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Abstract

Perceived signals in real-world scenarios are usu-
ally high-dimensional and noisy, and finding and
using their representation that contains essen-
tial and sufficient information required by down-
stream decision-making tasks will help improve
computational efficiency and generalization abil-
ity in the tasks. In this paper, we focus on
partially observable environments and propose
to learn a minimal set of state representations
that capture sufficient information for decision-
making, termed Action-Sufficient state Represen-
tations (ASRs). We build a generative environ-
ment model for the structural relationships among
variables in the system and present a principled
way to characterize ASRs based on structural con-
straints and the goal of maximizing cumulative
reward in policy learning. We then develop a
structured sequential Variational Auto-Encoder
to estimate the environment model and extract
ASRs. Our empirical results on CarRacing and
VizDoom demonstrate a clear advantage of learn-
ing and using ASRs for policy learning. Moreover,
the estimated environment model and ASRs al-
low learning behaviors from imagined outcomes
in the compact latent space to improve sample
efficiency.

1. Introduction
State-of-the-art reinforcement learning (RL) algorithms
leveraging deep neural networks are usually data hungry
and lack interpretability. For example, to attain expert-level
performance on tasks such as chess or Atari games, deep
RL systems usually require many orders of magnitude more
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training data than human experts (Tsividis et al., 2017). One
of the reasons is that our perceived signals in real-world sce-
narios, e.g., images, are usually high-dimensional and may
contain much irrelevant information for decision-making of
the task at hand. This makes it difficult and expensive for
an agent to directly learn optimal policies from raw obser-
vational data. Fortunately, the underlying states that directly
guide decision-making could be much lower-dimensional
(Schölkopf, 2019; Bengio, 2019). One example is that when
crossing the street, our decision on when to cross relies on
the traffic lights. The useful state of traffic lights (e.g., its
color) can be represented by a single binary variable, while
the perceived image is high-dimensional. It is essential to
extract and exploit such lower-dimensional states to improve
the efficiency and interpretability of the decision-making
process.

Recently, representation learning algorithms have been de-
signed to learn abstract features from high-dimensional and
noisy observations. Exploiting the abstract representations,
instead of the raw data, has been shown to perform subse-
quent decision-making more efficiently (Lesort et al., 2018).
Representative methods along this line include deep Kalman
filters (Krishnan et al., 2015), deep variational Bayes fil-
ters (Karl et al., 2016), world models (Ha & Schmidhuber,
2018), PlaNet (Hafner et al., 2018), DeepMDP (Gelada
et al., 2019), stochastic latent actor-critic (Lee et al., 2019),
SimPLe (Kaiser et al., 2019), Bisimulation-based methods
(Zhang et al., 2021), Dreamer (Hafner et al., 2019; 2020),
and others (Srinivas et al., 2020; Shu et al., 2020). More-
over, if we can properly model and estimate the underlying
transition dynamics, then we can perform model-based RL
or planning, which can effectively reduce interactions with
the environment (Ha & Schmidhuber, 2018; Hafner et al.,
2018; 2019; 2020).

Despite the effectiveness of the above approaches to learning
abstract features, current approaches usually fail to take into
account whether the extracted state representations are suffi-
cient and necessary for downstream policy learning. State
representations that contain insufficient information may
lead to sub-optimal policies, while those with redundant
information may require more samples and more complex
models for training. We address this problem by model-
ing the generative process and selection procedure induced
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by reward maximization; by considering a generative envi-
ronment model involving observed states, state-transition
dynamics, and rewards, and explicitly characterizing struc-
tural relationships among variables in the RL system, we
propose a principled approach to learning minimal suffi-
cient state representations. We show that only the state
dimensions that have direct or indirect edges to the reward
variable are essential and should be considered for decision
making. Furthermore, they can be learned by maximizing
their ability to predict the action, given that the cumulative
reward is included in the prediction model, while at the
same time achieving their minimality w.r.t. the mutual in-
formation with observations as well as their dimensionality.
The contributions of this paper are summarized as follows:

• We construct a generative environment model, which in-
cludes the observation function, transition dynamics, and
reward function, and explicitly characterizes structural
relationships among variables in the RL system.

• We characterize a minimal sufficient set of state repre-
sentations, termed Action-Sufficient state Representations
(ASRs), for the downstream policy learning by making
use of structural constraints and the goal of maximizing
cumulative reward in policy learning.

• In light of the characterization, we develop Structured Se-
quential Variational Auto-Encoder (SS-VAE), which ex-
plicitly encodes structural relationships among variables,
for reliable identification of ASRs.

• Accordingly, policy learning can be done separately from
representation learning, and the policy function only relies
on a set of low-dimensional state representations, which
improve both model and sample efficiency. Moreover,
the estimated environment model and ASRs allow learn-
ing behaviors from imagined outcomes in the compact
latent space, which effectively reduce possibly risky ex-
plorations.

2. Environment Model with Structural
Constraints

In order to characterize a set of minimal sufficient state
representations for downstream policy learning, we first
formulate a generative environment model in partially ob-
servable Markov decision process (POMDP), and then show
how to explicitly embed structural constraints over variables
in the RL system and leverage them.

Suppose we have sequences of observations
{〈ot, at, rt〉}Tt=1, where ot ∈ O denotes perceived
signals at time t, such as high-dimensional images, with O
being the observation space, at ∈ A is the performed action
with A being the action space, and rt ∈ R represents the
reward variable withR being the reward space. We denote
the underlying states, which are latent, by ~st ∈ S, with S
being the state space. We describe the generating process of

the environment model as follows: ot = f(~st, et),
rt = g(~st−1, at−1, εt),
~st = h(~st−1, at−1, ηt),

(1)

where f , g, and h represent the observation function, re-
ward function, and transition dynamics, respectively, and
et, εt, and ηt are corresponding independent and identically
distributed (i.i.d.) random noises. The latent states ~st form
an MDP: given ~st−1 and at−1, ~st are independent of states
and actions before t− 1. Moreover, the action at−1 directly
influences latent states ~st, instead of perceived signals ot,
and the reward is determined by the latent states (and the
action) as well. The perceived signals ot are generated from
the underlying states ~st, contaminated by random noise et.
We also consider noise εt in the reward function to capture
unobserved factors that may affect the reward, as well as
measurement noise.

It is commonplace that the action variable at−1 may not
influence every dimension of ~st, and the reward rt may not
be influenced by every dimension of ~st−1 as well, and fur-
thermore there are structural relationships among different
dimensions of ~st. Figure 1 gives an illustrative graphical
representation, where s3,t−1 influences s2,t, at−1 does not
have an edge to s3,t, and among the states, only s2,t−1 and
s3,t−1 have edges to rt. We use Rt =

∑∞
τ=t γ

τ−trτ to
denote the discounted cumulative reward starting from time
t, where γ ∈ [0, 1] is the discounted factor that determines
how much immediate rewards are favored over more distant
rewards.

To reflect such constraints, we explicitly encode the graph
structure over variables, including the structure over dif-
ferent dimensions of ~s and the structures from at−1 to ~st,
~st−1 to rt, and ~st to ot. Accordingly, we re-formulate (1)
as follows: ot = f(D~s)o � ~st, et),

rt = g(D~s)r � ~st−1, Da)r � at−1, εt),
si,t = hi(D~s(·,i) � ~st−1, Da)~s(·,i) � at−1, ηi,t),

(2)

for i = 1, · · · , d, where ~st = (s1,t, · · · , sd,t)>, � de-
notes element-wise product, and D(·) are binary matrices
indicating the graph structure over variables. Specifically,
D~s)o ∈ {0, 1}d×1 represents the graph structure from d-
dimensional ~st to ot, D~s)r ∈ {0, 1}d×1 the structure from
~st−1 to the reward variable rt, Da)r ∈ {0, 1} the struc-
ture from the action variable at−1 to the reward variable
rt, D~s ∈ {0, 1}d×d denotes the graph structure from d-
dimensional ~st−1 to d-dimensional ~st and D~s(·,i) is its i-th
column, and Da)~s ∈ {0, 1}1×d corresponds to the graph
structure from at−1 to ~st with Da)~s(·,i) representing its i-th
column. For example, D~s(j,i) = 0 means that there is no
edge from sj,t−1 to si,t. Here, we assume that the environ-
ment model, as well as the structural constraints, is invariant
across time instance t.
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Figure 1: A graphical illustration of the generative envi-
ronment model. Grey nodes denote observed variables and
white nodes represent unobserved variables. Here, at−1
does not have an edge to s3,t, and only s2,t−1 and s3,t−1
have edges to rt, and moreover, we take into account the
structural relationships among different dimensions of latent
states ~st. The solid lines represent causal relations, while
the dashed lines represent predictions of at from ~st, which
is not causal, and moreover, dashed lines mean that the re-
lations may not exist and they may differ under different
policies.

2.1. Minimal Sufficient State Representations

Given observational sequences {〈ot, at, rt〉}Tt=1, we aim to
learn minimal sufficient state representations for the down-
stream policy learning. In the following, we first character-
ize the state dimensions that are indispensable for policy
learning, when the environment model, including structural
relationships, is given. Then we provide criteria to achieve
sufficiency and minimality of the estimated state representa-
tions, when only {〈ot, at, rt〉}Tt=1, but not the environment
model, is given.

Finding minimal sufficient state dimensions with a
given environment model. RL agents learn to choose ap-
propriate actions according to the current state vector ~st
to maximize the future cumulative reward, in which some
dimensions may be redundant for policy learning. Then how
can we identify a minimal subset of state dimensions that
are sufficient to choose optimal actions? Below, we first
give the definition of Action-Sufficient state Representations
(ASRs) according to the graph structure. We further show
in Proposition 1 that ASRs are minimal sufficient for pol-
icy learning, and they can be characterized by leveraging
the (conditional) independence/dependence relations among
the quantities, under the Markov condition and faithfulness
assumption (Pearl, 2000; Spirtes et al., 1993).

Definition 1 (Action-Sufficient State Representations
(ASRs)). Given the graphical representation correspond-
ing to the environment model, such as the representation in

Figure 1, we define recursively ASRs that affect the future
reward as: (1) si,t ∈ ~s ASR

t has an edge to the reward in the
next time-step rt+1, or (2) si,t ∈ ~s ASR

t has an edge to an-
other state dimension in the next time-step sj,t+1, such that
the same component at time t is in ASRs, i.e., sj,t ∈ ~s ASR

t .

Proposition 1. Under the assumption that the graphical
representation, corresponding to the environment model,
is Markov and faithful to the measured data, ~s ASR

t ⊆ ~st
are a minimal subset of state dimensions that are sufficient
for policy learning, and si,t ∈ ~s ASR

t if and only if si,t 6⊥⊥
Rt+1|at−1:t, ~s ASR

t−1.

Proposition 1 can be shown based on the global Markov
condition and the faithfulness assumption, which connects
d-separation1 to conditional independence/dependence re-
lations. A proof is given in Appendix. According to the
above proposition, it is easy to see that for the graph given
in Figure 1, we have ~sASR

t = (s2,t, s3,t)
>. That is, we only

need (s2,t, s3,t)
>, instead of ~st, for the downstream policy

learning.

Minimal sufficient state representation learning from
observed sequences. In practice, we usually do not have
access to the latent states or the environment model, but
instead only the observed sequences {〈ot, at, rt〉}Tt=1. Then
how can we learn the ASRs from the raw high-dimensional
inputs such as images? We denote by ~̃st the estimated whole
latent state representations and ~̃sASR

t ⊆ ~̃st the estimated
minimal sufficient state representations for policy learning.

As discussed above, ASRs and Rt+1 are dependent given
at−1:t and ~̃sASR

t−1 , while other state dimensions are indepen-
dent of Rt+1, so we can learn the ASRs by maximizing2

I(~̃sASR;Rt+1|at−1:t, ~̃sASR
t−1 )− I(~̃sC;Rt+1|at−1:t, ~̃sASR

t−1 ), (3)

where ~̃sC = ~̃s\~̃sASR, and I(·) denotes mutual infor-
mation. Such regularization is used to achieve mini-
mal sufficient state representations for policy learning;
that is, only ~̃sASR

t−1 are useful for policy learning, while
~̃sC
t−1 are not. Furthermore, the mutual information can

be represented as a form of conditional entropy, e.g.,
I(~̃sASR;Rt+1|at−1:t, ~sASR

t−1 ) = H(~̃sASR|at−1:t, ~sASR
t−1 ) −

H(~̃sASR|Rt+1, at−1:t, ~s
ASR
t−1 ), where H(·) denotes the con-

1A path p is said to be d-separated by a set of nodes Z if and
only if (1) p contains a chain i→ m→ j or a fork i← m→ j
such that the middle node m is in Z, or (2) p contains a collider
i→ m← j such that the middle node m is not in Z and such that
no descendant of m is in Z.

2Note that, when observational sequences are generated from
a random policy (i.e., ~st ⊥⊥ at), learning the ASRs can be also
implemented in a simpler way, which is given in Appendix.
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ditional entropy, with

H(~̃sASR|at−1:t, ~̃sASR
t−1 )

=−EqφEpα1

{
log pα1

(~̃sASR|at−1:t, ~̃sASR
t−1 )

}
=−EqφEpα1

{
log pα1

(~̃sASR|at−1:t, D̃ASR � ~̃st−1)
}
,

and

H(~̃sASR|Rt+1, at−1:t, ~̃s
ASR
t−1 )

=−EqφEpα2

{
log pα2

(~̃sASR|Rt+1, at−1:t, D̃
ASR � ~̃st−1)

}
,

where pαi , for i = 1, 2, denotes the probabilis-
tic predictive model of ~̃sASR with parameters αi, and
qφ(~̃st|~̃st−1,y1:t, a1:t−1) is the probabilistic inference
model of ~̃st with parameters φ and yt = (oTt , r

T
t ), and

D̃ ASR ∈ {0, 1}d̃×1 is a binary vector indicating which di-
mensions of ~̃st are in ~̃sASR

t , so D̃ ASR� ~̃st gives ASRs ~̃sASR
t .

Similarly, we can also represent I(~̃sC;Rt+1|at−1:t, ~̃sASR
t−1 )

in such a way.

Although with the above regularization, we can achieve
ASRs theoretically, in practice, we further add another reg-
ularization to achieve minimality of the representation by
minimizing conditional mutual information between ob-
served high-dimensional signals yt and the ASR ~̃sASR

t at
time t given data at previous time instances, similar to that
in information bottleneck (Tishby et al., 1999), and mean-
while minimizing the dimensionality of ASRs with sparsity
constraints:

λ1
∑T

t=2
I(yt; ~̃s

ASR
t |y1:t−1, a1:t−1, ~̃st−1) + λ2‖D̃ ASR‖1,

where the conditional mutual information can be upper
bound by a KL-divergence:

I(yt; ~̃s
ASR
t |y1:t−1, a1:t−1, ~̃st−1) ≤ E

{
KL
(
qφ′‖pγ

)}
,

(4)

with qφ′ ≡ qφ′(~̃s
ASR
t |~̃st−1,y1:t, a1:t−1) and pγ ≡

pγ(~̃sASR
t |~̃st−1, at−1;D~s, Da)~s) being the transition dynam-

ics of ~̃st with parameters γ, and the expectation is over
p(~̃st−1,y1:t, a1:t−1).

Furthermore, Proposition 1 shows that given the (estimated)
environment model, only those state dimensions that have
a directed path to the reward variable are the ASRs. In
our learning procedure, we also take into account the rela-
tionship between the learned states ~̃st and the reward, and
leverage such structural constraints for learning the ASRs.
Denote by ĎASR ∈ {0, 1}d̃×1 a binary vector indicating
whether the corresponding state dimension in ~̃st has a di-
rected path to the reward variable. Consequently, we enforce
the similarity between ĎASR and D̃ASR by adding an L1

norm on ĎASR − D̃ASR. Therefore, the ASRs can be

learned by maximizing the following function:

Lmin & suff =

λ3

∑T

t=1

{
I(~̃sASR;Rt+1|at−1:t, ~̃s

ASR
t−1 )−I(~̃s C;Rt+1|at−1:t, ~̃s

ASR
t−1 )

}︸ ︷︷ ︸
Sufficiency & Minimality

−λ4‖ĎASR−D̃ASR‖1−λ1

T∑
t=1

E
{

KL
(
qφ‖pγ

)}
−λ2‖D̃ASR‖1︸ ︷︷ ︸

Further restrictions of minimality

,

(5)
where λ’s are regularization terms, and note that ĎASR

can be directly derived from the estimated structural ma-
trices Da)r and D~s(·,i). The constraint in Eq. 5 provides a
principled way to achieve minimal sufficient state represen-
tations. Notice that it is just part of the objective function to
maximize, and it will be involved in the complete objective
function in Fig. 2 to learn the whole environment model.

Remarks. By explicitly involving structural constraints,
we achieve minimal sufficient state representations from the
view of generative process underlying the RL problem and
the selection procedure induced by reward maximization,
which enjoys the following advantages. 1) The structural
information provides an interpretable and intuitive picture of
the generating process. 2) Accordingly, it also provides an
interpretable and intuitive way to characterize a minimal suf-
ficient set of state representations for policy learning, which
removes unrelated information. 3) There is no information
loss when representation learning and policy learning are
done separately, which is computationally more efficient. 4)
The generative environment model is fixed, independent of
the behavior policy that is performed. Furthermore, based
on the estimated environment model and ASRs, it is flexible
to use a wide range of policy learning methods, and one
can also perform model-based RL, which effectively reduce
possibly risky explorations.

3. Structured Sequential VAE for the
Estimation of ASRs

In this section, we give estimation procedures for the en-
vironment model and ASRs, as well as the identifiability
guarantee in linear cases.

Identifiability in Linear-Gaussian Cases. Below, we
first show the identifiability guarantee in the linear case,
as a special case of Eq. (2): ot = D>~s)o~st + et,

rt+1 = D>~s)r~st +D>a)rat + εt+1,
~st = D>~s ~st−1 +D>a)~sat−1 + ηt.

(6)

In the linear case, D~s)o, D~s)r, Da)r, D~s, and Da)~s are
linear coefficients, indicating corresponding graph struc-
tures and also the strength. Denote the covariance matri-
ces of et and εt by Σe and Σε, respectively. Further let
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D̈~s)o := (D>~s)o, D
>
~s)r)
>. The following proposition shows

that the environment model in the linear case is identifiable
up to some orthogonal transformation on certain coefficient
matrices from observed data {〈ot, at, rt〉}Tt=1.

Proposition 2 (Identifiability). Suppose the perceived sig-
nal ot, the reward rt, and the latent states ~st follow a linear
environment model. If assumptions A1∼A4 (given in Ap-
pendix D) hold and with the second-order statistics of the
observed data {〈ot, at, rt〉}Tt=1, the noise variances Σe and
Σε, Da)r, D̈>~s)oD~s

kDa)~s
> (with k ≥ 0), and D̈>~s)oD̈~s)o are

uniquely identified.

This proposition shows that in the linear case, with the
second-order statistics of the observed data, we can iden-
tify the parameters up to orthogonal transformations. In
particular, suppose the linear environment model with
parameters (D~s)o, D~s)r, Da)r, D~s, Da)~s,Σe,Σε) and that
with (D̃~s)o, D̃~s)r, D̃a)r, D̃~s, D̃a)~s, Σ̃ẽ, Σ̃ε̃) are observation-

ally equivalent. Then we have ˜̈D~s)o=UD̈~s)o, D̃a)r=Da)r,
D̃~s = U>D~sU , D̃a)~s = Da)~sU , Σ̃ẽ = Σe, and Σ̃ε̃ = Σε,
where U is an orthogonal matrix.

General Nonlinear Cases. To handle general nonlinear
cases with the generative process given in Eq. (2), we de-
velop a Structured Sequential VAE (SS-VAE) to learn the
model (including structural constraints) and infer latent
state representations ~̃st and ASRs ~̃sASR

t , with the input
{〈ot, at, rt〉}Tt=1. Specifically, the latent state dimensions
are organized with structures, captured by D~s, to achieve
conditional independence. The structural relationships over
perceived signals, latent states, the action variable, and the
reward variable are also embedded as free parameters (i.e.,
D~s)o, D~s)r, Da)r, Da)~s) into SS-VAE. Moreover, we aim to
learn state representations ~̃st and ASRs ~̃sASR

t that satisfy the
following properties: (i) ~̃st should capture sufficient infor-
mation of observations ot, rt, and at, that is, it should be
enough to enable reconstruction. (ii) The state representa-
tions should allow for accurate predictions of the next state
and also the next observation. (iii) The transition dynamics
should follow an MDP. (iv) ~̃sASR

t are minimal sufficient state
representations for the downstream policy learning.

Let y1:T = {(o>t , r>t )>}Tt=1. To achieve the above proper-
ties, we maximize the objective function shown in Fig. 2,
which contains the reconstruction error at each time in-
stance, the one-step prediction error of observations, the
KL divergence to constrain the latent space, and moreover,
the MDP restrictions on transition dynamics, the sufficiency
and minimality guarantee of state representations for pol-
icy learning, as well as sparsity constraints on the graph
structure. We denote by pθ the generative model with pa-
rameters θ and structural constraints D(·), qφ the inference
model with parameters φ, pγ the transition dynamics, and
pαi the predictive model of ASRs. Each factor in pγ , qφ,
and pαi is modeled with a mixture of Gaussians (MoGs), to

approximate a wide class of continuous distributions.

Below are the details of each component in the above objec-
tive function:

• Reconstruction and prediction components: These two
parts are commonly used in sequential VAE. They aim to
minimize the reconstruction error and prediction error of
the perceived signal ot and the reward rt.

• Transition component: To achieve the property that state
representations satisfy an MDP, we explicitly model
the transition dynamics: log pγ(~̃st|~̃st−1, at−1;D~s, Da)~s).
In particular, ~̃st|~̃st−1 is modelled with a mixture of
Gaussians:

∑K
k=1πkN

(
µk(~̃st−1,at−1),Σk(~̃st−1,at−1)

)
,

where K is the number of mixtures, µk(·) and Σk(·) are
given by multi-layer perceptrons (MLP) with inputs ~̃st−1
and at−1, parameters γ, and structural constraints D~s and
Da)~s. This explicit constraint on state dynamics is es-
sential for establishing a Markov chain in latent space
and for learning a representation for long-term predic-
tions. Note that unlike in traditional VAE (Kingma &
Welling, 2013), we do not assume that different dimen-
sions in ~̃st are marginally independent, but model their
structural relationships explicitly to achieve conditional
independence.

• KL-divergence constraint: The KL divergence is used to
constrain the state space with multiple purposes: (1) It is
used in the lower bound of logP (y1:T ) to achieve con-
ditional disentanglement between qφ(s̃i,t|·) and qφ(s̃j,t|·)
for i 6= j, (2) and also to achieve further restrictions of
minimality of ASRs.

• Sufficiency & minimality constraints: We achieve min-
imal sufficient state representations for the downstream
policy learning by leveraging the conditional mutual infor-
mation between ~̃sASR

t andRt+1, and structural constraints.
For details, please refer to Section 2.1.

• Sparsity constraints: According to the edge-minimality
property (Zhang & Spirtes, 2011), we additionally put
sparsity constraints on structural matrices to achieve bet-
ter identifiability. In particular, we use L1 norm of the
structural matrices as regularizers in the objective function
to achieve sparsity of the solution.

Figure 3 gives the diagram of the neural network architec-
ture in model training. We use SS-VAE to learn the environ-
ment model and ASRs. Specifically, the encoder, which is
used to learn the inference model qφ(~̃st|~̃st−1,y1:t, a1:t−1),
includes a Long Short-Term Memory (LSTM (Hochreiter
& Schmidhuber, 1997)) to encode the sequential informa-
tion with output ht and a Mixture Density Network (MDN
(Bishop, 1994)) to output the parameters of MoGs. At each
time instance, the input 〈ot+1, rt+1, at〉 is projected to the
encoder and a sample of ~̃st+1 is inferred from qφ as output.
The generated sample further acts as an input to the decoder,
together with at+1 and structural matrices D~s)o, D~s)r, and
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L(y1:T ; (θ, φ, γ, α,D(·)))

=
∑T−2
t=1 Eqφ

{
log pθ(ot|~̃st;D~s)o) + log pθ(rt+1|~̃st, at;D~s)r, Da)r)︸ ︷︷ ︸

Reconstruction

+ log pθ(ot+1|~̃st) + log pθ(rt+2|~̃st, at+1)︸ ︷︷ ︸
Prediction

}
+ λ3

∑T

t=1

{
I(~̃sASR;Rt+1|at−1:t, ~̃s

ASR
t−1 )−I(~̃s C;Rt+1|at−1:t, ~̃s

ASR
t−1 )

}︸ ︷︷ ︸
Sufficiency & Minimality

− λ1

∑T
t=1 E

{
KL
(
qφ′(~̃s

ASR
t |~̃st−1,y1:t, a1:t−1)‖ pγ(~̃sASR

t |~̃st−1, at−1;D~s, Da)~s)︸ ︷︷ ︸
Transition
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Figure 2: Our objective function.

Figure 3: Diagram of neural network architecture to learn state representations. The corresponding structural constraints are
involved in “Deconv” and “MLP”, and “S.&M." represents the regularization part for minimal sufficient state representation
learning.

Da)r. Then the decoder outputs ôt+1 and r̂t+2. Moreover,
the state dynamics which satisfies a Markov process and is
embedded with structural constraints D~s and Da)~s, is mod-
eled with an MLP and MDN, marked with red in Figure 3.
The part for minimal sufficient representations (denoted by
S.&M.) uses MLP and is marked with blue. During train-
ing, we approximate the expectation in L by sampling and
then jointly learn all parameters by maximizing L using
stochastic gradient descent.

4. Policy Learning with ASRs
After estimating the generative environment model, we are
ready to learn the optimal policy, where the policy function
only depends on low-dimensional ASRs, instead of high-
dimensional images. The entire procedure roughly contains
the following three parts: (1) data collection with a random
or sub-optimal policy, (2) environment model estimation

(with details in Section 3), and (3) policy learning with
ASRs. Notably, the generative environment model is fixed,
regardless of the behavior policy that is used to generate the
data, and after learning the environment model, as well as
the inference model for ASRs, our framework is flexible for
both model-free and model-based policy learning.

Model-Free Policy Learning. For model-free policy
learning, we make use of the learned environment
model to infer ASRs ~̃sASR

t from past observed sequences
{o≤t, r≤t, a≤t−1} and then predict the action with the es-
timated low-dimensional ASRs. Our method is flexible to
use a wide range of model-free methods; for example, one
may use deep Q-learning for discrete actions (Mnih et al.,
2015) and deep deterministic policy gradient (DDPG) for
continuous actions (Lillicrap et al., 2015). Algorithm 1
in Appendix G gives the detailed procedure of model-free
policy learning with ASRs in partially observable environ-



Action-Sufficient State Representation Learning for Control with Structural Constraints

ments.

Model-Based Policy Learning. The downside of model-
free RL algorithms is that they are usually data hungry,
requiring very large amounts of interactions. On the con-
trary, model-based RL algorithms enjoy much better sample
efficiency. Hence, we make use of the learned generative
environment model, including the transition dynamics, ob-
servation function, and reward function, for model-based
policy optimization. Based on the generative environment
model, one can learn behaviors from imagined outcomes to
increase sample-efficiency and mitigate heavy and possibly
risky interactions with the environment. We present the pro-
cedure of the classic Dyna algorithm (Sutton, 1990; Sutton
& Barto, 2018) with ASRs in Algorithm 2 in Appendix G.

5. Experiments
To evaluate the proposed approach, we conducted experi-
ments on both CarRacing environment (Klimov, 2016) with
an illustration in Figure 4 and VizDoom (Kempka et al.,
2016) environment with an illustration in Figure 5 , fol-
lowing the setup in the world model (Ha & Schmidhuber,
2018) for a fair comparison. It is known that CarRacing is
very challenging—the recent world model (Ha & Schmid-
huber, 2018) is the first known solution to achieve the score
required to solve the task. Without stated otherwise, all re-
sults were averaged across five random seeds, with standard
deviation shown in the shaded area.

5.1. CarRacing Experiment

CarRacing is a continuous control task with three contin-
uous actions: steering left/right, acceleration, and brake.
Reward is −0.1 every frame and +1000/N for every track
tile visited, where N is the total number of tiles in track. It
is obvious that the CarRacing environment is partially ob-
servable: by just looking at the current frame, although we
can tell the position of the car, we know neither its direction
nor velocity that are essential for controlling the car. For a
fair comparison, we followed a similar setting as in Ha &
Schmidhuber (2018). Specifically, we collected a dataset of
10k random rollouts of the environment, and each runs with
a random policy until failure. The dimensionality of latent
states ~̃st was set to d̃ = 32, determined by hyperparameter
tuning.

Analysis of ASRs. To demonstrate the structures over ob-
served frames, latent states, actions, and rewards, we visu-
alized the learned D~s)o, D~s)r, D~s, and Da)~s, as shown in
Figure 6. Intuitively, we can see that D~s)r and Da)~s have
many values close to zero, meaning that the reward is only
influenced by a small number of state dimensions, and not
many state dimensions are influenced by the action. Further-
more, from D~s, we found that there are influences from ~̃si,t
to ~̃si,t+1 (diagonal values) for most state dimensions, which

Figure 4: An illustration of
Car Racing environment.

Figure 5: An illustration
of VizDoom take cover sce-
nario.

is reasonable because we want to learn an MDP over the
underlying states, while the connections across states (off-
diagonal values) are much sparser. Compared to the original
32-dim latent states, ASRs have only 21 dimensions. Below,
we empirically showed that the low-dimensional ASRs sig-
nificantly improve the policy learning performance in terms
of both efficiency and efficacy.

Comparison Between Model-Free and Model-Based
ASRs. We applied both model-free (DDPG) (Lillicrap
et al., 2015) and model-based (Dyna and Prioritized Sweep-
ing) algorithms (Sutton, 1990) to ASRs (with 21-dims). As
shown in Figure 7, interestingly, by taking advantage of the
learned generative model, model-based ASRs is superior
to model-free ASRs at a faster rate, which demonstrates
the effectiveness of the learned model. It also shows that
with the estimated environment model and ASRs, we can
learn behaviors from imagined outcomes to improve sample-
efficiency.

Comparison with VRL, SLAC, PlaNet, DBC, and
Dreamer. We also compared the proposed framework of
policy learning with ASRs (with 21-dims) with 1) the same
learning strategy but with vanilla representation learning
(VRL, implemented without the components for minimal
sufficient state representations as in Eq. (5)), 2) SLAC (Lee
et al., 2019), 3) PlaNet (Hafner et al., 2018), 4) DBC (Zhang
et al., 2021), and 5) Dreamer (Hafner et al., 2019). For a fair
comparison, the latent dimensions of VRL, PlaNet, SLAC,
DBC and Dreamer are set to 21 as well, and we require
all of them to have the model capacity similar to ours (i.e.,
similar model architectures). From Figure 7, we can see
that our methods, both model-free and model-based, obvi-
ously outperform others. It is worth noting that the huge
performance difference between ASRs and VRL shows that
the components for minimal sufficient state representations
play a pivotal role in our objective.

Comparison with World Models. In light of the fact
that world models (Ha & Schmidhuber, 2018) achieved
good performance in CarRacing, we further compared our
method (with 21-dim ASRs) with the world model. For
a fair comparison, following Ha & Schmidhuber (2018),
we also used the Covariance-Matrix Adaptation Evolution
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Figure 6: Visualization of estimated structural matrices D~s)o, D~s)r , Da)~s, and D~s in Car Racing.
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Figure 9: Ablation study of latent dynam-
ics prediction (LDP) evaluated on Car Rac-
ing with model-free ASR.

Strategy (CMA-ES) (Hansen, 2016) with a population of
64 agents to optimize the parameters of the controller. In
addition, following a similar setting as in Ha & Schmid-
huber (2018) (where the agent’s fitness value is defined as
the average cumulative reward of the 16 random rollouts),
we show the fitness values of the best performer (max) and
the population (mean) at each generation (Figure 8). We
also took the best performing agent at the end of every 25
generations and tested it over 1024 random rollout scenarios
to record the average (best avg score). It is obvious that our
method (denoted by ASR-*) has a more efficient and also
efficacy training process. The best average score of ASRs is
65 higher than that of world models.

Comparison with Dreamer and DBC with Background
Distraction. We further compared ASRs (with 21-dims)
with Dreamer and DBC when there are natural video distrac-
tors in CarRacing; we chose Dreamer and DBC, because
their performance are relatively better than other compar-
isons when there are no distractors. Specifically, we fol-
lowed Zhang et al. (2021) to incorporate natural video from
the Kinetics dataset (Kay et al., 2017) as background in
CarRacing. Similarly, for a fair comparison, we require all
of them to have the same latent dimensions and have the
similar model capacity. As shown in Table 1, we can see
that our method outperforms both Dreamer and DBC.

Ablation Study. We further performed ablation studies
on latent dynamics prediction; that is, we compared with the
case when the transition dynamics in Fig. 2 is not explicitly

modeled, but is replaced with a standard normal distribution.
Figure 9 shows that by explicitly modelling the transition
dynamics (denoted by with LDP), the cumulative reward has
an obvious improvement over the one without modelling
the transition dynamics (denoted by without LDP).

5.2. VizDoom Experiment

We also applied the proposed method to VizDoom take
cover scenario (Kempka et al., 2016), which is a discrete
control problem with two actions: move left and move
right. Reward is +1 at each time step while alive, and the
cumulative reward is defined to be the number of time steps
the agent manages to stay alive during an episode.

Considering that in the take over scenario the action space
is discrete, we applied the widely used DQN (Mnih et al.,
2013) on ASRs for policy learning. In addition to the com-
parisons with VRL (as in CarRacing) and DQN on raw
observations, we further compared with another common
approach to POMDPs: DRQN (Hausknecht & Stone, 2015).
As shown in Figure 10, DQN on ASRs achieve a much
better performance than all other comparisons, and in partic-
ular, DQN on ASRs outperforms DRQN on observations by
around 400 on average in terms of cumulative reward. Simi-
larly, we applied model-based (Dyna) algorithms (Sutton,
1990) to ASRs (with 21-dims). As shown in Figure 10, we
can draw the same conclusion that by taking advantage of
the learned generative model, model-based ASRs is superior
to model-free ASRs at a faster rate. We also applied ASRs to
world models, where Figure 11 shows that our method with
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Model Cumulative
Rewards

Dreamer 621±124.5
DBC 803±112.5
Model-free ASRs 938±87.2
Model-based ASRs 954±98.6

Table 1: Comparisons with Dreamer and
DBC in CarRacing with natural video
distractors, after 2000 training episodes,
with standard error.
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Figure 11: Fitness value of ASRs (with
CMA-ES) compared to world models
evaluated on VizDoom.

ASRs (denoted by ASR-*) achieves a better performance.

6. Related Work
In the past few years, a number of approaches have been pro-
posed to learn low-dimensional Markovian representations,
which capture the variation in the environment generated
by the agent’s actions, without direct supervision (Lesort
et al., 2018; Krishnan et al., 2015; Karl et al., 2016; Ha
& Schmidhuber, 2018; Watter et al., 2015; Zhang et al.,
2018; Kulkarni et al., 2016; Mahadevan & Maggioni, 2007;
Gelada et al., 2019; Gregor et al., 2018; Ghosh et al., 2019;
Zhang et al., 2021). Common strategies for such state rep-
resentation learning include reconstructing the observation,
learning a forward model, or learning an inverse model.
Furthermore, prior knowledge, such as temporal continuity
(Wiskott & Sejnowski, 2002), can be added to constrain the
state space.

Recently, much attention has been paid to world models,
which try to learn an abstract representation of both spa-
tial and temporal aspects of the high-dimensional input
sequences (Watter et al., 2015; Ebert et al., 2017; Ha &
Schmidhuber, 2018; Hafner et al., 2018; Zhang et al., 2019b;
Gelada et al., 2019; Kaiser et al., 2019; Hafner et al., 2019;
2020). Based on the learned world model, agents can per-
form model-based RL or planning. Our proposed method is
also in the class of world models, which models the genera-
tive environment model, and additionally, encodes structural
constraints and achieves the sufficiency and minimality of
the estimated state representations from the view of gener-
ative and selection process. In contrast, Shu et al. (2020)
makes use of contrastive loss, as an alternative of recon-
struction loss; however, it only focuses on the transition
dynamics and also fails to ensure the sufficiency and mini-
mality. Another line of approaches of state representation
learning is based on predictive state representations (PSRs)
(Littman & Sutton, 2002; Singh et al., 2004). A recent ap-
proach generalizes PSRs to nonlinear predictive models, by
exploiting the coarsest partition of histories into classes that
are maximally predictive of the future (Zhang et al., 2019a).
Moreover, bisimulation-based methods have also attracted

much attention (Castro, 2020; Zhang et al., 2021).

On the other hand, our work is also related to Bayesian
network learning and causal discovery (Spirtes et al., 1993;
Pearl, 2000; Huang* et al., 2020). For example, Strehl
et al. (2007) considers factorized-state MDP with structures
being modeled with dynamic Bayesian network or decision
trees. Incorporating such structure information has shown
benefits in several machine learning tasks (Zhang* et al.,
2020; Huang et al., 2019), and in this paper, we show its
advantages in POMDPs.

7. Conclusions and Future Work
In this paper, we develop a principled framework to char-
acterize a minimal set of state representations that suffice
for policy learning, by making use of structural constraints
and the goal of maximizing cumulative reward in policy
learning. Accordingly, we propose SS-VAE to reliably ex-
tract such a set of state representations from raw observa-
tions. The estimated environment model and ASRs allow
learning behaviors from imagined outcomes in the com-
pact latent space, which effectively reduce sample complex-
ity and possibly risky interactions with the environment.
The proposed approach shows promising results on com-
plex environments–CarRacing and Vizdoom. The future
work along this direction include investigating identifiabil-
ity conditions in general nonlinear cases and extending the
approach to cover heterogeneous environments, where the
generating processes may change over time or across do-
mains.
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Appendices for “Action-Sufficient State Representation Learning for Control with Structural
Constraints"

A. Proof of Proposition 1
We first give the definitions of the Markov condition and the faithfulness assumption, which will be used in the proof.

Definition 2 (Global Markov Condition (Spirtes et al., 1993; Pearl, 2000)). The distribution p over a set of variables V
satisfies the global Markov property on graph G if for any partition (A,B,C) such that if B d-separates A from C, then
p(A,C|B) = p(A|B)p(C|B).

Definition 3 (Faithfulness Assumption (Spirtes et al., 1993; Pearl, 2000)). There are no independencies between variables
that are not entailed by the Markov Condition.

Below, we give the proof of Proposition 1.

Proof. The proof contains the following three steps.

• In step 1, we show that a state dimension si,t is in ASRs, that is, it has a directed path to rt+τ and the path does not go
through any action variable, if and only if si,t 6⊥⊥ Rt+1|at−1:t, ~st−1.

• In step 2, we show that for si,t with si,t 6⊥⊥ Rt+1|at−1:t, ~st−1, if and only if si,t 6⊥⊥ Rt+1|at−1:t, ~sASR
t−1 .

• In step 3, we show that ASRs ~sASR
t are minimal sufficient for policy learning.

Step 1: We first show that if a state dimension si,t is in ASRs, then si,t 6⊥⊥ Rt+1|at−1:t, ~st−1.

We prove it by contradiction. Suppose that si,t is independent of Rt+1 given at−1:t and ~st−1. Then according to the
faithfulness assumption, we can see from the graph that si,t does not have a directed path to rt+τ , which contradicts to
the assumption, because, otherwise, at−1:t and ~st−1 cannot break the paths between si,t and Rt+1 which leads to the
dependence.

We next show that if si,t 6⊥⊥ Rt+1|at−1:t, ~st−1, then si,t ∈ ~sASR
t .

Similarly, by contradiction suppose that si,t does not have a directed path to rt+τ . From the graph, it is easy to see that
at−1:t and ~st−1 must break the path between si,t and Rt+1. According to the Markov assumption, si,t is independent of
Rt+1 given at−1:t and ~st−1, which contradicts to the assumption. Since we have a contradiction, it must be that si,t has a
directed path to rt+τ .

Step 2: In step 1, we have shown that si,t 6⊥⊥ Rt+1|at−1:t, ~st−1, if and only if it has a directed path to rt+τ . From the
graph, it is easy to see that for those state dimensions which have a directed path to rt+τ , at−1:t and ~sASR

t−1 cannot break the
path between si,t and Rt+1. Moreover, for those state dimensions which do not have a directed path to rt+τ , at−1:t and
~sASR
t−1 are enough to break the path between si,t and Rt+1.

Therefore, for si,t with si,t 6⊥⊥ Rt+1|at−1:t, ~st−1, if and only if si,t 6⊥⊥ Rt+1|at−1:t, ~sASR
t−1 .

Step 3: In the previous steps, it has been shown that if a state dimension si,t is in ASRs, then si,t 6⊥⊥ Rt+1|at−1:t, ~sASR
t−1 ,

and if a state dimension si,t is not in ASRs, then si,t ⊥⊥ Rt+1|at−1:t, ~sASR
t−1 . This implies that ~sASR

t are minimal sufficient for
policy learning to maximize the future reward.

B. Learning the ASRs under a Random Policy
When collecting the data, that are used to learn the environment model and ASRs, with random actions, it is apparent to
observe that actions at and ASRs ~sASR

t are dependent only conditioning on the cumulative reward and previous state—this
is a type of dependence relationship induced by selection on the effect (reward). We can then learn the ASRs by maximizing

I(~̃sASR
t ; at |Rt+1, ~̃s

ASR
t−1 )− I(~̃sC

t ; at |Rt+1, ~̃s
ASR
t−1 ), (7)
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Figure 12: Diagram of neural network architecture to learn state representations. The corresponding structural constraints
are involved in “Deconv” and “MLP”, and “AP" represents the action prediction part for sufficient state representation
learning.

where ~̃sC = ~̃s\~̃sASR, and I denotes mutual information. Since I(~̃sASR
t ; at |Rt+1, ~̃s

ASR
t−1 ) = H(at |Rt+1, ~̃s

ASR
t−1 ) −

H(at | ~̃sASR
t−1:t, Rt+1), where H(·) denotes the conditional entropy, we can estimate ASRs by maximizing

H(at |Rt+1, ~̃s
ASR
t−1 )−H(at | ~̃sASR

t−1:t, Rt+1), with

H(at|~̃sASR
t−1:t, Rt+1) = −Eqφ,α1

{
log pα1

(at|~̃sASR
t−1:t , Rt+1)

}
= −Eqφ,α1

{
log pα1

(at|D̃ASR � ~̃st−1:t, Rt+1)
}
,

and

H(at|Rt+1, ~̃s
ASR
t−1 ) = −Eqφ,α2

{
log pα2

(at|Rt+1, ~̃s
ASR
t−1 )

}
,= −Eqφ,α2

{
log pα2

(at|D̃ASR � ~̃sASR
t−1 , Rt+1)

}
,

where pαi , for i = 1, 2, denotes the probabilistic predictive model of at with parameters αi, qφ,αi is the joint distribution
over ~̃st and at with qφ,αi = qφpαi , and qφ(~̃st|~̃st−1,y1:t, a1:t−1) is the probabilistic inference model of ~̃st with parameters φ
and yt=(oTt , r

T
t ), and D̃ ASR ∈ {0, 1}d̃×1 is a binary vector indicating which dimensions of ~̃st are in ~̃sASR

t , so D̃ ASR � ~̃st
gives ASRs ~̃sASR

t . Similarly, we can also represent I(~̃sC
t ; at |Rt+1, ~̃s

ASR
t−1 ) in the same way. Accordingly, the “sufficiency &

Minimality” term in the objective function as shown in Figure 2 should be replaced by (7), and the corresponding diagram
of neural network architecture is as shown in Figure 12.

C. Further Regularization of Minimality
In this section, we give the detailed derivation on the further regularization of minimality of state representations given
in Section 2.1, which is similar to that in the information bottleneck. We achieve it by minimizing conditional mutual
information between observed high-dimensional signals yt, where yt = {oTt , rTt }, and the ASR ~̃sASR

t at time t given data at
previous time instances, and meanwhile minimizing the dimensionality of ASRs with sparsity constraints:

λ1
∑T

t=2
I(yt; ~̃s

ASR
t |y1:t−1, a1:t−1, ~̃st−1) + λ2‖D̃ ASR‖1.

Note that in the above conditional mutual information, we need to conditional on the previous states ~̃st−1, instead
of ~̃sASR

t−1 , which two give different conditional mutual information. It can be shown by contradiction. Suppose
I(yt; ~̃s

ASR
t |y1:t−1, a1:t−1, ~̃st−1) = I(yt; ~̃s

ASR
t |y1:t−1, a1:t−1, ~̃s

ASR
t−1 ), and denote ~̃sC = ~̃s\~̃sASR. Then the equivalence

implies that ~̃sCt−1 is independent of ot (where ot ∈ yt) given {y1:t−1, a1:t−1, ~̃s
ASR
t−1 }. It is obviously violated for the example

given in Figure 1, where ~̃sC = s1 and ~̃sASR = {s2, s3}, and s1,t−1 is dependent on ot given {y1:t−1, a1:t−1, s2,t−1, s3,t−1}.
Hence, conditioning on ~̃st−1 and ~̃sASR

t−1 give different conditional mutual information. Therefore, in the above conditional
mutual information, we need to condition on the previous states ~̃st−1.
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Moreover, the conditional mutual information I(yt; ~̃s
ASR
t |y1:t−1, a1:t−1, ~̃st−1) can be upper bound by a KL-divergence,

and below we denote {y1:t−1, a1:t−1, ~̃st−1} by zt:

I(yt; ~̃s
ASR
t |y1:t−1, a1:t−1, ~̃st−1)

≡ I(yt; ~̃s
ASR
t |zt)

≡ Ep(yt,~̃s ASR
t ,zt)

{
log

qφ(~̃s
ASR
t |yt,zt)

p(~̃s ASR
t |zt)

}
= Ep(yt,~̃s ASR

t ,zt)

{
log

qφ(~̃s
ASR
t |yt,zt)pγ(~̃s ASR

t |~̃st−1,at−1)

p(~̃s ASR
t |zt)pγ(~̃s ASR

t |~̃st−1,at−1)

}
= Ep(yt,~̃s ASR

t ,zt)

{
log

qφ(~̃s
ASR
t |yt,zt)

pγ(~̃s ASR
t |~̃st−1,at−1)

}
− Ep(zt)

{
KL(p(~̃sASR

t |zt)‖pγ(~̃sASR
t |~̃st−1, at−1))

}
≤ Ep(yt,zt)

[
KL
(
qφ(~̃sASR

t |yt, zt)‖pγ(~̃sASR
t |~̃st−1, at−1)

)]
≡ Ep(~̃st−1,y1:t,a1:t−1)

[
KL
(
qφ(~̃sASR

t |~̃st−1,y1:t, a1:t−1)‖pγ(~̃sASR
t |~̃st−1, at−1;D~s, Da)~s)

)]
with pγ being the transition dynamics of ~̃st with parameters γ.

D. Assumptions of Proposition 2
To show the identifiability of the model in the linear case, we make the following assumptions:

A1. do + dr ≥ ds, where |ot| = do, |rt| = dr, and |st| = ds.
A2. (D>~s)o, D

>
~s)r) is full column rank and D~s is full rank.

A3. The control signal at is i.i.d. and the state ~st is stationary.
A4. The process noise has a unit variance, i.e., var(ηt) = I .

E. Proof of Proposition 2
Proof. The proof of the linear case without control signals has been shown in Zhang & Hyvärinen (2011). Below, we give
the identifiability proof in the linear-Gaussian case with control signals: ot = D>~s)o~st + et,

rt+1 = D>~s)r~st +D>a)rat + εt+1,
~st = D>~s ~st−1 +D>a)~sat−1 + ηt.

(8)

Let yt+1 = [o>t , r
>
t+1]>, D̈~s)o = [D>~s)o, D

>
~s)r]
>, D̈a)r = [~0>, D>a)r]

>, and ët = [e>t , ε
>
t+1]>. Then the above equation can

be represented as: {
yt = D̈>~s)o~st + D̈>a)rat + ët,
~st = D>~s ~st−1 +D>a)~sat−1 + ηt.

(9)

Because the dynamic system is linear and Gaussian, we make use of the second-order statistics of the observed data to show
the identifiability. We first consider the cross-covariance between yt+k and at:{

Cov(yt+k, at) = D̈>~s)oD
k−1
~s D>a)~s · Var(at), if k > 0,

Cov(yt+k, at) = D̈>a)r · Var(at), if k = 0.
(10)

Thus, from the cross-covariance between yt+k and at, we can identify D̈>~s)oD
>
a)~s, D̈a)r, and D̈>~s)oD

k
~sD
>
a)~s for k > 0.

Next, we consider the auto-covariance function of ~s. Define the auto-covariance function of ~s at lag k as R~s(k) = E[~st~s
>
t+k],

and similarly for Ry(k). Clearly, R~s(−k) = R~s(k)> and Ry(−k) = Ry(k)>. Then we have{
R~s(k) = R~s(k − 1) ·D~s, if k > 0,
R~s(k) = R>~s (1) ·D~s +D>a)~sVar(at−1)Da)~s + I, if k = 0.

(11)

Below, we first consider the case where do + dr = ds. Let ỹt = D̈>~s)o~st, so yt = ỹt + D̈>a)rat−1 + ët and Rỹ(k) =

D̈>~s)oR~st(k)D̈~s)o. Rỹ(k) satisfies the recursive property:{
Rỹ(k) = Rỹ(k − 1) · Ω>, if k > 0,

Rỹ(k) = R>ỹ (1) · Ω> + D̈>~s)o(D
>
a)~sVar(at−1)Da)~s + I)D̈~s)o, if k = 0,

(12)
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where Ω = D̈>~s)oD~sD̈
−1
~s)o.

Denote Sk = D̈>~s)oD
k−1
~s D>a)~s · Var(at). Then we can derive the recursive property for Ry(k):

Ry(k) = Ry(k − 1) · Ω> − D̈>a)rS>k−1Ω> + D̈>a)rS
>
k , if k > 1,

Ry(k) = Ry(k − 1) · Ω> − D̈>a)rVar>(at)D̈a)rΩ
> − ΣeΩ

> + D̈>a)rS
>
k , if k = 1,

Ry(k) = R>y (1) · Ω> +
(
D̈>a)rVar(at)D̈a)r + Σe

)
+ D̈>~s)o(D

>
a)~sVar(at)Da)~s + I)D̈~s)o, if k = 0.

When k = 2, we have
Ry(2) = Ry(1) · Ω> − D̈>a)rS>1 Ω> + D̈>a)rS

>
2 .

The above equation can be re-organized as(
Ry(2)− D̈>a)r · S>2

)
=
(
Ry(1)− D̈>a)r · S>1

)
· Ω>.

Because D̈a)r and Sk are identifiable, and suppose
(
Ry(1)− D̈>a)r · S>1

)
is invertible, Ω = D̈>~s)oD~sD̈

−1
~s)o is identifiable.

We further consider Ry(0) and Ry(1) and write down the following form:[
Ry(0)− D̈>~s)o(D>a)~sVar(at−1)Da)~s + I)D̈~s)o

Ry(1)

]

=

[
R>y (1)
Ry(0)

]
· Ω> +

[
D̈>a)rVar(at)D̈a)r

−D̈>a)rVar>(at)D̈a)rΩ
> + D̈>a)rS

>
1

]
+ Σe

[
I
−Ω>

]
.

From the above two equations we can then identify Σe and D̈>~s)o(D
>
a)~sVar(at−1)Da)~s + I)D̈~s)o, and because D̈>~s)oD

>
a)~s is

identifiable, D̈>~s)oD̈~s)o is identifiable.

In summary, we have shown the identifiability of D̈a)r, D̈>~s)oD
>
a)~s, D̈

>
~s)oD

k
~sD
>
a)~s, D̈

>
~s)oD̈~s)o, and Σe. Furthermore, D̈~s)o,

D~s, and Da)~s are identified up to some orthogonal transformations. That is, suppose the model in Eq. 8 with parameters
(D~s)o, D~s)r, Da)r, D~s, Da)~s,Σe,Σε) and that with (D̃~s)o, D̃~s)r, D̃a)r, D̃~s, D̃a)~s, Σ̃ẽ, Σ̃ε̃) are observationally equivalent, we

then have ˜̈D~s)o = UD̈~s)o, D̃a)r = Da)r, D̃~s = U>D~sU , D̃a)~s = Da)~sU , Σ̃ẽ = Σe, and Σ̃ε̃ = Σε, where U is an
orthogonal matrix.

Next, we extend the above results to the case where do + dr > ds. Let D̈~s)o(i,·) be the i-th row of D̈~s)o. Recall that
D̈>~s)o is of full column rank. Then for any i, one can show that there always exist ds − 1 rows of D̈~s)o, such that they,
together with D̈~s)o(i,·), form a ds × ds full-rank matrix, denoted by ¯̈D~s)o(i,·). Then from the observed data corresponding to
¯̈D~s)o(i,·),

¯̈D~s)o(i,·) is determined up to orthogonal transformations. Thus, D̈~s)o is identified up to orthogonal transformations.
Similarly, Da)r, D~s, and Da)~s are identified up to orthogonal transformations. Furthermore, Cov(D̈>~s)o~st + D>a)rat) is
determined by D̈~s)o, D̈a)r, D~s, and Da)~s. Because Cov(yt) = Cov(D̈>~s)o~st +D>a)rat) + Σë, Σë is identifiable.

One may further add sparsity constraints on D~s)o, D~s)r, D~s, and Da)~s, to select more sparse structures among the equivalent
ones. For example, one may add sparsity constraints on the rows of D~s)o. Note this corresponds to the mask on the elements
of ~st in Eq. 2; if the full row is 0, then the corresponding dimension of ~st is not selected.

F. More Estimation Details for General Nonlinear Models
The generative model pθ can be further factorized as follows:

log pθ(y1:T |~̃s1:T , a1:T−1;D~s)o, D~s)r, Da)r)

= log pθ(o1:T |~̃s1:T ;D~s)o) + log pθ(r1:T |~̃s1:T , a1:T−1;D~s)r, Da)r)

=
∑T
t=1 log pθ(ot|~̃st;D~s)o) + log pθ(rt|~̃st−1, at−1;D~s)r, Da)r),

(13)

where both pθ(ot|~̃st;D~s)o) and pθ(rt|~̃st−1, at−1;D~s)r, Da)r) are modelled by mixture of Gaussians, with D~s)o indicating
the existence of edges from ~̃st to ot and D~s)r indicating the existence of edges from ~̃st−1 to rt.
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The inference model qφ(~̃s1:T |y1:T , a1:T−1) is factorized as

log qφ(~̃s1:T |y1:T , a1:T−1)

= log qφ(~̃s1|y1, a0) +
T∑
t=2

log qφ(~̃st|~̃st−1,y1:t, a1:t−1),

where both qφ(~̃s1|y1, a0) and qφ(~̃st|~̃st−1,y1:t, a1:t−1) are modelled with mixture of Gaussians.

The transition dynamics pγ is factorized as

log pγ(~̃s1:T |a1:T−1;D~s(·,i), Da)~s(·,i)) =
T∑
t=1

log pγ(~̃st|~̃st−1, at−1;D~s(·,i), Da)~s(·,i)), (14)

with ~̃st|~̃st−1 modelled with mixture of Gaussians.

Thus, the KL divergence can be represented as follows:

KL
(
qφ(~̃s1:T |y1:T , a1:T−1)‖pγ(~̃s1:T )

)
= KL

(
qφ(~̃s1|y1, a0)‖pγ(~̃s1)

)
+

T∑
t=2

Eqφ
[
KL
(
qφ(~̃st|~̃st−1,y1:t, a1:t−1)‖pγ(~̃st|~̃st−1)

)]
.

(15)

In practice, KL divergence with mixture of Gaussians is hard to implement, so instead, we used the following objective
function:

KL
(
qφ(~̃s1|y1, a0)‖pγ′(~̃s1)

)
+

T∑
t=2

Eqφ
[
KL
(
qφ(~̃st|~̃st−1,y1:t, a1:t−1)‖pγ′(~̃st|~̃st−1)

)]
+λ

T∑
t=1

log pγ(~̃st|~̃st−1, at−1;D~s(·,i), Da)~s(·,i))

(16)

where pγ′ is a standard multivariate Gaussian N (~0, Id).

G. More Details for Policy Learning with ASRs
Algorithm 1 gives the procedure of model-free policy learning with ASRs in partially observable environments. Specif-
ically, it starts from model initialization (line 1) and data collection with a random policy (line 2). Then it updates the
environment model and identifies the set of ASRs with the collected data (line 3), after which, the main procedure of
policy optimization follows. In particular, because we do not directly observe the states ~st, on lines 8 and 12, we infer
qφ(~sASR

t+1 |o≤t+1, r≤t+1, a≤t) and sample ~sASR
t+1 from the posterior. The sampled ASRs are then stored in the buffer (line 13).

Furthermore, we randomly sample a minibatch of N transitions to optimize the policy (lines 14 and 15). One may perform
various RL algorithms on the ASRs, such as deep deterministic policy gradient (DDPG (Lillicrap et al., 2015)) or Q-learning
(Mnih et al., 2015).

Algorithm 2 presents the procedure of the classic model-based Dyna algorithm with ASRs. Lines 17-22 make use of the
learned environment model to predict the next step, including ~sASR

t+1 and rt+1, and update the Q function n times. Specifically,
in our implementation, the hyper-parameter n is 20. Based on the learned model, the agent learns behaviors from imagined
outcomes in the compact latent space, which helps to increase sample efficiency.

H. Additional Experiments and Details
H.1. CarRacing Experiment

CarRacing is a continuous control task with three continuous actions: steering left/right, acceleration, and brake. Reward is
−0.1 every frame and +1000/N for every track tile visited, where N is the total number of tiles in track. It is obvious that
the CarRacing environment is partially observable: by just looking at the current frame, although we can tell the position of
the car, we know neither its direction nor velocity that are essential for controlling the car.

For a fair comparison, we followed a similar setting as in Ha & Schmidhuber (2018). Specifically, we collected a dataset
of 10k random rollouts of the environment, and each runs with random policy until failure, for model estimation. The
dimensionality of latent states ~̃st was set to d̃ = 32, and regularization parameters was set to λ1 =1, λ2 =1, λ3 =1, λ4 =1,
λ5 =1, λ6 =6, λ7 =10, λ8 =0.1, which are determined by hyperparameter tuning.
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Algorithm 1 Model-Free Policy Learning with ASRs in Partially Observable Environments

1: Randomly initialize neural networks and initialize replay buffer B.
2: Apply random control signals and record multiple rollouts.
3: Estimate the model given in (2) with the recorded data (according to Section 3).
4: Identify indices of ASRs according to the learned graph structure and the criteria in Prop. 1.
5: for episode = 1, . . . , M do
6: Initialize a random process N for action exploration.
7: Receive initial observations o1 and r1.
8: Infer the posterior qφ(~sASR

1 |o1, r1) and sample ~sASR
1 .

9: for t = 1, . . . , T do
10: Select action at = π(~sASR

t ) +Nt according to the current policy and exploration noise.
11: Execute action at and receive reward rt+1 and observation ot+1.
12: Infer the posterior qφ(~sASR

t+1 |o≤t+1, r≤t+1, a≤t) and sample ~sASR
t+1 .

13: Store transition (~sASR
t , at, rt+1, ~s

ASR
t+1 ) in B.

14: Sample a random minibatch of N transitions (~sASR
i , ai, ri+1, ~s

ASR
i+1 ) from B.

15: Update network parameters using a specified RL algorithm (e.g., DQN or DDPG).
16: end for
17: end for

Algorithm 2 Model-Based Policy Learning with ASRs in Partially Observable Environments

1: Randomly initialize neural networks and initialize replay buffer B.
2: Apply random control signals and record multiple rollouts.
3: Estimate the model given in (2) with the recorded data (according to Section 3).
4: Identify indices of ASRs according to the learned graph structure and the criteria in Prop. 1.
5: for episode = 1, . . . , M do
6: Initialize a random process N for action exploration.
7: Receive initial observations o1 and r1.
8: Infer the posterior qφ(~sASR

1 |o1, r1) and sample ~sASR
1 .

9: for t = 1, . . . , T do
10: Select action at = π(~sASR

t ) +Nt according to the current policy and exploration noise.
11: Execute action at and receive reward rt+1 and observation ot+1.
12: Infer the posterior qφ(~sASR

t+1 |o≤t+1, r≤t+1, a≤t) and sample ~sASR
t+1 .

13: Store transition (~sASR
t , ~st, at, rt+1, ~s

ASR
t+1 , ~st+1, ot+1) in B.

14: Sample a random minibatch of N transitions (~sASR
i , ai, ri+1, ~s

ASR
i+1 ) from B.

15: Update network parameters using a specified RL algorithm (e.g., DQN or DDPG).
16: Update the model given in (2) with the recorded data from B (according to Section 3).
17: for p = 1, . . . , n do
18: Sample a random minibatch of pairs of (~st, at) from B.
19: Predict (~sASR

t+1 , rt+1) according to the model given in (2).
20: Update network parameters using a specified RL algorithm (e.g., DQN or DDPG).
21: end for
22: end for
23: end for
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Without sparsity constraints. Figure 13 gives the estimated structural matrices D~s)o, D~s)r, Da)~s, and D~s in CarRacing,
without the explicit sparsity constraints, where the connections are very dense.

Difference between our SS-VAE and Planet, Dreamer. Both our method and Planet (Hafner et al., 2018) and Dreamer
(Hafner et al., 2019) are world model-based methods. The differences are mainly in two aspects: (1) our method explicitly
considers the structural relationships among variables in the RL system, and (2) it guarantees minimal sufficient state
representations for policy learning. Previous approaches usually fail to take into account whether the extracted state
representations are sufficient and necessary for downstream policy learning. Moreover, as for the component of recurrent
networks, SS-VAE uses LSTM that only contains the stochastic part, while PlaNet and Dreamer use RSSM that contains
both deterministic and stochastic components.
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Figure 13: Visualization of estimated structural matrices D~s)o, D~s)r, Da)~s, and D~s in Car Racing, without the explicit
sparsity constraints.

H.2. VizDoom Experiment

We also applied the proposed method to VizDoom (Kempka et al., 2016). VizDoom provides many scenarios and we chose
the take cover scenario. Unlike CarRacing, take cover is a discrete control problem with two actions: move left and move
right. Reward is +1 at each time step while alive, and the cumulative reward is defined to be the number of time steps the
agent manages to stay alive during a episode. Therefore, in order to survive as long as possible, the agent has to learn how to
avoid fireballs shot by monsters from the other side of the room. In this task, solving is defined as attaining the average
survival time of greater than 750 time steps over 100 consecutive episodes, each running for a maximum of 2100 time steps.

Following a similar setting as in Ha & Schmidhuber (2018), we collected a dataset of 10k random rollouts of the environment,
and each runs with random policy until failure. The dimensionality of latent state ~̃st is set to d̃ = 32. We also set λ1 =1,
λ2 = 1, λ3 = 1, λ4 = 1, λ5 = 1, λ6 = 6, λ7 = 10, λ8 = 0.1. By tuning thresholds, we finally reported all the results on the
21-dim ASRs, which achieved the best results in all the experiments.

Analysis of ASRs. Similar to the analysis in CarRacing, we also visualized the learned D~s)o, D~s)r, D~s, and Da)~s in
VizDoom, as shown in Figure 14. Intuitively, we can see that D~s)r and Da)~s have many values close to zero, meaning that
the reward is only influenced by a small number of state dimensions, and not many state dimensions are influenced by the
action. Furthermore, from D~s, we found that the connections across states are sparse.
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Figure 14: Visualization of estimated structural matrices D~s)o, D~s)r, Da)~s, and D~s in VizDoom.
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I. Detailed Model Architectures
In the car racing experiment, the original screen images were resized to 64× 64× 3 pixels. The encoder consists of three
components: a preprocessor, an LSTM, and an MDN. The preprocessor architecture is presented in Figure 15, which takes as
input the images, actions and rewards, and its output acts as the input to LSTM. We used 256 hidden units in the LSTM and
used a five-component Gaussian mixture in the MDN. The decoder also consists of three components: a current observation
reconstructor (Figure 16), a next observation predictor (Figure 17), and a reward predictor (Figure 18). The architecture of
the transition/dynamics is shown in Figure 19, and its output is also modelled by an MDN with a five-component Gaussian
mixture. In the VizDoom experiment, we used the same image size and the same architectures except that the LSTM has
512 hidden units and the action has one dimension. It is worth emphasising that we applied weight normalization to all the
parameters of the architectures above except for the structural matrices D(·).

In DDPG, both actor network and critic network are modelled by two fully connected layers of size 300 with ReLU and
batch normalisation. Similarly, in DQN (Mnih et al., 2013) on both ASRs and SSSs, the Q network is also modelled by two
fully connected layers of size 300 with ReLU and batch normalisation. However, in DQN on observations, it is modelled by
three convolutional layers (i.e., relu conv 32× 8× 8 −→ relu conv 64× 4× 4 −→ relu conv 64× 3× 3) followed by two
additional fully connected layers of size 64. In DRQN (Hausknecht & Stone, 2015) on observations, we used the same
architecture as in DQN on observations but padded an extra LSTM layer with 256 hidden units as the final layer.

Input Image 64 x 64 x 3

Relu Conv 32x4x4 with Stride 2 

Relu Conv 64x4x4 with Stride 2 

Relu Conv 128x4x4 with Stride 2 

Relu Conv 256x4x4 with Stride 2 

Action 3 reward 1

Relu Fully-Connected 512 Relu Fully-Connected 256 

Concatenate

Output (Input of LSTM)

Figure 15: Network architecture of preprocessor.
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s: 32

Element-wise Multiplication with A 

Relu Fully-Connected 1024

Relu Deconv 128x5x5 with Stride 2 

Relu Deconv 64x5x5 with Stride 2 

Relu Deconv 32x6x6 with Stride 2 

sigmoid Deconv 3x6x6 with Stride 2 

Output Image (Reconstruction)

Figure 16: Network architecture of observation reconstruc-
tion.

s: 32

Concatenate

Relu Fully-Connected 1024

Relu Deconv 128x5x5 with Stride 2 

Relu Deconv 64x5x5 with Stride 2 

Relu Deconv 32x6x6 with Stride 2 

sigmoid Deconv 3x6x6 with Stride 2 

Output Image (Prediction)

action: 3

Figure 17: Network architecture of observation prediction.

Concatenate

Relu Fully-Connected 1024

Relu Fully-Connected 256

Fully-Connected 1

Reward prediction

action: 3s: 32

Element-wise Multiplication with B Element-wise Multiplication with C 

Figure 18: Network architecture of reward.

Concatenate

Relu Fully-Connected 1024

Relu Fully-Connected 1024

Relu Fully-Connected 256

Fully-Connected 480 

action: 3s: 32

Element-wise Multiplication with D Element-wise Multiplication with E

MDN

Figure 19: Network architecture of transition/dynamics.


