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Abstract
The invariance to permutations of the adjacency
matrix, i.e., graph isomorphism, is an overar-
ching requirement for Graph Neural Networks
(GNNs). Conventionally, this prerequisite can
be satisfied by the invariant operations over node
permutations when aggregating messages. How-
ever, such an invariant manner may ignore the
relationships among neighboring nodes, thereby
hindering the expressivity of GNNs. In this work,
we devise an efficient permutation-sensitive aggre-
gation mechanism via permutation groups, cap-
turing pairwise correlations between neighboring
nodes. We prove that our approach is strictly
more powerful than the 2-dimensional Weisfeiler-
Lehman (2-WL) graph isomorphism test and not
less powerful than the 3-WL test. Moreover, we
prove that our approach achieves the linear sam-
pling complexity. Comprehensive experiments on
multiple synthetic and real-world datasets demon-
strate the superiority of our model.

1. Introduction
The invariance to permutations of the adjacency matrix, i.e.,
graph isomorphism, is a key inductive bias for graph rep-
resentation learning (Murphy et al., 2019a). Graph Neural
Networks (GNNs) invariant to graph isomorphism are more
amenable to generalization as different orderings of the
nodes result in the same representations of the underlying
graph. Therefore, many previous studies (Duvenaud et al.,
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2015; Kipf & Welling, 2017; Gilmer et al., 2017; Zhang
et al., 2018; Xu et al., 2019; Maron et al., 2019b) devote
much effort to designing permutation-invariant aggregators
to make the overall GNNs permutation-invariant (permu-
tation of the nodes of the input graph does not affect the
output) or permutation-equivariant (permutation of the in-
put permutes the output) to node orderings.

Despite their great success, Kondor et al. (2018) and de Haan
et al. (2020) expound that such a permutation-invariant man-
ner may hinder the expressivity of GNNs. Specifically, the
strong symmetry of these permutation-invariant aggregators
presumes equal statuses of all neighboring nodes, ignoring
the relationships among neighboring nodes. Consequently,
the central nodes cannot distinguish whether two neighbor-
ing nodes are adjacent, failing to recognize and reconstruct
the fine-grained substructures within the graph topology. As
shown in Figure 1(a), the general Message Passing Neural
Networks (MPNNs) (Gilmer et al., 2017) can only explicitly
reconstruct a star graph from the 1-hop neighborhood, but
are powerless to model any connections between neighbors
(Chen et al., 2020). To address this problem, some latest
advances (Thiede et al., 2021; Zhang & Li, 2021; Zhao et al.,
2022; Bevilacqua et al., 2022) propose to use subgraphs or
ego-nets to improve the expressive power while preserving
the property of permutation-invariance. Unfortunately, they
usually suffer from high time or memory complexity when
operating on multiple subgraphs (Bevilacqua et al., 2022).

In contrast, the permutation-sensitive (as opposed to
permutation-invariant) function can be regarded as a
“symmetry-breaking” mechanism, which breaks the equal
statuses of neighboring nodes. The relationships among
neighboring nodes, e.g., the pairwise correlation between
each pair of neighboring nodes, are explicitly modeled in
the permutation-sensitive paradigm. These pairwise cor-
relations help capture whether two neighboring nodes are
connected, thereby exploiting the local graph substructures
to improve the expressive power. We illustrate a concrete
example in Appendix D.

Different permutation-sensitive aggregation functions be-
have variously when modeling pairwise correlations. Graph-
SAGE with an LSTM aggregator (Hamilton et al., 2017)
in Figure 1(b) is capable of modeling some pairwise cor-
relations among the sampled subset of neighboring nodes.
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(b) GraphSAGE with an
LSTM aggregator
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SGD optimization
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(d) Our goal of capturing all
pairwise correlations

Figure 1. Comparison of the pairwise correlations modeled by various aggregation functions in 1-hop neighborhood. Here we illustrate
with one central node v and n = 7 neighbors. The dashed lines represent the pairwise correlations between neighbors modeled by the
aggregators, the real topological connections between neighbors are hidden for clarity. Subfigure (b) shows 2 sampled batches with
the neighborhood sample size k = 5. Subfigure (c) shows 2 sampled permutations. Dashed lines - - and - - in (b)/(c) denote different
batches/permutations.

Janossy Pooling with the π-SGD strategy (Murphy et al.,
2019b) in Figure 1(c) samples random permutations of all
neighboring nodes, thus modeling pairwise correlations
more efficiently. The number of modeled pairwise correla-
tions is proportional to the number of sampled permutations.
After sampling permutations with a costly nonlinear com-
plexity of O(n lnn) (see Appendix K for detailed analysis),
all the pairwise correlations between n neighboring nodes
can be modeled and all the possible connections are covered.

In fact, previous works (Murphy et al., 2019b;a) have ex-
plored that incorporating permutation-sensitive functions
into GNNs is indeed an effective way to improve their ex-
pressive power. Janossy Pooling (Murphy et al., 2019b)
and Relational Pooling (Murphy et al., 2019a) both design
the most powerful GNN models by exploiting permutation-
sensitive functions to cover all n! possible permutations.
They explicitly learn all representations of the underlying
graph with possible n! node orderings to guarantee the
permutation-invariance and generalization capability, over-
coming the limited generalization of permutation-sensitive
GNNs (Vignac et al., 2020). However, the complete mod-
eling of all n! permutations also leads to an intractable
computational complexity O(n!). Thus, we expect to de-
sign a powerful yet efficient GNN, which can guarantee the
expressive power, and significantly reduce the complexity
with a minimal loss of generalization capability.

Different from explicitly modeling all n! permutations, we
propose to sample a small number of representative permuta-
tions to cover all n(n−1)/2 pairwise correlations (as shown
in Figure 1(d)) by the permutation-sensitive functions. Ac-
cordingly, the permutation-invariance is approximated by
the invariance to pairwise correlations. Moreover, we math-
ematically analyze the complexity of permutation sampling
and reduce it from O(n lnn) to O(n) via a well-designed
Permutation Group (PG). Based on the proposed permuta-

tion sampling strategy, we then devise an aggregation mech-
anism and theoretically prove that its expressivity is strictly
more powerful than the 2-WL test and not less powerful than
the 3-WL test. Thus, our model is capable of significantly
reducing the computational complexity while guaranteeing
the expressive power. To the best of our knowledge, our
approach achieves the lowest time and space complexity
among all the GNNs beyond 2-WL test so far.

2. Related Work
Permutation-Sensitive GNNs. Loukas (2020) first an-
alyzes that it is necessary to sacrifice the permutation-
invariance and permutation-equivariance of MPNNs to im-
prove their expressive power when nodes lose discriminative
attributes. However, only a few models (GraphSAGE with
LSTM aggregators (Hamilton et al., 2017), RP with π-SGD
(Murphy et al., 2019b), CLIP (Dasoulas et al., 2020)) are
permutation-sensitive GNNs. These studies provide either
theoretical proofs or empirical results that their approaches
can capture some substructures, especially triangles, which
can be served as special cases of our Theorem 4. Despite
their powerful expressivity, the nonlinear complexity of
sampling or coloring limits their practical application.

Expressive Power of GNNs. Xu et al. (2019) and Morris
et al. (2019) first investigate the GNNs’ ability to distin-
guish non-isomorphic graphs and demonstrate that the tra-
ditional message-passing paradigm (Gilmer et al., 2017) is
at most as powerful as the 2-WL test (Weisfeiler & Leman,
1968), which cannot distinguish some graph pairs like regu-
lar graphs with identical attributes. In order to theoretically
improve the expressive power of the 2-WL test, a direct way
is to equip nodes with distinguishable attributes, e.g., identi-
fier (Murphy et al., 2019a; Loukas, 2020), port numbering
(Sato et al., 2019), coloring (Sato et al., 2019; Dasoulas
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et al., 2020), distance feature (Li et al., 2020; You et al.,
2021), and random feature (Sato et al., 2021; Abboud et al.,
2021). Another series of researches (Morris et al., 2019;
Maron et al., 2019b;a; Azizian & Lelarge, 2021) consider
high-order relations to design more powerful GNNs but
suffer from high computational complexity when handling
high-order tensors and performing global computations on
the graph. Some pioneering works (de Haan et al., 2020;
Thiede et al., 2021) use the automorphism group of local
subgraphs to obtain more expressive representations and
overcome the problem of global computations, but their pre-
processing stages still require solving the NP-hard subgraph
isomorphism problem. Recent studies (Sato et al., 2019;
Garg et al., 2020; Loukas, 2020; Tahmasebi et al., 2020)
also characterize the expressive power of GNNs from the
perspectives of what they cannot learn.

Leveraging Substructures for Learning Representations.
Previous efforts mainly focused on the isomorphism tasks,
but did little work on understanding their capacity to capture
and exploit the graph substructure. Recent studies (Chen
et al., 2020; de Haan et al., 2020; Vignac et al., 2020; Sato
et al., 2021; Balcilar et al., 2021; Barceló et al., 2021; Bourit-
sas et al., 2022) show that the expressive power of GNNs is
highly related to the local substructures in graphs. Chen et al.
(2020) demonstrate that the substructure counting ability of
GNN architectures not only serves as an intuitive theoretical
measure of their expressive power but also is highly relevant
to practical tasks. Barceló et al. (2021) and Bouritsas et al.
(2022) propose to incorporate some handcrafted subgraph
features to improve the expressive power, while they require
expert knowledge to select task-relevant features. Several
latest advances (Vignac et al., 2020; Balcilar et al., 2021;
Bodnar et al., 2021b;a) have been made to enhance the stan-
dard MPNNs by leveraging high-order structural informa-
tion while retaining the locality of message-passing. How-
ever, the complexity issue has not been satisfactorily solved
because they introduce memory/time-consuming context
matrices (Vignac et al., 2020), eigenvalue decomposition
(Balcilar et al., 2021), and lifting transformation (Bodnar
et al., 2021b;a) in pre-processing.

Relations to Our Work. Some crucial differences between
related works (Hamilton et al., 2017; Murphy et al., 2019a;
Dasoulas et al., 2020; Chen et al., 2020; Vignac et al., 2020;
Sato et al., 2021; Balcilar et al., 2021; Bodnar et al., 2021b)
and ours can be summarized as follows: (i) we propose
to design powerful permutation-sensitive GNNs while ap-
proximating the property of permutation-invariance, bal-
ancing the expressivity and computational efficiency; (ii)
our approach realizes the linear complexity of permuta-
tion sampling and reaches the theoretical lower bound; (iii)
our approach can directly learn substructures from data in-
stead of pre-computing or strategies based on handcrafted

structural features. We also provide detailed discussions in
Appendix H.3 for (Hamilton et al., 2017), K.2 for (Murphy
et al., 2019b;a), and L.1 for (Bodnar et al., 2021b;a).

3. Designing Powerful Yet Efficient GNNs via
Permutation Groups

In this section, we begin with the analysis of theoretically
most powerful but intractable GNNs. Then, we propose a
tractable strategy to achieve linear permutation sampling and
significantly reduce the complexity. Based on this strategy,
we design our permutation-sensitive aggregation mechanism
via permutation groups. Furthermore, we mathematically
analyze the expressivity of permutation-sensitive GNNs and
prove that our proposed model is more powerful than the
2-WL test and not less powerful than the 3-WL test via
incidence substructure counting.

3.1. Preliminaries

Let G = (V, E) ∈ G be a graph with vertex set V =
{v1, v2, . . . , vN} and edge set E , directed or undirected.
Let A ∈ RN×N be the adjacency matrix of G. For a node
v ∈ V , dv denotes its degree, i.e., the number of 1-hop neigh-
bors of node v, which is equivalent to n in this section for
simplicity. Suppose these n neighboring nodes of the central
node v are randomly numbered as u1, . . . , un (also abbre-
viated as 1, . . . , n in the following), the set of neighboring
nodes is represented as N (v) (or S = [n] = {1, . . . , n}).
Given a set of graphs {G1, G2, . . . , GM} ⊆ G, each graph
G has a label yG. Our goal is to learn a representation vec-
tor hG of the entire graph G and classify it into the correct
category from C classes. In this paper, we use the normal G
to denote a graph and the Gothic G to denote a group. The
necessary backgrounds of graph theory and group theory
are attached in Appendixes A and B. The rigorous definition
of the k-WL test is provided in Appendix C.

3.2. Theoretically Most Powerful GNNs

Relational Pooling (RP) (Murphy et al., 2019a) proposes the
theoretically most powerful permutation-invariant model by
averaging over all permutations of the nodes, which can be
formulated as follows:

hG =
1

|SN |
∑

π∈SN

f⃗ (hπv1 ,hπv2 , · · · ,hπvN ) (1)

where πvi(i = 1, . . . , N) denotes the result of acting π ∈
SN on vi ∈ V , SN is the symmetric group on the set [N ]

(or V), f⃗ is a sufficiently expressive (possibly permutation-
sensitive) function, hvi is the feature vector of node vi.

The permutation-sensitive functions, especially sequential
models, are capable of modeling the k-ary dependency (Mur-
phy et al., 2019b;a) among k input nodes. Meanwhile, the
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different input node orderings will lead to a total number
of k! different k-ary dependencies. These k-ary dependen-
cies indicate the relations and help capture the topological
connections among the corresponding k nodes, thereby ex-
ploiting the substructures within these k nodes to improve
the expressive power of GNN models. For instance, the ex-
pressivity of Eq. (1) is mainly attributed to the modeling of
all possible N -ary dependencies (full-dependencies) among
all N nodes, which can capture all graphs isomorphic to
G. However, it is intractable and practically prohibitive to
model all permutations (N ! N -ary dependencies) due to the
extremely high computational cost. Thus, it is necessary to
design a tractable strategy to reduce the computational cost
while maximally preserving the expressive power.

3.3. Permutation Sampling Strategy

Intuitively, the simplest way is to replace N -ary dependen-
cies with 2-ary dependencies, i.e., the pairwise correlations
in Section 1. Moreover, since the inductive bias of locality
results in lower complexity on sparse graphs (Battaglia et al.,
2018; Balcilar et al., 2021), we restrict the permutation-
sensitive functions to aggregate information and model the
2-ary dependencies in the 1-hop neighborhoods. Thus, we
will further discuss how to model all 2-ary dependencies
between n neighboring nodes with the lowest sampling
complexity O(n).

Suppose n neighboring nodes are arranged as a ring, we de-
fine this ring as an arrangement. An initial arrangement can
be simply defined as 1−2−· · ·−n−1, including an n-ary
dependency {1−2−· · ·−n−1} and n 2-ary dependencies
{1− 2, 2− 3, · · · , n− 1}. Since a permutation adjusts the
node ordering in the arrangement, we can use a permutation
to generate a new arrangement, which corresponds to a new
n-ary dependency covering n 2-ary dependencies. The fol-
lowing theorem provides a lower bound of the number of
arrangements to cover all 2-ary dependencies.

Theorem 1. Let n(n ≥ 4) denote the number of 1-hop
neighboring nodes around the central node v. There are
⌊(n− 1)/2⌋ kinds of arrangements in total, satisfying that
their corresponding 2-ary dependencies are disjoint. Mean-
while, after at least ⌊n/2⌋ arrangements (including the
initial one), all 2-ary dependencies have been covered at
least once.

We first give a sketch of the proof, and the detailed proof of
Theorem 1 is provided in Appendix E. Construct a simple
undirected graph G′ = (V ′, E ′), where V ′ denotes the n
neighboring nodes (abbreviated as nodes in the following),
and E ′ represents an edge set in which each edge indicates
the corresponding 2-ary dependency has been covered in
some arrangements. Each arrangement corresponds to a
Hamiltonian cycle in graph G′. In addition, we define the

following permutation σ to generate new arrangements:

σ =


(
1 2 3 4 5 · · · n− 1 n
1 4 2 6 3 · · · n n− 2

)
, n is odd,(

1 2 3 4 · · · n− 1 n
3 1 5 2 · · · n n− 2

)
, n is even.

(2)
After performing the permutation σ once, a new arrange-
ment is generated and a Hamiltonian cycle is constructed.
Since every pair of nodes can form a 2-ary dependency, cov-
ering all 2-ary dependencies is equivalent to constructing a
complete graph Kn. Besides, as a Kn has n(n−1)/2 edges
and each Hamiltonian cycle has n edges, a Kn can only be
constructed with at least ⌈n(n− 1)/2n⌉ = ⌈(n− 1)/2⌉ =
⌊n/2⌋ Hamiltonian cycles. It can be proved that after per-
forming the permutation σ for ⌊n/2⌋ − 1 = O(n) times in
succession (excluding the initial one), all 2-ary dependen-
cies are covered at least once.

Note that Theorem 1 has the constraint n ≥ 4 because
all 2-ary dependencies have already been covered in the
initial arrangement when 1 < n < 4, and there is only a
single node when n = 1. If n = 2, 3, 4, σ =

(
1 2

)
,(

2 3
)
,
(
1 3 4 2

)
, respectively (the case of n = 1 is

trivial). Thus the permutation σ defined in Theorem 1 is
available for an arbitrary n, while Eq. (2) shows the general
case with a large n.

According to the ordering of n neighboring nodes in the
arrangement, we can apply a permutation-sensitive function
to model an n-ary dependency among these n nodes while
covering n 2-ary dependencies. Since the input orderings
a→ b and b→ a lead to different results in the permutation-
sensitive function, these dependencies and the correspond-
ing Hamiltonian cycles (the solid arrows in Figure 2) are
modeled in a directed manner. We continue performing the
permutation σ for ⌊n/2⌋ times successively to get additional
⌊n/2⌋ arrangements (the dashed lines in Figure 2) and re-
versely directed Hamiltonian cycles (not shown in Figure
2). After the bi-directional modeling, edges in Hamilto-
nian cycles are transformed into undirected edges. Figure
2 briefly illustrates the above process when n = 5 to 8. In
conclusion, all 2-ary dependencies can be modeled in an
undirected manner by the tailored permutations. The num-
ber of permutations is n if n is even and (n− 1) if n is odd,
ensuring the linear sampling complexity O(n).

In fact, all permutations above form a permutation group.
In order to incorporate the strategy proposed by Theorem 1
into the aggregation process of GNN, we propose to use the
permutation group and group action, defined as follows.

Lemma 2. For the permutation σ of n indices, G =
{e, σ, σ2, . . . , σn−2} is a permutation group isomorphic
to the cyclic group Zn−1 if n is odd. And G =
{e, σ, σ2, . . . , σn−1} is a permutation group isomorphic
to the cyclic group Zn if n is even.
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Figure 2. Modeling all pairwise correlations between n neighboring nodes via permutations. Subfigures (a) to (d) characterize the cases
when n = 5 to 8 (ignoring the central node v). The monochrome permutation diagram illustrates the mapping process of permutation
σ, where the directed arc a → b indicates that moving a to the original position of b. All arrangements generated by σi are shown in
color below the diagram. The first and the last ⌊n/2⌋ arrangements are marked with solid and dashed lines, respectively. Solid and
dashed lines with the same color indicate that they correspond to a pair of bi-directional Hamiltonian cycles. Only the Hamiltonian cycles
corresponding to the first ⌊n/2⌋ arrangements are displayed for clarity. For a further explanation and the relationships among Theorem 1,
Lemma 2, Corollary 3, Figure 2, and Eq. (3), please refer to Appendix J.1 and Figure 8.

Corollary 3. The map α : G×S → S denoted by (g, s) 7→
gs is a group action of G on S.

To better illustrate the results of Lemma 2 and Corollary
3, the detailed discussion and diagram are attached in
Appendix G. Next, we apply the permutation group and
group action to design our permutation-sensitive aggrega-
tion mechanism.

3.4. Network Architecture

Without loss of generality, we apply the widely-used Recur-
rent Neural Networks (RNNs) as the permutation-sensitive
function to model the dependencies among neighboring
nodes. Let the group elements (i.e., permutations) in G act
on S, our proposed strategy in Section 3.3 is formulated as:

h(k)
v =

∑
g∈G

RNN
(
h(k−1)
gu1

,h(k−1)
gu2

, · · · ,h(k−1)
gun

,h(k−1)
gu1

)
+W

(k−1)
self h(k−1)

v , u1:n ∈ N (v) (3)

where gui(i = 1, . . . , n) denotes the result of acting g ∈ G

on ui ∈ S, and h
(k)
v ∈ Rdk is the feature vector of central

node v at the k-th layer. We provide more discussion on the
groups and model variants in Appendixes J.2 and J.3. Eq. (3)

takes advantage of the locality and permutation group G to
simplify the group actions in Eq. (1), which acts the symmet-
ric group SN on vertex set V , thereby avoiding the complete
modeling of N ! permutations. Meanwhile, Eq. (3) models
all 2-ary dependencies and achieves the invariance to 2-ary
dependencies. Thus, we can conclude that Eq. (3) realizes
the efficient approximation of permutation-invariance with
low complexity. In practice, we merge the central node v
into RNN for simplicity:

h(k)
v =

∑
g∈G

RNN
(
h(k−1)
v ,h(k−1)

gu1
,h(k−1)

gu2
, · · · ,

h(k−1)
gun

,h(k−1)
v

)
, u1:n ∈ N (v) (4)

Then, we apply a READOUT function (e.g., SUM(·)) to
obtain the graph representation h

(k)
G at the k-th layer and

combine the representations learned by different layers to
get the score s for classification:

h
(k)
G =

∑
v∈V

h(k)
v , s =

∑
k

W (k)h
(k)
G (5)

here W (k) ∈ RC×dk represents a learnable scoring matrix
for the k-th layer. Finally, we input score s to the softmax
function and obtain the predicted class of graph G.
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Table 1. Memory and time complexity per layer.

Model Memory Time complexity

GIN Θ(Nc) Θ(Mc+Nc2)
MPNN Θ(Nc) Θ(Mc2)
Fast SMP Θ(N2c) Θ(MNc+N2c2)
SMP Θ(N2c) Θ(MNc2)
PPGN Θ(N2c) Θ(N3c+N2c2)
3-WL-GNN Θ(N3c) Θ(N4c+N3c2)

Ours (serial) Θ(Nc) Θ(N∆2c2)
Ours (parallel) Θ(N∆c) Θ(N∆c2)

Complexity. We briefly analyze the computational com-
plexity of Eq. (3). Suppose the input and output dimensions
are both c for each layer, let ∆ denote the maximum degree
of graph G. In the worst-case scenario, Eq. (3) requires sum-
ming over ∆ terms processed in a serial manner. Since there
is no interdependence between these ∆ terms, they can also
be computed in a parallel manner with the time complexity
of Θ(∆c2) (caused by RNN computation), while sacrificing
the memory to save time. Let M denote the number of
edges. Table 1 compares our approach with other powerful
GNNs on the per-layer space and time complexity. The re-
sults of baselines are taken from Vignac et al. (2020). Since
the complexity analysis of GraphSAGE (Hamilton et al.,
2017), MPSN (Bodnar et al., 2021b), and CWN (Bodnar
et al., 2021a) involves many other notations, we analyze
GraphSAGE in Appendix H.3, and MPSN and CWN in
Appendix L.1. In a nutshell, our approach theoretically out-
performs other powerful GNNs in terms of time and space
complexity, even being on par with MPNN.

3.5. Expressivity Analysis

In this subsection, we theoretically analyze the expressive
power of a typical category of permutation-sensitive GNNs,
i.e., GNNs with RNN aggregators (Theorem 4), and that of
our proposed PG-GNN (Proposition 5). We begin with GIN
(Xu et al., 2019), which possesses the equivalent expressive
power as the 2-WL test (Xu et al., 2019; Azizian & Lelarge,
2021). In fact, the variants of GIN can be recovered by
GNNs with RNN aggregators (see Appendix I for details),
which implies that this category of permutation-sensitive
GNNs can be at least as powerful as the 2-WL test. Next,
we explicate why they go beyond the 2-WL test from the
perspective of substructure counting.

Triangular substructures are rich in various networks, and
counting triangles is an important task in network analysis
(Al Hasan & Dave, 2018). For example, in social networks,
the formation of a triangle indicates that two people with a
common friend will also become friends (Mitzenmacher &
Upfal, 2017). A triangle△uivuj is incident to the node v if
ui and uj are adjacent and node v is their common neighbor.

We define the triangle △uivuj as an incidence triangle
over node v (also ui and uj), and denote the number of
incidence triangles over node v as τv . Formally, the number
of incidence triangles over each node in an undirected
graph can be calculated as follows (proof and discussion for
the directed graph are provided in Appendix H.1):

τ =
1

2
A2 ⊙A · 1N (6)

where τ ∈ RN and its i-th element τi represents the
number of incidence triangles over node i, ⊙ denotes the
element-wise product (i.e., Hadamard product), 1N =
(1, 1, · · · , 1)⊤ ∈ RN is a sum vector.

Besides the WL-test, the capability of counting graph sub-
structures also characterizes the expressive power of GNNs
(Chen et al., 2020). Thus, we verify the expressivity of
permutation-sensitive GNNs by evaluating their abilities to
count triangles.

Theorem 4. Let xv,∀v ∈ V denote the feature inputs on
graph G = (V, E), and M be a general GNN model with
RNN aggregators. Suppose that xv is initialized as the
degree dv of node v, and each node is distinguishable. For
any 0 < ϵ ≤ 1/8 and 0 < δ < 1, there exists a parameter

setting Θ for M so that after O
(

dv(2dv+τv)t
dv+τv

)
samples,

Pr

(∣∣∣∣zvτv − 1

∣∣∣∣ ≤ ϵ

)
≥ 1− δ, ∀v ∈ V,

where zv ∈ R is the final output value generated by M and
τv is the number of incidence triangles.

Detailed proof can be found in Appendix H.2. Theorem 4
concludes that, for any graph, if the input node features are
node degrees and nodes are distinguishable, there exists a
parameter setting for a general GNN with RNN aggrega-
tors such that it can approximate the number of incidence
triangles to arbitrary precision for every node. Since 2-WL
and MPNNs cannot count triangles (Chen et al., 2020), we
conclude that this category of permutation-sensitive GNNs
is more powerful. However, the required samples are related
to τv and proportional to the mixing time t (see Appendix
H.2), leading to a practically prohibitive aggregation com-
plexity. Many existing permutation-sensitive GNNs like
GraphSAGE with LSTM and RP with π-SGD suffer from
this issue (see Appendixes H.3 and K.2 for more discussion).

On the contrary, our approach can estimate the number of
incidence triangles in linear sampling complexity O(n) =
O(dv). According to the definition of incidence triangles
and the fact that they always appear within v’s 1-hop neigh-
borhood, we know that the number of connections between
the central node v’s neighboring nodes is equivalent to the
number of incidence triangles over v. Meanwhile, Theorem
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1 and Eq. (3) ensure that all 2-ary dependencies between n
neighboring nodes are modeled with O(n) sampling com-
plexity. These dependencies capture the information of
whether two neighboring nodes are connected, thereby esti-
mating the number of connections and counting incidence
triangles in linear sampling complexity.

Recently, Balcilar et al. (2021) claimed that the trace (tr) and
Hadamard product (⊙) operations are crucial requirements
to go further than 2-WL to reach 3-WL from the perspective
of Matrix Language (Geerts, 2021). In fact, for any two
neighbors ui and uj of the central node v, the locality and
2-ary dependency of Eq. (3) introduce the information of
A2 (i.e., ui − v − uj) and ⊙A (i.e., ui −? uj), respectively.
Thus Eq. (3) can mimic Eq. (6) to count incidence trian-
gles. Moreover, we also prove that 1⊤Nτ = 1

2 tr(A3) (see
Appendix H.1 for details), which indicates that PG-GNN
can realize the trace (tr) operation when we use SUM(·) or
MEAN(·) (i.e., 1N ) as the graph-level READOUT function.
Note that even though MPNNs and 2-WL test are equipped
with distinguishable attributes, they still have difficulty per-
forming triangle counting since they cannot implement the
trace or Hadamard product operations (Balcilar et al., 2021).

Beyond the incidence triangle, we can also leverage 2-ary
dependencies of ui −? uj , ui −? uk, and uj −? uk to discover
the incidence 4-clique|vuiujuk, which is completely com-
posed of triangles and only appears within v’s 1-hop neigh-
borhood. In this way, the expressive power of PG-GNN
can be further improved by its capability of counting inci-
dence 4-cliques. As illustrated in Figure 7, these incidence
4-cliques help distinguish some pairs of non-isomorphic
strongly regular graphs while the 3-WL test fails. Conse-
quently, the expressivity of our model is guaranteed to be
not less powerful than 3-WL1.

From the analysis above, we confirm the expressivity of
PG-GNN as follows. The strict proof and more detailed dis-
cussion on PG-GNN and 3-WL are provided in Appendix I.

Proposition 5. PG-GNN is strictly more powerful than the
2-WL test and not less powerful than the 3-WL test.

4. Experiments
In this section, we evaluate PG-GNN on multiple synthetic
and real-world datasets from a wide range of domains.
Dataset statistics and details are presented in Appendix M.1.
The hyper-parameter search space and final hyper-parameter
configurations are provided in Appendix M.2. Comput-
ing infrastructures can be found in Appendix M.3. The

1“A is no/not less powerful than B” means that there exists a
pair of non-isomorphic graphs such that A can distinguish but B
cannot. The terminology “no/not less powerful” used here follows
the standard definition in the literature (Chen et al., 2020; Bodnar
et al., 2021b;a; Zhao et al., 2022).

Table 2. Results (measured by MAE) on incidence triangle count.

Model Erdős-Rényi graph Random regular graph

GCN 0.599 ± 0.006 0.500 ± 0.012
GraphSAGE 0.118 ± 0.005 0.127 ± 0.011
GIN 0.219 ± 0.016 0.342 ± 0.005
rGIN 0.194 ± 0.009 0.325 ± 0.006
RP 0.058 ± 0.006 0.161 ± 0.003
LRP 0.023 ± 0.011 0.037 ± 0.019

PG-GNN 0.019 ± 0.002 0.027 ± 0.001

code is publicly available at https://github.com/
zhongyu1998/PG-GNN.

4.1. Counting Substructures in Random Graphs

We conduct synthetic experiments of counting incidence
substructures (triangles and 4-cliques) on two types of ran-
dom graphs: Erdős-Rényi random graphs and random regu-
lar graphs (Chen et al., 2020). The incidence substructure
counting task is designed on the node level, which is more
rigorous than traditional graph-level counting tasks. Table 2
summarizes the results measured by Mean Absolute Error
(MAE, lower is better) for incidence triangle counting. We
report the average and standard deviation of testing MAEs
over 5 runs with 5 different seeds. In addition, the testing
MAEs of PG-GNN on ER and random regular graphs are
0.029 ± 0.002 and 0.023 ± 0.001 for incidence 4-clique
counting, respectively. Overall, the negligible MAEs of our
model support our claim that PG-GNN is powerful enough
for counting incidence triangles and 4-cliques.

Another phenomenon is that permutation-sensitive GNNs
consistently outperform permutation-invariant GNNs on
substructure counting tasks. This indicates that permutation-
sensitive GNNs are capable of learning these substructures
directly from data, without explicitly assigning them as
node features, but the permutation-invariant counterparts
like GCN and GIN fail. Therefore, permutation-sensitive
GNNs can implicitly leverage the information of characteris-
tic substructures in representation learning and thus benefit
real-world tasks in practical scenarios.

4.2. Real-World Benchmarks

Datasets. We evaluate our model on 7 real-world datasets
from various domains. PROTEINS and NCI1 are bioin-
formatics datasets; IMDB-BINARY, IMDB-MULTI, and
COLLAB are social network datasets. They are all popu-
lar graph classification tasks from the classical TUDataset
(Morris et al., 2020). We follow Xu et al. (2019) to create
the input features for each node. More specifically, the input
node features of bioinformatics graphs are categorical node
labels, and the input node features of social networks are

https://github.com/zhongyu1998/PG-GNN
https://github.com/zhongyu1998/PG-GNN
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Table 3. Results (measured by accuracy: %) on TUDataset.

Model PROTEINS NCI1 IMDB-B IMDB-M COLLAB

WL 75.0± 3.1 86.0± 1.8 73.8± 3.9 50.9± 3.8 78.9± 1.9
DGCNN 75.5± 0.9 74.4± 0.5 70.0± 0.9 47.8± 0.9 73.8± 0.5
IGN 76.6± 5.5 74.3± 2.7 72.0± 5.5 48.7± 3.4 78.4± 2.5
GIN 76.2± 2.8 82.7± 1.7 75.1± 5.1 52.3± 2.8 80.2± 1.9
PPGN 77.2± 4.7 83.2± 1.1 73.0± 5.8 50.5± 3.6 80.7± 1.7
CLIP 77.1± 4.4 N/A 76.0± 2.7 52.5± 3.0 N/A
NGN 71.7± 1.0 82.7± 1.4 74.8± 2.0 51.3± 1.5 N/A
WEGL 76.5± 4.2 N/A 75.4± 5.0 52.3± 2.9 80.6± 2.0
SIN 76.5± 3.4 82.8± 2.2 75.6± 3.2 52.5± 3.0 N/A
CIN 77.0± 4.3 83.6± 1.4 75.6± 3.7 52.7± 3.1 N/A

PG-GNN 76.8± 3.8 82.8± 1.3 76.8± 2.6 53.2± 3.6 80.9± 0.8

node degrees. All the input features are encoded in a one-hot
manner. In addition, MNIST is a computer vision dataset
for the graph classification task, and ZINC is a chemistry
dataset for the graph regression task. They are both modern
benchmark datasets, and we obtain the features from the
original paper (Dwivedi et al., 2020), but do not take edge
features into account. We summarize the statistics of all 7
real-world datasets in Table 7, and more details about these
datasets can be found in Appendix M.1.

Evaluations. For TUDataset, we follow the same data
split and evaluation protocol as Xu et al. (2019). We perform
10-fold cross-validation with random splitting and report
our results (the average and standard deviation of testing
accuracies) at the epoch with the best average accuracy
across the 10 folds. For MNIST and ZINC, we follow the
same data splits and evaluation metrics as Dwivedi et al.
(2020), please refer to Appendix M.1 for more details. The
experiments are performed over 4 runs with 4 different
seeds, and we report the average and standard deviation of
testing results.

Baselines. We compare our PG-GNN with multiple state-
of-the-art baselines: WL (Shervashidze et al., 2011), GCN
(Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GatedGCN (Bresson & Laurent, 2017), DGCNN
(Zhang et al., 2018), 3-WL-GNN (Morris et al., 2019), IGN
(Maron et al., 2019b), GIN (Xu et al., 2019), RP (Murphy
et al., 2019a), PPGN (Maron et al., 2019a), Ring-GNN
(Chen et al., 2019), CLIP (Dasoulas et al., 2020), NGN
(de Haan et al., 2020), (Deep-)LRP (Chen et al., 2020), PNA
(Corso et al., 2020), SMP (Vignac et al., 2020), rGIN (Sato
et al., 2021), WEGL (Kolouri et al., 2021), SIN (Bodnar
et al., 2021b), and CIN (Bodnar et al., 2021a).

Results and Analysis. Tables 3 and 4 present a summary
of the results. The results of baselines in Table 3 are taken
from their original papers, except WL taken from Xu et al.
(2019), and IGN from Maron et al. (2019a) for preserving
the same evaluation protocol. The results of baselines in
Table 4 are taken from Dwivedi et al. (2020), except PPGN
and Deep-LRP are taken from Chen et al. (2020), and PNA

Table 4. Results and running times on MNIST and ZINC.

Model MNIST ZINC

Accuracy ↑ Time / Epoch MAE ↓ Time / Epoch

GraphSAGE 97.31± 0.10 113.12s 0.468± 0.003 3.74s
GatedGCN 97.34± 0.14 128.79s 0.435± 0.011 5.76s
GIN 96.49± 0.25 39.22s 0.387± 0.015 2.29s
3-WL-GNN 95.08± 0.96 1523.20s 0.407± 0.028 286.23s
Ring-GNN 91.86± 0.45 2575.99s 0.512± 0.023 327.65s
PPGN N/A N/A 0.256± 0.054 334.69s
Deep-LRP N/A N/A 0.223± 0.008 72s
PNA 97.41± 0.16 N/A 0.320± 0.032 N/A

PG-GNN 97.51± 0.07 82.60s 0.282± 0.011 6.92s

from Corso et al. (2020). Obviously, our model achieves out-
standing performance on most datasets, even outperforming
competitive baselines by a considerable margin.

From Tables 3 and 4, we notice that our model significantly
outperforms other approaches on all social network datasets,
but slightly underperforms main baselines on molecular
datasets such as NCI1 and ZINC. Recall that in Section 3.5,
we demonstrate that our model is capable of estimating the
number of incidence triangles. The capability of counting
incidence triangles benefits our model on graphs with many
triangular substructures, e.g., social networks. However, tri-
angles rarely exist in chemical compounds (verified in Table
7) due to their instability in the molecular structures. Thus
our model achieves sub-optimal performance on molecular
datasets. Suppose we extend the 1-hop neighborhoods to
2-hop (even k-hop) in Eq. (3). In that case, our model will
exploit more sophisticated substructures such as pentagon
(cyclopentadienyl) and hexagon (benzene ring), which will
benefit tasks on molecular graphs but increase the complex-
ity. Thus, we leave it to future work.

4.3. Running Time Analysis

As discussed above, compared to other powerful GNNs,
one of the most important advantages of PG-GNN is effi-
ciency. To evaluate, we compare the average running times
between PG-GNN and baselines on two large-scale bench-
marks, MNIST and ZINC. Table 4 also presents the average
running times per epoch for various models. As shown in
Table 4, PG-GNN is significantly faster than other power-
ful baselines, even on par with several variants of MPNNs.
Thus, we can conclude that our approach outperforms other
powerful GNNs in terms of time complexity. We also pro-
vide memory cost analysis in Tables 5 and 6, please refer to
Appendix L.2 for more details.

5. Conclusion and Future Work
In this work, we devise an efficient permutation-sensitive
aggregation mechanism via permutation groups, capturing
pairwise correlations between neighboring nodes while en-
suring linear sampling complexity. We throw light on the
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reasons why permutation-sensitive functions can improve
GNNs’ expressivity. Moreover, we propose to approximate
the property of permutation-invariance to significantly re-
duce the complexity with a minimal loss of generalization
capability. In conclusion, we take an important step forward
to better understand the permutation-sensitive GNNs.

However, Eq. (3) only models a small portion of n-ary
dependencies while covering all 2-ary dependencies. Al-
though these 2-ary dependencies are invariant to an arbitrary
permutation, the invariance to higher-order dependencies
may not be guaranteed. It would be interesting to extend
the 1-hop neighborhoods to 2-hop (even k-hop) in Eq. (3),
thereby completely modeling higher-order dependencies
and exploiting more sophisticated substructures, which is
left for future work.
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A. Background on Graph Theory
Given a graph G = (V, E), a walk in G is a finite sequence of alternating vertices and edges such as v0, e1, v1, e2, . . . , em, vm,
where each edge ei = (vi−1, vi). A walk may have repeated edges. A trail is a walk in which all the edges are distinct. A
path is a trail in which all vertices (hence all edges) are distinct (except, possibly, v0 = vm). A trail or path is closed if
v0 = vm, and a closed path containing at least one edge is a cycle (West, 2001).

A Hamiltonian path is a path in a graph that passes through each vertex exactly once. A Hamiltonian cycle is a cycle in a
graph that passes through each vertex exactly once. A Hamiltonian graph is a graph that contains a Hamiltonian cycle.

Let G = (V, E) and G′ = (V ′, E ′) be graphs. If G′ ⊆ G and G′ contains all the edges (vi, vj) ∈ E with vi, vj ∈ V ′, then
G′ is an induced subgraph of G, and we say that V ′ induces G′ in G.

An empty graph is a graph whose edge-set is empty. A regular graph is a graph in which each vertex has the same degree. If
each vertex has degree r, the graph is r-regular. A strongly regular graph in the family SRG(v, r, λ, µ) is an r-regular graph
with v vertices, where every two adjacent vertices have λ common neighbors, and every two non-adjacent vertices have µ
common neighbors.

A complete graph is a simple undirected graph in which every pair of distinct vertices is adjacent. We denote the complete
graph on n vertices by Kn. A tournament is a directed graph in which each edge of a complete graph is given an orientation.
We denote the tournament on n vertices by K⃗n. A clique of a graph G is a complete induced subgraph of G. A clique of
size k is called a k-clique.

The local clustering coefficient of a vertex quantifies how close its neighbors are to being a clique (complete graph). The local
clustering coefficient cv of a vertex v is given by the proportion of links between the n vertices within its neighborhoodN (v)

divided by the number of links that could possibly exist between them, defined as cv =
2 |{eij : i, j ∈ N (v), eij ∈ E}|

n(n− 1)
.

This measure is 1 if every neighbor connected to v is also connected to every other vertex within the neighborhood.

Let G = (V, E) and G′ = (V ′, E ′) be graphs. An isomorphism ϑ : V → V ′ between G and G′ is a bijective map that
maps pairs of connected vertices to pairs of connected vertices, and likewise for pairs of non-connected vertices, i.e.,
(ϑ(u), ϑ(v)) ∈ E ′ iff (u, v) ∈ E for all u and v in V .

B. Background on Group Theory
Since we deal with finite sets in this paper, all the following definitions are about finite groups.

For an arbitrary element x in a group G, the order of x is the smallest positive integer n such that xn = e, where e is the
identity element. H = {e, x, x2, . . . , xn−1} is the cyclic subgroup generated by x and is often denoted by H = ⟨x⟩. A
cyclic group is a group that is equal to one of its cyclic subgroups: G = ⟨g⟩ for some element g, and the element g is called
a generator. The cyclic group with n elements is denoted by Zn (Artin, 2011; Birkhoff & Mac Lane, 2017).

A permutation of a finite set S is a bijective map from S to itself. In Cauchy’s two-line notation, it denotes such a permutation
by listing the “natural” order for all the n elements of S in the first row, and for each one, its image below it in the second

row: σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
. A cycle of length r (or r-cycle) is a permutation σ for which there exists an element

i1 in {1, 2, . . . , n} such that σ(i1) = i2, σ(i2) = i3, · · · , σ(ir−1) = ir, σ(ir) = i1 are the only elements moved by σ. In
cycle notation, it denotes such a cycle (or r-cycle) by (i1 i2 · · · ir).

A permutation group is a group whose elements are permutations of a given set S, with the group operation “◦” being the
composition of permutations. The permutation group on the set S is denoted by Perm(S). A symmetric group is a group
whose elements are all permutations of a given set S. The symmetric group on the set S = [n] = {1, 2, . . . , n} is denoted
by Sn (Artin, 2011). Every permutation group is a subgroup of a symmetric group.

A group action α of a group G on a set S is a map α : G× S → S, denoted by (g, s) 7→ gs (with α(g, s) often shortened to
gs or g · s) that satisfies the following two axioms:

a) identity: e · s = s, for all s ∈ S, where e is the identity element of G.

b) associative law: (g1 ◦ g2) · s = g1 · (g2 · s), for all g1, g2 ∈ G and s ∈ S, where ◦ denotes the operation or
composition in G.
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Let G and G′ be groups. A homomorphism φ : G → G′ is a map from G to G′ such that φ(ab) = φ(a)φ(b) for all a
and b in G. An isomorphism φ : G → G′ from G to G′ is a bijective group homomorphism - a bijective map such that
φ(ab) = φ(a)φ(b) for all a and b in G (Artin, 2011). We use the symbol ∼= to denote two groups G and G′ are isomorphic,
i.e., G ∼= G′.

C. Definition of k-WL Test
There are different definitions of the k-dimensional Weisfeiler-Lehman (k-WL) test for k ≥ 2, while in this work, we follow
the definition in Chen et al. (2020). Note that the k-WL test here is equivalent to the k-WL tests in (Grohe, 2017; Morris
et al., 2019; Maron et al., 2019a; Azizian & Lelarge, 2021), and the (k− 1)-WL test in (Cai et al., 1992) (Grohe (2017) calls
this version as k-WL′). (k + 1)-WL test has been proven to be strictly more powerful than k-WL test (Cai et al., 1992).

The k-WL algorithm is a generalization of the 1-WL, it colors tuples from Vk instead of nodes. For any k-tuple s =
(i1, . . . , ik) ∈ Vk and each j ∈ [k] = {1, . . . , k}, define the j-th neighborhood

Nj(s) = {(i1, . . . , ij−1, u, ij+1, . . . , ik) | u ∈ V}

That is, the j-th neighborhoodNj(s) of the k-tuple s is obtained by replacing the j-th component of s with every node from
V .

Given a pair of graphs G and G′, we use the k-WL algorithm to test them for isomorphism. Suppose that the two graphs
have the same number of vertices since otherwise, they can be told apart easily. Without loss of generality, we assume that
they share the same set of vertex indices, V (but may differ in E). The k-WL test follows the following coloring procedure.

1) For each of the graphs, at iteration 0, the test assigns an initial color in the color space Γ to each k-tuple according
to its atomic type, i.e., two k-tuples s and s′ in Vk get the same color if the subgraphs induced from nodes of s and
s′ are isomorphic.

2) In each iteration t > 0, the test computes a k-tuple coloring c
(t)
k : Vk → Γ. More specifically, let c(t)k (s) denote the

color of s in G assigned at the t-th iteration, and let c′(t)k (s′) denote the color assigned for s′ in G′. Define

C
(t)
j (s) = HASH(t)

1

({
c
(t−1)
k (w)

∣∣∣ w ∈ Nj(s)
})

C ′
(t)
j (s′) = HASH(t)

1

({
c′

(t−1)
k (w′)

∣∣∣ w′ ∈ Nj(s
′)
})

where HASH(t)
1 is a hash function that maps injectively from the space of multisets of colors to some intermediate

space. Then let

c
(t)
k (s) = HASH(t)

2

((
c
(t−1)
k (s),

(
C

(t)
1 (s), . . . , C

(t)
k (s)

)))
c′

(t)
k (s′) = HASH(t)

2

((
c′

(t−1)
k (s′),

(
C ′

(t)
1 (s′), . . . , C ′

(t)
k (s′)

)))
where HASH(t)

2 maps injectively from its input space to the color space Γ, c(t)k (s) and c′
(t)
k (s) are updated iteratively

in this way.

3) The test will terminate and return the result that the two graphs are not isomorphic if the following two multisets
differ at some iteration t: {

c
(t)
k (s)

∣∣∣ s ∈ Vk
}
̸=
{
c′

(t)
k (s′)

∣∣∣ s′ ∈ Vk
}

For the detailed difference between k-WL test here and (k − 1)-WL test in Cai et al. (1992) (k-WL′ in Grohe (2017)), see
Remark 3.5.9 in Grohe (2017).
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u1 u3 u5

u2 u6u4

v1

v2

v3 v4

v5

v6

Figure 3. A pair of non-isomorphic graphs that cannot be distinguished by permutation-invariant aggregation functions, but can be easily
distinguished by permutation-sensitive aggregation functions.

D. Distinguishing Non-Isomorphic Graph Pairs: Permutation-Sensitive vs.
Permutation-Invariant Aggregation Functions

Let f be an arbitrary aggregation function. For a node v, let xv (b for blue, g for green) denote the initial node feature, hv

denote the feature transformed by f . In the initial stage, we have:

xu1 = xu2 = xu5 = xu6 = b, xu3 = xu4 = g

xv1 = xv2 = xv5 = xv6 = b, xv3 = xv4 = g

Figure 3 illustrates a pair of non-isomorphic graphs that 2-WL test and most permutation-invariant aggregation functions
fail to distinguish. Suppose f is permutation-invariant, we take the sum aggregator SUM(·) as an example to illustrate this
process. After the first round of iteration, the transformed feature of each node is:

hu1
= hu2

= hu5
= hu6

= b+ g, hu3
= hu4

= 2b+ g

hv1 = hv2 = hv5 = hv6 = b+ g, hv3 = hv4 = 2b+ g

We can find that the distributions of node features of these two graphs are the same. Similarly, after each round of iteration,
these two graphs always produce the same distributions of node features. Hence we can conclude that the 2-WL test and the
permutation-invariant function SUM(·) fail to distinguish these two graphs.

In contrast, suppose f is permutation-sensitive, we take a generic permutation-sensitive aggregator h(t) = k ·h(t−1)+x(t) as
an example to illustrate its process. Here x(t) is the t-th input node feature, h(t) is the corresponding transformed feature with
h(0) = 0, and the learnable parameter k > 1 measures the pairwise correlation between x(t−1) and x(t). For the left graph
G1, we focus on node u3. Let the input ordering of neighboring nodes be u1, u4, u5, i.e., x(1)

u3 → x
(2)
u3 → x

(3)
u3 = b→ g → b,

then f only encodes the pairwise correlation between b and g. Thus, we have

h(1)
u3

= k · 0 + b = b

h(2)
u3

= k · b+ g = kb+ g

h(3)
u3

= k · (kb+ g) + b = (k2 + 1)b+ kg

For the right graph G2, we focus on node v3. Let the input ordering of neighboring nodes be v1, v2, v4, i.e., x(1)
v3 → x

(2)
v3 →

x
(3)
v3 = b→ b→ g, then f also encodes the pairwise correlation between b and b. Thus, we have

h(1)
v3 = k · 0 + b = b

h(2)
v3 = k · b+ b = kb+ b

h(3)
v3 = k · (kb+ b) + g = (k2 + k)b+ g

After the first round of iteration, the node feature h
(3)
u3 of u3 differs from the h

(3)
v3 of v3. Hence we can conclude that the

permutation-sensitive aggregation function f can distinguish these two graphs. Moreover, the weight ratio of b and g

in h
(3)
u3 is (k2 + 1) : k, which is smaller than that in h

(3)
v3 , i.e., (k2 + k) : 1. This fact indicates that, in G1, f focuses

more on encoding the pairwise correlation between b and g. In contrast, in G2, f focuses more on encoding the pairwise
correlation between b and b, thereby exploiting the triangular substructure such as△v1v3v2. It is worth noting that when
k = 1, the function f is h(t) = h(t−1) + x(t) and degenerates to the permutation-invariant function SUM(·), resulting in
h
(3)
u3 = h

(3)
v3 = 2b+ g.
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Figure 4. The initial arrangements (following the gray solid lines).

E. Proof of Theorem 1
Theorem 1. Let n(n ≥ 4) denote the number of 1-hop neighboring nodes around the central node v. There are ⌊(n− 1)/2⌋
kinds of arrangements in total, satisfying that their corresponding 2-ary dependencies are disjoint. Meanwhile, after at least
⌊n/2⌋ arrangements (including the initial one), all 2-ary dependencies have been covered at least once.

Proof. Construct a simple undirected graph G′ = (V ′, E ′), where V ′ denotes the n neighboring nodes (abbreviated as nodes
in the following) around the central node v, and E ′ represents an edge set in which each edge indicates the corresponding
2-ary dependency has been covered in some arrangements. Thus, each arrangement corresponds to a Hamiltonian cycle
in graph G′. For any two arrangements, detecting whether their corresponding 2-ary dependencies are disjoint can be
analogous to finding two edge-disjoint Hamiltonian cycles. Since every pair of nodes can form a 2-ary dependency, the
first problem can be translated into finding the maximum number of edge-disjoint Hamiltonian cycles in a complete graph
Kn, and the second problem can be translated into finding the minimum number of Hamiltonian cycles to cover a complete
graph Kn.

Since a Kn has n(n−1)
2 edges and each Hamiltonian cycle has n edges, there are at most ⌊n(n−1)2 /n⌋ = ⌊n−12 ⌋ edge-disjoint

Hamiltonian cycles in a Kn. In addition, we can specifically construct ⌊n−12 ⌋ edge-disjoint Hamiltonian cycles as follows.
If n is odd, keep the nodes fixed on a circle with node 1 at the center, rotate the node numbers on the circle clockwise by
360◦

n−1 , 2×
360◦

n−1 , . . . ,
n−3
2 ×

360◦

n−1 , while the graph structure always remains unchanged as the initial arrangement shown in
Figure 4(a). Each rotation can be formulated as the following permutation σ′:

σ′ =


(
1 2 3 4 5 · · · n− 1 n
1 4 2 6 3 · · · n n− 2

)
= (2 4 6 · · · n− 1 n n− 2 · · · 7 5 3) , if n is odd,(

1 2 3 4 5 · · · n− 1 n
1 4 2 6 3 · · · n− 3 n− 1

)
= (2 4 6 · · · n− 2 n n− 1 · · · 7 5 3) , if n is even.

Observe that each rotation generates a new Hamiltonian cycle containing completely different edges from before. Thus we
have n−3

2 = ⌊n−12 ⌋ − 1 new Hamiltonian cycles with all edges disjoint from the ones in Figure 4(a) and among themselves
(Deo, 2017). If n is even, the node arrangement can be initialized as shown in Figure 4(b), and n−4

2 = ⌊n−12 ⌋ − 1 new
Hamiltonian cycles can be constructed successively in a similar way. We thus conclude that there are ⌊n−12 ⌋ kinds of
arrangements in total, satisfying that their corresponding 2-ary dependencies are disjoint.

Furthermore, if n is odd, Kn has n(n−1)
2 edges divisible by the length n of each Hamiltonian cycle. Therefore, we can

exactly cover all edges by the above ⌊n−12 ⌋ =
n−1
2 = ⌊n2 ⌋ kinds of arrangements. On the contrary, if n is even, Kn

has n(n−1)
2 edges indivisible by the length n of each Hamiltonian cycle, remaining n

2 edges uncovered by the above
⌊n−12 ⌋ =

n−2
2 kinds of arrangements. Thus we continue to perform the permutation σ′ once, i.e., ⌊n−12 ⌋+ 1 = n

2 = ⌊n2 ⌋
kinds of arrangements in total, to cover all edges but result in n

2 edges duplicated twice.

As discussed in the main body, these ⌊n2 ⌋ arrangements and the corresponding ⌊n2 ⌋ Hamiltonian cycles are modeled by the
permutation-sensitive function in a directed manner. In addition, we also expect to reverse these ⌊n2 ⌋ directed Hamiltonian
cycles by performing the permutation σ′ successively, thereby transforming them into an undirected manner. However, σ′
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cannot satisfy this requirement if n is even. Thus, we propose to revise the permutation σ′ into the following one:

σ =


(
1 2 3 4 5 · · · n− 1 n
1 4 2 6 3 · · · n n− 2

)
= (2 4 6 · · · n− 1 n n− 2 · · · 7 5 3) , if n is odd,(

1 2 3 4 · · · n− 1 n
3 1 5 2 · · · n n− 2

)
= (1 3 5 · · · n− 1 n n− 2 · · · 6 4 2) , if n is even.

where σ is the same as σ′ when n is odd, but a little different when n is even. If n is even, σ is an n-cycle, but σ′ is an
(n− 1)-cycle. The corresponding initial node arrangement after revision is shown in Figure 4(c). After adding a virtual
node 0 at the center in Figure 4(c), σ becomes the same as σ′ with n + 1 in Figure 4(a), which can cover all edges with
⌊ (n+1)−1

2 ⌋ = ⌊n2 ⌋ kinds of arrangements. Moreover, after performing σ for n times in succession, it can cover a complete
graph bi-directionally but σ′ fails.

In conclusion, after performing σ or σ′ for ⌊n2 ⌋ − 1 times in succession (excluding the initial one), all 2-ary dependencies
have been covered at least once. □

F. Proof of Lemma 2
Theorem F.1. The order of any permutation is the least common multiple of the lengths of its disjoint cycles (Birkhoff &
Mac Lane, 2017).

Proposition F.2. The order of a cyclic group is equal to the order of its generator (Artin, 2011).

Using Theorem F.1 and Proposition F.2, we prove Lemma 2 as follows.

Lemma 2. For the permutation σ of n indices, G = {e, σ, σ2, . . . , σn−2} is a permutation group isomorphic to the cyclic
group Zn−1 if n is odd. And G = {e, σ, σ2, . . . , σn−1} is a permutation group isomorphic to the cyclic group Zn if n is
even.

Proof. If n is odd, we find the order of permutation σ first. Since

σ =

(
1 2 3 4 5 · · · n− 1 n
1 4 2 6 3 · · · n n− 2

)
= (1) (2 4 6 · · · n− 1 n n− 2 · · · 7 5 3)

Let π1 = (1), π2 = (2 4 6 · · · n− 1 n n− 2 · · · 7 5 3), then the permutation σ can be represented as the product of these
two disjoint cycles, i.e., σ = π1π2. Here π1 is a 1-cycle of length 1, π2 is an (n− 1)-cycle of length n− 1. Using Theorem
F.1, the order of permutation σ is the least common multiple of 1 and n − 1: lcm(1, n − 1) = n − 1, which indicates
that σn−1 = e. Therefore, G = {e, σ, σ2, . . . , σn−2} is a permutation group generated by σ, i.e., G = ⟨σ⟩. According to
the definition of the cyclic group (see Appendix B), G is isomorphic to a cyclic group. By Proposition F.2, the order of
group G = ⟨σ⟩ is equal to the order of its generator σ, i.e., n− 1. Thus, G = {e, σ, σ2, . . . , σn−2} is a permutation group
isomorphic to the cyclic group Zn−1.

Similarly, we can prove that G = {e, σ, σ2, . . . , σn−1} is a permutation group isomorphic to the cyclic group Zn if n is
even. □

Theorem F.3 (Cayley’s Theorem). Every finite group is isomorphic to a permutation group (Artin, 2011).

The conclusion of Lemma 2 also obeys the most fundamental Cayley’s Theorem in group theory.

G. Proof of Corollary 3 and the Diagram of Group Action
Corollary 3. The map α : G× S → S denoted by (g, s) 7→ gs is a group action of G on S.

Proof. Let e be the identity element of G and idσ be the identity permutation. And let ◦ denote the composition in G. For
all σi, σj ∈ G and s ∈ S, we have

α(e, s) = e · s = idσ · s = s

α(σiσj , s) = (σi ◦ σj) · s = σi · (σj · s) = α(σi, α(σj , s))

Thus, the map α defines a group action of the permutation group G on the set S. □
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Figure 5. The group structure of the permutation group G and the results of its actions on the set S.
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To better understand Lemma 2 and Corollary 3, we provide diagrams to illustrate the group actions of the permutation
groups G1 = {e, σ, σ2, . . . , σ5} and G2 = {e, σ, σ2, . . . , σ7} when n = 7 and n = 8, respectively. As shown in Figures
5(a) and 5(b), the overall frameworks with big light-gray circles and cyan arrows represent the Cayley diagrams of the
permutation groups G1

∼= Z6 and G2
∼= Z8 constructed by Lemma 2, respectively. The center of each subfigure presents

the corresponding generator σ. Each big light-gray circle represents an element g (i.e., a permutation) of group G, marked
at the center of the circle. And each cyan arrow gi → gj indicates the relationship gj = gi ◦ σ exists between two group
elements gi, gj ∈ G. After g acts on the elements 1, . . . , n of the set S, the corresponding images are presented as the
colored numbers next to the big light-gray circle. Finally, the 2-ary dependencies (colored arrows) between neighboring
nodes (small dark-gray circles) are modeled according to the action results of g, shown in each big light-gray circle.

H. Proofs About Incidence Triangles
H.1. Proof of Eq. (6)

τ =
1

2
A2 ⊙A · 1N , 1⊤Nτ =

1

2
tr(A3)

Proof. Let A = (aij)N×N , B = A2 = (bij)N×N , where aij and bij denote the (i, j) element of A and B, respectively.
Since aij equals 1 iff nodes vi and vj are adjacent in G, bij equals the number of walks of length 2 from nodes vi to vj in G.
In addition, a walk of length 2 from vi to vj and an edge from vj to vi form a triangle containing both vi and vj . Therefore,
the (i, j) element of A2 ⊙A equals bijaij = bijaji, which indicates how many triangles contain both vi and vj . We can
use a sum vector 1N = (1, 1, · · · , 1)⊤ ∈ RN to sum up each row of A2 ⊙A and get a result vector, whose i-th element
gives twice the number of incidence triangles of node vi. Here the “twice” comes from the fact that each incidence triangle
△vjvivk over node vi has two walks of length 2 starting from node vi, that is, vi → vj → vk and vi → vk → vj . Hence
after dividing each element of the result vector by 2, we finally obtain τ = 1

2A
2 ⊙A · 1N .

For the second equation, we have

1⊤Nτ =
1

2
1⊤N · (A2 ⊙A) · 1N =

1

2

N∑
i=1

N∑
j=1

bijaij =
1

2

N∑
i=1

(A2 ·A⊤)ii =
1

2
tr(A2 ·A⊤) = 1

2
tr(A3) □

Remark. The i-th diagonal entry of A3 is equal to twice the number of triangles in which the i-th node is contained
(Mitzenmacher & Upfal, 2017). In addition, each triangle has three vertices. Hence we can divide the sum of the diagonal
entries by 6 to obtain the total number of triangles in graph G, i.e., 1

6 tr(A3) (Harary & Manvel, 1971).

For directed graphs, we also have similar results:

τ⃗ = A2 ⊙A⊤ · 1N , 1⊤N τ⃗ = tr(A3)

where τ⃗ ∈ RN and its i-th element τ⃗i represents the number of directed incidence triangles over node i.

H.2. Proof of Theorem 4

Theorem H.1 (Chernoff-Hoeffding Bound for Discrete Time Markov Chain (Chung et al., 2012)). Let M be an er-
godic Markov chain with state space [n] = {1, 2, . . . , n} and stationary distribution π. Let t = t(ϵ) be its ϵ-mixing time
for ϵ ≤ 1/8. Let (X1, X2, . . . , Xr) denote an r-step random walk onM starting from an initial distribution φ on [n], i.e.,
X1 ← φ. Define ∥φ∥π =

∑n
i=1

φ2
i

πi
. For every step k ∈ [r], let f (k) : [n] → [0, 1] be a weight function such that the

expectation EXk←π[f
(k)(Xk)] = µ for all k. Define the total weight of the walk (X1, X2, . . . , Xr) by Z ≜

∑r
k=1 f(Xk).

There exists some constant c (which is independent of µ, δ and ϵ) such that for 0 < δ < 1

Pr (|Z − µr| > ϵµr) ≤ c ∥φ∥π exp

(
−ϵ2µr

72t

)
or equivalently

Pr

(∣∣∣∣Zr − µ

∣∣∣∣ > ϵµ

)
≤ c ∥φ∥π exp

(
−ϵ2µr

72t

)
.
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Theorem H.2. Any nonlinear dynamic system may be approximated by a recurrent neural network to any desired degree of
accuracy and with no restrictions imposed on the compactness of the state space, provided that the network is equipped with
an adequate number of hidden neurons (Haykin, 2010).

Using Theorem H.1 and Theorem H.2, we prove Theorem 4 as follows.

Theorem 4. Let xv,∀v ∈ V denote the feature inputs on graph G = (V, E), and M be a general GNN model with RNN
aggregators. Suppose that xv is initialized as the degree dv of node v, and each node is distinguishable. For any 0 < ϵ ≤ 1/8

and 0 < δ < 1, there exists a parameter setting Θ for M so that after O
(

dv(2dv+τv)t
dv+τv

)
samples,

Pr

(∣∣∣∣zvτv − 1

∣∣∣∣ ≤ ϵ

)
≥ 1− δ, ∀v ∈ V,

where zv ∈ R is the final output value generated by M and τv is the number of incidence triangles.

Proof. Without loss of generality, we discuss how to estimate the number of incidence triangles τ0 for an arbitrary
node v0 based on its n neighbors v′1, v

′
2, . . . , v

′
n. Let v′0 = v0, and let G′ = (V ′, E ′) denote the subgraph induced by

V ′ = {v′0, v′1, v′2, . . . , v′n}, with an adjacency matrix A′ ∈ R(n+1)×(n+1). We add a symbol “′” to all notations of the
induced subgraph G′ to distinguish them from those of graph G. For each node v′i ∈ V ′, d′i denotes the degree of v′i in graph
G′, τ ′i denotes the number of incidence triangles of v′i in graph G′. In particular, d′0 = d0 = n, τ ′0 = τ0. Our goal is to
estimate τ0 for an arbitrary node v0 in graph G, which is equal to τ ′0 in graph G′.

A simple random walk (SRW) with r steps on graph G′, denoted by R = (X1, X2, . . . , Xr), is defined as follows: start
from an initial node in G′, then move to one of its neighboring nodes chosen uniformly at random, and repeat this process
(r − 1) times. This random walk on graph G′ can be viewed as a finite Markov chainM with the state space V ′, and the
transition probability matrix P of this Markov chain is defined as

P (i, j) =


1

d′i
, if (v′i, v

′
j) ∈ E ′,

0, otherwise.

Let D′ =
∑n

i=0 d
′
i = 2 |E ′| denote the sum of degrees in graph G′. After many random walk steps, the probability

Pr(Xr = v′i) converges to pi ≜ d′i/D
′, and the vector π = (p0, p1, . . . , pn) is called the stationary distribution of this

random walk.

The mixing time of a Markov chain is the number of steps it takes for a random walk to approach its stationary distribution.
We adopt the definition in (Chung et al., 2012; Chen et al., 2016; Mitzenmacher & Upfal, 2017) and define the mixing time
t(ϵ) as follows:

t(ϵ) = max
Xi∈V′

min
{
t :
∣∣∣π − π(i)P t

∣∣∣ < ϵ
}

where π is the stationary distribution of the Markov chain defined above, π(i) is the initial distribution when starting from
state Xi ∈ V ′, P t is the transition matrix after t steps, and | · | is the variation distance between two distributions.

Later on, we will exploit node samples taken from a random walk to construct an estimator z0, then use the mixing time
based Chernoff-Hoeffding bound (Chung et al., 2012) to compute the number of steps/samples needed, thereby guaranteeing
that our estimator z0 is within (1± ϵ) of the true value τ0 with the probability of at least 1− δ.

Given a random walk (X1, X2, . . . , Xr) on graph G′, we define a new variable ak = A′Xk−1,Xk+1
for every 2 ≤ k ≤ r− 1,

then we have

E
[
akd
′
Xk

]
=

n∑
i=0

piE
[
akd
′
Xk

∣∣ Xk = v′i
]

=

n∑
i=0

d′i
D′

2τ ′i
d′i

2 d
′
i

=
2

D′

n∑
i=0

τ ′i (7)
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The second equality holds because there are d′i
2 equal probability combinations of (Xk−1, v

′
i, Xk+1), out of which only 2τ ′i

combinations form a triangle (u′, v′i, w
′) or its reverse (w′, v′i, u

′), where u′ is connected to w′, i.e., ak = A′Xk−1,Xk+1
=

A′u′,w′ = 1.

To estimate τ0, we introduce two variables Y1 and Y2, defined as follows:

Y1 ≜
1

r − 2

r−1∑
k=2

akd
′
Xk

, Y2 ≜
1

r

r∑
k=1

1

d′Xk

Using the linearity of expectation and Eq. (7), we obtain

E[Y1] =
1

r − 2

r−1∑
k=2

E
[
akd
′
Xk

]
=

2

D′

n∑
i=0

τ ′i (8)

Similarly, we have

E[Y2] =
1

r

r∑
k=1

E

[
1

d′Xk

]
=

1

r

r∑
k=1

(
n∑

i=0

d′i
D′

1

d′i

)
=

n+ 1

D′
(9)

Recall that G′ is a subgraph induced by V ′ = {v′0, v′1, v′2, . . . , v′n}, where v′1, v
′
2, . . . , v

′
n are n neighbors of an arbitrary

node v′0 = v0. Therefore, the maximum degree of graph G′ is ∆′ = n, which is equal to d′0 = d0. In addition, we have∑n
i=0 τ

′
i = 3τ ′0 = 3τ0, and D′ = 2 |E ′| = 2(d′0 + τ ′0) = 2(d0 + τ0). Substituting them in Eq. (8) and Eq. (9), we get

E[Y1] =
3τ0

d0 + τ0
(10)

and
E[Y2] =

d0 + 1

2(d0 + τ0)
(11)

From Eq. (10) and Eq. (11) we can isolate τ0 and get

τ0 =
d0 + 1

6
· E[Y1]

E[Y2]
(12)

Since d0 is the feature input, the coefficient
d0 + 1

6
can be considered as a constant factor here. Intuitively, both Y1 and Y2

converge to their expected values, and thus the estimator z0 ≜
d0 + 1

6
· Y1

Y2
converges to τ0 as well. Next, we will find the

number of steps/samples r for convergence.

Since akd
′
Xk

= A′Xk−1,Xk+1
d′Xk

in Y1 only depends on a 3-nodes history, we observe a related Markov chain M̃ that
remembers the three latest visited nodes. Accordingly, M̃ has (n+1)× (n+1)× (n+1) states, and (Xk−1, Xk, Xk+1)→
(Xk, Xk+1, Xk+2) has the same transition probability as Xk+1 → Xk+2 inM. Define each state X̃k = (Xk−1, Xk, Xk+1)

for 2 ≤ k ≤ r − 1. Let f̃ (k)
1 (X̃k) = f

(k)
1 (Xk) =

akd
′
Xk

∆′
=

akd
′
Xk

d0
such that all values of f̃ (k)

1 (X̃k) are in [0, 1]. By

Eq. (7), Eq. (8), and Eq. (10), we have µ1 = EX̃k←π(f̃
(k)
1 (X̃k)) =

3τ0
d0(d0 + τ0)

. Define Z1 ≜
r−1∑
k=2

f̃
(k)
1 (X̃k) =

r − 2

d0
Y1,

assume that φ ≈ π thus ∥φ∥π = 1. By Theorem H.1 and Eq. (10), we have

Pr
(
|Y1 − E[Y1]| >

ϵ

3
E[Y1]

)
≤ c1 exp

(
− 3 · ϵ2τ0(r − 2)

9 · 72 · t̃d0(d0 + τ0)

)
(13)

Extracting rY1
from

δ

2
= c1 exp

(
− ϵ2τ0(r − 2)

216 · t̃d0(d0 + τ0)

)
, we obtain rY1

= 2 − 216
ln(δ/2c1)

ϵ2
· d0(d0 + τ0)̃t

τ0
=

O
(
d0(d0 + τ0)̃t

τ0

)
, where c1, ϵ and δ are all constants.



Going Deeper into Permutation-Sensitive Graph Neural Networks

1'

2'
3'

6'
5'

4'
0'

va

(a) Star graph, without any triangles

1'

2'
3'

6'
5'

4'
0'

va

(b) General case, with some triangles

Figure 6. Add an artificial node va and connect it to all nodes in G′.

Let f (k)
2 (Xk) =

1

d′Xk

, by Eq. 9 and Eq. 11 we have µ2 = EXk←π(f
(k)
2 (Xk)) =

d0 + 1

2(d0 + τ0)
. Define Z2 ≜

r∑
k=1

f
(k)
2 (Xk) =

rY2, assume that φ ≈ π thus ∥φ∥π = 1. By Theorem H.1 and Eq. (11), we have

Pr
(
|Y2 − E[Y2]| >

ϵ

3
E[Y2]

)
≤ c2 exp

(
− ϵ2(d0 + 1)r

2 · 9 · 72 · t(d0 + τ0)

)
(14)

Extracting rY2
from

δ

2
= c2 exp

(
− ϵ2(d0 + 1)r

1296 · t(d0 + τ0)

)
, we obtain rY2

= −1296 ln(δ/2c2)
ϵ2

· (d0 + τ0)t

d0 + 1
=

O
(
(d0 + τ0)t

d0 + 1

)
, where c2, ϵ and δ are all constants.

Since t ≥ t̃ (see Appendix A in (Hardiman & Katzir, 2013) for details), choose r ≥ O
(
d0(d0 + τ0)t

τ0

)
≥ max{rY1

, rY2
}.

Eq. (13) and Eq. (14) find the number of steps/samples r, which guarantees both Y1 and Y2 are within (1± ϵ/3) of their
expected values with the probability of at least 1 − δ/2. Since the probability of Y1 or Y2 deviating from their expected
value is at most δ/2, the probability of either Y1 or Y2 deviating is at most δ:

Pr
(
|Y − E[Y ]| > ϵ

3
E[Y ]

)
≤ δ

2
, Y = Y1, Y2

⇒Pr
((

1− ϵ

3

)
E[Y ] ≤ Y ≤

(
1 +

ϵ

3

)
E[Y ]

)
≥ 1− δ

2
, Y = Y1, Y2

⇒Pr

(1− ϵ)τ0 ≤
d0 + 1

6

1− ϵ
3

1 + ϵ
3

E[Y1]

E[Y2]︸ ︷︷ ︸
⋆

≤ d0 + 1

6

Y1

Y2︸ ︷︷ ︸
estimator z0

≤ d0 + 1

6

1 + ϵ
3

1− ϵ
3

E[Y1]

E[Y2]
≤ (1 + ϵ)τ0︸ ︷︷ ︸

⋆

 ≥ 1− δ

The first line is a summary of Eq. (13) & Eq. (14). The inequalities “⋆” hold due to Eq. (12), and the fact of 1−ϵ ≤
1− ϵ

3

1 + ϵ
3

and

1 + ϵ ≥
1 + ϵ

3

1− ϵ
3

when 0 < ϵ ≤ 1/8. We thus conclude that after O
(
d0(d0 + τ0)t

τ0

)
samples, Pr

(∣∣∣∣z0τ0 − 1

∣∣∣∣ ≤ ϵ

)
≥ 1− δ.

However, if τ0 = 0 and G′ is a star graph, the number of samples r ≥ O
(
d0(d0 + τ0)t

τ0

)
→ ∞. To avoid that, we

add an artificial node va and connect it to all nodes in G′, as illustrated in Figure 6. Since d
(a)
0 = d0 + 1, τ (a)0 =

d0 + τ0, we only need to minus a d0 for the estimated result τ (a)0 , and the number of samples can then be reduced to

O

(
d
(a)
0 (d

(a)
0 + τ

(a)
0 )t(a)

τ
(a)
0

)
≈ O

(
d0(2d0 + τ0)t

d0 + τ0

)
.
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We have proved that we can estimate the number of incidence triangles τ0 for an arbitrary node v0 based on its n neighbors by
a random walk. Consider the random walk as a nonlinear dynamic system, according to the RNNs’ universal approximation
ability (Theorem H.2), this random walk can be approximated by an RNN to any desired degree of accuracy. Therefore, let
the input sequence of RNN follow the random walk above, then the RNN aggregator can mimic this random walk on the
subgraph induced by v0 and its 1-hop neighbors when aggregating, finally outputs z0 ≈ τ0. This completes the proof. □

Note: This proof is inspired by Hardiman & Katzir (2013) and Chen et al. (2016).

H.3. Analysis of GraphSAGE

Theorem H.3. Let xv ∈ U,∀v ∈ V denote the input features for Algorithm 1 (proposed in GraphSAGE) on graph
G = (V, E), where U is any compact subset of Rd. Suppose that there exists a fixed positive constant C ∈ R+ such that
∥xv − xv′∥2 > C for all pairs of nodes. Then we have that ∀ϵ > 0 there exists a parameter setting Θ∗ for Algorithm 1 such
that after K = 4 iterations

|zv − cv| < ϵ,∀v ∈ V,

where zv ∈ R are final output values generated by Algorithm 1 and cv are node clustering coefficients (Hamilton et al.,
2017).

According to Theorem H.3, GraphSAGE can approximate the clustering coefficients in a graph to arbitrary precision. In
addition, since GraphSAGE with LSTM aggregators is a special case of our proposed Theorem 4, it can also approximate
the number of incidence triangles to arbitrary precision. In fact, the number of incidence triangles τv is related to the local
clustering coefficient cv. More specifically, τv = cv · dv(dv − 1)/2. Therefore, the conclusion of Theorem 4 is consistent
with that of Theorem H.3. However, Theorem 4 reveals that the required samples O

(
dv(2dv+τv)t

dv+τv

)
are proportional to the

mixing time t and related to τv , leading to a practically prohibitive aggregation complexity.

To overcome this problem and improve the efficiency, GraphSAGE performs neighborhood sampling and suggests sampling
2-hop neighborhoods for each node. Suppose the neighborhood sample sizes of 1-hop and 2-hop are S1 and S2, then
the sampling complexity is Θ(NS1S2). Accordingly, the memory and time complexity of GraphSAGE with LSTM are
Θ(Nc+NS1S2) and Θ(NS1S2c

2 +NS1S2).

I. Proof of Proposition 5
Theorem I.1. 2-WL and MPNNs cannot induced-subgraph-count any connected pattern with 3 or more nodes (Chen et al.,
2020).

Lemma I.2. No pair of strongly regular graphs in family SRG(v, r, λ, µ) can be distinguished by the 2-FWL test (Bodnar
et al., 2021b; Bouritsas et al., 2022).

Using Theorem I.1 and Lemma I.2, we prove Proposition 5 as follows.

Proposition 5. PG-GNN is strictly more powerful than the 2-WL test and not less powerful than the 3-WL test.

Proof. We first verify that the GIN (with the equivalent expressive power as the 2-WL test) (Xu et al., 2019) can be
instantiated by a GNN model with RNN aggregators (including our proposed PG-GNN). Consider a single layer of GIN:

h(k)
v = MLP(k)

(
h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

)
(15)

where MLP(k) has a linear mapping W
(k)
GIN ∈ Rdk×dk−1 and a bias term b

(k)
GIN ∈ Rdk . Without loss of generality, we take the

Simple Recurrent Network (SRN) (Elman, 1990) as the RNN aggregator in Eq. (3), formulated as follows:

z
(k)
t = Uy

(k)
t−1 +Wh

(k−1)
t + b

y
(k)
t = a(z

(k)
t )
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Figure 7. A pair of non-isomorphic strongly regular graphs in the family SRG(16,6,2,2): 4×4 Rook’s graph and the Shrikhande graph.

Let W = W
(k)
GIN, U = Idk

, b = b
(k)
GIN, the initial state y

(k)
0 = 0, the activation function a(·) be an identity function. And let

the input sequence of the RNN aggregator be an arbitrarily ordered sequence of the set {h(k−1)
u }u∈N (v)∪v . Then any GIN

with Eq. (15) can be instantiated by a GNN model with RNN aggregators (in particular, a PG-GNN with Eq. (3)), which
implies that the permutation-sensitive GNNs can be at least as powerful as the 2-WL test.

Next, we prove that PG-GNN is strictly more powerful than MPNNs and 2-WL test from the perspective of substructure
counting. Without loss of generality, we take an arbitrary node v into consideration. According to the definition of incidence
triangles and the fact that they always appear in the 1-hop neighborhood of the central node, the number of connections
between neighboring nodes of the central node v is equivalent to the number of incidence triangles over v. Theorem 1
ensures that all the 2-ary dependencies can be modeled by Eq. (3). Suppose we are aiming to capture the connections
between two arbitrary neighbors of the central node, we can use an MSE loss to measure the mean squared error between the
predicted and ground-truth counting values and guide our model to learn the correct 2-ary dependencies, thereby capturing
the correct connections and counting the number of connections between neighboring nodes. And if we mainly focus on
specific downstream tasks (e.g., graph classification), these 2-ary dependencies will be learned adaptively with the guidance
of a specific loss function (e.g., cross-entropy loss). Thus PG-GNN is capable of counting incidence triangles2. Moreover,
since the incidence 4-cliques always appear in the 1-hop neighborhood of the central node and every 4-clique is entirely
composed of triangles, PG-GNN can also leverage 2-ary dependencies to count incidence 4-cliques, similar to counting
incidence triangles. Thus PG-GNN can count all 3-node graphlets ( , ), even 4-cliques ( ) incident to node v.

In addition, Chen et al. (2020) proposed Theorem I.1, which implies that 2-WL and MPNNs cannot count any connected
induced subgraph with 3 or more nodes. Since the incidence wedges, triangles, and 4-cliques are all connected induced
subgraphs with ≥ 3 nodes, the above arguments demonstrate that the expressivity of PG-GNN goes beyond the 2-WL test
and MPNNs.

To round off the proof, we finally prove that PG-GNN is not less powerful than the 3-WL test. Consider a pair of strongly
regular graphs in the family SRG(16,6,2,2): 4×4 Rook’s graph and the Shrikhande graph. As illustrated in Figure 7, only
Rook’s graph (left) possesses 4-cliques (some are emphasized by colors), but the Shrikhande graph (right) possesses no
4-cliques. Since PG-GNN is capable of counting incidence 4-cliques, our approach can distinguish this pair of strongly
regular graphs. However, in virtue of Lemma I.2 and the fact that 2-FWL is equivalent to 3-WL (Maron et al., 2019a), the
3-WL test fails to distinguish them. Thus PG-GNN is not less powerful than the 3-WL test3.

In conclusion, our proposed PG-GNN is strictly more powerful than the 2-WL test and not less powerful than the 3-WL
test. □

2In fact, since PG-GNN can count incidence triangles, it is also capable of counting all incidence 3-node graphlets. There are only two
types of 3-node graphlets, i.e., wedges ( ) and triangles ( ). Let τv be the number of incidence triangles over v and n be the number of
1-hop neighbors, then we have

(
n
2

)
− τv incidence wedges.

3More accurately, PG-GNN is outside the WL hierarchy, and thus it is not easy to fairly compare it with 3-WL. On the one hand,
PG-GNN can distinguish some strongly regular graphs but 3-WL fails. On the other hand, 3-WL considers all the 3-tuples (i1, i2, i3) ∈ V3,
which form a superset of (induced) subgraphs, but PG-GNN only considers the induced subgraphs and thus cannot completely achieve
3-WL. In summary, 3-WL and PG-GNN have their own unique merits. However, since 3-WL needs to consider all

(
N
3

)
= Θ(N3)

3-tuples, the problem of complexity is inevitable. In contrast, PG-GNN breaks from the WL hierarchy to make a trade-off between
expressive power and computational efficiency.
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J. Details of the Proposed Model
In this section, we discuss the proposed model in detail. The notations follow the definitions in Section 3.1, i.e., let n denote
the number of 1-hop neighbors of the central node v. Suppose these n neighbors are randomly numbered as u1, . . . , un (also
abbreviated as 1, . . . , n for simplicity), the set of neighboring nodes is represented as N (v) (or S = [n] = {1, . . . , n}).

J.1. Illustration of the Proposed Model

Figure 8 presents a further explanation of Figure 2 and the relationships among Theorem 1, Lemma 2, Corollary 3, Figure 2,
and Eq. (3). In this figure, we ignore the central node v for clarity and illustrate for n = 5 and n = 6. Here we take n = 5
as an example to explain Figure 8(a).

The very left column shows the components of Figure 2 and Eq. (3), and the right four columns provide the decoupled
illustrations of Figure 2 and Eq. (3). The first row of the right four columns lists the group action gui (g acts on ui)
defined by Corollary 3, where ui ranges from u1 to u5, g ∈ G = {e, σ, σ2, σ3} and G is defined by Lemma 2. For readers
unfamiliar with group theory, the third row of the right four columns explicitly provides the corresponding action results
of gui, such as σ2u1 = u1, σ

2u2 = u5, σ
2u3 = u4, σ

2u4 = u3, σ
2u5 = u2 in the third column. In addition, these four

columns are associated with each other by the generator σ. For example, in the third row, after σ acts on the action results in
the first column, they are transformed into the action results in the second column according to the permutation diagram, i.e.,
σu1 = u1, σu2 = u4, σu3 = u2, σu4 = u5, σu5 = u3. Action results in other columns are transformed in a similar manner
and form a cyclic structure. The second row of the right four columns illustrates this process.

In each column, after obtaining the action results of gu1, . . . , gun, we arrange these n = 5 neighbors (action results) as
an undirected ring. The first ⌊n/2⌋ = 2 arrangements (columns in Figure 8(a), marked by solid lines) are constructed
according to Theorem 1, and the last ⌊n/2⌋ = 2 arrangements (columns in Figure 8(a), marked by dashed lines) reverse
the former. Either the first or the last ⌊n/2⌋ = 2 arrangements cover all undirected 2-ary dependencies. Then, we use
permutation-sensitive RNNs to model the 2-ary dependencies in a directed manner (since permutation-sensitive RNNs serve
a→ b and b→ a as two different pairs) and construct the corresponding Hamiltonian cycles. As a result, the Hamiltonian
cycles are modeled bi-directionally, and edges in Hamiltonian cycles are transformed into an undirected manner. The
arrangement generation and Hamiltonian cycle construction are detailed in Section 3.3.

Figure 8(b) presents in a similar way as Figure 8(a) does. However, we do not show all six columns due to the limited
space. Here we omit the 5th and the 6th columns, which illustrate the modeling processes based on group elements σ4

and σ5. Please refer to https://github.com/zhongyu1998/PG-GNN/tree/main/figures for a complete
illustration of Figure 8(b).

J.2. Discussion on Groups

Since the (permutation) group in Eq. (3) plays a pivotal role in our model, it is necessary to discuss the motivation for using
groups and why we select the specific group. In fact, the group is used to effectively model all 2-ary dependencies (pairwise
correlations). We first summarize why the modeling of all 2-ary dependencies is indispensable:

• Expressive power. Modeling all 2-ary dependencies can capture whether any two neighboring nodes are connected,
helping our model count incidence triangles and 4-cliques hence improving its expressive power.

• Generalization capability and computational complexity. Modeling all 2-ary dependencies can make these
dependencies invariant to arbitrary permutations of the nodes. Such an invariance to 2-ary dependencies is an
approximation of the permutation-invariance and helps to guarantee the generalization capability. Moreover, it also
avoids considering all n! permutations to strictly ensure the permutation-invariance, thereby significantly reducing
the computational complexity.

• Robustness. Modeling all 2-ary dependencies makes our model insensitive to a specific 2-ary dependency and
robust to potential data noise and adversarial perturbations.

In order to effectively cover all 2-ary dependencies with the lowest complexity, we try to design a special group to accomplish
this goal. According to Cayley’s Theorem (Theorem F.3) that “Every finite group is isomorphic to a permutation group”, we
focus on finding permutation groups instead of all finite groups. Hence the problem is converted to finding the basic element
of the permutation group, i.e., the permutation. Lemma 2 defines a permutation group G and constructs its permutation
σ (Eq. (2)) based on Theorem 1, which has been proven to reach the theoretical lower bound of the sampling complexity

https://github.com/zhongyu1998/PG-GNN/tree/main/figures
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Figure 8. Illustration of the proposed PG-GNN model.
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when sampling permutations to cover all 2-ary dependencies. This permutation group is isomorphic to the cyclic group, the
simplest group to achieve linear sampling complexity. On the contrary, other groups, such as dihedral group Dn, alternating
group An, symmetric group Sn, etc., will lead to higher nonlinear complexity hence sacrificing efficiency. Thus, in terms of
computational efficiency, group G defined in Lemma 2 is the best choice, which drives us to apply it to our model design
(Eq. (3)).

J.3. Discussion on Model Variants

Since our proposed model mainly focuses on modeling all 2-ary dependencies, the most intuitive way is to enumerate all
n(n− 1) bi-directional 2-ary dependencies between the n neighbors of the central node v and then sum them up, which can
be formulated as follows:

h(k)
v =

∑
ui,uj∈N (v)

ui ̸=uj

RNN
(
h(k−1)
ui

,h(k−1)
uj

)
+W

(k−1)
self h(k−1)

v (16)

Besides, we can also merge the central node v into RNN to form n(n− 1) triplets:

h(k)
v =

∑
ui,uj∈N (v)

ui ̸=uj

RNN
(
h(k−1)
ui

,h(k−1)
uj

,h(k−1)
v

)
(17)

In fact, both these two naive variants and our proposed Eq. (3) can model all 2-ary dependencies. However, each term(
h
(k−1)
ui ,h

(k−1)
uj

)
in Eq. (16) can only capture a 2-ary dependency, and each term

(
h
(k−1)
ui ,h

(k−1)
uj ,h

(k−1)
v

)
in Eq. (17) can

only capture a triplet (3-ary dependency). Contrary to these two naive variants, each term
(
h
(k−1)
gu1 , · · · ,h(k−1)

gun ,h
(k−1)
gu1

)
in

Eq. (3) encodes all neighbors as a higher-order n-ary dependency, which contains more information and is more powerful
than 2-ary or 3-ary dependency.

On the other hand, we can also integrate all terms of Eq. (3) into only one term, and use a single RNN to model it as follows:

h(k)
v = RNN

(
∥

g∈G

(
h(k−1)
gu1

,h(k−1)
gu2

, · · · ,h(k−1)
gun

,h(k−1)
gu1

))
+W

(k−1)
self h(k−1)

v , u1:n ∈ N (v) (18)

where ∥ is the concatenation operation. For example, if n is even, it concatenates g ∈ G as:

∥
g∈G

(
h(k−1)
gu1

,h(k−1)
gu2

, · · · ,h(k−1)
gun

,h(k−1)
gu1

)
= h(k−1)

eu1
,h(k−1)

eu2
, · · · ,h(k−1)

eun
,h(k−1)

eu1
,

h(k−1)
σu1

,h(k−1)
σu2

, · · · ,h(k−1)
σun

,h(k−1)
σu1

,

· · · ,

h
(k−1)
σn−1u1

,h
(k−1)
σn−1u2

, · · · ,h(k−1)
σn−1un

,h
(k−1)
σn−1u1

Although this variant can model all n(n − 1) 2-ary dependencies in a single term, the time complexity is problematic.
Since the concatenation operation orders these representations h(k−1)

∗ , Eq. (18) can only be processed serially with the time
complexity of Θ(N∆2c2). This drawback hinders us from effectively balancing the expressive power and computational
cost. In contrast, as explained in Section 3.4, our proposed Eq. (3) can be computed in parallel with lower time complexity
of Θ(N∆c2), making it more efficient in practice.

K. Analysis of Sampling Complexity
In this section, we first consider a variant of the coupon collector’s problem (Problem K.2) and find the analytical solution to
it. Then, we use the solution of Problem K.2 to estimate the sampling complexity of π-SGD optimization (proposed by
Janossy Pooling (Murphy et al., 2019b) and Relational Pooling (Murphy et al., 2019a)). Finally, we conduct numerical
experiments to verify the rationality of our estimation.
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K.1. A Variant of Coupon Collector’s Problem

The coupon collector’s problem is a famous probabilistic paradigm arising from the following scenario.

Problem K.1 (Coupon Collector’s Problem). Suppose there are m different types of coupons, and each time one chooses
a coupon independently and uniformly at random from the m types. One needs to collect mH(m) = m lnm + O(m)
coupons on average before obtaining at least one of every type of coupon, here H(m) =

∑m
i=1

1
i is the m-th harmonic

number (Mitzenmacher & Upfal, 2017).

In order to estimate the sampling complexity of π-SGD optimization, we need a more sophisticated analysis of the coupon
collector’s problem. The following problem is the generalization of Problem K.1 from one coupon to k(k ≥ 1) coupons at
each time, providing a theoretical foundation for our discussion in Section K.2.

Problem K.2 (k-Coupon Collector’s Problem). Suppose there are m different types of coupons, and each time one
chooses k coupons (k ≥ 1, without repetition) independently and uniformly at random from the m types. One needs to

collect
m∑
i=1

(−1)i+1

(
m
i

)
1−
(
m−i
k

)/(
m
k

) times on average before obtaining at least one of every type of coupon.

Proof. Let X be the collecting times until at least one of every type of coupon is obtained. We start by considering the
probability that X is greater than s when s is fixed. For j = 1, . . . ,m, let Aj denote the event that no type j coupon is
collected in the first s times. By the inclusion-exclusion principle,

Pr(X > s) =Pr

 m⋃
j=1

Aj


=

∑
1≤j1≤m

Pr(Aj1)−
∑

1≤j1<j2≤m

Pr(Aj1 ∩Aj2) +
∑

1≤j1<j2<j3≤m

Pr(Aj1 ∩Aj2 ∩Aj3)

− · · ·+ (−1)m+1 Pr(A1 ∩ · · · ∩Am)

=

m∑
i=1

(−1)i+1
∑

1≤j1<···<ji≤m

Pr(Aj1 ∩ · · · ∩Aji)

where Pr(Aj1 ∩ · · · ∩Aji) =


(
m− i

k

)
(
m

k

)

s

, and for 1 ≤ j1 < · · · < ji ≤ m there are
(
m

i

)
choices. Thus, we have

Pr(X > s) =

m∑
i=1

(−1)i+1

(
m

i

)
(
m− i

k

)
(
m

k

)

s

(19)

Since X takes only positive integer values, we can compute its expectation by

E[X] =

∞∑
s=1

s · Pr(X = s) =

∞∑
s=0

Pr(X > s) (20)

Using Eq. (19) in Eq. (20), we obtain

E[X] =

∞∑
s=0

m∑
i=1

(−1)i+1

(
m

i

)
(
m− i

k

)
(
m

k

)

s

=

m∑
i=1

(−1)i+1

(
m

i

) ∞∑
s=0


(
m− i

k

)
(
m

k

)

s
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=

m∑
i=1

(−1)i+1

(
m

i

)
1−

(
m− i

k

)/(
m

k

) □

K.2. Sampling Complexity Analysis of π-SGD Optimization

Suppose there are n neighboring nodes around the central node v. π-SGD optimization samples a permutation of these n
nodes randomly at each time and models their dependencies based on the sampled permutation. As mentioned in the main
body, we are interested in the average times of modeling all the pairwise correlations between these n nodes. This problem
can be equivalently formulated in graph-theoretic language as follows:

Problem K.3 (Complete Graph Covering Problem). Let G′ be an empty graph with n nodes. Each time we generate a
Hamiltonian path at random and add the corresponding n− 1 edges to G′ (edges can be generated repeatedly at different
times). How many times does it take on average before graph G′ covers a complete graph Kn?

It is difficult to give an analytical solution to this problem, so we try to find an approximate solution. In fact, the complete
graph covering problem (Problem K.3) has an interesting connection with the k-coupon collector’s problem (Problem K.2)
discussed above. The generation of a Hamiltonian path among n nodes at each time is equivalent to the drawing of n− 1

interrelated edges4 from all possible n(n−1)
2 edges. Suppose we ignore the interrelations between these n− 1 edges and

each time choose n− 1 edges independently5 and randomly without repetition. In that case, Problem K.3 will degenerate
into a special case of Problem K.2. Thus, we have the following conjecture:

Conjecture K.4. Suppose there are n neighboring nodes around the central node v, and each time we sample a permutation
of these n nodes at random. How many times does it take on average before any two nodes have become neighbors at least
once? This problem is equivalent to the complete graph covering problem, which shares a similar result to the k-coupon
collector’s problem: Suppose there are m = n(n−1)

2 different types of coupons, and each time one chooses k = n − 1
coupons (without repetition) independently and uniformly at random from the m types. How many times does it take on
average before obtaining at least one of every type of coupon?

Since the analytical solution to the k-coupon collector’s problem has been given by Problem K.2 in Section K.1, we can
use it to approximate the result of Problem K.3 and estimate the sampling complexity of π-SGD optimization. We also
conduct extensive numerical experiments to compare the results of Problem K.3 with those of Problem K.2 when n ranges
from 1 to 1,000. We consider both undirected and directed cases for Problem K.3, there are n(n−1)

2 undirected and n(n− 1)

bi-directional edges, respectively. Correspondingly, Problem K.2 takes m = n(n−1)
2 and m = n(n− 1) coupons. For each

n, we conduct experiments for 10,000 runs and report the average times of covering these edges/coupons. As shown in
Figure 9, Problem K.3 (π-SGD) gives almost the same numerical results as Problem K.2 (the closed-form expression),
verifying the rationality of Conjecture K.4. Hence, we conclude the following observation:

Observation K.5. Suppose that there are n neighboring nodes around the central node v, and each time we
sample a permutation of these n nodes at random. Any two nodes have been neighbors at least once after
n(n−1)

2∑
i=1

(−1)i+1

(n(n−1)
2
i

)
1−
(n(n−1)

2 −i
n−1

)/(n(n−1)
2

n−1

) approximately O(n lnn) times on average.

It is worth noting that our approach only needs n
2 times in the undirected cases and n times in the directed cases. According

to the conclusion of Observation K.5, if the degree of the central node v is n = 100, our approach saves 100 ln 100
100/2 ≈ 9 times

compared to π-SGD optimization. If n = 1000, e.g., a hub node in the large-scale network dataset, our approach saves
1000 ln 1000

1000/2 ≈ 14 times.

4They have to be in an end-to-end manner, e.g., 1-2, 2-3, 3-4.
5They do not have to be in an end-to-end manner, e.g., 1-2, 1-3, 1-4.
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Figure 9. The experimental results of numerical simulation. Since the results of the complete graph covering problem are equal to the
sampling times of π-SGD optimization, we label them as “π-SGD”. The blue — and green — lines represent undirected (with n(n−1)

2

undirected edges) and directed (with n(n − 1) bi-directional edges) cases, respectively. In addition, since the k-coupon collector’s
problem gives almost the same results as the complete graph covering problem, we only show 20 points (•,•) uniformly for the numerical
results of the closed-form expression of the k-coupon collector’s problem for clarity. The light yellow • and light blue • points represent
undirected (m = n(n−1)

2
, k = n− 1) and directed (m = n(n− 1), k = n− 1) cases, respectively. We highlight the results of π-SGD

at the points that n are multiples of 100 (marked by blue ) and green ) triangular stars) for comparison with those of the k-coupon
collector’s problem (marked by light yellow • and light blue • points).

L. Analysis of Computational Complexity
In this section, we first provide the time and space complexity analysis of the recent related works MPSN (Bodnar et al.,
2021b) and CWN (Bodnar et al., 2021a), then conduct comprehensive experiments about memory consumption to validate
the efficiency of our proposed PG-GNN.

L.1. Computational Complexity Analysis of MPSN and CWN

Recently, a batch of works (Bodnar et al., 2021b;a) exploited local high-order interactions to effectively improve the
expressive power of GNNs. MPSN (Bodnar et al., 2021b) focuses on simplicial complexes, which are composed of simplices
that generalize the 2-dimensional triangle to arbitrary k dimensions. CWN (Bodnar et al., 2021a) further generalizes
simplicial complexes of MPSN to cell complexes. Hence these works are particularly relevant to our approach. The core
idea of these works is to use the lifting transformation, which maps graphs to more distinguishable simplicial complexes
(Bodnar et al., 2021b) or cell complexes (Bodnar et al., 2021a) by adding additional structures, e.g., attaching k-simplices
(k ≥ 2) to (k + 1)-cliques (Bodnar et al., 2021b) and 2-cells to induced cycles (Bodnar et al., 2021a). Here we mainly
discuss the CWN since it is more powerful yet efficient than MPSN.

Let N and M denote the number of nodes and edges, respectively. Let X be a d-dimensional regular cell complex, Bp

be the maximum boundary size of a p-cell in X , and Sp be the number of p-cells. For CWN, the time complexity is
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Table 5. CPU RAM consumption (MiB) on real-world datasets. The gray font denotes the consumption of the pre-processing stage (i.e.,
lifting transformation) of CIN.

Model PROTEINS NCI1 IMDB-B IMDB-M COLLAB MNIST ZINC

GIN 2,338 2,460 2,337 2,343 11,351 24,946 3,017
CIN, pre-proc. 561 627 769 745 N/A N/A 1,558
CIN, training 2,689 2,749 2,953 3,001 N/A N/A 2,993
PG-GNN (Ours) 2,343 2,466 2,351 2,349 11,298 24,955 3,020

Table 6. GPU memory consumption (MiB) on real-world datasets. “OOM” means out of memory (> 24,220MiB).

Model PROTEINS NCI1 IMDB-B IMDB-M COLLAB MNIST ZINC

GIN 887 889 881 877 1,125 981 901
CIN 2,039 1,033 3,891 13,361 OOM N/A 1,371
PG-GNN (Ours) 980 1,142 1,202 1,036 21,485 4,127 1,367

O
(∑d

p=1

(
BpSp + 2 ·

(
Bp

2

)
Sp

))
, and the space complexity is O

(
N +

∑d
p=1

(
Sp +BpSp + 2 ·

(
Bp

2

)
Sp

))
. Next, we

analyze the time complexity for a generic lifting transformation that maps a graph to a 2-dimensional cell complex and
attaches 2-cells to all the induced cycles in the graph. Since 0-cells, 1-cells, and 2-cells represent vertices, edges, and
induced cycles, respectively, we have d = 2, S1 = M , B1 = 2, and B2 equals the size of the maximum induced cycle
considered. In the case of molecular graphs, the number of induced cycles (chemical rings), S2, is usually upper-bounded
by a small constant. Accordingly, CWN achieves outstanding empirical performance and efficiency on molecular tasks.
However, in the case of social networks, there are usually Ω(N2) triangles (see IMDB-B, IMDB-M, and COLLAB in
Table 7), even without mentioning other types of induced cycles. Thus we have S2 = Ω(N2), and the time complexity
is O

(
4M +B2S2 + 2 ·

(
B2

2

)
S2

)
≥ O(N2). To make matters worse, for general graph distributions, S2 may grow

exponentially with the number of nodes (Bodnar et al., 2021a), and the computation of the pre-processing step (lifting
transformation) may also be intractable. In a nutshell, the computational complexity may hinder the application of CWN
outside of the molecular domain, where the importance of specific substructures is not well understood and their number
may grow rapidly.

L.2. Memory Cost Analysis

According to Bodnar et al. (2021a), in all experiments, they employ a model which stacks CWN layers with local aggregators
as in GIN, thus naming their architecture “Cell Isomorphism Network” (CIN). Here we use GIN and CIN as our baselines to
compare the memory consumption of different models. We use the codes released by the authors of GIN6 and CIN7, and run
experiments with the (optimal) hyper-parameter configurations reported in their original papers to keep the comparison as
fair as possible. Tables 5 and 6 summarize the CPU RAM and GPU memory consumption for various models, respectively.
Note that the total CPU RAM consumption of CIN should be computed as the consumption of “pre-processing” + “training”,
while other models do not require the extra pre-processing steps. As shown in the tables, the memory cost of CIN grows
rapidly outside of the molecular domain, such as on social networks and MNIST, consistent with our analysis above. In
contrast, our PG-GNN is memory-efficient and outperforms CIN in terms of memory cost on almost all datasets, even
performing on par with GIN on most datasets.

M. Details of the Experiments
M.1. Details of Datasets

In this subsection, we provide detailed descriptions of datasets used in our experiments. The statistics of real-world datasets
are summarized in Table 7.

6https://github.com/weihua916/powerful-gnns
7https://github.com/twitter-research/cwn

https://github.com/weihua916/powerful-gnns
https://github.com/twitter-research/cwn
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Table 7. Statistics of real-world datasets. The degree denotes in- / out-degree for MNIST containing directed graphs.

Property PROTEINS NCI1 IMDB-B IMDB-M COLLAB MNIST ZINC

Graphs 1,113 4,110 1,000 1,500 5,000 70,000 12,000
Classes 2 2 2 3 3 10 N/A
Nodes (avg) 39.06 29.87 19.77 13.00 74.49 70.57 23.16
Nodes (max) 620 111 136 89 492 75 37
Degree (avg) 3.73 2.16 9.76 10.14 65.97 8.00 / 8.00 2.15
Degree (max) 25 4 135 88 491 18 / 8 4
Triangles (avg) 27.40 0.05 391.99 305.90 124551.40 626.07 0.06
Triangles (max) 534 3 6,985 14,089 2,574,680 702 2

M.1.1. SYNTHETIC DATASETS

We conduct synthetic experiments of counting incidence substructures on two types of random graphs: Erdős-Rényi random
graphs and random regular graphs, created by Chen et al. (2020). The first one consists of 5,000 Erdős-Rényi random graphs
with 10 nodes in each graph, and each edge exists with a probability of 0.3. The second one consists of 5,000 random regular
graphs with n nodes in each graph and the degree of d, where (n, d) is uniformly sampled from {(10, 6), (15, 6), (20, 5),
(30, 5)}. Both datasets are randomly split into 30%, 20%, and 50% for training, validation, and testing.

For the incidence triangle counting task, all nodes are labeled with Eq. (6). For the incidence 4-clique counting task, it is
hard to derive such a closed-form expression as Eq. (6), so we manually label each central node by counting how many
groups of three neighboring nodes are fully connected. The evaluation metric of the incidence substructure counting task is
the mean absolute error (MAE) between the predicted and true number of incidence substructures for each node.

M.1.2. TUDATASET

Bioinformatics. PROTEINS is a dataset in which each graph represents a protein, and nodes represent secondary structure
elements (SSEs) within the protein structure, i.e., helices, sheets, and turns. An edge connects two nodes if they are
neighbors in the amino-acid sequence or 3D space. The task is to classify the proteins into enzymes and non-enzymes. NCI1
is a publicly available dataset collected by the National Cancer Institute (NCI). Each graph represents a chemical compound,
in which nodes and edges represent atoms and chemical bonds. This dataset is related to anti-cancer screening, and the task
is to predict whether the chemical compounds are positive or negative for cell lung cancer.

Social Networks. IMDB-BINARY is a movie-collaboration dataset containing the actor/actress and genre information
of different movies on IMDB. Each graph corresponds to an actor/actress’s ego network, in which nodes correspond to
actors/actresses, and an edge indicates two actors/actresses appear in the same movie. These graphs are derived from Action
and Romance genres. And the task is to classify the graphs into their genres. IMDB-MULTI is the multi-class version of
IMDB-BINARY and contains a balanced set of ego networks derived from Comedy, Romance, and Sci-Fi genres. COLLAB
is a scientific collaboration dataset. Each graph corresponds to a researcher’s ego network, in which nodes correspond to the
researcher and its collaborators, and an edge indicates the collaboration between two researchers. These researchers come
from different fields, i.e., High Energy Physics, Condensed Matter Physics, and Astro Physics. The task is to classify the
graphs into the fields of corresponding researchers.

M.1.3. MNIST AND ZINC

MNIST. MNIST (LeCun et al., 1998) is a classical image classification dataset. The original MNIST images are converted
into graphs using super-pixels (Achanta et al., 2012). Each graph represents an image, and its adjacency matrix is built with
8-nearest neighbors for each node (super-pixel). Note that since the relationship between each super-pixel (node) and its
nearest neighbors is asymmetric, the resultant adjacency matrices are also asymmetric. For more details about the generation,
please refer to Appendix A.2 in Dwivedi et al. (2020). The resultant graphs are of sizes 40-75 super-pixels, and each node’s
features are assigned with super-pixel coordinates and intensity. MNIST has 55,000 training, 5,000 validation, and 10,000
testing graphs, where the 5,000 graphs for the validation set are randomly sampled from the training set. The evaluation
metric for MNIST is the classification accuracy between the predicted class and ground-truth label for each graph.
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Table 8. Hyper-parameter configurations on synthetic datasets.

Hyper-parameter GCN GraphSAGE GIN rGIN RP LRP PG-GNN

batch size 32 32 32 32 16 16 16
hidden units 64 64 64 64 64 64 64
layers 3 3 5 5 5 5 5
dropout 0.5 0.0 0.5 0.5 0.0 0.0 0.0
initial lr 0.01 0.01 0.01 0.01 0.01 0.001 0.001

ZINC. ZINC (Irwin et al., 2012) is one of the most popular real-world molecular datasets with 250K graphs, out of
which Dwivedi et al. (2020) randomly select 12K for efficiency. Each graph represents a molecule, where nodes and edges
represent atoms and chemical bonds, respectively. The node features are the types of heavy atoms encoded in a one-hot
manner. The task is to predict the constrained solubility, an important chemical property for molecules. ZINC has 10,000
training, 1,000 validation, and 1,000 testing graphs. The evaluation metric for ZINC is the mean absolute error (MAE)
between the predicted and true constrained solubility for each molecular graph.

M.2. Details of Hyper-Parameters

M.2.1. SYNTHETIC DATASETS

We select the architectural hyper-parameters based on the performance in the validation set. The hyper-parameter search
space is listed as follows: the batch size in {16, 32, 64}, the number of hidden units in {16, 32, 64}, the number of layers in
{3, 4, 5}, the dropout ratio in {0.0, 0.5} after the final prediction layer, the initial learning rate in {0.01, 0.005, 0.001}, the
decay rate in {0.5, 0.9}, the decay rate patience in {5, 10, 15, 20, 25}, and the aggregator in {SRN, GRU, LSTM}.

Configurations of Baselines. We use the default hyper-parameter configurations reported in their original papers. Specif-
ically, we follow Hamilton et al. (2017) to sample 2-hop neighborhoods for each node, set the neighborhood sample
sizes S1 and S2 of 1-hop and 2-hop to both 5, and use LSTM (Hochreiter & Schmidhuber, 1997) as the aggregator in
GraphSAGE. We use the uniform distribution over D = {0, 0.01, 0.02, . . . , 0.99} as the random distribution µ in rGIN like
Sato et al. (2021). We set the dimension m of one-hot node IDs to 10 and use GIN (Xu et al., 2019) as the backbone in RP
following Murphy et al. (2019a). According to Chen et al. (2020), we set the depth l and width k to 1 and 3 in LRP. Other
hyper-parameters on different models are shown in Table 8.

Configurations of PG-GNN. We report the hyper-parameters chosen by our model selection procedure as follows. For
all tasks and datasets, 5 GNN layers (including the input layer) are applied, and the LSTMs with 2 layers are used as
the aggregation functions. Batch normalization (Ioffe & Szegedy, 2015) is applied to every hidden layer. All models are
initialized using Glorot initialization (Glorot & Bengio, 2010) and trained using the Adam SGD optimizer (Kingma & Ba,
2015) with an initial learning rate of 0.001. If the performance on the validation set does not improve after 20 epochs, the
learning rate is then decayed by a factor of 0.5, except for the 4-clique counting task on ER graphs, whose patience is set to
25 epochs. The training is stopped when the learning rate reaches the minimum value of 5E-6.

M.2.2. REAL-WORLD DATASETS

TUDataset. We select the architectural hyper-parameters based on the accuracy in one random training fold. The hyper-
parameter search space is listed as follows: the batch size in {16, 32, 64}, the number of hidden units in {8, 16, 32, 64}, the
number of layers in {3, 4, 5}, the dropout ratio in {0.0, 0.5} after the final prediction layer, the initial learning rate in {0.01,
0.005, 0.001}, the decay rate in {0.5, 0.9}, the readout function in {SUM, MEAN}, and the aggregator in {SRN, GRU,
LSTM}.

MNIST and ZINC. We select the architectural hyper-parameters based on the performance in the validation set. The
hyper-parameter search space is listed as follows: the batch size in {32, 64, 128}, the number of hidden units in {32, 64,
128}, the number of layers in {3, 4, 5}, the dropout ratio in {0.0, 0.5} after the final prediction layer, the initial learning rate
in {0.01, 0.005, 0.001}, the decay rate in {0.5, 0.9}, the decay rate patience in {5, 10, 15, 20, 25}, the readout function in
{SUM, MEAN}, and the aggregator in {SRN, GRU, LSTM}.
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Table 9. Hyper-parameter configurations on real-world datasets.

Hyper-parameter PROTEINS NCI1 IMDB-B IMDB-M COLLAB MNIST ZINC

batch size 16 32 16 32 32 64 64
hidden units 8 32 16 16 64 128 128
layers 5 5 5 5 3 5 5
dropout 0.5 0.0 0.0 0.5 0.5 0.0 0.0
degree False False True True True N/A N/A
readout SUM SUM SUM / MEAN SUM SUM / MEAN MEAN SUM

Configurations. We report the hyper-parameters chosen by our model selection procedure as follows. For all datasets, 3
or 5 GNN layers (including the input layer) are applied, and the LSTMs with 2 layers are used as the aggregation functions.
Batch normalization (Ioffe & Szegedy, 2015) is applied to every hidden layer. All models are initialized using Glorot
initialization (Glorot & Bengio, 2010) and trained using the Adam SGD optimizer (Kingma & Ba, 2015) with an initial
learning rate of 0.001. For TUDataset, the learning rate is decayed by a factor of 0.5 every 50 epochs. The training is
stopped when the number of epochs reaches the maximum value of 400. For MNIST and ZINC, if the performance on the
validation set does not improve after 20 and 25 epochs, the learning rate is then decayed by a factor of 0.5. The training is
stopped when the learning rate reaches the minimum value of 5E-6. Other hyper-parameters on different datasets are shown
in Table 9.

M.3. Computing Infrastructures

Hardware Infrastructures. The experiments are conducted on Linux servers equipped with an Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz, 256GB RAM and 8 NVIDIA TITAN RTX GPUs.

Software Infrastructures. All models are implemented using Python version 3.6, NetworkX version 2.4 (Hagberg et al.,
2008), PyTorch version 1.4.0 (Paszke et al., 2019) with CUDA version 10.0.130, and cuDNN version 7.6.5. In addition, the
benchmark datasets are loaded by Deep Graph Library (DGL) version 0.4.2 (Wang et al., 2019).


