
A Data-Driven Approach for Learning to Control Computers

Peter Humphreys 1 David Raposo 1 Toby Pohlen 1 Gregory Thornton 1 Rachita Chhaparia 1 Alistair Muldal 1

Josh Abramson 1 Petko Georgiev 1 Adam Santoro 1 Timothy Lillicrap 1

Abstract
It would be useful for machines to use computers
as humans do so that they can aid us in everyday
tasks. This is a setting in which there is also the
potential to leverage large-scale expert demon-
strations and human judgements of interactive
behaviour, which are two ingredients that have
driven much recent success in AI. Here we inves-
tigate the setting of computer control using key-
board and mouse, with goals specified via natural
language. Instead of focusing on hand-designed
curricula and specialized action spaces, we focus
on developing a scalable method centered on re-
inforcement learning combined with behavioural
priors informed by actual human-computer inter-
actions. We achieve state-of-the-art and human-
level mean performance across all tasks within
the MiniWob++ benchmark, a challenging suite
of computer control problems, and find strong evi-
dence of cross-task transfer. These results demon-
strate the usefulness of a unified human-agent
interface when training machines to use comput-
ers. Altogether our results suggest a formula for
achieving competency beyond MiniWob++ and
towards controlling computers, in general, as a
human would.

1. Introduction
Recent work on natural language (Brown et al., 2020; Rae
et al., 2021), code production (Chen et al., 2021), and multi-
modal interactive behaviour in 3D simulated worlds (Deep-
Mind Interactive Agents Team, 2021) has produced models
with remarkable expressivity, context awareness, and gen-
eral knowledge. This research is a striking demonstration
of the power of two ingredients: a rich, compositional out-
put space that is congruent between machines and humans,

1DeepMind, London, United Kingdom. Correspondence to:
Peter Humphreys <peterhumphreys@deepmind.com>, Timothy
Lillicrap <countzero@deepmind.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

and large amounts of human data and judgements to inform
machine behaviour.

One domain that has these two ingredients but has received
relatively less attention is digital device control (Shi et al.,
2017; Liu et al., 2018; Nakano et al., 2021; Chen et al.,
2021; Shvo et al., 2021; Li et al., 2020; Toyama et al., 2021;
Gur et al., 2021), which comprises the use of digital devices
to accomplish a myriad of inherently useful tasks. Because
of its near exclusive use of digital information, this domain
scales well in regards to data acquisition and parallelization
of control (compared to, say, robotics or fusion reactors). It
also combines diverse, multimodal inputs with expressive,
composable, and human-compatible affordances. In this
work we focus on computer control using keyboard and
mouse, with pixel and Document Object Model (DOM)
observations.

A useful benchmark for initial investigations of computer
control is the MiniWob++ task suite (Shi et al., 2017; Liu
et al., 2018), which comprises a set of instruction following
tasks that require clicking, typing, form-filling, and other
such basic computer interactions (Fig. 1b). MiniWob++
further provides programmatically defined rewards. These
tasks are a first step towards more open-ended human-agent
interactions in which a human specifies a task using nat-
ural language and provides subsequent judgement about
performance (Li et al., 2016; Ammanabrolu et al., 2020;
DeepMind Interactive Agents Team, 2021).

We focus on training agents to solve these tasks using meth-
ods that can in principle apply to any task one hopes to per-
form on a digital device, and that have desirable data- and
compute-scaling properties. We therefore turn to a straight-
forward combination of reinforcement learning (RL) (Sutton
and Barto, 2018) and behavioural cloning (BC) (Pomerleau,
1989), the latter of which is aided by an alignment between
human and agent action spaces (i.e. keyboard and mouse).
This is a combination that was proposed at MiniWob’s con-
ception (Shi et al., 2017), but was not found at the time
to produce high-scoring agents. Subsequent work conse-
quently attempted to improve performance by giving agents
access to DOM-specific actions (Liu et al., 2018; Gur et al.,
2018; Jia et al., 2019), curricula (Gur et al., 2018), and
through constrained exploration techniques that reduce the



A Data-Driven Approach for Learning to Control Computers

number of actions available at each step using curated guid-
ance (Liu et al., 2018). Revisiting the simple and scalable
combination of imitation and reinforcement learning, we
�nd that the primary missing factor in achieving high per-
formance is simply the size of the human trajectory dataset
used for behavioural cloning. Performance increases reli-
ably with increasing amounts of human data, with continu-
ing improvements observed for datasets of up to400� the
size of those used in previous studies. Our results using
this data surpass previous state-of-the-art performance by
a wide margin, and are even able to achieve human-level
mean performance across the task suite.

2. Methods

2.1. MiniWob++

MiniWob++ is a suite of web-browser based tasks intro-
duced in Liu et al. (2018) (an extension of the earlier Mini-
Wob task suite (Shi et al., 2017)). Tasks range from simple
button clicking to complex form-�lling, for example, to
book a �ight when given particular instructions (Fig. 1a).
Programmatic rewards are available for each task, permit-
ting standard reinforcement learning techniques.

Previous work on MiniWob++ has considered architectures
that have access to DOM-speci�c actions (Liu et al., 2018;
Gur et al., 2018; Jia et al., 2019), allowing agents to directly
interact with a DOM element (even if it is not actually visi-
ble) as opposed to needing to use a mouse or keyboard to
navigate to it. We choose instead to use only mouse and
keyboard based actions. This simpli�es the use of human
behavioural data, and we further hypothesise that this inter-
face will better transfer to computer control tasks without a
compact DOM to interact with (and non web-browser based
tasks). Finally, many MiniWob++ tasks require clicking
or dragging actions that cannot be achieved with DOM-
element based actions (see examples in Fig. 1b).

In common with previous MiniWob++ studies (Liu et al.,
2018; Gur et al., 2018; Jia et al., 2019), we give our agent
access to an environment-provided dictionary of text strings
that must be inputted to a given task's input �elds (see Ap-
pendix Fig. 9 for an example). This helps to avoid the
exploration problem of learning a generative text model
from only sparse RL inputs. Interestingly, as we discuss in
Sec. 3.4, the agent is able to achieve state-of-the-art perfor-
mance even without this input.

The MiniWob environment is realtime, which introduces
technical and algorithmic complications. For example, there
are no guarantees about how actions lead to observations
temporally – observations may be in�uenced by lag due to
competition over a computer's resources. For the human
participants providing demonstration data, we ensure suf-
�cient resources on the server running the environment to

Figure 1.Computer Control Environment running Mini-
Wob++. Both humans and agents control computers using a
keyboard and mouse, with humans providing demonstrative be-
haviour used for behavioural cloning, and agents trained to mimic
this behaviour or to behave in pursuit of reward. Humans and
agents attempt to solve the MiniWob++ task suite, which com-
prises instruction-following tasks requiring clicking, typing, drag-
ging, form-�lling, and other such basic interactions (depicted is
the “book-�ight” task). b) Examples of MiniWob tasks requiring
different forms of interaction.

minimize temporal jitter on the local machine, on which
we sync observations and actions at 30Hz. For agents, any
temporal jitter is sure to be different than that experienced
by humans. Nevertheless, most MiniWob++ tasks are rel-
atively time insensitive, and our results demonstrate that
the mismatch is not problematic in practice. Moreover, we
found that actively manipulating the demonstration data to
remove steps without actions (an operation that will only
serve to exaggerate the differences in timings) gave the best
results. As in previous studies, our human and agent scores



A Data-Driven Approach for Learning to Control Computers

are not discounted by time to completion.

2.2. Environment Interface

Agents need a suitable interface for transmitting and receiv-
ing observations and actions if they are to use computers
as humans do. The original MiniWob++ task suite is sup-
plied with a Selenium-based interface (Liu et al., 2018). We
decided to implement an alternative environment stack de-
signed to �exibly support any task that can be achieved in a
web browser. This interface is optimised from the ground
up for security, features, and performance (Fig. 1a).

Security. We run the web browser (Google Chrome in our
case) in a Sandbox2 (GitHub Repository) container, which
provides a chroot jail and restricts access to any system
calls that could be used to compromise the host system.
We further reroute all network traf�c to a local host-side
socket using a TCP proxy server. This gives us precise
control over the content that can be accessed from within
the browser. Not only are these security features important
for safe agent-environment interactions, they also simplify
recording demonstration data on publicly available systems
such as Amazon Mechanical Turk, because neither humans
nor agents should be able to use the browser itself to attack
the host system or any network resources.

The original MiniWob++ environment implementation ac-
cesses the internal browser state and issues control com-
mands via Selenium. We instead interface directly with
the Chrome DevTools Protocol (CDP) to retrieve browser-
internal information such as the DOM tree and execute
developer-provided JavaScript code on a page. We access
the CDP via �le descriptors that are passed to the browser at
start-up time. We do this to minimize the attack surface and
follow the security recommendations provided by the web
driver authors (ChromeDriver Security Considerations).

Features. We want our agents to be able to interact with a
standard web browser via the same controls used by human
desktop users. To achieve this, our environment connects
directly to an X11 server to input mouse and keyboard con-
trols as well as retrieve the current frame buffer. This min-
imises domain shift between human and agent environment
interactions, which is a challenge for the original Selenium
interface. For example, mouse dragging actions are dif�cult
to implement in Selenium.

Working with X11 has other key advantages: (1) agents
can potentially interact with the full browser (including tabs
and the address bar), (2) recording �rst-person demonstra-
tion data at scale is easy due to close human and agent
environment equivalence, and (3) we can render the context-
sensitive system mouse cursor.

We implemented our entire environment stack in C++ to en-

able low latency interactions. This is particularly important
when recording demonstrations, as accurate mouse cursor
movements are dif�cult if the total input-latency is too high.

2.3. Agent Architecture

Ultimately we found it to be unnecessary to implement
specialised DOM-processing architectures based on, for ex-
ample, graph nets (Jia et al., 2019). Instead, motivated by
recent work on multimodal architectures, we applied min-
imal modality-speci�c processing, primarily relying on a
multimodal transformer to �exibly attend to relevant infor-
mation, as described below and in Fig. 2.

Perception. The agent receives visual inputs (165x220
RGB pixels) and language inputs (an example input is shown
in Appendix Fig. 9). The pixel inputs pass through a series
of four ResNet blocks, with3� 3 kernels, strides of2, 2, 2,
2, and an increasing number of output channels (32, 128,
256, 512). This results in14� 11 feature vectors, which we
�atten into a list of154tokens.

The three types of language inputs – task instruction, DOM,
and task �elds (the last only used for the policy) – are pro-
cessed using the same module: each text string is split into
tokens, with each token mapped to a size 64 embedding by
indexing a learnable embedding table using a vocabulary
of 370 words. We reserve an additional1000 indexable
embeddings for input words that fall outside the vocabulary.
For these words, an index is calculated using a64-bit hash
function with the output reduced to an integer between370
and1369. Using a 1-layer transformer with 4 heads (“lan-
guage transformer”) we attend over the token embeddings of
each individual string to produce a single 512-dimensional
embedding using cross attention – the token embeddings
are used to generate keys and values, with an extra learnable
embedding used as a query. The extra learnable embeddings
provide input-independent components to the attention. This
is analogous to the special “CLS” tokens used in BERT (De-
vlin et al, 2018) whose outputs can be directly used as an
aggregate output of the transformer.

Multimodal integration and memory. The visual input
embeddings, the language embeddings produced from DOM
and task instructions, and two extra learned embeddings are
fed into a multimodal transformer with 8 layers, 8 heads,
and a 512 dimensional embedding.

The processed outputs corresponding to the extra embed-
dings are concatenated with the result of a feature-wise
mean pooling operation across the remaining outputs and
an embedding of the previous action. The resulting 1536-
dimensional vector is input to a dual-layer LSTM with 512
hidden units per layer. Residual connections bypass each
LSTM layer.



A Data-Driven Approach for Learning to Control Computers

Figure 2.The Computer Control agent architecture (CC-Net).Pixel inputs are encoded by 4 ResNet blocks; language inputs (task
instruction and DOM) are encoded via cross-attention. An 8-layer multimodal transformer combines pixel and language embeddings,
whose output is concatenated with an embedding of the previous action and passed through 2 LSTMs. The agent produces 4 outputs:
action type, cursor coordinates, keyboard-key index, and task-�eld index (which allows the agent to choose one of the task �eld strings to
emit). All outputs are produced via linear transformations, with the exception of the task-�eld index, whose logits are produced via an
attention-based policy.

We have not run LSTM ablations in the �nal con�guration,
but earlier tuning showed that a dual-layer LSTM improved
performance relative to a single-layer LSTM or to a feedfor-
ward architecture. It may be that this is due to the increased
parameter count associated with the dual layer LSTM, as
we did not control for this in our tuning. We note that there
are some tasks for which memory is especially useful, such
as those with moving elements.

Policy. The agent's policy consists of 4 outputs: the action
type, cursor coordinates, keyboard-key index and task-�eld
index. Each output is modeled by a single discrete proba-
bility distribution, except for cursor coordinates which are
modeled by two discrete distributions (for height and width
coordinates), dividing each dimension into 51 bins. This is
the only policy component that is auto-regressive, with the
height coordinate conditioned on the width coordinate.

The action type is chosen from a set of 10 possible actions,
which includes ano-op (indicating no action), 7 mouse
actions (move, click, double click, press, release, wheel up,
wheel down), and two keyboard actions (key press, emit
text). Thekey pressaction is used to emit a keyboard key
or one of a set of small macros (such asCTRL+C, full list
in Appendix Table 2). Theemit textaction can be used
to emit a string given by one of the MiniWob “task-�eld”
observations.

Sampling of the remaining policy outputs is dependent on
which action type was chosen – i.e. cursor coordinates are
sampled ifmove mousewas chosen; a task-�eld index is
sampled ifemit textwas chosen (to determine which task-
�eld string to emit); a keyboard-key index is sampled ifkey

presswas chosen (to determine which key to emit).

The logits for the action-type, cursor coordinates and
keyboard-key index distributions are produced via linear
transformations, whereas the logits for the task-�eld index
are produced via dot-product attention. This attention policy
works as follows: we �rst use a linear output to produce
a query. A separate linear transformation is used to pro-
duce keys from the embeddings of the available task �elds.
The logits are the attention weights that result from the dot-
product between query and keys, followed by a softmax.

In the ablation experiments in Section 3.4, we use two alter-
native action types which allow the agent to act directly on
the DOM –DOM click, for triggering a click on a speci�c
DOM element, andDOM emit text, for directly writing a
task-�eld string into a speci�ed DOM element (i.e. in this
macro-action a DOM element is focused on and then text is
emitted into it). These actions require an additional policy
output (DOM element index) to determine which DOM ele-
ment to click. This was produced using an attention policy
as described above, but with attention over DOM element
embeddings. For theDOM emit textaction, we reused the
task-�eld index output to determine which text string to
emit.

2.4. Human Data Collection

Given that agents and humans use the same interface, the
use of human demonstrations was considered in the original
MiniWob publication (Shi et al., 2017). However, only17
hours of human data were collected for that study (with pure
behavioural cloning policies only solving5% more tasks


