
A Data-Driven Approach for Learning to Control Computers

Peter Humphreys 1 David Raposo 1 Toby Pohlen 1 Gregory Thornton 1 Rachita Chhaparia 1 Alistair Muldal 1

Josh Abramson 1 Petko Georgiev 1 Adam Santoro 1 Timothy Lillicrap 1

Abstract
It would be useful for machines to use computers
as humans do so that they can aid us in everyday
tasks. This is a setting in which there is also the
potential to leverage large-scale expert demon-
strations and human judgements of interactive
behaviour, which are two ingredients that have
driven much recent success in AI. Here we inves-
tigate the setting of computer control using key-
board and mouse, with goals specified via natural
language. Instead of focusing on hand-designed
curricula and specialized action spaces, we focus
on developing a scalable method centered on re-
inforcement learning combined with behavioural
priors informed by actual human-computer inter-
actions. We achieve state-of-the-art and human-
level mean performance across all tasks within
the MiniWob++ benchmark, a challenging suite
of computer control problems, and find strong evi-
dence of cross-task transfer. These results demon-
strate the usefulness of a unified human-agent
interface when training machines to use comput-
ers. Altogether our results suggest a formula for
achieving competency beyond MiniWob++ and
towards controlling computers, in general, as a
human would.

1. Introduction
Recent work on natural language (Brown et al., 2020; Rae
et al., 2021), code production (Chen et al., 2021), and multi-
modal interactive behaviour in 3D simulated worlds (Deep-
Mind Interactive Agents Team, 2021) has produced models
with remarkable expressivity, context awareness, and gen-
eral knowledge. This research is a striking demonstration
of the power of two ingredients: a rich, compositional out-
put space that is congruent between machines and humans,

1DeepMind, London, United Kingdom. Correspondence to:
Peter Humphreys <peterhumphreys@deepmind.com>, Timothy
Lillicrap <countzero@deepmind.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

and large amounts of human data and judgements to inform
machine behaviour.

One domain that has these two ingredients but has received
relatively less attention is digital device control (Shi et al.,
2017; Liu et al., 2018; Nakano et al., 2021; Chen et al.,
2021; Shvo et al., 2021; Li et al., 2020; Toyama et al., 2021;
Gur et al., 2021), which comprises the use of digital devices
to accomplish a myriad of inherently useful tasks. Because
of its near exclusive use of digital information, this domain
scales well in regards to data acquisition and parallelization
of control (compared to, say, robotics or fusion reactors). It
also combines diverse, multimodal inputs with expressive,
composable, and human-compatible affordances. In this
work we focus on computer control using keyboard and
mouse, with pixel and Document Object Model (DOM)
observations.

A useful benchmark for initial investigations of computer
control is the MiniWob++ task suite (Shi et al., 2017; Liu
et al., 2018), which comprises a set of instruction following
tasks that require clicking, typing, form-filling, and other
such basic computer interactions (Fig. 1b). MiniWob++
further provides programmatically defined rewards. These
tasks are a first step towards more open-ended human-agent
interactions in which a human specifies a task using nat-
ural language and provides subsequent judgement about
performance (Li et al., 2016; Ammanabrolu et al., 2020;
DeepMind Interactive Agents Team, 2021).

We focus on training agents to solve these tasks using meth-
ods that can in principle apply to any task one hopes to per-
form on a digital device, and that have desirable data- and
compute-scaling properties. We therefore turn to a straight-
forward combination of reinforcement learning (RL) (Sutton
and Barto, 2018) and behavioural cloning (BC) (Pomerleau,
1989), the latter of which is aided by an alignment between
human and agent action spaces (i.e. keyboard and mouse).
This is a combination that was proposed at MiniWob’s con-
ception (Shi et al., 2017), but was not found at the time
to produce high-scoring agents. Subsequent work conse-
quently attempted to improve performance by giving agents
access to DOM-specific actions (Liu et al., 2018; Gur et al.,
2018; Jia et al., 2019), curricula (Gur et al., 2018), and
through constrained exploration techniques that reduce the

A Data-Driven Approach for Learning to Control Computers

number of actions available at each step using curated guid-
ance (Liu et al., 2018). Revisiting the simple and scalable
combination of imitation and reinforcement learning, we
find that the primary missing factor in achieving high per-
formance is simply the size of the human trajectory dataset
used for behavioural cloning. Performance increases reli-
ably with increasing amounts of human data, with continu-
ing improvements observed for datasets of up to 400× the
size of those used in previous studies. Our results using
this data surpass previous state-of-the-art performance by
a wide margin, and are even able to achieve human-level
mean performance across the task suite.

2. Methods
2.1. MiniWob++

MiniWob++ is a suite of web-browser based tasks intro-
duced in Liu et al. (2018) (an extension of the earlier Mini-
Wob task suite (Shi et al., 2017)). Tasks range from simple
button clicking to complex form-filling, for example, to
book a flight when given particular instructions (Fig. 1a).
Programmatic rewards are available for each task, permit-
ting standard reinforcement learning techniques.

Previous work on MiniWob++ has considered architectures
that have access to DOM-specific actions (Liu et al., 2018;
Gur et al., 2018; Jia et al., 2019), allowing agents to directly
interact with a DOM element (even if it is not actually visi-
ble) as opposed to needing to use a mouse or keyboard to
navigate to it. We choose instead to use only mouse and
keyboard based actions. This simplifies the use of human
behavioural data, and we further hypothesise that this inter-
face will better transfer to computer control tasks without a
compact DOM to interact with (and non web-browser based
tasks). Finally, many MiniWob++ tasks require clicking
or dragging actions that cannot be achieved with DOM-
element based actions (see examples in Fig. 1b).

In common with previous MiniWob++ studies (Liu et al.,
2018; Gur et al., 2018; Jia et al., 2019), we give our agent
access to an environment-provided dictionary of text strings
that must be inputted to a given task’s input fields (see Ap-
pendix Fig. 9 for an example). This helps to avoid the
exploration problem of learning a generative text model
from only sparse RL inputs. Interestingly, as we discuss in
Sec. 3.4, the agent is able to achieve state-of-the-art perfor-
mance even without this input.

The MiniWob environment is realtime, which introduces
technical and algorithmic complications. For example, there
are no guarantees about how actions lead to observations
temporally – observations may be influenced by lag due to
competition over a computer’s resources. For the human
participants providing demonstration data, we ensure suf-
ficient resources on the server running the environment to

Demonstrative
Behaviour

Computer Control
Environment

HUMANAGENT

Keyboard & Mouse Actions

Imitative or
Reward-Seeking

Behaviour

a)

b)
Multi-stepDraggingClicking on a canvas

MiniWob++

O
bs

er
va

tio
n,

 In
st

ru
ct

io
n

&
 R

ew
ar

d

Figure 1. Computer Control Environment running Mini-
Wob++. Both humans and agents control computers using a
keyboard and mouse, with humans providing demonstrative be-
haviour used for behavioural cloning, and agents trained to mimic
this behaviour or to behave in pursuit of reward. Humans and
agents attempt to solve the MiniWob++ task suite, which com-
prises instruction-following tasks requiring clicking, typing, drag-
ging, form-filling, and other such basic interactions (depicted is
the “book-flight” task). b) Examples of MiniWob tasks requiring
different forms of interaction.

minimize temporal jitter on the local machine, on which
we sync observations and actions at 30Hz. For agents, any
temporal jitter is sure to be different than that experienced
by humans. Nevertheless, most MiniWob++ tasks are rel-
atively time insensitive, and our results demonstrate that
the mismatch is not problematic in practice. Moreover, we
found that actively manipulating the demonstration data to
remove steps without actions (an operation that will only
serve to exaggerate the differences in timings) gave the best
results. As in previous studies, our human and agent scores

A Data-Driven Approach for Learning to Control Computers

are not discounted by time to completion.

2.2. Environment Interface

Agents need a suitable interface for transmitting and receiv-
ing observations and actions if they are to use computers
as humans do. The original MiniWob++ task suite is sup-
plied with a Selenium-based interface (Liu et al., 2018). We
decided to implement an alternative environment stack de-
signed to flexibly support any task that can be achieved in a
web browser. This interface is optimised from the ground
up for security, features, and performance (Fig. 1a).

Security. We run the web browser (Google Chrome in our
case) in a Sandbox2 (GitHub Repository) container, which
provides a chroot jail and restricts access to any system
calls that could be used to compromise the host system.
We further reroute all network traffic to a local host-side
socket using a TCP proxy server. This gives us precise
control over the content that can be accessed from within
the browser. Not only are these security features important
for safe agent-environment interactions, they also simplify
recording demonstration data on publicly available systems
such as Amazon Mechanical Turk, because neither humans
nor agents should be able to use the browser itself to attack
the host system or any network resources.

The original MiniWob++ environment implementation ac-
cesses the internal browser state and issues control com-
mands via Selenium. We instead interface directly with
the Chrome DevTools Protocol (CDP) to retrieve browser-
internal information such as the DOM tree and execute
developer-provided JavaScript code on a page. We access
the CDP via file descriptors that are passed to the browser at
start-up time. We do this to minimize the attack surface and
follow the security recommendations provided by the web
driver authors (ChromeDriver Security Considerations).

Features. We want our agents to be able to interact with a
standard web browser via the same controls used by human
desktop users. To achieve this, our environment connects
directly to an X11 server to input mouse and keyboard con-
trols as well as retrieve the current frame buffer. This min-
imises domain shift between human and agent environment
interactions, which is a challenge for the original Selenium
interface. For example, mouse dragging actions are difficult
to implement in Selenium.

Working with X11 has other key advantages: (1) agents
can potentially interact with the full browser (including tabs
and the address bar), (2) recording first-person demonstra-
tion data at scale is easy due to close human and agent
environment equivalence, and (3) we can render the context-
sensitive system mouse cursor.

We implemented our entire environment stack in C++ to en-

able low latency interactions. This is particularly important
when recording demonstrations, as accurate mouse cursor
movements are difficult if the total input-latency is too high.

2.3. Agent Architecture

Ultimately we found it to be unnecessary to implement
specialised DOM-processing architectures based on, for ex-
ample, graph nets (Jia et al., 2019). Instead, motivated by
recent work on multimodal architectures, we applied min-
imal modality-specific processing, primarily relying on a
multimodal transformer to flexibly attend to relevant infor-
mation, as described below and in Fig. 2.

Perception. The agent receives visual inputs (165x220
RGB pixels) and language inputs (an example input is shown
in Appendix Fig. 9). The pixel inputs pass through a series
of four ResNet blocks, with 3×3 kernels, strides of 2, 2, 2,
2, and an increasing number of output channels (32, 128,
256, 512). This results in 14×11 feature vectors, which we
flatten into a list of 154 tokens.

The three types of language inputs – task instruction, DOM,
and task fields (the last only used for the policy) – are pro-
cessed using the same module: each text string is split into
tokens, with each token mapped to a size 64 embedding by
indexing a learnable embedding table using a vocabulary
of 370 words. We reserve an additional 1000 indexable
embeddings for input words that fall outside the vocabulary.
For these words, an index is calculated using a 64-bit hash
function with the output reduced to an integer between 370
and 1369. Using a 1-layer transformer with 4 heads (“lan-
guage transformer”) we attend over the token embeddings of
each individual string to produce a single 512-dimensional
embedding using cross attention – the token embeddings
are used to generate keys and values, with an extra learnable
embedding used as a query. The extra learnable embeddings
provide input-independent components to the attention. This
is analogous to the special “CLS” tokens used in BERT (De-
vlin et al, 2018) whose outputs can be directly used as an
aggregate output of the transformer.

Multimodal integration and memory. The visual input
embeddings, the language embeddings produced from DOM
and task instructions, and two extra learned embeddings are
fed into a multimodal transformer with 8 layers, 8 heads,
and a 512 dimensional embedding.

The processed outputs corresponding to the extra embed-
dings are concatenated with the result of a feature-wise
mean pooling operation across the remaining outputs and
an embedding of the previous action. The resulting 1536-
dimensional vector is input to a dual-layer LSTM with 512
hidden units per layer. Residual connections bypass each
LSTM layer.

A Data-Driven Approach for Learning to Control Computers

Language

Image

165x220 RGB

...

ResNet

Language
Transformer

Multimodal
Transformer

... ...

Applied to task instruction and DOM inputs

......

S
el

f-
A

tte
nt

io
n

Aggregate

Q
K
V

Q
K
V

Q
K
V

...

Image
embeddings

Concatenate with
previous action

Language
embeddings

Multimodal Transformer

Extra
embeddings

Extra
embedding

Flatten

Tokenize
& embed

Text string

...

C
ro

ss
-A

tte
nt

io
nK

V
Token

embeddings

Language Transformer

Q

Action type Move
Click
Double click
Press
Release
Wheel up
Wheel down

Mouse

Key press
Emit text

Keyboard

No-Op

Cursor coordinates (x, y),
LSTM

...

C
ro

ss
- A

tte
nt

io
n

K

V
Task field embeddings

Query input

Attention Policy

Attention Task field
index

Keyboard key index

Q

2 layers, 512 units

(generated with same processing
as other language inputs)

8 layers, 8 heads

4 blocks

1 layer, 4 heads

Figure 2. The Computer Control agent architecture (CC-Net). Pixel inputs are encoded by 4 ResNet blocks; language inputs (task
instruction and DOM) are encoded via cross-attention. An 8-layer multimodal transformer combines pixel and language embeddings,
whose output is concatenated with an embedding of the previous action and passed through 2 LSTMs. The agent produces 4 outputs:
action type, cursor coordinates, keyboard-key index, and task-field index (which allows the agent to choose one of the task field strings to
emit). All outputs are produced via linear transformations, with the exception of the task-field index, whose logits are produced via an
attention-based policy.

We have not run LSTM ablations in the final configuration,
but earlier tuning showed that a dual-layer LSTM improved
performance relative to a single-layer LSTM or to a feedfor-
ward architecture. It may be that this is due to the increased
parameter count associated with the dual layer LSTM, as
we did not control for this in our tuning. We note that there
are some tasks for which memory is especially useful, such
as those with moving elements.

Policy. The agent’s policy consists of 4 outputs: the action
type, cursor coordinates, keyboard-key index and task-field
index. Each output is modeled by a single discrete proba-
bility distribution, except for cursor coordinates which are
modeled by two discrete distributions (for height and width
coordinates), dividing each dimension into 51 bins. This is
the only policy component that is auto-regressive, with the
height coordinate conditioned on the width coordinate.

The action type is chosen from a set of 10 possible actions,
which includes a no-op (indicating no action), 7 mouse
actions (move, click, double click, press, release, wheel up,
wheel down), and two keyboard actions (key press, emit
text). The key press action is used to emit a keyboard key
or one of a set of small macros (such as CTRL+C, full list
in Appendix Table 2). The emit text action can be used
to emit a string given by one of the MiniWob “task-field”
observations.

Sampling of the remaining policy outputs is dependent on
which action type was chosen – i.e. cursor coordinates are
sampled if move mouse was chosen; a task-field index is
sampled if emit text was chosen (to determine which task-
field string to emit); a keyboard-key index is sampled if key

press was chosen (to determine which key to emit).

The logits for the action-type, cursor coordinates and
keyboard-key index distributions are produced via linear
transformations, whereas the logits for the task-field index
are produced via dot-product attention. This attention policy
works as follows: we first use a linear output to produce
a query. A separate linear transformation is used to pro-
duce keys from the embeddings of the available task fields.
The logits are the attention weights that result from the dot-
product between query and keys, followed by a softmax.

In the ablation experiments in Section 3.4, we use two alter-
native action types which allow the agent to act directly on
the DOM – DOM click, for triggering a click on a specific
DOM element, and DOM emit text, for directly writing a
task-field string into a specified DOM element (i.e. in this
macro-action a DOM element is focused on and then text is
emitted into it). These actions require an additional policy
output (DOM element index) to determine which DOM ele-
ment to click. This was produced using an attention policy
as described above, but with attention over DOM element
embeddings. For the DOM emit text action, we reused the
task-field index output to determine which text string to
emit.

2.4. Human Data Collection

Given that agents and humans use the same interface, the
use of human demonstrations was considered in the original
MiniWob publication (Shi et al., 2017). However, only 17
hours of human data were collected for that study (with pure
behavioural cloning policies only solving 5% more tasks

A Data-Driven Approach for Learning to Control Computers

compared to a random policy), with a further 1000 demon-
strations per task for a handful of tasks utilised in the later
MiniWob++ paper (Liu et al., 2018). Given recent trends
that indicate the effect of data scaling on performance (Deep-
Mind Interactive Agents Team, 2021; Kaplan et al., 2020,
e.g.), it is natural to revisit the use of human demonstrations
in larger quantities.

We collected over 2.4 million demonstrations of the 104
MiniWob++ tasks from a total of 77 human participants,
which amounts to approximately 6300 hours. Participants
were recruited via a crowdsourcing data collection platform
and paid a fixed hourly rate. Human data-collection was
subject to an ethical review process.

Humans can perform many of the MiniWob++ tasks well
without practice. However a subset require practice, learn-
ing of specialized knowledge (e.g. POSIX terminal com-
mands), understanding small amounts of ambiguity in the
intent of the templated goal, or adjusting to timing or lag.
Accordingly, we observed human performance increased
as they practiced (data not shown), and as described below,
unsuccessful trajectories were filtered out of the dataset.

2.5. Training

We trained agents using a straightforward mixture of imita-
tion learning (behavioural cloning (BC) (Pomerleau, 1989))
and reinforcement learning (RL) (using the VMPO algo-
rithm (Song et al., 2019)), which is a combination that has
been largely successful in many challenging domains (Silver
et al., 2016; Vinyals et al., 2019; Stiennon et al., 2020; Liu
et al., 2018; Shi et al., 2017). Training hyper-parameters are
provided in Appendix Table 1.

To combine imitation and reinforcement learning one can:
(1) Co-train from scratch with a weighted mixture of the two
losses; (2) Pre-train using BC and subsequently tune with
RL, with or without divergence penalties back to the BC
policy (Vinyals et al., 2019, e.g.). In our work we consider
the former with equal weighting to the BC and RL losses,
though we have early evidence that pre-training with BC
may improve the efficiency of learning (data not shown).

Before being used for BC, our human demonstration data
was split into train and test sets (2.2 million & 310 thousand
episodes respectively). These episodes were further filtered
by success; that is, tasks where the final reward was less
than 0.5 were removed (∼5%). Additionally, we cleave “no-
op” steps from the demonstrations, which are steps where
humans did not act, up to a maximum of 10 consecutive
steps. Agents were trained indiscriminately on this data:
all tasks were co-trained, using uniform sampling across
demonstrations, which might introduce slight asymmetries
across task representations depending on the data collected,
the filtering procedure, and the length of the demonstrations.

World of
bits

Workflow
Guided

Exploration

Learning to
Navigate
the Web

DOM-Q-Net

Per-task
external SotA

CC-Net HumanRL only BC only BC & RL Augmented

This work

Figure 3. Mean performance across MiniWob++ tasks. Shown
are previously published MiniWob++ results (Shi et al., 2017;
Liu et al., 2018; Gur et al., 2018; Jia et al., 2019), which each
only report performance for a subset of tasks (for these results
the performance on non-reported tasks is set to zero, all scores
used are given in Appendix Table 3). In order to make a fair
comparison, we combine the best external results for each task
into aggregated external SotA scores, reporting those obtained
both with and without additional augmentations (we filter the 16
out of 104 tasks without external scores from our corresponding
results). Our agent, CC-Net, outperforms these results by a large
margin, and matches mean human performance. We achieve this
without using environment augmentations. Instead, we find that
the combination of BC and RL is crucial to CC-Net performance;
BC- and RL-only training are less effective.

We choose to co-train on all tasks for two reasons. First, we
find that there is a significant transfer effect, with training
being more efficient per frame of each task seen for co-
training (see Sec. 3.2). Second, our ultimate objective is a
generally useful agent, and we therefore require one agent
with as many capabilities as possible.

Finally, due to the computational requirements of our agents,
tuning was done by hand based on a limited number of
experiments. We were furthermore only able to run one
seed for each of the conditions that we report in this paper.

3. Results
3.1. Human-Level Performance on MiniWob++

It is challenging to directly compare our performance to the
previous literature, as papers have typically only tackled
a subset of the MiniWob++ tasks. We therefore take the
best published performance on each individual task, and
use this aggregated performance as a comparison for our
agent (we perform separate aggregations for both with and
without curricula or other augmentations). Our agent ex-
ceeds this SotA benchmark performance by a wide margin
(Fig. 3, a per-task comparison to external SotA is reported
in Appendix Fig. 11). In addition, we find that our agent
achieves human-level mean performance across the suite
of MiniWob++ tasks. This performance is enabled by our
combination of BC and RL co-training – as shown in Fig. 3,
ablations without both training signals perform much worse.
Fig. 6 shows frames of a successful agent trajectory on the

A Data-Driven Approach for Learning to Control Computers

Human

Human is better Agent is better

...

CC
-N

et

Re
si

du
al

M
ea

n
sc

or
e

64 tasks at equal performance
(shown in appendix)

terminal

simon-says

click-scroll-list

copy-paste-2

text-transform

drag-cube

click-checkboxes-large

click-menu-2

copy-paste

social-media-all

moving-items

click-widget

click-checkboxes-solf

grid-coordinate

email-inbox-forward-nl-turk

tic-tac-toe

right-angle

chase-circle

drag-items-grid

text-editor

a) b)

Figure 4. Per-task comparison of CC-Net and human performance. a) On a small number of tasks humans (green) perform better than
our agent (blue), and vice versa. For the large majority, performance differences are minimal, as both humans and agents solve the tasks
nearly perfectly (see Appendix Fig. 10 for all tasks). b) Depicted in the scatter-plot on the right are performance scores for all 104 tasks
save for three outliers (the polar extremes of the bar plot where one of human or agent scores are < 0.7).

Figure 5. Comparison between single and multi-task training.
Co-training on all 104 MiniWob tasks is significantly more data
efficient than training on each task individually, providing evidence
of transfer between tasks.

challenging task book-flight.

Examining our performance across the task suite in de-
tail, we find that, while our mean score matches mean
human performance, there are tasks for which humans sig-
nificantly out-perform our agent (Fig. 4). In particular, our
agent fails to get any score for two tasks: simon-says,
and terminal. simon-says is challenging even for
humans. It requires remembering a random sequence
of button pushes, and then repeating this sequence back.
Our agent observes the environment at about 2Hz, mean-
ing that it frequently misses the presentation of at least
one button in the sequence. terminal involves using
a Unix terminal to search for and delete a file. Hu-
man participants required training to perform this task
before they achieved high performance, as most had no
experience with a Unix terminal. Further investigation
is needed to understand why our agent fails to get any
score on this task, especially given that it is able to solve

related key-pressing tasks such as text-transform,
simple-arithmetic and enter-text-2 (see Ap-
pendix Fig. 12 for the histogram of key presses for 100
episodes of text-transform). There are a few tasks
for which our agent performs significantly above mean hu-
man performance. The biggest performance gap is for the
moving-items task where human participants rarely suc-
ceeded at all, most likely due to network-related control
latency.

3.2. Task Transfer

We find that, with a fixed budget of training steps per task,
training one agent on all 104 MiniWob++ tasks leads to a
strong boost in performance compared to training separate
agents on each task (Fig. 5). In order to compare these
training regimes, we measured performance for each task
expressed as a function of frames consumed on that individ-
ual task. The plot shows the average across all tasks. These
results provide a promising hint of the potential of such a
unified control interface to support generalisation across a
diverse range of human tasks. Similar results were found on
a smaller scale (training on 9 tasks simultaneously) in Jia
et al. (2019).

3.3. Scaling

The size of the human trajectory dataset is a crucial fac-
tor in agent performance (Fig. 7). Using 1/1000 of the
dataset, which roughly corresponds to 6 hours of data, leads
to rapid overfitting and no significant gain over RL only
performance. We see continuing performance gains as we
increase the amount of data from this baseline over three
orders of magnitude up to the full dataset size. We note that
higher performance at these dataset sizes could be possible

A Data-Driven Approach for Learning to Control Computers

Step 3 Step 6 Step 9 Step 16 Step 17 Step 26 Step 34

Figure 6. Selected steps from a successful agent trajectory on book-flight. This task has over 1.9 billion possible permutations,
representing a significant exploration challenge for pure reinforcement learning. We find that the combination of BC & RL is sufficient to
solve it, demonstrating the utility of using human data to shape behavioural priors.

a)

b)

M
ea

n
sc

or
e

ac
ro

ss
 ta

sk
s

H
um

an
-a

ct
io

n
lo

g
pr

ob
.

Relative dataset size

Train

BC & RL
RL only
BC only

Validation

Figure 7. Agent performance for varying dataset sizes: a) Perfor-
mance at 2 billion frames for BC & RL co-training using different
dataset sizes. Also shown are maximum BC-only training perfor-
mances. b) Corresponding log probabilities for agent predictions
of human actions on train (solid) and validation (dashed) trajec-
tories under BC & RL co-training. As can be seen, significant
overfitting occurs for smaller dataset sizes.

with changes in algorithm or architecture. For example,
as we reduced the dataset size, we simply reduced the rel-
ative weight of the BC loss (scaled by the square root of
the relative size) to slow overfitting, when it may in fact be
more effective to instead use a KL divergence penalty to
a pre-trained BC-only policy that is trained to the point of
minimum validation loss. Nevertheless, the research and
experimentation costs required to explore avenues that af-
ford efficiency gains in low data-regimes should be balanced
with the simplicity of collecting more data.

3.4. Input and Output Ablations

Our agent consumes both pixel and DOM information, and
can be configured to support a range of different possible

actions. We perform ablations to understand the importance
of these different architectural choices.

We first ablate the different agent inputs (Fig. 8a). Our
current agent configuration is strongly reliant on DOM in-
formation, with a 75% drop in performance if this input is
removed. In contrast, the agent is less sensitive to operating
without visual information. This is even the case for tasks
that require processing of a “canvas” with shapes and lines.
An inspection of the DOM shows that, for MiniWob++,
this canvas is cleanly represented within the DOM, mak-
ing such information available to the agent even without
pixel information. This would not be the case for more
general computer control tasks, pointing to the importance
of improving our agent’s pixel-only performance.

In Fig. 8b we show an ablation in which we remove the
agent’s ability to use the text input choices (task fields) given
by the environment. Interestingly, such an agent is still able
to solve tasks involving form filling, however, it learns from
human trajectories to do this by highlighting text, and then
dragging this to the relevant text box. Notably, this dragging
action would not be straightforward for agents to achieve in
the original Selenium version of the environment.

We further show an ablation in Fig. 8b in which the agent
uses alternative actions that interact with a specified DOM
element (described in Section 2.3). This means that the
agent is unable to solve tasks that involve clicking at a spe-
cific location within a canvas, dragging, or highlighting. As
we did not optimise for this agent architecture, there is a
significant mismatch between our recorded human trajecto-
ries and the actions available to the agent. During imitation
learning, we simply ignore these actions, but this nonethe-
less leads to the agents being nudged towards trajectories
that are not necessarily optimal for DOM-based actions. In
an additional experiment, we found that augmenting our
original action set with DOM-based actions did not lead to
a boost in performance over the baseline (data not shown).

A Data-Driven Approach for Learning to Control Computers

a) b)

Baseline
Baseline

No privileged field action

DOM actions

No DOM obs.

No pixel obs.

M
ea

n
sc

or
e

ac
ro

ss
 ta

sk
s

M
ea

n
sc

or
e

ac
ro

ss
 ta

sk
s

Input ablations Output ablations

Figure 8. Ablations. a) Agent input ablations: Removing the
DOM input observation leads to a large drop in performance,
while removing the pixel observation is less deleterious. b) Output
ablations: The agent is surprisingly effective without text input
choices (task fields) provided by the environment. This is because
it is able to learn to use the mouse to copy the text from the prompt
into the required input field. Using an action space in which the
agent interacts with specified DOM elements directly is less effec-
tive than our baseline mouse and keyboard actions.

4. Discussion, Limitations, & Related Work
Device assistance. Creating agents that effectively assist
us on our digital devices requires: (1) understanding hu-
man intent, language, and judgement, and (2) the ability to
turn language-specified goals into actions on a device. The
MiniWob++ benchmark (Liu et al., 2018) serves as a jump-
ing off point for studying the second requirement: agents
must turn language goals into actions for a modern web
browser. While we show that deep reinforcement learning,
augmented with human data, is well positioned for solving
this issue, the MiniWob++ benchmark hides the complexity
of the first requirement; work remains to tackle (1) and (2)
in concert to produce useful agents on our devices.

MiniWob++ prescribes goals via natural (but scripted) lan-
guage that is precisely mapped to reward outcomes by code,
putting aside the difficulties of dealing with human intent,
language, and preferences. Reward information is thus low-
noise, undelayed, and available in large quantities. Recent
work has studied how to align RL agents with the com-
plexity of human preferences and human language. For
example, Christiano et al. (2017) trained agents via rein-
forcement learning and using reward grounded in human
feedback to play Atari and perform motor control tasks.
Interest in human alignment has accelerated (Wirth et al.,
2017; Ibarz et al., 2018), and spread to a variety of domains,
including dialogue agents (Jaques et al., 2019). In paral-
lel, large-scale language models built on the Transformer
architecture (Vaswani et al., 2017) have revolutionized our
capacity to build agents that consume and generate natural
language. GPT-3 (Brown et al., 2020) and related work
(Shoeybi et al., 2019; Rae et al., 2021) has shown that pre-
training on vast quantities of human generated text creates
models that are fast and flexible learners for a dizzying array

of language understanding tasks. A recent language model
called Codex (Chen et al., 2021) has shown the potential
of these “foundation models” (Bommasani et al., 2021) for
connecting natural language intent with our computers by
fine-tuning models on publicly available code.

A growing body of work has begun to connect these pieces:
Ammanabrolu et al. (2020) build agents that both act and
communicate in pursuit of goals in a crowd-sourced fan-
tasy text-game. They incorporate large language models
and human demonstrations to derive agents that can act
and speak to effectively pursue goals. DeepMind Interac-
tive Agents Team (2021) use human demonstrations and
judgement to construct agents that are responsive to hu-
man language and intent in a 3D game environment. Most
relevant here, WebGPT (Nakano et al., 2021) builds on
large-scale language modelling results to create a browser-
assisted question-answering agent that is enhanced by hu-
man feedback. This agent acts on the internet using a be-
spoke text interface which allows it to search, follow links,
and quote sources. By using the internet, the agent improves
its question-answering capacities, as judged by human par-
ticipants.

Data. Approximately 400× more data than was initially
collected (Shi et al., 2017) is required for achieving human-
level performance. While this is a lot in comparison to the
initial collection, it is also a one-time cost, and is orders of
magnitude smaller than recent datasets used for language
modeling, for example. Moreover, the costs associated with
the experimentation of new algorithms and architectures
that work well on lower amounts of data can very quickly
swamp those required for simply collecting more data.

One might worry that our dataset exhausts every possible
permutation of MiniWob++ task presentation, rendering the
task of “solving” tasks to simple memorization. However,
this is far from true since the possible permutations of task-
presentation vastly exceeds the amount of data we collected
for it. Moreover, there is natural variance embedded in the
environment, including, for example, initial mouse cursor
location. Finally, the significant difference between individ-
ual versus multi-task training suggests that there are many
tasks for which transferable skills can be gained from other
tasks, which would likely not be the case if each task was
solved by simply memorising its required outputs.

Performance. There are a number of unexplored ap-
proaches that might improve performance. For example, we
could skew the presentation of behavioural cloning data so
that harder tasks are over-represented. Or, we could tune the
RL and BC objectives, perhaps using BC pre-trainined and
a decaying KL-penalty back towards the BC policy during
RL (Vinyals et al., 2019). Nevertheless, part of the goal of
this work was to show the effectiveness of a straightforward

A Data-Driven Approach for Learning to Control Computers

technique, executed with minimal bells-and-whistles.

While our approach does not lie on the cutting edge of al-
gorithmic novelty, it provides a resolution to a concrete hy-
pothesis introduced in the original MiniWob work; namely,
the effectiveness of deep RL methods for solving tasks on a
computer involving keyboards and mice. Indeed, examining
the literature in this space would suggest that conventional
approaches are inadequate, and more specialized techniques
are needed. We have shown this to not be the case, so
long as one appreciates the role of demonstration data in
augmenting standard deep RL techniques.

Conclusion. Humans use digital devices for billions of
hours every day. If we can develop agents that can assist
with even a tiny fraction of these tasks, we can hope to enter
a virtuous cycle of agent assistance, followed by human
feedback on failures, and hence to agent improvement and
new capabilities.

5. Contributions
AS, TP, TL and PCH conceived the project. AG managed
the project. GT, AS, TP, AM, PCH, PG, RC and JA de-
veloped the environment, data collection, experiment and
agent infrastructure. AS, DR and PCH developed the agent
architecture, ran experiments and analysed data. AS, DR,
TL and PCH wrote the manuscript.

6. Acknowledgements
We thank the DeepMind Interactive Agents Team (Deep-
Mind Interactive Agents Team, 2021) for helping us to use
their infrastructure as the base for our experiments. We also
thank the DeepMind Platform Team and Crowd Compute
for their work contributing to our human data collection
pipeline and environment.

References
Sandbox2 GitHub Repository. https://github.
com/google/sandboxed-api/tree/main/
sandboxed_api/sandbox2. [Online; accessed
20-January-2022].

Chrome Webdriver Security Considerations.
https://chromedriver.chromium.org/
security-considerations. [Online; accessed
20-January-2022].

P. Ammanabrolu, J. Urbanek, M. Li, A. Szlam,
T. Rocktäschel, and J. Weston. How to motivate your
dragon: Teaching goal-driven agents to speak and act in
fantasy worlds. arXiv preprint arXiv:2010.00685, 2020.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman,

S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosse-
lut, E. Brunskill, et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brock-
man, et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and
D. Amodei. Deep reinforcement learning from human
preferences. arXiv preprint arXiv:1706.03741, 2017.

DeepMind Interactive Agents Team. Creating multimodal
interactive agents with imitation and self-supervised
learning. arXiv preprint arXiv:2112.03763, 2021.

I. Gur, U. Rueckert, A. Faust, and D. Hakkani-Tur. Learning
to navigate the web. arXiv preprint arXiv:1812.09195,
2018.

I. Gur, N. Jaques, Y. Miao, J. Choi, M. Tiwari, H. Lee, and
A. Faust. Environment generation for zero-shot com-
positional reinforcement learning. Advances in Neural
Information Processing Systems, 34, 2021.

B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and
D. Amodei. Reward learning from human prefer-
ences and demonstrations in atari. arXiv preprint
arXiv:1811.06521, 2018.

N. Jaques, A. Ghandeharioun, J. H. Shen, C. Fergu-
son, A. Lapedriza, N. Jones, S. Gu, and R. Picard.
Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint
arXiv:1907.00456, 2019.

S. Jia, J. Kiros, and J. Ba. Dom-q-net: Grounded rl on
structured language. arXiv preprint arXiv:1902.07257,
2019.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown,
B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and
D. Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

J. Li, A. H. Miller, S. Chopra, M. Ranzato, and J. We-
ston. Dialogue learning with human-in-the-loop. arXiv
preprint arXiv:1611.09823, 2016.

https://github.com/google/sandboxed-api/tree/main/sandboxed_api/sandbox2
https://github.com/google/sandboxed-api/tree/main/sandboxed_api/sandbox2
https://github.com/google/sandboxed-api/tree/main/sandboxed_api/sandbox2
https://chromedriver.chromium.org/security-considerations
https://chromedriver.chromium.org/security-considerations

A Data-Driven Approach for Learning to Control Computers

Y. Li, J. He, X. Zhou, Y. Zhang, and J. Baldridge. Map-
ping natural language instructions to mobile ui action
sequences. arXiv preprint arXiv:2005.03776, 2020.

E. Z. Liu, K. Guu, P. Pasupat, T. Shi, and P. Liang. Reinforce-
ment learning on web interfaces using workflow-guided
exploration. arXiv preprint arXiv:1802.08802, 2018.

R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim,
C. Hesse, S. Jain, V. Kosaraju, W. Saunders, et al. We-
bgpt: Browser-assisted question-answering with human
feedback. arXiv preprint arXiv:2112.09332, 2021.

D. A. Pomerleau. Alvinn: An autonomous land vehicle
in a neural network. In Advances in neural information
processing systems, pages 305–313, 1989.

J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoff-
mann, F. Song, J. Aslanides, S. Henderson, R. Ring,
S. Young, et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

T. Shi, A. Karpathy, L. Fan, J. Hernandez, and P. Liang.
World of bits: An open-domain platform for web-
based agents. In International Conference on Machine
Learning, pages 3135–3144. PMLR, 2017.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

M. Shvo, Z. Hu, R. T. Icarte, I. Mohomed, A. Jepson, and
S. A. McIlraith. Appbuddy: Learning to accomplish tasks
in mobile apps via reinforcement learning. arXiv preprint
arXiv:2106.00133, 2021.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. Mastering the game
of Go with deep neural networks and tree search. Nature,
529(7587):484, 2016.

H. F. Song, A. Abdolmaleki, J. T. Springenberg, A. Clark,
H. Soyer, J. W. Rae, S. Noury, A. Ahuja, S. Liu, D. Tiru-
mala, et al. V-mpo: On-policy maximum a posteriori
policy optimization for discrete and continuous control.
arXiv preprint arXiv:1909.12238, 2019.

N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe,
C. Voss, A. Radford, D. Amodei, and P. Christiano. Learn-
ing to summarize from human feedback. arXiv preprint
arXiv:2009.01325, 2020.

R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

D. Toyama, P. Hamel, A. Gergely, G. Comanici, A. Glaese,
Z. Ahmed, T. Jackson, S. Mourad, and D. Precup. An-
droidenv: A reinforcement learning platform for android.
arXiv preprint arXiv:2105.13231, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Atten-
tion is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

C. Wirth, R. Akrour, G. Neumann, J. Fürnkranz, et al. A
survey of preference-based reinforcement learning meth-
ods. Journal of Machine Learning Research, 18(136):
1–46, 2017.

A Data-Driven Approach for Learning to Control Computers

Raw DOM tree

- [1] body : : None @ (0, 0) classes=[NO_CLASS] children=3
 |- [2] div : wrap : None @ (0, 0) classes=[NO_CLASS] children=1
 | |- [3] div : area : None @ (0, 50) classes=[NO_CLASS] children=1
 | |- [4] div : menu : None @ (2, 60.3) classes=[NO_CLASS] children=5
 | |- [5] h2 : header-book : None @ (4, 60.3) text='Book Your One-Way Fl...' classes=[NO_CLASS]
 | |- [6] div : : None @ (2, 79.1) classes=[input-container] children=1
 | | |- [7] input_text : flight-from : None @ (4, 81.1) value= classes=[flight-input ui-autocomplete-input] placeholder=From:
 | |- [8] div : : None @ (2, 104.39) classes=[input-container] children=1
 | | |- [9] input_text : flight-to : None @ (4, 106.39) value= classes=[flight-input ui-autocomplete-input] placeholder=To:
 | |- [10] div : : None @ (2, 144.67) classes=[departure-container] children=2
 | | |- [11] div : : None @ (2, 144.67) text='Departure Date' classes=[departure-header]
 | | |- [12] div : : None @ (2, 159.18) classes=[input-container] children=1
 | | |- [13] input_text : datepicker : None @ (12, 161.18) value= classes=[flight-input hasDatepicker] placeholder=
 | |- [14] div : : None @ (2, 182.18) classes=[search-container] children=1
 | |- [15] button : search : None @ (4, 184.18) text='Search' classes=[NO_CLASS]
 |- [16] div : : None @ (-1, 209) classes=[ui-helper-hidden-accessible]
 |- [17] div : : None @ (-1, 209) classes=[ui-helper-hidden-accessible]

Task instruction

Task fields

Book the shortest one-way flight
from: HVR to: Fayetteville, AR
on 12/27/2016.

criterion: 'shortest'
date: '12/27/2016'
from: 'HVR'
to: 'Fayetteville, AR'

Pixel observation

Figure 9. An example of the MiniWob observations for the book-flight task. The raw DOM tree is processed into a list of DOM
elements. The information included in this list for each DOM element includes an integer reference, its text, any input text, the class, the
state of e.g. radio buttons, its position, whether it is focused, and if it has been interacted with in the episode so far.

Table 1. Hyper-parameters used in training. See Song et al. (2019) for descriptions of the VMPO hyper-parameters.

PARAMETER VALUE
Optimizer Adam (Kingma and Ba, 2014)
Learning rate 1e−4
Adam b1 parameter 0.9
Adam b2 parameter 0.999
Weight decay (biases excluded) 1e−1
VMPO loss weight 1.0
BC loss weight (baseline) 1.0
VMPO ϵα 0.1
VMPO ϵη 0.2
Agent discount γ 0.9
Batch size 256
Trajectory unroll length 64
Target-network update period T 50
Maximum number of steps per episode 300

Figure 10. Per-task performance comparison to human participants. An expanded version of the plot in Fig. 4a.

A Data-Driven Approach for Learning to Control Computers

Table 2. List of keyboard keys and macros that the agent can emit in a key press action.

Enter Digit6 KeyG ControlRight+KeyV
PageUp Digit7 KeyH ShiftLeft+KeyA
PageDown Digit8 KeyI ShiftLeft+KeyB
Backspace Digit9 KeyJ ShiftLeft+KeyC
Delete Digit0 KeyK ShiftLeft+KeyD
Tab Numpad0 KeyL ShiftLeft+KeyE
Space Numpad1 KeyM ShiftLeft+KeyF
ArrowUp Numpad2 KeyN ShiftLeft+KeyG
ArrowRight Numpad3 KeyO ShiftLeft+KeyH
ArrowDown Numpad4 KeyP ShiftLeft+KeyI
ArrowLeft Numpad5 KeyQ ShiftLeft+KeyJ
BracketLeft Numpad6 KeyR ShiftLeft+KeyK
BracketRight Numpad7 KeyS ShiftLeft+KeyL
Minus Numpad8 KeyT ShiftLeft+KeyM
Equal Numpad9 KeyU ShiftLeft+KeyN
Semicolon NumpadAdd KeyV ShiftLeft+KeyO
Quote NumpadMultiply KeyW ShiftLeft+KeyP
Backslash NumpadSubtract KeyX ShiftLeft+KeyQ
Comma NumpadDivide KeyY ShiftLeft+KeyR
Period NumpadDecimal KeyZ ShiftLeft+KeyS
Slash NumpadEnter ControlLeft+KeyA ShiftLeft+KeyT
Backquote KeyA ControlRight+KeyA ShiftLeft+KeyU
Digit1 KeyB ControlLeft+KeyC ShiftLeft+KeyV
Digit2 KeyC ControlRight+KeyC ShiftLeft+KeyW
Digit3 KeyD ControlLeft+KeyX ShiftLeft+KeyX
Digit4 KeyE ControlRight+KeyX ShiftLeft+KeyY
Digit5 KeyF ControlLeft+KeyV ShiftLeft+KeyZ

a)

Figure 11. Per-task performance comparison to the best published external SotA results for each task. These SotA scores correspond to
the aggregated scores shown in Table 3.

A Data-Driven Approach for Learning to Control Computers

b) Action types

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Specific key pressc)

a)

Figure 12. a) Initial frame of an example episode of text-transform. Note that the text (captcha) to be typed is also present in the
DOM, and thus passed to the agent as a language input. b) Distribution of action types selected by the agent for a random sample of
100 episodes of text-transform. In this task the agent most frequently chooses to output a key press. c) Distribution of specific
key-press choices for the episodes included in b). The agent learns to produce individual key presses for every letter (a-z, lower and upper
case) and all digits (0-9), in order to complete the captcha.

A Data-Driven Approach for Learning to Control Computers

Table 3: Per-task mean scores for human participants, our agent (CC-Net) and scores gathered from external
studies (Shi et al., 2017; Liu et al., 2018; Gur et al., 2018; Jia et al., 2019). Some scores from these studies were
only available in figure format and were therefore estimated as accurately as possible. The final two columns
give the best externally reported score for each task using either BC & RL, or BC, RL and augmentations.

TASK Human CC-Net World of
bits (BC &
RL)

Workflow
guided ex-
ploration
(BC &
RL)

Learning
to navigate
the web
(RL)

DOM-
Q-Net
(RL)

Workflow
guided ex-
ploration
(Aug-
mented)

Learning
to navi-
gate the
web (Aug-
mented)

Aggregated
SotA (BC
& RL)

Aggregated
SotA
(Aug-
mented)

bisect-angle 0.92 0.97 0.80 n/a n/a n/a n/a n/a 0.80 0.80
book-flight 0.87 0.87 0.00 0.00 n/a n/a 0.00 1.00 0.00 1.00
chase-circle 0.82 0.93 1.00 n/a n/a n/a n/a n/a 1.00 1.00
choose-date-easy 0.99 0.99 n/a n/a n/a n/a n/a n/a n/a n/a
choose-date-medium 0.98 0.99 n/a n/a n/a n/a n/a n/a n/a n/a
choose-date 0.97 0.97 0.00 0.00 n/a 1.00 0.00 n/a 1.00 1.00
choose-list 0.98 0.99 0.25 0.16 0.26 n/a 0.16 0.26 0.26 0.26
circle-center 0.96 0.97 0.98 n/a n/a n/a n/a n/a 0.98 0.98
click-button-sequence 0.94 1.00 0.22 0.99 n/a 1.00 1.00 n/a 1.00 1.00
click-button 0.98 1.00 0.62 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-checkboxes-large 0.87 0.71 n/a 0.68 n/a n/a 0.84 n/a 0.68 0.84
click-checkboxes-soft 0.73 0.95 n/a 0.51 n/a n/a 0.94 n/a 0.51 0.94
click-checkboxes-transfer 0.98 0.99 n/a 0.64 n/a n/a 0.64 n/a 0.64 0.64
click-checkboxes 0.97 0.98 0.48 0.98 n/a 1.00 1.00 n/a 1.00 1.00
click-collapsible-2 0.97 0.98 0.11 0.65 n/a n/a 0.99 n/a 0.65 0.99
click-collapsible 0.99 1.00 0.98 1.00 1.00 n/a 1.00 1.00 1.00 1.00
click-color 0.97 1.00 0.23 1.00 n/a n/a 1.00 n/a 1.00 1.00
click-dialog-2 0.99 1.00 0.53 1.00 n/a n/a 1.00 n/a 1.00 1.00
click-dialog 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-link 0.99 0.99 0.31 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-menu-2 0.98 0.83 0.16 n/a n/a n/a n/a n/a 0.16 0.16
click-menu 0.97 0.94 0.13 n/a n/a n/a n/a n/a 0.13 0.13
click-option 0.99 0.99 0.28 1.00 n/a 1.00 1.00 n/a 1.00 1.00
click-pie 0.98 0.97 0.15 0.32 1.00 n/a 0.32 1.00 1.00 1.00
click-scroll-list 0.91 0.60 0.07 n/a n/a n/a n/a n/a 0.07 0.07
click-shades 0.91 1.00 0.27 0.22 n/a n/a 0.99 n/a 0.27 0.99
click-shape 0.88 0.95 0.11 0.64 n/a n/a 0.64 n/a 0.64 0.64
click-tab-2-easy 0.99 0.99 n/a n/a n/a n/a n/a n/a n/a n/a
click-tab-2-hard 0.96 0.98 n/a n/a n/a n/a n/a n/a n/a n/a
click-tab-2-medium 0.97 0.99 n/a n/a n/a n/a n/a n/a n/a n/a
click-tab-2 0.97 0.98 0.08 0.64 n/a 1.00 0.98 n/a 1.00 1.00
click-tab 0.99 1.00 0.97 0.55 1.00 1.00 1.00 1.00 1.00 1.00
click-test-2 0.99 1.00 0.83 1.00 n/a 1.00 1.00 n/a 1.00 1.00
click-test-transfer 0.99 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
click-test 1.00 1.00 1.00 1.00 n/a 1.00 1.00 n/a 1.00 1.00
click-widget 0.83 1.00 0.34 0.93 n/a 1.00 0.93 n/a 1.00 1.00
copy-paste-2 0.94 0.63 0.00 n/a n/a n/a n/a n/a 0.00 0.00
copy-paste 0.94 0.79 0.00 n/a n/a n/a n/a n/a 0.00 0.00
count-shape 0.82 0.85 0.18 0.59 n/a n/a 0.76 n/a 0.59 0.76
count-sides 0.98 1.00 0.30 n/a n/a n/a n/a n/a 0.30 0.30
drag-box 0.99 1.00 0.31 n/a n/a n/a n/a n/a 0.31 0.31
drag-cube 0.99 0.79 0.18 n/a n/a n/a n/a n/a 0.18 0.18
drag-item 0.98 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
drag-items-grid 0.87 0.98 0.01 n/a n/a n/a n/a n/a 0.01 0.01
drag-items 0.93 0.99 0.41 n/a n/a n/a n/a n/a 0.41 0.41
drag-shapes 0.96 0.99 0.92 n/a n/a n/a n/a n/a 0.92 0.92
drag-sort-numbers 0.92 0.97 0.66 n/a n/a n/a n/a n/a 0.66 0.66
email-inbox-delete 0.99 1.00 n/a n/a n/a 1.00 n/a n/a 1.00 1.00
email-inbox-forward-nl-turk 0.88 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox-forward-nl 0.91 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox-forward 0.96 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox-important 0.99 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox-nl-turk 0.93 1.00 n/a 0.77 n/a n/a 0.93 n/a 0.77 0.93
email-inbox-noscroll 0.96 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox-reply 0.91 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox-star-reply 0.95 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox 0.96 1.00 0.03 0.43 n/a 0.54 0.99 n/a 0.54 0.99
enter-date 0.97 1.00 0.61 0.00 1.00 n/a 0.96 1.00 1.00 1.00
enter-password 0.96 1.00 0.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
enter-text-2 0.91 0.98 0.00 n/a n/a n/a n/a n/a 0.00 0.00
enter-text-dynamic 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
enter-text 0.98 1.00 0.00 1.00 n/a 1.00 1.00 n/a 1.00 1.00
enter-time 0.98 0.97 0.08 0.52 n/a n/a 0.90 n/a 0.52 0.90
find-midpoint 0.94 0.97 0.31 n/a n/a n/a n/a n/a 0.31 0.31
find-word 0.96 0.88 0.00 n/a n/a n/a n/a n/a 0.00 0.00
focus-text-2 0.99 1.00 0.83 1.00 n/a 1.00 1.00 n/a 1.00 1.00
focus-text 1.00 1.00 0.95 1.00 n/a 1.00 1.00 n/a 1.00 1.00
grid-coordinate 0.87 1.00 0.26 1.00 n/a n/a 1.00 n/a 1.00 1.00
guess-number 0.99 1.00 0.20 0.00 n/a n/a 0.00 n/a 0.20 0.20
highlight-text-2 0.97 1.00 0.13 n/a n/a n/a n/a n/a 0.13 0.13
highlight-text 0.97 1.00 0.90 n/a n/a n/a n/a n/a 0.90 0.90
identify-shape 0.98 1.00 0.36 0.90 n/a n/a 1.00 n/a 0.90 1.00
login-user-popup 0.94 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
login-user 0.96 1.00 0.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
moving-items 0.18 0.88 0.78 n/a n/a n/a n/a n/a 0.78 0.78
multi-layouts 0.95 1.00 n/a 0.99 n/a n/a 1.00 n/a 0.99 1.00
multi-orderings 0.96 1.00 n/a 0.05 n/a n/a 1.00 n/a 0.05 1.00
navigate-tree 0.98 0.99 0.20 0.99 1.00 1.00 0.99 1.00 1.00 1.00
number-checkboxes 0.96 0.99 0.16 n/a n/a n/a n/a n/a 0.16 0.16

A Data-Driven Approach for Learning to Control Computers

read-table-2 0.95 0.94 0.00 n/a n/a n/a n/a n/a 0.00 0.00
read-table 0.97 0.97 0.00 n/a n/a n/a n/a n/a 0.00 0.00
resize-textarea 0.94 1.00 0.11 n/a n/a n/a n/a n/a 0.11 0.11
right-angle 0.87 0.98 0.38 n/a n/a n/a n/a n/a 0.38 0.38
scroll-text-2 0.97 1.00 0.96 n/a n/a n/a n/a n/a 0.96 0.96
scroll-text 0.97 0.96 0.00 n/a n/a n/a n/a n/a 0.00 0.00
search-engine 0.97 1.00 0.00 0.26 n/a 1.00 0.99 n/a 1.00 1.00
simon-says 0.62 -0.00 0.28 n/a n/a n/a n/a n/a 0.28 0.28
simple-algebra 0.86 0.75 0.04 n/a n/a n/a n/a n/a 0.04 0.04
simple-arithmetic 0.96 0.86 0.07 n/a n/a n/a n/a n/a 0.07 0.07
social-media-all 0.89 0.75 n/a 0.01 n/a n/a 0.01 1.00 0.01 1.00
social-media-some 0.91 0.85 n/a 0.01 n/a n/a 0.42 n/a 0.01 0.42
social-media 0.96 0.90 0.23 0.39 n/a 1.00 1.00 n/a 1.00 1.00
terminal 0.88 -0.01 0.00 n/a n/a n/a n/a n/a 0.00 0.00
text-editor 0.88 0.98 0.01 n/a n/a n/a n/a n/a 0.01 0.01
text-transform 0.86 0.60 0.00 n/a n/a n/a n/a n/a 0.00 0.00
tic-tac-toe 0.71 0.83 0.34 0.37 n/a n/a 0.47 n/a 0.37 0.47
unicode-test 0.99 1.00 n/a n/a n/a n/a n/a n/a n/a n/a
use-autocomplete 0.98 1.00 0.00 0.78 n/a n/a 0.98 n/a 0.78 0.98
use-colorwheel-2 0.94 0.95 1.00 n/a n/a n/a n/a n/a 1.00 1.00
use-colorwheel 0.90 0.98 1.00 n/a n/a n/a n/a n/a 1.00 1.00
use-slider-2 0.97 0.95 0.15 n/a n/a n/a n/a n/a 0.15 0.15
use-slider 0.98 0.91 0.51 n/a n/a n/a n/a n/a 0.51 0.51
use-spinner 0.98 1.00 0.17 0.04 n/a n/a 0.04 n/a 0.17 0.17
visual-addition 0.97 0.99 0.01 n/a n/a n/a n/a n/a 0.01 0.01

A Data-Driven Approach for Learning to Control Computers

0

1

M
ea

n
sc

or
e

bisect-angle book-flight chase-circle choose-date choose-date-easy choose-date-medium choose-list circle-center

0

1

M
ea

n
sc

or
e

click-button click-button-sequence click-checkboxes click-checkboxes-largeclick-checkboxes-softclick-checkboxes-transferclick-collapsible click-collapsible-2

0

1

M
ea

n
sc

or
e

click-color click-dialog click-dialog-2 click-link click-menu click-menu-2 click-option click-pie

0

1

M
ea

n
sc

or
e

click-scroll-list click-shades click-shape click-tab click-tab-2 click-tab-2-easy click-tab-2-hard click-tab-2-medium

0

1

M
ea

n
sc

or
e

click-test click-test-2 click-test-transfer click-widget copy-paste copy-paste-2 count-shape count-sides

0

1

M
ea

n
sc

or
e

drag-box drag-cube drag-item drag-items drag-items-grid drag-shapes drag-sort-numbers email-inbox

0

1

M
ea

n
sc

or
e

email-inbox-delete email-inbox-forwardemail-inbox-forward-nlemail-inbox-forward-nl-turkemail-inbox-importantemail-inbox-nl-turk email-inbox-noscroll email-inbox-reply

0

1

M
ea

n
sc

or
e

email-inbox-star-reply enter-date enter-password enter-text enter-text-2 enter-text-dynamic enter-time find-midpoint

0

1

M
ea

n
sc

or
e

find-word focus-text focus-text-2 grid-coordinate guess-number highlight-text highlight-text-2 identify-shape

0

1

M
ea

n
sc

or
e

login-user login-user-popup moving-items multi-layouts multi-orderings navigate-tree number-checkboxes read-table

0

1

M
ea

n
sc

or
e

read-table-2 resize-textarea right-angle scroll-text scroll-text-2 search-engine simon-says simple-algebra

0

1

M
ea

n
sc

or
e

simple-arithmetic social-media social-media-all social-media-some terminal text-editor text-transform tic-tac-toe

10 2 100

Rel. dataset size

0

1

M
ea

n
sc

or
e

unicode-test

10 2 100

Rel. dataset size

use-autocomplete

10 2 100

Rel. dataset size

use-colorwheel

10 2 100

Rel. dataset size

use-colorwheel-2

10 2 100

Rel. dataset size

use-slider

10 2 100

Rel. dataset size

use-slider-2

10 2 100

Rel. dataset size

use-spinner

10 2 100

Rel. dataset size

visual-addition

Figure 13. Results from Fig. 7 broken out per task. Note that the individual task results have significant variance as there is only one seed
per experiment. Blue shows performance of BC&RL, purple BC only, and the dashed line gives RL only performance.

A Data-Driven Approach for Learning to Control Computers

0 20 40 60 80
Mean episode steps

0.6

0.7

0.8

0.9

1.0

M
ea

n
re

wa
rd book-flight

chase-circle

click-checkboxes-large

click-menu-2

click-menu

click-scroll-list

copy-paste-2

copy-paste

count-shape

drag-cube

find-word

guess-number number-checkboxes

read-table-2

scroll-text

simple-algebra

simple-arithmetic

social-media-all

social-media-some

social-media

text-transform

tic-tac-toe

use-slider

Figure 14. Scatter plot showing the mean number of environment steps per episode versus mean reward for different MiniWob tasks.

