
Revisiting Online Submodular Minimization:
Gap-Dependent Regret Bounds, Best of Both Worlds

and Adversarial Robustness

Shinji Ito 1

Abstract
In this paper, we consider online decision prob-
lems with submodular loss functions. For such
problems, existing studies have only dealt with
worst-case analysis. This study goes beyond
worst-case analysis to show instance-dependent
regret bounds. More precisely, for each of the full-
information and bandit-feedback settings, we pro-
pose an algorithm that achieves a gap-dependent
O(log T )-regret bound in the stochastic environ-
ment and is comparable to the best existing al-
gorithm in the adversarial environment. The pro-
posed algorithms also work well in the stochastic
environment with adversarial corruptions, which
is an intermediate setting between the stochastic
and adversarial environments.

1. Introduction
This paper considers the online submodular minimization
problem, a sequential decision-making problem with sub-
modular cost functions. In this problem, a player sequen-
tially chooses a subset Xt ⊆ [n] of a finite set [n] =
{1, 2, . . . , n} and then gets feedback of the cost function ft :
2[n] → R. We suppose that cost functions are submodular,
i.e., we assume that ft(X)+ft(Y ) ≥ ft(X∪Y )+ft(X∩Y )
holds for any X,Y ⊆ [n]. The goal of the player is to mini-
mize the cumulative cost

∑T
t=1 ft(Xt) and the performance

is evaluated by means of the regret RT defined as

RT = max
X∗⊆[n]

E

[
T∑
t=1

ft(Xt)−
T∑
t=1

ft(X
∗)

]
. (1)

For the feedback information, we consider two different
problem settings: the full-information setting and the bandit-
feedback setting. In the former setting, the player gets access
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to all the information in the cost function ft, i.e., can observe
ft(X) for any X , after determining Xt. In the latter bandit-
feedback setting, the player can observe only ft(Xt), but
the values of ft(X) for X 6= Xt are not observable.

In many applications of online submodular optimization,
it is important to consider a variety of environment mod-
els. Submodular functions are closely related to the law of
diminishing returns in economics (Bach, 2013; Fujishige,
2005), and therefore, several applications of submodular
minimization can be found in the context of marketing. As
an application of online submodular minimization, Hazan &
Kale (2012) illustrated the problem of maximizing profits by
choosing a set of goods to produce. Matsuoka et al. (2021)
also pointed out that multi-product price optimization can
be formulated in terms of online submodular minimization.
In the latter application, for example, the profit can be ex-
pressed by a function depending on the set of discounted
products, which is supermodular (negation of submodular)
under the assumption that the demand of each product is
an additive function in prices and products have a relation-
ship of substitute goods (Ito & Fujimaki, 2016). Here, the
cost function ft corresponds to the market response models,
which are supposed to be time-varying in nature. These
examples motivate us to consider a variety of dynamic envi-
ronment models that characterize the behavior of ft.

Previous studies Existing studies on online submodular
minimization focus on adversarial models, in which no
stochastic models for ft are assumed, but {ft}Tt=1 is an
arbitrary sequence of submodular functions. For this model,
Hazan & Kale (2012) have proposed a computationally ef-
ficient algorithm that achieves O(

√
nT )-regret for the full-

information setting. This regret upper bound is worst-case
optimal up to a constant. In fact, any algorithm suffers regret
of at least Ω(

√
nT ) for some (worst-case) input sequences

of ft. For the bandit-feedback setting, they have presented
an algorithm with O(nT 2/3)-regret as well. It is not known
if this is tight at present.

A drawback of the worst-case optimal algorithms for the
adversarial model is that they tend to be too conservative.
In the adversarial model, because no assumptions are made
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Table 1. Regret bounds for online submodular minimization with full-information feedback.

Model Alg. 2 in [HK12]1 FTL Alg. 1 in [This work] Lower bound

Adversarial O(
√
nT ) − O(

√
nT ) Ω(

√
nT )

Stochastic O(
√
nT ) O

(
n
∆

)
O
(

min
{√

nT , n∆

})
Ω
(

min
{√

nT , 1
∆

})
Sto. with Adv. O(

√
nT ) − O

(
min

{√
nT , n∆ +

√
Cn
∆

})
Ω
(

min
{√

nT , 1
∆ +

√
C
∆

})

Table 2. Regret bounds for online submodular minimization with bandit feedback.

Model Alg. 3 in [HK12]1 Alg. 2 in [This work] Lower bound

Adversarial O(nT 2/3) O(nT 2/3(log T )1/3) Ω(n
√
T )

Stochastic O(nT 2/3) O
(

min
{
nT 2/3(log T )1/3, n

3 log T
∆2

})
Ω
(

min
{
n
√
T , n

2

∆

})
Sto. with Adv. O(nT 2/3) Õ

(
min

{
nT 2/3, n

3

∆2 +
(
C2n3

∆2

)1/3
})

Ω
(

min
{
n
√
T , n∆ +

√
Cn
∆

})

about the input sequence, worst-case analysis is used, i.e.,
the algorithm is evaluated by its performance on the most
difficult input sequence {ft}Tt . In practice, however, such
difficult environments are not always the case. For example,
if the environment can be assumed to be stationary, then
the stochastic model is reasonable, in which ft follows an
unknown distribution, i.i.d., for all t. In this case, a simple
follow-the-leader (FTL) algorithm achieves O( n∆ )-regret,
where ∆ > 0 represents the suboptimality gap parameter
defined in Section 3, as can be concluded from the stan-
dard analysis for FTL, e.g., from Theorem 1 by Degenne &
Perchet (2016). This bound is independent of the number T
of rounds, and better than the worst-case optimal bound of
O(
√
nT ) for sufficiently large T .

Motivations In order to overcome the shortcoming of al-
gorithms for the adversarial model, this study aims to go
beyond worst-case analysis by developing algorithms that
adapt to the tendencies of the environment. In particular,
we focus on best-of-both-worlds (BOBW) algorithms that
perform well for both stochastic and adversarial models.
Furthermore, we consider the stochastic model with adver-
sarial corruptions, which is an intermediate setting between
stochastic and adversarial models. In this setting, the ad-
versary corrupts the stochastically generated losses, and the
total amount of disturbance is represented by the corruption
level parameter C, of which definition is given in Section 3.
If C = 0, this model is equivalent to the stochastic model.
By way of contrast, if C is unconstrained (e.g., C = O(T )),
the model is equivalent to the adversarial model. From these
facts, we can see that the stochastic model with adversarial
corruptions is a comprehensive setting that includes both
stochastic and adversarial models.

1[HK12] stands for a reference to the paper by Hazan & Kale
(2012).

Contributions The contribution of this work is to de-
velop BOBW algorithms for online submodular minimiza-
tion. The proposed algorithm (Algorithm 1) for the full-
information setting achieves O(

√
nT )-regret in the adver-

sarial model and O( n∆ )-regret in the stochastic model. In
addition, for the stochastic model with adversarial corrup-

tion, Algorithm 1 has the regret bound of O( n∆ +
√

Cn
∆ ).

This can be achieved without any prior knowledge on the
corruption level C. For the bandit-feedback setting, we
propose an algorithm (Algorithm 2) that achieves regret
bounds of O(nT 2/3(log T )1/3) in the adversarial model,
of O(n

3 log T
∆2 ) in the stochastic model, and of O(n

3log T
∆2 +

(C
2n3 log T

∆2 )1/3) in the stochastic model with adversarial
corruptions. The regret bounds for full-information and
bandit-feedback settings are summarized in Tables 1 and 2,
respectively.

In the design of algorithms, we combine two main technical
elements, the Lovász extension (Lovász, 1983; Fujishige,
2005) of submodular functions, and the framework of follow-
the-regularized-leader (Cesa-Bianchi & Lugosi, 2006) with
adaptive learning rates. The Lovász extension is a technique
that extends the domain of set functions to continuous re-
gions, by which we can reduce submodular minimization
into convex optimization problems. Such a technique has
been employed in the work by Hazan & Kale (2012), as well
as in several studies on submodular function minimization
(Ito, 2019; Chakrabarty et al., 2017; Axelrod et al., 2020;
Matsuoka et al., 2021).

A key technique in this paper to go beyond the existing stud-
ies is to use the follow-the-regularized-leader method with
time-varying regularizers, instead of the simple subgradient
descent method with constant learning rate employed, e.g.,
by Hazan & Kale (2012). By designing regularizers in a
sophisticated way, we obtain regret bounds depending on
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the output sequence. More concretely, this paper provides
a novel regularizer and an update rule of learning rates for
each of full-information and bandit-feedback settings, so
that we can obtain regret bounds depending on the output
sequences. Such output-dependent regret bounds lead to
BOBW properties and robustness to adversarial corruptions,
via the so-called self-bounding technique (Wei & Luo, 2018;
Zimmert & Seldin, 2021; Masoudian & Seldin, 2021). A
further description and references of the self-bounding tech-
nique are provided in the next section.

2. Related Work
Submodular function minimization (Iwata, 2008; Mc-
Cormick, 2005) has been studied for a long time, with
a wide range of applications such as combinatorial opti-
mization problems (Fujishige, 2005), image segmentation
(Jegelka & Bilmes, 2011b; Kohli & Torr, 2010), super-
vised learning with structured regularization (Bach, 2013),
training data subset selection (Lin & Bilmes, 2010), and
multi-product price optimization (Ito & Fujimaki, 2016).
For exact optimization, after the first polynomial-time al-
gorithm was proposed by Grötschel et al. (1981), many
improvements followed (Iwata et al., 2001; Schrijver, 2000;
Orlin, 2009; Iwata, 2003; Lee et al., 2015). For approxi-
mate optimization, Chakrabarty et al. (2017) and Axelrod
et al. (2020) have proposed subgradient-descent-based al-
gorithms that find an ε-additive approximate minimizer run
in Õ(n5/3/ε2)-time and in Õ(n/ε2)-time, respectively. Ito
(2019) proposed algorithms for submodular function min-
imization with noisy function value oracles, which can be
considered as a special case of online submodular minimiza-
tion (Hazan & Kale, 2012). Matsuoka et al. (2021) also
considered online submodular minimization problems and
proposed algorithms with tracking-regret bounds. Jegelka &
Bilmes (2011a) have studied online constrained submodular
minimization problems over some combinatorial structures
and proposed online approximation algorithms for them.

Best-of-both-worlds (BOBW) algorithms have been studied
extensively for a variety of online decision problems, includ-
ing the problem of prediction with expert advice (Gaillard
et al., 2014; Luo & Schapire, 2015; De Rooij et al., 2014;
Mourtada & Gaı̈ffas, 2019), the multi-armed bandit problem
(Bubeck & Slivkins, 2012; Seldin & Slivkins, 2014; Auer &
Chiang, 2016; Zimmert & Seldin, 2021; Ito, 2021c; Wei &
Luo, 2018), combinatorial semi-bandit problems (Zimmert
& Seldin, 2019; Ito, 2021a), online learning with feedback
graphs (Erez & Koren, 2021), linear bandit problems (Lee
et al., 2021), and episodic MDPs (Jin et al., 2021; Jin & Luo,
2020). Among these, studies by Gaillard et al. (2014) and
Luo & Schapire (2015) are particularly relevant to this study.
These studies show the BOBW property via regret bounds
depending on the output sequence, using the self-bounding

technique. The self-bounding technique, which is employed
in several studies on BOBW algorithms (Gaillard et al.,
2014; Luo & Schapire, 2015; Wei & Luo, 2018; Zimmert &
Seldin, 2019; 2021; Ito, 2021c; Erez & Koren, 2021), has
been used to show the robustness to adversarial corruption
as well, e.g., for the multi-armed bandit (Zimmert & Seldin,
2021; Ito, 2021c; Masoudian & Seldin, 2021) and for online
learning with feedback graphs (Erez & Koren, 2021).

For adversarial corruption in the stochastic environments,
several different models have been studied, including the
oblivious corruption model (Lykouris et al., 2018; Gupta
et al., 2019; Bogunovic et al., 2020) and the targeted cor-
ruption model (Jun et al., 2018; Hajiesmaili et al., 2020; Liu
& Shroff, 2019; Bogunovic et al., 2021; Amir et al., 2020).
These two models differ in the information that can be ac-
cessed by adversaries. Specifically, in the former oblivious
corruption model, the adversary corrupts the cost function
ft before observing the player’s action Xt, whereas, in the
latter targeted corruption model, the corruption on ft is de-
termined depending on the player’s action Xt. This study
deals with the former model. It is known that some BOBW
algorithms based on the self-bounding technique work well
for the oblivious corruption model (Zimmert & Seldin, 2021;
Erez & Koren, 2021).

In the context of online submodular optimization, there is
more research on maximization than on minimization. As
typical submodular function maximization problems are
computationally hard, unlike minimization problems, ap-
proximate regrets are used as evaluation metrics. For on-
line size-constrained monotone submodular maximization,
Streeter & Golovin (2008) provided algorithms achieving
sublinear (1 − 1/e)-approximate regret. Similarly for on-
line unconstrained non-monotone submodular maximiza-
tion, Roughgarden & Wang (2018) have proposed an al-
gorithm with a (1/2)-approximate-regret bound. These
regret bounds have been improved by Harvey et al. (2020).
Besides these, the study on online submodular maximiza-
tion has been extended to include k-submodular maximiza-
tion (Soma, 2019) and continuous submodular maximiza-
tion (Chen et al., 2018a;b; Zhang et al., 2019). Additional
topics and applications of submodular functions can be
found in the paper by Bilmes (2022).

3. Problem Setting
A player is given T ≥ 2 and n ≥ 1, which represent the
number of rounds and the size of the underlying set as-
sociated with cost functions, respectively. In each round
t ∈ [T ], the player (randomly) chooses a subset Xt ∈ [n] of
the underlying set [n] := {1, 2, · · · , n}. We consider two
different settings w.r.t. the feedback information about the
cost function. In the full-information setting, after choosing
Xt, the player can observe all function values of the cost
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function ft : 2[n] → [0, 1], i.e., can observe ft(X) for any
X ∈ [n] after choosing Xt. In the bandit-feedback setting,
the player can observe only the value ft(Xt) for the cho-
sen action Xt. Cost functions ft are here assumed to be
submodular, i.e.,

ft(X ∩ Y ) + ft(X ∪ Y ) ≤ ft(X) + ft(Y ) (2)

holds for any X,Y ⊆ [n]. In each round t, the environment
decides ft before the player chooses Xt.

The performance of the algorithm is evaluated in terms of
the (pseudo-) regret RT defined by (1) which is the differ-
ence between the cumulative loss for the algorithm’s choice
{Xt}Tt=1 and that for an optimal fixed action X∗ that mini-
mizes the cumulative loss in expectation.

This work considers three different models for the environ-
ment: the stochastic model, the adversarial model, and the
stochastic model with adversarial corruptions.

Stochastic model In the stochastic model, we assume
there exists an unknown distribution D over a set of sub-
modular functions, and ft : 2[n] → [0, 1] followsD i.i.d. for
all t = 1, 2, . . . , T . Denote

f̄(X) = E
f∼D

[f(X)].

We define X∗ ⊆ [n] and the suboptimality gap ∆ ≥ 0 by

X∗ ∈ arg min
X⊆[n]

f̄(X), ∆ = min
X∈2[n]\{X∗}

(f̄(X)− f̄(X∗)).

We note that no prior knowledge on the parameter ∆ is
given to the player. When considering the gap-dependent
regret bounds, we assume ∆ > 0, i.e., we assume that
the minimizer of f̄ is unique. Similar assumptions were
also made in previous works (Gaillard et al., 2014; Luo &
Schapire, 2015; Wei & Luo, 2018; Mourtada & Gaı̈ffas,
2019). We note that, in this model, the regret defined by (1)
can be rewritten as RT =

∑T
t=1(E

[
f̄(Xt)

]
− f̄(X∗)) with

X∗ ∈ arg minX⊆[n] f̄(X), which follows from the fact that
Xt is dependent of ft.

Adversarial model In the adversarial model, the cost
function may behave in a non-stationary manner. More
precisely, in this model, the environment chooses submod-
ular functions ft : 2[n] → [0, 1] depending on the output
sequence (X1, X2, . . . , Xt−1) which the algorithm has cho-
sen so far. As is obvious, this adversarial model includes
the stochastic model as a special case.

Stochastic model with adversarial corruptions In the
stochastic model with adversarial corruptions (SwA model),
a temporary cost f ′t : 2[n] → [0, 1] is chosen from an
unknown stationary distribution D, and then the adversary

corrupts f ′t to produce the cost ft : 2[n] → [0, 1]. We here
assume that both ft and f ′t are submodular. We define the
corruption level C by

C =

T∑
t=1

max
X⊆[n]

|E [ft(X)− f ′t(X)] |, (3)

which measures the total amount of corruption by the adver-
sary. From the definition, the corruption level is bounded as
0 ≤ C ≤ T . This study deals with a problem setup in which
the player is given no prior knowledge on the corruption
level C. Note that the player can only observe information
about ft, but not about f ′t . Also, the regret is defined on
the basis of f , not on f ′t . In the SwA model, we define the
parameter ∆ in the same way as in the stochastic model,
from the distribution D that generates f ′t .

When considering SwA model, this study investigates the
regret RT defined in terms of cost functions ft after cor-
ruption, as in (1). We note that some existing studies focus
on an alternative regret notion R′T defined in terms of cost
functions f ′t before corruption. When comparing RT and
R′T , which is more natural depends on the application sce-
nario. In the application to price optimization (described
in Section 1), if the corruption is due to seasonal demand
fluctuations and the actual profit is corrupted, using RT
is probably the right choice as it reflects the actual total
profit. If the corruption is due to the miscalculation in ac-
counting and the actual profit is not corrupted, its natural
to evaluate the performance w.r.t. R′T . A discussion on the
difference between RT and R′T can be found in Section
5.2 of (Gupta et al., 2019). One of the reasons we chose
RT is because a bound on RT implies a bound on R′T . In
fact, as we obtain |RT − R′T | = O(C) from the defini-
tion, a regret bound of RT = O(R +

√
CR) implies that

R′T = O(R+
√
CR+C) = O(R+C) where we used the

AMGM inequality. On the other hand, R′T = O(R + C)

does not imply RT = O(R+
√
CR).

4. Proposed Algorithms
4.1. Preliminary

Lovász extension Given a set function f : 2[n] → R, we
can define the Lovász extension f̃ : [0, 1]n → R as follows:
For x = (x1, x2, . . . , xn)> ∈ [0, 1]n and u ∈ [0, 1], let
Hu(x) denote the set of indices i for which xi ≥ u, i.e.,
Hu(x) := {i ∈ [n] | xi ≥ u}. Then the Lovász extension
f̃ is defined by

f̃(x) = E
u∼Unif([0,1])

[f(Hu(x))] , (4)

where Unif([0, 1]) means a uniform distribution over [0, 1].
The Lovász extension f̃ is convex if and only if f is sub-
modular (Lovász, 1983). From this definition, for any
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x ∈ [0, 1]n, and for any permutation σ : [n]→ [n] such that
xσ(i) ≤ xσ(i+1) for any i ∈ [n− 1], f̃(x) can be expressed
as

f̃(x) =

n∑
i=0

(xσ(i+1) − xσ(i))f(σ([i])), (5)

where we denote σ([i]) = {σ(j) | j ∈ [i]} and exception-
ally define xσ(0) = 0 and xσ(n+1) = 1. Hence, h(σ) ∈ Rn

defined in the following is a subgradient of f̃ at x:

h(σ) =

n∑
i=0

f(σ([i]))ρi(σ), (6)

ρi(σ) =

 χσ(1) i = 0
χσ(i+1) − χσ(i) i ∈ [n− 1]
−χσ(n) i = n

, (7)

where χi ∈ {0, 1}n expresses the indicator vector of i,
i.e., χij = 1 if and only if i = j. From the definition of
subgradients, we have f̃(y) − f̃(x) ≥ 〈h(σ), y − x〉 for
any y ∈ [0, 1]n. In the regret analysis for the proposed
algorithms, we use the following lemma:
Lemma 4.1. If f : 2[n] → [0, 1] is a submodular function,
subgradients h(σ) of the Lovász extension of f defined in
(6) are bounded as ‖h(σ)‖1 ≤ 4 for any permutation σ.

The proof of this lemma can be found, e.g., in the paper by
Hazan & Kale (2012); see the proof of their Lemma 8.

Follow the regularized leader The follow-the-
regularized-leader (FTRL) method is a generic approach for
online convex optimization. Let Ω ⊆ Rn denote a convex
feasible region. The update rule of FTRL can be expressed
as follows:

xt ∈ arg min
x∈Ω

{〈
x,

t−1∑
s=1

gs

〉
+ ψt(x)

}
, (8)

where gt denotes a subgradient of the cost function ft at xt
and ψt is a regularizer that is a smooth convex function over
Ω. Regret bounds for FTRL can be analyzed using the Breg-
man divergences. Let Dt denote the Bregman divergence
associated with ψt:

Dt(x, y) = ψt(x)− ψt(y)− 〈∇ψt(y), x− y〉 , (9)

where∇ψt represents the gradient of ψt.

For the FTRL method defined by (8), we have the following
regret bound:
Lemma 4.2. For xt ∈ Ω defined by (8) and for any x∗ ∈ Ω,
we have
T∑
t=1

(ft(xt)−ft(x∗)) ≤
T∑
t=1

(〈gt, xt − xt+1〉−Dt(xt+1, xt))

+

T∑
t=1

(ψt(xt+1)− ψt+1(xt+1)) + ψT+1(x∗)− ψ1(x1).

For the proof of this lemma, see, e.g., Exercise 28.12 of the
book by Lattimore & Szepesvári (2020).

4.2. Algorithm for the full-information setting

This subsection provides an algorithm for the full-
information setting. The proposed algorithm is based on
FTRL (8) with regularizers defined as

ψt(x) =

n∑
i=1

λtiφ(xi),

φ(z) = z log z + (1− z) log(1− z), (10)

where λti > 0 corresponds to learning rates, which are
defined in (11) below. This regularization term makes a
significant difference from the existing study by Hazan &
Kale (2012). The function φ corresponds to the negative
entropy, which is used to construct BOBW algorithms for
the problem of prediction with expert advice (Gaillard et al.,
2014; Luo & Schapire, 2015). Intuitively, when we use the
regularization terms in (10), the closer x is to the boundary
of [0, 1]n, the stronger the regularization effect. As a result,
we get an {xt}-dependent regret upper bound as shown in
Proposition 4.5 below, which becomes smaller as xt’s get
closer to the boundary. This allows us to prove the BOBW
property and robustness to adversarial corruption.

The proposed algorithm computes xt on the basis of follows-
the-regularized-leader method defined in (8) with the regu-
larizer function ψt defined in (10) and with subgradients gs
of the Lovász extensions f̃s of the cost function fs. After
computing xt, the algorithm output Xt = Hu(xt) = {i ∈
[n] | xti ≥ ut}, where u is chosen from a uniform distribu-
tion over [0, 1]. We then have E[ft(Xt)] = E[f̃(xt)] from
(4).

Let us show how we can compute xt defined with (8) and
(10). As we have dφ(z)

dz = log z
1−z , the vector xt ∈ [0, 1]n

determined by the FTRL method (8) can be expressed as

xti =
1

1 + exp(Gti/λti)
, Gt =

t−1∑
s=1

gs =

t−1∑
s=1

hs(σs),

where σs : [n] → [n] is a permutation over [n] such that
xsσs(i) ≤ xsσs(i+1) for i ∈ [n − 1] and hs(σs) ∈ Rn is
define as in (6) with f = fs and σ = σs.

We set the learning rate λti by

λti = 2 +
1

log 2

t−1∑
s=1

λsi · ν
(
gsi
λsi

, xsi

)
(11)

where ν is defined as

ν(g, z) = log(1− z + z exp(g))− zg (12)
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Algorithm 1 An algorithm for the full-information setting
Require: The size n of the underlying set.

1: Initialize Gti by G1i = 0 for all i ∈ [n].
2: for t = 1, 2, . . . do
3: Compute xt ∈ [0, 1]n by xti = 1

1+exp(Gti/λti)
for

each i ∈ [n], where λti is defined in (11).
4: Let σt : [n] → [n] be a permutation over [n] such

that xtσt(i) ≤ xtσt(i+1) for all i ∈ [n− 1].
5: Pick ut from a uniform distribution over [0, 1].
6: Output Xt = Hut

(xt) = {i ∈ [n] | xti ≥ ut}.
7: Compute gt ∈ Rd defined as

gt = ht(σt) =

n∑
i=0

ft(σt([i]))ρi(σt), (13)

where ρi(σt) is defined in (6).
8: Update Gt by Gt+1 = Gt + gt.
9: end for

for all z ∈ [0, 1] and g ∈ R.

The proposed algorithm for the full-information setting can
be summarized in Algroithm 1. The computational time per
round required by Algorithm 1 is O(n(EO log n)), where
EO denotes the time taken to evaluate ft(X) for a single
input X . In fact, computing σt can be done in O(n log n),
each λti can be computed in O(1) time via the updated
rule of λt+1,i = λti + 1

log 2λtiν( gtiλti
, xti), and the other

computation can be done in O(n) time.

In the rest of this subsection, we show the following regret
bound:

Theorem 4.3. The regret for Algorithm 1 is bounded as

RT =


O
(√

nT
)

(Adv. model)

O
(
n
∆

)
(Sto. model)

O
(
n
∆ +

√
Cn
∆

)
(SwA model)

. (14)

To show this bound, we use Lemma 4.2. When ψt is defined
as (10), the parts of 〈gt, xt − xt+1〉 −Dt(xt+1, xt) can be
bounded as follows:

Lemma 4.4. If ψt is defined by (10) with λti ≥ 2, we have

〈gt, xt − xt+1〉 −Dt(xt+1, xt)

≤
n∑
i=1

λti · ν
(
gti
λti

, xti

)
≤

n∑
i=1

g2
ti min{xti, 1− xti}

λti
.

All omitted proof can be found in the appendix. Combining
this lemma with Lemmas 4.1 and 4.2, and from the defi-
nition (11) of the learning rates, we obtain the following
proposition:

Proposition 4.5. The regret for Algorithm 1 is bounded as
follows:

RT = O

E


√√√√n

T∑
t=1

max
i∈[n]
{min{xti, 1− xti}}

+ n

 .

As we have maxi∈[n]{min{xti, 1 − xti}} ≤ 1, the regret
bound of O(

√
nT ) in Theorem 4.3 immediately follows

from Proposition 4.5. The other regret bounds in Theo-
rem 4.3 can be shown by using the self-bounding technique
and the following lemma.

Lemma 4.6. In the SwA model, we have

T∑
t=1

E[ft(Xt)− ft(X∗)] ≥ ∆

T∑
t=1

Prob[Xt 6= X∗]− 2C

for any X∗ ⊆ [n]. This inequality implies

RT ≥ ∆E

[
T∑
t=1

max
i∈[n]
{min{xti, 1− xti}}

]
− 2C. (15)

We are now ready to prove Theorem 4.3.
Proof of Theorem 4.3. The regret bound of O(

√
nT ) can

be shown immediately from Proposition 4.5. As we have
maxi∈[n]{min{xti, 1−xti}} ≤ 1, from Proposition 4.5, we
haveRT = O(

√
nT+n). Further, from the assumption that

|ft(X)| = O(1) for all X , we have a trivial regret bound of
RT = O(T ). Combining these two regret upper bounds, we
obtain RT = O(min{

√
nT + n, T}) = O(

√
nT ). Indeed,

in the case of T ≤ n, we have min{
√
nT + n, T} ≤ T ≤√

nT , and in the other case of T > n, we have min{
√
nT +

n, T} ≤
√
nT + n ≤ 2

√
nT .

Improved regret bounds for the stochastic model
(with adversarial corruptions) can be shown from
Proposition 4.5 and Lemma 4.6. Denote Q =

E
[∑T

t=1 maxi∈[n] {min{xti, 1− xti}}
]
. Then Proposi-

tion 4.5 and Jensen’s inequality implies that RT ≤
B(
√
nQ + n) for some constant B > 0, and (15) can be

rewritten as RT ≥ ∆Q − 2C. By combining these two
inequalities, for any η > 0, we obtain

RT = (1 + η)RT − ηRT

≤ (1 + η)B
(√

nQ+ n
)
− η(∆Q− 2C)

= (1 + η)B
√
nQ− η∆Q+ η(Bn+ 2C) +Bn

≤ (1 + η)2B2n

4η∆
+ η(Bn+ 2C) +Bn

=
B2n

4η∆
+ η

(
B2n

4∆
+Bn+ 2C

)
+Bn+

B2n

2∆
,
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where the second inequality follows from the fact that
ax − bx2 = −b(x − a

2b )
2 + a2

4b ≤
a2

4b holds for any
a ≥ 0, b > 0 and x ∈ R. We applied this inequality
with a = (1 + η)B

√
n, b = η∆ and x =

√
Q. By setting2

η =
(

1 + 4∆(Bn+2C)
B2n

)−1/2

, we obtain

RT ≤ 2

√
B2n

4∆

(
B2n

4∆
+Bn+ 2C

)
+Bn+

B2n

2∆

≤ B2n

∆
+

√
2B2C

∆
+

√
B3n2

∆
+Bn

= O

(
n

∆
+

√
Cn

∆

)
,

where the second inequality follows from
√
x+ y ≤

√
x+√

y that holds for any x, y ≥ 0, and the last inequality
follows from B = O(1) and ∆ ≤ 1. This completes the
proof for the regret bounds for the stochastic model and
for the stochastic model with adversarial corruptions in
Theorem 4.3.

4.3. Algorithm for the bandit-feedback setting

This subsection provides an algorithm for the bandit-
feedback setting. The proposed algorithm compute xt and
σt in a similar way as in Section 4.2. After computing xt,
we choose Xt in a similar way to Algorithm 3 in the paper
by Hazan & Kale (2012). We set Xt = σt([it]), where
it ∈ {0, 1, . . . , n} is chosen so that

Prob[it = i|xt] = pt(i)

= (1− γt)(xtσt(i+1) − xtσt(i)) +
γt

n+ 1
, (16)

where γt ∈ [0, 1] is the exploration rate parameter defined
in (22) below. We then have

E[ft(Xt)|xt] ≤ (1− γt)f̃t(xt) + γt ≤ f̃t(xt) + 2γt,
(17)

as provided in Lemma 15 of the paper (Hazan & Kale, 2012).
After observing ft(Xt), we compute ĝt ∈ Rn defined as

ĝt =
1

pt(it)
ft(Xt)ρit(σt). (18)

This vector ĝt is an unbiased estimator of a subgradient
gt = ht(σt) of f̃t(x) at xt. For the bandit setting, we use
the regularization functions ψt defined as follows:

ψt(x) = −λt
n∑
i=1

(log(xi) + log(1− xi)) . (19)

2The parameter η does not appear in the algorithm but appears
only in the analysis. Therefore, we do not need C as an input.

Algorithm 2 An algorithm for the bandit-feedback setting
Require: The size n of the underlying set, and the number

T of rounds.
1: Initialize Ĝti by Ĝ1i = 0 for all i ∈ [n].
2: for t = 1, 2, . . . , T do
3: Compute xt ∈ [0, 1]n by xti = ζ(Ĝti/λt) for each

i ∈ [n], where ζ and λt are defined in (20) and (22),
respectively.

4: Let σt : [n] → [n] be a permutation over [n] such
that xtσt(i) ≤ xtσt(i+1) for all i ∈ [n− 1].

5: Pick it ∈ {0, 1, . . . , n} with the probability defined
in (16), where γt is defined in (22).

6: Output Xt = σt([it]) = {σt(j) | j ∈ [it]}, and get
feedback of ft(Xt).

7: Compute ĝt ∈ Rd defined in (18), where ρi(σt) is
given in (6).

8: Update Ĝt by Ĝt+1 = Ĝt + ĝt.
9: end for

Then the vector xt given by the FTRL method (8) with gt =

ĝt can be expressed as xti = ζ( Ĝti

λt
), where Ĝt =

∑t−1
s=1 gs

and ζ(z) is defined by

ζ(z) =


1
2

(
1 + 2

g −
√

1 + 4
g2

)
(g > 0)

1
2

(
1 + 2

g +
√

1 + 4
g2

)
(g < 0)

1/2 (g = 0)

. (20)

Define a vector vt = (vti)
n
i=1 ∈ [0, 1]n by

vti = min{xti, 1− xti}. (21)

We set the learning rate λt and the exploration rate γt as
follows:

λt = 2n+

(
1√

n log T

t−1∑
s=1

‖vs‖2

)2/3

, γt =

√
n

λt
‖vt‖2.

(22)

The proposed algorithm for the bandit setting is summarized
in Algorithm 2. The computational time per round required
by Algorithm 2 is O(n log n+ EO), where EO denotes the
time taken to evaluate ft(X) for a single input X .

Algorithm 2 enjoys the following regret bound:

Theorem 4.7. The regret for Algorithm 2 is bounded as

RT =


O
(
nT 2/3(log T )1/3

)
(Adv. model)

O
(
n3 log T

∆2

)
(Sto. model)

O

(
n3 log T

∆2 +
(
C2n3 log T

∆2

)1/3
)

(SwA model)

.

The proof of this theorem starts with the following lemma:
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Lemma 4.8. If Xt and ĝt are given with (16) and (18), the
regret can be bounded as

RT ≤ E

[
T∑
t=1

〈ĝt, xt − x∗〉+ 2

T∑
t=1

γt

]
+ 4, (23)

where the vector x∗ = (x∗i )
n
i=1 = [ 1

T , 1−
1
T ]n is defined as

x∗i = (1− 2
T )1[i ∈ X∗] + 1

T .

This can be shown from (17) and the fact that ĝt is an
unbiased estimator of a subgradient of f̃t at xt. The first
term

∑T
t=1 〈ĝt, xt − x∗〉 of the right-hand side of (23) can

be analyzed via Lemma 4.2, a part of which can be bounded
with the following:

Lemma 4.9. If ψt is defined by (19) with λt satisfying
| ĝtivtiλt

| ≤ 1
2 for all i ∈ [n], we have

〈ĝt, xt − xt+1〉 −Dt(xt+1, xt) ≤
1

λt

n∑
i=1

ĝ2
tiv

2
ti, (24)

where vti is defined in (21). In addition, if ĝt is given by
(18), the expectation of the right-hand side of (24) is at most
O( n

γtλt
‖vt‖22).

Combining this lemma with Lemmas 4.2 and 4.8, we obtain

RT ≤ O

(
E

[
T∑
t=1

(
n‖vt‖22
γtλt

+ γt

)
+ nλT+1 log T

])
.

From this and the definitions (22) of parameters γt and λt,
we have the following:

Proposition 4.10. The regret for Algorithm 2 is bounded
as follows:

RT =O

E
(n2 log T )1/3

(
T∑
t=1

‖vt‖2

)2/3
+ n2 log T

.
We are now ready to show Theorem 4.7.
Proof of Theorem 4.7. We can show the regret bound of
O(nT 2/3(log T )1/3) from ‖vt‖2 = O(

√
n), in a similar

way to the proof of Theorem 4.3.

As we have ‖vt‖2 ≤
√
n‖vt‖∞, we have

∑T
t=1 ‖vt‖2 ≤√

n
∑T
t=1 ‖vt‖∞ :=

√
nQ. Hence, from Proposi-

tion 4.10, there exists a constant B such that RT ≤
B(n(log T )1/3Q2/3 + n2 log T ). Combining this with
Lemma 4.6, for any η ∈ (0, 1], we obtain

RT = (1 + η)RT − ηRT
= (1 + η)B(n(log T )1/3Q2/3 + n2 log T )− η(∆Q− 2C)

≤ 2Bn(log T )1/3Q2/3 − η∆Q+ 2n2 log T + 2ηC.
(25)

We then use the inequality of

ax2 − bx3 ≤ 4a3

27b2
. (26)

that holds for a ≥ 0, b > 0 and x > 0. We can
confirm (26) by considering the maximizer of the left-
hand side. In fact, the left-hand side is maximized when
2ax − 3bx2 = 0, which means, x = 2a

3b . Then the left-
hand side is equal to 4a3

27b3 , which implies that (26) holds
for any x > 0. Applying (26) with a = 2Bn(log T )1/3,
b = η∆, and x = Q1/3 to (25), we obtain RT ≤
32n3 log T
27η2∆2 + 2n2 log T + 2ηC = O

(
n3 log T
η2∆2 + ηC

)
. By

setting η = min

{
1, C−1/3

(
n3 log T

∆2

)1/3
}

, we obtain the

regret bounds for the stochastic model (with adversarial
corruptions) in Theorem 4.7.

5. Lower Bounds
This section discusses regret lower bounds for online sub-
modular minimization. For the worst-case regret bounds
of Ω(

√
nT ) in the full-information setting and of Ω(n

√
T )

in the bandit-feedback setting, see, e.g., Theorem 14 by
Hazan & Kale (2012) and Theorem 3 by Dani et al. (2008),
respectively.

The gap- and corruption-level-dependent regret lower

bounds of Ω( 1
∆ +

√
C
∆ ) for the full-information setting im-

mediately follow from Theorem 5 by Ito (2021b) as online
submodular minimization includes the problem of predic-
tion with experts (with N = 2 experts) as a special case.
For the bandit-feedback setting, we can show a lower bound

of Ω( n∆ +
√

Cn
∆ ) by combining the techniques in the proof

of Theorem 3 in the paper (Dani et al., 2008) and those for
Theorem 5 in (Ito, 2021b).
Theorem 5.1. For any ∆ ∈ (0, 1

4n ), n ≥ 4, T ≥ n2 and
C ∈ [0, T ], and for any online submodular minimization
algorithm with bandit feedback, there exists an environment
in the stochastic model with adversarial corruption with the
given parameters ∆, n, T , and C, for which the regret is

bounded from below as RT = Ω(min{ n∆ +
√

Cn
∆ , n

√
T}).

6. Conclusions And Open Questions
This paper revisits online submodular minimization and pro-
vides best-of-both-worlds algorithms with gap-dependent
regret bounds and robustness to adversarial corruption. In
both settings of full information and bandit feedback, there
are gaps between the upper and lower bounds, and closing
these gaps remains open problems. The lower bounds in
this paper are constructed with the environment with linear
objectives ft. For such special cases of linear optimiza-
tion problems, Zimmert & Seldin (2019) have provided
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an algorithm with bandit feedback, of which regret upper
bound matches the lower bounds, as shown in their Theorem
4. This fact means that we need to consider the problem
instances with nonlinear objective functions in order to im-
prove the lower bound. On the other hand, there is still the
possibility that the lower bounds are tight, and thus online
submodular minimization is only as difficult as online linear
optimization.
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A. Omitted Proofs
A.1. Proof of Lemma 4.4

We first show

〈gt, xt − xt+1〉 −Dt(xt+1, xt) ≤
n∑
i=1

λti · ν
(
gti
λti

, xti

)
. (27)

When ψt is defined by (10), the Bregman divergence Dt associated with ψt can be expressed as

Dt(xt+1, xt) =

n∑
i=1

λtid(xt+1,i, xti),

where d is defined by

d(a, b) = φ(a)− φ(b)− φ′(b)(a− b)
= a log a+ (1− a) log(1− a)− b log b− (1− b) log(1− b)− (log b− log(1− b))(a− b)

= a log
a

b
+ (1− a) log

1− a
1− b

.

Hence, we have

〈gt, xt − xt+1〉 −Dt(xt+1, xt) =

n∑
i=1

(gti · (xti − xt+1,i)− λtid(xt+1,i, xti)) . (28)

The right-hand side of this can be bounded via the following:

max
y∈[0,1]

{ξ(y)} := max
y∈[0,1]

{g · (x− y)− λd(y, x)} = λ · ν
( g
λ
, x
)
, (29)

where ν is defined in (12). We can see that (29) holds for any g ∈ R, x ∈ (0, 1), and λ > 0. In fact, ξ is a concave function
and its derivative can be expressed as

dξ(y)

dy
= −g − λ · (φ′(y)− φ′(x)) = −g − λ ·

(
log

y

1− y
− log

x

1− x

)
,

and hence, the maximum is attained when y satisfies −g − λ · (φ′(y)− φ′(x)) = 0. When we substitute such y into ξ(y),
we have ξ(y) = λ · ν( gλ , x), which implies (29) holds. By combining (28) and (29), we obtain (27).

We next show

ν(g, z) ≤ min{z, 1− z}g2 (30)

holds for any g ∈ [−1/2, 1/2] and z ∈ [0, 1]. As we have log(1 + x) ≤ x for any x > −1, we have

ν(g, z) = log(1− z + z exp(g))− zg ≤ −z + z exp(g)− zg = z(exp(g)− g − 1) ≤ zg2, (31)

where the last inequality follows from g ≤ 1/2. Similarly, we have

ν(g, z) = log(1− z + z exp(g))− zg = log(exp(−g)− z exp(−g) + z) + (1− z)g
= log(1 + (1− z)(exp(−g)− 1)) + (1− z)g ≤ (1− z)(exp(−g)− 1) + (1− z)g
= (1− z)(exp(−g) + g − 1) ≤ (1− z)g2, (32)

where the last inequality follows from −g ≤ 1/2. From (31) and (32), we have (30). The inequality (27) combined with
(30) completes the proof of Lemma 4.4.
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A.2. Proof of Proposition 4.5

From (4) and the definition of Xt in Algorithm 1, the regret can be expressed as

RT = E

[
T∑
t=1

ft(Xt)−
T∑
t=1

ft(X
∗)

]
= E

[
T∑
t=1

ft(Hut(xt))−
T∑
t=1

f̃t(x
∗)

]
= E

[
T∑
t=1

f̃t(xt)−
T∑
t=1

f̃t(x
∗)

]
,

where X∗ ∈ arg minX∈2[n] E[
∑T
t=1 f(X)] and x∗ ∈ {0, 1}n is the indicator vector of X∗, i.e., x∗i = 1[i ∈ X∗] for all

i ∈ [n]. From Lemmas 4.2 and 4.4,
∑T
t=1 f̃t(xt)−

∑T
t=1 f̃t(x

∗) can be bounded as

T∑
t=1

(
f̃t(xt)− f̃t(x∗)

)
≤

T∑
t=1

(〈gt, xt − xt+1〉 −Dt(xt+1, xt)) +

T∑
t=1

(ψt(xt+1)− ψt+1(xt+1)) + ψT+1(x∗)− ψ1(x1)

≤
T∑
t=1

n∑
i=1

λti · ν
(
gti
λti

, xti

)
+

T∑
t=1

n∑
i=1

(λti − λt+1,i)φ(xt+1,i)− ψ1(x1)

≤
T∑
t=1

n∑
i=1

λti · ν
(
gti
λti

, xti

)
+ log 2 ·

n∑
i=1

λT+1,i ≤ 2 log 2 ·
n∑
i=1

λT+1,i, (33)

where the first inequality follows from Lemma 4.2, the second inequality follows from Lemma 4.4 and the definition (10) of
ψt, the third inequality follows from ψ(x) ∈ [− log 2, 0] for any x ∈ [0, 1], and the last inequality follows from (11).

We next show that

λti ≤ 2 +

√√√√ 2

log 2

t−1∑
s=1

g2
si min{xsi, 1− xsi} (34)

holds for any i and t, by induction in t. If t = 1, (34) immediately follows from (11). From the definition (11) of λti and
from (30), we have

λt+1,i = λt,i +
1

log 2
λti · ν

(
gti
λti

, xti

)
≤ λti +

g2
ti {xti, 1− xti}

log 2 · λti
.

As the right-hand side of this is monotone non-decreasing in λti ≥ 2, if (34) holds for a given t, we have

λt+1,i ≤ 2 +

√√√√ 2

log 2

t−1∑
s=1

g2
si min{xsi, 1− xsi}+

g2
ti {xti, 1− xti}

log 2 ·
(

2 +
√

2
log 2

∑t−1
s=1 g

2
si min{xsi, 1− xsi}

)
≤ 2 +

√√√√ 2

log 2

t−1∑
s=1

g2
si min{xsi, 1− xsi}+

√
2

log 2
· g2

ti {xti, 1− xti}

2
√∑t

s=1 g
2
si min{xsi, 1− xsi}

≤ 2 +

√√√√ 2

log 2

t−1∑
s=1

g2
si min{xsi, 1− xsi}+

√
2

log 2
·


√√√√ t∑

s=1

g2
si min{xsi, 1− xsi} −

√√√√t−1∑
s=1

g2
si min{xsi, 1− xsi}


≤ 2 +

√√√√ 2

log 2

t∑
s=1

g2
si min{xsi, 1− xsi},

which means that (34) holds even when we substitute t+ 1 for t. Hence, by induction in t ≥ 1, it was shown that (34) holds
for all t ≥ 1.
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Combining (33) and (34), we obtain

T∑
t=1

(
f̃t(xt)− f̃t(x∗)

)
≤ 2 log 2 ·

n∑
i=1

λT+1,i ≤ 4 log 2 · n+ 2
√

2 log 2

n∑
i=1

√√√√ T∑
t=1

g2
ti min{xsi, 1− xti}

≤ 4 log 2 · n+ 2
√

2 log 2

√√√√n

T∑
t=1

n∑
i=1

g2
ti min{xsi, 1− xti} ≤ 4 log 2 · n+ 2

√
2 log 2

√√√√n

T∑
t=1

n∑
i=1

|gti|min{xsi, 1− xti}

≤ 4 log 2 · n+ 2
√

2 log 2

√√√√n

T∑
t=1

(
n∑
i=1

|gti|

)
max
i∈[n]
{min{xsi, 1− xti}}

≤ 4 log 2 · n+ 4
√

2 log 2

√√√√n

T∑
t=1

max
i∈[n]
{min{xsi, 1− xti}}, (35)

where the third inequality follows from the Cauchy-Schwarz inequality, the forth inequality follows from gt ∈ [−1, 1]n, and
the last inequality follows from Lemma 4.1.

A.3. Proof of Lemma 4.6

From the definition of ∆ in Section 3, if f ′t follows D, we have

E

[
T∑
t=1

f ′t(Xt)−
T∑
t=1

f ′t(X
∗)

]
= E

[
T∑
t=1

(
f̄(Xt)− f̄(X∗)

)]
≥ E

[
∆

T∑
t=1

1[Xt 6= X∗]

]
= ∆

T∑
t=1

Prob[Xt 6= X∗].

(36)

Hence, in the stochastic setting with adversarial corruptions, we have

E

[
T∑
t=1

ft(Xt)−
T∑
t=1

ft(X
∗)

]
≤ E

[
T∑
t=1

f ′t(Xt)−
T∑
t=1

f ′t(X
∗)

]
+

T∑
t=1

E [|f ′t(Xt)− ft(Xt)|+ |f ′t(X∗)− ft(X∗)|]

≤ ∆

T∑
t=1

Prob[Xt 6= X∗] + 2C, (37)

where the last inequality follows from (36), the definition (3) of the corruption level C, and the fact that f ′t and ft are
independent of Xt. Given xt ∈ [0, 1]n, if Xt is given as Xt = Hut(xt) with ut ∼ Unif([0, 1]), we have

Prob[Xt 6= X∗] = 1− Prob[Xt = X∗] = 1−max

{
0, min
i∈X∗

xti − max
i∈[n]\X∗

xti

}
= min

{
1,max
i∈X∗

(1− xti) + max
i∈[n]\X∗

xti

}
≥ max
i∈X∗

(1− xti) + max
i∈[n]\X∗

xti ≥ 2 max
i∈[n]
{min{xti, 1− xti}} .

By combining this with (37), we obtain the second inequality of Lemma 4.6.

A.4. Proof of Lemma 4.8

From the definition of x∗, if u follows a uniform distribution over [0, 1], Hu(x∗) = X∗ with a probability at least (1− 2
T ).

Hence, we have

f̃t(x
∗) ≥

(
1− 2

T

)
ft(X

∗),

which implies

ft(X
∗)− f̃t(x∗) ≤

2

T
ft(X

∗) ≤ 2

T
.
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Similarly, from the definition (16) of pt, if Xt is given as in Algorithm 2, we have

f̃t(xt)−E [ft(Xt)] ≤ γt

From the above two inequalities, we have

RT = E

[
T∑
t=1

ft(Xt)−
T∑
t=1

ft(X
∗)

]
≤ E

[
T∑
t=1

(f̃t(xt) + γt)−
T∑
t=1

(
f̃t(x

∗)− 2

T

)]

= E

[
T∑
t=1

(f̃t(xt)− f̃t(x∗))−
T∑
t=1

γt

]
+ 2. (38)

As f̃t is a convex function, for any subgradient gt of f̃t at xt, we have f̃t(xt) − f̃t(x∗) ≤ 〈gt, xt − x∗〉. Further, as ĝt
defined in (18) is an unbiased estimator of a subgradient of f̃t, we have

E
[
f̃t(xt)− f̃t(x∗)

]
≤ E [〈ĝt, xt − x∗〉] .

By combining this with (38), we obtain the inequality of Lemma 4.8.

A.5. Proof of Lemma 4.9

When ψt is defined by (19), the Bregman divergence Dt associated with ψt can be expressed as

Dt(xt+1, xt) = λt

n∑
i=1

d(xt+1,i, xti),

where d is defined by

d(a, b) = − log a− log(1− a) + log b+ log(1− b)−
(
−1

b
+

1

1− b

)
(a− b)

= − log
a

b
+
a− b
b
− log

1− a
1− b

+
b− a
1− b

= − log

(
1 +

a− b
b

)
+
a− b
b
− log

(
1 +

b− a
1− b

)
+
b− a
1− b

= θ

(
a− b
b

)
+ θ

(
b− a
1− b

)
.

We here defined θ(x) = − log(1 + x) + x. As log(1 + x) ≤ x holds for x > −1, we have θ(x) ≥ 0. From (39), we have

〈ĝt, xt − xt+1〉 −Dt(xt+1, xt) =

n∑
i=1

(ĝti · (xti − xt+1,i)− λtd(xt+1,i, xti))

=

n∑
i=1

(
ĝti · (xti − xt+1,i)− λt

(
θ

(
xt+1,i − xti

xti

)
+ θ

(
xti − xt+1,i

1− xti

)))

≤
n∑
i=1

min

{
ĝti · (xti − xt+1,i)− λtθ

(
xt+1,i − xti

xti

)
, ĝti · (xti − xt+1,i)− λtθ

(
xti − xt+1,i

1− xti

)}
. (39)

The right-hand side of this can be bounded via the following:

max
y∈[0,1]

{ξ1(y)} := max
y∈[0,1]

{
g · (x− y)− λθ

(
y − x
x

)}
= λθ

(gx
λ

)
≤ (gx)2

λ
, (40)

max
y∈[0,1]

{ξ2(y)} := max
y∈[0,1]

{
g · (x− y)− λθ

(
x− y
1− x

)}
= λθ

(
g(1− x)

λ

)
≤ g(1− x)2

λ
, (41)

We can see that (40) holds for any g ∈ R, x ∈ (0, 1), and λ such that | gxλ | ≤
1
2 . In fact, ξ1 is a concave function and its

derivative can be expressed as

dξ1(y)

dy
= −g − λ ·

(
−1

y
+

1

x

)
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and hence, the maximum is attained when y satisfies 1
y = 1

x + g
λ . We then have

ξ1(y) = g · (x− y)− λθ
(
y − x
x

)
= g · (x− y)− λ ·

(
− log

y

x
+
y − x
x

)
= (x− y)

(
g +

λ

x

)
− λ log

x

y
= (x− y)

λ

y
− λ log

x

y
= λ

(
− log

x

y
+
x

y
− 1

)
= λ

(
− log

(
1 +

gx

λ

)
+
gx

λ

)
= λθ

(gx
λ

)
≤ (gx)2

λ
,

where the last inequality follows from | gxλ | ≤
1
2 . This implies (40) holds. The other inequality of (41), which holds for any

g ∈ R, x ∈ (0, 1), and λ satisfying | gxλ | ≤
1
2 , can be shown in a similar way as well. By combining (39), (40) and (41), we

obtain

〈ĝt, xt − xt+1〉 −Dt(xt+1, xt) ≤
n∑
i=1

min

{
(ĝtixti)

2

λt
,

(ĝti(1− xti))2

λt

}

=
1

λt

n∑
i=1

ĝ2
ti min

{
x2
ti, (1− xti)2

}
=

1

λt

n∑
i=1

ĝ2
tiv

2
ti,

which completes the proof of Lemma 4.9.

A.6. Proof of Proposition 4.10

From Lemmas 4.2, 4.8 and 4.9, we have

RT ≤ E

[
T∑
t=1

〈ĝt, xt − x∗〉+ 2

T∑
t=1

γt

]
+ 4

≤ E

[
T∑
t=1

(〈ĝt, xt − xt+1〉 −Dt(xt+1, xt)) +

T∑
t=1

(ψt(xt+1)− ψt+1(xt+1)) + ψT+1(x∗)− ψ1(x1) + 2

T∑
t=1

γt

]
+ 4

≤ E

[
T∑
t=1

1

λt

n∑
i=1

ĝ2
tiv

2
ti +

T∑
t=1

(ψt(xt+1)− ψt+1(xt+1)) + ψT+1(x∗) + 2

T∑
t=1

γt

]
+ 4, (42)

where the first inequality follows from Lemma 4.8, the second inequality follows from Lemma 4.2, and the last inequality
follows from Lemma 4.9, and the fact that ψt defined by (19) satisfies ψt(x) ≥ 0 for any x ∈ (0, 1)n. From the definition of
ĝti in (18), given xt and pt we have

E
[
ĝ2
ti

]
≤ E

[
1

(pt(it))2
([ρit(σt)]i)

2

]
=

n∑
j

pt(j) ·
1

(pt(j))2
([ρj(σt)]i)

2 ≤ 2 max
j∈[n]

1

pt(j)
≤ 2(n+ 1)

γt
,

where the second inequality follows from the fact that ρj(σt) ∈ {−1, 0, 1}n has at most two non-zero entries, and the last
inequality follows from (16). Hence, we have

E

[
n∑
i=1

ĝ2
tiv

2
ti

]
≤ E

[
2(n+ 1)

γt

n∑
i=1

v2
ti

]
= E

[
2(n+ 1)‖vt‖22

γt

]
. (43)

Further, we have
T∑
t=1

(ψt(xt+1)− ψt+1(xt+1)) + ψT+1(x∗)

=

T∑
t=1

(λt − λt+1)

n∑
i=1

(
log

1

xt+1,i
+ log

1

1− xt+1,i

)
+ λT+1

n∑
i=1

(
log

1

x∗i
+ log

1

1− x∗i

)

≤ λT+1

n∑
i=1

(
log

1

x∗i
+ log

1

1− x∗i

)
≤ nλT+1

(
log

1

1/T
+ log

1

1− 1/T

)
≤ 2nλT+1 log T,
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where the first inequality follows from the fact that λt, defined in (22), is monotone non-decreasing, and the last second
inequality follows from the definition of x∗ in Lemma 4.8.

Combining this with (42) and (43), we obtain

RT ≤ 2E

[
T∑
t=1

(n+ 1)‖vt‖22
λtγt

+ nλT+1 log T +

T∑
t=1

γt

]
+ 4 ≤ 2E

[
3

T∑
t=1

√
n‖vt‖2√
λt

+ nλT+1 log T

]
+ 4

≤ O

E

(n2 log T )1/3

(
T∑
t=1

‖vt‖2

)2/3
+ n2 log T

 ,

where the second and the third inequalities follow from the definitions of γt and λt in (22), respectively.

A.7. Proof of Theorem 5.1

We use the following lemma:

Lemma A.1 (Lemmas 3 and 4 in (Ito, 2019)). For any 0 ≤ ∆ ≤ 1
4n and T ≤ 1

8∆2 , and for any online submodular mini-
mization algorithm with bandit feedback, there exists X∗ ⊆ [n] and a distribution DX∗,∆ of submodular functions such that
RT = Ω

(
n
∆

)
for {ft}Tt=1 ∼ DT∆, and f̄(X) = Ef∼DX∗,∆ [f(X)] satisfies f̄(X) = 1

2 + ∆
2 (2|(X∗ \X) ∪ (X \X∗)| − n)

for some X∗ ⊆ [n].

We note that the suboptimality gap defined in Section 3 for the distribution DX∗,∆ in this lemma is equal to ∆. Using this
regret lower bound, we can show Theorem 5.1.
Proof of Theorem 5.1. We consider the following four cases, similarly to the proof of Theorem 5 by Ito (2021b): (i)

If T ≤ 1
8∆2 , R̄T = Ω(n

√
T ). (ii) If C

n∆ ≤
1

8∆2 ≤ T , R̄T = Ω( n∆ ). (iii) If 1
8∆2 ≤ C

n∆ ≤ T , R̄T = Ω(
√

Cn
∆ ). (iv) If

1
8∆2 ≤ T ≤ C

n∆ , R̄T = Ω(n
√
T ). Combining all cases of (i)–(iv), we obtain the lower bound in Thoerem 5.1

(i) Suppose that T ≤ 1
8∆2 holds. Set ∆′ =

√
1

8T . We then have T = 1
8∆′2 and ∆ < ∆′ ≤ 1

4n . Let D = DX∗,∆′ be a
distribution given in Lemma A.1 with ∆ = ∆′. If ft ∼ D for all t ∈ [T ], then the environment is in the SwA model with
the given parameters, and the regret is bounded as RT = Ω( n

Delta′ ) = Ω(n
√
T ) from Lemma 5.1.

(ii) Suppose that C
n∆ ≤

1
8∆2 ≤ T holds. If ft ∼ DX∗,∆ for all t ∈ [T ], the regret is bounded as RT = Ω( n∆ ) from

Lemma 5.1. From the condition of f̄ given by DX∗,∆ in Lemma 5.1, the environment is in the SwA model with the given
parameters.

(iii) Suppose that 1
8∆2 ≤ C

n∆ ≤ T holds. Define ∆′ =
√

n∆
8C ≤ ∆. We then have n

∆′ =
√

8nC
∆ . Let T ′ = d 1

8∆′2 e =

d Cn∆e ≤ T . Consider an environment in which ft ∼ DX∗,∆′ (distribution given in Lemma A.1 with ∆ = ∆′) for t ∈ [T ′],

ft ∼ DX∗,∆ for t ≥ T ′ + 1. Then from Lemma A.1, we have RT ≥ R̄T ′ = Ω( n∆′ ) = Ω(
√

Cn
∆ ). Further, we can show that

the environment is in the SwA model with the given parameters. In fact, we have nT ′(∆−∆′) ≤ C
∆ (∆−∆′) ≤ C.

(iv) Suppose that 1
8∆2 ≤ T ≤ C

n∆ holds, Set ∆′ =
√

1
8T ≤ ∆ and consider ft ∼ DX∗,∆′ for all t ∈ [T ]. Then the regret is

bounded as RT ≥ Ω( n∆′ ) = Ω(n
√
T ) from Lemma A.1. We can confirm that the environment is in the SwA model with the

given parameters, as we have n∆′T ≤ n∆T ≤ C from the assumptions on parameters.


