

4K2H

δ

˙

` d log

ˆ

1 `
4KL

H
?
λ

˙

` d2 log

˜

1 `
8K2

pB2
?
d

H2λ2

¸ff

`
4

?
d3

«

log

ˆ

4K2H

δ

˙

` d log

ˆ

1 `
4KL

H
?
λ

˙

` d2 log

˜

1 `
8K2

pB2
?
d

H2λ2

¸ff

` H
?
λd ` 2. (32)

Here L “ W ` K{λ and pB is a constant satisfying pβ ď pB with pβ given in Lemma C.18.

Proof. It suffices to upper bound }
řk´1

i“1 pσ´2
i,hϕpsih, a

i
hqϵih

J
p pV k,h`1 ´ V ˚

h`1q}
pΛ´1

k,h
with a similar argument as Eq. (21).

Besides, we need to build a uniform convergence argument by covering net since pV k,h`1p¨q is Fk´1,h-measurable. As
stated in the proof of Lemma C.8, pVk,h P pV , where pV is defined in Definition C.5, with L “ W ` K{λ and B “ pB. Here,
pB is a constant satisfying pβ ď pB with pβ specified in Lemma C.18.

Then, for a fixed function V p¨q P pV : S ÞÑ r0, Hs and a constant ζ ą 0, let Gi “ Fi,h, xi “ pσ´1
i,hϕpsih, a

i
hq, Zi “ λI `

ři
j“1 xix

J
i , and ηi “ pσ´1

i,hϵ
i
h

J
pV ´V ˚

h`1q ¨1tµh P 9
uCi,h X qCi,hu ¨1tV ˚

h`1 ´ζ ď V ď 9
uV i,h`1 `ζu ¨1tpΨi,h`1 X qΨi,h`1u.

Since V p¨q and V p¨q˚
h`1 are fixed functions, and 9

uVi,h`1 and 1tµh P 9
uCi,h X qCi,hu ¨ 1tpΨi,h`1 X qΨi,h`1u are Gi-measurable,

it is clear that xi is Gi-measurable and ηi is Gi`1-measurable. Besides, we have Erηi | Gis “ 0. Since pσi,h ě ςi,h ě
?
H ,

|ηi| ď
?
H and }xi}2 ď 1{

?
H .

Similar to the proof in Lemma C.16, we claim |ηi ¨ mint1, }xi}Z´1
i´1

u| ď 1{
?
d3 because of the following three facts:

(i) |ϵih
J

pV ´ V ˚
h`1q ¨ 1tV ˚

h`1 ´ ζ ď V ď 9
uV i,h`1 ` ζu ¨ 1tpΨi,h`1 X qΨi,h`1u| ď H holds by |pV p¨q ´ V ˚

h`1p¨qq ¨

1tV ˚
h`1 ´ ζ ď V ď 9

uV i,h`1 ` ζu| ď H; (ii) pσ´1
i,h ¨ mint1, }xi}Z´1

i´1
u ď 1{pH

?
d3q holds by Lemma C.15; and (iii)

|1tµh P 9
uCi,h X qCi,hu ¨ 1tpΨi,h`1 X qΨi,h`1u| ď 1.

Furthermore, it holds that

Erη2i | Gis “pσ´2
i,h ¨ 1

!

µh P 9
uCi,h X qCi,h

)

¨ 1
!

V ˚
h`1 ´ ζ ď V ď 9

uV i,h`1 ` ζ
)

¨ 1
!

pΨi,h`1 X qΨi,h`1

)

¨ rVhpV ´ V ˚
h`1qspsih, a

i
hq

ďpσ´2
i,h ¨ 1

!

µh P 9
uCi,h X qCi,h

)

¨ H
”

pPk,h
9
uVk,h`1pskh, a

k
hq ´ pPk,h

qVk,h`1pskh, a
k
hq

`

›

›

›

`

pµk,h ´ µh

˘ 9
uV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

`

›

›

›

`

pµk,h ´ µh

˘

qV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ı

ďpσ´2
i,h ¨ H

”

pPk,h
9
uVk,h`1pskh, a

k
hq ´ pPk,h

qVk,h`1pskh, a
k
hq `

9
uβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` qβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ı

ď
1

d
,

where the first inequality holds due to Lemma C.14 under pΨi,h`1 X qΨi,h`1, the second inequality holds due to the definition
of indicator function, and the last inequality holds due to the definition of pσi,h.

Then, by Lemma F.4, for all k P rKs and fixed h P rHs, with probability at least 1 ´ δ{H:

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

V ´ V ˚
h`1

˘

¨ 1
!

µh P 9
uCi,h X qCi,h

)

¨ 1
!

V ˚
h`1 ´ ζ ď V ď 9

uV i,h`1 ` ζ
)

¨ 1
!

pΨi,h`1 X qΨi,h`1

)
›

›

›

pΛ´1
k,h
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ď8

d

1

d
log

ˆ

1 `
K

Hdλ

˙

log

ˆ

4K2H

δ

˙

`
4

?
d3

log

ˆ

4K2H

δ

˙

.

We further proceed our proof under the event that pΨh`1 X qΨh`1 holds, which implies 1tpΨi,h`1 X qΨi,h`1u “ 1 for any
i P rks. Denote Ep2q

h as the event that µh P XkPrKs
9
uCk,h X qCk,h and the above inequality holds, which happens with

probability at least 1 ´ 3δ{H by taking a union bound. In addition, we claim that under pΨh`1 X qΨh`1, with probability at
least 1 ´ 3δ{H , for all k P rKs and fixed h P rHs,

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

V ´ V ˚
h`1

˘

¨ 1
!

µh P 9
uCi,h X qCi,h

)

¨ 1
!

V ˚
h`1 ´ ζ ď V ď 9

uV i,h`1 ` ζ
)

¨ 1
!

pΨi,h`1 X qΨi,h`1

)
›

›

›

pΛ´1
k,h

“

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

V ´ V ˚
h`1

˘

¨ 1
!

V ˚
h`1 ´ ζ ď V ď 9

uV i,h`1 ` ζ
)

›

›

›

›

›

pΛ´1
k,h

ď8

d

1

d
log

ˆ

1 `
K

Hdλ

˙

log

ˆ

4K2H

δ

˙

`
4

?
d3

log

ˆ

4K2H

δ

˙

,

where the equality holds since under event Ep2q

h XpΨh`1XqΨh`1, for any i P rKs, 1tµh P 9
uCi,hX qCi,hu¨1tpΨi,h`1XqΨi,h`1u “

1.

Denote the ε-cover of function class pV as pNε. Since pVk,h`1p¨q P pV , for any pVk,h`1, there exists a V 1 P pNε, such that
} pV k,h`1 ´V 1

}8 ď ε. This implies V ˚
h`1 ´ε ď pV k,h`1 ´ε ď V 1

ď pV k,h`1 `ε ď 9
uV i,h`1 `ε, where the first inequality

holds by Lemma D.1 under pΨh`1, and the last inequality holds by Lemma D.2 under pΨh`1.

In addition, setting ζ “ ε makes 1tV ˚
h`1 ´ ζ ď V 1

ď 9
uV i,h`1 ` ζu “ 1 for any i P rks. Moreover, since }ϵih

J
p pV k,h`1 ´

V 1
q}2 ď }ϵih}1} pV k,h`1 ´ V 1

}8 “ 2ε and }
řk´1

i“1 pσ´2
i,hϕpsih, a

i
hq}

pΛ´1
k,h

ď K{pH
?
λq, we have

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
´

pV k,h`1 ´ V 1
¯

¨ 1
!

V ˚
h`1 ´ ζ ď V 1

ď 9
uV i,h`1 ` ζ

)

›

›

›

›

›

pΛ´1
k,h

ď
2εK

H
?
λ
. (33)

This further implies that the following inequality holds with probability at least 1 ´ 3δ{H:
›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
´

pV k,h`1 ´ V ˚
h`1

¯

›

›

›

›

›

pΛ´1
k,h

“

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
´

pV k,h`1 ´ V ˚
h`1

¯

¨ 1
!

V ˚
h`1 ´ ζ ď V 1

ď 9
uV i,h`1 ` ζ

)

›

›

›

›

›

pΛ´1
k,h

ď

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

V 1
´ V ˚

h`1

˘

¨ 1
!

V ˚
h`1 ´ ζ ď V 1

ď 9
uV i,h`1 ` ζ

)

›

›

›

›

›

pΛ´1
k,h

`

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
´

pV k,h`1 ´ V 1
¯

¨ 1
!

V ˚
h`1 ´ ζ ď V 1

ď 9
uV i,h`1 ` ζ

)

›

›

›

›

›

pΛ´1
k,h

ď

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

V 1
´ V ˚

h`1

˘

¨ 1
!

V ˚
h`1 ´ ζ ď V 1

ď 9
uV i,h`1 ` ζ

)

›

›

›

›

›

pΛ´1
k,h

`
2εK

H
?
λ

ď8

d

1

d
log

ˆ

1 `
K

Hdλ

˙„

log

ˆ

4K2H

δ

˙

` log
ˇ

ˇ

ˇ

pNε

ˇ

ˇ

ˇ

ȷ

`
4

?
d3

„

log

ˆ

4K2H

δ

˙

` log
ˇ

ˇ

ˇ

pNε

ˇ

ˇ

ˇ

ȷ

`
2εK

H
?
λ
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where the first inequality is due to triangle inequality, the second inequality holds by Eq. (33), and the third inequality holds
by a union bound over all functions in pNε with

log
ˇ

ˇ

ˇ

pNε

ˇ

ˇ

ˇ
ď d log

ˆ

1 `
4L

ε

˙

` d2 log

˜

1 `
8 pB2

?
d

λε2

¸

according to Lemma F.9.

Similar to Eq. (21), for any k P rKs and fixed h P rHs, under pΨh`1 X qΨh`1, we have that, with probability at least
1 ´ 3δ{H:

›

›

›

`

pµk,h ´ µh

˘

´

pV k,h`1 ´ V ˚
h`1

¯
›

›

›

pΛk,h

ď
1

?
λ

¨ λH
?
d `

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
´

pV k,h`1 ´ V ˚
h`1

¯

›

›

›

›

›

pΛ´1
k,h

ď8

g

f

f

e

1

d
log

ˆ

1 `
K

Hdλ

˙

«

log

ˆ

4K2H

δ

˙

` d log

ˆ

1 `
4KL

H
?
λ

˙

` d2 log

˜

1 `
8K2

pB2
?
d

H2λ2

¸ff

`
4

?
d3

«

log

ˆ

4K2H

δ

˙

` d log

ˆ

1 `
4KL

H
?
λ

˙

` d2 log

˜

1 `
8K2

pB2
?
d

H2λ2

¸ff

` H
?
λd ` 2

“pβp2q,

(34)

where the last inequality holds by the above proved self-normalized bound and setting ε “ H
?
λ{K. Thus, we conclude

that for any k P rKs and fixed h P rHs, under pΨh`1 X qΨh`1, with probability at least 1 ´ 3δ{H:

µh P pCp2q

k,h X 9
uCk,h X qCk,h.

C.4. Proof of Lemma 7.5

Now we are ready to prove Lemma 7.5, i.e., building the sharp confidence set pCk,h, in the main paper, based on above
building blocks including confidence sets sCk,h, 9

uCk,h, rCk,h, qCk,h, pCp1q

k,h,
pCp2q

k,h, and Lemma C.13 and C.14 for upper bounding
variances of value functions. In the following, we present Lemma C.18, which is the full version of Lemma 7.5 in the main
paper.

Lemma C.18. Set pβ “ pβp1q ` pβp2q with pβp1q and pβp2q given in Lemma C.16 and C.17, respectively. Then for any δ P p0, 1q,
with probability at least 1 ´ 7δ, we have that simultaneously for any k P rKs and any h P rHs,

µh PP pCk,h X pCp1q

k,h X pCp2q

k,h X sCk,h X 9
uCk,h X rCk,h X qCk,h

and
ˇ

ˇ

ˇ
rpVk,h

pVk,h`1spskh, a
k
hq ´ rVhV

˚
h`1spskh, a

k
hq

ˇ

ˇ

ˇ
ďUk,h

“

VhpV ´ V ˚
h`1q

‰

pskh, a
k
hq ďEk,h

where

Uk,h “min
!

rβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` 4H
”
ˇ

ˇ

ˇ
xpµk,hp pV k,h`1 ´ qV k,h`1q,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
` sβ

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` qβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ı

, 2H2
)

(35)

Ek,h “min
!

H
”

xpµk,h
9
uV k,h`1,ϕpskh, a

k
hqy ´ xpµk,h

qV k,h`1,ϕpskh, a
k
hqy `

9
uβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` qβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ı

, H2
)

.

(36)

Here sβ, 9
uβ, rβ, qβ are specified in Lemma C.8, C.9, C.10, C.11, respectively.
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Proof. We first prove the following claim:

For any δ P p0, 1q, any k P rKs and fixed h P rHs, with probability at least 1 ´ 7pH ´ hqδ{H , for any h1 such that
h ď h1 ď H:

µh1 P pCk,h1 X pCp1q

k,h1 X pCp2q

k,h1 X sCk,h1 X 9
uCk,h1 X rCk,h1 X qCk,h1 ,

and
ˇ

ˇ

ˇ
rpVk,h

pVk,h`1spskh, a
k
hq ´ rVhV

˚
h`1spskh, a

k
hq

ˇ

ˇ

ˇ
ďUk,h

“

VhpV ´ V ˚
h`1q

‰

pskh, a
k
hq ď ¨ Ek,h

hold simultaneously.

We prove this claim by introduction.

• We first prove the claim for h “ H . Since qVk,H`1p¨q “ V ˚
H`1p¨q “ pVk,H`1p¨q “ 0 in Algorithm 1 for any k P rKs,

the conclusion holds for sure.

• Assume the claim holds for h ` 1 ď H . Then, for any k P rKs and fixed h ` 1 P rHs, with probability at least
1 ´ 7pH ´ h ´ 1qδ{H , µh1 P pCk,h1 X qCk,h1 for any h ` 1 ď h1 ď H , which implies qΨh`1 X pΨh`1 holds.

Combined with conclusions from Lemma C.16 and Lemma C.17, for any k P rKs, the following events holds with
probability at least 1 ´ 7δ{H:

µh P pCp1q

k,h X pCp2q

k,h X sCk,h X 9
uCk,h X rCk,h X qCk,h.

Moreover, we have
ˇ

ˇ

ˇ
rpVk,h

pVk,h`1spskh, a
k
hq ´ rVhV

˚
h`1spskh, a

k
hq

ˇ

ˇ

ˇ
ďUk,h

“

VhpV ´ V ˚
h`1q

‰

pskh, a
k
hq ďEk,h

under the event pΨh`1 X qΨh`1 and sCk,h X 9
uCk,h X rCk,h X qCk,h by Lemma C.13 and C.14.

Considering µh P pCp1q

k,h X pCp2q

k,h, we have
›

›

›

`

µh ´ pµk,h

˘

pV k,h`1

›

›

›

pΛk,h

ď
›

›

`

µh ´ pµk,h

˘

V ˚
h`1

›

›

pΛk,h
`

›

›

›

`

µh ´ pµk,h

˘

´

pV k,h`1 ´ V ˚
h`1

¯
›

›

›

pΛk,h

ďpβp1q ` pβp2q “ pβ,

which implies µh P pCk,h since pCk,h “ tµ : }pµ ´ pµk,hq pV k,h`1}
pΛk,h

ď pβu. In other words, µh P pCk,h X pCp1q

k,h X

pCp2q

k,h X sCk,h X 9
uCk,h X rCk,h X qCk,h.

Thus, by taking a union bound over these two events, we claim that with probability at least 1 ´ 7pH ´ hqδ{H , the
claim holds for h.

Therefore, the claim is proved by induction and setting h “ 1 gives the desired results in Lemma C.18.

D. Regret Upper Bound
In this section, we upper bound the final regret, where we show that the total regret is roughly bounded by the summation of
the exploration bonus, i.e.,

RegretpKq ď

K
ÿ

k“1

”

pVk,1psk1q ´ V πk

1 psk1q

ı

ď

K
ÿ

k“1

”

9
uVk,1psk1q ´ V πk

1 psk1q

ı

À

K
ÿ

k“1

H
ÿ

h“1

pβ}ϕpskh, a
k
hq}

pΛ´1
k,h
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Àpβ

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

looooooomooooooon

rOp
?
HT q

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

}pσ´1
k,hϕpskh, a

k
hq}2

pΛ´1
k,h

loooooooooooooooooomoooooooooooooooooon

rOp
?
Hdq

ď rOpHd
?
T q.

• The first and second inequalities hold by optimism and over-optimism of constructed value functions. Specifically,
we first build the optimism and pessimism of constructed value functions in Lemma D.1. Then, the over-optimism is
established in Lemma D.2.

• The third inequality is proved in Lemma D.5, which bounds the cumulative difference between the over-optimistic
value function 9

uVk,h and the value function associated with policy πk value function V πk

h in Lemma D.5. We further
bound the cumulative difference between the over-optimistic value function 9

uVk,h and the pessimistic value function
qVk,h in Lemma D.6.

• The fourth inequality holds by Cauchy-Schwarz inequality, where first summation of estimated variance is bounded in
Lemma D.10 in Appendix D.3. The summation of estimated variance

řK
k“1

řH
h“1 pσ

2
k,h “ rOpHT q, utilizing the the

Law of Total Variance in (Lattimore & Hutter, 2012), detailed in Lemma D.7. The second summation can be bounded
by classical Elliptical Potential Lemma, presented in Lemma F.5 in Appendix F.

Putting these building blocks together, we are finally ready to upper bound the regret in Appendix D.4 as rOpHd
?
T `

H4d4 ` H3d6q. Before the formal proof begins, denote the event when the conclusion of Lemma 7.5 holds as Υ. Also
denote the event that the conclusion of Lemma D.3, D.4 and D.7 holds as Ξ1, Ξ2 and Ξ3, respectively. The final regret
bound is a high probability bound builds under event Υ X Ξ1 X Ξ2 X Ξ3.

D.1. Monotonicity

In this subsection, we build the optimism of the constructed optimistic value function pVk,h, and the pessimism of the
constructed pessimistic value function qVk,h over the optimal value function V ˚

h in Lemma D.1. We also build over-optimism

of 9
uVk,h over pVk,h in Lemma D.2. These are the preliminaries for our later proofs.

Lemma D.1 (Optimism and Pessimism). In Algorithm 1, if qΨk,h X pΨk,h holds, then for any k P rKs and any h P rHs, we
have

qVk,hpsq
paq

ď V ˚
h psq

pbq

ď pVk,hpsq, @s P S. (37)

Proof. We prove two inequalities by induction on respective hypotheses.

(a) Pessimism: For any k P rKs, the statement holds for h “ H ` 1 since qVk,H`1p¨q “ V ˚
H`1p¨q “ 0.

Assume the statement holds for h ` 1, which means qVk,h`1p¨q ď V ˚
h`1p¨q under qΨk,h`1. Since qQk,hp¨, ¨q “ rhp¨, ¨q `

xpµk,h
qV k,h`1,ϕp¨, ¨qy ´ qβ}ϕp¨, ¨q}

pΛ´1
k,h

, for @ps, aq P S ˆ A, we have:

Q˚
hps, aq ´ qQk,hps, aq

“rhps, aq ` PhV
˚
h`1ps, aq ´

”

rhps, aq ` xpµk,h
qV k,h`1,ϕps, aqy ´ qβ}ϕps, aq}

pΛ´1
k,h

ı

“xµh
qV k,h`1,ϕps, aqy ´ xpµk,h

qV k,h`1,ϕps, aqy ` qβ}ϕps, aq}
pΛ´1

k,h
` PhV

˚
h`1ps, aq ´ Ph

qVk,h`1ps, aq

ě ´ }ppµk,h ´ µhq qV k,h`1}
pΛk,h

}ϕps, aq}
pΛ´1

k,h
` qβ}ϕps, aq}

pΛ´1
k,h

` PhV
˚
h`1ps, aq ´ Ph

qVk,h`1ps, aq

ěPhV
˚
h`1ps, aq ´ Ph

qVk,h`1ps, aq

ě0,

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds by the assumption that
µh P qCk,h under qΨk,h, the third inequality holds since the induction assumption qVk,h`1p¨q ď V ˚

h`1p¨q under qΨk,h`1
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and Ph is a valid distribution. Therefore, we have qQk,hps, aq ď Q˚
hps, aq, for all ps, aq P S ˆ A. Since qVk,hp¨q “

max
␣

maxaPA qQk,hp¨, aq, 0
(

, for any s P S, we have the following two cases:

• If maxaPA qQk,hps, aq ď 0, we have 0 “ qVk,hpsq ď V ˚
h psq.

• Otherwise, qVk,hpsq “ maxaPA qQk,hps, aq ď maxaPA Q˚
hps, aq “ V ˚

h psq.

Therefore, we have qVk,hp¨q ď V ˚
h p¨q under qΨk,h for any pk, hq P rKs ˆ rHs.

(b): Optimism: For any k P rKs, the statement holds for h “ H ` 1 since pVk,H`1p¨q “ V ˚
H`1p¨q “ 0.

Assume the statement holds for h ` 1, which means pVk,h`1p¨q ě V ˚
h`1p¨q under pΨk,h`1. Since pQk,hp¨, ¨q “ rhp¨, ¨q `

xpµk,h
pV k,h`1,ϕp¨, ¨qy ` pβ}ϕp¨, ¨q}

pΛ´1
k,h

, for @ps, aq P S ˆ A, we have

pQk,hps, aq ´ Q˚
hps, aq

“rhps, aq ` xpµk,h
pV k,h`1,ϕps, aqy ` pβ}ϕps, aq}

pΛ´1
k,h

´
“

rhps, aq ` PhV
˚
h`1ps, aq

‰

“xpµk,h
pV k,h`1,ϕps, aqy ´ xµh

pV k,h`1,ϕps, aqy ` pβ}ϕps, aq}
pΛ´1

k,h
` Ph

pVk,h`1ps, aq ´ PhV
˚
h`1ps, aq

ě ´ }ppµk,h ´ µhq pV k,h`1}
pΛk,h

}ϕps, aq}
pΛ´1

k,h
` pβ}ϕps, aq}

pΛ´1
k,h

` Ph
pVk,h`1ps, aq ´ PhV

˚
h`1ps, aq

ěPh
pVk,h`1ps, aq ´ PhV

˚
h`1ps, aq

ě0,

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds by the assumption that
µh P pCk,h under pΨk,h, the third inequality holds by the induction assumption pVk,h`1p¨q ě V ˚

h`1p¨q under pΨk,h`1 and Ph is
a valid distribution. Therefore, we have pQk,hps, aq ě Q˚

hps, aq, for all ps, aq P S ˆ A.

Since pVk,hp¨q “ min
␣

maxaPA pQk,hp¨, aq, H
(

, we have the following two cases:

• If maxaPA pQk,hps, aq ď H , we have H “ pVk,hpsq ě V ˚
h psq.

• Otherwise, pVk,hpsq “ maxaPA pQk,hps, aq ě maxaPA pQ˚
hps, aq “ V ˚

h psq.

Therefore, we have pVk,hp¨q ě V ˚
h p¨q under pΨk,h for any pk, hq P rKs ˆ rHs.

Lemma D.2 (Over-optimism). In Algorithm 1, for any i, j P rKs with i ď j and any h P rHs, if pΨi,h X pΨj,h holds, we have

9
uVi,hpsq ě pVj,hpsq, @s P S. (38)

Proof. We prove the state by induction. Initially, the statement holds for h “ H ` 1 since 9
uVi,H`1p¨q “ pVj,H`1p¨q “ 0.

Assume the statement holds for h ` 1, which means 9
uVi,h`1p¨q ě pVj,h`1p¨q under pΨi,h`1 X pΨj,h`1. Since 9

uQi,hp¨, ¨q “

rhp¨, ¨q ` xpµi,h
pV i,h`1,ϕp¨, ¨qy ` 3pβ}ϕp¨, ¨q}

pΛ´1
i,h

and pQj,hp¨, ¨q “ rhp¨, ¨q ` xpµj,h
pV j,h`1,ϕp¨, ¨qy ` pβ}ϕp¨, ¨q}

pΛ´1
j,h

, for

@ps, aq P S ˆ A, we have

9
uQi,hps, aq ´ pQj,hps, aq

“rhps, aq ` xpµi,h
pV i,h`1,ϕps, aqy ` 3pβ}ϕps, aq}

pΛ´1
i,h

´

”

rhps, aq ` xpµj,h
pV j,h`1,ϕps, aqy ` pβ}ϕps, aq}

pΛ´1
j,h

ı

“xpµi,h
pV i,h`1,ϕps, aqy ´ xµh

pV i,h`1,ϕps, aqy ` xµh
pV j,h`1,ϕps, aqy ´ xpµj,h

pV j,h`1,ϕps, aqy

` 3pβ}ϕps, aq}
pΛ´1

i,h
´ pβ}ϕps, aq}

pΛ´1
j,h

` Ph
pVi,h`1ps, aq ´ Ph

pVj,h`1ps, aq
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ě ´ }ppµi,h ´ µhq pV i,h`1}
pΛi,h

}ϕps, aq}
pΛ´1

i,h
´ }ppµj,h ´ µhq pV j,h`1}

pΛj,h
}ϕps, aq}

pΛ´1
j,h

` 3pβ}ϕps, aq}
pΛ´1

i,h
´ pβ}ϕps, aq}

pΛ´1
j,h

` Ph
pVi,h`1ps, aq ´ Ph

pVj,h`1ps, aq

ě2pβ}ϕps, aq}
pΛ´1

i,h
´ 2pβ}ϕps, aq}

pΛ´1
j,h

` Ph
pVi,h`1ps, aq ´ Ph

pVj,h`1ps, aq

ěPh
pVi,h`1ps, aq ´ Ph

pVj,h`1ps, aq

ě0,

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds by the assumption that
µh P pCi,h X pCi,h under pΨi,h X pΨj,h, the third inequality holds since pΛi,h ĺ pΛj,h, and the last inequality by the induction
assumption 9

uVi,h`1p¨q ě pVj,h`1p¨q under pΨi,h`1 X pΨj,h`1 and Ph is a valid distribution. Therefore, we have 9
uQi,hps, aq ě

pQj,hps, aq, for all ps, aq P S ˆ A.

Since 9
uVi,hp¨q “ min

␣

maxaPA pQi,hp¨, aq, H
(

and pVj,hp¨q “ min
␣

maxaPA pQj,hp¨, aq, H
(

, we have 9
uVi,hp¨q ě pVj,hp¨q

under pΨi,h X pΨj,h for any pk, hq P rKs ˆ rHs.

D.2. Suboptimality Gap

In this subsection, we establish Lemma D.5 and Lemma D.6 that bound the distance of the over-optimistic value function
9
uVk,h to the value function V πk

h associated with policy πk and the pessimistic value function qVk,h, respectively. Before that,
we present two high probability events Ξ1 and Ξ2 in Lemma D.3 and D.4, respectively.

Lemma D.3. In Algorithm 1, for any δ P p0, 1q, with probability at least 1 ´ δ, simultaneously for all h1 P rHs, we have

K
ÿ

k“1

H
ÿ

h“h1

”

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ´ r 9

uVk,h`1 ´ V πk

h`1spskh`1q

ı

ď 2H

d

2T log

ˆ

H

δ

˙

Proof. Denote ∆k,h “ rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ´ r 9

uVk,h`1 ´ V πk

h`1spskh`1q. Since skh`1 is Fk,h`1-measurable, ∆k,h

is Fk,h`1-measurable and Er∆k,h | Fk,hs “ 0. Thus, for some h1 P rHs, t∆k,h1 ,∆k,h1`1, ...,∆k,HukPrKs is a martingale

difference sequence. Since |∆k,h| ď 2H by ´H ď 9
uVk,h`1p¨q ´ V πk

h`1p¨q ď H , we can apply Azuma-Hoeffding inequality
(Lemma F.1) to this martingale difference sequence and obtain

K
ÿ

k“1

H
ÿ

h“h1

∆k,h ď 2H
a

2KpH ´ h1 ` 1qq logp1{δq ď 2H
a

2T logp1{δq, (39)

for some h1 P rHs with probability at least 1 ´ δ. Taking a union bound over all h1 P rHs gives the final conclusion.

Lemma D.4. In Algorithm 1, for any δ P p0, 1q, with probability at least 1 ´ δ, simultaneously for all h1 P rHs, we have

K
ÿ

k“1

H
ÿ

h“h1

”

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq ´ r 9

uVk,h`1 ´ qVk,h`1spskh`1q

ı

ď 2H

d

2T log

ˆ

H

δ

˙

Proof. The proof is almost the same as that of Lemma D.3, except for replacing V πk

k,h`1p¨q by qVk,h`1p¨q.

Lemma D.5. In Algorithm 1, under pΨ1 X Ξ1, we have

K
ÿ

k“1

9
uVk,1psk1q ´ V πk

1 psk1q ď4pβ

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

`
3H2d

logp2q
log

ˆ

1 `
1

λH logp2q

˙

` 2H

d

2T log

ˆ

H

δ

˙

(40)
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K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ď4pβH

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

`
3H3d

logp2q
log

ˆ

1 `
1

λ logp2q

˙

` 4H2

d

2T log

ˆ

H

δ

˙

(41)

Proof. By Algorithm 1, for any k P rKs, h P rHs, we have

9
uQk,1ps, aq ďr1ps, aq ` xpµk,1

pV k,2,ϕps, aqy ` 3pβ}ϕps, aq}
pΛ´1

k,1

“r1ps, aq ` pPk,1
pVk,2ps, aq ` 3pβ}ϕps, aq}

pΛ´1
k,1

,

Qπk

1 ps, aq “r1ps, aq ` P1V
πk

2 ps, aq.

(42)

Then,

9
uVk,1psk1q ´ V πk

h psk1q “ 9
uQk,1psk1 , a

k
1q ´ Qπk

1 psk1 , a
k
1q

ďr1psk1 , a
k
1q ` pPk,1

pVk,2psk1 , a
k
1q ` 3pβ}ϕpsk1 , a

k
1q}

pΛ´1
k,1

´ r1psk1 , a
k
1q ´ P1V

πk

2 psk1 , a
k
1q

“3pβ}ϕpsk1 , a
k
1q}

pΛ´1
k,1

` rpPk,1
pVk,2psk1 , a

k
1q ´ P1

pVk,2psk1 , a
k
1qs ` rP1ppVk,2 ´ V πk

2 qspsk1 , a
k
1q

“3pβ}ϕpsk1 , a
k
1q}

pΛ´1
k,1

` xppµk,1 ´ µ1q pV k,2,ϕpsk1 , a
k
1qy ` rP1ppVk,2 ´ V πk

2 qspsk1 , a
k
1q

ď3pβ}ϕpsk1 , a
k
1q}

pΛ´1
k,1

` }ppµk,1 ´ µhq pV k,2}
pΛk,1

}ϕpsk1 , a
k
1q}

pΛ´1
k,1

` rP1ppVk,2 ´ V πk

2 qspsk1 , a
k
1q

ď4pβ}ϕpsk1 , a
k
1q}

pΛ´1
k,1

` rP1ppVk,2 ´ V πk

2 qspsk1 , a
k
1q

ď4pβ}ϕpsk1 , a
k
1q}

pΛ´1
k,1

` rP1p 9
uVk,2 ´ V πk

2 qspsk1 , a
k
1q

“4pβ}ϕpsk1 , a
k
1q}

pΛ´1
k,1

` r 9
uVk,2 ´ V πk

2 spsk2q ` rP1p 9
uVk,2 ´ V πk

2 qspsk1 , a
k
1q ´ r 9

uVk,2 ´ V πk

2 spsk2q

¨ ¨ ¨

ď

H
ÿ

h“1

4pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

`

H
ÿ

h“1

”

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ´ r 9

uVk,h`1 ´ V πk

h`1spskh`1q

ı

(43)

where the first inequality is due to Eq. (42), the second inequality holds by the Cauchy-Schwarz inequality, third inequality
holds since µ1 P pCk,1 under pΨ1, the fourth inequality holds since pVk,2p¨q ď 9

uVk,2p¨q by definitions, and the last inequality
holds since we can expand 9

uVk,h`1pskhq ´ qVk,h`1pskhq in a recursive way until stage H .

Summing up Eq.(43) for k P rKs gives

K
ÿ

k“1

9
uVk,1psk1q ´ V πk

1 psk1q

ď

K
ÿ

k“1

H
ÿ

h“1

4pβ}ϕpskh, a
k
hq}

pΛ´1
k,1

`

K
ÿ

k“1

H
ÿ

h“1

”

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ´ r 9

uVk,h`1 ´ V πk

h`1spskh`1q

ı

ď 4pβ
K
ÿ

k“1

H
ÿ

h“1

pσk,h}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

looooooooooooooooooooomooooooooooooooooooooon

I

`2H

d

2T log

ˆ

H

δ

˙

,

where the second inequality holds under Ξ1 by Lemma D.3. Subsequently, we try to bound I . For fixed h P rHs,
denote xk “ pσ´1

k,hϕpskh, a
k
hq in Lemma D.8. Then, there are at most 3d logr1 ` d{pλH logp2qqs{ logp2q episodes that

}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

ě 1, which further implies that there are at most H ¨ 3d logr1 ` d{pλH logp2qqs{ logp2q episodes that
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there exists h1 P rHs such that }pσ´1
k,h1ϕpskh1 , akh1 q}

pΛ´1

k,h1
ě 1. Moreover, we can bound 9

uVk,1psk1q ´ V πk

1 psk1q in these episodes

by H since 9
uVk,1p¨q ´ V πk

1 p¨q ď H for any k P rKs. Thus, we have

K
ÿ

k“1

9
uVk,1psk1q ´ V πk

1 psk1q

ď4pβ
K
ÿ

k“1

H
ÿ

h“1

pσk,h min
!

}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

, 1
)

` H ¨ H ¨
3d

logp2q
log

ˆ

1 `
1

λH logp2q

˙

` 2H

d

2T log

ˆ

H

δ

˙

ď4pβ

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

min

"

}pσ´1
k,hϕpskh, a

k
hq}2

pΛ´1
k,h

, 1

*

`
3H2d

logp2q
log

ˆ

1 `
1

λH logp2q

˙

` 2H

d

2T log

ˆ

H

δ

˙

ď4pβ

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

`
3H2d

logp2q
log

ˆ

1 `
L2

λH logp2q

˙

` 2H

d

2T log

ˆ

H

δ

˙

,

(44)

where the second inequality holds by Cauchy-Schwarz inequality, and the last inequality hols by Lemma F.5 with the fact
that }pσ´1

k,hϕpskh, a
k
hq}2 ď 1{

?
H . Thus, Eq. (40) is obtained. Besides, by similar argument in Eq. (43), we obtain

9
uVk,h1 pskh1 q ´ V πk

h1 pskh1 q ď

H
ÿ

h“h1

4pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

`

H
ÿ

h“h1

”

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ´ r 9

uVk,h`1 ´ V πk

h`1spskh`1q

ı

which further gives

K
ÿ

k“1

9
uVk,h1 pskh1 q ´ V πk

h1 pskh1 q

ď

K
ÿ

k“1

H
ÿ

h“h1

4pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

`

K
ÿ

k“1

H
ÿ

h“h1

”

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ´ r 9

uVk,h`1 ´ V πk

h`1spskh`1q

ı

ď4pβ
K
ÿ

k“1

H
ÿ

h“1

pσk,h}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

`

K
ÿ

k“1

H
ÿ

h“h1

”

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ´ r 9

uVk,h`1 ´ V πk

h`1spskh`1q

ı

ď4pβ

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

`
3H2d

logp2q
log

ˆ

1 `
1

λ logp2q

˙

` 2H

d

2T log

ˆ

H

δ

˙

,

(45)

where the last inequality holds by similar argument of bounding I in Eq. (44) and Lemma D.3 under Ξ1.

Note that

K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq

“

K
ÿ

k“1

H
ÿ

h“2

r 9
uVk,h`1 ´ V πk

h`1spskh`1q `

K
ÿ

k“1

H
ÿ

h“1

”

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ´ r 9

uVk,h`1 ´ V πk

h`1spskh`1q

ı

ď4pβH

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

`
3H3d

logp2q
log

ˆ

1 `
1

λ logp2q

˙

` 2H2

d

2T log

ˆ

H

δ

˙

` 2H

d

2T log

ˆ

H

δ

˙
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ď4pβH

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

`
3H3d

logp2q
log

ˆ

1 `
1

λ logp2q

˙

` 4H2

d

2T log

ˆ

H

δ

˙

,

where the first inequality holds by sum up Eq. (45) for h1 “ 2, ...,H and Lemma D.3 under Ξ1. Thus, Eq. (41) is also
obtained.

Lemma D.6 (Gap between Optimism and Pessimism). In Algorithm 1, under pΨ1 X qΨ1 X Ξ2, we have

K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq ď2p2pβ ` qβqH

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

` 4H2

d

2T log

ˆ

H

δ

˙

Proof. By Algorithm 1, for any k P rKs, h P rHs, we have

9
uQk,hps, aq ďrhps, aq ` xpµk,h

pV k,h`1,ϕps, aqy ` 3pβ}ϕps, aq}
pΛ´1

k,h

“rhps, aq ` pPk,h
pVk,h`1ps, aq ` 3pβ}ϕps, aq}

pΛ´1
k,h

,

qQk,hps, aq ěrhps, aq ` xpµk,h
qV k,h`1,ϕps, aqy ´ qβ}ϕps, aq}

pΛ´1
k,h

“rhps, aq ` pPk,h
qVk,h`1ps, aq ´ qβ}ϕps, aq}

pΛ´1
k,h

,

(46)

Then,

9
uVk,hpskhq ´ qVk,hpskhq ď 9

uQk,hpskh, a
k
hq ´ qQk,hpskh, a

k
hq

ďrhpskh, a
k
hq ` pPk,h

pVk,h`1pskh, a
k
hq ` 3pβ}ϕpskh, a

k
hq}

pΛ´1
k,h

´ rrhpskh, a
k
hq ` pPk,h

qVk,h`1pskh, a
k
hq ´ qβ}ϕpskh, a

k
hq}

pΛ´1
k,h

s

“3pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` qβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` rpPk,h
pVk,h`1pskh, a

k
hq ´ Ph

pVk,h`1pskh, a
k
hqs

` rPh
qVk,h`1pskh, a

k
hq ´ pPk,h

qVk,h`1pskh, a
k
hqs ` rPhppVk,h`1 ´ qVk,h`1qspskh, a

k
hq

“3pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` qβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` xppµk,h`1 ´ µhq pV k,h`1,ϕpskh, a
k
hqy

` xppµk,h`1 ´ µhq qV k,h`1,ϕpskh, a
k
hqy ` rPhppVk,h`1 ´ qVk,h`1qspskh, a

k
hq

ď3pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` qβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` }ppµk,h ´ µhq pV k,h`1}
pΛk,h

}ϕpskh, a
k
hq}

pΛ´1
k,1

` }ppµk,h ´ µhq qV k,h`1}
pΛk,h

}ϕpskh, a
k
hq}

pΛ´1
k,1

` rPhppVk,h`1 ´ qVk,h`1qspskh, a
k
hq

ď4pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` 2qβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` rPhppVk,h`1 ´ qVk,h`1qspskh, a
k
hq

ď4pβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` 2qβ}ϕpskh, a
k
hq}

pΛ´1
k,h

` rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq

“p4pβ ` 2qβq}ϕpskh, a
k
hq}

pΛ´1
k,h

` r 9
uVk,h`1 ´ qVk,h`1spskh`1q ` rPhp 9

uVk,h`1 ´ qVk,h`1qspskh, a
k
hq ´ r 9

uVk,h`1 ´ qVk,h`1spskh`1q

(47)

where the first inequality holds since qVk,h`1pskhq ě qQk,hpskh, a
k
hq, the second inequality holds due to Eq. (46), the third

inequality holds by the Cauchy-Schwarz inequality, the fourth inequality holds since µh P pCk,h X qCk,h under pΨ1 X qΨ1, and
the last inequality holds since pVk,h`1p¨q ď 9

uVk,h`1p¨q by definitions.
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Since 9
uVk,h1 pskh1 q ´ qVk,h1 pskh1 q ď H , we further obtains

9
uVk,hpskhq ´ qVk,hpskhq ď min

!

9
uQk,hpskh, a

k
hq ´ qQk,hpskh, a

k
hq, H

)

ďmin
!

p4pβ ` 2qβq}ϕpskh, a
k
hq}

pΛ´1
k,h

, H
)

` rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq

ďp4pβ ` 2qβqpσk,h min
!

}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

, 1
)

` rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq

“p4pβ ` 2qβqpσk,h min
!

}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

, 1
)

` r 9
uVk,h`1 ´ qVk,h`1spskh`1q

` rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq ´ r 9

uVk,h`1 ´ qVk,h`1spskh`1q,

(48)

where the second inequality holds since qβpσk,h ě
?
Hd2

?
H ě H . Summing up Eq. (48) for k P rKs and h “ h1, ...,H

gives
K
ÿ

k“1

9
uVk,h1 pskh1 q ´ qVk,h1 pskh1 q

ď

K
ÿ

k“1

H
ÿ

h“h1

p4pβ ` 2qβqpσk,h min
!

}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

, 1
)

`

K
ÿ

k“1

H
ÿ

h“h1

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq ´ r 9

uVk,h`1 ´ qVk,h`1spskh`1q

ď

K
ÿ

k“1

H
ÿ

h“1

p4pβ ` 2qβqpσk,h min
!

}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

, 1
)

` 2H

d

2T log

ˆ

H

δ

˙

ďp4pβ ` 2qβq

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

min

"

}pσ´1
k,hϕpskh, a

k
hq}2

pΛ´1
k,h

, 1

*

` 2H

d

2T log

ˆ

H

δ

˙

ďp4pβ ` 2qβq

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

` 2H

d

2T log

ˆ

H

δ

˙

(49)

where the second inequality holds by Lemma D.4 under Ξ2, the third inequality holds due to Cauchy-Schwarz inequality,
and the last inequality hols due to Lemma F.5 with the fact that }pσ´1

k,hϕpskh, a
k
hq}2 ď 1{

?
H .

Note that
K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq

“

K
ÿ

k“1

H
ÿ

h“2

r 9
uVk,h`1 ´ qVk,h`1spskh`1q `

K
ÿ

k“1

H
ÿ

h“1

”

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq ´ r 9

uVk,h`1 ´ qVk,h`1spskh`1q

ı

ďp4pβ ` 2qβqH

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

` 2H2

d

2T log

ˆ

H

δ

˙

` 2H

d

2T log

ˆ

H

δ

˙

ď2p2pβ ` qβqH

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

` 4H2

d

2T log

ˆ

H

δ

˙

,

where the first inequality holds by sum up Eq. (49) for h1 “ 2, ...,H and Lemma D.4 under Ξ2.

D.3. Summation of Estimated Variances

In this subsection, we try to bound the summation of estimated variance in Lemma D.10. As shown in Lemma D.10, the
summation of estimated variance

řK
k“1

řH
h“1 pσ

2
k,h “ rOpHT q, which utilizes the Law of Total Variance in (Lattimore &

Hutter, 2012), detailed in Lemma D.7.
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Lemma D.7 (Total variance lemma, Lemma C.5 in (Jin et al., 2018)). With probability at least 1 ´ δ, we have

K
ÿ

k“1

H
ÿ

h“1

”

VhV
πk

h`1

ı

pskh, a
k
hq ď 3

`

HT ` H3 logp1{δq
˘

.

By the definition of pσk,h, the summation of ς2k,h will influence the summation of pσ2
k,h. We need to make

řK
k“1

řH
h“1 ς

2
k,h

small such that it will not become dominant term in the upper bound. However, enlarging ςk,h is required in some stages
of some episodes, as stated in Remark 7.4 in the main paper. To address this dilemma, we build the following critical
lemma which characterizes the conservatism of the elliptical potential, i.e., }xt}Z´1

t´1
is small in most episodes, as detailed

in Lemma D.8.

Lemma D.8 (Elliptical Potentials: You cannot have many big intervals). Given λ ą 0 and sequence txtu
T
t“1 Ă Rd with

}xt}2 ď L for all t P rT s, define Zt “ λI `
řt

i“1 xix
J
i for t ě 1 and Z0 “ λI. During rT s, the number of times

}xt}Z´1
t´1

ě c is at most

3d

logp1 ` c2q
log

ˆ

1 `
L2

λ logp1 ` c2q

˙

,

where c ą 0 is a constant.

Proof. The proof of this lemma is firstly proposed at Exercise 19.3 in (Lattimore & Szepesvári, 2020) for the case of C “ 1,
i.e., Lemma F.6, we generalize it to the case with any positive constant C.

Let T be the set of rounds t when }xt}
2
Z´1

t´1
ě C for t P rT s and Yt “ Z0 `

řt
i“1 1 ti P T uxix

J
i . Then

ˆ

dλ ` |T |L2

d

˙d

ě

ˆ

trace pYT q

d

˙d

ě det pYT q

“ det pZ0q
ź

tPT

´

1 ` }xt}
2
Y´1

t´1

¯

ě det pZ0q
ź

tPT

´

1 ` }xt}
2
Z´1

t´1

¯

ě λdp1 ` c2q|T |

Rearranging and taking the logarithm show that

|T | ď
d

logp1 ` c2q
log

ˆ

1 `
|T |L2

dλ

˙

.

Abbreviate x “ d{ logp1 ` c2q and y “ L2{dλ, which are both positive. Then

x logp1 ` yp3x logp1 ` xyqqq ď x log
`

1 ` 3x2y2
˘

ď x logp1 ` xyq3 “ 3x logp1 ` xyq.

Define fpzq “ z ´ x logp1 ` yzq for z ě 0, we have f 1pzq “ r1 ` ypz ´ xqs{p1 ` yzq, which implies fpzq is increasing if
1 ´ xy ě 0, or fpzq is first decreasing then increasing, otherwise. Since fp0q “ 0 and fp3x logp1 ` xyqq ě 0, if fpzq ď 0,
we must have z ď 3x logp1 ` xyq. In other words, fpzq is increasing for z ě 3x logp1 ` xyq. It then follows that

|T | ď 3x logp1 ` xyq “
3d

logp1 ` c2q
log

ˆ

1 `
L2

λ logp1 ` c2q

˙

.

The following Lemma is required to upper bounds the summation of offset term Uk,h.



Nearly Minimax Optimal Reinforcement Learning with Linear Function Approximation

Lemma D.9. In Algorithm 1, under Υ, for any k P rKs and any h P rHs, we have
ˇ

ˇ

ˇ
xpµk,hp pV k,h`1 ´ qV k,h`1q,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
ď sβ

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` PhppVk,h`1 ´ qVk,h`1qpskh, a
k
hq ` qβ

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

Proof.
ˇ

ˇ

ˇ
xpµk,hp pV k,h`1 ´ qV k,h`1q,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

pPk,h
pVk,h`1pskh, a

k
hq ´ pPk,h

qVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

pPk,h
pVk,h`1pskh, a

k
hq ´ Ph

pVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
Ph

pVk,h`1pskh, a
k
hq ´ Ph

qVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
Ph

qVk,h`1pskh, a
k
hq ´ pPk,h

qVk,h`1pskh, a
k
hq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xpµh ´ pµk,hq pV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
PhppVk,h`1 ´ qVk,h`1qpskh, a

k
hq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
xpµh ´ pµk,hq qV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xpµh ´ pµk,hq pV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ
` PhppVk,h`1 ´ qVk,h`1qpskh, a

k
hq `

ˇ

ˇ

ˇ
xpµh ´ pµk,hq qV k,h`1,ϕpskh, a

k
hqy

ˇ

ˇ

ˇ

ď

›

›

›
pµh ´ pµk,hq pV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` PhppVk,h`1 ´ qVk,h`1qpskh, a
k
hq

`

›

›

›
pµh ´ pµk,hq qV k,h`1

›

›

›

pΛk,h

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ďsβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` PhppVk,h`1 ´ qVk,h`1qpskh, a
k
hq ` qβ

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

ďsβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

` Php 9
uVk,h`1 ´ qVk,h`1qpskh, a

k
hq ` qβ

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

,

where the first inequality holds due to triangle inequality, the second equality holds since pVk,h`1p¨q ě qVk,h`1p¨q under Υ by
Lemma D.1, the second inequality holds due to Cauchy-Schwarz inequality, the fourth inequality holds since under Υ we
have µh P sCk,h X qCk,h, and the last inequality holds due to Lemma D.2 under Υ.

Now we are ready to upper bounds
řK

k“1

řH
h“1 pσ

2
k,h in Lemma D.10 under the high probability event Υ X Ξ2 X Ξ3.

Lemma D.10. In Algorithm 1, under event Υ X Ξ2 X Ξ3, we have

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ď8HT `

6H3d4

logp1 ` c2q
log

ˆ

1 `
d

λH logp1 ` c2q

˙

` 6H3 log

ˆ

1

δ

˙

` 8H3p6 ` dq

d

2T log

ˆ

H

δ

˙

`
12H4d

logp2q
log

ˆ

1 `
1

λ logp2q

˙

` 8Hd
”

H
´

2Hpd ` 6qpβ ` d 9
uβ ` 4sβ ` pH ` 1qpd ` 4qqβ

¯

` rβ
ı2

log

ˆ

1 `
K

Hdλ

˙

,

where c “ 1{pHd3q.

Proof. Initially, by definition of pσk,h in Algorithm 1, we have

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ď

K
ÿ

k“1

H
ÿ

h“1

ς2k
loooomoooon

I1

`

K
ÿ

k“1

H
ÿ

h“1

dEk,h

looooooomooooooon

I2

`

K
ÿ

k“1

H
ÿ

h“1

”

rpVk,h
pVk,h`1spskh, a

k
hq ` Uk,h

ı

loooooooooooooooooooooooomoooooooooooooooooooooooon

I3

,
(50)

Bounding I1: Denote c “ 1{pHd3q. For fixed h P rHs, set xk as rσ´1
k,hϕpskh, a

k
hq in Lemma D.8. Then, there are at most

3d logr1 ` d{pλH logp1 ` c2qqs{ logp1 ` c2q episodes that }rσ´1
k,hϕpskh, a

k
hq}

rΛ´1
k,h

ě c such that ςk “ H
?
d3. Thus, we

obtain

I1 ď

K
ÿ

k“1

H
ÿ

h“1

H ` H ¨ H2d3
3d

logp1 ` c2q
log

ˆ

1 `
d

λH logp1 ` c2q

˙

. (51)
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Bounding I2: Since µh P 9
uCk,h X qCk,h under Υ, we have

xpµk,h
9
uV k,h`1,ϕpskh, a

k
hqy “ pPk,h

9
uVk,h`1pskh, a

k
hq ďPh

9
uVk,h`1pskh, a

k
hq `

9
uβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

xpµk,h
qV k,h`1,ϕpskh, a

k
hqy “ pPk,h

qVk,h`1pskh, a
k
hq ěPh

qVk,h`1pskh, a
k
hq ´ qβ

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

(52)

Combing Eq. (52) and the definition of Ek,h in Eq. (36) gives

I2 ďHd
K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq ` Hd

K
ÿ

k“1

H
ÿ

h“1

min
!

2p
9
uβ ` qβq

›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

, H
)

ďHd
K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq ` 2p

9
uβ ` qβqHd

K
ÿ

k“1

H
ÿ

h“1

pσk,h min

"

›

›

›
pσ´1
k,hϕpskh, a

k
hq

›

›

›

pΛ´1
k,h

, 1

*

,

(53)

where the second inequality holds since qβpσk,h ě
?
Hd2

?
H ě H .

Bounding I3: I3 can be bounded by

I3 ď

K
ÿ

k“1

H
ÿ

h“1

“

VhV
˚
h`1

‰

pskh, a
k
hq ´

”

VhV
πk

h`1

ı

pskh, a
k
hq

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

J1

`2
K
ÿ

k“1

H
ÿ

h“1

Uk,h

loooooomoooooon

J2

`

K
ÿ

k“1

H
ÿ

h“1

”

VhV
πk

h`1

ı

pskh, a
k
hq

looooooooooooooomooooooooooooooon

J3

`

K
ÿ

k“1

H
ÿ

k“1

””

pVk,h
pVk,h`1

ı

pskh, a
k
hq ´

“

VhV
˚
h`1

‰

pskh, a
k
hq ´ Uk,h

ı

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

J4

Bounding J1

J1 “

K
ÿ

k“1

H
ÿ

h“1

”

PhV
˚
h`1

2
pskh, a

k
hq ´

“

PhV
˚
h`1pskh, a

k
hq
‰2
ı

´

„

PhV
πk

h`1

2
pskh, a

k
hq ´

”

PhV
πk

h`1pskh, a
k
hq

ı2
ȷ

ď

K
ÿ

k“1

H
ÿ

h“1

PhV
˚
h`1

2
pskh, a

k
hq ´ PhV

πk

h`1

2
pskh, a

k
hq

ď2H
K
ÿ

k“1

H
ÿ

h“1

rPhpV ˚
h`1 ´ V πk

h`1qspskh, a
k
hq

ď2H
K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq,

(54)

where the first inequality holds since V ˚
h`1p¨q ě V πk

h`1, the second inequality holds since V πk

h`1 ď V ˚
h`1p¨q ď H , and the last

inequality holds since 9
uVk,h`1p¨q ě pVk,h`1p¨q ě V ˚

h`1p¨q under Υ by Lemma D.1 and LemmaD.2.

Bounding J2 By the definition of Uk,h in Eq. (35) and Lemma D.9, we have

J2 ď

K
ÿ

k“1

H
ÿ

h“1

!

2rβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

, 2H2
)

` 4H
K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq

`

K
ÿ

k“1

H
ÿ

h“1

min
!

8Hpsβ ` qβq
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

, 2H2
)

ďr2rβ ` 8Hpsβ ` qβqs

K
ÿ

k“1

H
ÿ

h“1

pσk,h

"

›

›

›
pσ´1
k,hϕpskh, a

k
hq

›

›

›

pΛ´1
k,h

, 1

*

` 4H
K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq,

(55)

where the second inequality holds since rβpσk,h ě
?
H3 ¨

?
H ě H2, 8Hpsβ ` qβqpσk,h ě 8H

?
H ¨

?
H ě 2H2.
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Bounding J3 Since Ξ3 holds, we have

J3 ď 3

„

HT ` H3 log

ˆ

1

δ

˙ȷ

(56)

Bounding J4 Due to Lemma 7.5, we have

J4 ď 0 (57)

Putting Together Initially, we have

K
ÿ

k“1

H
ÿ

h“h1

pσk,h min
!

}pσ´1
k,hϕpskh, a

k
hq}

pΛ´1
k,h

, 1
)

ď

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

min

"

}pσ´1
k,hϕpskh, a

k
hq}2

pΛ´1
k,h

, 1

*

ď

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

,

(58)

where the first inequality holds due to Cauchy-Schwarz inequality, and the second inequality holds due to Lemma F.5 with
the fact that }pσ´1

k,hϕpskh, a
k
hq}2 ď 1{

?
H .

Subsequently, combining Eq. (53), (54), (55) gives

I2 ` J1 ` J2 ď2H
K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ V πk

h`1qspskh, a
k
hq ` Hp4 ` dq

K
ÿ

k“1

H
ÿ

h“1

rPhp 9
uVk,h`1 ´ qVk,h`1qspskh, a

k
hq

` 2
”

Hpd 9
uβ ` 4sβ ` p4 ` dqqβq ` rβ

ı

K
ÿ

k“1

H
ÿ

h“1

pσk,h

"

›

›

›
pσ´1
k,hϕpskh, a

k
hq

›

›

›

pΛ´1
k,h

, 1

*

ď4H3p6 ` dq

d

2T log

ˆ

H

δ

˙

`
6H4d

logp2q
log

ˆ

1 `
1

λ logp2q

˙

` 2
”

H
´

2Hpd ` 6qpβ ` d 9
uβ ` 4sβ ` pH ` 1qpd ` 4qqβ

¯

` rβ
ı

K
ÿ

k“1

H
ÿ

h“1

pσk,h

"

›

›

›
pσ´1
k,hϕpskh, a

k
hq

›

›

›

pΛ´1
k,h

, 1

*

ď4H3p6 ` dq

d

2T log

ˆ

H

δ

˙

`
6H4d

logp2q
log

ˆ

1 `
1

λ logp2q

˙

` 2
”

H
´

2Hpd ` 6qpβ ` d 9
uβ ` 4sβ ` pH ` 1qpd ` 4qqβ

¯

` rβ
ı

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

2Hd log

ˆ

1 `
K

Hdλ

˙

where the first inequality holds by Lemma D.5 under Υ X Ξ1 and Lemma D.6 under Υ X Ξ2, and the second inequality
holds due to Eq. (58). Further considering Eq. (51), (56), (57) gives

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ď4HT `

3H3d4

logp1 ` c2q
log

ˆ

1 `
d

λH logp1 ` c2q

˙

` 3H3 log

ˆ

1

δ

˙

` 4H3p6 ` dq

d

2T log

ˆ

H

δ

˙

`
6H4d

logp2q
log

ˆ

1 `
1

λ logp2q

˙

` 2
”

H
´

2Hpd ` 6qpβ ` d 9
uβ ` 4sβ ` pH ` 1qpd ` 4qqβ

¯

` rβ
ı

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

2Hd log

ˆ

1 `
K

Hdλ

˙

(59)
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Besides, for any x, a, b ě 0, if x ď a
?
x ` b, then we have

?
x ď

a

b ` a2{4 `
a

a2{4 ď
a

2pb ` a2{4 ` a2{4q, i.e.,
x ď 2b ` a2. Thus, Eq. (59) implies the final conclusion.

D.4. Proof of Theorem 6.1

Putting these building blocks together, we are finally ready to give high probability upper bound on the regret in this
subsection, which is based on high probability event Υ X Ξ1 X Ξ2 X Ξ3.

Proof of Theorem 6.1. By construction, taking a union bound, we have that with probability 1 ´ 10δ, Υ X Ξ1 X Ξ2 X Ξ3

holds. In the remainder of the proof, assume that we are conditioning on this event. Initially, we have

RegretpKq “

K
ÿ

k“1

“

V ‹
1 psk1q ´ V πk

1 psk1q
‰

ď

K
ÿ

k“1

”

9
uVk,1psk1q ´ V πk

1 psk1q

ı

ď4pβ

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

d

H ¨ 2d log

ˆ

1 `
K

Hdλ

˙

`
3H2d

logp2q
log

ˆ

1 `
1

λH logp2q

˙

` 2H

d

2T log

ˆ

H

δ

˙

,

(60)

where the first inequality holds since 9
uVk,1p¨q ě pVk,1p¨q ě V ˚

1 p¨q under Υ by Lemma D.1 and LemmaD.2, and the second
inequality holds due to Lemma D.5.

Then, by Lemma D.10, we have

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ď8HT `

6H3d4

logp1 ` c2q
log

ˆ

1 `
d

λH logp1 ` c2q

˙

` 6H3 log

ˆ

1

δ

˙

` 8H3p6 ` dq

d

2T log

ˆ

H

δ

˙

`
12H4d

logp2q
log

ˆ

1 `
1

λ logp2q

˙

` 8Hd
”

H
´

2Hpd ` 6qpβ ` d 9
uβ ` 4sβ ` pH ` 1qpd ` 4qqβ

¯

` rβ
ı2

log

ˆ

1 `
K

Hdλ

˙

,

under Υ X Ξ1 X Ξ2, where c “ 1{pHd3q.

On the one hand, since 1{ logp1 ` 1{xq ď 2x for any x ě 1, we have

1

logp1 ` c2q
ď

1

log
`

1 ` 1
H2d6

˘ ď 2H2d6

for H2d6 ě 1. One the other hand, setting λ “ 1{pH2
?
dq gives pβ “ Op

?
d logpT qq, sβ “ Opd

a

H logpT qq, 9
uβ “

Opd
a

H logpT qq, rβ “ Opd
a

H3 logpT qq and qβ “ Opd
a

H logpT qq, where T “ KH .

Thus, by some basic manipulations, we obtain

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ďO

´

HT ` H5d10 ` H3d
a

T logpT q ` H6d5 log2pT q

¯

ďO
`

HT ` H5d10 ` H5d2 logpT q ` H6d5 log2pT q
˘

ďO
`

HT ` H5d10 ` H6d5 log2pT q
˘

,

(61)

where the second inequality holds since H3d
a

T logpT q ď rHT ` H5d2 logpT qs{2. Substituting Eq. (61) in (60) gives

RegretpKq

ďO

˜

?
d logpT q

b

HT ` H5d10 ` H6d5 log2pT q
a

Hd logpT q `
3H2d

logp2q
log

˜

1 `
H

?
d

logp2q

¸

` 2H

d

2T log

ˆ

H

δ

˙

¸
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ďO

ˆ

Hd

b

T log3pT q ` H3d6
b

log3pT q `

b

H7d7 log5pT q

˙

“ rO
´

Hd
?
T ` H3d6 `

?
H7d7

¯

,

where the second inequality holds by dropping lower order terms and the fact that
?
a ` b ` c ď

?
a `

?
b `

?
c for any

a, b, c ą 0.

E. Lower Bound
Remark 23 in Appendix of (Zhou et al., 2021) constructs a hard-to-learn linear MDP instance, which shares the same order
of regret lower bound as a hard-to-learn linear mixture MDP instance. According to Theorem 8 in (Zhou et al., 2021), the
linear mixture MDP has a regret lower bound of ΩpHd

?
T q, which means the linear MDP with known reward has the same

regret lower bound as well. We present the construction of this hard-to-learn linear MDP from (Zhou et al., 2021) in this
section for completeness. This hard-to-learn linear MDP can be regarded as an extension of hard instances in linear bandits
literature (Dani et al., 2008; Lattimore & Szepesvári, 2020). We first illustrate the structure of this MDP and then present the
specific linear parametrization.

Hard MDP Instance This MDP instance is denoted as M “ tS,A, H, tP1uh, trhuhu. The state space S consists of
states s1, . . . sH`2 such that |S| “ H ` 2. There are 2d´1 actions and A “ t´1, 1ud´1 such that each action a P A is
denoted in vector from.

• Reward: For any stage h P rH ` 2s, only transitions originating at sH`2 incurs a reward.

• Transition: sH`1 and sH`2 are absorbing regardless of what action is taken. For state si with i ď H , the transition
probability is given as

Phps1|si,aq “

$

’

&

’

%

ι ` xµh,ay, s1 “ sH`2

1 ´ pι ` xµh,ayq , s1 “ si`1

0, Otherwise
,

where ι “ 1{H and µh P t´∆,∆ud´1 with ∆ “
a

ι{K{p4
?
2q to make the probabilities are well-defined. The

transition of this MDP is detailed in Figure 1.

𝑠! 𝑠" 𝑠# 𝑠$ 𝑠$%!

𝑠$%" 1

1

1 − 𝛿 − 𝜇!, 𝑎! 1 − 𝛿 − 𝜇", 𝑎! 1 − 𝛿 − 𝜇#, 𝑎! 1 − 𝛿 − 𝜇$, 𝑎!

𝛿 +
𝜇!, 𝑎!

𝛿 +
𝜇", 𝑎!

𝛿 +
𝜇#, 𝑎!

𝛿 +
𝜇$, 𝑎!

…

. . .. . .. . .. . . . . .

. . .

. . .

. . .

. . .

. . .

Figure 1. The transition matrix Ph of the hard-to-learn MDP.

Linear Parametrization Then, we specify the linear parametrization of this MDP. For each h P rHs, the transition
probability matrix Ph and the reward function rh are defined as Ph ps1 | s,aq “ xϕps,aq,µh ps1qy and rhps,aq “
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xϕps,aq,θhy, where ϕps, aq P Rd`1 is the known feature mapping, µh “ pµhps1q, ..., µhpsH`2qq P Rpd`1qˆpH`2q and
θh P Rd`1 are unknown parameters in linear MDPs. Here, ϕps,aq,µh,θh are specified as:

ϕps,aq “

#

`

α, βaJ, 0
˘J

, s “ sh, h P rH ` 1s
`

0,0J, 1
˘J

, s “ sH`2

µh

`

s1
˘

“

$

’

&

’

%

`

p1 ´ ιq{α,´µJ
h {β, 0

˘J
, s1 “ sH`1

`

ι{α,µJ
h {β, 1

˘J
, s1 “ sH`2

0, otherwise

θh “
`

0J, 1
˘J

,

where α “
a

1{p1 ` ∆pd ´ 1qq, β “
a

∆{p1 ` ∆pd ´ 1qq.

Norm Assumption We check the norm assumption of linear MDPs in the following:

1. For s “ sh where h P rH ` 1s, }ϕps,aq}2 “
a

α2 ` pd ´ 1qβ2 “ 1 and }ϕpsH`2,aq}2 “ 1. Thus, }ϕps,aq}2 ď 1
for any ps,aq P S ˆ A.

2. For any v “ pv1, . . . , vH`2q P RH`2 such that }v}8 ď 1, we have

}µhv}22 “

„

v1p1 ´ ιq

α
`

v1ι

α

ȷ2

` v2H`2 ď
1

α2
` 1 “ r1 ` ∆pd ´ 1qs

2
` 1 “

«

1 `

a

δ{K

4
?
2

pd ´ 1q

ff2

` 1 ď d ` 1,

where the last inequality holds by assuming episode number K ě pd ´ 1q{p32Hp
?
d ´ 1qq. Thus, }µhv}2 ď

?
d ` 1

for any h P rHs.

3. In addition, }θh}2 ď 1 ď
?
d ` 1 for any h P rHs.

Lower Bound The constructed linear MDP above has the same state space S , action space A, episode length H , reward
function trhuhPrHs and transition probability tPhuhPrHs as the constructed hard-to-learn linear mixture MDP in Appendix
E. of (Zhou et al., 2021), which shares the same regret lower bound ΩpHd

?
T q as shown in Theorem 8 in (Zhou et al.,

2021) and is formalized in the following theorem.
Lemma E.1 (Lower bound of linear MDPs). Let d ą 1 and suppose K ě max

␣

pd ´ 1q2H{2, pd ´ 1q{p32Hpd ´ 1qq
(

,
d ě 4, H ě 3. Then for any algorithm there exists an episodic linear MDP parameterized by tµhuhPrHs, tθhuhPrHs and
satisfy the norm assumption given in Definition 3.1, such that the expected regret is lower bounded as follows:

ErRegretpKqs ě ΩpHd
?
T q,

where T “ KH and the expectation is taken over the probability distribution generated by the interconnection of the
algorithm and the MDP.

Proof. The proof is the same as that of Theorem 8 in (Zhou et al., 2021), except for changing B to
?
d to satisfy the norm

assumption of linear MDPs.

F. Auxiliary Lemmas
In this section, we give some auxiliary lemmas which serve as the preliminary for the proof above. We also include some
other lemmas that are unnecessary for our theoretical analysis but can help readers be more familiar with related works. In
general, these lemmas are categorized into four subsections:

• Appendix F.1 for some concentration inequalities;

• Appendix F.2 for properties related to elliptical potentials;

• Appendix F.3 presents some useful properties for linear MDPs;

• Appendix F.4 builds the covering number for covering net over some function classes of our interests.
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F.1. Concentration Inequality

In this subsection, Lemma F.1 presents the Azuma-Hoeffding inequality, Lemma F.2 presents the Freedman’s inequality
in (Freedman, 1975), Lemma F.3 a Hoeffding-type self-normalized bound, and Lemma F.4 presents the full version of
Theorem 7.1 in main paper.
Lemma F.1 (Azuma-Hoeffding Inequality). Let txiu

n
i“1 be a martingale difference sequence with respect to a filtration

tGiu
n`1
i“1 such that |xi| ď M almost surely. That is, xi is Gi`1-measurable and E rxi | Gis “ 0 a.s. Then for any 0 ă δ ă 1,

with probability at least 1 ´ δ,
n
ÿ

i“1

xi ď M
a

2n logp1{δq

Lemma F.2 (Freedman’s Inequality, (Freedman, 1975)). Let txi,Fiu be a martingale difference sequence with @i ě 1,
E pxi | Fi´1q “ 0, E

`

x2
i | Fi´1

˘

“ σ2
i , V 2

i “
ři

j“1 σ
2
j . Furthermore, assume that P p|xi| ď c | Fi´1q “ 1 for any

0 ă c ă 8.

Then, for fixed t ě 1 and any δ ą 0, with probability at least 1 ´ δ, we have:

t
ÿ

i“1

di ď

b

2V 2
t logp1{δq `

2

3
c logp1{δq.

Lemma F.3 (Hoeffding inequality for vector-valued martingales, Theorem 1 in (Abbasi-Yadkori et al., 2011)). Let tGtu
8

t“1

be a filtration, txt, ηtutě1 be a stochastic process so that xt P Rd is Gt-measurable and ηt P R is Gt`1-measurable.

Denote Zt “ λI `
řt

i“1 xix
J
i for t ě 1 and Z0 “ λI. If }xt}2 ď L, and ηt satisfies

E rηt | Gts “ 0, |ηt| ď R

for all t ě 1. Then, for any 0 ă δ ă 1, with probability at least 1 ´ δ we have:

@t ą 0,

›

›

›

›

›

t
ÿ

i“1

xiηi

›

›

›

›

›

Z´1
t

ď R
a

d log p1 ` tL2{dλq ` logp1{δq.

Lemma F.4 (Bernstein inequality for vector-valued martingales, full version of Theorem 7.1). Let tGtu
8

t“1 be a filtration,
txt, ηtutě1 be a stochastic process so that xt P Rd is Gt-measurable and ηt P R is Gt`1-measurable.

If }xt}2 ď L, and ηt satisfies

E rηt | Gts “ 0, E
“

η2t | Gt

‰

ď σ2,
ˇ

ˇ

ˇ
ηt ¨ min

!

1, }xt}Z´1
t´1

)
ˇ

ˇ

ˇ
ď R

for all t ě 1. Then, for any 0 ă δ ă 1, with probability at least 1 ´ δ we have:

@t ą 0,

›

›

›

›

›

t
ÿ

i“1

xiηi

›

›

›

›

›

Z´1
t

ď 8σ
a

d log p1 ` tL2{pdλqq log p4t2{ιq ` 4R log
`

4t2{δ
˘

where Zt “ λI `
řt

i“1 xix
J
i for t ě 1 and Z0 “ λI.

F.2. Elliptical Potentials

In this subsection, we present Lemma F.5 in (Abbasi-Yadkori et al., 2011), which is an important lemma for building?
Op

?
T q worst case regret for many algorithms for linear bandits or RL with linear function approximation. In addition,

we also present an important property, i.e., Lemma F.6, about elliptical potentials (Exercise 19.3 in (Lattimore & Szepesvári,
2020)), which states that one cannot have more than Opdq big intervals. Lemma F.6 is further generalized in Lemma D.8 in
Appendix D.3.
Lemma F.5 (Lemma 11, (Abbasi-Yadkori et al., 2011)). Given λ ą 0 and sequence txtu

T
t“1 Ă Rd with }xt}2 ď L for all

t P rT s, define Zt “ λI `
řt

i“1 xix
J
i for t ě 1 and Z0 “ λI. We have

T
ÿ

t“1

min
!

1, }xt}
2
Z´1

t´1

)

ď 2d log

ˆ

1 `
TL2

dλ

˙

.
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Lemma F.6 (Elliptical Potentials: You cannot have more than Opdq big intervals. Exercise 19.3 in (Lattimore & Szepesvári,
2020)). Given λ ą 0 and sequence txtu

T
t“1 Ă Rd with }xt}2 ď L for all t P rT s, define Zt “ λI `

řt
i“1 xix

J
i for t ě 1

and Z0 “ λI. The number of times }xt}
2
Z´1

t´1
ě 1 is at most

3d

logp2q
log

ˆ

1 `
L2

λ logp2q

˙

.

F.3. Linear MDP Property

This subsection gives some indirect results about the estimated parameter pµk,h in linear MDPs.

Lemma F.7. In Algorithm 1, for any k P rKs and any h P rHs, we have:

pµk,h ´ µh “ pΛ´1
k,h

«

´λµh `

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J

ff

(62)

Proof. We start from the closed-form solution of pµk,h :

pµk,h “pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqδ

`

sih`1

˘J
“ pΛ´1

k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hq

´

Php¨ | sih, a
i
hqJ ` ϵih

J
¯

“pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hq

´

ϕpsih, a
i
hqJµh ` ϵih

J
¯

“pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϕpsih, a

i
hqJµh ` pΛ´1

k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J

“pΛ´1
k,h

´

pΛk,h ´ λI
¯

µh ` pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J

“µh ´ λpΛ´1
k,hµh ` pΛ´1

k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
.

Rearranging terms gives Eq. (62).

F.4. Covering Net

This subsection generalizes the covering number argument built for the covering net of the constructed optimistic value
function class pV in (Jin et al., 2020), to that for the squared optimistic value function class pV2 and the pessimistic value
function class qV . Before that, a basic fact about the covering number of the Euclidean ball is given in Lemma F.8.

Lemma F.8 (Covering Number of Euclidean Ball, Lemma D.5. in (Jin et al., 2020)). For any ε ą 0, the ε-covering number
of the Euclidean ball in Rd with radius R ą 0 is upper bounded by p1 ` 2R{εqd.

Lemma F.9 (Lemma D.6. in (Jin et al., 2020)). Let pNε be the ε-covering of pV with respect to the distance dist pV, V 1q “

supx |V pxq ´ V 1pxq|, where pV is defined in Definition C.5. Then

log | pNε| ď d logp1 ` 4L{εq ` d2 log
”

1 ` 8d1{2B2{
`

λε2
˘

ı

.

Proof. Denote A “ β2Λ´1, then for any pV p¨q P pV ,

pV p¨q “ min

"

max
a

wJϕp¨, aq `

b

ϕp¨, aqJAϕp¨, aq, H

*

(63)
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for }w} ď L and }A} ď B2λ´1. For any two functions pV1, pV2 P pV , let them take the form in Eq. (63) with parameters
pw1,A1q and pw2,A2q, respectively. Since both mint¨, Hu and maxa are contraction mappings, we have

distppV1, pV2q ď sup
s,a

ˇ

ˇ

ˇ

ˇ

„

wJ
1 ϕps, aq `

b

ϕps, aqJA2ϕps, aq

ȷ

´

„

wJ
2 ϕps, aq `

b

ϕps, aqJA2ϕps, aq

ȷ
ˇ

ˇ

ˇ

ˇ

ď sup
ϕ:}ϕ}2ď1

ˇ

ˇ

ˇ

ˇ

„

wJ
1 ϕ `

b

ϕJA2ϕ

ȷ

´

„

wJ
2 ϕ `

b

ϕJA2ϕ

ȷ
ˇ

ˇ

ˇ

ˇ

ď sup
ϕ:}ϕ}2ď1

ˇ

ˇ

ˇ
pw1 ´ w2q

J
ϕ
ˇ

ˇ

ˇ
` sup

ϕ:}ϕ}2ď1

c

ˇ

ˇ

ˇ
ϕJ

pA1 ´ A2qϕ
ˇ

ˇ

ˇ

“ }w1 ´ w2}2 `

b

}A1 ´ A2}2 ď }w1 ´ w2}2 `

b

}A1 ´ A2}F

(64)

where the second last inequality follows from the fact that |
?
x ´

?
y| ď

a

|x ´ y| holds for any x, y ě 0. For matrices,
} ¨ }2 and } ¨ }F denote the matrix operator norm and Frobenius norm respectively.

Let Cw be an ε{2-cover of
␣

w P Rd | }w}2 ď L
(

with respect to the 2-norm, and CA be an ε2{4-cover of
␣

A P Rdˆd | }A}F ď d1{2B2λ´1
(

with respect to the Frobenius norm. By Lemma F.8, we have:

|Cw| ď p1 ` 4L{εqd, |CA| ď

”

1 ` 8d1{2B2{
`

λε2
˘

ıd2

By Eq. (64), for any pV1 P pV , there exists w2 P Cw and A2 P CA such that pV2 parametrized by pw2,A2q satisfies
distppV1, pV2q ď ε. Hence, it holds that |Nε| ď |Cw| ¨ |CA|, which gives

log |Nε| ď log |Cw| ` log |CA| ď d logp1 ` 4L{εq ` d2 log
”

1 ` 8d1{2B2{
`

λε2
˘

ı

.

This concludes the proof.

Lemma F.10. Let pN 2
ε be the ε-covering of pV2 with respect to the distance dist pV, V 1q “ supx |V pxq ´ V 1pxq|, where pV2

is defined in Definition C.6. Then

log | pN 2
ε | ď d logp1 ` 8LH{εq ` d2 log

”

1 ` 32d1{2B2H2{
`

λε2
˘

ı

.

Proof. For any pV 2
1 p¨q, pV 2

2 p¨q P pV2, we have

distppV 2
1 ,

pV 2
2 q “ sup

x

ˇ

ˇ

ˇ

pV 2
1 pxq ´ pV 2

2 pxq

ˇ

ˇ

ˇ
“ sup

x

ˇ

ˇ

ˇ

pV1pxq ` pV2pxq

ˇ

ˇ

ˇ
¨

ˇ

ˇ

ˇ

pV1pxq ´ pV2pxq

ˇ

ˇ

ˇ

ď2H sup
x

¨

ˇ

ˇ

ˇ

pV1pxq ´ pV2pxq

ˇ

ˇ

ˇ
,

where pV1, pV2 P pV and pV is given in Definition C.5. This implies that the ε{p2Hq-cover of pV is a ε-cover of pV2, which
combined with Lemma F.9, gives the conclusion.

Lemma F.11. Let qNε be the ε-covering of qV with respect to the distance dist pV, V 1q “ supx |V pxq ´ V 1pxq|, where qV is
defined in Definition C.7. Then

log | qNε| ď d logp1 ` 4L{εq ` d2 log
”

1 ` 8d1{2B2{
`

λε2
˘

ı

.

Proof. Denote A “ β2Λ´1, then for any qV p¨q P qV ,

qV p¨q “ max

"

max
a

wJϕp¨, aq ´

b

ϕp¨, aqJAϕp¨, aq, 0

*

(65)
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for }w} ď L and }A} ď B2λ´1. The proof is almost the same as that for Lemma F.9, since for any two functions qV1, qV2 P qV ,
let them take the form in Eq. (65) with parameters pw1,A1q and pw2,A2q, respectively. Since |mintx, 0u ´ minty, 0u| ď

|x ´ y| for any x, y P R and maxa is a contraction mapping, we have

distppV1, pV2q ď sup
s,a

ˇ

ˇ

ˇ

ˇ

„

wJ
1 ϕps, aq ´

b

ϕps, aqJA2ϕps, aq

ȷ

´

„

wJ
2 ϕps, aq ´

b

ϕps, aqJA2ϕps, aq

ȷ
ˇ

ˇ

ˇ

ˇ

ď sup
ϕ:}ϕ}2ď1

ˇ

ˇ

ˇ

ˇ

„

wJ
1 ϕ ´

b

ϕJA2ϕ

ȷ

´

„

wJ
2 ϕ ´

b

ϕJA2ϕ

ȷ
ˇ

ˇ

ˇ

ˇ

ď sup
ϕ:}ϕ}2ď1

ˇ

ˇ

ˇ
pw1 ´ w2q

J
ϕ
ˇ

ˇ

ˇ
` sup

ϕ:}ϕ}2ď1

c

ˇ

ˇ

ˇ
ϕJ

pA2 ´ A1qϕ
ˇ

ˇ

ˇ

“ }w1 ´ w2}2 `

b

}A1 ´ A2}2 ď }w1 ´ w2}2 `

b

}A1 ´ A2}F ,

(66)

which is the same as that of Eq. (64) in Lemma F.9. This implies that the ε-covering of qV can be given similarly to that of pV ,
such that the conclusion is given the same as that of Lemma F.9.
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