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Abstract
We present a conceptual framework, datamodel-
ing, for analyzing the behavior of a model class
in terms of the training data. For any fixed “tar-
get” example x, training set S, and learning al-
gorithm, a datamodel is a parameterized func-
tion 2S → R that for any subset of S′ ⊂ S—
using only information about which examples of
S are contained in S′—predicts the outcome of
training a model on S′ and evaluating on x. De-
spite the complexity of the underlying process
that is being approximated (e.g. end-to-end train-
ing and evaluation of deep neural networks), we
show that even simple linear datamodels suc-
cessfully predict model outputs. We then demon-
strate that datamodels give rise to a variety of ap-
plications, such as: accurately predicting the ef-
fect of dataset counterfactuals; identifying brittle
predictions; finding semantically similar exam-
ples; quantifying train-test leakage; and embed-
ding data into a well-behaved and feature-rich
representation space.

1. Introduction and Setup
What kinds of biases does my (machine learning) system
exhibit? On what subpopulations does it perform well (or
poorly)? A recent body of work suggests that the answers
to these questions lie within both the learning algorithm and
the training data used. However, it is often difficult to un-
derstand how these two factors combine to yield model pre-
dictions. In this work, we present datamodeling—a frame-
work for tackling this issue by forming an explicit model
for predictions in terms of the training data.

Setting. Consider a typical machine learning setup, start-
ing with a training set S comprising d input-label pairs.
The focal point of this setup is a learning algorithm A that
takes in such a training set of input-label pairs, and out-
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puts a trained model. This learning algorithm need not be
deterministic—for example,Amight encode the process of
training a neural network from random initialization.

Now, consider a fixed target example x and define

fA(x;S) := the outcome of training a model on S
using A, and evaluating it on the input x, (1)

where we leave “outcome” intentionally broad to capture a
variety of settings that one might care about. For example,
fA(x;S) may be the cross-entropy loss of a classifier on
x, or the error of a regression model on x. The potential
stochasticity of A means fA(x;S) is a random variable.

Goal. Broadly, we aim to understand how the training ex-
amples in S combine through the learning algorithm A to
yield fA(x;S) (again, for the specific example x that we
are examining). Towards this goal, we will leverage a clas-
sic technique for studying complex black-box functions:
surrogate modeling (Sacks et al., 1989). In surrogate mod-
eling, one replaces complex functions with inexact but sig-
nificantly easier-to-analyze approximations, then uses the
latter to shed light on the behavior of the original functions.

In our setting, the complex black-box function is fA(x; ·).
We thus aim to find a simple surrogate function g(S′)
whose output roughly matches fA(x;S′) for a variety of
training sets S′ (but again, for a fixed example x). Achiev-
ing this goal would reduce the challenge of scrutinizing
fA(x; ·)—and more generally, the map from training data
to predictions as mediated by learning algorithmA—to the
(hopefully easier) task of analyzing g.

Datamodeling. By parameterizing the surrogate function
g (as gθ, for a parameter vector θ), we transform the chal-
lenge of constructing a surrogate into a supervised learning
problem. In this problem, the “training examples” are sub-
sets S′ ⊂ S of the original task’s training set S, and the
corresponding “labels” are given by fA(x;S′) (which we
can compute by training a new model on S′ with algorithm
A, and evaluating on x). Our goal is then to fit a parametric
function gθ mapping the former to the latter.

We now formalize this as datamodeling—the framework
that forms the basis of our work. In this framework, we first
fix a distribution over subsets that we will use to collect the
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“training data” for gθ,

DS := a fixed distribution over subsets of S (2)

and then use DS to collect a datamodel training set of such
training data, i.e., a collection of pairs

{(S1, fA(x;S1)), . . . , (Sm, fA(x;Sm))} ,

where Si ∼ DS , and again fA(x;Si) is the result of train-
ing a model on Si and evaluating on x (cf. (1)).

In theory, gθ can be any map that takes as input subsets
of the training set, and returns estimates of fA(x; ·). In
this work, however, we greatly simplify matters by ignor-
ing the actual contents of the subsets Si, and instead fo-
cusing solely on the presence of each training example of
S within Si. In particular, we consider the characteristic
vector corresponding to each Si,

1Si
∈ {0, 1}d such that (1Si

)j =

{
1 if zj ∈ Si
0 otherwise,

(3)

a vector that indicates which elements of the original train-
ing set S are present in a given subset Si. We then define a
datamodel for a given input x as a function

gθ : {0, 1}d → R, where

θ = arg min
w

1

m

m∑
i=1

L (gw(1Si
), fA(x;Si)) , (4)

and L(·, ·) is a fixed loss function (e.g., squared-error).
As intended, (4) places datamodels squarely within the
realm of supervised learning: e.g., we can validate a
given datamodel by sampling new subset-output pairs
{(Si, fA(x;Si))} and computing loss. For completeness,
we restate the entire framework as Def. 1.

Definition 1 (Datamodeling). Consider a fixed train-
ing set S, a learning algorithm A, a target example
x, and a distribution DS over subsets of S. For any
set S′ ⊂ S, let fA(x;S′) be the (stochastic) output
of training a model on S′ using A, and evaluating
on x. A datamodel for x is a parametric function gθ
optimized to predict fA(x;Si) from training subsets
Si ∼ DS , i.e.,

gθ : {0, 1}|S| → R, where

θ = arg min
w

Ê(m)
Si∼DS

[L (gw(1Si
), fA(x;Si))] ,

1Si
∈ {0, 1}|S| is the characteristic vector of Si in

S (see (3)), L(·, ·) is a loss function, and Ê(m) is an
m-sample empirical estimate of the expectation.

We pause here to highlight two critical (yet somewhat sub-
tle) properties of the datamodeling framework:

Model classes, not models: Datamodeling focuses on the
entire distribution of models induced by the algorithm A,
rather than a specific model. Recent work suggests this
distinction is particularly significant for modern learning
algorithms (e.g., neural networks), as models can exhibit
drastically different behavior depending on only random
seed used during training (Nakkiran & Bansal, 2020; Jiang
et al., 2021; D’Amour et al., 2020; Zhong et al., 2021).

Datamodels are target example-specific: A datamodel gθ
is selected to predict model outputs on a specific but arbi-
trary target example x. This x might be an example from
the test set, a synthetically generated example, or even an
example from the training set S itself. As a result, we will
often work with collections of datamodels that correspond
to given sets of target examples: it turns out (§ 3.1) that,
as long as the training set S is fixed, computing a collec-
tion of datamodels simultaneously is not much harder than
computing a single one.

1.1. Roadmap and contributions

The key contribution of our work is the datamodeling
framework described above, which allows us to analyze the
behavior of a machine learning algorithmA in terms of the
training data. In the remainder of this work, we show how
to instantiate, implement, and apply this framework.

Specifically, in Section 2, we consider a concrete instantia-
tion of datamodeling in which the map gθ is a linear func-
tion. In Section 3, we develop the remaining machinery
required to apply this instantiation to deep neural networks
trained on standard image datasets. Then, in the rest of the
paper, we find that:

Datamodels successfully predict model outputs (§ 3.2):
despite their simplicity, datamodels yield predictions that
match expected model outputs on new sets S′ drawn from
the same distribution DS . (E.g., the Pearson correlation
between predicted and ground-truth outputs is r > 0.99.)

Datamodels successfully predict counterfactuals (§ 4):
predictions correlate with model outputs even on out-of-
distribution training subsets (Figure 4 and Appendix E), al-
lowing us to estimate the causal effect of removing training
images on a given test prediction. Leveraging this ability,
we find that for 50% of CIFAR-10 test images, predictions
can be made incorrect by removing (i.e., not even mislabel-
ing) less than 200 target-specific training points (i.e., 4%
of total training set size).

Datamodel weights encode train-test similarity (§ 5.1):
the highest-magnitude datamodel weights for a given target
example tend to correspond to similar training examples,
which we can use to identify (significant) train-test leakage.

Datamodels yield a well-behaved feature embedding
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(§ 5.2): we can view the parameter θ of a given datamodel
gθ as a feature embedding of the corresponding target ex-
ample x into Rd. We find that this embedding induces a
well-behaved representation space that has significant ad-
vantages over standard embeddings from the penultimate
layer of a fixed network.

More broadly, datamodels turn out to be a versatile tool for
understanding how learners leverage their training data.

2. Constructing (Linear) Datamodels
As described in Section 1, to build a datamodel for a spe-
cific target example x, we: (a) pick a parameterized class
of functions gθ; (b) sample a collection of subsets Si ⊂ S
from a fixed training set according to a distribution DS ; (c)
for each subset Si, train a model using algorithm A, eval-
uate the model on target input x using the relevant metric
(e.g., loss); collect the resulting pair (1Si

, fA(x;Si)); (d)
split the collected dataset of subset-output pairs into a data-
model training set of size m, a validation set of size mval,
and a test set of size mtest; (e) estimate parameters θ by
fitting gθ on subset-output pairs, i.e., by minimizing

1

m

m∑
i=1

L (gθ(1Si
), fA(x;Si))

over the collected datamodel training set, and use the vali-
dation set to perform model selection.

We now explicitly instantiate this framework, with the goal
of understanding the predictions of (deep) classification
models (we discuss the precise experimental setup in the
following section). To this end, we revisit the steps (a-
e) above, and consider each relevant aspect—the sampling
distribution DS , the output function fA(x;S), the parame-
terized family gθ, and the loss function L(·, ·)—separately:

(a) What surrogate function gθ should we use? The first
design choice to make is that of the family of parameterized
surrogate functions gθ that we will optimize over. At first,
one might be tempted to use a complex family of functions
in the hope of avoiding misspecification error. After all,
gθ is meant to be a surrogate for the end-to-end training of
a deep classifier. In this work, however, we will instantiate
datamodeling by taking gθ(·) to be a simple linear mapping

gθ(1Si
) := θ>1Si

+ θ0, (5)

where we recall that 1Si
is the size-d characteristic vector

of Si within S (see (3)).
Remark 1. While we will allow gθ(·) to fit a bias term
as above, for notation convenience we omit θ0 and write
θ>1Si

to represent a datamodel prediction for the set Si.

(b) What distribution DS over training subsets do we
use? In step (a) of the estimation process above, we collect

a “datamodel training set” by sampling subsets Si ⊂ S
from a distribution DS . A reasonable first choice for DS—
and indeed, the one we consider for the remainder of this
work—is the distribution of random α-fraction subsets of
the training set. Formally, we set

DS = Uniform ({S′ ⊂ S : |S′| = αd}) (6)

This design choice reduces the problem of picking DS to
one of picking the subsampling fraction α ∈ (0, 1), a deci-
sion whose impact we explore in Appendix C. In practice,
we estimate datamodels for several choices of α, as it turns
out that the value of α corresponding to the most useful
datamodels can vary by setting.

(c) What outputs fA(x;S′) should we track? Recall that
for any subset S′ ⊂ S of the training set S, fA(x;S′) is
intended to be a specific (potentially stochastic) function
representing the output of a model trained on S′ and eval-
uated on a target x. There are, however, several candidates
for fA(x;S′) based on which output we opt to track.

In the context of understanding classifiers, perhaps the sim-
plest such candidate is the correctness function (i.e., a
stochastic function that is 1 if the model trained on S′ is
correct on x, and 0 otherwise). However, while the cor-
rectness function may be a natural choice for fA(x;S′), it
ignores potentially valuable information about the model’s
confidence in a given decision.

A natural way to improve over our initial candidate would
thus be to use continuous output function, such as cross-
entropy loss or correct-label confidence. But which ex-
act function should we choose? In Appendix B, we use
a heuristic to guide our choice to the correct-class margin:

fA(x;S′) := (logit for correct class)
− (highest incorrect logit). (7)

(e) What loss function L should we minimize? In step (e)
above, we are free to pick any estimation algorithm for θ.
This freedom of choice allows us to incorporate priors into
the datamodeling process. In particular, one might expect
that predictions on a given target example will not depend
on every training example. We can thus incorporate a cor-
responding sparsity prior by adding `1 regularization, i.e.,
setting

θ = min
w∈Rd

1

m

m∑
i=1

(
w>1Si

− fA(x;Si)
)2

+ λ‖w‖1, (8)

where we recall that d is the size of the original training set
S. We can use cross-validation to select the regularization
parameter λ for each specific target example x.
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3. Predicting Outputs with Datamodels
We now demonstrate how datamodels can be applied in the
context of deep neural networks—specifically, we consider
deep image classifiers trained on two standard datasets:
CIFAR-10 (Krizhevsky, 2009) and Functional Map of the
World (FMoW) (Koh et al., 2020) (see Appendix A.1 for
more information on each dataset).

Goal. As discussed in Section 1, our goal is to construct a
collection of datamodels for each dataset, with each data-
model predicting the model-training outcomes for a spe-
cific target example. Thus, for both CIFAR and FMoW, we
fix a deep learning algorithm (architecture, hyperparams,
etc.; see Appendix A.2), and aim to estimate a datamodel
for each test set example and training set example. To this
end, we will obtain n = 10, 000 “test set datamodels” and
n = 50, 000 “training set datamodels” for CIFAR (each
being a linear model gθ parameterized by a vector θ ∈ Rd,
for d = 50, 000); as well as n = 3, 138 test set datamodels
and n = 21, 404 training set datamodels for FMoW (again,
parameterized by θ ∈ Rd where d = 21, 404).

3.1. Implementation details

Before applying datamodels to our two tasks of interest,
we address a few remaining technical aspects of datamodel
estimation:

Simultaneously estimating datamodels for a collection
of target examples. Rather than repeat the entire data-
model estimation process for each target example x of in-
terest separately, we can estimate datamodels for an en-
tire set of target examples simultaneously through model
reuse. Specifically, we train a large pool of models on sub-
sets Si ⊂ S sampled from the distribution DS , and use the
same models to compute outputs fA(x;Si) for each target
example x.

Collecting a (sufficiently large) datamodel training set.
Recent advances in fast neural network training (Page,
2018; Leclerc et al., 2022) allow us to train a wealth of
models on α-subsets of each training set very efficiently
(e.g., we can train 40,000 models/day on an 8×A100 GPU
machine; see Appendix A.3 for details). Table 1 summa-
rizes the models trained.

Estimating datamodels with LASSO. For both datasets
considered (CIFAR-10 and FMoW), we estimate datamod-
els using LASSO (8), yielding a datamodel gθi for each
example xi in the test and training sets.1 In Appendix D.2,
we discuss optimizing LASSO solvers for the scale of our
problem instances.

1Datamodels for the training set require a small modification.
See Appendix D.1.

Subset size (α)
Dataset 0.1 0.2 0.5 0.75

CIFAR-10 1,500,000 750,000 300,000 600,000
FMoW – 375,000 150,000 300,000

Table 1: The number of models (ResNet-9 for CIFAR and
ResNet-18 for FMoW) used to estimate datamodels for
each dataset. All models are trained from scratch using
optimized code (Leclerc et al., 2022). For example, each
α = 0.5 model on CIFAR-10 takes 17s to train (on a single
A100 GPU) to 90% accuracy.

3.2. Linear datamodels predict deep network training

We now assess the quality of the estimated datamodels in
terms of how well they predict model outputs on unseen
subsets (i.e., fresh samples from DS). We refer to this pro-
cess as on-distribution evaluation because we are interested
in subsets Si, sampled from the same distributionDS as the
datamodel training set, but not the exact ones used for esti-
mation. (In fact, recall in Section 2 we explicitly held out
mtest subset-output pairs for evaluation.)

We focus here on the collection of datamodels correspond-
ing to the CIFAR-10 test set, i.e., a set of linear data-
model parameters {θ1, . . . , θn} corresponding to exam-
ples {x1, . . . , xn} for n = 10, 000 (analogous results for
FMoW are in Appendix D.3). In Figure 1, aggregating over
both datamodels {gθj}nj=1 and heldout subsets {Si}mi=1,
we compare datamodel predictions θ>j 1Si to expected true
model outputs E[fA(xj ;Si)] (which we estimate by train-
ing 100 models on the same subset Si and averaging their
output on xj). Our results show a near-perfect correspon-
dence between datamodel predictions and ground truth.
Thus, for a given target example x, we can accurately pre-
dict the outcome of “training a neural network on a random
training subset and computing correct-class margin on x”
(a process that involves hundreds of SGD steps on a non-
convex objective) as a simple linear function of the charac-
teristic vector of the subset.

Sample complexity. We next study the dependence of
estimation on the size of the datamodel training set m.
Specifically, we measure the on-distribution average mean-
squared error (MSE) of a group of datamodels {θi}ni=1 as

1

2n

n∑
j=1

(
ESi∼DS

[(
θ>j 1Si

− fA(xj ;Si)
)2])

. (9)

To evaluate (9), we replace the inner expectation with an
empirical average, again using a heldout set of samples that
was not used for estimation.

In Figure 2, we plot average MSE as a function of the num-
ber of trained models m. To put the results into context,
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Figure 1: Linear datamodels accurately predict mar-
gins. Each point in the graphs above corresponds to a
specific target example xj and a specific held-out training
set Si from CIFAR-10. The y-coordinate represents the
ground-truth margin fA(xj ;Si), averaged across T=100
models trained on Si. The x-coordinate represents the
datamodel-predicted value of the same quantity. We ob-
serve a strong linear correlation that persists even at the
level of individual examples (the bottom-right panel shows
the same data for three random target examples xj color-
coded by example). Corresponding plots for α = 0.1, 0.75
and FMoW are in Figures D.3 and D.4.

we introduce the optimal mean-squared error loss (OPT),
which is the MSE (9) with datamodel predictors θ>j 1Si

re-
placed by the optimal predictors E[fA(xj ;Si)]:

OPT =
1

2n

n∑
j=1

(
E
[
(E [fA(xj ;Si)]− fA(xj ;Si))

2
])
.

Note that OPT is independent of the estimator gθ and mea-
sures only the inherent variance in the prediction problem,
i.e., loss that will necessarily be incurred due only to inher-
ent noise in deep network training.

In Appendix D.3, we further analyze the role of regulariza-
tion and sparsity distribution for datamodels.
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Figure 2: Average mean-squared error (9) for CIFAR-10
test set datamodels (α = 0.5) as a function of the size of the
datamodel training set m. The red line shows the optimal
error based on inherent noise in model training.

4. Use Case: Counterfactual Prediction
So far, we have computed and evaluated datamodels en-
tirely within a supervised learning framework. In particu-
lar, we constructed datamodels with the goal of predicting
the outcome of training on random subsets of the training
set (sampled from a distribution DS (6)) and evaluating on
a fixed target example x. Accordingly, for each target ex-
ample x, we evaluated its datamodel gθ by (a) sampling
new random subsets Si (from the same distribution); (b)
training (a neural network) on each one of these subsets;
(c) measuring correct-class margin on the target example
x; and (d) comparing the results to the datamodel’s predic-
tions (namely, gθ(Si)) in terms of expected mean-squared
error (see (9)) over the distribution of subsets.

We will now go beyond this framework, and use datamod-
els to predict the outcome of training on arbitrary subsets
of the training set. In particular, consider a fixed target ex-
ample x with corresponding datamodel gθ: for any sub-
set S′ of the training set S, we will use the datamodel-
predicted outcome of training on S′ and evaluating on
x, i.e., gθ(1S′), in place of the ground-truth outcome
fA(x;S′). Since S′ is an arbitrary subset of the training
set, it is “out-of-distribution” with respect to the distribu-
tion of fixed-size subsets DS that we designed the data-
model to operate on. As such, using datamodel predic-
tions in place of end-to-end-model training in this man-
ner is not a priori guaranteed to work. Nevertheless, we
will demonstrate (through two applications) that datamod-
els can in fact be effective proxies for end-to-end model
training, even for such out-of-distribution subsets.

4.1. Measuring brittleness of individual predictions to
training data removal

We first illustrate the utility of datamodels as a proxy for
model training by using them to answer the question: how
brittle are model predictions to removing training data?
While all useful learning algorithms are data-dependent,
cases where model behavior is sensitive to just a few data
points are often of particular interest or concern (Broderick
et al., 2021; Dwork et al., 2006). To quantify such sensi-
tivity, we define the data support SUPPORT(x) of a target
example x as

SUPPORT(x) = the smallest training subset R ⊂ S
such that classifiers trained on
S \R misclassify x on average.2

(10)

Intuitively, examples with a small data support are the ex-
amples for which removing a small subset of the training
data significantly changes model behavior, i.e., they are
“brittle” examples by our criterion of interest. By com-
puting SUPPORT(x) for every image in the test set, we can

2That is, have negative expected margin (7).
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thus get insight into how brittle model predictions are to
removing training data.

Computing support. One way to compute SUPPORT(x)
for a given target example x would be to train several mod-
els on every possible subset of the training set S, then report
the largest subset for which the example was misclassified
on average—the complement of this set would be exactly
SUPPORT(x). However, exhaustively computing data sup-
port in this manner is simply intractable.

Using datamodels as a proxy for end-to-end model train-
ing provides an (efficient) alternative approach. Specifi-
cally, rather than training models on every possible subset
of the training set, we can use datamodel-predicted outputs
gθ(S

′) to perform a guided search, and only train on sub-
sets for which predicted margin on the target example is
small. This strategy (described in detail in Appendix E.4)
allows us to compute estimates of the data support while
training only a handful of models per target example.

Results. We apply our algorithm to estimate SUPPORT(x)
for 300 random target examples in the CIFAR-10 test set.
For over 90% of these 300 examples, we are able to certify
that our estimated data support is strictly larger than the
true data support SUPPORT(x) (i.e., that we are not over-
estimating brittleness). We do this by training several mod-
els after excluding the estimated data support and checking
that the target example is indeed misclassified on average.

We plot the distribution of estimated data support sizes in
Figure 3. Around half of the CIFAR-10 test images have
a datamodel-estimated data support comprising 250 im-
ages or less, meaning that removing a specific 0.4% of the
CIFAR-10 training set induces misclassification. Similarly,
20% of the images had an estimated data support of less
than 40 training images (which corresponds to 0.08% of
the training set).

We also compare our estimates to some natural baselines,
where we replace datamodel weights with another method
to guide the search. All baselines yield much looser esti-
mates of data support (Figure 3).

4.2. Predicting data counterfactuals

In the last section, a simple application of datamodels as a
proxy for model training (on arbitrary subsets of the train-
ing set) enabled us to identify brittle predictions. In this
section, we demonstrate another, more complex application
of datamodels as a proxy for end-to-end training: predict-
ing data counterfactuals.

For a fixed target example x, and a specific subset of the
training set R(x) ⊂ S, a data counterfactual is the causal
effect of removing the set of examples R(x) on model out-
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Figure 3: Characterizing brittleness. We use data-
models to estimate data support (i.e., the minimal set
of training examples whose removal causes misclas-
sification) for 300 random CIFAR-10 test examples,
and plot the cumulative distribution of estimate sizes.
Over 25% of examples can be misclassified by remov-
ing less than 100 (example-specific) training images.
Also, datamodels yield substantially better bounds on
support size than baselines (see App. E.4.1 for details).

puts for x. In terms of our notation, this effect is precisely

E [fA(x;S)− fA(x;S \R(x))] .

Such data counterfactuals can be helpful tools for finding
brittle predictions (as in the previous section), estimating
group influence (as done by (Koh et al., 2019) for linear
models), and more broadly for understanding how training
examples combine (through the lens of the model class) to
produce test-time predictions.

Estimating data counterfactuals. Just as in the last sec-
tion, we again use datamodels beyond the supervised learn-
ing regime in which they were developed. In particular, we
predict the outcome of a data counterfactual as

gθ(1S)− gθ(1S\R(x)),

where again gθ is the datamodel for a given target example
of interest. Since gθ is a linear function in our case, the
above predicted data counterfactual actually simplifies to

θ>1S − θ>1S\R(x) = θ>1R(x).

Our goal now is to demonstrate that datamodels are use-
ful predictors of data counterfactuals across a variety of re-
moved sets R(x). To accomplish this, we use a large set
of target examples. For each such target example, we con-
sider different subset sizes k; for each chosen k, we use a
variety of heuristics (detailed in Appendix E.3) to select a
set R(x) comprising k “examples of interest.” Specifically,
we consider six values of k (the size of the removed subset)
ranging from 10 to 1280 examples (i.e., 0.02% − 2.6% of
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Figure 4: Datamodels predict data counterfactuals. Each point in the graphs above corresponds to a test example and a
subsetR(x) of the original training set S, identified by a (color-coded) heuristic. The y-coordinate of each point represents
the true difference, in terms of model output on x, between training on S, and training on S \ R(x). The x-coordinate
of each point represents the datamodel-predicted value of this quantity. We plot results for (left) CIFAR-10 and (right)
FMoW. Datamodel predictions are predictive of the underlying counterfactuals, with Pearson coefficients r of 0.96/0.90
for CIFAR/FMoW respectively. See Appendix E for more experimental details and results.

the training set). Overall, the outcome of our procedure is,
for each target example, both true and datamodel-predicted
data counterfactuals for 30 different training subsets R(x)
(six values of k and five different heuristics).

Results. In Figure 4, we plot datamodel-predicted data
counterfactuals against true data counterfactuals, aggregat-
ing across all target examples x, values of k, and selection
heuristics for R(x). We find a strong correlation between
these two quantities. In particular, across all factors of vari-
ation, predicted and true data counterfactuals have Spear-
man correlation ρ = 0.98 and ρ = 0.94 for CIFAR-10 and
FMoW respectively. Even more strongly, the two quanti-
ties are correlated roughly linearly: we obtain (Pearson)
correlations of r = 0.96 (CIFAR) and r = 0.90 (FMoW)
between counterfactuals and their estimates on aggregate.
In fact, correlations become even more pronounced when
restricting to any single class of removed sets (i.e., any sin-
gle hue in Figure 4).

Limits of datamodel predictions. Due to both estima-
tion error (i.e., we might not have trained enough models
to identify optimal linear datamodels) and misspecification
error (i.e., the optimal datamodel might not be linear), we
don’t expect a perfect correspondence between datamodel-
predicted outputs gθ(1S′) and true outputs f(x;S) for all
2d possible subsets of the training set. Indeed, this is part of
the reason why we estimated datamodels for several values
of α, only one of which is shown in Figure 4. The others,
shown in Appendix E.10, still display strong correlation be-
tween true and predicted model outputs, but behave qual-
itatively differently than the ones shown above (i.e., each
value of α is better or worse at predicting the outcomes of
certain types of counterfactuals).

5. Other Use Cases
Beyond predicting data counterfactuals, datamodels un-
lock a multitude of mechanisms for understanding data,
model predictions, and the connections between them. In
the following two subsections, we briefly outline two such
mechanisms—we defer a more in-depth discussion of them
to Appendices F and G respectively.

5.1. Train-test similarity

We first explore datamodels as a mechanism for finding
similar training examples to any given target example. In
particular, for an example x with linear datamodel gθ,
we interpret the training examples corresponding to the
highest-magnitude coordinates of θ as the “nearest neigh-
bors” of x. Among other applications (see Appendix F),
one way to leverage this functionality is as a way to study
train-test leakage: cases where test examples are near-
duplicates of training examples.

Train-test leakage in CIFAR. To find train-test leakage in
CIFAR-10 we collect—for each target example x in the test
set—the ten largest coordinates of the example’s datamodel
parameter vector. We use the corresponding ten training
images as candidates for train-test leakage, and validate the
candidates using Amazon Mechanical Turk to get a “anno-
tation score” for every test example-candidate pair. Finally,
we compute the “leakage score” for each test example as
the highest annotation score (over all of its candidate train
images). We use this leakage score as a proxy for whether
or not the given image constitutes train-test leakage.

In Figure 5, we plot the distribution of leakage scores over
the CIFAR-10 test set, along with random train-test pairs
stratified by their annotation score. As the annotation score
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Figure 5: (Left) Histogram of the train-test leakage scores for each image of the CIFAR test set. (Right) Example train-
test pairs stratified by their leakage score. A majority of annotators consider 10% of the test set as train-test leakage based
on the identified candidates.

increases, pairs appear more likely to correspond to leakage
(see Figure F.9 for more pairs). Furthermore, roughly 10%
of test set images were labeled as train-test leakage by over
half of the annotators that reviewed them.

In Appendix F.2.2, we perform a similar analysis on FMoW
and show that datamodels outperform a natural baseline
based on representation distance of a pretrained network.

5.2. Feature embedding

Finally, we explore another use case, enabled by an alterna-
tive perspective on datamodels. Consider a target example
x with a corresponding linear datamodel gθ, parameterized
by a vector θ ∈ Rd, where d is the training set size. Instead
of viewing the vector θ as just a parameter of the predic-
tor gθ, we cast it as a feature representation for the target
example itself, i.e., a datamodel embedding of x into Rd.
Since the datamodel gθ is a linear function of the presence
of each point in the training set, each coordinate of this
datamodel embedding corresponds to a weight for a spe-
cific training example. One can thus think of a datamodel
embedding as a feature vector that represents a target ex-
ample x in terms of how predictive each training example
is of model behavior on x. By embedding an entire dataset
of examples {xi} as a set of feature vectors {θi ∈ Rd},
we can hope to uncover structure in the set of examples by
looking for structure in their datamodel embeddings, i.e., in
the (Euclidean) space Rd. We illustrate a simple example
of finding latent structure by clustering the embeddings.

Spectral clustering. Datamodel embeddings induce a nat-
ural similarity measure between two examples x1 and x2,
namely d(x1, x2) = K(θ1, θ2), where K(·, ·) is any ker-
nel function. Thus, given a set of examples {x1, . . . xk},
we can compute an adjacency matrix A ∈ Rk×k, whose
nodes are examples and whose edges are Aij = d(xi, xj).
Such a graph unlocks a myriad of graph-theoretic tools for

Figure 6: Spectral clustering on datamodel embeddings
finds subpopulations. For each CIFAR-10 class, we first
compute a similarity score between all datamodel embed-
dings, then run spectral clustering on the resulting matrix.
Each cluster seems to correspond to a specific subpopu-
lation with shared, distinctive visual features. See Fig-
ures G.1 and G.2 for more examples from other classes.

exploring datasets through the lens of datamodels, a com-
plete exploration of which is beyond the scope of our work:
instead, we focus on just one such tool, namely spectral
clustering.

We run an off-the-shelf spectral clustering algorithm on the
graph induced by the similarity matrix A above for the im-
ages in the CIFAR-10 test set. This procedure gives rise
to (Figure 6) a simple unsupervised method for uncovering
subpopulations in datasets.

In Appendix G.2, we analyze the embeddings further with
principal components analysis (PCA) and show that the
principal components capture meaningful features. We also
highlight some advantages of datamodel embeddings over
standard deep representations (e.g., based on the penulti-
mate layer of a DNN).
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6. Related Work
Datamodels build on (and indeed, are inspired by) a wide
variety of prior work across machine learning and statis-
tics, and these fields also suggest natural ways of im-
proving or applying datamodels. We now briefly discuss
the works most related to datamodeling (with a focus on
disambiguation)—an extensive discussion of related work
is found in Appendix H, and future work in Appendix I.

Most related to our work is the notion of empirical influ-
ence (Hampel et al., 2011), which measures the impact of
removing a training point on a given parameter. As estimat-
ing influences naïvely is prohibitively expensive, Koh &
Liang (2017) apply first-order influence function approx-
imation to study both classical machine learning models
and penultimate-layer embeddings from neural networks.
However, their applicability to modern deep neural net-
works remain limited (Basu et al., 2021; Feldman & Zhang,
2020). A separate line of work proposes other approxi-
mation schemes for influences (Feldman & Zhang, 2020;
Ghorbani & Zou, 2019; Jia et al., 2019). In particular, Feld-
man & Zhang (2020) define a subsampling-based influence
estimator that trades off sample efficiency with accuracy
(w.r.t. the true empirical influence). We can interpret their
form of influence approximations as a specific instance of
datamodeling (as discussed at length in Appendix H.1);
however, our instantiation predicts model behavior signifi-
cantly better (Appendix J).

Finally, image-level surrogate models such as LIME
(Ribeiro et al., 2016; Lundberg & Lee, 2017; Sokol et al.,
2019), fundamentally differ from datamodels. In particu-
lar, LIME and its counterparts study how the predictions of
a fixed model changes as one varies the pixels of the target
example. In contrast, datamodels hold the target example
fixed, and instead study how the training data changes the
predictions of the learning algorithm.

7. Conclusion
We present datamodeling, a framework for framing the out-
put of model training as a simple function of the presence
of each training data point. We show that a simple linear
instantiation of datamodeling enables us to predict model
outputs accurately, and facilitates a variety of applications.
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A. Experimental Setup
A.1. Datasets

CIFAR-10. We use the standard CIFAR-10 dataset (Krizhevsky, 2009).

FMoW. FMoW (Christie et al., 2018) is a land use classification dataset based on satellite imagery. WILDS (Koh et al.,
2020) uses a subset of FMoW and repurposes it as a benchmark for out-of-distribution (OOD) generalization; we use same
the variant (presized to 224x224, single RGB image per example rather than a time sequence). We perform our analysis
only on the in-distribution train/test splits (e.g. overlapping years) as our focus is not on OOD settings. Also, we limit our
data to the year 2012. (These restrictions are only for convenience, and our framework can easily extend and scale to more
general settings.)

Properties of both datasets are summarized in Table A.1.

Table A.1: Properties of datasets used.

Dataset Classes Size (Train/Test) Input Dimensions

CIFAR-10 10 50,000/10,000 3× 32× 32
FMoW 62 21,404/3,138 3× 224× 224

A.2. Models and hyperparameters

CIFAR-10. We use a ResNet-9 variant from Kakao Brain3 optimized for fast training. The hyperparameters (Table A.2)
were chosen using a grid search. We use the standard batch SGD. For data augmentation, we use random 4px random crop
with reflection padding, random horizontal flip, and 8× 8 CutOut (DeVries & Taylor, 2017).

For counterfactual experiments with ResNet-18 (Figure E.6), we use the standard variant (He et al., 2016).

FMoW. We use the standard ResNet-18 architecture (He et al., 2016). The hyperparameters (Table A.2) were chosen using
a grid search, including over different optimizers (SGD, Adam) and learning rate schedules (step decay, cyclic, reduce on
plateau). As in Koh et al. (2020), we do not use any data augmentation. Unlike prior work, we do not initialize from a
pre-trained ImageNet model; while this results in lower accuracy, this allows us to focus on the role of the FMoW dataset
in isolation.

Table A.2: Hyperparameters for used model class.

Dataset Initial LR Batch Size Epochs Cyclic LR Peak Epoch Momentum Weight Decay

CIFAR-10 0.5 512 24 5 0.9 5e-4
FMoW 0.4 512 15 6 0.9 1e-3

Performance. In Table A.3, we show for each dataset the accuracies of the chosen model class (with its specific hyperpa-
rameters), across different values of α.

A.3. Training infrastructure

Computing resources. We train our models on a cluster of machines, each with 9 NVIDIA A100 GPUs and 96 CPU
cores. We also use half-precision to increase training speed.

Data loading. We use FFCV (Leclerc et al., 2022), which removes the data loading bottleneck for smaller models and
allows us achieve a throughput of over 5,000 CIFAR-10 models a day per GPU.

Data processing. Our datamodel estimation uses (the characteristic vectors) of training subsets and model outputs (mar-
gins) on train and test sets. Hence, we do not need to store any model checkpoints, as it suffices to store the training subset
and the model outputs after evaluating at the end of training. In particular, training subsets and model outputs can be stored

3https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py
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Table A.3: Accuracies for our chosen model classes on CIFAR-10 and FMoW across varying α.

Accuracy (%)
Subset size (α) CIFAR-10 FMoW

1.0 93.00 33.76
0.75 91.77 31.16
0.5 89.61 25.97
0.2 81.62 14.70
0.1 71.60 N/A

as m × n or m × d matrices, with one row for each model instance and one column for each train or test example. All
subsequent computations only require the above matrices.
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B. Selecting Output Function to Model
In this section, we outline a heuristic method for selecting the output function fA(x;S) to model. The heuristic is neither
sufficient nor necessary for least-squares regression to work, but may provide some signal as to which output may yield
better datamodels.

The first problem we would like to avoid is “output saturation,” i.e., being unable to learn a good datamodel due to
insufficient variation in the output. This effect is most pronounced when we measure model correctness: indeed, over 30%
of the CIFAR-10 test set is either always correct or always incorrect over all models trained, making datamodel estimation
impossible. However, this issue is not unique to correctness. We propose a very simple test inspired by the idealized
ordinary least squares model to measure how normally distributed a given type of model output is.

Normally distributed residuals. In the idealized ordinary least squares model, the observed outputs fA(x;S) would
follow a normal distribution with fixed mean (θ?)>1S and unknown variance, where θ? is the true parameter vector.
Although we cannot guarantee this condition, we can measure the “normality” of the outputs (again, for a single fixed
subset), with the intuition that the more normal the observed outputs are, the better a least-squares regression will work.
Hence, compare different output functions by estimating the noise distribution of datamodels given each choice of output
function. We leverage our ability—in contrast to typical settings for regression— to sample multiple response variables
fA(x;S) for a fixed S (by retraining several models on the same data and recording the output on a fixed test example).

In Figure B.1, we show the results of normality test for residuals arising from different choices of fA(·;S): correctness
function, confidence on the correct class, cross-entropy loss, and finally correct-class margin4. Correct-class margins
is the only choice of fA(·;S) where the p-values are distributed nearly uniformly, which is consistent with the outputs
being normally distributed. Hence, we choose to use the correct-class margins as the dependent variable for fitting our
datamodels.
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Figure B.1: Correct-class margins are close to normally distributed. For each choice of output function fA: we (a) fix
a random subset S′ ∼ DS , where S is the CIFAR-10 train set, (b) train 200 models on S′ and evaluate them on the entire
CIFAR-10 test set, and (c) for each image xi in the test set, calculate a p-value for rejecting the normality of fA(xi;S

′).
We plot a histogram of these p-values above. For every output function other than correct-class margin, almost every
test is rejected, whereas for margins the distribution of p-values is uniform across [0, 1], which is consistent with the null
hypothesis (normality).

4Correct-class margin is the difference between the correct-class logit and the highest incorrect-class logit; it is unbounded by
definition, and its sign indicates the correctness of the classification.
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C. The Role of the Subsampling fraction α

Figure C.1: Datamodels capture data relationships at varying levels of granularity. We illustrate the role of subsam-
pling fraction α of datamodels by considering a nearest-neighbor classifier in two dimensions. In the datamodel for the
target example (?, yellow), the red (blue) examples have positive (negative) weights, with the shade indicating the magni-
tude. At large values of α (right), the model identifies only local relationships. Meanwhile, at small values of α (left), we
can identify more global relationships, but at the cost of granularity. Intermediate values of α (middle) provide a smooth
tradeoff between these two regimes.

We have used datamodels estimated using several choices of the subsampling fraction α, and saw that the value of α
corresponding to the most useful datamodels can vary by setting. In particular, the visualizations in Figure F.2 suggest that
datamodels estimated with lower α (i.e., based on smaller random training subsets) find train-test relationships driven by
larger groups of examples (and vice-versa). Here, we explore this intuition further using thought experiment, toy example,
and numerical simulation to intuit how different choices of α can lead to substantively different datamodels.

First, consider the task of estimating a datamodel for a prototypical image x—for example, a plane on a blue sky back-
ground. As α→ 1, the sets Si sampled from DS are relatively large—if these sets have enough other images of planes on
blue skies, we will observe little to no variation in fA(x;Si), since any predictor trained on Si will perform very well on
x. As a result, a datamodel for x estimated with α → 1 may assign very little weight to any particular image, even if in
reality their total effect is actually significant.

Decreasing α, then, offers a solution to this problem: in particular, we allow the datamodel to observe cases where entire
groups of training examples are not present, and re-distribute the corresponding effect back to the constituents of the group
(i.e., assigning them all a share of the weight).

Now, consider a highly atypical yet correctly classified example, whose correctness relies on just the presence of just a few
images from the training set. In this setting, datamodels estimated with a small value of α may be unable to isolate these
training points, since they will constantly distribute variation in fA(x;Si) among a large group of non-present images.
Meanwhile, using a large value of α allows the estimated datamodel to place weight on the correct training images (since
x will be classified correctly until some of the important training images are not present in Si).

In line with this intuition, decreasing α in Figure C.1 (i.e., moving from right to left) leads to datamodels that assign
weight to increasingly large neighborhoods of points around the target input. This example and the above reasoning lead
us to hypothesize that larger (respectively, smaller) α are better-suited to cases where model predictions are driven by
smaller (respectively, larger) groups of training examples. In next subsection, we perform a more quantitative analysis of
the role of α, this time by studying an underdetermined linear regression model on data that is organized into overlapping
subpopulations.

C.1. Linear Regression Simulation

At a high level, our intuition for the subsampling fraction5 α is that datamodels estimated with higher α tend to detect
more local effects (i.e., those driven by smaller groups of examples, such as near-duplicates or small subpopulations),
while those estimated with lower α detect more global effects (i.e., those driven by larger groups of images, such as large
subpopulations or subclass biases). To solidify and corroborate this intuition about α, we analyze a basic simulated setting.

5See Section 2 for definition.
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Setup. We consider an underdetermined linear regression model operating on n data points with d binary features, i.e.,
xi ∈ {0, 1}d, yi ∈ R. Let X ∈ Rn×d and y ∈ Rn denote their matrix and vector counterparts. S is training set consisting
of these n samples, and we use an equally sized held-out set SV for evaluation.

The feature coordinates are distributed as Bernoulli variables of varying frequency:

xik ∼ Bernoulli(pk) for 1 ≤ i ≤ n, (11)

where pk ∈
{

1

10
,
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10
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10
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}
for 1 ≤ k ≤ d.

Each feature k ∈ [d] naturally defines a subpopulation Sk, the group of training examples with feature k active, i.e.,
Sk := {xi ∈ S : xik = 1}. Features with lower (resp. higher) frequency pk are intended to capture more local (resp. more
global) effects.

The observed labels are generated according to a linear model y := Xw +N (0, ε), where w is the true parameter vector
and ε > 0 is a constant. We generate samples with d = 150, n = 125 and use linear regression6 to estimate w.

Now, to use datamodels to analyze the above “training process” of fitting a linear regression model, we will model the
output function fA(; ) given by the prediction of the linear model at point xj when w is estimated with samples S ⊂ S,
e.g.

fA(xj ;S) = (X>S (XSX
>
S )−1yS) · xj (12)

We generate m = 1, 000, 000 subsampled training subsets7 along with their evaluations, and use ordinary least squares
(OLS) to fit the datamodels. (Note that the use of OLS here is separate from the use of linear regression above as the
original model class.)

Analysis. Our hypothesis is that datamodels estimated with lower (resp. higher) α are better at detecting the effect of
features of higher (resp. lower) frequency. To test this, we estimate datamodels for the entire test set (stacking them into
a matrix Θ ∈ Rn×n, where Θ·,j is the datamodel for xj) . We do this for varying values of α ∈ (0, 1), and evaluate how
well each set of datamodels predicts the effects of features across different frequencies. First, to evaluate a datamodel on
some feature k, we can compare the following two quantities for different test examples xj ∈ SV :

(a) The actual effect of removing the subpopulation Sk on xj , i.e., fA(xj ;S)− fA(xj ;S \ Sk),

(b) The datamodel-predicted effect of removing Sk, i.e.,
∑
xi∈S Θij · 1{xi ∈ Sk}.

To quantify the predictiveness of the datamodel at frequency p, we compute the Pearson correlation between the above two
quantities over all features k with frequency p and all test examples. We repeat this evaluation varying p and the datamodel
(varying α). According to our intuition, for features k with lower (resp. higher) frequency pk, this correlation should be
maximized at higher (resp. lower) values of α, where the datamodels capture more local (resp. global) effects. Figure C.2
accurately reflects this intuition: more local (i.e., less frequent) features are best detected at higher α.

6As the system is underdetermined, we use the pseudoinverse of X to find the solution with the smallest norm.
7Large sample size make sampling error negligible.
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Figure C.2: The role of the subsampling fraction α in a simulated linear model. The data consists of d-dimensional
binary vectors xi, which comprise (overlapping) subpopulations Sk defined by a shared feature k, and their corresponding
labels are generated according to a linear model, i.e. y := Xw +N (0, ε). We estimate datamodels using various α, and
measure their ability to detect features at different frequencies p. To quantify latter, we compute the Pearson correlation
between i) the actual effect of removing the subpopulation Sk on a test example and ii) the datamodel-predicted effect,
across all features with frequency p. Each line in the above plot coresponds to features of a particular frequency p, and
shows the correlation (y-axis) while varying the datamodel (α, x-axis). Consistent with our intuition, we observe that
higher (resp. lower) values of α are better at detecting less (resp. more) frequent features, i.e. more local (resp. global)
effects.
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D. Regression
D.1. Computing datamodels for training examples.

Recall that the target example x for which we estimate a datamodel can be arbitrary. In particular, x could itself be a
training example—indeed, as we mention above, our goal is to estimate a datamodel for every image in the FMoW and
CIFAR-10 test and training sets. When x is in the training set, however, we slightly alter the datamodel estimation objective
(8) to exclude training sets Si containing the target example:

θ = min
w∈Rd

1

m

m∑
i=1

1{x 6∈ Si} ·
(
w>1Si

− fA(x;Si)
)2

+ λ‖w‖1. (13)

D.2. Solver details

As mentioned in Section 2, we construct datamodels by running `1-regularized linear regression, predicting correct-class
margins from characteristic vectors, or masks, 1Si

. The resulting optimization problem is rather large: for example,
estimating datamodels for α = 50% requires running LASSO with a covariate matrix X of size 50, 000× 300, 000, which
corresponds to about 60GB of data; for α = 10%, datamodels this increases five folds as there are 1.5 million models.
Moreover, we need to solve up to 60, 000 regression problems (one datamodel each train / test example). The large-scale
nature of our estimation problem rules out off-the-shelf solutions such as scikit-learn (Pedregosa et al., 2011), GLMNet
(Friedman et al., 2010), or Celer (Massias et al., 2018), all of which either runs out of memory or does not terminate within
reasonable time.

Note that solving large linear systems efficiently is an area of active research ((Martinsson & Tropp, 2020)), and as a
result we anticipate that datamodel estimation could be significantly improved by applying techniques from numerical
optimization. In this paper, however, we take a rather simple approach based on the SAGA algorithm of (Gazagnadou
et al., 2019). Our starting point is the GPU-enabled implementation of Wong et al. (2021)—while this implementation
terminated (unlike the CPU-based off-the-shelf solutions), the regressions are still prohibitively slow (i.e., on the order of
several GPU-hours per single datamodel estimation). To address this, we make the following changes:

Fast dataloading. The first performance bottleneck turns out to be in dataloading. More specifically, SAGA is a minibatch-
based algorithm: at each iteration, we have to read B masks (50,000-dimensional binary vectors) and B outputs (scalars)
and move them onto the GPU for processing. If the masks are read from disk, I/O speed becomes a major bottleneck—on
the other hand, if we pre-load the entire set of masks into memory, then we are not able to run multiple regressions on
the same machine, since each regression will use essentially the entire RAM disk. To resolve this issue, we use the FFCV
library (Leclerc et al., 2022) for dataloading—FFCV is based on memory mapping, and thus allows for multiple processes
to read from the same memory (combining the benefits of the two aforementioned approaches). FFCV also supports batch
pre-loading and parallelization of the data processing pipeline out-of-the-box—adapting the SAGA solver to use FFCV cut
the runtime significantly.

Simultaneous outputs. Next, we leverage the fact that the SAGA algorithm is trivially parallelizable across different
instances (sharing the same input matrix), allowing us to estimate multiple datamodels at the same time. In particular, we
estimate datamodels for the entire test set in one pass, effectively cutting the runtime of the algorithm by the test set size
(e.g., 10,000 for CIFAR-10).

Optimizations. In order to parallelize across test examples, we need to significantly reduce the GPU memory footprint of
the SAGA solver. We accomplish this through a combination of simple code optimization (e.g., using in-place operations
rather than copies) as well as writing a few custom CUDA kernels to speed up and reduce the memory consumption of
algorithms such as soft thresholding or gradient updating.

Experimental details. For each dataset considered, we chose a maximum λ: 0.01 for CIFAR-10 test, 0.1 for CIFAR-10
trainset, and 0.05 for FMoW datamodels. Next, we chose k = 100 logarithmically spaced intermediate values between
(λ/100, λ) as the regularization path. We ran one regression per intermediate λ, using m−50, 000 samples (where m is as
in the table in Figure 1 (right)) to esitmate the parameters of the model and the remaining 50, 000 samples as a validation
set. For each image in the test set, we select the λ corresponding to the best-performing predictor (on the heldout set)
along the regularization path. We then re-run the regression once more using these optimal λ values and the full set of m
samples.
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D.3. Additional analyses

The role of regularization. We study the effect of the regularization parameter λ (cf. (8) and (13)) on datamodel per-
formance. In Figure D.2 we plot the variation in average MSE, on both in-sample subsets (i.e., the exact subsets that we
used to optimize (8)) and unseen subsets, as we vary the regularization parameter λ in (8). We find that—as predicted
by classical learning theory—setting λ = 0 leads to overfit datamodels, i.e., estimators gθ that perform well on the exact
subsets that were used to estimate them, but are poor output predictors on new subsets Si sampled from DS . (In fact, using
m = 300, 000 trained models with λ = 0 results in higher MSE than using only m = 10, 000 with optimal λ, i.e., the
left-most datapoint in Figure 1).

Sparsity distribution. In Figure D.1, we compare the sparsity distribution of datamodels across different values of α.
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Figure D.1: Sparsity distribution of different datamodels.
Above shows the distribution of datamodel sparsity over test
examples on CIFAR-10, compared across different α; spar-
sity decreases with higher α.
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0 10
Pred margin ( = 0.1)

0

10

20

Tr
ue

 m
ar

gi
n

Spearman r: 0.991

0 10
Pred margin ( = 0.2)

Spearman r: 0.991

0 10
Pred margin ( = 0.5)

Spearman r: 0.993

0 10
Pred margin ( = 0.75)

Spearman r: 0.997

Figure D.4: Identical results to Figure 1 for CIFAR-10 for all values of α.



Datamodels: Predicting Predictions from Training Data

E. Datamodels for Counterfactual Prediction
E.1. General setup

Sample selection. For all of our counterfactual experiments, we use a random sample of the respective test datasets. We
select at random 300 test images for CIFAR-10 (class-balanced; 30 per class) and 100 test images for FMoW. For the
CIFAR-10 baselines, we consider counterfactuals for a 100 image subset of the 300.

Size of counterfactuals. For CIFAR-10, we remove top k = {10, 20, 40, 80, 160, 320, 640, 1280} images and bottom
k = {20, 40, 80, 160, 320} where applicable. For FMoW, we remove top and bottom k = {10, 20, 40, 80, 160, 320, 640}.

Reducing noise by averaging. Each counterfactual (i.e., training models on a given training set S′) is evaluated over T
trials to reduce the variance that arises purely from non-determinism in model training. We use T = 20 for CIFAR-10 and
FMoW, and T = 10 for CIFAR-10 baselines. In Appendix E.7, we show that using sufficiently high T is important for
reducing noise.

Control values. To calculate the actual effects in all of our counterfactual evaluation, we need control values E[fA(x;S)]
for the “null,” i.e, margins when trained on 100% of the data. We estimate this by averaging over models on trained on the
full training set (10,000 for CIFAR-10 and 500 for FMoW).

E.2. Baselines

We describe the baseline methods used to generate data support estimates and counterfactuals. Each of the methods gives
a way to select training examples that are most similar or influential to a target example. As in prior work (Hanawa
et al., 2021; Pezeshkpour et al., 2021), we consider a representative set of baselines spanning both methods based on
representation similarity and gradient-based methods, such as influence functions.

Representation distance. We use `2 distances in the penultimate layer’s representation to rank the training examples in
order of similarity to the target test example. We also evaluated dot product, cosine, and mahalanobis distances, but they
did not show much variation in their counterfactual effects.8

In order to more fairly compare with datamodels—so that we can disentangle the variance reduction from using many
models and the additional signal captured by datamodels—we also averaged up to 1000 models’ representation distances9,
but this had no discernible difference on the size of the counterfactual effects.

Influence functions. We apply the influence function approximation introduced in (Koh & Liang, 2017). In particular, we
use the following first-order approximation for the influence of z on the loss L evaluated at ztest:

Iup,loss(z, ztest) = −∇θ`(ztest, θ̂)
>H−1

θ̂
∇θ`(z, θ̂)

where θ̂ is the empirical risk minimizer on the training set and H is the Hessian of the loss. The influence here is just the
dot product of gradients, weighted by the Hessian. We approximate these influence values by using the methods in (Koh
& Liang, 2017) and as implemented (independently) in pytorch-influence-functions.10 As in (Koh & Liang,
2017), we take a pretrained representation (of a ResNet-9 model, same as that modeled by our datamodels), and compute
approximate influence functions with respect to only the parameters in the last linear layer.

TracIn. Pruthi et al. (2020) define an alternative notion of influence: the influence of a training example z on a test example
z′ is the total change in loss on z′ contributed by updates from mini-batches containing z—intuitively, this measures
whether gradient updates from z are helpful to learning example z′. They approximate this in practice with TracInCP,
which considers checkpoints θt1 , ..., θtk across training, and sums the dot product of the gradients at z and z′ at each
checkpoint:

TracInCP(z, z′) =

k∑
i=1

ηi∇θ`(z, θti) · ∇θ`(z′, θti)

One can view TracInCP as a variant of the gradient dot product, but averaged over models at different epochs) and

8With the exception of dot product, which performs poorly due to lack of normalization; this is consistent with the findings in Hanawa
et al. (2021).

9We simply average the ranks from each model, but there are potentially better ways to aggregate them.
10https://github.com/nimarb/pytorch_influence_functions

https://github.com/nimarb/pytorch_influence_functions
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weighted by the learning rate ηi.

Random baseline. We also consider a random baseline of removing examples from the same class.

E.3. Removed sets for counterfactual evaluation

We generate the removed sets R(x) as follows:

(a) setting R(x) to be the nearest k training examples to the target example x using the baseline methods described
in Appendix E.2: influence function (Koh & Liang, 2017), TracIn (Pruthi et al., 2020), or distance in pre-trained
representation space (Bengio et al., 2013).

(b) setting R(x) to be the maximizer of the datamodel-predicted counterfactual, i.e.,

R(x) = arg max
|R|=k

gθ(S)− gθ(S \R) = arg max
|R|=k

θ>1R.

(Note that since our datamodels are linear, this simplifies to excluding the training examples corresponding to the top
k coordinates of the datamodel parameter θ.)

(c) settingR(x) to be the training images corresponding to the bottom (i.e., most negative) k coordinates of the datamodel
weight θ.

E.4. Data support estimation

Setup. We use datamodels together with counterfactual evaluations in a guided search to efficiently estimate upper bounds
on the size of data supports. For a given target example x with corresponding datamodel gθ, we want to find candidate
training subsets of small size k whose removal most reduces the classification margin on x:

Gk := arg min
|G|=k

gθ(S \Gk). (14)

Because gθ is a linear model in our case, the solution to the above minimization problem is simply the set corresponding
to the largest k coordinates of the datamodel parameter θ:

Gk = arg max
G⊂S;|G|=k

θ>1G = top-k indices of θ. (15)

Our goal is to the find the smallest of these subsets {Gk}k so that fA(x;S \Gk) < 0, i.e., the example is misclassified
on average as per our definition.11 Thus, for each target x, we try several values of k ∈ {10, 20, 40, 80, 160, 320, 640,
1280}, training models on the set S \ Gk and evaluating the resulting models on x.12 We train T = 20 models on each
counterfactual S \Gk to reduce variance.

(Given that we are using datamodels as surrogates afterall, one might wonder if the above counterfactual evaluations are
actually necessary—one could instead consider estimating the optimal k directly from θ. We revisit a heuristic estimation
procedure based on this idea at the end of this subsection.)

Estimation methodology. We assume that the expected margin h(k) := fA(x;S \Gk) after removing k examples de-
creases monotonically in k; this is expected from the linearity of our datamodels and is further supported empirically
(see Figure E.1). Then, our goal is to estimate the unique zero13 k̂ of the above function h(k) based on (noisy) samples
of h(k) at our chosen values of k. Note that by definition, k̂ is an upperbound on SUPPORT(x). Now, because of our
monotonicity assumption, we can cast estimating k̂ as instance of an isotonic regression problem (Robertson et al., 1988));
this effectively performs piecewise linear interpolation, while ensuring that monotonity constraint is not violated. We use
sklearn’s IsotonicRegression to fit an estimate h(k), and use this to estimate k̂.

Verifying support estimates. Due to stochasticity in evaluating counterfactuals, the estimate k̂ is noisy. Thus, it is
possible that k̂ is not a valid upperbound on SUPPORT(x), e.g. removing top k̂ examples do not misclassify x. In fact,

11Note that EfA(x; ·) < 0 does not imply that the probability of misclassification is > 50%. Nonetheless, it is a natural threshold.
12While a binary search over k for each x would be more sample efficient, we collect the entire grid of samples for simplicity.
13More precisely, the upper ceiling as data support is defined as an integer quantity.



Datamodels: Predicting Predictions from Training Data

0 500 1000
# examples removed (k)

0

10

 m
ar

gi
n

Test example 58

0 500 1000
# examples removed (k)

5

10
Test example 124

0 500 1000
# examples removed (k)

0

10

Test example 134

0 500 1000
# examples removed (k)

0

10

Test example 279

0 500 1000
# examples removed (k)

0

10

Test example 308

5 10 15
Predicted  margin

0

10

 m
ar

gi
n

5 10 15
Predicted  margin

5

10

5 10 15
Predicted  margin

0

5

10

5 10 15
Predicted  margin

0

10

10 20
Predicted  margin

0

10

Figure E.1: Counterfactuals for individual examples. We plot the results of counterfactual evaluations (using α = 0.5
datamodels) for five individual examples, shown in separate columns. (Top) The actual ∆ margin changes monotoni-
cally with number of examples removed (k), corroborating the monotonicity assumption used in estimating data supports.
(Bottom) On x, we instead plot the predicted ∆ margin using datamodels. This shows that the linearity seen in Figure 4
manifests even at a local level.

removing Gk̂ and re-training shows that only 67% of the images are actually misclassified. To establish an upperbound
on SUPPORT(x) that has sufficient coverage, we evaluate the counterfactuals after removing an additional 20% of highest
datamodel weights, e.g. removing top k̂×1.2 examples for each test example. When an additional 20% of training examples
are removed, 92% of test examples are misclassified. Hence, we use k̂ × 1.2 for our final estimates of SUPPORT(x).

E.4.1. ESTIMATION USING BASELINES

As baselines, we use the same guided search algorithm described above, but instead of using datamodel-predicted values
to guide the search, we select the candidate subset using each of the baselines methods described in Appendix E.2. In
particular, we choose the candidate subset Rk for a given k as follows:

1. Representation distance: top k closest training examples to x as measured by `2 distance in the representation space
of a pre-trained ResNet-9.

2. Influence estimates (influence functions and TracIn): top k training examples with highest (most positive) estimated
influence on the target example x:

3. Random: first k examples from a random ordering14 of training examples from the same class as x.

E.4.2. HEURISTIC ESTIMATES FOR DATA SUPPORT

While we constructively estimate the data supports by training models on counterfactuals and using the above estimation
procedure, we can also consider a simpler and cheaper heuristic to estimate SUPPORT(x) assuming the fidelity of the linear
datamodels: compute the smallest k s.t. the sum of the k highest datamodel weights for x exceeds the average margin of x.
In Figure E.2, we compare the predicted data supports based on this heuristic to the estimated ones from earlier, and find
that they are highly correlated. In practice, this can be a more efficient alternative to quantify brittleness without additional
model training (beyond the initial ones to estimate the datamodels).

E.5. Brittleness to mislabeling

Note that the brittleness we consider in Section 4.1 (i.e., brittleness to removing training examples) is substantively different
than brittleness to mislabeling examples (as in label-flipping attacks (Koh & Liang, 2017; Xiao et al., 2012; Rosenfeld
et al., 2020)). In particular, brittleness to removal indicates that there exists a small set of training images whose presence

14The random ordering is fixed across different choices of k, but not across different targets.
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Figure E.2: Heuristic predictions for data
supports. For each of the 300 test examples
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estimates based on counterfactuals, and the y-
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is necessary for correct classification of the target example (thus motivating the term “data support”). Meanwhile, label-
flipping attacks can succeed even when the target example has a large data support, as (consistently) mislabeling a set
of training examples provide a much stronger signal than simply removing them. Nevertheless, we can easily adapt the
experiment from Section 4.1 to test brittleness to mislabeling.

We take the same 300 random CIFAR-10 test examples and analyze them as follows: First, we find for each example the
incorrect class with the highest average logit (across ∼10,000 models trained on the full training set). Then, we construct
counterfactual datasets similarly as in Appendix E.4 where we take the top k = {2, 4, ..., 256} training examples with the
highest datamodel weights, but this time mislabel them with the incorrect class identified earlier. After training T = 20
models on each counterfactual, for each target example we estimate the number of mislabeled examples at which the
expected margin becomes zero, using the same estimation procedure described in Appendix E.4.

The resulting mislabeling brittleness estimates are shown in Figure E.3. As one might expect, test predictions are even
more brittle to data mislabeling than removal—for 50% of the CIFAR-10 test set, mislabeling 35 target-specific training
examples suffices to flip the corresponding prediction.

E.6. Comparing raw effect sizes

Instead of comparing the data support estimates (which are derived quantities), here we directly compare the average coun-
terfactual effect (i.e. delta margins) of groups selected using different methods. Figure E.4 shows again that datamodels
identify much larger effects. Among baselines, we see that TracIn performs best, followed by representation distance. We
also see that the representation baseline does not gain any additional signal from simple averaging over models.

E.7. Effect of training stochasticity

As described in Appendix E.1, we re-train up to T = 20 models for each counterfactual to reduce noise that arises soley
from stochasticity of model training. These additional samples significantly reduces unexplained variance: Figure E.5
shows the reduction in variance (“thickness” in the y-direction) and the resulting increase in correlation as the number of
re-training runs is increased from T = 1 to T = 20.

E.8. Transfer to different architecture

While the main premise of datamodeling is understanding how data is used by a given fixed learning algorithm, it is natural
to ask how well datamodels can predict across different learning algorithms. We expect some degradation in predictivness,
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Figure E.4: Comparing effect sizes with baselines. This shows the raw evaluations of counterfactuals generated using
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across all target examples when top k examples are removed for each target using each of the methods. Datamodels
identify much larger effects compared to baselines. Among baselines, TracIn(Pruthi et al., 2020) performs the best. For
representation distance, there is no noticeable gain from reducing stochasticity by averaging over more models (1000 vs
1).
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as datamodels are fit to a particular learning algorithm; at the same time, we also expect some transfer of predictive power
as modern deep neural networks are known to make similar predictions and errors (Mania et al., 2019).

Here, we study one of the factors in a learning algorithm, the choice of architecture. We take the same counterfatuals
and evaluate them on ResNet-18 models, using the same training hyperparameters. As expected, the original datamodels
continue to predict accurate counterfactuals for the new model class but with some degradation (Figure E.6).

E.9. Stress testing

Section 4 showed that datamodels excel at predicting counterfactuals across a variety of removal mechanisms. In an effort
to find cases where datamodel predictions are not predictive of data counterfactuals, we evaluate the following additional
counterfactuals:

• Larger groups of examples (up to 20% of the dataset): we remove k = 2560, 5120, 10240 top weights using
different datamodels α = 0.1, 0.2, 0.5, 0.75. The changes in margin have more unexplained variance when larger
number of images are removed; nonetheless, the overall correlation remains high ((Figure E.7)).
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• Groups of training examples whose predicted effects are zero: we remove k = 20, 40, 80, 160, 320, 640, 1280,
2560 examples with zero weight (α = 0.5), chosen randomly among all such examples. All of tested counterfactuals
had negligible impact on the actual margin, consistent with the prediction of datamodels (Figure E.8a).

• Groups of examples whose predicted effect is negative according to baselines: we test TracIn and influence func-
tions. (We do not consider the representation distance baseline here is there is no obvious way of extracting this
information from it.) Correlation degrades but remains high (Figure E.8b). Note that the relative scale of the effects
is much smaller compared to counterfactuals generated using datamodels (Figure E.8a).

In general, although there is some reduction in datamodels’ predictiveness, we nevertheless find that datamodels continue
to be accurate predictors of data counterfactuals.
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Figure E.7: Stress testing datamodel counterfactuals by removing a large number of images. Plot shows datamodel
counterfactuals from before (k = 10, ..., 1280) along with additional samples k = 2560, 5120, 110240 (shown with darker
hue).
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Figure E.8: Stress testing counterfactual prediction.

Counterfactuals relative to a random control. All of the counterfactuals studied so far are relative a fixed control (the
entire training set). Here, we consider counterfactuals relative to a random control S0 ∼ DS at α = 0.5 (i.e. |S0| = α|S|).
The motivation for considering the shifted control is two folds: first, the counterfactuals generated relative to such S′ are
closer in distribution to the original distribution to which datamodels were fit to, so it is natural to study datamodels in this



Datamodels: Predicting Predictions from Training Data

regime; second, this tests whether the counterfactual predictability is robust to the exact choice of the trainset. Latter is
desirable, as ultimately we would like to understand how models behave on training sets similar in distribution to S, not
the exact train set.

To implement above, after removing a target group G from the full train set S, we subsample the remainder S/G with
probability α. We adjust the control values accordingly to ES0∼S [fA(x;S0)], where DS is the α = 0.5 subsampling
distribution. The results show that one can indeed also predict counterfactuals relative a random control (Figure E.9).
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Figure E.9: Datamodels can predict counterfactuals relative to random controls. As in Figure 4, each point in the
graphs above corresponds to a test example and a counterfactual trainset S′ (a subset of the full training set, S). The
counterfactual is relative a random control S0 ∼ DS with α = 0.5, e.g. a set randomly subsampled at 50%. The y-
coordinate of each point represents the expected ground-truth difference, in terms of model output on x, between training
on a random S0, and training on S′. The x-coordinate of each point represents the datamodel-predicted value of this
quantity. (a) We use the α = 0.5 datamodels to predict counterfactuals generated by removing, for each test example, the
training inputs corresponding to the top-k and bottom-k (for several k) datamodel weights. (b) Same, but relative to a fixed
control S0 = S, e.g. the full train set.

E.10. Additional plots for different α values



Datamodels: Predicting Predictions from Training Data

Figure E.10: Varying α for counterfactual prediction (CIFAR-10). Same plot as in Figure 4, except varying the
datamodels used for prediction; each plot uses datamodels with the given α. As before, each point in the graphs above
corresponds to a test example and a subset R(x) of the original training set S, identified by a (color-coded) heuristic. The
y-coordinate of each point represents the ground-truth difference, in terms of model output on x, between training on S,
and training on S \R(x). The x-coordinate of each point represents the datamodel-predicted value of this quantity.

Removal method
Datamodel = 0.2
Datamodel = 0.5
Datamodel = 0.75
2 Rep. distance

Influence function [KL17]

Figure E.11: Varying α for counterfactual prediction (FMoW). Same plot as in Figure 4, except varying the datamodels
used for prediction; each plot uses datamodels with the given α. As before, each point in the graphs above corresponds to
a test example and a subset R(x) of the original training set S, identified by a (color-coded) heuristic. The y-coordinate of
each point represents the ground-truth difference, in terms of model output on x, between training on S, and training on
S \R(x). The x-coordinate of each point represents the datamodel-predicted value of this quantity.
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F. Datamodels for Train-Test Similarity
We explore in detail the application introduced in Section 5.1: identifying similar training examples to a given test example.
One can use such examples, e.g., to identify issues in large datasets such as duplicated training examples (Lee et al., 2021)
or train-test leakage (Barz & Denzler, 2020) (test examples that have near-duplicates in the training set).

Recall that in our instantiation, datamodels predict model output (for a fixed target example) as a linear function of the
presence of each training example, i.e., we predict the output of training on a subset S′ of the training set S as

gθ(1S′) = θ>1S′ .

A benefit of parameterizing datamodels as simple linear functions is that we can use the magnitude of the coordinates of θ
to ascertain feature importance (Guyon & Elisseeff, 2003). In particular, since in our case each feature coordinate (i.e., each
coordinate of 1S′ ) actually represents the presence of a particular training example, we can interpret the highest-magnitude
coordinates of θ as the indices of the training examples whose presence (or absence) is most predictive of model behavior
(again, on the fixed target example in context).

In this section, we study these high-magnitude training examples more closely, and find that (a) they visually resemble the
target image, yielding a method for finding similar training examples to a given target; and (b) as a result, datamodels can
automatically detect train-test leakage.

F.1. Finding similar training examples

Motivated by the feature importance view described above, we visualize (in Figures F.1 and F.3) a random set of target
examples from the CIFAR-10 test set, together with the CIFAR-10 training images that correspond to the highest-magnitude
datamodel coordinates for each test image.
Results. Indeed, for a given target example, the highest-magnitude datamodel coordinates—both positive and negative—
consistently correspond to visually similar training examples.

More positive More negative

plane
Held-out Example

plane plane plane plane plane horse ship ship frog deer

bird bird bird bird bird plane bird dog dog dog dog

cat cat cat cat cat cat dog dog dog dog dog

Figure F.1: Large datamodel weights correspond to similar images. Randomly choosing test examples and visualizing
their most negative- and positive-weight examples for α = 50%, we find that large magnitude train examples share
similarities with their test examples. Top negative weights generally correspond to visually similar images from other
classes.

Furthermore, the exact training images that are surfaced by looking at high-magnitude weights differ based on the sub-
sampling parameter α that we use while constructing the datamodels (Figures F.2 and F.4). (Recall from Section 2 that α
controls the size of the random subsets used to collect the datamodel training set—a datamodel estimated with parameter
α is constructed to predict outcomes of training on random training subsets of size α ·d, where d is the training set size.) In
Figure F.2, for example, on the left a datamodel estimated using α = 10% identifies a set of training images that are highly
similar to the target example, while the α = 50% datamodel does not. Our hypothesis here—which we expand upon
in Section C—is that datamodels estimated with lower α (i.e., based on smaller random training subsets) find train-test
relationships driven by larger groups of examples (and vice-versa).
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Figure F.2: Datamodels of different α surface qualitatively different images. For each target example (taken from
the CIFAR-10 test set), we consider two different datamodels: one estimated with α = 10% (i.e., constructed to predict
model outputs on the target example after training on random 10% subsets of the CIFAR-10 training set), and the other
estimated with α = 50%. For each datamodel, we visualize the training examples corresponding to the largest coordinates
of the parameter vector θ. On the left we see an example where the datamodel estimated with α = 10% detects a set of
near-duplicates of the target example that the α = 50% datamodel does not identify. See Figure F.4 for more examples.

Influence functions. Another method for finding similar training images is influence functions, which aim to estimate the
effect of removing a single training image on the loss (or correctness) for a given test image. A standard technique from
robust statistics (Hampel et al., 2011) (applied to deep networks by Koh & Liang (2017)) uses first-order approximation
to estimate influence of each training example. We find (Figure F.5), that the high-influence and low-influence examples
yielded by this approximation (and similar methods) often fail to find similar training examples for a given test example.

Another approach based on empirical influence approximation was used by Feldman & Zhang (2020), who (successfully)
use their estimates to identify similar train-test pairs in image datasets as we do above. We discuss empirical influence
approximation and its connection with datamodeling in Section H.1.

FMoW. We show similar results for FMoW: in Figure F.6 we show randomly selected target images along with their
top-weight train images, using datamodels of different α. In Figure F.7 we show more examples of test images and their
corresponding top train images as we vary α.
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Figure F.3: Additional examples of held-out images and their corresponding highest and lowest datamodel weight training
images.
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Figure F.4: Additional examples of held-out images and corresponding most relevant training examples, while varying α.
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Figure F.5: Comparisons of nearest neighbors found using different methods.
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Figure F.6: FMoW examples of held-out images and their corresponding highest and lowest datamodel weight training
images.
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Figure F.7: FMoW examples of held-out images and corresponding most relevant training examples, while varying α.
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F.2. Identifying train-test leakage

We now leverage datamodels’ ability to surface similar training examples to a given target in order to identify same-scene
train-test leakage: cases where test examples are near-duplicates of, or clearly come from the same scene as, training
examples. Below, we use datamodels to uncover evidence of train-test leakage on both CIFAR and FMoW, and show that
datamodels outperform a natural baseline for this task.

F.2.1. TRAIN-TEST LEAKAGE IN CIFAR-10

To find train-test leakage in CIFAR-10, we collect ten candidate training examples for each image in the CIFAR-10 test
set—corresponding to the ten largest coordinates (top 5 and bottom 5) of the test example’s datamodel parameter. We
then show crowd annotators (using Amazon Mechanical Turk15; Figure F.8 shows the interface) tasks that consist of a
random CIFAR-10 test example accompanied by its candidate training examples. We ask the annotators to label any of
the candidate training images that constitute instances of same-scene leakage (as defined above). We show each task (i.e.,
each test example) to nine annotators, and compute the “annotation score” for each of the test example’s candidate training
examples as the fraction of annotators who marked it as an instance of leakage. Finally, we compute the “leakage score”
for each test example as the highest annotation score (over all of its candidate train images)—we use the leakage score as
a proxy for whether or not the given image constitutes train-test leakage.

In Figure 5, we plot the distribution of leakage scores over the CIFAR-10 test set, along with random train-test pairs
stratified by their annotation score. As the annotation score increases, pairs (qualitatively) appear more likely to correspond
to leakage; we show more examples of (train, test) pairs stratified by annotation score in Figure F.9. Overall roughly 10%
of test set images were labeled as train-test leakage by over half of the annotators that reviewed them. The vast majority of
potential leakage found corresponded to training examples by the positive datamodel weight (one of the top 5).

Comparison with CIFAIR. Barz & Denzler (2020) present CIFAIR, a version of CIFAR with fewer duplicates. The
authors define duplicates slightly differently than we define pairs constituting same scene train-test leakage, see Section
3.2 of their work compared to the screenshot of the annotation interface in Appendix Figure F.8. The authors identify train-
test leakage by using a deep neural network to measure representation space distances between images across training
partitions and manually inspecting the lowest distances.

F.2.2. TRAIN-TEST LEAKAGE IN FMOW

To identify train-test leakage on FMoW, we begin with the same candidate-finding process that we used for CIFAR-10.
However, FMoW differs from CIFAR in that the examples (satellite images labeled by category, e.g., “port” or “arena”)
are annotated with geographic coordinates. These coordinates allow us to avoid crowdsourcing—instead, we compute the
geodesic distance between the test image and each of the candidates, and use a simple threshold d (in miles) to decide
whether a given test example constitutes train-test leakage.

Furthermore, we can calculate a “ground-truth” number of train-test leakage instances by counting the test examples
whose geodesic nearest-neighbor in the training set is within the specified threshold d.16 Comparing this ground truth to
the number of instances of leakage found within the candidate examples yields a qualitative measure of the efficacy of our
method (i.e., the quality of candidates we generate).

In Figure F.10, we plot this measure of efficacy (# instances found / # ground truth) as a function of the threshold d, and
also visualize examples images from the FMoW test set together with their corresponding datamodel-identified training set
candidates. To put our quantitative results into context, we compare the efficacy of candidates derived from top datamodel
coordinates (i.e., the ones we use here and for CIFAR-10) to that of candidates derived from nearest neighbors in the
representation space of a pretrained neural network (Bengio et al., 2013; Zhang et al., 2018) (examining such nearest
neighbors is a standard way of finding train-test leakage, e.g., used by (Barz & Denzler, 2020) to study CIFAR-10 and
CIFAR-100). Datamodels consistently outperform the baseline.

15We paid 12 cents per task completed, and used qualifications: locale in US/CA/GB and percentage of hits approved > 95%.
16 It turns out that despite having already been de-duplicated, about 20% and 80% of FMoW test images are within 0.25 and 2.6 miles

of a training image, respectively—see Figure F.11.
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Figure F.8: The MTurk Interface, complete with instructions, shown to crowdsourced annotators. Note that there are 5
rows of images in the actual interface, some of which may require scrolling to get to.
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Figure F.9: More annotation scores paired with (train, test) leakage pairs.



Datamodels: Predicting Predictions from Training Data

Figure F.10: Datamodels detect same-scene train-test leakage on FMoW. FMoW images are annotated with geographic
coordinates. For any distance d, we call a test image x “leaked” if it is within d miles of any training image xs. A leaked
test image x is considered “detected” if the corresponding training image xs has one of the 10 largest datamodel weights
for x. (Left) With d on the x-axis, we plot the fraction of leaked test images that are also detected. As a baseline, we
replace datamodel weights with (negative) distances in neural network representation space. (Right) for two test examples
(top: random; bottom: selected), we show the most similar train examples (by datamodel weight), labeled by their distance
to the test example.

10 3 10 1 101 103

Distance(miles)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure F.11: CDF of distance in miles between each FMoW test set image and the nearest train set image.
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G. Datamodels as a Feature Embedding
Using datamodels for counterfactual prediction (Section 4 and Appendix E) and train-test similarity (Section 5.1 and
Appendix F) illustrate the utility of datamodels on an per-example level, i.e., for predicting the outcome of training on
arbitrary training subsets and evaluating on a specific target example, or for finding similar training images (again, to a
specific target). By adopting a new perspective on datamodels, Section 5.2 demonstrates that datamodels can also help
uncover global structure in datasets of interest. We explore this further here.

Critically, the coordinates of a datamodel embedding have a consistent interpretation across datamodel embeddings, even
for different target examples. That is, we expect similar target examples to be acted upon similarly by the training set,
and thus have similar datamodel embeddings. In the same way, if model performance on two unrelated target examples is
driven by two disjoint sets of training examples, their datamodel embeddings will be orthogonal. This intuition suggests
that by embedding an entire dataset of examples {xi} as a set of feature vectors {θi ∈ Rd}, we may be able to uncover
structure in the set of examples by looking for structure in their datamodel embeddings, i.e., in the (Euclidean) space Rd.

In this section we demonstrate, through two applications, the potential for datamodel embeddings to discover dataset
structure in this way. In §,G.1, we use datamodel embeddings to partition datasets into disjoint clusters, and in § G.2
we use principal component analysis to get more fine-grained insights into dataset structure. To emphasize our shift in
perspective (i.e., from θ being just a parameter of a datamodel gθ, to θ being an embedding for the target example x), we
introduce an embedding function ϕ(x) 7→ θ which maps a particular target example to the weights of its corresponding
datamodel.

G.1. Spectral clustering with datamodel embeddings

We begin with a simple application of datamodel embeddings, and show that they enable high-quality clustering. Specifi-
cally, given two examples x1 and x2, datamodel embeddings induce a natural similarity measure between them:

d(x1, x2) := K(ϕ(x1), ϕ(x2)), (16)

where we recall that ϕ(·) is the datamodel embedding function mapping target examples to the weights of their correspond-
ing datamodels, and K(·, ·) is any kernel function.17 Taking this even further, for a set of k target examples {x1, . . . , xk},
we can compute a full similarity matrix A ∈ Rk×k, whose entries are

Aij = d(xi, xj). (17)

Finally, we can view this similarity matrix as an adjacency matrix for a (dense) graph connecting all the examples
{x1, . . . xk}: the edge between two examples will be d(xi, xj), which is in turn the kernelized inner product between
their two datamodel weights. We expect similar examples to have high-weight edges between them, and unrelated exam-
ples to have (nearly) zero-weight edges between them.

Such a graph unlocks a myriad of graph-theoretic tools for exploring datasets through the lens of datamodels (e.g., cliques
in this graph should be examples for which model behavior is driven by the same subset of training examples). A complete
exploration of these tools is beyond the scope of our work: instead, we focus on one just such tool, namely spectral
clustering.

At a high level, spectral clustering is an algorithm that takes as input any similarity graph G as well as the number of
clusters C, and outputs a partitioning of the vertices of G into C disjoint subsets, in a way that (roughly) minimizes the
total weight of inter-cluster edges. We run an off-the-shelf spectral clustering algorithm on the graph induced by the
similarity matrix A above for the images in the CIFAR-10 test set. The results demonstrate a simple unsupervised method
for uncovering subpopulations in datasets: Figure 6 shows examples of clusters from two classes, Figure G.1 compares top
clusters for the horse class across different α. Figure G.2 and ?? shows additional clusters for eight other classes, apart
from the ones shown in Figure 6.

Implementation. We use sklearn’s cluster.SpectralClustering. Internally, this computes similarity scores
using the radial basis function (RBF) kernel on the datamodel embeddings. Then, it runs spectral clustering on the graph
defined by the similarity matrix A: it computes a Laplacian L, represents each node using the first k eigenvectors of L, and
runs k-means clustering on the resulting feature representations. We use k = 100.

17A kernel function K(·, ·) is a similarity measure that computes the inner product between its two arguments in a transformed inner
product space (see (Shawe-Taylor & Cristianini, 2004) for an introduction). The RBF kernel is K(v1, v2) = exp{−‖v1 − v2‖2/2σ2}
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Figure G.1: Omitted spectral clustering results for datamodels computed with α = 10% (top left), 20% (top right), 50%
(bottom left), and 75% (bottom left).
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Figure G.2: Omitted spectral clustering results for classes other than those in the main paper (Figure 6).
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Figure G.3: Additional omitted spectral clustering results for classes other than those in the main paper (Figure 6).
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G.2. Analyzing datamodel embeddings with PCA

From the last section, we observe that datamodel embeddings encode enough information about their corresponding exam-
ples to cluster them into (at least qualitatively) coherent groups. We now try to gain even further insight into the structure
of these datamodel embeddings, in the hopes of shedding light on the structure of the underlying dataset itself.

Datamodel embeddings are both high-dimensional and sparse, making analyzing them directly (e.g., by looking at the vari-
ation of each coordinate) a daunting task. Instead, we leverage a canonical tool for finding structure in high-dimensional
data: principal component analysis (PCA). PCA is a dimensionality reduction technique which—given a set of embed-
dings {ϕ(xi) ∈ Rd} and any k � d—returns a transformation function that maps any embedding ϕ(x) ∈ Rd to a new
embedding φ̃(x) ∈ Rk, such that:

(a) each of the k coordinates of the transformed embeddings is a (fixed) linear combination of the coordinates of the
initial datamodel embeddings, i.e., ϕ̃(x) = M · ϕ(x) for a fixed k × d matrix M ;

(b) transformed embeddings preserve as much information as possible about the original ones (more formally, we find the
matrix M that allows us to reconstruct the given set of embeddings {ϕ(xi) ∈ Rd} from their transformed counterparts
with minimal error).

Note that in (a), the i-th coordinate of a transformed embedding is always the same linear combination of the corresponding
original embedding (and thus, each coordinate of the transformed embedding has a concrete interpretation as a weighted
combination of datamodel coefficients). The exact coefficients of this combination (i.e., the rows of the matrix M above)
are called the first k principal components of the dataset.

We apply PCA to the collection of datamodel embeddings {ϕ(xi) ∈ Rd}di=1 for the CIFAR-10 training set, and use the
result to to compute new k-dimensional embeddings for each target example in both the training set and the test set (i.e.,
by computing each target example’s datamodel embedding then transforming it to an embedding in Rk). We can then look
at each coordinate in the new, much more manageable (k-dimensional) embeddings.18

Coordinates identify subpopulations. Our point of start in analyzing the transformed embeddings is to examine each
transformed coordinate separately. In particular, in Figures G.4 and G.9 we visualize, for a few sample coordinate indices
i ∈ [k], the target examples whose transformed embeddings have particularly high or low values of the given coordinate
(equivalently, these are the target examples whose datamodel embeddings have the highest or lowest projections onto the
i-th principal component). We find that:

(a) The examples whose transformed embeddings have a large i-th coordinate all (visually) share a common feature: e.g.,
the first-row images in Figure G.4 share similar pose and color composition;

(b) This (visual) feature is consistent across both train and test set examples19; and

(c) For a given coordinate, the most positive images and most negative images (i.e., the left and right side of each row
of Figure G.4, respectively) either (a) have a differing label but share the same common feature or (b) have the same
label but differ along the relevant feature.

Principal components are model-faithful. We verify that not only are the groups of images found by PCA visually
coherent, they are in fact rooted in how the model class makes predictions. To that end, we analyze how “removing”
different principal components affect model predictions. More precisely, we remove training examples corresponding to:

• Top k most positive coordinates of the principal component vector

• Top k most negative coordinates of the principal component vector

Then, for each principal component direction considered, we measure their impact on three groups of held-out samples:

18One detail here is that we first normalize each datamodel embedding before transforming them (i.e., we transform ϕ(x)/‖ϕ(x)‖).
19Recall that we computed the PCA transformation to preserve the information in only the training set datamodel embeddings. Thus,

this result suggests that the transformed embeddings computed by PCA are not “overfit” to the specific examples that we used to compute
it.
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Figure G.4: PCA on datamodel embeddings. We visualize the top three principal components (PCs) and a randomly
selected PC from the top 100. In the i-th row, the left-most (right-most) images are those whose datamodel embeddings
have the highest (lowest) normalized projections onto the i-th principal component vi. Highest magnitude images along
each direction share qualitative features; moreover, images at opposite ends suggest a feature tradeoff —a combination of
images in the training set that helps accuracy on one subgroup but hurts accuracy on the other. See Figure G.9 for more
datamodel PCA components.

• The top 100 examples by most positive projection on the principal component

• The bottom 100 examples by most negative projection on the principal component

• The full test set

For each of these groups, we measure the mean change in margin after removing different principal component directions.
Our results (Figure G.5) show that:

• Removing the most positive coordinates of the PC decreases margin on the test set examples with the most positive
projections on the PC and increases margin on the examples with the most negative projections on the PC.

• Removing the most negative coordinates of the PC has the opposite effect, increasing margin on the positive projection
examples and decreasing margin on the negative projection examples.

• Increasing the size of each removed set increases the effect magnitude.

• Removing PC’s have negligible impact on the aggregate test set, indicating that the impact of different PC’s are
roughly “orthogonal,” as one would expect based on the orthogonality of the PCs.
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Figure G.5: PCA directions generalize and capture “orthogonal” directions. For each of the three principal com-
ponents (PCs) above (randomly chosen from top 50), we consider the counterfactual of removing the training examples
corresponding to the top or bottom k coordinates in the PC, and measure its average effect on different groups: (red) test
examples with the highest projections on the PC; (blue) test examples with the lowest projections on the PC; and (grey)
the entire test set. The direction of the effect is consistent with the datamodel embeddings; removing top (resp. bottom)
coordinates decrease (resp. increase) the average margin on test examples whose embeddings are most aligned with the
PC. Moreover, the negligible impact over the test set in aggregate shows that the different PCs, which are orthogonal in the
embedding space (by definition), are also approximately “orthogonal” in terms of their effect on model predictions.

• Lastly, Figure G.6 shows that datamodels can accurately predict the counterfactual effect of the above removed groups,
similarly as in Figure 4.
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Figure G.6: Datamodels predict the effect of “removing” principal components. Each point corresponds to a PCA
counterfactual: removing training examples with the largest weights in the principal component (i.e., top-k most positive
or negative coordinates), and evaluating on test examples whose embeddings most align with the PC (e.g. smallest cosine
distance). The y-coordinate of each point represents the ground-truth counterfactual effect (evaluated by retraining T = 20
times). The x-coordinate of each point represents the datamodel-predicted value of this quantity.

G.2.1. ADVANTAGES OVER PENULTIMATE-LAYER EMBEDDINGS

In the context of deep neural networks, the word “embedding” typically refers to features extracted from the penultimate
layer of a fixed pre-trained model (see (Bengio et al., 2013) for an overview). These “deep representations” can serve as
an effective proxy for visual similarity (Barz & Denzler, 2020; Zhang et al., 2018), and also enable a suite of applications
such as clustering (Guérin et al., 2017) and feature visualization (Olah et al., 2017; Engstrom et al., 2019; Azizpour et al.,
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2015; Ben-David et al., 2007).

Here, we briefly discuss a few advantages of datamodel-based embeddings over their standard penultimate layer-based
counterparts.

• Axis-alignment: First, datamodel embeddings are axis-aligned—each embedding component directly corresponds to
index into the training set, as opposed to, e.g., a more abstract or qualitative concept. As a corollary, aggregating or
comparing different datamodel embeddings for a given dataset is straightforward, and does not require any alignment
tools or additional heuristics (this is not the case for network-based representations, for which the right way to combine
representations—even for two models of the same architecture—is still disagreed upon (Kornblith et al., 2019; Bansal
et al., 2021)). In particular, we can straightforwardly compare datamodel embeddings across different target examples,
model architectures, training paradigms, or even datamodel estimation techniques: as long as the set of training
examples being stays the same, any resulting datamodel has a uniform interpretation.

• Richer representation: The space of datamodel embeddings seems significantly richer than that of standard repre-
sentation space. In particular, Figure G.7 shows that for standard representation space, 10 linear directions suffice to
capture 90% of the variation in training set representations. The “effective dimension” of datamodel representations
is much higher, with the top 500 principal components explaining only 50% of the variation in training set data-
model embeddings. This difference manifests qualitatively when we redo our PCA study on standard representations
(Figure G.8): principal components beyond the 10th lack both the perceptual uniformity and train-test generaliza-
tion exhibited by those of datamodel embeddings (e.g., for datamodels even the 76th principal component, shown in
Figure G.4, exhibits these qualities).

• Ingrained causality: Finally, datamodel embeddings inherently encode information about how the model class gen-
eralizes: earlier we verified via counterfactuals that insights extracted from the principal components of Θ actually
reflect underlying model class behavior.
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Figure G.7: Datamodel embeddings have a higher effective dimension than deep representations. For different
embeddings, we plot the cumulative fraction of variance explained by the top k components while varying k. For a
network layer based embedding, 95% of the variation in embedding space is captured by the first 10 principal components;
meanwhile, datamodel embeddings need up to 500 components to capture even half of the variance. Here, we use a ResNet-
18 model instead of ResNet-9 as it has more features in the representation layer (512 vs. 128); the plot looks similar for
ResNet-9.
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Figure G.8: Representation-based baseline for PCA. Visualization of highest magnitude images along top principal
components of representation embeddings for CIFAR-10. In each row i, on the left we show the images with the highest
normalized projections onto vi, and on the right the images with the lowest projections. The PCs seem less coherent than
those obtained from running PCA on datamodel embeddings.
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Figure G.9: The remainder of the top 10 PCA directions and two selected directions.
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G.3. FMoW

Figure G.10: FMoW top PCA components, using α = 20%. Top 5 and 5 selected from the top 50.
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H. Related work
Datamodels build on a rich and growing body of literature in machine learning, statistics, and intepretability. In this section,
we illustrate some of the connections to these fields, highlight a few of the most closely related works to ours.

H.1. Connecting datamodeling to empirical influence estimation

We start by discussing the particularly important connection between datamodels and another well-studied concept that
has recently been applied to the machine learning setting: influence estimators. In particular, a recent line of work aims to
compute the empirical influence (Hampel et al., 2011) of training points xi on predictions f(xj), i.e.,

Infl[xi → xj ] := P (model trained on S is correct on xj)− P (model trained on S \ {xi} is correct on xj) ,

where randomness is taken over the training algorithm. Evaluating these influence functions naïvely requires training C · d
models where d is again the size of the train set and C is the number of samples necessary for an accurate empirical
estimate of the probabilities above. To circumvent this prohibitive sample complexity, a recent line of work has proposed
approximation schemes for Infl[xi → xj ]. We discuss these approximations (and their connection to our work) more
generally in Appendix H.2, but here we focus on a specific approximation used by Feldman & Zhang (2020) (and in a
similar form, by (Ghorbani & Zou, 2019) and (Jia et al., 2019))20:

Înfl[xi → xj ] = PS∼DS
(model trained on S is correct on xj |xi ∈ S)

− PS∼DS
(model trained on S is correct on xj |xi 6∈ S) . (18)

This estimator improves sample efficiency by reusing the same set of models to compute influences between different
input pairs. More precisely, Feldman & Zhang (2020) show that the size of the random subsets trades off sample efficiency
(model reuse is maximized when α = 0.5) and accuracy with respect to the true empirical influence (which is maximized
at α→ 1). Despite its different goal, formulation, and estimation procedure, it turns out that we can cast the difference-of-
probabilities estimator (18) above as a rescaled datamodel (in the infinite-sample limit). In particular, in Appendix J.1 we
show:

Lemma 1. Fix a training set S of size n, and a test example x. For i ∈ [m], let Si be a random variable denoting a random
50%-subset of the the training set S. Let winfl ∈ Rn be the estimated empirical influences (18) onto x estimated using
the sets Si. Let wOLS be the least-squares estimator of whether a particular model will get image x correct, i.e.,

wOLS := arg min
w

1

m

m∑
i=1

(
w>zi − 1{model trained on Si correct on x}

)2
, where zi = 2 · 1Si − 1n.

Then, as m→∞, ‖(1 + 2
n )wOLS − 1

2winfl‖2 → 0.

We illustrate this result quantitatively in Appendix J and perform an in-depth study of influence estimators as datamodels.
As one might expect given their different goal, influence estimates significantly underperform explicit datamodels in terms
of predicting model outputs with respect to every metric we studied (Table J.1, Figure J.1). We attempt to explain this
performance gap and reconcile it with Lemma 1 in terms of the estimation algorithm (OLS vs. LASSO), scale (number of
models trained), and output function (0/1 loss vs. margins).

In addition to forging a connection between datamodels and influence estimates, this result provides an alternate perspective
on the parameter α. In light of our discussion in Appendix C, it suggests that α may control the kinds of correlations that
are surfaced by empirical influence estimates.

H.2. Other connections

Influence functions and instance-based explanations.

First-order influence functions are a canonical tool in robust statistics that allows one to approximate the impact of removing
a data point on a given parameter without re-estimating the parameter itself (Hampel et al., 2011). Koh & Liang (2017)

20In fact, (18) is ubiquitous—e.g., in causal inference, it is called the average treatment effect of training on xi on the correctness of
xj .
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apply influence functions to both a variety of classical machine learning models and to penultimate-layer embeddings
from neural network architectures, to trace model’s predictions back to individual training examples. In classical settings
(namely, for a logistic regression model), Koh et al. (2019) find that influence functions are also useful for estimating
the impact of groups of examples. On the other hand, Basu et al. (2021) finds that approximate influence functions scale
poorly to deep neural network architectures; and Feldman & Zhang (2020) argue that understanding the dynamics of
the penultimate layer is insufficient for understanding deep models’ decision mechanisms. Other methods for influence
approximation (or more generally, instance-level attribution) include gradient-based methods (Pruthi et al., 2020) and
metrics based on representation similarity (Charpiat et al., 2019; Yeh et al., 2018)—see (Hanawa et al., 2021) for a more
detailed overview. Finally, another related line of work (Ghorbani & Zou, 2019; Jia et al., 2019; Wang et al., 2021) uses
Shapley values (Shapley, 1951) to assign a value to datapoints based on their contribution to some aggregate metric (e.g.,
test accuracy).

As discussed in Section H.1, datamodels serve a different purpose to influence functions—the former constructs an explicit
statistical model, whereas the latter measures the counterfactual value of each training point. Nevertheless, we find that
wherever efficient influence approximations and datamodels are quantitatively comparable (e.g., see Section 4 or Appendix
J) datamodels predict model behavior better.

Pixel-space surrogate models for interpretability. Datamodels are essentially surrogate models for the function map-
ping training data to predictions. Surrogate models from pixel-space to predictions are popular tools in machine learning
interpretability (Ribeiro et al., 2016; Lundberg & Lee, 2017; Sokol et al., 2019). For example, LIME (Ribeiro et al., 2016)
constructs a local linear model mapping test images to model predictions. Such surrogate models try to understand, for a
fixed model, how the features of a given test example change the prediction. In contrast, datamodels hold the test example
fixed and instead study how the images present in the training set change the prediction.

In addition to the advantages of our data-based view stated in Section 1, datamodels have two additional advantages over
pixel-level surrogate models: (a) a clear notion of missingness (i.e., it is easy to remove a training example but usually
hard to remove a feature); (b) globality of predictions—pixel-level surrogate models are typically accurate within a small
neighborhood of a given input in pixel space, whereas datamodels model entire distribution over subsets of the training set,
and remain useful both on- and off-distribution.

Model understanding beyond fixed weights. Recall (from Section 1) that datamodels are, in part, inspired by the fact that
re-training deep neural networks using the same data and model class leads to models with similar accuracies but vastly
different individual predictions. This phenomenon has been observed more broadly. For example, Sellam et al. (2021)
make this point explicitly in the context of BERT (Devlin et al., 2019) pre-trained language models. Similarly, Nakkiran &
Bansal (2020) make note of this non-determinism for networks trained on the same training distribution (but not the same
data), while Jiang et al. (2021) find that the same is true for networks trained on the same exact data. D’Amour et al. (2020)
find that on out-of-distribution data even overall accuracy is highly random. More closely in spirit to our work, Zhong et al.
(2021) find that non-determinism of individual predictions poses a challenge for comparing different model architectures.
(They also propose a set of statistical techniques for overcoming this challenge.) More traditionally, the non-determinism
is leveraged by Bayesian (Neal, 1996) and ensemble methods (Lakshminarayanan et al., 2017), which use a distribution
over model weights to improve aspects of inference such as calibration of uncertainty.

Learning and memorization. Recent work (see (Feldman, 2019; Chatterjee, 2018; Zhang et al., 2016; Bresler & Nagaraj,
2020) and references therein) brings to light the interplay between learning and memorization, particularly in the context of
deep neural networks. While memorization and generalization may seem to be at odds, the picture is more sutble. Indeed,
Chatterjee (2018) builds a network of small lookup tables on small vision datasets to show that purely memorization-based
systems can still generalize-well. Feldman (2019) suggests that memorization of atypical examples may be necessary to
generalize well due to a long tail of subpopulations that arises in standard datasets. Feldman & Zhang (2020) find some
empirical support for this hypothesis by identifying memorized images on CIFAR-100 and ImageNet and showing that
removing them hurts overall generalization. Relatedly, Brown et al. (2021) proves that for certain natural distributions,
memorization of a large fraction of data, even data irrelevant to the task at hand, is necessary for close to optimal gen-
eralization. For state of the art models, recent works (e.g., (Carlini et al., 2019; 2021)) show that one can indeed extract
sensitive training data, indicating models’ tendency to memorize.

Conversely, it has been observed that differentially private (DP) machine learning models—whose aim is precisely to
avoid memorizing the training data—tend to exhibit poorer generalization than their memorizing counterparts (Abadi
et al., 2016). Moreover, the impact on generalization from DP is disparate across subgroups (Bagdasaryan et al., 2019). A
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similar effect has been noted in the context of neural network pruning (Hooker et al., 2019). Datamodeling may be a useful
tool for studying these phenomena and, more broadly, the mechanisms mapping data to predictions for modern learning
algorithms.

Brittleness of conclusions. A long line of work in statistics focuses on testing the robustness of statistical conclusions
to the omission of datapoints. Broderick et al. (2021) study the robustness of econometric analyses to removing a (small)
fraction of data. Their method uses a Taylor-approximation based metric to estimate the most influential subset of examples
on some target quantity, similar in spirit to our use of datamodels to estimate data support for a target example (as in Figure
3). Datamodels may be a helpful tool for extending such robustness analyses to the context of state-of-the-art machine
learning models.
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I. Future work
Our instantiation of the datamodeling framework yields both good predictors of model behavior and a variety of direct
applications. However, this instantiation is fairly basic and thus leaves significant room for improvement along several
axes. More broadly, datamodeling provides a lens under which we can study a variety of questions not addressed in this
work. In this section, we identify (a subset of) these questions and provide connections to existing lines of work on them
across machine learning and statistics.

I.1. Improving datamodel estimation

In Section 2, we outlined our basic procedure for fitting datamodels: we first sample subsets uniformly at random, then fit
a sparse linear model from (the characteristic vectors of) training subsets to model outputs (margins) via `1 regularization.
We first discuss various ways in which this paradigm might be improved to yield even better predictions.

• Correlation-aware estimation. One key feature of our estimation methodology is that the same set of models is
used to estimate datamodel parameters for an entire test set of images at once. This significantly reduces the sample
complexity of estimating datamodels but also introduces a correlation between the errors in the estimated parameters.
This correlation is driven by the fact that model outputs are not i.i.d. across inputs—for example, if on a picture of
a dog x a given model has very large output (compared to the “average” model, i.e., if fA(x;Si) − E[fA(x;Si)] is
large), the model is also more likely to have large output on another picture of a dog (as opposed to, e.g., a picture of
a cat).

Parameter estimation in the presence of such correlated outputs is an active area of research in statistics (see
(Daskalakis et al., 2019; Li et al., 2019) and references therein). Applying the corresponding techniques (or mod-
ifications thereof) to datamodels may help calibrate predictions and improve sample-efficiency.

• Confidence intervals for datamodels. In this work we have focused on attaining point estimates for datamodel
parameters via simple linear regression. A natural extension to these results would be to obtain confidence intervals
around the datamodel weights. These could, for example, (a) provide interval estimates for model outputs rather than
simple point estimates; and (b) decide if a training input is indeed a “significant” predictor for a given test input.

• Post-selection inference. Relatedly, the high input-dimensionality of our estimation problem and the sparse nature
of the solutions suggests that a two-stage procedure might improve sample efficiency. In such procedures, one first
selects (often automatically, e.g., via LASSO) a subset of the coefficients deemed to be “significant” for a given test
example, then re-fits a linear model for only these coefficients. This two-stage approach is particularly attractive in
settings where the number of subset-output pairs (Si, fA(x;Si)) is less than the size of the training set |S| being
subsampled.

Unfortunately, using the data itself to perform model selection in this manner—a paradigm known as post-selection
inference—violates the assumptions of classical statistical inference (in particular, that the model class is chosen
independently of the data) and can result in significantly miscalibrated confidence intervals. Applying valid two-stage
estimation to datamodeling would be an area for further improvement upon the protocol presented in our work.

• Improving subset sampling. Recall (cf. Section 2) that our framework uses a distribution over subsetsDS to generate
the “datamodel training set.” In this paper, we fixedDS to be random α-subsets of the training set, and used a nearest-
neighbors example (see Figure C.1) to provide intuition around the role of α. While this design choice did yield useful
datamodels, it is unclear whether this class of distributions is optimal. In particular, a long line of literature in causal
inference focuses on intervention design (Eberhardt & Scheines, 2007); drawing upon this line of work may lead to a
better choice of subsampling distribution. Furthermore, one might even go beyond a fixed distributionDS and instead
choose subsets Si adaptively (i.e., based on the datamodels estimated with the previously sampled subsets) in order
to reduce sample complexity.

• Devising better priors. Finally, in this paper we employed simple least-squares regression with `1 regularization
(tuned through a held-out validation set). While the advantage of this rather simple prior—namely, that datamodels are
sparse—is that the resulting estimation methodology is largely data-driven, one may consider incorporating domain-
specific knowledge to design better priors. For instance, one can use structured-sparsity (Huang et al., 2011) to take
advantage of any additional structure.
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I.2. Studying generalization

Datamodels also present an opportunity to study generalization more broadly:

• Understanding linearity. The key simplifying assumption behind our instantiation of the datamodeling framework
is that we can approximate the final output of training a model on a subset of the training set as a linear function of the
presence of each training point. While this assumption certainly leads to a simple estimation procedure, we have very
little justification for why such a linear model should be able to capture the complexities of end-to-end model training
on data subsets. However, we find that datamodels can accurately predict ground-truth model outputs (cf. Sections 2).
In fact, we find a tight linear correlation between datamodel predictions and model outputs even on out-of-distribution
(i.e., not in the support of DS) counterfactual datasets. Understanding why a simple linearity assumption leads to
effective datamodels for deep neural networks is an interesting open question. Tackling this question may necessitate
a better understanding of the training dynamics and implicit biases behind overparameterized training Bartlett et al.
(2021); Sagawa et al. (2020).

• Using sparsity to study generalization. A recent line of work in machine learning studies the interplay between
learning, overparameterization, and memorization (Feldman, 2019; Chatterjee, 2018; Zhang et al., 2016; Bresler &
Nagaraj, 2020; Zhang et al., 2020). Datamodeling may be a helpful tool in this pursuit, as it connects predictions of
machine learning models directly to the data used to train them. For example, the data support introduced in Section
4.1 provides a quantitative measure of “how memorized” a given test input is.

• Theoretical characterization of the role of α. In line with our intuitions in Appendix C, we have observed both
qualitatively (e.g., Figure F.2) and quantitatively (e.g., Appendix C.1) that estimating datamodels using different
values of α identifies correlations at varying granularities. However, despite empirical results around the clear role
of α—Appendix C.1 even isolates its effect on datamodels for simple underdetermined linear regression—we lack a
crisp theoretical understanding of how α affects our estimated datamodels. A better theoretical understanding of the
role of α, even for simple models trained on structured distributions, can provide us with more rigorous intuition for
the phenomena observed here, and can in turn guide the development of better choices of sampling distribution for
datamodeling.

I.3. Applying datamodels

Finally, each of the presented perspectives in Sections 4 and 5 can be taken further to enable even better data and model
understanding. For example:

• Interpreting predictions. For a given test example, the training images corresponding to the largest-magnitude
datamodel weights both (a) share features in common with the test example; and (b) seem to be causally linked to
the test example (in the sense that removing the training images flips the test prediction). This immediately suggests
the potential utility of datamodels as a tool for interpreting test-time predictions in a counterfactual-centric manner.
Establishing them as such requires further evaluation through, for example, human-in-the-loop studies.

• Building data exploration tools. In a similar vein, another opportunity for future work is in building user-friendly
data exploration tools that leverage datamodel embeddings. In this paper we present the simplest such example in the
form of PCA, but leave the vast field of data bias and feature discovery methods (cf. (Carter et al., 2019) and Leclerc
et al. (2021) for a survey) unexplored.
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J. Connection between Influence Estimation and Datamodels
J.1. Proof of Lemma 1

Lemma 1. Fix a training set S of size n, and a test example x. For i ∈ [m], let Si be a random variable denoting a random
50%-subset of the the training set S. Let winfl ∈ Rn be the estimated empirical influences (18) onto x estimated using
the sets Si. Let wOLS be the least-squares estimator of whether a particular model will get image x correct, i.e.,

wOLS := arg min
w

1

m

m∑
i=1

(
w>zi − 1{model trained on Si correct on x}

)2
, where zi = 2 · 1Si − 1n.

Then, as m→∞, ‖(1 + 2
n )wOLS − 1

2winfl‖2 → 0.

Proof. For convenience, we introduce the m× n binary mask matrix A such that Aij is an indicator for whether the j-th
training image was included in Si. Note that A is a random matrix with fixed row sum of n/2. Next, we define the output
vector y ∈ {0, 1}m that indicates whether a model trained on Si was correct on x. Finally, we introduce the count matrix
C = diag(1>A), i.e., a diagonal matrix whose entries are the columns sums of A, e.g. the number of times each example
appears across m different masks.

We begin with wOLS . Consider the n × n matrix Σ = 1
mZ>Z = 1

m (2 ·A − 1m×n)>(2 ·A − 1m×n). The diagonal
entries of this matrix are Σii = 1 (due to A having constant row sum), while the off-diagonal is

Σab =
1

m

m∑
i=1

{
+1 if training image xa, xb ∈ Si or xa, xb 6∈ Si
−1 otherwise.

Since Σ has bounded entries (|Σab| ≤ 1), we have that for fixed n, limm→∞Σ = E[Σ], and in particular

Σab → P(xa, xb ∈ Si or xa, xb 6∈ Si)− (1− P(xa, xb ∈ Si or xa, xb 6∈ Si))

P(xa, xb ∈ Si or xa, xb 6∈ Si) = 2 ·
( n

2

n
·
n
2 − 1

n

)
=

1

2
− 1

n

Thus, Σab → −
1

2n
.

Now, using the Sherman-Morrison formula,

Σ−1 =
n

n+ 2

(
I +

2

n
1n×n

)
By construction, the row sums of Z = 2 ·A− 1m×n are 0, and so 1n×n ·Z> = 0. Thus,

wOLS = (Z>Z)−1Z>y =
1

m

(
1

m
Z>Z

)−1
Z>y =

1

m
· n

n+ 2
Z>y.

We now shift our attention to the empirical influence estimator winfl. Using our notation, we can rewrite the (vectorized)
empirical influence estimator (18) as:

winfl = C−1A>y − (m · In −C)−1 (1m×n −A)
>
y

=
(
C−1 − (m · In −C)−1

)
A>y − (m · In −C)−11>m×ny

= m ·C−1 (m · In −C)
−1

A>y − (m · In −C)−11>m×ny

= (m · In −C)
−1 (

m ·C−1A> − 1>m×n
)
y.

Now, as m→∞ for fixed n, the random variable mC−1 converges to 2 · I with probability 1. Thus,

m ·AC−1 − 1m×n → 2 ·A− 1m×n,

and the empirical influence estimator winfl → 2
mZ>y, which completes the proof.
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Algorithm # models (m) Output type Spearman r MSE AUC Difference

Diff. of means 25,000 Correctness 0.028 N/A 0.529
Diff. of means 100,000 Correctness 0.053 N/A 0.555 Under→ Over-determined
Diff. of means 100,000 Margin 0.213 2.052 0.653 Output type

LASSO 100,000 Margin 0.320 1.382 0.724 Explicit datamodel

Table J.1: Disentangling the effect of different factors in datamodel performance. Each row shows a different estimator
for datamodels. We begin with the empirical influence (or difference of means) on correctness computed with 25,000
models, which is in the overparameterized regime (as there are d = 50, 000 variables). Then, we increase the number of
models to an underparamterized regime. Next, we change the output type from correctness to margins. Lastly, we change
the estimation algorithm from difference of means (which is approximately equivalent to OLS, as shown in Appendix J.1)
to LASSO. Each of these changes brings about significant gains in the signal captured by datamodels, as measured by
Spearman rank correlation, MSE, or AUC.

J.2. Evaluating influence estimates as datamodels

Lemma 1 suggests that we can re-cast empirical influence estimates as (rescaled) datamodels fit with least-squares loss.
Under this view, (i.e., ignoring the difference in conceptual goal), we can differentiate between explicit datamodels and
those arising from empirical influences along three axes:

• Estimation algorithm: Most importantly, datamodels explicitly minimize the squared error between true and pre-
dicted model outputs. Furthermore, datamodels as instantiated here use (a) a sparsity prior and (b) a bias term which
may help generalization.

• Scale: Driven by their intended applications (where one typically only needs to estimate the highest-influence training
points for a given test point), empirical influence estimates are typically computed with relatively few samples (i.e.,
m < d, in our setting) (Feldman & Zhang, 2020). In contrast, we find that for datamodel loss to plateau, one needs to
estimate parameters using a much larger set of models.

• Output type: Finally, datamodels do not restrict to prediction of a binary correctness variable—in this paper, for
example, for deep classification models we find that correct-class margin was best both heuristically and in practice.

In this section, we thus ask: how well do the rescaled datamodels that arise from empirical influence estimates predict
model outputs? We address this question in the context of the three axes of variation described above. In order to make
results comparable across different outputs types (e.g., correctness vs. correct-class margin), we measure correlation (in the
sense of Spearman (1904)) between the predicted and true model outputs, in addition to MSE where appropriate. To ensure
a conservative comparison, we also measure performance as a predictor of correctness. In particular, we treat w>1Si as a
continuous predictor of the binary variable 1{model trained on Si is correct on x}, and compute the AUC of this predictor
(intuitively, this should favor empirical influence estimates since they are computed using correctnesses directly).

In Table J.1 we show the difference between empirical influence estimates (first row) and our final datamodel estimates
(last row), while disentangling the effect of the three axes above using the rows in between. As expected, there is a vast
difference in terms of correlation between the original empirical influence estimates and explicit datamodels. We further
illustrate this point in Figure J.1, where we show how the correlation, MSE, and AUC vary with m for both empirical
influence estimates and datamodels, as well as an intermediate estimator that uses the estimation procedure of empirical
influence estimates but replaces correctness with margin.

J.3. Testing Lemma 1 empirically

In this section, we visualize the performance of empirical influence estimates ((Feldman & Zhang, 2020)) as datamodels.
In Figures J.2a and J.2b we plot the distributions of w>infl1Si

|yi for different CIFAR-10 test examples; Figure J.2a shows
these “conditional prediction distributions” for subsets Si that were used to estimate the empirical influence, while Figure
J.2b shows the corresponding distributions on held-out (unseen) subsets Si. The figures suggest that (i) indeed, empirical
influences are somewhat predictive of the correctness yi, (ii) their predictiveness increases as number of samples m→∞
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Figure J.1: Datamodels have significantly better sample complexity than empirical influences. We compare
three estimators—empirical influence, empirical influence on margins, and `1-regularized linear regression on margins
(datamodels)—across a wide range of sample sizes on three different metrics. All metrics are averaged over the entire
test set (i.e. over 10,000 datamodels). For MSE, we only show the estimators on margins as different output types are
incomparable. Across all metrics, datamodels capture significantly more signal than empirical influences using the same
number of samples. Conversely, datamodels need far fewer samples to reach the same level of performance.

but is still rather low, and (c) a significant amount of the prediction error is generalization error, as the train predictions in
Figure J.2a are significantly better-separated than the heldout predictions in Figure J.2b.
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Figure J.2: Empirical influence estimates are (weak) datamodels. Each histogram illustrates the performance of em-
pirical influences when the output of the corresponding datamodel is used as a statistic to distinguish between correct
and incorrect predictions on the target example. Empirical influences can predict correctness on the “train set” of subsets
(i.e. the masks used to estimate them), but suffer from significant generalization error when evaluated on a held-out set of
subsets.
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J.4. View of empirical influences as a Taylor approximation

Lemma 1 shows that we can interpret empirical influences as (rescaled) estimates of the weights of a linear datamodel.
Here, we give an alternative intuition for why this is the case, even though the definition of empirical influence does
not explicitly assume linearity anywhere: we show that the influences define a first-order Taylor approximation of the
multilinear extension f of our target function F of interest, where the influences (approximately) correspond to first-order
derivatives of f .

Recall that we want to learn some output of interest F : 2T → R, say the probability of correctness on a test example z,
as a function of the examples S ⊂ T included in the training set. We first extend this function continuously so that we can
take its derivatives. The multilinear extension (Owen, 1972) of set function F to the domain [0, 1]n (|T | = n) is given by:

f(x) =
∑
S⊆T

F (S)
∏
i∈S

xi
∏
i 6∈S

(1− xi) (19)

f(x) also has an intuitive interpretation: it is the expected value of F (S) when S is chosen by including each xi in the
input with probability xi.

Next, we take the derivative of f w.r.t. to the input xi:

∂f

∂xi
=

∑
S⊆T,i∈S

F (S)
∏

j∈S,j 6=i

xj
∏
j 6∈S

(1− xj)︸ ︷︷ ︸
E

sj∼Bern(xj),si=1
F (S)

−
∑

S⊆T,i 6∈S

F (S)
∏
j∈S

xj
∏

j 6∈S,j 6=i

(1− xj)︸ ︷︷ ︸
E

sj∼Bern(xj),si=0
F (S)

Note that because f is multilinear, the derivative w.r.t. to xi is constant in xi, but not w.r.t. to other xj . Now, observe that
the above expression evaluated at xj = α, ∀xj corresponds approximately21 to α-subsampled influence θi, of i on F : the
first term corrresponds (using our earlier interpretation) to the expectation of F (S) conditional on S including i, and the
second to that conditional on S excluding i.

Finally, the first-order Taylor approximation of f around an x is given as:

f(x) ≈ F (∅) +
∑
i

∂f

∂xi
· xi ≈ F (∅) +

∑
i

θi · xi

where θi are the empirical influences.

The role of α. The above perspective provides an alternative way to think the role of the sampling fraction α. The weights
θi depend on the regime we are interested in; if we use α-subsampled influences, then we are effectively taking a local
linear approximation of f in the regime around ~x = α ·~1.

Remark. Though we include the exposition above for completeness, this is a classical derivation that has appeared in
similar form in prior works (Owen, 1972). Another connection is that Shapley value is equivalent to the integral of f along
the “main diagonal” of the hypercube; it is effectively empirical influences averaged uniformly over the choice of α.

21There are two sources of approximation here. First, the α-subsampling used in our datamodel definition is defined globally (e.g. α
fraction of entire train set), which is different from the i.i.d. Bern(α) sampling that is considered here. Second, we only observe noisy
versions of F (S).
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