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Abstract
Despite the remarkable success of deep multi-
modal learning in practice, it has not been well-
explained in theory. Recently, it has been ob-
served that the best uni-modal network outper-
forms the jointly trained multi-modal network ,
which is counter-intuitive since multiple signals
generally bring more information (Wang et al.,
2020). This work provides a theoretical explana-
tion for the emergence of such performance gap
in neural networks for the prevalent joint training
framework. Based on a simplified data distribu-
tion that captures the realistic property of multi-
modal data, we prove that for the multi-modal
late-fusion network with (smoothed) ReLU activa-
tion trained jointly by gradient descent, different
modalities will compete with each other. The en-
coder networks will learn only a subset of modal-
ities. We refer to this phenomenon as modality
competition. The losing modalities, which fail
to be discovered, are the origins where the sub-
optimality of joint training comes from. Experi-
mentally, we illustrate that modality competition
matches the intrinsic behavior of late-fusion joint
training.

1. Introduction
Deep multi-modal learning has achieved remarkable per-
formance in a wide range of fields, such as speech recogni-
tion (Chan et al., 2016), semantic segmentation (Jiang et al.,
2018), and visual question-answering (VQA) (Anderson
et al., 2018). Intuitively, signals from different modali-
ties often provide complementary information leading to
performance improvement. However, Wang et al. (2020)
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observed that the best uni-modal network outperforms the
multi-modal network obtained by joint training. Moreover,
the analogous phenomenon has been noticed when using
multiple input streams (Goyal et al., 2017; Gat et al., 2020;
Alamri et al., 2019).

Although deep multi-modal learning has become an essen-
tial practical machine learning approach, its theoretical un-
derstanding is quite limited. Some recent works have been
proposed for understanding multi-modal learning from a
theoretical standpoint (Zhang et al., 2019; Huang et al.,
2021; Sun et al., 2020; Du et al., 2021). Huang et al. (2021)
provably argued that the generalization ability of uni-modal
solutions is strictly sub-optimal than that of multi-modal
solutions. Du et al. (2021) aimed at identifying the reasons
behind the surprising phenomenon of performance drop.
Remarkably, these works have not analyzed what happened
in the training process of neural networks, which we deem
as crucial to understanding why naive joint training fails in
practice. In particular, we state the fundamental questions
that we address below and provably answer these questions
by studying a simplified data model that captures key proper-
ties of real-world settings under the popular late-fusion joint
training framework (Baltrušaitis et al., 2018). We provide
empirical results to support our theoretical framework. Our
work is the first theoretical treatment towards the degenerat-
ing aspect of multi-modal learning in neural networks to the
best of our knowledge.

Fundamental Questions
1. How does the neural network encoder of each modal-
ity, trained by multi-modal learning, learn its feature
representation?
2. Why does multi-modal learning in deep learning
collapse in practice when naive joint training is applied?

1.1. Our Contributions

We study the multi-classification task for a data distribu-
tion where each modality Mr is generated from a sparse
coding model, which shares similarities with real scenarios
(formally presented and explained in Section 3). Our data
model for each modality owns a special structure called “in-
sufficient data,” which represents cases where each modality
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“Insufficient” structure for Audio 

(a) Top 10 improved class accuracy

“Insufficient” structure for Video 

(b) Top 10 dropped class accuracy

Figure 1: Top 10 classes based on the accuracy improvement and downgrade of video-only over audio-only uni-model
training on Kinetics-400 dataset (Kay et al., 2017) for action recognition task. Detailed setups are provided in Appendix C.

alone cannot adequately predict the task. Such a structure is
common in practical multi-modal applications (Yang et al.,
2015; Liu et al., 2018; Gat et al., 2020). Under this data
model, we consider joint training based on late-fusion multi-
modal network with one-layer neural network, activated by
smoothed ReLU as modality encoder, and features from
different modalities are passed to one-layer linear classifier
after being fused by sum operation. Comparatively, the uni-
modal network has similar pattern with the fusion operation
eliminated. Both networks are trained by gradient descent
(GD) over the multi-modal training set D or its uni-modal
counterpart Dr.

We analyze the optimization and generalization of multi and
uni-network to probe the origin of the gap between theory
and practice of multi-modal joint training in deep learning.
Our key theoretical findings are summarized as follows.

• When only single modality is applied to training, the
uni-modal network will focus on learning the modality-
associated features, which leads to good performance
(Theorem 4.1).

• When naive joint training is applied to the multi-modal
network, the neural network will not efficiently learn
all features from different modalities, and only a subset
of modality encoders will capture sufficient feature
representations (Theorem 4.2). We call this process
“Modality Competition” and sketch its high-level idea
below.

• With the different feature learning process and the exis-
tence of insufficient structure, we further establish the
theoretical guarantees for performance gap measured

by test error, between the uni-modal and multi-modal
networks (Corollary 4.3).

Modality Competition
During joint training, multiple modalities will compete
with each other. Only a subset of modalities which
correlate more with their encoding network’s random
initialization will win and be learned by the final net-
work with other modalities failing to be explored.

Empirical justification: We also support our findings
with empirical results.

• Evidence of insufficient structure. For each modality,
there exist certain classes where the corresponding uni-
modal network has relatively low accuracy as shown
in Figures 1a and 1b. For example, the class “play-
ing poker” for audio modality in Figure 1a and ”tap
dancing” for visual modality in Figure 1b. Such obser-
vations verify the insufficient structure of uni-modal
data.

• Sub-optimality of naive joint training. Figure 2a sup-
ports the findings in Wang et al. (2020) that the best
uni-modal outperforms the multi-modal.

• Only a subset of modalities learns good feature repre-
sentations. As illustrated in Figure 2c for audio modal-
ity, on some classes, e.g., “eating spaghetti”, “watering
plants” that were originally with slightly high accuracy
(from Figure 1a), the accuracy still drops , which in-
dicates that audio is not learned for these classes in
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(a) Error curves for video-only, audio-only
and video+audio (MM) models.

(b) Error curves for the directly trained uni-
modal models and the ones with a fixed encoder.

Audio loses the competition and has 
not been explored

(c) Top 10 improved class accuracy

Evidence that Video has not been learned 

(d) Top 10 dropped class accuracy

Figure 2: Evidence of modality competition: we experiment on Kinetics-400 with the setup of multi-modal joint training.
For each modality encoder obtained from joint training, then we train a linear classifier head over it (with that encoder
fixed) to evaluate its feature representations, which is widely used to measure self-supervised representations (Chen et al.,
2020a). Figures 2c and 2d illustrate the similar comparison as Figure 1 for the ones with a fixed encoder initialized by the
multi-modal joint training. Detailed setups and additional experimental results are provided in Appendix C.

joint training. We have similar observations for visual
modality by comparing Figures 1b and 2d. Moreover,
Figure 2b shows that the feature representations ob-
tained from joint training for each modality degrade
compared to directly trained uni-modal.

2. Related Work
Success of multi-modal application. With the develop-
ment of deep learning, combining different modalities (text,
vision, etc.) to solve the tasks has become a common ap-
proach in machine learning approach, and have demon-
strated great power in various applications (Liang et al.,
2021). Achievements have been made on tasks, which it is
insufficient for single-modal models to learn, e.g., speech
recognition (Schneider et al., 2019; Dong et al., 2018),

sound localization (Zhao et al., 2019) and VQA (Ander-
son et al., 2018). On the other hand, a large body of studies
in vision & language learning (Chen et al., 2020b; Li et al.,
2020b;a; Lin et al., 2021) use pre-trained encoders to extract
features from different modalities. These studies which
demonstrate the success of multi-modal learning are be-
yond the scope of our research. Instead, in this paper, we
focus on the end-to-end late-fusion multi-modal network
with different modalities trained jointly and aim to theoreti-
cally explore the commonly observed phenomenon (Wang
et al., 2020) in this setting that multi-modal network does
not make performance improvement over best uni-modal.

Theory of Multi-modal Learning. Theoretical progress
in understanding multi-modal learning has lagged. Existing
analysis for multi-view learning (Xu et al., 2013; Amini
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et al., 2009; Federici et al., 2020), which is similar to multi-
modal learning, does not readily generalize to multi-modal
settings. It typically assumes that each view alone is suffi-
cient to predict the target accurately, which is problematic in
our settings, since in some cases we cannot make accurate
decisions only with a single-modality (e.g., depth image for
object detection (Gupta et al., 2016)). One sequence of the-
oretical works try to explain the advantages of multi-modal
using information-theoretical framework (Sun et al., 2020)
or assuming the training process is perfect (Huang et al.,
2021; Zhang et al., 2019). Recently, Du et al. (2021) utilized
the easy-to-learn and paired features to explain the failure
of joint training. However, their results do not take neural
network architecture into consideration and do not provide
the analysis of training process. Although these theoretical
works shed great lights to the study of multi-modal learning,
they have not yet given concrete mathematical answers to
the fundamental questions we asked earlier.

Feature learning by neural networks. In recent years,
there has been an interest in studying the feature learning
process of neural networks. Allen-Zhu & Li (2020c) con-
tribute to understanding how ensemble and knowledge distil-
lation work in deep learning based on a generic “multi-view”
feature structure. Wen & Li (2021) prove that contrastive
learning with proper data augmentation can learn desired
sparse features resembling the features learning in super-
vised setting. Our proof techniques and intuitions are related
to these recent literature, and our work studies a different
perspective of feature learning by multi-modal joint training.

Notations. [K] denotes the index set {1, . . . ,K}. For a
matrix M, we use Mj to denote its j-th column. For
a vector x = (x1, · · · , xd)

⊤, ∥x∥0 denotes the num-
ber of its non-zero elements and ∥x∥∞ := maxj∈d |xj |.
We use the standard big-O notation and its variants:
O(·), o(·),Θ(·),Ω(·), ω(·), where K is the problem param-
eter that becomes large. Occasionally, we use the symbol
Õ(·) (and analogously with the other four variants) to hide
polylog(K) factors. w.h.p means with probability at least
1− e−Ω(log2(K)). Supp(·) denotes the support of a random
variable.

3. Problem Setup
We present our formulation, including the data distribution
and learner network. We focus on a multi-class classification
problem.

3.1. Data Distribution

Let X be a data sample and y ∈ [K] be the corresponding
label. For simplicity, we consider X := (X1,X2) consist-

ing of two modalities,1 and each modality Mr, r ∈ [2], is
associated with a vector Xr ∈ Rdr . We assume that the raw
data is generated from a sparse coding model:

X1 = M1z1 + ξ1, X2 = M2z2 + ξ2

(z1, z2) ∼ Pz ξr ∼ Pξr for r ∈ [2]

for dictionary Mr ∈ Rdr×K , where zr ∈ RK is the sparse
vector and ξr ∈ Rdr is the noise. There are three main
components Mr, zr, ξr, and we will introduce them in
detail below. For simplicity, we focus on the case where
M1,M2 are unitary with orthogonal columns.

Why sparse coding model? Our data model shares many
similarities with practical scenarios. Originated to explain-
ing neuronal activation of human visual system (Olshausen
& Field, 1997), sparse coding model has been widely used in
machine learning applications to model different uni-modal
data, such as image, text and audio (Mairal et al., 2010;
Yang et al., 2009; Yogatama et al., 2015; Arora et al., 2018;
Whitaker & Anderson, 2016; Grosse et al., 2012). Also,
there is a line of research to develop sparse representations
for multiple modalities simultaneously (Yuan et al., 2012;
Shafiee et al., 2015; Gwon et al., 2016).

In our following descriptions, we specify the choices for
parameters including γr, s, α for the sake of clarity. Our
results apply to a wider range of parameters and generalized
details are provided in Appendix A.1.

Distribution of sparse vector: We generate (z1, z2) from
the joint distribution Pz as follows:

a). Select the label y ∈ [K] uniformly at random;

b). Given the label y, the distribution Pzr|y for each modal-
ity Mr is divided into two categories:

• With probability µr = 1
poly(K) , zr is generated from

the insufficient class:

– zry = Θ(γr), we assume γ1 = γ2 = 1
K0.05 .

– For j ̸= y, zrj ∈ {0} ∪ [Ω(ρr), ρr] satisfying
Pr(zrj ∈ [Ω(ρr), ρr]) = s

K , where s < K (we
choose s = K0.1) to control feature sparsity and
ρr = 1

polylog(K) .

• With probability 1− µr, zr is generated from the suffi-
cient class:

– zry ∈ [1, Cr], where Cr > 1 is a constant.
– For j ̸= y, zrj ∈ {0} ∪ [Ω(1), cr] satisfying

Pr(zrj ∈ [Ω(1), cr]) =
s
K ,where cr is a constant

< 1
2 .

1Our setting can be easily generalized to multiple modalities at
the expense of complicating notations.
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In our settings, ∥zr∥0 = Θ(s) is a sparse vector. Each
class j has its associated feature Mr

j in each modality Mr.
We observe that for the sufficient class, the value of true
label’s coordinate in zr, i.e., zry , is more significant than
others. On the other hand, for the insufficient class, the
target coordinate is smaller than the off-target signal in
terms of order.

Significance of the insufficient class. In practice, dif-
ferent modalities are of various importance under specific
circumstance (Ngiam et al., 2011; Liu et al., 2018; Gat et al.,
2020). It is common that information from one single modal-
ity may be incomplete to build a good classifier (Yang et al.,
2015; Liu et al., 2018; Gupta et al., 2016). The restrictions
on zry well capture this property, in the sense that there is
a non-trivial probability µr that the coefficient zry is rela-
tively small and easy to be concealed by the off-target sig-
nal. Therefore, when zr falls into this category, it provides
insufficient information for the classification task. Given
modality Mr, we call Xr insufficient data if zr comes from
the insufficient class, otherwise sufficient data. Our data
model distinguishes the multi-modal learning from previous
well-studied multi-view analysis, which assumes that each
view is sufficient for classification (Sridharan & Kakade,
2008). Our classification is motivated by the distribution
studied in Allen-Zhu & Li (2020c), where they utilize dif-
ferent levels of feature’s coefficient to model the missing of
certain features.

Noise model: We allow the input to incorporate a general
Gaussian noise plus feature noise, i.e.,

ξr = ξr ′ +Mrαr

Here, the Gaussian noise ξr ′ ∼ N
(
0, σ2

gIdr

)
. The spike

noise αr is any coordinate-wise independent non-negative
random variable satisfying αr

y = 0 and ∥αr∥∞ ≤ α , where
α > 0 is the strength of the feature noise. We consider
α = 1

K0.6 .

Finally, we use P to denote the final data distribution of
(X, y), and the marginal distribution of (Xr, y) is denoted
by Pr.

3.2. Learner Network

We present the learner networks for both multi-modal learn-
ing and uni-modal learning. To start, we first define a
smoothed version of ReLU activation function.
Definition 3.1. The smoothed ReLU function is defined as

σ(x)
def
=


0 x ≤ 0;

xq/(βq−1q) x ∈ [0, β];

x− β
(
1− 1

q

)
x ≥ β

where q ≥ 3 is an integer and β = 1
polylog(K) .

Such activation function is utilized as a proxy to study the
behavior of neural networks with ReLU activation in prior
theoretical analysis (Allen-Zhu & Li, 2020c; Li et al., 2018;
HaoChen et al., 2021; Woodworth et al., 2020), since it ex-
hibits similar behaviour to the ReLU activation in the sense
that σ(·) is linear when x is large and becomes smaller
when x approaches zero. Moreover, it has desired property
that the gradient of σ(·) is continuous. Besides, empirical
studies illustrate that neural networks with polynomial ac-
tivation have a matching performance compared to ReLU
activation (Allen-Zhu & Li, 2020a).

Multi-modal network: We consider a late-fusion (Wang
et al., 2020) model on two modalities M1, and M2, which
is illustrated by the left of Figure 3. Each modality is pro-
cessed by a single-layer neural net φMr

: Rdr → RM with
smoothed ReLU activation σ(·), where M is the number of
neurons. Then their features are fused by sum operation and
passed to a single-layer linear classifier C : RM → RK

to learn the target. We consider M = K · m with
m = polylog(K). More precisely, as illustrated in Fig-
ure 3, the multi-modal network is formulated as follows:

f(X) = (f1(X), . . . , fK(X)) ∈ RK ,

fj(X) =

m∑
l=1

σ(⟨wj,l,1,X
1⟩) + σ(⟨wj,l,2,X

2⟩) (1)

where wj,l,r ∈ Rdr is the (j − 1) · m + l-th neuron of
φmr

. Denote Wr the collection of weights wj,l,r and
Wr

j := (wj,1,r, · · · , wj,m,r)
⊤ ∈ Rm×dr . Then the modal-

ity encoder of Mr can be written as:

φMr
(Wr,Xr) =

(
σ(Wr

1
⊤Xr), · · ·σ(Wr

K
⊤Xr)

)
where σ(·) is applied element-wise. The classifier layer
simply connects the entries from (j − 1) · m + 1-th to
j ·m-th to the j-th output fj(·) with non-trainable weights
all equal to 1. The assumption that the second layer is
fixed is common in previous works (Du et al., 2018; Ji &
Telgarsky, 2019; Sarussi et al., 2021). Moreover, theoretical
analysis in Huang et al. (2021) indicates that the success of
multi-modal learning relies essentially on the learning of the
hidden encoder layer. Nevertheless, we emphasize that our
theory can easily adapt to the case where the second layer is
trained.

Uni-modal network: The network architecture of uni-
modal is similar except that the fusion step is omitted. Math-
ematically, f uni,r : Rdr → RK is defined as follows:

f uni,r(Xr) =
(
f uni,r
1 (Xr), . . . , f uni,r

K (Xr)
)
∈ RK ,

f uni,r
j (Xr) =

m∑
l=1

σ(⟨νj,l,r,Xr⟩) (2)
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Figure 3: Late fusion framework and our learner network.

where νj,l,r ∈ Rdr denotes the weight. We use φuni
Mr

to
denote the modality encoder in uni-modal network.

Training data: We are given n multi-modal data pairs
{Xi, yi}ni=1 sampled from P , denoted by D. We use Dr

to denote the uni-modal data pairs {Xr
i , yi}ni=1 from Mr.

Moreover, we use Ds to denote the data pair that both X1

and X2 are sufficient data, and Di to denote the data that
at least one modality is insufficient. Denote the number of
sufficient and insufficient data respectively as ns and ni.

Training algorithm: We consider to learn the model pa-
rameter W(Wr) by optimizing the empirical cross-entropy
loss using gradient descent with learning rate η > 0, which
is a popular training combination investigated in the liter-
ature, e.g., Wang et al. (2020); Simonyan & Zisserman
(2014).

• For multi-modal, the empirical loss is

L(f) = 1

n

∑
(X,y)∈D

L(f ;X, y) (3)

where L(f ;X, y) = − log
exp(fy(X))∑

j∈[K] exp(fj(X)) . We ini-

tialize w
(0)
j,l,r ∼ N (0, σ2

0Idr
) where σ0 = 1√

K
.2 We

use f (t) to denote the multi-modal network with f
with weights W(t) at iteration t. The gradient descent
update rule is:

w
(t+1)
j,l,r = w

(t)
j,l,r − η · ∇wj,l,r

L(f (t))

• Similarly, for uni-modal, the empirical loss and gradi-

2Such initialization is standard in practice.

ent update rule is defined as follows:

L(f uni,r) =
1

n

∑
(X,y)∈Dr

L(f uni,r;Xr, y) (4)

ν
(t+1)
j,l,r = ν

(t)
j,l,r − η · ∇νj,l,r

L(f uni,r(t)) (5)

where L(f uni,r;Xr, y) = − log
exp(f uni,r

y (Xr))∑
j∈[K] exp(f

uni,r
j (Xr))

,

and ν
(0)
j,l,r ∼ N (0, σ2

0Idr
).

4. Main Results
We present the main theorems of the paper here. We start
with the optimization and generalization guarantees of the
uni-modal network. Then, we study the feature learning
process of multi-modal networks with joint training. We
show that for naive joint training, each modality’s encoder
has a non-trivial probability to learn unfavorable feature
representations. Combining with the special structure of
insufficient data, we immediately establish the performance
gap between the best uni and multi-modal theoretically.

4.1. Uni-modal Network Results

The following theorem states that after enough iterations,
the uni-modal networks can attain the global minimum of
the empirical training loss, and such uni-modal solution also
has a good test performance.

Theorem 4.1. For every r ∈ [2], for sufficiently large K >

0 and every η ≤ 1
poly(K) , after T = poly (K)

η many iteration,

the learned uni-modal network f uni,r(t) w.h.p satisfies:
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• Training error is zero:

1

n

∑
(Xr,y)∈Dr

I {∃j ̸= y :

f uni,r
y

(T )
(Xr) ≤ f uni,r

j

(T )
(Xr)

}
= 0.

• The test error satisfies:

Pr
(Xr,y)∼Pr

(∃j ̸= y :f uni,r
y

(T )
(Xr) ≤ f uni,r

j

(T )
(Xr))

= (1± o(1))µr

Recall that µr represents the proportion of data falling into
the insufficient class for modality Mr. Note that f uni,r(T )

not only minimizes the training error, but the primary source
of its test error is from the insufficient data that cannot pro-
vide enough feature-related information for the classification
task. Therefore, Theorem 4.1 suggests that the uni-modal
networks f uni,r can learn ideal feature representations for
the used single modality Mr.

4.2. Multi-modal Network with Joint Training

In order to evaluate how good the feature representation
learned by the encoder of each modality in joint training,
we consider a uni-modal network fr(t) := C(φ(t)

Mr
), where

φ
(t)
Mr

is the Mr’s encoder learned by joint training at itera-
tion t, and C is the non-trainable linear head we defined in
Section 3.2. The input for fr(t) is simply the data Xr from
Mr. We will measure the goodness of φ(T )

Mr
by the test per-

formance of fr(T ), which is analogous to the method widely
employed in empirical studies of self-supervised learning
to evaluate the learned feature representations (Chen et al.,
2020a).

Theorem 4.2. For sufficiently large K > 0 and every η ≤
1

poly(K) , after T = poly (K)
η many iteration, for the multi-

modal network f (t), fr(t) := C(φ(t)
Mr

) w.h.p :

• Training error is zero:

1

n

∑
(X,y)∈D

I{∃j ̸= y : f (T )
y (X) ≤ f

(T )
j (X)} = 0.

• For r ∈ [2], with probability p3−r > 0, the test error
of fr(T ) is high:

Pr
(Xr,y)∼Pr

(∃j ̸= y : fr
y
(T )(Xr) ≤ fr

j
(T )(Xr)) ≥ 1

K

where p1+p2 = 1−o(1), and pr ≥ m−O(1), ∀r ∈ [2].

Discussion of pr: pr represents the probability that modal-
ity M3−r fails to learn a good feature representation. The
specific values of p1 and p2 are associated with the relative
relation between the marginal distribution of z1 and z2 from
sufficient class. Typically, if the lower bound of Supp(zry) is
larger than the upper bound of Supp(z3−r

y ), pr tends to be
larger than p3−r. Nevertheless, our results indicate that no
matter how such relation varies, even in extreme cases (e.g.,
the lower bound of Supp(zry) is excessively larger than the
upper bound of Supp(z3−r

y ), both of p1 and p2 are lower
bounded by a non-trivial value.

Feature representations learned in joint training are
unsatisfactory. From the optimization perspective, The-
orem 4.2 shows that the multi-modal networks with joint
training can be guaranteed to find a point that achieves
zero error on the training set. However, such a solution is
not optimal for both modalities. In particular, the output
of the uni-modal network fr(T ), which we defined earlier
to assess the quality of the learned modality encoder for
Mr, has a non-negligible probability to generalize badly
and give a test error over 1/K (almost random guessing
for K-classification, and exceedingly larger than f uni,r

y
(T )).

The occurrence of such poor test performance indicates
that w.h.p, at least one of the modality encoding networks
learned relatively deficient knowledge about the modality-
associated features.

Remark. Originally, the intention of joint training is that
for a multi-modal sample, if some of these modalities have
insufficient structure, the information provided by remain-
ing sufficient modalities can assist training and improve the
accuracy. Nevertheless, Theorem 4.2 indicates that adding
more modalities through naive joint possibly impairs the
feature representation learning of the original modalities
Consequently, the modal not only fails to exploit the ex-
tra modalities, but also loses the expertise of the original
modality.

Based on the results in Theorem 4.2, we are able to charac-
terize the performance gap between uni-modal and multi-
modal with joint training in the following corollary.

Corollary 4.3 (Failure of Joint Training). Suppose the as-
sumptions in Theorem 4.2 holds, w.h.p, for joint training,
the learned multi-modal network f (T ) satisfies:

Pr
(X,y)∼P

(∃j ̸= y : f (T )
y (X) ≤ f

(T )
j (X))

∈ [
∑
r∈[2]

(pr − o(1))µr,
∑
r∈[2]

(pr + o(1))µr]

Combining with the results in Theorem 4.1, we immediately
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obtain:

Pr
(X,y)∼P

(∃j ̸= y :f (T )
y (X) ≤ f

(T )
j (X)) ≥

min
r∈[2]

Pr
(Xr,y)∼Pr

(∃j ̸= y :f uni,r
y

(T )
(Xr) ≤ f uni,r

j

(T )
(Xr))

Notice that the test error of the joint training is approxi-
mately the weighted average of the test error of uni-modal
network and is affected by two sets of factors {pr}r∈[2],
{µr}r∈[2]. The corollary has simple intuitive implications.
If there exists a “strong” modality with a smaller µr (less
insufficient structure) and a larger pr (more likely to prevail
during training), the closer the joint training is to the best
uni-modal, since the other modality is too weak to interfere
the feature learning process of the strong modality.

5. Proof Outline
In this section we provide the proof sketch of our theoretical
results. We provide overviews of multi-modal and uni-
modal training process in Section 5.1 and 5.2 respectively,
to provide intuitions for our proof. The complete proof is
deferred to the supplementary.

5.1. Overview of the Joint Training Process

Given modality Mr and class j ∈ [K], we characterize the
feature learning of its modality encoder φMr

in the training
process by quantity:

Γ
(t)
j,r = max

l∈[m]
[⟨Mr

j , w
(t)
j,l,r⟩]

+. (6)

It can be seen that a larger Γ(t)
j,r implies better grasp of the

target feature Mr
j .

We will show that the training dynamics of multi-modal joint
training can be decomposed into two phases: 1) Some spe-
cial patterns of the neurons in the learner networks emerge
and become singletons due to the random initialization,
which demonstrates the phenomenon of modality competi-
tion; 2) As long as the neurons are activated by the winning
modality, they will indeed converge to such modality, and
ignore the other.

Phase 1: modality competition from random initializa-
tion. Our proof begins by showing how the neurons in
each modality encoder φMr

are emerged from random ini-
tialization. In particular, we will show that, despite the exis-
tence of multiple class-associated features (comes from dif-
ferent modalities), only one of them will be quickly learned
by its corresponding encoding network, while the others
will barely be discovered out of the random initialization.
We call this phenomenon “modality competition” near ran-
dom initialization, which demonstrates the origin of the
sub-optimality of naive joint training.

Recall that at iteration t = 0, the weights are initialized as
w

(0)
j,l,r ∼ N

(
0, σ2

0Idr

)
. For j ∈ [K], r ∈ [2], define the

following data-dependent parameter:

dj,r(D) =
1

nβq−1

∑
(X,y)∈Ds

I{y = j}
(
zrj
)q

Recall that Ds denotes the data pair that both X1 and X2

are sufficient data, i.e., the sparse vectors z1 and z2 both
come from the sufficient class. Therefore, dj,r(D) repre-
sents the strength of the target signal for sufficient data from
class j and modality M. Applying standard properties of
the Gaussian distribution, we show the following critical
property:

Property 5.1. For each class j ∈ [K], w.h.p, there exists
rj ∈ [2], s.t.

Γ
(0)
j,rj

[dj,rj (D)]
1

q−2 ≥

Γ
(0)
j,3−rj

[dj,3−rj (D)]
1

q−2 · (1 + 1

polylog(K)
)

In other words, by the property of random Gaussian initial-
ization, for each class j ∈ [K], there will be a Mrj , termed
as winning modality, where the maximum correlation be-
tween M

rj
j and one of the neurons of its corresponding

encoder φMrj
is slightly higher than the other modality

M3−rj . In our proof, we will identify the following phe-
nomenon during the training:

Modality Competition
For every j ∈ [K], at every iteration t, if Mrj is
the winning modality, then Γ

(t)
j,rj

will grow faster than

Γ
(t)
j,3−rj

. When Γ
(t)
j,rj

reaches the threshold Θ(β) =

Θ̃(1), Γ(t)
j,3−rj

still stucks at initial level around Õ(σ0).

Probability of winning. Observing that dj,r(D) is related
to the marginal distribution of zr, we will prove that even
in the extreme setting that zrj ≫ z3−r

j for j = y almost
surely, which implies dj,r(D) ≫ dj,3−r(D) with high prob-
ability, M3−r has a slightly notable probability, denoted
by pj,3−r ≥ m−O(1), to be the winning modality for class
j out of random initialization. Noticing that pj,r also rep-
resents the probability that the modality M3−r fails to be
discovered for class j ∈ [K] at the beginning, our subse-
quent analysis will illustrate that such a lag situation will
continue, leading to bad feature representations for M3−r

with probability pr =
∑

j∈[K] pj,r/K ≥ m−O(1).

Intuition: Technically, in this phase, the activation func-
tion σ(·) is still in the polynomial or negative regime, and
we can reduce the dynamic to tensor power method (Anand-
kumar et al., 2015). We observe that the update of Γ(t+1)

j,r
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is approximately: Γ(t+1)
j,r ≈ Γ

(t)
j,r + η · A(t)

r (Γ
(t)
j,r)

q−1, with

A
(t)
r = Θ(1), which is similar to power method for q-th

(q ≥ 3) order tensor decomposition. By the behavior ob-
served in randomly initialized tensor power method (Anand-
kumar et al., 2015; Allen-Zhu & Li, 2020c), a slight initial
difference can create very dramatic growth gap. Based on
this intuition, we introduce the Property 5.1 to characterize
how much difference of initialization can make one of the
modalities stand out to be the winning modality and propose
the modality competition to further show that the neurons
for the winning modality maintain the edge until they be-
come roughly equal to Θ(β) = Õ(1), while the others are
still around initialization Õ(σ0) (recall that the networks are
initialized by N (0, σ0Idr

)).

Remark. The idea that only part of modalities will win dur-
ing the training is also motivated by a phenomenon called
“winning the lottery ticket” identified in recent theoretical
analysis for over-parameterized neural networks (Li et al.,
2020c; Wen & Li, 2021; Allen-Zhu & Li, 2020b). That
is, for over-parameterized neural networks, only a small
fraction of neurons has much larger norms than an average
norm. Their works focus on who wins in the neural net-
works, while our focus is the winner of inputs, the modality.

Phase 2: converge to the winning modality. The next
phase of our analysis begins when one of the modalities
already won the competition near random initialization, and
focuses on showing that it will dominate until the end of
the training. After the first phase, the pre-activation of the
winning modality’s neurons will reach the linear region,
while the pre-activation of the others still remain in the
polynomial region or even negative. Yet, the loss starts
to decrease significantly, and we prove that Γ(t)

j,3−rj
will

no longer exceed Õ(σ0) until the training loss are close to
converge. Therefore, the winning modality will remain the
victory throughout the training.

5.2. Overview of the Uni-modal Training Process

The training process of uni-modal can also be decom-
posed into two phases, i.e., 1) learning the pattern, and
2) converging to the learned features. Similarly, we de-
fine Ψ(t)

j,r = maxl∈[m][⟨Mr
j , ν

(t)
j,l,r⟩]+ to quantify the feature

learning for the uni-modal network f uni,r.

We briefly describe the difference between the uni-modal
and the joint-training case. The main distinction arises from
Phase 1. Intuitively, since there is only one predictive signal
source without competitors, we prove that the network will
focus on learning the features from the given modality in
Phase 1. In particular, Ψ(t)

j,r will grow fast to Õ(1) at the end
of this phase. Then in Phase 2, the uni-modal will continue
to explore the learned patterns until the end of training.

6. Discussions
Practical insights. Modality competition reveals an essen-
tial defect of late-fusion that features from part of modalities
cannot be learned if we naively train them jointly. An im-
mediate practical implication for practitioners is that, for
late-fusion, one can dynamically adjust the level of partici-
pation of modalities or introduce regularization terms during
training, to enforce the network to fully explore each modal-
ity encoder. For instance, Wang et al. (2020) added weighted
blending of supervision signals to joint training loss; Panda
et al. (2021) and Peng et al. (2022) selected on-the-fly the
optimal modalities during training. Our work offers theo-
retical supports for such adaptive learning. Moreover, our
work reflects how the prevailing pre-training methods e.g.
UNITER (Chen et al., 2020b), M6 (Lin et al., 2021), which
are capable of extracting favorable features for every modal-
ity, lead to better performance for multi-modal learning.

Limitations and future directions. Our analysis focuses
on a simplified data model and network architecture which
capture the realistic property of multi- modal learning under
late-fusion framework. An immediate future direction is
to study the sub-optimality of joint training in other fusion
frameworks (Wang et al., 2020). Furthermore, it is also
important to relax the data assumptions and generalize our
analysis to deep neural networks.

7. Conclusions
In this paper, we provide a novel theoretical understanding
towards a qualitative phenomenon commonly observed in
deep multi-modal applications, that the best uni-modal net-
work outperforms the multi-modal network trained jointly
under late-fusion settings. We analyze the optimization pro-
cess and theoretically establish the performance gaps for
these two approaches in terms of test error. In theory, we
characterize the modality competition phenomenon to tenta-
tively explain the main cause of the sub-optimality of joint
training. Empirical results are provided to verify that our
theoretical framework does coincide with the superior of the
best uni-modal networks over joint training in practice. Our
results also facilitate further theoretical analyses in multi-
modal learning through a new mechanism that focuses on
how modality encoder learns the features.
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Appendix

A. Proofs for Multi-modal Joint Training
In this section, we will provide the proofs of Theorem 4.2 for multi-modal joint training. We will first focus on some
properties and characterizations for modality at initialization. Our analysis actually rely on an induction hypothesis. Then
we will introduce the hypothesis and prove that it holds in the whole training process. Finally, we will use this hypothesis to
complete the proof of our main theorem.

A.1. Notations and Preliminaries

We first describe some preliminaries before diving into the proof.

Global Assumptions. Throughout the proof in this section,

• We choose σq−2
0 = 1

K for q ≥ 3, where σ0 controls the initialization magnitude.

• m = polylog(K), where m controls the number of neurons.

• σg = O(σq−1
0 ), wehre σg gives the magnitude of gaussian noise.

• α = Õ(σ0), where α controls the feature noise.

• s
K ≤ Õ(σ0), where s controls the feature sparsity.

• ni ≤ K2γq−1

s , where ni is the size of the insufficient multi-modal training data.

• ρr = 1
poly log(K) where ρr control the off-target signal for insufficient data.

• n ≥ ω̃
(

K

σq−1
0

)
, n ≥ ω̃

(
k4

s2σ0

)
, T
η
√
dr

≤ 1/poly(K) for r ∈ [2].

• γq−1
r ≤ 1

K for r ∈ [2], where γr controls the target signal for insufficient data.

Network Gradient. Given data point (X, y) ∈ D, in every iteration t for every j ∈ [K], l ∈ [m], r ∈ [2]

−∇wj,l,r
L(f ;X, y) = (I{j = y} − ℓj(f,X))σ′ (⟨wj,l,r,X

r⟩)Xr

where ℓj(f,X) :=
exp(fj(X))∑

i∈[K] exp(fi(X)) , I{·} is the indicator, and σ′(·) denotes the derivative of the smoothed ReLU function.

Gaussian Facts.

Lemma A.1. Consider two Gussian random vector (X1, . . . , Xp) , (Z1, · · · , Zp), where Xi
i.i.d.∼ N (0, 1), Zi

i.i.d.∼
N
(
0, σ̄2

)
:

(a). For σ̄ ≤ 1, for every ϵ > 0, with at most probability O( 1
poly(p) + ϵ log p): maxi∈[p] Xi = maxi∈[p] Zi · (1±O(ϵ))

(b). For σ̄ ≥ 1, for every ϵ > 0, with at least probability p−(σ̄2−1) · Ω( 1σ̄ ): maxi∈[p] Xi ≥ maxi∈[p] Zi

Proof. The lemma can be derived by anti-concentration theorems (Chernozhukov et al., 2015) and maximum Gaussian
property (Kamath, 2015) using the standard Gaussian analysis. The proof follows from Proposition B.2 in (Allen-Zhu & Li,
2020c), and here we omit the proof details.
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A.2. Modality Characterization at Initialization

Define the following data-dependent parameter:

dj,r(D) =
1

nβq−1

∑
(X,y)∈Ds

I{y = j}
(
zrj
)q

Recall Ds denotes the data pair whose sparse vectors z1 and z2 both come from sufficient class.

For each class j ∈ [K], let us denote:

Γ
(t)
j,r

def
= max

l∈[m]

[〈
w

(t)
j,l,r,M

r
j

〉]+
and Γ

(t)
j

def
= max

r∈[2]
Γ
(t)
j,r

Let us give the following definitions and results to characterize each modlaity’s property at initialization:

Definition A.2 (Winning Modality). For each class j ∈ [K], at iteration t = 0, if there exists rj ∈ [2], s.t.

Γ
(0)
j,rj

dj,rj (D)
1

q−2 ≥ Γ
(0)
j,3−rj

dj,3−rj (D)
1

q−2 · (1 + 1

polylog(K)
)

then we refer the modality Mrj as the winning modality for class j. It is obvious that at most one of modalities can win.

Lemma A.3 (Wining Modality Characterization). For every j ∈ [K], denote the probability that modality Mr is the
winning modality as pj,r, then we have

• pj,1 + pj,2 ≥ 1− o(1).

• pj,r ≥ ( 1
polylog(K) )

O(1) for every r ∈ [2].

Proof of Lemma A.3. For the first argument, if neither of modalities wins, then we must have:

Γ
(0)
j,r = Γ

(0)
j,3−r

(
dj,3−r(D)

dj,r(D)

) 1
q−2
(
1±O

(
1

polylog(K)

))
By our assumption, we have dj,3−r(D)

dj,r(D) ≤ 1 and is fixed given the training data. Letting p = m, ϵ = 1
m logm , applying

Lemma A.1 (a), we obtain the probability that this event occurs is at most O( 1
polylogK ) (Recall that m = polylog(K)).

For the second argument, we just need to prove that Γ(0)
j,3−r

(
dj,3−r(D)
dj,r(D)

) 1
q−2

has a non-trival probability to be larger than

Γ
(0)
j,r . We can apply the conclusion of (b) in Lemma A.1, observing that σ̄ = (

dj,3−r(D)
dj,r(D) )

1
q−2 is a constant and then obtain

that

Pr(Γ
(0)
j,3−r

(
dj,3−r(D)

dj,r(D)

) 1
q−2

≤ Γ
(0)
j,r ) ≥

1

mO(1)
=

1

polylog(K)O(1)

Hence, we compelets the proof.

A.3. Induction Hypothesis

Given a data X, define:

Sr(X) := {j ∈ [K] : the j-th coordinate of Xr’s sparse vector zr is not equal to zero, i.e. zrj ̸= 0}

We abbreviate Sr(X) as Sr in our subsequent analyis for simplicity.
Induction Hypothesis A.4.
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For sufficient data (X, y) ∈ Ds, for every r ∈ [2], l ∈ [m]:

i for every j = y, or j ∈ Sr :
〈
w

(t)
j,l,r,X

r
〉
=
〈
w

(t)
j,l,r,M

r
j

〉
zrj ± õ (σ0).

ii else
∣∣∣〈w(t)

j,l,r,X
r
〉∣∣∣ ≤ Õ (σ0)

For insufficient data (X, y) ∈ Di, every l ∈ [m], every r ∈ [2]:

iii for every j = y :
〈
w

(t)
j,l,r,X

r
〉
=
〈
w

(t)
j,l,r,M

r
j

〉
zrj +

〈
w

(t)
j,l,r, ξ

r ′
〉
± Õ (σ0αK)

iv for every j ∈ Sr :
〈
w

(t)
j,l,r,X

r
〉
=
〈
w

(t)
j,l,r,M

r
j

〉
zrj ± õ (σ0).

v for every j = y, if M3−r is the winning modality for j, we have:
∣∣∣〈w(t)

j,l,r,X
r
〉∣∣∣ ≤ Õ (σ0)

vi else
∣∣∣〈w(t)

j,l,r,X
r
〉∣∣∣ ≤ Õ (σ0)

Moreover, we have for every j ∈ [k],

vii Γ
(t)
j ≥ Ω (σ0) and Γ

(t)
j ≤ Õ(1).

viii for every l ∈ [m], every r ∈ [2], it holds that
〈
w

(t)
j,l,r,M

r
j

〉
≥ −Õ (σ0).

Proof overview of Induction Hypothesis A.4. We will first characterize the training phases and then state some claims as
consequences of statements of the hypothesis, which is crucial for our later proof. After that, we will analyze the training
process in every phases to prove the hypothesis.

Let us introduce some calculations assuming the hypothesis holds to simplify the subsequent proof.

Fact A.5 (Function Approximation). Let Zj,r(X) = I{j = y, or j ∈ Sr}zrj , Φ(t)
j,r

def
=
∑

l∈[m]

[〈
w

(t)
j,l,r,M

r
j

〉]+
and

Φ
(t)
j

def
=
∑

r∈[2] Φ
(t)
j,r for every t, every (X, y) ∈ Ds and j ∈ [K], or for every (X, y) ∈ Di and j ∈ [K]\{y},

f
(t)
j (X) =

∑
r∈[2]

(
Φ

(t)
j,r × Zj,r(X)

)
±O

(
1

polylog(K)

)

for every (X, y) ∼ P , with probability at least 1− e−Ω(log2 K) it satisfies for every j ∈ [K],

f
(t)
j (X) =

∑
r∈[2]

(
Φ

(t)
j,r × Zj,r(X)

)
±O

(
1

polylog(K)

)
Similarly, for (Xr, y) ∼ Pr, for r ∈ [2], w.h.p.

fr
j
(t)(X) = Φ

(t)
j,r × Zj,r(X)±O

(
1

polylog(K)

)

Fact A.6. For every (X, y) ∈ D and every j ∈ [K] : ℓj
(
f (t),X

)
= O

(
e
O(Γ(t)

j )m

e
O(Γ(t)

j )m+K

)
; Moreover, for every (X, y) ∈ Di

and j ∈ [K]\{y}, we have ℓj
(
f (t),X

)
= O

(
1
K

) (
1− ℓy

(
f (t),X

))
Proof. f

(t)
j (X) =

∑
l∈[m]

∑
r∈[2] σ(⟨w

(t)
j,l,r,X

r⟩), by Induction Hypothesis A.4,

σ(⟨w(t)
j,l,r,X

r⟩) ≤ O(
1

m
) + [⟨w(t)

j,l,r,M
r
j⟩]+Zj,r(X) (7)

Hence, f (t)
j (X) ≤ mΓ

(t)
j ·O(1) +O(1). Furthermore, for (X, y) ∈ Di and j ̸= y,

∑
r∈[2] Zj,r(X) ≤ (ρ1 + ρ2), then we

have f
(t)
j (X) ≤ mΓ

(t)
j · (ρ1 + ρ2) +O(1) = O(1).
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A.4. Training Phase Characterization

Claim A.7. Suppose Induction Hypothesis A.4 holds, when Γ
(t)
j = O (1/m), then it satisfies

Γ
(t+1)
j = Γ

(t)
j +Θ

( η

K

)
σ′
(
Γ
(t)
j

)
Proof. We consider the case that there exists l, r, s.t. ⟨w(t)

j,l,r,M
r
j⟩ reaches Ω̃( 1

m ). By gradient updates, we have:〈
w

(t+1)
j,l,r ,Mr

j

〉
≥
〈
w

(t)
j,l,r,M

r
j

〉
+

η

n

∑
(X,y)∈D

[
I{y = j}

(
1− ℓj

(
f (t),X

))(
σ′(⟨w(t)

j,l,r,X
r⟩)zrj −O (σg)

)
− I{y ̸= j} ℓj

(
f (t),X

)(
I{j ∈ Sr}σ′(⟨w(t)

j,l,r,X
r⟩)zrj + Õ(σq−1

0 )α+O (σg)
)]

By Induction Hypothesis A.4,when (X, y) ∈ Ds and y = j, σ′(⟨w(t)
j,l,r,X

r⟩)zrj ≥ Ω(1)σ′(⟨w(t)
j,l,r,M

r
j⟩). When j ̸= y, and

j ∈ Sr, we have σ′(⟨w(t)
j,l,r,X

r⟩)zrj ≤ O(1)σ′(⟨w(t)
j,l,r,M

r
j⟩). Combining with the fact ℓj(f (t),X) ≤ O( 1

K ), we obtain:〈
w

(t+1)
j,l,r ,Mr

j

〉
≥
〈
w

(t)
j,l,r,M

r
j

〉
+

η

K
(Ω(1)− o(1))σ′(⟨w(t)

j,l,r,M
r
j⟩)−

η

K
Õ(σq−1

0 + σg)

Then, we derive that 〈
w

(t+1)
j,l,r ,Mr

j

〉
≥
〈
w

(t)
j,l,r,M

r
j

〉
+

Ω(η)

K
σ′(⟨w(t)

j,l,r,M
r
j⟩)

On the other hand,〈
w

(t+1)
j,l,r ,Mr

j

〉
≤
〈
w

(t)
j,l,r,M

r
j

〉
+

η

n

∑
(X,y)∈D

[
I{y = j}

(
1− ℓj

(
f (t),X

))(
σ′(⟨w(t)

j,l,r,X
r⟩)zrj +O (σg)

)
− I{y ̸= j} ℓj

(
f (t),X

)(
I{j ∈ Sr}σ′(⟨w(t)

j,l,r,X
r⟩)zrj −O (σg)

)]
Following the similar analysis, we have〈

w
(t+1)
j,l,r ,Mr

j

〉
≤
〈
w

(t)
j,l,r,M

r
j

〉
+

O(η)

K
σ′(⟨w(t)

j,l,r,M
r
j⟩)

Hence we complete the proof.

Training phases. With the above results, we decompose the training process into two phases for each class j ∈ [K]:

• Phase 1: t ≤ Tj , where Tj is the iteration number that Γ(t)
j reaches Θ

(
β

log k

)
= Θ̃(1) (recall that β is the activation

function threshold)

• Phaes 2, stage 1: Tj ≤ t ≤ T0: where T0 denote the iteration number that all of the Γ
(t)
j reaches Θ(1/m);

• Phase 2, stage 2: t ≥ T0, i.e. from T0 to the end T .

From Fact A.6, we observe that the contribution of j-th output of f (t) is negligible unless reaches Θ(1/m), Hence, after T0,
the output of f (t) is significant which represents the network has learned certain partterns, and the training process enters
the final convergence stage. By Claim A.7, we have T0 = Θ(K/ησq−2

0 ). Note that T0 ≥ Tj , for every j ∈ [K].
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A.5. Error Analysis

A.5.1. ERROR FOR INSUFFICIENT DATA

Claim A.8 (Noise Correlation).

(a) For every (X, y) ∈ Di, every r ∈ [2]:〈
w

(t+1)
y,l,r , ξr ′

〉
≥
〈
w

(t)
y,l,r, ξ

r ′
〉
− η√

dr
+ Ω̃

( η
n

)
σ′
(〈

w
(t)
y,l,r,X

r
〉)(

1− ℓy

(
f (t),X

))
≥ · · · ≥ − ηT√

dr

(b) For every (X, y) ∈ Di, every r ∈ [2],〈
w

(t+1)
y,l,r , ξr ′

〉
≥
〈
w

(t)
y,l,r, ξ

r ′
〉
− η√

dr

+ Ω̃
( η
n

)
σ′
(
Θ(γr) ·

〈
w

(t)
y,l,r,M

r
y

〉
− Õ

(
ηT√
dr

+ σ0αK

))(
1− ℓy

(
f (t),X

))
Proof. For (X0, y0) ∈ Di〈

w
(t+1)
j,l,r , ξr0

′
〉
=
〈
w

(t)
j,l,r, ξ

r
0
′
〉

+
η

n

∑
(X,y)∈D

[
I{y = j}σ′

(〈
w

(t)
j,l,r, X

r
〉) 〈

Xr, ξr0
′〉 (1− ℓj

(
f (t),X

))
− I{y ̸= j} σ′

(〈
w

(t)
j,l,r, X

r
〉) 〈

Xr, ξr0
′〉 ℓj (f (t),X

)]
If j = y0, |⟨Xr, ξr0

′⟩| ≤ Õ(σg) = õ( 1√
dr
) except for Xr

0 , then we have:〈
w

(t+1)
j,l,r , ξr0

′
〉
=
〈
w

(t)
j,l,r, ξ

r
0
′
〉
± η√

dr
+ Θ̃(

η

n
)σ′
(〈

w
(t)
j,l,r, X

r
0

〉)(
1− ℓj

(
f (t),X0

))
By the non-negativity of σ′, we prove the first claim. Furthermore, by induction hypothesis,〈

w
(t)
y,l,r,X

r
〉
=
〈
w

(t)
y,l,r,M

r
y

〉
zry +

〈
w

(t)
y,l,r, ξ

r ′
〉
± Õ (σ0αK) ≥ Θ(γr)

〈
w

(t)
y,l,r,M

r
y

〉
− ηT√

dr
− Õ(σ0αK)

we complete the proof.

Claim A.9 (Error for Insufficient Data). Suppose Induction Hypothesis A.4 holds for all iterations t < T and α ≤ Õ (σ0K) .
We have that

(a) for every (X, y) ∈ Di, for every l ∈ [m], every r ∈ [2]:

T∑
t=T0

(
1− ℓy

(
f (t),X

))
σ′
(〈

w
(t)
y,l,r,X

r
〉)

≤ Õ

(
n

η

)

(b) for every (X, y) ∈ Di,
T∑

t=T0

(
1− ℓy

(
f (t),X

))
≤ Õ

(
n

ηγq−1

)

Proof. Once
∑T ′

t=T0

(
1− ℓy

(
f (t),X

))
σ′ (⟨wy,l,r,X

r⟩) reaches Θ̃
(

n
η

)
for some T ′ ≤ T , by Claim A.8, for t ≥ T ′

〈
w

(t)
y,l,r, ξ

r ′
〉
≥ Õ(1)− 1

poly(K)
= polylog(K)
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Hence, f (t)
y (X) ≥ ⟨wy,l,r,X

r⟩ ≥ polylog(K). And for j ̸= y, f (t)
j (X) ≤ mΓ

(t)
j (ρ1 + ρ2) ≤ O(1). Therefore,

1− ℓy(F
(t),X) ≤ exp(−polylog(K)) = O( 1

poly(K) ), and the summation cannot further exceed Õ(nη ) = Õ(poly(K)).

For (b), suppose
∑T

t=T0

(
1− ℓy

(
f (t),X

))
≥ Ω̃

(
n

ηγq−1

)
. Since Γ

(t)
j ≥ Ω̃(1), by averaging we have:

∑
l∈[m]

∑
r∈[2]

I{
〈
w

(t)
y,l,r,M

r
y

〉
≥ Ω̃(1)}

T∑
t=T0

(
1− ℓy

(
f (t),X

))
≥ Ω̃

(
n

ηγq−1

)

When
〈
w

(t)
y,l,r, ξ

r ′
〉
≥ polylog(K) and

〈
w

(t)
y,l,r,M

r
y

〉
≥ Ω̃(1) simultaneously holds, from the above analysis, we have

1 − ℓy(F
(t),X) ≤ exp(−polylog(K)), hence we only consider the case

〈
w

(t)
y,l,r, ξ

r ′
〉
≤ polylog(K). We decompose

[T0, T ] into 2m+ 1 interval, which is denoted by τ1, · · · , τ2m+1, s.t.∑
t∈τi

∑
l∈[m]

∑
r∈[2]

I{
〈
w

(t)
y,l,r,M

r
y

〉
≥ Ω̃(1),

〈
w

(t)
y,l,r, ξ

r ′
〉
≤ polylog(K)}

(
1− ℓy

(
f (t),X

))
≥ Ω̃

(
n

ηγq−1

)
for every i = 1, · · · , 2m+ 1. By averaging, there exists (l1, r1) ∈ [m]× [2], s.t.∑

t∈τ1

I{
〈
w

(t)
y,l1,r1

,Mr1
y

〉
≥ Ω̃(1),

〈
w

(t)
y,l1,r1

, ξr1
〉
≤ polylog(K)}

(
1− ℓy

(
f (t),X

))
≥ Ω̃

(
n

ηγq−1

)
By Claim A.8 (b), we obtain, for t /∈ τ1,〈

w
(t)
y,l1,r1

, ξr1 ′
〉
≥ Ω̃

(
n

ηγq−1

)
· Ω̃
( η
n

)
· γq−1 = Ω̃(1)

Similarly, there exists (l2, r2) ∈ [m]× [2], s.t.∑
t∈τ2

I{
〈
w

(t)
y,l2,r2

,Mr2
y

〉
≥ Ω̃(1),

〈
w

(t)
y,l2,r2

, ξr2 ′
〉
≤ polylog(K)}

(
1− ℓy

(
f (t),X

))
≥ Ω̃

(
n

ηγq−1

)

Clearly, (l2, r2) ̸= (l1, r1). Keep the similar procedure, we obtain for t ∈ τ2m+1,
〈
w

(t)
y,l,r, ξ

r ′
〉

≥ polylog(K) for all
(l, r) ∈ [m]× [2], which contradicts the fact that∑

t∈τ2m+1

∑
l∈[m]

∑
r∈[2]

I{
〈
w

(t)
y,l,r,M

r
y

〉
≥ Ω̃(1),

〈
w

(t)
y,l,r, ξ

r ′
〉
≤ polylog(K)}

(
1− ℓy

(
f (t),X

))
≥ Ω̃

(
n

ηγq−1

)

Therefore, we prove
∑T

t=T0

(
1− ℓy

(
f (t),X

))
≤ Õ

(
n

ηγq−1

)
.

A.5.2. ERROR FOR SUFFICIENT DATA

Claim A.10 (Individual Error). For every t ≥ 0, every (X, y) ∈ Ds, we have

1− ℓy

(
f (t),X

)
≤ Õ

(
K3

s2

)
· 1

ns

∑
(X,y)∈Ds

[
1− ℓy

(
f (t),X

)]

Proof. It is easy to verify that

1− 1

1 + x
≤ min{1, x} ≤ 2(1− 1

1 + x
)

On the one hand, for (X, y) ∈ Ds, we have

1− ℓy

(
f (t),X

)
≤ min{1,

∑
j ̸=y

exp(max{c1, c2}Φ(t)
j − Φ(t)

y )} ≤
∑
j ̸=y

min{1/K, exp(max{c1, c2}Φ(t)
j − Φ(t)

y )}

≤
∑
i∈[K]

∑
j ̸=i

min{1/K, exp(max{c1, c2}Φ(t)
j − Φ

(t)
i )}



Modality Competition: What Makes Joint Training of Multi-modal Network Fail in Deep Learning? (Provably)

Moreover,

1

ns

∑
(X,y)∈Ds

[1− ℓy

(
f (t),X

)
] ≥ 1

2ns

∑
(X,y)∈Ds

min{1,
∑
j ̸=y

exp(F
(t)
j (X)− F (t)

y (X))}

≥ 1

2ns

∑
(X,y)∈Ds

min{1,
∑

j∈S1(X)∩S2(X)

exp(max{c1, c2}Φ(t)
j − Φ(t)

y )}

≥ 1

2ns

∑
(X,y)∈Ds

∑
j∈S1(X)∩S2(X)

min{1/K, exp(max{c1, c2}Φ(t)
j − Φ(t)

y )}

=
∑
i∈[K]

∑
j∈[K]

1

2ns

∑
(X,y)∈Ds

I{i = y}I{j ∈ S1(X) ∩ S2(X)}min{1/K, exp(max{c1, c2}Φ(t)
j − Φ

(t)
i )}

≥ Ω̃(
s2

K3
)
∑
i∈[K]

∑
j∈[K],j ̸=i

min{1/K, exp(max{c1, c2}Φ(t)
j − Φ

(t)
i )}

Therefore,

1− ℓy

(
f (t),X

)
≤ Õ(

K3

s2
)
1

ns

∑
(X,y)∈Ds

[
1− ℓy

(
f (t),X

)]

Claim A.11 (Phase 2, Stage 2).

For every (X, y) ∈ Ds, every t ≥ T0∑
j∈[K]

Γ
(t+1)
j ≥

∑
j∈[K]

Γ
(t)
j +Ω(η)× 1

ns

∑
(X,y)∈Ds

[
1− ℓy

(
f (t),X

)]
−O

(ηsni

Kn

) 1

ni

∑
(X,y)∈Di

[
1− ℓy

(
f (t),X

)]
Denote:

ErrTol, Stage 3
s :=

∑
t≥T0

1

ns

∑
(X,y)∈Ds

(
1− ℓy

(
f (t),X

))
Consequently, we have

ErrTol, Stage 3
s ≤ Õ

(
K

η

)
+ Õ

(
nis

ηKγq−1

)

Proof. Let (l, r) = argmaxl∈[m],r∈[2][⟨w
(t)
j,l,r,M

r
j⟩]+. By gradient updates, we have〈

w
(t+1)
j,l,r ,Mr

j

〉
≥
〈
w

(t)
j,l,r,M

r
j

〉
+

η

n

∑
(X,y)∈D

[
I{y = j}

(
1− ℓj

(
f (t),X

))(
σ′(⟨w(t)

j,l,r,X
r⟩)zrj −O (σg)

)
− I{y ̸= j} ℓj

(
f (t),X

)(
σ′(⟨w(t)

j,l,r,X
r⟩)I{j ∈ Sr(X)}zrj + Õ(σq−1

0 )α+O (σg)
)]

In the Stage 3, ⟨w(t)
j,l,r,M

r
j⟩ ≥ Θ̃(1) ≫ β

• For sufficient multi-modal data, when j = y or j ∈ Sr(X), ⟨w(t)
j,l , X

r⟩ = ⟨w(t)
j,l ,M

r
j⟩zrj ± õ(σ0), hence ⟨w(t)

j,l ,X
r⟩ is

already in the linear regime of activation function:

– For j = y, zrj ∈ [1, C] ⇒ σ′(⟨w(t)
j,l,r,X

r⟩)zrj ≥ (1− o(1))zrj ≥ 1− o(1)
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– For j ∈ Sr(X), zrj ∈ [Ω(1), cr] ⇒ σ′(⟨w(t)
j,l,r,X

r⟩)zrj ≤ cr

• For insufficient multi-modal data:

– For j = y, σ′(⟨w(t)
j,l,r, X

r⟩)zrj has naive lower bound 0.

– For j ∈ Sr(X), we have σ′(⟨w(t)
j,l,r,X

r⟩) ≤ ρr, and ℓj
(
f (t),X

)
= O

(
1
K

) (
1− ℓy

(
f (t),X

))
.

Therefore〈
w

(t+1)
j,l,r ,Mr

j

〉
≥
〈
w

(t)
j,l,r,M

r
j

〉
+

η

ns

∑
(X,y)∈Ds

[
I{y = j}(1− o(1))(1− ℓy

(
f (t),X

)
)− I{y ̸= j}crℓj

(
f (t),X

)]
− ηni

Kn
· 1

ni

∑
(X,y)∈Di

[
(I{y = j}O (Kσg) + I{y ̸= j}(O (σg) + I{j ∈ Sr(X)})) (1− ℓy

(
f (t),X

)
)
]

(8)

Summing over j ∈ [K], we have:∑
j∈[K]

Γ
(t+1)
j ≥

∑
j∈[K]

Γ
(t)
j +Ω(η)× 1

ns

∑
(X,y)∈Ds

[
1− ℓy

(
f (t),X

)]
− ηO

( s

K

ni

n

)
× 1

ni

∑
(X,y)∈Di

[
1− ℓy

(
f (t),X

)]

Claim A.12 (Phase 2, Stage 1). Denote:

ErrTol, Stage 2
s,j :=

T0∑
t=Tj

1

ns

∑
(X,y)∈Ds

I{y = j}
(
1− ℓy

(
f (t),X

))

Ẽrr
Stage 2
s,j :=

1

ns

∑
(X,y)∈Ds

I{y ̸= j}ℓj
(
f (t),X

)
For every (X, y) ∈ Ds, every T0 ≥ t ≥ Tj , we have

1) for Λ ∈ [ 1K , 1
s ], Λ ≤ Õ(K1−2c)

ErrTol, Stage 2
s,j ≤ Õ(

1

η
) +O(

sΛ

K
T0)

2) for every t ∈ [Tj , T0],

Ẽrr
Stage 2
s,j ≤ O

(
1

K

)
In order to prove Claim A.12, let us first prove the following lemma:

Lemma A.13. Consider Λ ∈ [ 1K , 1
s ], letting T ∗ := Θ̃(k

1
cΛ

1
c /η), where c := {c1, c2}, then we have t ≤ T ∗, exp(cΦt

j) ≤
kΛ for any j ∈ [K].

Proof. Denote

Φ
(t)

= max
j∈[K]

∑
l∈[m]

∑
r∈[2]

[〈
w

(t)
j,l,r,M

r
j

〉]+
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Let j∗ := argmaxj∈[K]

∑
l∈[m]

∑
r∈[2]

[〈
w

(t)
j,l,r,M

r
j

〉]+
. By gradient updates, we have:〈

w
(t+1)
j∗,l,r ,M

r
j∗

〉
≤
〈
w

(t)
j∗,l,r,M

r
j∗

〉
+

η

n

∑
(X,y)∈D

[
I{y = j∗}(σ′(⟨w(t)

j∗,l,r, X
r⟩)zrj∗ +O(σg))(1− ℓy

(
f (t),X

)
) + I{y ̸= j∗}O(σg)ℓj∗

(
f (t),X

)]
(9)

≤
〈
w

(t)
j∗,l,r,M

r
j∗

〉
+O(η)(

1

n

∑
(X,y)∈D

I{y = j∗}(1− ℓy

(
f (t),X

)
) +O(σg))

We only focus on the Ds since the contribution of insufficient data is negligible.

• For j = y, f (t)
y (X) ≥ Φ

(t)
y − 1

polylog (K) , w.p. 1
K

• For j ∈ S1(X) ∪ S2(X), f (t)
j (X) ≤ cΦ

(t)
j + 1

polylog (K) , w.p. (1− s
K )2

• Else, f (t)
j (X) ≤ 1

polylog (k) , w.p. 1− (1− s
K )2

Then we obtain:

1

n

∑
(X,y)∈Ds

I{y = j∗}(1− ℓy

(
f (t),X

)
) ≤ 1

n

∑
(X,y)∈Ds

I{y = j∗}
∑

j ̸=y e
f
(t)
j (X)

ef
(t)
y (X)

≤ 1

K
O(

K + s exp(cΦ
(t)
)

exp(Φ
(t)
)

)

Summing over (r, l), we have:

Φ
(t+1) ≤ Φ

(t)
+

η

K
Õ(

ni

n
+

K + s exp(cΦ
(t)
)

exp(Φ
(t)
)

)

Once exp(Φ
(t)
) reaches Ω(k

1
cΛ

1
c ), then Φ

(t+1) ≤ Φ
(t)

+ηÕ(k−
1
cΛ− 1

c ), which implies exp(cΦ
(t+1)

) cannot further exceed
kΛ

Proof of Claim A.12. Following the similar gradient analysis in (8), we have

Γ
(t+1)
j ≥ Γ

(t)
j (10)

+
η

ns

∑
(X,y)∈Ds

[
I{y = j}(1− o(1))(1− ℓy

(
f (t),X

)
)

−I{y ̸= j}(cI{j ∈ S1(X) ∪ S2(X)}+ Õ(σq−1
0 )α+O(σg))ℓj

(
f (t),X

)]
− ηni

Kn
· 1

ni

∑
(X,y)∈Di

[(I{y = j}O (Kσg)

+I{y ̸= j}(O (σg) + Õ(σq−1
0 )α+ I{j ∈ S1(X) ∪ S2(X)})

)
(1− ℓy

(
f (t),X

)
)
]

(11)

For (X, y) ∈ Ds, and j ∈ S1(X) ∪ S2(X), we easily derive that f (t)
j (X) ≤ cΦ

(t)
j + 1

polylog (K) . Hence,

1

ns

∑
(X,y)∈Ds

[
I{y ̸= j}I{j ∈ S1(X) ∪ S2(X)}ℓj

(
f (t),X

)]

=
1

ns

∑
(X,y)∈Ds

[
I{y ̸= j}I{j ∈ S1(X) ∪ S2(X)} 1

1 +
∑

i ̸=j exp(fi(X)− fj(X))

]

≤ 1

ns

∑
(X,y)∈Ds

[
I{y ̸= j}I{j ∈ S1(X) ∪ S2(X)} 1

1 +
∑

i ̸=j exp(f
(t)
i (X)− cΦ

(t)
j )

]
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If we let Λ = Θ̃(K2c−1), then T ∗ ≥ T0. By the above lemma, we have

1

ns

∑
(X,y)∈Ds

[
I{y ̸= j}I{j ∈ S1(X) ∪ S2(X)}ℓj

(
f (t),X

)]
≤ O(Λ)

Taking back into (11):

Γ
(t+1)
j ≥ Γ

(t)
j +Ω(η)(

1

ns

∑
(X,y)∈Ds

[
I{y = j}(1− ℓy

(
f (t),X

)
)
]
−O(

ni

n
· s

K2
)−O(

sΛ

K
))

Combining with the fact that Γ(t)
j ≤ Õ(1), we finally derive that

T0∑
t=Tj

1

ns

∑
(X,y)∈Ds

[
I{y = j}(1− ℓy

(
f (t),X

)
)
]
≤ Õ(

1

η
) +O(

sΛ

K
T0)

A.6. Modality Competition

Define a data-dependent parameter:

dj,r(D) =
1

nβq−1

∑
(X,y)∈Ds

I{y = j}
(
zrj
)q

Lemma A.14. Denote:

W def
=

{
(j, rj) ∈ [K]× [2] | Γ(0)

j,rj
dj,rj (D)

1
q−2 ≥ Γ

(0)
j,3−rj

dj,3−rj (D)
1

q−2 (1 +
1

polylog(K)
)

}
W represents the collection of the class and modality pairs to indicate the winning modality of every class. Suppose
Induction Hypothesis A.4 holds for all iterations < t. Then,

∀(j, rj) ∈ W : Γ
(t)
j,3−rj

≤ Õ (σ0)

In order to prove Claim A.14, we introduce a classic result in tensor power analyis (Anandkumar et al., 2015; Allen-Zhu &
Li, 2020c):

Lemma A.15 (Tensor Power Bound). Let {xt, yt}t=1,... be two positive sequences that satisfy

xt+1 ≥ xt + η ·Atx
q−1
t for some At = Θ(1)

yt+1 ≤ yt + η ·Bty
q−1
t where Bt = AtM and M = Θ(1) is a constant

Moreover, if x0 ≥ y0M
1

q−2

(
1 + 1

polylog(k)

)
. For every C ∈ [x0, O(1)], let Tx be the first iteration such that xt ≥ C, then

we have
yTx

≤ Õ(x0)

Proof. By gradient updates, we have:〈
w

(t+1)
j,l,r ,Mr

j

〉
=
〈
w

(t)
j,l,r,M

r
j

〉
+

η

n

∑
(X,y)∈S

[
I{y = j}

(
1− ℓj

(
f (t),X

))(
σ′(⟨w(t)

j,l,r,X
r⟩)zrj ±O (σg)

)
− I{y ̸= j} ℓj

(
f (t),X

)(
I{j ∈ Sr}σ′(⟨w(t)

j,l,r,X
r⟩)zrj ± Õ

(
σq−1
0 α+ σg

))]
(12)
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• Phase 1: for t ≤ Tj , we have ℓj(f
t,X) ≤ O( 1

K ). Since ni ≪ n, we only consider the sufficient multi-modal data in
this phase, and we can simplify the above equation into:〈

w
(t+1)
j,l,r ,Mr

j

〉
=
〈
w

(t)
j,l,r,M

r
j

〉
+

η

n

∑
(X,y)∈Ds

[
I{y = j}

(
1−O(

1

K
)

)
σ′(⟨w(t)

j,l,r,X
r⟩)zrj

+I{y ̸= j}I{j ∈ Sr}O(
1

K
)σ′(⟨w(t)

j,l,r,X
r⟩)zrj ± Õ(

σ0α+ σg

K
)

]
When j = y or j ∈ Sr, we have ⟨w(t)

j,l,r,X
r⟩ = ⟨w(t)

j,l,r,M
r
j⟩zrj ± õ(σ0). Since we are in Phase 1, ⟨w(t)

j,l,r,M
r
j⟩zrj ≪ β

, then we obtain σ′(⟨w(t)
j,l,r,X

r⟩)zrj = [⟨w(t)
j,l,r,M

r
j⟩+]q−1(zrj )

q/βq−1 ± Õ(σ0). Hence

〈
w

(t+1)
j,l,r ,Mr

j

〉
=
〈
w

(t)
j,l,r,M

r
j

〉
+

η

ns

(1−O(
1

polylogK
)

) ∑
(X,y)∈Ds

I{y = j} ±O(
s

K2
)


·
(
[⟨w(t)

j,l,r,M
r
j⟩+]q−1(zrj )

q/βq−1
)
± õ(ησ0/K) (13)

Let l∗ = argmaxl[⟨w(0)
j,l,rj

,M
rj
j ⟩]+, and l′ be arbitrary l ∈ [m] Define:

at = ⟨w(t)
j,l∗,rj

,M
rj
j ⟩, bt = max{⟨w(t)

j,l′,3−rj
,M

3−rj
j ⟩, σ0}

By (13), we have at+1 ≥ at +Ata
q−1
t , bt+1 ≤ bt +Btb

q−1
t , where At = ηdj,rj (D)(1−O( 1

polylogK )), Bt = AtM ,

and M = (1 + 1
polylogK ) · dj,3−rj

(D)

dj,rj
(D) is a constant.

Since (j, rj) ∈ W , by definition we have a0 ≥ b0M
1

q−2 (1 + 1
polylogK ). Applying Lemma A.15, we can conclude that,

once at reaches Ω̃(1) at some iteration after Tj , we still have Γ
(t)
3−rj

≤ bt ≤ Õ(a0) = Õ(σ0).

• Phase 2, Stage 1: for t ∈ [Tj , T0], let us denote r′ = 3− rj , by hypothesis that Γ(t)
r′ ≤ Õ(σ0)

1. For j ∈ Sr, or (X, y) ∈ Ds and j = y , we have

σ′(⟨w(t)
j,l,r′ ,X

r′⟩)zr
′

j ≤ σ′(⟨w(t)
j,l,r′ ,M

r′⟩zr
′

j ± õ(σ0))z
r′

j ≤ Õ(σq−1
0 )

2. For (X, y) ∈ Di and j = y, by induction hypothesis, we have: σ′(⟨w(t)
j,l,r′ ,X

r′⟩)zr′j ≤ Õ(σq−1
0 )

Putting back to (12), we obtain:

|⟨w(t+1)
j,l,r′ ,M

r′

j ⟩| ≤ |⟨w(t)
j,l,r′ ,M

r′

j ⟩|

+
η

ns

∑
(X,y)∈Ds

[
I{y = j}(Õ(σq−1

0 ) +O(σg))
(
1− ℓj

(
f (t),X

))
+ I{y ̸= j}Õ(σq−1

0 ) ℓj

(
f (t),X

)]
+ Õ(

σq−1
0 ni

n
) · η

ni

∑
(X,y)∈Di

[
(I{y = j}+ 1

K
I{y ̸= j})

(
1− ℓy

(
f (t),X

))]

In this stage, we ignore the insufficient multi-modal data. Then, we have

|⟨w(t+1)
j,l,r′ ,M

r′

j ⟩| ≤ |⟨w(Tj)
j,l,r′ ,M

r′

j ⟩|+ ηÕ(σq−1
0 )(ErrTol, Stage 2

s,j + T0 · Ẽrr
Stage 2
s,j )

≤ Õ(σ0) + Õ(σq−1
0 ) · (Õ(1) +O(

1 + sΛ

σq−2
0

))(σ0) (applying Claim A.12)

= Õ(σ0)
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• Phase 2, Stage 2: for t ≥ T0, denote:

ErrTol, Stage 3
s :=

∑
t≥T0

1

ns

∑
(X,y)∈Ds

(
1− ℓy

(
f (t),X

))

ErrTol, Stage 3
in,j :=

∑
t≥T0

1

ni

∑
(X,y)∈Di

I{y = j}
(
1− ℓy

(
f (t),X

))
Taking the insufficient multi-modal data into consideration, we have:

Γ
(t+1)
j,r′ ≤ Γ

(T0)
j,r′ + Õ

(
ησq−1

0

)
ErrTol, Stage 3

s +O
(ηni

n

)
·

(
ErrTol, Stage 3

in,j +

∑
i∈[K] ErrTol, Stage 3

in,i

K

)
· Õ
(
σq−1
0

)
≤ Õ(σ0) + Õ

(
ησq−1

0

)
· (O(

K

η
) + Õ

(
nis

ηKγq−1

)
+

ni

n
· Õ
(

n

ηKγq−1

)
)

(Applying Claim A.9 (b) and Claim A.11)

If ni ≤ γq−1K2

s , ni ≤ γq−1K

σq−2
0

(already satisfied in our parameter settings), we can complete the proof.

A.7. Regularization

Lemma A.16 (Diagonal Correlations). Suppose Induction Hypothesis holds for all iterations < t. Then, letting Φ
(t)
j,r

def
=∑

l∈[m]

[〈
w

(t)
j,l,r,M

r
j

〉]+
, we have

∀j ∈ [K],∀r ∈ [2] : Φ
(t)
j,r ≤ Õ(1)

This implies Γ(t)
j ≤ Õ(1) as well.

Proof. By gradient updates, we have:[〈
w

(t+1)
j,l,r ,Mr

j

〉]+
=
[〈

w
(t)
j,l,r,M

r
j

〉]+
+ θ

(t)
j,l,r ·

η

n

∑
(X,y)∈D

[〈
−∇wj,l,r

L
(
f (t);X, y

)
,Mr

j

〉]

where θ
(t)
j,l,r ∈ [0, 1]. Considering the insufficient multi-modal data with label y = j that modality Mr is insufficient,

denoted by Ij,r, we can define:

I
(t+1)
j,r := I

(t)
j,r +

η

n

∑
l∈[m]

θ
(t)
j,l,r

∑
(X,y)∈Ij,r

[〈
−∇wj,l,r

L
(
f (t);X, y

)
,Mr

j

〉]
, I

(0)
j,r = 0

S
(t+1)
j,r := S

(t)
j,r +

η

n

∑
l∈[m]

θ
(t)
j,l,r

∑
(X,y)/∈Ij,r

[〈
−∇wj,l,r

L
(
f (t);X, y

)
,Mr

j

〉]
, S

(0)
j,r = Φ

(0)
j,r

Φ
(t)
j,r = I

(t)
j,r + S

(t)
j,r

For I(t)j,r :

I
(t+1)
j,r := I

(t)
j,r +

η

n

∑
l∈[m]

θ
(t)
j,l,r

∑
(X,y)∈Ij,r

[
(1− ℓj

(
f (t),X

)
)(σ′(⟨wj,l,r,X

r⟩)zrj ±O(σg))
]

Since Mr is insufficient, zrj ≤ O(γ), and we can easily conclude that,

|I(t+1)
j,r − I

(t)
j,r | ≤ O(

ηniγ

n
)
∑
l∈[m]

1

ni

∑
(X,y)∈Di

[
I{(X, y) ∈ Ij,r}(1− ℓj

(
F (t), X

)
)(σ′(⟨wj,l,r, X

r⟩)±O(σg))
]
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Denote:
Êrr

Tol, Stage 3
in :=

∑
t≥T0

1

ni

∑
(X,y)∈Di

(
1− ℓy

(
f (t),X

))
σ′(⟨wj,l,r,X

r⟩)

Then we have, ∀t ≥ 0 :

|I(t)j,r | ≤ Õ(
ηγni

Kn
)(Êrr

Tol, Stage 3
in + T0) = Õ(

γni

K
) ≤ 1

polylog (K)
(Applying Claim A.9 (a) )

Hence, we only need to bound the remaining part S(t)
j,r . Also by gradient inequality, we have:

S
(t+1)
j,r ≤ S

(t)
j,r +O(

η

n
)

∑
(X,y)/∈Ij,r

[
I{y = j}(1− ℓy(f

(t),X)
]
+ Õ(ησg)

Let us denote: Φ(t)
def
= maxj∈[K],r∈[2] Φ

(t)
j,r, and (j∗, r∗) = argmaxS

(t)
j,r . For t ≥ T0, if S(t)

j∗,r∗ > polylog(K), then we
obtain Φ(t) > polylog(K). For (X, y) ∈ Ds with y = j∗; and for (X, y) ∈ Di with y = j∗ and Mr∗ is sufficient we both
have:

• f
(t)
j (X) ≤ (c1 + c2 + o(1))Φ(t), j ̸= j∗

• f
(t)
j∗ (X) ≥ (1− o(1))Φ(t)

Hence 1− ℓj∗(f
(t),X) = exp(−Ω(polylog(K))) is neglibible. Then

maxS
(t+1)
j,r ≤ S

(t)
j,r + Õ(η(exp(−Ω(polylog(K))) + σg)) = Õ(1)

Thus, we complete the proof.

Lemma A.17 (Nearly Non-Negative). Suppose Induction Hypothesis holds for all iterations < t. Then,

∀j ∈ [K],∀l ∈ [m],∀r ∈ [2] :
〈
w

(t)
j,l,r,Mj,r

〉
≥ −Õ (σ0)

Proof. By gradient updates, we obtain:〈
w

(t+1)
j,l,r ,Mr

j

〉
≥
〈
w

(t)
j,l,r,M

r
j

〉
+

η

n

∑
(X,y)∈S

[
I{y = j}

(
1− ℓj

(
f (t),X

))(
σ′(⟨w(t)

j,l,r,X
r⟩)zrj −O (σg)

)
− I{y ̸= j} ℓj

(
f (t),X

)(
I{j ∈ Sr}σ′(⟨w(t)

j,l,r,X
r⟩)zrj + Õ(σq−1

0 )α+O (σg)
)]

For y = j, we have σ′(⟨w(t)
j,l,r,X

r⟩)zrj ≥ 0. If there exists t0, s.t. ⟨w(t)
j,l,r,Mj,r⟩ ≤ −Ω̃ (σ0) for t ≥ t0, then for j ∈ Sr, we

have σ′(⟨w(t)
j,l,r,X

r⟩)zrj = σ′(⟨w(t)
j,l,r,M

r
j⟩zrj ± õ(σ0))z

r
j = 0. Therefore,〈

w
(t+1)
j,l,r ,Mr

j

〉
≥
〈
w

(t)
j,l,r,M

r
j

〉
− η

n

∑
(X,y)∈S

[
I{y = j}

(
1− ℓj

(
f (t),X

))
O (σg) + I{y ̸= j} ℓj

(
f (t),X

)(
σq−1
0 α+O (σg)

)]
First consider the case t ≤ T0 = Θ( K

ησq−2
0

), we have ℓj(f
(t),X) = O(1/K) , hence

〈
w

(t+1)
j,l,r ,Mr

j

〉
≥ −Õ (σ0)−O(

ηT0(σg + σq−1
0 α)

K
) = −Õ (σ0)
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σg = O(σq−1
0 ). When t ≥ T0, notice that for Di, ℓj(f (t),X) = O( 1

K )(1− ℓy(f
(t),X)) when j ̸= y (by Fact A.6), then

we have:〈
w

(t+1)
j,l,r ,Mr

j

〉
≥
〈
w

(t)
j,l,r,M

r
j

〉
− η

ns

∑
(X,y)∈Ds

[(
1− ℓy(f

(t),X)
)(

σq−1
0 α+O (σg)

)]

− ηni

n
· 1

ni

∑
(X,y)∈Di

[
I{y = j}

(
1− ℓy

(
f (t),X

))
O (σg) + I{y ̸= j}

(
1− ℓy(f

(t),X)
) σq−1

0 α+O (σg)

K

]

we need to bound:

ErrTol, Stage 3
s ≤ Õ(

1

ησq−2
0

)

ErrTol, Stage 3
in,j · ηni

n
≤ Õ(

1

σq−2
0

)

Combining the results from Claim A.11 and A.9, we c complete the proof.

Lemma A.18 (Off-Diagnol Correlation). Suppose Induction Hypothesis holds for all iterations < t. Then,

∀j ∈ [K],∀l ∈ [m],∀i ∈ [K]\{j} :
∣∣∣〈w(t)

j,l,r,M
r
i

〉∣∣∣ ≤ Õ (σ0)

Proof. Denote At
j = maxl∈[m],i∈[K]/j

∣∣∣〈w(t)
j,l,r,M

r
i

〉∣∣∣. By gradient inequality, we have:

∣∣∣〈w(t+1)
j,l,r ,Mr

i

〉∣∣∣ ≤ ∣∣∣〈w(t)
j,l,r,M

r
i

〉∣∣∣
+

η

n

∑
(X,y)∈D

[
I{y = j}

(
1− ℓj

(
f (t),X

))(
σ′(⟨w(t)

j,l,r,X
r⟩)(I{i ∈ Sr}zri + αr

i ) +O (σg)
)

+ I{y ̸= j} ℓj

(
f (t),X

)(
σ′(⟨w(t)

j,l,r,X
r⟩) (zri I{i = y, or i ∈ Sr(X)}+ αr

i I{i ̸= y}) + Õ (σg)
)]

• Phase 1: t ∈ [0, Tj ]. We have ℓj(f
(t),X) ≤ O( 1

K )∣∣∣〈w(t+1)
j,l ,Mr

i

〉∣∣∣ ≤ ∣∣∣〈w(t)
j,l ,M

r
i

〉∣∣∣+ Õ(
η

K
)
(
(Γ

(t)
j )q−1 · (α+

s

K
) +O(σg)

)
Combining with the growth rate η

K

∑
t≤Tj

(Γ
(t)
j )q−1 ≤ Õ(1), and Tj ≤ Θ( K

ησq−2
0

) , as long as

s

K
= Õ(σ0), α = Õ(σ0), σg = Õ(σq−1

0 )

we have A
(t)
j ≤ Õ(σ0)

• Phase 2, Stage 1: t ∈ [Tj , T0], when y = j, we naively bound the σ′(⟨w(t)
j,l,r,X

r⟩) by 1; for j ̸= y, we write

σ′(⟨w(t)
j,l,r,X

r⟩) ≤ I{j ∈ Sr}+ Õ(σq−1
0 )
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Then we have∣∣∣〈w(t+1)
j,l,r ,Mr

i

〉∣∣∣ ≤ ∣∣∣〈w(t)
j,l,r,M

r
i

〉∣∣∣
+

η

ns

∑
(X,y)∈Ds

[
I{y = j}

(
1− ℓy

(
f (t),X

))( s

K
+ α+O (σg)

)
+ I{y ̸= j} ℓj

(
f (t),X

)(
I{j ∈ Sr}I{i = y, or i ∈ Sr}O(1) + Õ(σq−1

0 ) (zri + α) +O(σg)
)]

+
ηni

n
· 1

ni

∑
(X,y)∈Di

(
1− ℓy

(
f (t),X

)) [
I{y = j}

( s

K
+ α+O (σg)

)
+ I{y ̸= j} · 1

K

(
I{j ∈ Sr}I{i = y, or i ∈ Sr(X)}O(1) + Õ(σq−1

0 ) (zri + α) +O(σg)
)]

Hence, we need to bound:

ErrTol, Stage 2
s,j :=

T0∑
t=Tj

1

ns

∑
(X,y)∈Ds

[
I{y = j}

(
1− ℓj

(
f (t),X

))]
≤ Õ(

1

η
)

Ẽrr
Stage 2
s,j :=

1

ns

∑
(X,y)∈Ds

I{y ̸= j}ℓj
(
f (t),X

)
≤ O(

1

K
)

which can be directly implied from Claim A.12.

• Phase 2, Stage 2: t > T0 :∣∣∣〈w(t+1)
j,l,r ,Mr

i

〉∣∣∣ ≤ ∣∣∣〈w(t)
j,l,r,M

r
i

〉∣∣∣
+

η

ns

∑
(X,y)∈Ds

[(
1− ℓy

(
f (t),X

))(
O(

s2

K2
) + Õ(σq−1

0 ) +
α

K
+O (σg)

)]
+

ηni

n
· 1

ni

∑
(X,y)∈Di

[
I{y = j}

( s

K
+ α+O (σg)

)
+ I{y ̸= j} · 1

K

(
O(

s2

K2
) + Õ(σq−1

0 ) +O (σg)

)]
(1− ℓy(F

(t),X))

By the error analysis in Claim A.11 and A.9, we have

ErrTol, Stage 3
s :=

∑
t>T0

1

ns

∑
(X,y)∈Ds

[(
1− ℓy

(
f (t),X

))]
≤ Õ(

K

η
)

ErrTol, Stage 3
in :=

∑
t>T0

1

ni

∑
(X,y)∈Di

(1− ℓy

(
f (t),X

)
) ≤ Õ(

n

ηγq−1
)

If ni

γq−1K ≤ Õ( 1

σq−2
0

), then we completes the proof.

Lemma A.19 (Gaussian Noise Correlation). Suppose Induction Hypothesis holds for all iterations < t. Then,

• For (X, y) ∈ D, j /∈ {y} ∪ Sr(X) : |⟨w(t)
j,l,r, ξ

r ′⟩| ≤ Õ(σ0)

• For (X, y) ∈ D, j ∈ Sr(X); or (X, y) ∈ Ds, j = y : ⟨w(t)
j,l,r, ξ

r ′⟩ ≤ õ(σ0)

• For (X, y) ∈ Di, j = y and (j, 3− r) ∈ W : ⟨w(t)
j,l,r, ξ

r ′⟩ ≤ Õ(σ0)
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Proof. By gradient updates, for (X0, y0) ∈ S〈
w

(t+1)
j,l,r , ξr0

′
〉
=
〈
w

(t)
j,l,r, ξ

r
0
′
〉

+
η

n

∑
(X,y)∈D

[
I{y = j}σ′

(〈
w

(t)
j,l,r,X

r
〉) 〈

Xr, ξr0
′〉 (1− ℓj

(
f (t),X

))
− I{y ̸= j} σ′

(〈
w

(t)
j,l,r,X

r
〉) 〈

Xr, ξr0
′〉 ℓj (f (t),X

)]
If j = y0, |⟨Xr, ξr0

′⟩| ≤ Õ(σg) = õ( 1√
d
) except for Xr

0, then we have:〈
w

(t+1)
j,l,r , ξr ′

〉
=
〈
w

(t)
j,l,r, ξ

r ′
〉
± η√

dr
+ Θ̃(

η

n
)σ′
(〈

w
(t)
j,l,r,X

r
〉)(

1− ℓj

(
f (t),X

))
Else j ̸= y0 : 〈

w
(t+1)
j,l,r , ξr ′

〉
=
〈
w

(t)
j,l,r, ξ

r ′
〉
± η√

dr
− Θ̃(

η

n
)σ′
(〈

w
(t)
j,l,r,X

r
〉)

ℓj

(
f (t),X

)
If |⟨w(t)

j,l,r,X
r⟩| ≤ Õ(c), hence σ′(⟨w(t)

j,l,r,X
r⟩) ≤ Õ(cq−1). When t ≤ T0,

|⟨w(t+1)
j,l,r , ξr ′⟩| ≤ T0η√

d
+ Õ(

ηcq−1T0

n
)

• Sufficient: by Claim A.10∑
t>T0

ℓj(f
(t),X) ≤

∑
t>T0

(1− ℓy(f
(t),X)) ≤ Õ(

K3

s2
)
∑
t>T0

1

ns

∑
(X,y)∈Ds

(1− ℓy(f
(t),X))

Combining the previous analysis:

|⟨w(t+1)
j,l,r , ξr ′⟩| ≤ Tη√

d
+ Õ(

ηcq−1

n
(T0 +

K4

s2η
)) =

Tη√
d
+ Õ(

ηcq−1T0

n
+

K4cq−1

s2n
)

When j /∈ {y} ∪ Sr(X), c = Õ(σ0); else, c = Õ(1). n ≥ ω̃
(

K

σq−1
0

)
, n ≥ ω̃

(
k4

s2σ0

)
, T
η
√
d
≤ 1/poly(K)

• Insufficient: by Claim A.9 ∑
t>T0

(1− ℓy(f
(t),X)) ≤ Õ(

n

ηγq−1
)

Similarly, we have:

|⟨w(t+1)
j,l,r , ξr ′⟩| ≤ Tη√

dr
+ Õ(

ηcq−1

n
(T0 +

n

ηγq−1
))

For j ̸= y ∪ Sr or r /∈ W , c = Õ(σ0).
√
dr ≥ ηT · poly(K), σq−2

0 ≤ γq−1.

A.8. Proof for Induction Hypothesis A.4

Now we are ready to prove the Induction Hypothesis A.4. We frist restate the following theorem:
Theorem A.20. Under the global parameter settings in A.1, for η ≤ 1

poly(K) , and sufficiently large K, Induction
Hypothesis A.4 holds for all iteration t ≤ T .

Proof. At iteration t, it is easy to derive that:〈
w

(t)
j,l,r,X

r
〉
=

∑
i∈{y}∪Sr

〈
w

(t)
j,l,r,M

r
i

〉
zri +

∑
i∈[K]

αr
i

〈
w

(t)
j,l,r,M

r
j

〉
+
〈
w

(t)
j,l,r, ξ

r ′
〉

(14)

It is easy to verify the statements hold at t = 0 using standard Gausian analysis. Suppose it holds for iterations < t,
combining the lemmas we have established, we can have:
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(a).
〈
w

(t)
j,l,r,M

r
3−rj

〉
≤ Õ(σ0), for every l ∈ [m], where Mrj is the winning modality for class j. (By Lemma A.14)

(b).
〈
w

(t)
j,l,r,M

r
j

〉
∈ [−Õ(σ0), Õ(1)] for every j ∈ [K]. r ∈ [2], l ∈ [m] (By Lemma A.16 and A.17)

(c).
〈
w

(t)
j,l,r,M

r
i

〉
≤ Õ(σ0) for i ̸= j, for every j ∈ [K]. r ∈ [2], l ∈ [m] (By Lemma A.18)

Induction Hypothesis A.4 vi, viihave been proven by above results.

• For Induction Hypothesis A.4i, plug (b) and (c) into (14) and applying ⟨w(t)
j,l,r, ξ

r ′⟩ ≤ õ(σ0) in Claim A.19 ;

• For Induction Hypothesis A.4ii, plug (c) into (14) and applying ⟨w(t)
j,l,r, ξ

r ′⟩ ≤ Õ(σ0) in Claim A.19

• For Induction Hypothesis A.4iii, plug (b) and (c) into (14) and use αr
i ∈ [0, α].

• For Induction Hypothesis A.4iv, plug (b) and (c) into (14) and applying ⟨w(t)
j,l,r, ξ

r ′⟩ ≤ õ(σ0) in Claim A.19 ;

• For Induction Hypothesis A.4v, plug (a) and (c) into (14) and applying ⟨w(t)
j,l,r, ξ

r ′⟩ ≤ Õ(σ0) in Claim A.19 ;

Therefore, we completes the proof.

A.9. Main Theorems for Multi-mdoal

Theorem A.21 (Theorem 4.2 Restated). For sufficiently large K > 0, every η ≤ 1
poly(K) , after T = poly (k)

η many iteration,

for the multi-modal network f (t), and fr(t) := C(φ(t)
Mr

), w.h.p :

• Training error is zero:
1

n

∑
(X,y)∈D

I{∃j ̸= y : f (T )
y (X) ≤ f

(T )
j (X)} = 0.

• For r ∈ [2], with probability p3−r > 0, the test error of fr(T ) is high:

Pr
(Xr,y)∼Pr

(fr
y
(T )(Xr) ≤ max

j ̸=y
fr
j
(T )(Xr)− 1

polylog(K)
) ≥ 1

K

where p1 + p2 = 1− o(1), and pr ≥ m−O(1), ∀r ∈ [2].

Proof. Training error analysis. For every data pair (X, y): ℓy(f (t),X) ≥ 1
2 ⇒ − log(ℓy(f

(t),X)) can be bounded by
O(1− ℓy(f

(t),X)); On the other hand, we observe that ℓy(f (t),X) cannot be smaller than 1
2 for too many pairs in Phase 2,

Stage 2, and in this case − log(ℓy(f
(t),X)) can be naively bounded by Õ(1), since by Claim A.11 and A.9:

T∑
t=T0

(
1− ℓy

(
f (t),X

))
≤ Õ

(
n

ηγq−1

)
; ErrTol, Stage 3

s ≤ Õ

(
K

η

)
+ Õ

(
nis

ηKγq−1

)
Therefore, we can bound the average training obejctive in Phase 2, Stage 2 as follows:

1

T

T∑
t=T0

L(f (t)) =
1

T

T∑
t=T0

1

n

∑
(X,y)∈D

− log(ℓy(f
(t),X)) ≤ 1

poly(K)

Combining with the non-increasing property of gradient descent algorithm acting on Lipscthiz continuous objective function,
we obtain:

1

n

∑
(X,y)∈D

(1− ℓy(f
(T ),X)) ≤ 1

n

∑
(X,y)∈D

− log(ℓy(f
(T ),X)) ≤ 1

poly(K)
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Therefore, we can conclude the training error is sufficiently small at the end of the iteration T .

Test error analysis. For the test error of fr(T ), given j ∈ [K], by Lemma A.3, with probability pj,3−r that M3−r is the
winning modality for class j. In this case, according to Lemma A.14, Γ(T )

j,r ≤ Õ(σ0).

By Claim A.10, we have cΦ
(T )
j − Φ

(T )
i ≤ −Ω(log(K)) for any j, i ∈ [K], since 1

ns

∑
(X,y)∈Ds

[
1− ℓy

(
f (t),X

)]
≤ 1

K3 .

Hence Φ
(T )
j ≥ Ω(log(K)), and at least for the winning modality Mrj , Φ(T )

j,rj
≥ Ω(log(K)).

Now for (Xr, y) ∼ Pr, with y = j, by the function approximation in Fact A.5, we have fr
y
(T ) ≤ Õ(σ0) +

1
polylog(K) . For

every other i ̸= y, as long as Mr is the winning modality for class i (which happens with probability pi,r for every i) and
also belongs to Sr, again using Fact A.5 with Mr, Φ(T )

i,r ≥ Ω(log(K)), we have fr
i
T ≥ Ω̃(ρr). Such event occurs for some

i with probability Ω( s
K ), and we can obtain:

fr
y
(T )(Xr) ≤ max

i̸=y
fr
i
(T )(Xr)− 1

polylog(K)

Therefore, with probability pr =
∑

j∈[K] pj,r, the test error is high:

Pr
(Xr,y)∼Pr

(fr
y
(T )(Xr) ≤ max

j ̸=y
fr
j
(T )(Xr)− 1

polylog(K)
) ≥ 1

K

Corollary A.22 (Corollary 4.3 Restated). Suppose the assumptions in Theorem A.21 holds, w.h.p, for joint training, the
learned multi-modal network f (T ) satisfies:

Pr
(X,y)∼P

(∃j ̸= y : f (T )
y (X) ≤ f

(T )
j (X)) ∈ [

∑
r∈[2]

(pr − o(1))µr,
∑
r∈[2]

(pr + o(1))µr]

Proof. • If (X, y) is sufficient, following the similar analysis in Theorem A.21, we have cΦ
(t)
j − Φ

(t)
i ≤ −Ω(log(K))

for any j, i ∈ [K]. Applying the Fact A.5, we conclude that f (T )
y (X) ≥ maxj ̸=y f

(T )
j (X) + Ω(log k) w.h.p.

• If (X, y) is insufficient, by the choice of µr, we only consider the case that at most one modality data Xr is insufficient.
Consider Mr is insufficient, i.e. its sparse vector falls into the insufficient class. With probability pj,r, Mr wins the
competition, and we obtain fr

y
(T ) ≤ O(γr) +

1
polylog(K) . Moreover, combining with the fact that Φ(t)

i ≥ Ω(log(K)),

if some j ∈ S1(X) ∪ S2(X), we obtain f
(T )
j (X) ≥ Ω̃(ρr), which happens with probability at least 1− e−Ω(log2 k).

In this case, f (T )
y (X) ≤ maxj ̸=y f

(T )
j (X)− 1

polylog(k)

By above arguments, the test error maily comes from the insufficeint data, and consequently Pr(X,y)∼P(∃j ̸= y : f
(T )
y (X) ≤

f
(T )
j (X)) is around

∑
r∈[2] prµr.

B. Results for Uni-modal Networks
In this section, we will provide the proof sketch of Theorem 4.1 for uni-modal networks. The proof follows the analyis
of joint training ver closely, but it is easier since we do not need to consider the modality competition. Similarly, we first
introduce the induction hypothesis for unimodal, and then utilize the it to prove the main results.

B.1. Induction Hypothesis

For each class j ∈ [K], let us denote:

Ψ
(t)
j,r

def
= max

l∈[m]

[〈
ν
(t)
j,l,r,M

r
j

〉]+
Π

(t)
j,r :=

∑
l∈[m]

[〈
ν
(t)
j,l,r,M

r
j

〉]+
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Given a data Xr, define:

S(Xr) := {j ∈ [K] : the j-th coordinate of Xr’s sparse vector zr is not equal to zero, i.e. zrj ̸= 0}

We abbreviate S(Xr) as Sr in our subsequent analyis for simplicity. We use Dr
s to denote the sufficient uni-modal training

data for Mr, and Dr
i for insufficient uni-modal data.

Induction Hypothesis B.1.

For sufficient data (Xr, y) ∈ Dr
s , for every l ∈ [m]:

i for every j = y, or j ∈ Sr :
〈
ν
(t)
j,l,r,X

r
〉
=
〈
ν
(t)
j,l,r,M

r
j

〉
zrj ± õ (σ0).

ii else
∣∣∣〈ν(t)j,l,r,X

r
〉∣∣∣ ≤ Õ (σ0)

For insufficient data (Xr, y) ∈ Dr
i , every l ∈ [m]:

iii for every j = y :
〈
ν
(t)
j,l,r,X

r
〉
=
〈
ν
(t)
j,l,r,M

r
j

〉
zrj +

〈
ν
(t)
j,l,r, ξ

r ′
〉
± Õ (σ0αK)

iv for every j ∈ Sr :
〈
ν
(t)
j,l,r,X

r
〉
=
〈
ν
(t)
j,l,r,M

r
j

〉
zrj ± õ (σ0).

v else
∣∣∣〈ν(t)j,l,r,X

r
〉∣∣∣ ≤ Õ (σ0)

Moreover, we have for every j ∈ [K],

vi Ψ
(t)
j ≥ Ω (σ0) and Ψ

(t)
j ≤ Õ(1).

vii for every l ∈ [m], it holds that
〈
ν
(t)
j,l,r,M

r
j

〉
≥ −Õ (σ0).

Training phases. The analysis for uni-modal networks with modality Mr can also be decomposed into two phases for
each class j ∈ [K]:

• Phase 1: t ≤ T r
j , where T r

j is the iteration number that Ψr,j reaches Θ
(

β
log k

)
= Θ̃(1)

• Phaes 2, stage 1: T r
j ≤ t ≤ T r

0 : where T r
0 denote the iteration number that all of the Ψ

(t)
r,j reaches Θ(1/m);

• Phase 2, stage 2: t ≥ T r
0 , i.e. from T r

0 to the end T .

B.2. Main theorem for Uni-modal

Theorem B.2 (Theorem 4.1 Restated). For every r ∈ [2], for sufficiently large K > 0, every η ≤ 1
poly(k) , after T = poly (k)

η

many iteration, the learned uni-modal network f uni,r(t) w.h.p satisfies:

• Training error is zero:

1

n

∑
(Xr,y)∈Dr

I { f uni,r
y

(T )
(Xr) ≤ max

j ̸=y
f uni,r
j

(T )
(Xr)

}
= 0.

• The test error satisfies:

Pr
(Xr,y)∼Pr

(f uni,r
y

(T )
(Xr) ≤ max

j ̸=y
f uni,r
j

(T )
(Xr)− 1

polylog(K)
) = (1± o(1))µr
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Proof. Training error analysis. For every data pair (Xr, y), we can bound the training error in the similar manner as joint
training, and obtain:

1

T

T∑
t=T r

0

L(f uni,r(t)) =
1

T

T∑
t=T r

0

1

n

∑
(X,y)∈Dr

− log(ℓy(f
uni,r(t),X)) ≤ 1

poly(K)

Therefore,
1

n

∑
(X,y)∈Dr

(1− ℓy(f
uni,r(T )

,X)) ≤ 1

n

∑
(X,y)∈Dr

− log(ℓy(f
uni,r(T )

,X)) ≤ 1

poly(K)

Therefore, we can conclude the training error is sufficiently small at the end of the iteration T .

Test error analysis. For the test error of f uni,r(T ), given j ∈ [K], we will have crΠ
(T )
j,r − Π

(T )
i,r ≤ −Ω(log(K)) for

any i, j. Hence for sufficient data, by function approximation for uni-modal, we immediately have f uni,r
y

(T )
(Xr) ≥

maxj ̸=y f
uni,r
j

(T )
(Xr) + Ω(log k). By Induction Hypothesis B.1, no doubt that Mr has been learned. However for

insufficient data, , we will have f uni,r
y

(T )
(Xr) ≤ O(γr) +

1
polylog(K) due to the data distribution. For every other i ̸= y, as

long as i ∈ Sr, we will have f uni,r
j

(T )
(Xr) ≥ Ω̃(ρr). Therefore, with probability at least 1− e−Ω(log2 k), for insufficient

data, we have

f uni,r
y

(T )
(Xr) ≤ max

j ̸=y
f uni,r
j

(T )
(Xr)− 1

polylog(K)

Recall that insufficient data occurs in Mr with probability µr, then we finish the proof.

C. Experiment Details

C.1. Eexperimental Setup

For empirical justification, we conduct experiments on different datasets to verify the results presented by Wang et al.
(2020), and also provide empirical support for our theoretical analysis. Specifically, we conduct experiments on a standard
benchmark dataset for action recognition task, Kinetics-400 (Kay et al., 2017) and an internal product classification dataset.

Kinetics-400. The dataset consists of around 260K videos covering 400 categories. We use 240K samples for training and
around 20K samples for testing. For visual representation, we randomly select a frame from the video and resize it to the
resolution of 224× 224, and for audio representation, we transform the wave input to the mel-scaled spectrogram. For the
evaluation of training accuracy, we sample 10K products from the training set. For the multi-modal late fusion model, we
use two Transformer (Vaswani et al., 2017) models as bi-encoders for both vision and audio. We element-wisely sum up
their output representations, each of which is an average pooling of the Transformer outputs, and send it to a linear classifier
for prediction.

Internal product dataset. The dataset consists of products, each of which has an image, which is usually a photograph
of the product, and a title text, which describes the key information, e.g., category, feature, etc. We split the dataset into
two sets for training and validation. The training set consists of around 600K samples, and the validation set consists
of 10K samples. We build a Transformer model for image model and text model respectively. Specifically, the image
model is a ViT (Dosovitskiy et al., 2020) network, consisting of 6 transformer layers, each of which has a self attention
and Feed-Forward Network (FFN) module with layer normalization and residual connection. The hidden size is 512, and
the intermediate size is 2048. The image is preprocessed by resizing to the resolution of 256× 256, and split into 16× 16
patches. Each patch is projected to a vector by linear projection, and the patch vectors as a sequence is the input of the
Transformer. The text model is also a Transformer model with the identical setup. Specifically, we tokenize each text with
the Chinese BERT tokenizer (Devlin et al., 2019).
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Fixed modality encoder. Additionally, this empirical study investigates whether the single-modal trained model can
outperform a single-modal model with a fixed encoder initialized by the multi-modal model. This is widely used to measure
self-supervised representations (Chen et al., 2020a). For the setup of the latter one, we build a single-modal encoder and
initialize the weights with the parameters of the corresponding modality from a multi-modal model. We add a linear classifier
on top and freeze the bottom encoder to avoid parameter update.

All models are trained in an end-to-end fashion. We apply AdamW (Loshchilov & Hutter, 2019) optimizer for optimization
with a peak learning rate of 1e− 4, a warmup ratio of 1%, and the cosine decay schedule. The total batch size of 256. We
implement our experiments on 16 NVIDIA V100-32G.

C.2. Additional Results on Internal Product Dataset

“Insufficient” structure for RGB  

(a) Top 10 improved class accuracy

“Insufficient” structure for Text 

(b) Top 10 dropped class accuracy

Figure 4: Top 10 classes based on the accuracy improvement and downgrade of text-only over RGB-only uni-model training
on the internal product dataset.

Evidence that RGB has not been 
learned 

(a) Top 10 improved class accuracy

Text loses the competition and has not 
been explored

(b) Top 10 dropped class accuracy

Figure 5: Top 10 classes based on the accuracy improvement and downgrade of text-only over RGB-only uni-model with a
fixed encoder initialized by the multi-modal joint training.

• For each modality, there exist certain classes where the corresponding uni-modal network has relatively low accuracy
as shown in Figures 4a and 4b. For example, as demonstrated in Figure 4b, for text modality, while it predicts well
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on most classes, there exist some classes e.g. “auction”, where it has low accuracy. Such observations verify the
insufficient structure of uni-modal data.

• Figure 6a supports the findings in Wang et al. (2020) that the best uni-modal outperforms the multi-modal.

• Only a subset of modalities learns good feature representations. As illustrated in Figure 5a, for some classes, e.g.,
“fabric”, “business” that were originally with slightly high accuracy (from Figure 4a), the accuracy still drops to zero,
which indicates that images are not learned for these classes in joint training. We have similar observations for text
modality by comparing Figure 4b and Figure 5b. Moreover, Figure 6b shows that the feature representations obtained
from joint training for each modality degrade compared to directly trained uni-modal.

(a) Error curves for text-only, RGB-only
and text+RGB models.

(b) Error curves for the directly trained uni-modal models and
the ones with a fixed encoder.

Figure 6: Error curves of different training strategies


