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Abstract

We revisit the design choices in Transformers,
and propose methods to address their weaknesses
in handling long sequences. First, we propose a
simple layer named gated attention unit, which
allows the use of a weaker single-head atten-
tion with minimal quality loss. We then propose
a linear approximation method complementary
to this new layer, which is accelerator-friendly
and highly competitive in quality. The resulting
model, named FLASH3, matches the perplexity
of improved Transformers over both short (512)
and long (8K) context lengths, achieving training
speedups of up to 4.9× on Wiki-40B and 12.1×
on PG-19 for auto-regressive language modeling,
and 4.8× on C4 for masked language modeling.

1. Introduction
Transformers (Vaswani et al., 2017) have become the new
engine of state-of-the-art deep learning systems, leading to
many recent breakthroughs in language (Devlin et al., 2018;
Brown et al., 2020) and vision (Dosovitskiy et al., 2020).
Although they have been growing in model size, most Trans-
formers are still limited to short context size due to their
quadratic complexity over the input length. This limitation
prevents Transformer models from processing long-term
information, a critical property for many applications.

Many techniques have been proposed to speedup Transform-
ers over extended context via more efficient attention mech-
anisms (Child et al., 2019; Dai et al., 2019; Rae et al., 2019;
Choromanski et al., 2020; Wang et al., 2020; Katharopoulos
et al., 2020; Beltagy et al., 2020; Zaheer et al., 2020; Kitaev
et al., 2020; Roy et al., 2021; Jaegle et al., 2021). Despite
the linear theoretical complexity for some of those methods,
vanilla Transformers still remain as the dominant choice in
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512 1.8× 1.2×
1024 9.0× 1.3×
2048 8.9× 1.6×
4096 13.1× 2.7×
8192 25.6× 4.9×

Figure 1: TPU-v4 training speedup of FLASH relative to the
vanilla Transformer (TFM) and an augmented Transformer
(TFM++) for auto-regressive language modeling on Wiki-
40B — All models are comparable in size at around 110M and
trained for 125K steps with 218 tokens per batch.

state-of-the-art systems. Here we examine this issue from
a practical perspective, and find existing efficient attention
methods suffer from at least one of the following drawbacks:

• Inferior Quality. Our studies reveal that vanilla Trans-
formers, when augmented with several simple tweaks,
can be much stronger than the common baselines used
in the literature (see Transformer vs. Transformer++ in
Figure 1). Existing efficient attention methods often incur
significant quality drop compared to augmented Trans-
formers, and this drop outweighs their efficiency benefits.

• Overhead in Practice. As efficient attention methods
often complicate Transformer layers and require extensive
memory re-formatting operations, there can be a nontrivial
gap between their theoretical complexity and empirical
speed on accelerators such as GPUs or TPUs.

• Inefficient Auto-regressive Training. Most attention lin-
earization techniques enjoy fast decoding during infer-
ence, but can be extremely slow to train on auto-regressive
tasks such as language modeling. This is primarily due
to their RNN-style sequential state updates over a large
number of steps, making it infeasible to fully leverage the
strength of modern accelerators during training.

3FLASH = Fast Linear Attention with a Single Head
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def scale_offset(x):
gamma = var(x.shape[−1:])
beta = var(x.shape[−1:])
return x ∗ gamma + beta

def attn(x, v, s=128):
z = dense(x, s)
q, k = scale_offset(z), scale_offset(z)
qk = tf.einsum('bns,bms→bnm', q, k)
a = relu(qk + rel_pos_bias(q, k)) ∗∗ 2
return tf.einsum('bnm,bme→bne', a, v)

def gated_attn_unit(x, d=768, e=1536):
shortcut, x = x, norm(x)
u, v = dense(x, e), dense(x, e)
x = u ∗ attn(x, v)
return dense(x, d) + shortcut

Figure 2: (a) An augmented Transformer layer which consists of two blocks: Gated Linear Unit (GLU) and Multi-Head
Self-Attention (MHSA), (b) Our proposed Gated Attention Unit (GAU), (c) Pseudocode for Gated Attention Unit. Skip
connection and input normalization over the residual branch are omitted in (a), (b) for brevity.

We address the above issues by developing a new model fam-
ily that, for the first time, not only achieves parity with fully
augmented Transformers in quality, but also truly enjoys lin-
ear scalability over the context size on modern accelerators.
Unlike existing efficient attention methods which directly
aim to approximate the multi-head self-attention (MHSA)
in Transformers, we start with a new layer design which nat-
urally enables higher-quality approximation. Specifically,
our model, named FLASH, is developed in two steps:

First, we propose a new layer that is more desirable for
effective approximation. We introduce a gating mechanism
to alleviate the burden of self-attention, resulting in the
Gated Attention Unit (GAU) in Figure 2. As compared to
Transformer layers, each GAU layer is cheaper, and more
importantly, its quality relies less on the precision of atten-
tion. In fact, GAU with a small single-head, softmax-free
attention is as performant as Transformers. While GAU still
suffers from quadratic complexity over the context size, it
weakens the role of attention hence allows us to carry out
approximation later with minimal quality loss.

We then propose an efficient method to approximate the
quadratic attention in GAU, leading to a layer variant with
linear complexity over the context size. The key idea is to
first group tokens into chunks, then using precise quadratic
attention within a chunk and fast linear attention across
chunks, as illustrated in Figure 4. We further describe how
an accelerator-efficient implementation can be naturally de-
rived from this formulation, achieving linear scalability in
practice with only a few lines of code change.

We conduct extensive experiments to demonstrate the effi-
cacy of FLASH over a variety of tasks (masked and auto-
regressive language modeling), datasets (C4, Wiki-40B, PG-
19) and model scales (110M to 500M). Remarkably, FLASH
is competitive with fully-augmented Transformers (Trans-
former++) in quality across a wide range of context sizes

of practical interest (512–8K), while achieving linear scala-
bility on modern hardware accelerators. For example, with
comparable quality, FLASH achieves a speedup of 1.2×–
4.9× for language modeling on Wiki-40B and a speedup
of 1.0×–4.8× for masked language modeling on C4 over
Transformer++. As we further scale up to PG-19 (Rae et al.,
2019), FLASH reduces the training cost of Transformer++
by up to 12.1× and achieves significant gain in quality.

2. Gated Attention Unit
Here we present Gated Attention Unit (GAU), a simpler yet
more performant layer than Transformers. While GAU still
has quadratic complexity over the context length, it is more
desirable for the approximation method to be presented in
Section 3. We start with introducing related layers:

Vanilla MLP. Let X ∈ RT×d be the representations over
T tokens. The output for Transformer’s MLP can be formu-
lated asO = φ(XWu)Wo whereWu ∈ Rd×e, Wo ∈ Re×d.
Here d denotes the model size, e denotes the expanded inter-
mediate size, and φ is an element-wise activation function.

Gated Linear Unit (GLU). This is an improved MLP
augmented with gating (Dauphin et al., 2017). GLU has
been proven effective in many cases (Shazeer, 2020; Narang
et al., 2021) and is used in state-of-the-art Transformer
language models (Du et al., 2021; Thoppilan et al., 2022).

U = φu(XWu), V = φv(XWv) ∈ RT×e (1)

O = (U � V )Wo ∈ RT×d (2)

where � stands for element-wise multiplication. In GLU,
each representation ui is gated by another representation vi
associated with the same token.
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Layer Type # of Layers d

MHSA+MLP
8+8 512

12+12 768
24+24 1024

MHSA+GLU
8+8 512

12+12 768
24+24 1024

GAU
15 512
22 768
46 1024

Figure 3: GAU vs. Transformers for auto-regressive and masked language modeling on short context length (512).

Gated Attention Unit (GAU). The key idea is to formu-
late attention and GLU as a unified layer and to share their
computation as much as possible (Figure 2). This not only
results in higher param/compute efficiency, but also natu-
rally enables a powerful attentive gating mechanism. Specif-
ically, GAU generalizes Eq. (2) in GLU as follows:

O = (U � V̂ )Wo where V̂ = AV (3)

where A ∈ RT×T contains token-token attention weights.
Unlike GLU which always uses vi to gate ui (both asso-
ciated with the same token), our GAU replaces vi with a
potentially more relevant representation v̂i =

∑
j aijvj “re-

trieved” from all available tokens using attention. The above
will reduce to GLU when A is an identity matrix.

Consistent with the findings in Liu et al. (2021), the presence
of gating allows the use of a much simpler/weaker attention
mechanism than MHSA without quality loss:

Z = φz(XWz) ∈ RT×s (4)

A = relu2
(
Q(Z)K(Z)> + b

)
∈ RT×T (5)

Modifications PPLX (LM/MLM) Params (M)

original GAU 16.78 / 4.23 105

relu2 −→ softmax 17.04 / 4.31 105
single-head −→ multi-head 17.76 / 4.48 105
no gating 17.45 / 4.58 131

Table 1: Impact of various modifications on GAU.

where Z is a shared representation (s � d)4, Q and K
are two cheap transformations that apply per-dim scalars
and offsets to Z (similar to the learnable variables in Lay-
erNorms), and b is the relative position bias. We also find
the softmax in MHSA can be simplified as a regular activa-
tion function in the case of GAU5. The GAU layer and its

4Unless otherwise specified, we set s =128 in this work.
5We use squared ReLU (So et al., 2021) throughout this paper,

which empirically works well on language tasks.

Modifications PPLX (LM/MLM) Params (M)

original MHSA 16.87 / 4.35 110

softmax −→ relu2 17.15 / 4.77 110
multi-head −→ single-head 17.89 / 4.73 110
add gating 17.25 / 4.43 106

Table 2: Impact of various modifications on MHSA.

pseudocode are illustrated in Figure 2.

Unlike Transformer’s MHSA which comes with 4d2 param-
eters, GAU’s attention introduces only a single small dense
matrix Wz with ds parameters on top of GLU (scalars and
offsets in Q and K are negligible). By setting e = 2d for
GAU, this compact design allows us to replace each Trans-
former block (MLP/GLU + MHSA) with two GAUs while
retaining similar model size and training speed.

GAU vs. Transformers. Figure 3 shows that GAUs are
competitive with Transformers (MSHA + MLP/GLU) on
TPUs across different models sizes. Note these experiments
are conducted over a relatively short context size (512). We
will see later in Section 4 that GAUs are in fact even more
performant when the context length is longer, thanks to their
reduced capacity in attention.

Layer Ablations. In Table 1 & 2 we show that both GAUs
and Transformers are locally optimal on their own.

3. Fast Linear Attention with GAU
There are two observations from Section 2 that motivate us
to extend GAU to modeling long sequences:

• First, the gating mechanism in GAU allows the use of
a weaker (single-headed, softmax-free) attention with-
out quality loss. If we further adapt this intuition into
modeling long sequences with attention, GAU could also
boost the effectiveness of approximate (weak) attention
mechanisms such as local, sparse and linearized attention.



• In addition, the number of attention modules is naturally
doubled with GAU — recall MLP+MHSA≈2×GAU in
terms of cost (Section 2). Since approximate attention usu-
ally requires more layers to capture full dependency (Dai
et al., 2019; Child et al., 2019), this property also makes
GAU more appealing in handling long sequences.

With this intuition in mind, we start by reviewing some
related work on modeling long sequences with attention,
and then show how we enable GAU to achieve Transformer-
level quality in linear time on long sequences.

3.1. Existing Linear-Complexity Variants

Partial Attention. A popular class of methods tries to
approximate the full attention matrix with different partial/s-
parse patterns, including local window (Dai et al., 2019;
Rae et al., 2019), local+sparse (Child et al., 2019; Li et al.,
2019; Beltagy et al., 2020; Zaheer et al., 2020), axial (Ho
et al., 2019; Huang et al., 2019), learnable patterns through
hashing (Kitaev et al., 2020) or clustering (Roy et al., 2021).
Though not as effective as full attention, these variants are
usually able to enjoy quality gains from scaling to longer
sequences. However, the key problem with this class of
methods is that they involve extensive irregular or regular
memory re-formatting operations such as gather, scatter,
slice and concatenation, which are not friendly to modern
accelerators of massive parallelism, particularly specialized
ASICs like TPU. As a result, their practical benefits (speed
and RAM efficiency), if any, largely depend on the choice of
accelerator and usually fall behind the theoretical analysis.
Hence, in this work, we deliberately minimize the number
of memory re-formatting operations in our model.

Linear Attention. Alternatively, another popular line of
research linearizes the attention computation by decompos-
ing the attention matrix and then re-arranging the order of
matrix multiplications (Choromanski et al., 2020; Wang
et al., 2020; Katharopoulos et al., 2020; Peng et al., 2021).
Schematically, the linear attention can be expressed as

V̂lin = Q
(
K>V

)︸ ︷︷ ︸
Rd×d

approx−−−→ V̂quad = Softmax
(
QK>

)︸ ︷︷ ︸
RT×T

V

where Q,K, V ∈ RT×d are the query, key and value rep-
resentations, respectively. Re-arranging the computation
reduces the complexity w.r.t T from quadratic to linear.

Another desirable property of linear attention is its constant6

computation and memory for each auto-regressive decoding
step at inference time. To see that, define Mt = K>:t V:t and
notice that the computation of Mt can be fully incremental:

Mt =Mt−1 +KtV
>
t (6)

6Constant is with respective to the sequence length T .

cumsum

cumsum

Figure 4: (top) Quadratic attention, (mid) Linear attention,
(bottom) Proposed mixed chunk attention with a chunk size
(C) of 2 (C is always greater than or equal to 128 in our ex-
periments). Our method significantly reduces the compute
in quadratic attention (red links), while requiring substan-
tially less RNN-style steps (green squares) in conventional
linear attention.

This means we only need to maintain a cache with constant
O(d2) memory and whenever a new input arrives at time
stamp t, only constant O(d2) computation is required to
accumulate KtV

>
t into Mt−1 and get Mt. On the contrary,

full quadratic attention requires linear O(Td) computation
and memory for each decoding step, as each new input has
to attend to all the previous steps.

However, on the other hand, re-arranging the computation
in linear attention leads to a severe inefficiency during auto-
regressive training. As shown in Fig. 4 (mid), due to the
causal constraint for auto-regressive training, the query vec-
tor at each time step Qt corresponds to a different cache
value Mt = K>:t V:t. This requires the model to compute
and cache T different values {Mt}Tt=1 instead of only one
value K>V in the non-autoregressive case. In theory, the
sequence {Mt}Tt=1 can be obtained inO(Td2) by first com-
puting {KtV

>
t }Tt=1 and then performing a large cumulative

sum (cumsum) over T tokens. But in practice, the cumsum
introduces an RNN-style sequential dependency of T steps,
where an O(d2) state needs to be processed each step. The
sequential dependency not only limits the degree of paral-
lelism, but more importantly requires T memory access in
the loop, which usually costs much more time than comput-
ing the element-wise addition on modern accelerators. As a
result, there exists a considerable gap between the theoreti-
cal complexity and actual running time. In practice, we find
that directly computing the full quadratic attention matrix is



even faster than the re-arranged (linearized) version on both
TPUs (Figure 6(a)) and GPUs (Appendix C.1).

3.2. Our Method: Mixed Chunk Attention

Based on the strengths and weaknesses of existing linear-
complexity attentions, we propose mixed chunk attention,
which merges the benefits from both partial attention and
linear attention. The high-level idea is illustrated in Figure 4.
Below we reformulate GAU to incorporate this idea.

Preparation. The input sequence is first chunked into G
non-overlapping chunks of size C, i.e. [T ] → [T/C ×
C]. Then, Ug ∈ RC×e, Vg ∈ RC×e and Zg ∈ RC×s are
produced for each chunk g following the GAU formulation
in Eq. (1) and Eq. (4). Next, four types of attention heads
Qquad

g , Kquad
g , Qlin

g , K lin
g are produced from Zg by applying

per-dim scaling and offset (this is very cheap).

We will describe how GAU’s attention can be efficiently
approximated using a local attention plus a global attention.
Note all the major tensors Ug, Vg and Zg are shared be-
tween the two components. The only additional parameters
introduced over the original GAU are the per-dim scalars
and offsets for generating Qlin

g and K lin
g (4×s parameters).

Local Attention per Chunk. First, a local quadratic at-
tention is independently applied to each chunk of length C
to produce part of the pre-gating state:

V̂ quad
g = relu2

(
Qquad

g Kquad
g

>
+ b
)
Vg.

The complexity of this part is O(G× C2 × d) = O(TCd),
which is linear in T given that C remains constant.

Global Attention across Chunks. In addition, a global
linear attention mechanism is employed to capture long-
range interaction across chunks

Non-Causal: V̂ lin
g = Qlin

g

( G∑
h=1

K lin
h

>
Vh

)
, (7)

Causal: V̂ lin
g = Qlin

g

( g−1∑
h=1

K lin
h

>
Vh

)
. (8)

Note the summations in Eq. (7) and Eq. (8) are performed
at the chunk level. For the causal (auto-regressive) case, this
reduces the number of elements in the cumsum in token-
level linear attention by a factor of C (a typical C is 256 in
our experiments), leading to a significant training speedup.

Finally, V̂ quad
g and V̂ lin

g are added together, followed by gat-
ing and a post-attention projection analogous to Eq. (3):

Og =
[
Ug �

(
V̂ quad
g + V̂ lin

g

)]
Wo.

def _global_linear_attn(q, k, v, causal):
if causal:

kv = tf.einsum('bgcs,bgce→bgse', k, v)
kv = tf.cumsum(kv, axis=1, exclusive=True)
return tf.einsum('bgcs,bgse→bgce', q, kv)

else:
kv = tf.einsum('bgcs,bgce→bse', k, v)
return tf.einsum('bgcs,bse→bgce', q, kv)

def _local_quadratic_attn(q, k, v, causal):
qk = tf.einsum('bgns,bgms→bgnm', q, k)
a = relu(qk + rel_pos_bias(q, k)) ∗∗ 2
a = causal_mask(a) if causal else a
return tf.einsum('bgnm,bgme→bgne', a, v)

def attn(x, v, causal, s=128):
# x: [B x G x C x D]; v: [B x G x C x E]
z = dense(x, s)
v_quad = _local_quadratic_attn(

scale_offset(z), scale_offset(z), v, causal)
v_lin = _global_linear_attn(

scale_offset(z), scale_offset(z), v, causal)
return v_quad + v_lin

Code 1: Pseudocode for mixed chunk attention.

The mixed chunk attention is simple to implement and the
corresponding pseudocode is given in Code 1.

3.2.1. DISCUSSIONS

Fast Auto-regressive Training. Importantly, as depicted
in Fig. 4 (bottom), thanks to chunking, the sequential de-
pendency in the auto-regressive case reduces from T steps
in the standard linear attention to G = T/C steps in the
chunked version in Eq. (8). Therefore, we observe the auto-
regressive training becomes dramatically faster with the
chunk size is in {128, 256, 512}. With the inefficiency of
auto-regressive training eliminated, the proposed model still
enjoys the constant per-step decoding memory and compu-
tation of O(Cd2), where the additional constant C comes
from the local quadratic attention.

On Non-overlapping Local Attention. Chunks in our
method does not overlap with each other. In theory, in-
stead of using the non-overlapping local attention, any par-
tial attention variant could be used as a substitute while
keeping the chunked linear attention fixed. As a concrete
example, we explored allowing each chunk to additionally
attends to its nearby chunks, which essentially makes the
local attention overlapping, similar to Longformer (Belt-
agy et al., 2020) and BigBird (Zaheer et al., 2020). While
overlapping local attention consistently improves quality, it
also introduces many memory re-formatting operations that
clearly harm the actual running speed. In our preliminary
experiments with language modeling on TPU, we found the
cost-benefit trade-off of using overlapping local attention
may not be as good as adding more layers in terms of both
memory and speed. In general, we believe the optimal par-
tial attention variant is task-specific, while non-overlapping
local attention is always a strong candidate when combined
with the choice of chunked linear attention.



0 10 20 30
Training time

-3.4

-3.2

-3.

-2.8

Ne
g.

 lo
g 

pe
rp

le
xi

ty

FLASH-Quad FLASH Transformer Transformer++ Combiner Performer

26

27

28

La
te

nc
y 

pe
r s

te
p 

(m
s)

29 210 211 212 213
Context length

(a) Per-step training latency

0 2 4 6

-1.5

-2.5

-3.5
TPU-core-days

Ne
g.

 lo
g 

pp
lx

(b) Context length = 512

0 2 4 6

-1.5

-2.5

-3.5
TPU-core-days

Ne
g.

 lo
g 

pp
lx

(c) Context length = 1024

0 5

-1.5

-2.5

-3.5
TPU-core-days

Ne
g.

 lo
g 

pp
lx

(d) Context length = 2048

0 5 10 15

-1.5

-2.5

-3.5
TPU-core-days

Ne
g.

 lo
g 

pp
lx

(e) Context length = 4096

0 10 20

-1.5

-2.5

-3.5

-5.5

TPU-core-days

Ne
g.

 lo
g 

pp
lx

(f) Context length = 8192

Figure 5: Masked language modeling validation-set results on the C4 dataset — All models are comparable in size at around
110M (i.e., BERT-Base scale) and trained for 125K steps with 218 tokens per batch. The quality is measured in negative log perplexity.

Connections to Combiner. Similar to our method, Com-
biner (Ren et al., 2021) also splits the sequence into non-
overlapping chunks and utilizes quadratic local attention
within each chunk. The key difference lies in how the long-
range information is summarized and combined with the
local information (e.g., our mixed chunk attention allows
larger effective memory per chunk hence leads to better
quality). See Appendix A for detailed discussions.

4. Experiments
We focus on two of our models that have different com-
plexities with respect to the context length. The quadratic-
complexity model FLASH-Quad refers to a stack of GAUs
whereas the linear-complexity model named FLASH con-
sists of both GAUs and the proposed mixed chunk attention.
To demonstrate their efficacy and general applicability, we
evaluate them on both bidirectional and auto-regressive se-
quence modeling tasks over multiple large-scale datasets.

Baselines. First of all, the vanilla Transformer (Vaswani
et al., 2017) with GELU activation function (Hendrycks &
Gimpel, 2016) is included as a standard baseline for calibra-
tion. Despite of being a popular baseline in the literature,
we find that RoPE (Su et al., 2021) and GLU (Shazeer,
2020) can lead to significant performance boosts. We there-

fore also include Transformer + RoPE (Transformer+) and
Transformer + RoPE + GLU (Transformer++) as two much
stronger baselines with quadratic complexity.

To demonstrate the advantages of our models on long se-
quences, we further compare our models with two notable
linear-complexity Transformer variants—Performer (Choro-
manski et al., 2020) and Combiner (Ren et al., 2021), where
Performer is a representative linear attention method and
Combiner (using a chunked attention design similar to ours)
has shown superior cost-benefit trade-off over many other
approaches (Ren et al., 2021). To get the best performance,
we use the rowmajor-axial variant of Combiner (Combiner-
Axial) and the ReLU-kernel variant of Performer. Both
models are also augmented with RoPE.

For fair comparison, all models are implemented in the same
codebase to ensure identical tokenizer and hyper-parameters
for training and evaluation. The per-step training latencies
of all models are measured using TensorFlow Profiler. See
Appendix B for detailed settings and model specifications.

4.1. Bidirectional Language Modeling

In BERT (Devlin et al., 2018), masked language modeling
(MLM) reconstructs randomly masked out tokens in the
input sequence. We pretrain and evaluate all models on



0 10 20 30
Training time

-3.4

-3.2

-3.

-2.8

Ne
g.

 lo
g 

pe
rp

le
xi

ty

FLASH-Quad FLASH Transformer Transformer++ Combiner Performer

29 210 211 212 213
26

28

210

Context length

La
te

nc
y 

pe
r s

te
p 

(m
s)

(a) Per-step training latency

0 4

-2.8

-3.0

-3.2

-3.4
16 20

TPU-core-days

Ne
g.

 lo
g 

pp
lx

(b) Context length = 512

0 4

-2.8

-3.0

-3.2

-3.4
16 20

TPU-core-days

Ne
g.

 lo
g 

pp
lx

(c) Context length = 1024

0 4 8

-2.8

-3.0

-3.2

-3.4
16 20

TPU-core-days

Ne
g.

 lo
g 

pp
lx

(d) Context length = 2048

0 10 20

-2.8

-3.0

-3.2

-3.4

TPU-core-days

Ne
g.

 lo
g 

pp
lx

(e) Context length = 4096

0 10 20 30

-2.8

-3.0

-3.2

-3.4

TPU-core-days

Ne
g.

 lo
g 

pp
lx

(f) Context length = 8192

Figure 6: Auto-regressive language modeling validation-set results on the Wiki-40B dataset — All models are sized around
110M (i.e., BERT-Base scale) and trained for 125K steps with 218 tokens per batch. The quality is measured in negative log perplexity.

the C4 dataset (Raffel et al., 2020). We consistently train
each model with 218 tokens per batch for 125K steps, while
varying the context length on a wide range including 512,
1024, 2048, 4096, and 8192. The quality of each model is
reported in perplexity as a proxy metric for the performance
on downstream tasks. The training speed of each model (i.e.,
training latency per step) is measured with 64 TPU-v4 cores,
and the total training cost is reported in TPU-v4-core-days.

Figure 5(a) shows the latency of each training step for
all models at different context lengths. Results for Trans-
former+ are omitted for brevity as it lies in between Trans-
former and Transformer++. Across all the six models, laten-
cies for Combiner, Performer, and FLASH remain roughly
constant as the context length increases, demonstrating lin-
ear complexity with respect to context length. FLASH-Quad
is consistently faster than Transformer and Transformer++
for all context lengths. In particular, FLASH-Quad is 2×
as fast as Transformer++ when the context length increases
to 8192. More importantly, as shown in Figures 5(b)-5(f),
for all sequence lengths ranging from 512 to 8192, our mod-
els always achieve the best quality (i.e., lowest perplexity)
under the same computational resource. In particular, if
the goal is to match Transformer++’s final perplexity at
step 125K, FLASH-Quad and FLASH can reduce the train-

ing cost by 1.1×–2.5× and 1.0×–4.8×, respectively. It is
worth noting that, to the best of our knowledge, FLASH is
the only linear-complexity model that achieves perplexity
competitive with the fully-augmented Transformers and its
quadratic-complexity counterpart. See Appendix C.2 for a
detailed quality and speed comparison of all models.

4.2. Auto-regressive Language Modeling

For auto-regressive language modeling, we focus on the
Wiki-40B (Guo et al., 2020) and PG-19 (Rae et al., 2019)
datasets, which consist of clean English Wikipedia pages
and books extracted from Project Gutenberg, respectively. It
is worth noting that the average document length in PG-19
is 69K words, making it ideal for evaluating model perfor-
mance over long context lengths. We train and evaluate
all models with 218 tokens per batch for 125K steps, with
context lengths ranging from 512 to 8K for Wiki-40B and
1K to 8K for PG-19. We report token-level perplexity for
Wiki-40B and word-level perplexity for PG-19.

Figure 6(a) shows that FLASH-Quad and FLASH achieve
the lowest latency among quadratic and linear complexity
models, respectively. We compare the quality and training
cost trade-offs of all models on Wiki40-B over increasing



Table 3: Auto-regressive language models on the PG-19 dataset — Latency (Lat.) is measured with 64 TPU-v4 cores.

Model
Context Length

1024 2048 4096 8192

PPLX Lat. Speedup* PPLX Lat. Speedup* PPLX Lat. Speedup* PPLX Lat. Speedup*

Transformer+ 44.45 282 1.00× 43.14 433 1.00× 42.80 698 1.00× 43.27 1292 1.00×
Transformer++ 44.47 292 – 43.18 441 – 43.13 712 – 43.26 1272 1.21×
Combiner 46.04 386 – 44.68 376 – 43.99 374 – 44.12 407 –

FLASH-Quad 43.40 231 2.18× 42.01 273 3.29× 41.46 371 3.59× 41.68 560 5.23×
FLASH 44.06 234 1.66× 42.17 237 3.85× 40.72 234 6.75× 41.07 250 12.12×
* Measured based on time taken to match Transformer+’s final quality (at step 125K) on TPU.
– Indicates that the specific model fails to achieve the same perplexity as Transformer+.

context lengths in Figures 6(b)-6(f). Similar to the findings
on MLM tasks, our models dominate all other models in
terms of quality-training speed for all sequence lengths.
Specifically, FLASH-Quad reduces the training time of
Transformer++ by 1.2× to 2.5× and FLASH cuts the com-
pute cost by 1.2× to 4.9× while reaching a similar perplex-
ity as Transformer++. Between our own models, FLASH
closely tracks the perplexity of FLASH-Quad and starts
to achieve a better perplexity-cost trade-off when the con-
text length goes beyond 2048. Detailed quality and speed
comparisons for all models are included in Appendix C.2.

For PG-19, following Rae et al., an increased model scale of
roughly 500M parameters (see Table 10) is used for all mod-
els in comparison. The results are summarized in Table 3.
Compared to the numbers in Wiki-40B, FLASH achieves
a more pronounced improvements in perplexity and train-
ing time over the augmented Transformers on PG-19. For
example, with a context length of 8K, FLASH-Quad and
FLASH are able to reach the final perplexity (at 125K-step)
of Transformer+ in only 55K and 55K steps, yielding 5.23×
and 12.12× of speedup, respectively. We hypothesize that
the increased gains over Transformer+ arise from the long-
range nature of PG-19 (which consists of books). Similar to
our previous experiments, FLASH achieves a lower perplex-
ity than all of the full-attention Transformer variants while
being significantly faster, demonstrating the effectiveness
of our efficient attention design.

4.3. Fine-tuning

To demonstrate the effectiveness of FLASH over down-
stream tasks, we fine-tune our pre-trained models on the
TriviaQA dataset (Joshi et al., 2017). Passages in Trivi-
aQA can span multiple documents, which challenges the
capability of the models in handling long contexts. For
a fair and meaningful comparison, we pretrain all models
on English Wikipedia (same domain as TriviaQA) with a
context length of 4096 and a batch size of 64 for 125k
steps. For fine-tuning, we sweep over three different learn-

ing rates, including 1e−4, 7e−5, and 5e−5, and report the
best validation-set F1 score across these runs.

Table 4: Results on TrivialQA with context length 4096 —
“PT“ stands for pre-training and “FT“ stands for fine-tuning. All
models are comparable in size at around 110M. s stands for the
head size of the single-head attention. For FLASH, “first-to-all”
means that we also let the first token in each chunk to attend to
the entire sequence using a single-head softmax attention. Latency
(Lat.) is measured with 32 TPU-v4 cores.

Model PT FT PT / FT
PPLX F1 Lat. reduction

Transformer+ 3.48 74.2 1.00× / 1.00×
Combiner 3.51 67.2 2.78× / 2.75×
FLASH-Quads=128 3.24 72.7 1.89× / 1.79×
FLASH-Quads=512 3.12 74.8 1.76× / 1.67×
FLASHs=512 3.23 73.3 2.61× / 2.60×
FLASHs=512 + first-to-all 3.24 73.9 2.78× / 2.69×

We observe that the fine-tuning results of the FLASH fam-
ily can benefit from several minor changes in the model
configuration. As shown in Table 4, increasing the head
size of FLASH-Quad from 128 to 512 leads to a significant
boost of 2.1 point in the F1 score with negligible impact
on speed. We further identify several other tweaks that
improve the linear FLASH variant specifically, including
using a small chunk size (128), disabling gradient clipping
during finetuning, using softmax instead of squared ReLU
for the [CLS] token, and (optionally) allowing the first to-
ken in each chunk to attend to the entire sequence using
softmax. With those changes, FLASHs=512 achieves compa-
rable quality to Transformer+ (0.3 difference in F1 is within
the range of variance) while being 2.8× and 2.7× as fast as
Transformer+ in pretraining and fine-tuning, respectively.

4.4. Ablation Studies

Significance of quadratic & linear components. To bet-
ter understand the efficacy of FLASH, we first study how
much the local quadratic attention and the global linear atten-
tion contribute to the performance individually. To this end,
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Figure 7: Ablation study of the proposed FLASH architecture.

we create FLASH (LocalOnly) and FLASH (GlobalOnly)
by only keeping the local quadratic attention and the global
linear attention in FLASH, respectively. In FLASH (Glob-
alOnly), we reduce the chunk size from 256 to 64 to produce
more local summaries for the global linear attention. In Fig-
ure 7 we see a significant gap between the full model and the
two variants, suggesting that the linear and global attention
are complementary to each other — both are critical to the
quality of the proposed mixed chunk attention.

Significance of GAU. Here we study the importance of
using GAU in FLASH. To achieve this, we apply the same
idea of mixed chunk attention to Transformer++. We re-
fer to this variant as MC-TFM++ (MC stands for mixed
chunk) which uses quadratic MHSA within each chunk and
multi-head linear attention across chunks. Effectively, MC-
TFM++ has the same linear complexity as FLASH, but the
core for MC-TFM++ is Transformer++ instead of GAU.

Figure 7 shows that FLASH outperforms MC-TFM++ by
a large margin (more than 2× speedup when the sequence
length is greater than 2048), confirming the importance of
GAU in our design. We further look into the perplexity in-
crease due to our approximation method in Table 5, showing
that the quality loss due to approximation is substantially
smaller when going from FLASH-Quad to FLASH than go-
ing from TFM++ to MC-TFM++. This indicates that mixed
chunk attention is more compatible with GAU than MHSA,
which matches our intuition that GAU is more beneficial to
weaker/approximate attention mechanisms.

Impact of Chunk Size. The choice of chunk size can
affect both the quality and the training cost of FLASH. We
observe that, in general, larger chunk sizes perform better
as the context length increases. For example, setting the
chunk size to 512 is clearly preferable to the default chunk
size (C=256) when the context length exceeds 1024. In
practice, hyperparameter search over the chunk size can be
performed to optimize the performance of FLASH further,
although we did not explore such option in our experiments.
More detailed analysis can be found in Appendix C.3.

Table 5: Perplexity increases when mixed chunk attention is
applied to GAU (→ FLASH) or to TFM++ (→MC-TFM++) —
Results are reported for MLM and LM with increasing context
lengths from 512 to 8192.

MLM on C4 512 1024 2048 4096 8192

FLASH-Quad→ FLASH 0.0 0.05 0.06 0.07 0.07
TFM++→MC-TFM++ 0.36 0.37 0.49 0.48 0.43

LM on Wiki-40B 512 1024 2048 4096 8192

FLASH-Quad→ FLASH -0.05 0.06 0.22 0.30 0.11
TFM++→MC-TFM++ 0.54 0.75 0.86 0.90 0.87

5. Conclusion
We have presented FLASH, a practical solution to address
the quality and empirical speed issues of existing efficient
Transformer variants. This is achieved by designing a per-
formant layer (gated linear unit) and by combining it with an
accelerator-efficient approximation strategy (mixed chunk
attention). Experiments on bidirectional and auto-regressive
language modeling tasks show that FLASH is as good as
fully-augmented Transformers in quality (perplexity), while
being substantially faster to train than the state-of-the-art.
A future work is to investigate the scaling laws of this new
model family and the performance on downstream tasks.
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A. Connections to Combiner
To capture long-term information, Combiner (Ren et al., 2021) additionally summarizes each chunk into summary key and
value vectors Ksum, V sum ∈ RT/C×d and concatenate them into the local quadratic attention, i.e.

V̂g = Softmax
(
Q[Kg;K

sum]
)
[Vg;V

sum].

Effectively, Combiner compresses each chunk of C vectors into a single vector of O(d), whereas our chunked linear
attention part compresses each chunk into a matrix K lin

h
>
Vh of size O(sd) which is s times larger. In other words, less

compression is done in chunked linear attention, allowing increased memory hence a potential advantage over Combiners.

Another difference lies in how the compressed long-term information from different chunks are combined, where Combiner
reuses the quadratic attention whereas our chunked linear attention simply performs (cumulative) sum. However, it is
straightforward to incorporate what Combiner does in our proposed method by constructing an extra [T/C ×T/C] attention
matrix to combine the chunk summaries, e.g.

Alin = relu2
(
QsumKsum> + bsum

)
,

V̂ lin
g = Qlin

g

[ T/C∑
h=1

alin
gh

(
K lin

h

>
Vh

)]
.

We indeed briefly experimented with this variant and found it helpful. But it clearly complicates the overall model design,
and more importantly requires the model to store and attend to all chunk summaries. As a result, the auto-regressive
decoding complexity will increase to O((C + T/C)d2) which is length-dependent and no longer constant. Hence, we do
not include this feature in our default configuration.

B. Experimental Setup
B.1. Hyperparameters

Bidirectional Language Modeling. Hyperparameters for the MLM task on C4 are listed in Table 6. All models are
implemented, trained, and evaluated using the same codebase to guarantee fair comparison.

Table 6: Hyperparameters for MLM pretraining on C4.

MLM Results (Figure 5)

Data C4
Sequence length 512 - 8192
Tokens per batch 218

Batch size 218/ Sequence length
Number of steps 125K
Warmup steps 10K
Peak learning rate 7e-4
Learning rate decay Linear
Optimizer AdamW
Adam ε 1e-6
Adam (β1, β2) (0.9, 0.999)
Weight decay 0.01
Local gradient clipping* 0.1
Chunk size 256
Hidden dropout 0
GELU dropout 0
Attention dropout (if applicable) 0

* Applied to all models except the vanilla Transformer.

Auto-regressive Language Modeling. Hyperparameters for the LM tasks on Wiki-40B and PG-19 are listed in Table 7.
All models are implemented, trained, and evaluated using the same codebase to guarantee fair comparison.



Table 7: Hyperparameters for LM pretraining on Wiki-40B and PG-19.

LM Results (Figure 6) LM Results (Table 3)

Data Wiki-40B PG-19
Sequence length 512 - 8192 1024 - 8192

Tokens per batch 218

Batch size 218/ Sequence length
Number of steps 125K
Warmup steps 10K
Peak learning rate 7e-4
Learning rate decay Linear
Optimizer AdamW
Adam ε 1e-6
Adam (β1, β2) (0.9, 0.999)
Weight decay 0.01
Local gradient clipping* 0.1
Hidden dropout 0
GELU dropout 0
Attention dropout (if applicable) 0

Chunk size 256 512
* Applied to all models except the vanilla Transformer.

B.2. Model Specifications

Detailed specifications of all models used in our experiments are summarized in Tables 8, 9, and 10. In the experiments,
SiLU/Swish (Elfwing et al., 2018; Hendrycks & Gimpel, 2016; Ramachandran et al., 2017) is used as the nonlinearity for
FLASH-Quad and FLASH, as it slightly outperforms GELU (Hendrycks & Gimpel, 2016) in our models. It is also worth
noting that we use ScaleNorm for some masked language models because ScaleNorm runs slightly faster than LayerNorm
on TPU-v4 without compromising the quality of the model.

Table 8: Model configurations for MLM experiments on the C4 dataset in Section 4.

FLASH-Quad FLASH Transformer Transformer+ Transformer++ Combiner Performer

# of attention heads 1 1 12 12 12 12 12
Attention kernel relu2 relu2 softmax softmax softmax softmax relu
Attention type Quadratic Mixed Chunk Quadratic Quadratic Quadratic Rowmajor-Axial Linear
FFN type GAU1 GAU1 MLP MLP GLU MLP MLP
Activation2 SiLU/Swish SiLU/Swish GELU GELU GELU GELU GELU
Norm. type3 ScaleNorm ScaleNorm LayerNorm ScaleNorm ScaleNorm ScaleNorm ScaleNorm
Absolute position emb. ScaledSin4 ScaledSin4 Learnable5 ScaledSin4 ScaledSin4 ScaledSin4 ScaledSin4

Relative position emb. RoPE RoPE – RoPE RoPE RoPE RoPE
# of layers 24 24 12+126 12+126 12+126 12+126 12+126

Hidden size 768 768 768 768 768 768 768
Expansion rate 2 2 4 4 4 4 4
Chunk size – 256 – – – 256 –
Params (M) 112 112 110 110 110 124 110

1 FLASH-Quad and FLASH combines the attention and feed-forward network into one module named GAU.
2 SiLU/Swish are proposed by Elfwing et al. (2018); Hendrycks & Gimpel (2016); Ramachandran et al. (2017).
3 ScaleNorm and LayerNorm are proposed by Nguyen & Salazar (2019) and Ba et al. (2016), respectively.
4 ScaleSin re-scales sinusoidal position embedding (Vaswani et al., 2017) with a linearnable scalar for stability.
5 The learnable position embedding is proposed by Gehring et al. (2017).
6 The model is consist of 12 attention layers and 12 FFN layers.

C. Additional Experimental Results
Here, we provide full results on the training speed of different language models using a Nvidia V100 GPU (in Table 11) and
the ablation study of chunk size for FLASH (in Figure 8).



Table 9: Model configurations for LM experiments on the Wiki-40B dataset in Section 4.

FLASH-Quad FLASH Transformer Transformer+ Transformer++ Combiner Performer

# of attention heads 1 1 12 12 12 12 12
Attention kernel relu2 relu2 softmax softmax softmax softmax relu
Attention type Quadratic Mixed Chunk Quadratic Quadratic Quadratic Rowmajor-Axial Linear
FFN type GAU1 GAU1 MLP MLP GLU MLP MLP
Activation2 SiLU/Swish SiLU/Swish GELU GELU GELU GELU GELU
Norm. type LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm
Absolute position emb. ScaledSin3 ScaledSin3 Learnable4 ScaledSin3 ScaledSin3 ScaledSin3 ScaledSin3

Relative position emb. RoPE RoPE – RoPE RoPE RoPE RoPE
# of layers 24 24 12+125 12+125 12+125 12+125 12+125

Hidden size 768 768 768 768 768 768 768
Expansion rate 2 2 4 4 4 4 4
Chunk size – 256 – – – 256 –
Params (M) 112 112 110 110 110 124 110

1 FLASH-Quad and FLASH combines the attention and feed-forward network into one module named GAU.
2 SiLU/Swish are proposed by Elfwing et al. (2018); Hendrycks & Gimpel (2016); Ramachandran et al. (2017).
3 ScaleSin re-scales sinusoidal position embedding (Vaswani et al., 2017) with a linearnable scalar for stability.
4 The learnable position embedding is proposed by Gehring et al. (2017).
5 The model is consist of 12 attention layers and 12 FFN layers.

Table 10: Model configurations for LM experiments on the PG-19 dataset in Section 4.

FLASH-Quad FLASH Transformer+ Transformer++ Combiner

# of attention heads 1 1 16 16 16
Attention kernel relu2 relu2 softmax softmax softmax
Attention type Quadratic Mixed Chunk Quadratic Quadratic Rowmajor-Axial
FFN type GAU1 GAU1 MLP GLU MLP
Activation2 SiLU/Swish SiLU/Swish GELU GELU GELU
Norm. type LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm
Absolute position emb. ScaledSin3 ScaledSin3 ScaledSin3 ScaledSin3 ScaledSin3

Relative position emb. RoPE RoPE RoPE RoPE RoPE
# of layers 72 72 36+364 36+364 36+364

Hidden size 1024 1024 1024 1024 1024
Expansion rate 2 2 4 4 4
Chunk size – 512 – – 512
Params (M) 496 496 486 486 562

1 FLASH-Quad and FLASH combines the attention and feed-forward network into one module named GAU.
2 SiLU/Swish are proposed by Elfwing et al. (2018); Hendrycks & Gimpel (2016); Ramachandran et al. (2017).
3 ScaleSin re-scales sinusoidal position embedding (Vaswani et al., 2017) with a linearnable scalar for stability.
4 The model is consist of 36 attention layers and 36 FFN layers.

Table 11: Comparison of latency for each training step of auto-regressive language modeling on Wiki-40B using a single
Nvidia Tesla V100 GPU — Latency is reported in millisecond. OOM stands for the CUDA out of memory error. Performer-Matmul
implements the cumulative sum (cumsum) using matrix multiplication.

Context length × Batch size

Model 512 × 4 1024 × 2 2048 × 1 4096 × 1

Transformer++ 222.4 243.9 315.0 OOM
Performer 823.0 827.4 799.8 OOM
Performer-Matmul 697.4 701.7 688.9 OOM

FLASH 254.4 235.0 242.8 452.9



C.1. Auto-regressive Training on GPU

We observe that the inefficiency of auto-regressive training is not limited to hardware accelerators such as TPUs. As shown
in Table 11, Performer has the largest latency among the three models because it requires to perform cumsum over all
tokens sequentially. In contrast, the proposed FLASH achieves the lowest latency when the context length is over 1024,
suggesting the effectiveness of the proposed mixed chunk attention mechanism.

C.2. Tabular MLM and LM Results

We summarize the experimental results of MLM on C4 and LM on Wiki-40B in Tables 12 and 13.

Table 12: Bidirectional/masked language models on the C4 dataset. The best perplexity (PPLX) on the validation set is
reported. Training latency is measured with 64 TPU-v4 cores.

Model
Context Length

512 1024 2048 4096 8192

PPLX Latency PPLX Latency PPLX Latency PPLX Latency PPLX Latency

Transformer 4.517 47.7 4.436 63.9 4.196 90.9 4.602 142.5 4.8766 252.7
Transformer+ 4.283 48.8 4.151 64.4 4.032 91.5 3.989 142.9 3.986 252.9
Transformer++ 4.205 47.6 4.058 64.6 3.920 91.6 3.876 143.4 3.933 252.1

Performer 5.897 37.2 6.324 37.6 8.032 39.1 12.622 36.9 102.980 40.9
Combiner 4.449 67.2 4.317 66.4 4.238 66.4 4.195 68.3 4.225 77.3

FLASH-Quad 4.176 43.7 3.964 50.1 3.864 61.7 3.828 84.9 3.830 132.1
FLASH 4.172 51.2 4.015 50.1 3.928 51.4 3.902 50.7 3.897 59.9

Table 13: Auto-regressive language models on the Wiki-40B dataset. The best perplexity (PPLX) on the validation set is
reported. Training latency is measured with 64 TPU-v4 cores.

Model
Context Length

512 1024 2048 4096 8192

PPLX Latency PPLX Latency PPLX Latency PPLX Latency PPLX Latency

Transformer 17.341 54.0 19.808 70.9 18.154 96.3 17.731 149.1 18.254 260.7
Transformer+ 16.907 55.6 15.999 70.3 15.653 96.1 15.515 149.3 15.478 261.9
Transformer++ 16.835 54.7 15.943 70.9 15.489 96.6 15.282 149.2 15.254 261.0

Performer 18.989 1439.7 18.520 1386.9 18.547 1518.9 18.987 1526.7 19.923 1526.8
Combiner 17.338 75.5 16.710 74.4 16.344 71.8 16.171 71.7 16.119 77.9

FLASH-Quad 16.633 54.1 15.879 59.5 15.305 71.3 14.955 96.1 14.998 141.3
FLASH 16.581 57.2 15.935 56.9 15.525 56.7 15.259 57.0 15.109 62.5

C.3. Ablation Study of Chunk Size

The choice of chunk size can have an impact on both the quality and the training cost of FLASH. In the extreme case where
chunk size equals the context length, FLASH falls back to FLASH-Quad and loses the scalability to long context lengths. In
the other extreme case where chunk size is equal to one, the proposed attention module becomes a linear attention, which
suffers from inefficient auto-regressive training. Figure 8 shows the tradeoff between the quality and training cost of four
different chunk sizes for context lengths from 1K to 8K.

D. Pseudocode For FLASH-Quad and FLASH
We show the detailed implementation of FLASH-Quad and FLASH in Codes 6 and 8.



(a) Context length = 1024 (b) Context length = 2048 (c) Context length = 4096 (d) Context length = 8192

Figure 8: Ablation study of the chunk size (C) of FLASH for context lengths from 1K to 8K.

def _get_scaledsin(embeddings):
"""Create sinusoidal position embedding with a scaling factor."""
hidden_size = int(embeddings.shape[−1])
pos = tf.range(tf.shape(embeddings)[1])
pos = tf.cast(pos, tf.float32)
half_d = hidden_size // 2
freq_seq = tf.cast(tf.range(half_d), tf.float32) / float(half_d)
inv_freq = 10000 ∗∗ −freq_seq
sinusoid = tf.einsum('s,d→sd', pos, inv_freq)
scaledsin = tf.concat([tf.sin(sinusoid), tf.cos(sinusoid)], axis=−1)
scalar = tf.get_variable(

'scaledsin_scalar',
shape=(),
initializer=tf.constant_initializer(1 / hidden_size ∗∗ 0.5))

scaledsin ∗= scalar
return scaledsin

Code 2: Pseudocode for ScaledSin absolute position embedding.

def rope(x, axis):
"""RoPE position embedding."""
shape = x.shape.as_list()
if isinstance(axis, int):

axis = [axis]

spatial_shape = [shape[i] for i in axis]
total_len = 1
for i in spatial_shape:

total_len ∗= i
position = tf.reshape(

tf.cast(tf.range(total_len, delta=1.0), tf.float32), spatial_shape)

for i in range(axis[−1] + 1, len(shape) − 1, 1):
position = tf.expand_dims(position, axis=−1)

half_size = shape[−1] // 2
freq_seq = tf.cast(tf.range(half_size), tf.float32)/float(half_size)
inv_freq = 10000 ∗∗ −freq_seq
sinusoid = tf.einsum('...,d→...d', position, inv_freq)
sin = tf.sin(sinusoid)
cos = tf.cos(sinusoid)
x1, x2 = tf.split(x, 2, axis=−1)
return tf.concat([x1 ∗ cos − x2 ∗ sin, x2 ∗ cos + x1 ∗ sin], axis=−1)

Code 3: Pseudocode for RoPE.



WEIGHT_INITIALIZER = tf.random_normal_initializer(stddev=0.02)

def rel_pos_bias(n):
"""Relative position bias."""
if n < 512:
# Construct Toeplitz matrix directly when the sequence length is less than 512.

w = tf.get_variable(
'weight',
shape=[2 ∗ n − 1],
dtype=tf.float32,
initializer=WEIGHT_INITIALIZER)

t = tf.pad(w, [[0, n]])
t = tf.tile(t, [n])
t = t[..., :−n]
t = tf.reshape(t, [n, 3 ∗ n − 2])
r = (2 ∗ n − 1) // 2
t = t[..., r:−r]

else:
# Construct Toeplitz matrix using RoPE when the sequence length is over 512.

a = tf.get_variable(
'a',
shape=[128],
dtype=dtype,
initializer=WEIGHT_INITIALIZER)

b = tf.get_variable(
'b',
shape=[128],
dtype=dtype,
initializer=WEIGHT_INITIALIZER)

a = rope(tf.tile(a[None, :], [n, 1]), axis=0)
b = rope(tf.tile(b[None, :], [n, 1]), axis=0)
t = tf.einsum('mk,nk→mn', a, b)

return t

Code 4: Pseudocode for relative position bias.

def norm(x, begin_axis=−1, eps=1e−5, norm_type='layer_norm'):
"""Normalization layer."""
shape = x.shape.as_list()
axes = list(range(len(shape)))[begin_axis:]
if norm_type == 'layer_norm':

mean, var = tf.nn.moments(x, axes, keepdims=True)
x = (x − mean) ∗ tf.rsqrt(var + eps)
gamma = tf.get_variable(

'gamma', shape=x.shape.as_list()[begin_axis:], initializer=tf.initializers.ones())
beta = tf.get_variable(

'beta', shape=x.shape.as_list()[begin_axis:], initializer=tf.initializers.zeros())
return gamma ∗ x + beta

elif norm_type == 'scale_norm':
mean_square =tf.reduce_mean(tf.math.square(x), axes, keepdims=True)
x = x ∗ tf.rsqrt(mean_square + eps)
scalar = tf.get_variable('scalar', shape=(), initializer=tf.constant_initializer(1.0))
return scale ∗ x

Code 5: Pseudocode for LayerNorm and ScaleNorm.



WEIGHT_INITIALIZER = tf.random_normal_initializer(stddev=0.02)

def GAU(x, causal, norm_type='layer_norm', expansion_factor=2):
"""GAU block.

Input shape: batch size x sequence length x model size
"""
seq_len = tf.shape(x)[1]
d = int(x.shape[−1])
e = int(d ∗ expansion_factor)

shortcut, x = x, norm(x, begin_axis=−1, norm_type=norm_type)

s = 128
uv = tf.layers.dense(x, 2 ∗ e + s, kernel_initializer=WEIGHT_INITIALIZER, bias_initializer='zeros')
u, v, base = tf.split(tf.nn.silu(uv), [e, e, s], axis=−1)

# Generate Query (q) and Key (k) from base.
gamma = tf.get_variable('gamma', shape=[2, s], initializer=WEIGHT_INITIALIZER)
beta = tf.get_variable('beta', shape=[2, s], initializer=tf.initializers.zeros())
base = tf.einsum('...r,hr→...hr', base, gamma) + beta
base = rope(base, axis=1)
q, k = tf.unstack(base, axis=−2)

# Calculate the quadratic attention.
qk = tf.einsum('bnd,bmd→bnm', q, k)
bias = rel_pos_bias(seq_len)
kernel = tf.math.square(tf.nn.relu(qk / seq_len + bias))

# Apply the causal mask for auto−regressive tasks.
if causal:

causal_mask = tf.linalg.band_part(
tf.ones([seq_len, seq_len], dtype=x.dtype), num_lower=−1, num_upper=0)

kernel ∗= causal_mask

x = u ∗ tf.einsum('bnm,bme→bne', kernel, v)
x = tf.layers.dense(x, d, kernel_initializer=WEIGHT_INITIALIZER, bias_initializer='zeros')
return x + shortcut

Code 6: Pseudocode for GAU (FLASH-Quad).

def segment_ids_to_mask(segment_ids, causal=False):
"""Generate the segment mask from the segment ids.

The segment mask is used to remove the attention between tokens in different documents.
"""
min_ids, max_ids = tf.reduce_min(segment_ids, axis=−1), tf.reduce_max(segment_ids, axis=−1)
# 1.0 indicates in the same group and 0.0 otherwise
mask = tf.logical_and(

tf.less_equal(min_ids[:, :, None], max_ids[:, None, :]),
tf.greater_equal(max_ids[:, :, None], min_ids[:, None, :]))

mask = tf.cast(mask, tf.float32)
if causal:

g = tf.shape(min_ids)[1]
causal_mask = 1.0 − tf.linalg.band_part(

tf.ones([g, g], dtype=tf.float32), num_lower=0, num_upper=−1)
mask ∗= causal_mask

mask = tf.math.divide_no_nan(mask, tf.reduce_sum(mask, axis=−1, keepdims=True))
return mask

Code 7: Pseudocode for generating segment mask.



WEIGHT_INITIALIZER = tf.random_normal_initializer(stddev=0.02)

def FLASH(x, causal, segment_ids, norm_type='layer_norm', expansion_factor=2):
"""FLASH block.

Input shape: batch size x num chunks x chunk length x model size
"""
_, g, n, d = x.shape.as_list()
e = int(d ∗ expansion_factor)
shortcut, x = x, norm(x, begin_axis=−1, norm_type=norm_type)

s = 128
uv = tf.layers.dense(x, 2 ∗ e + s, kernel_initializer=WEIGHT_INITIALIZER, bias_initializer='zeros')
u, v, base = tf.split(tf.nn.silu(uv), [e, e, s], axis=−1)

# Generate Query and Key for both quadratic and linear attentions.
gamma = tf.get_variable('gamma', shape=[4, s], initializer=WEIGHT_INITIALIZER)
beta = tf.get_variable('beta', shape=[4, s], initializer=tf.initializers.zeros())
base = tf.einsum('...r,hr→...hr', base, gamma) + beta
base = rope(base, axis=[1, 2])
quad_q, quad_k, lin_q, lin_k = tf.unstack(base, axis=−2)

if causal:
# Linear attention part.
lin_kv = tf.einsum('bgnk,bgne→bgke', lin_k, v) / tf.cast(n, x.dtype)
mask = segment_ids_to_mask(segment_ids, causal=True)
cum_lin_kv = tf.einsum('bhke,bgh→bgke', lin_kv, mask)
linear = tf.einsum('bgnk,bgke→bgne', lin_q, cum_lin_kv)

# Quadratic attention part.
quad_qk = tf.einsum('bgnk,bgmk→bgnm', quad_q, quad_k)
bias = rel_pos_bias(n)
kernel = tf.math.square(tf.nn.relu(quad_qk / n + bias))
# Apply the causal mask for auto−regressive tasks.
causal_mask = tf.linalg.band_part(tf.ones([n, n], dtype=x.dtype), num_lower=−1, num_upper=0)
quadratic = tf.einsum('bgnm,bgme→bgne', kernel ∗ causal_mask, v)

else:
# Linear attention part
lin_kv = tf.einsum('bgnk,bgne→bgke', lin_k, v) / tf.cast(n, x.dtype)
mask = segment_ids_to_mask(segment_ids)
lin_kv = tf.einsum('bhke,bgh→bgke', lin_kv, mask)
linear = tf.einsum('bgnk,bgke→bgne', lin_q, lin_kv)

# Quadratic attention part
quad_qk = tf.einsum('bgnk,bgmk→bgnm', quad_q, quad_k)
bias = rel_pos_bias(n)
kernel = tf.math.square(tf.nn.relu((quad_qk / n + bias))
quadratic = tf.einsum('bgnm,bgme→bgne', kernel, v)

x = u ∗ (quadratic + linear)
x = tf.layers.dense(x, d, kernel_initializer=WEIGHT_INITIALIZER, bias_initializer='zeros')
return x + shortcut

Code 8: Pseudocode for FLASH.


