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Abstract

Gaussian Processes (GPs) are non-parametric
models that provide accurate uncertainty esti-
mates. Nevertheless, they have a cubic cost in
the number of data instances N . To overcome
this, sparse GP approximations are used, in which
a set of M � N inducing points is introduced.
The location of the inducing points is learned by
considering them parameters of an approximate
posterior distribution q. Sparse GPs, combined
with stochastic variational inference for inferring
q have a cost per iteration in O(M3). Critically,
the inducing points determine the flexibility of the
model and they are often located in regions where
the latent function changes. A limitation is, how-
ever, that in some tasks a large number of inducing
points may be required to obtain good results. To
alleviate this, we propose here to amortize the
computation of the inducing points locations, as
well as the parameters of q. For this, we use a
neural network that receives a data instance as
an input and outputs the corresponding inducing
points locations and the parameters of q. We eval-
uate our method in several experiments, showing
that it performs similar or better than other state-
of-the-art sparse variational GPs. However, in our
method the number of inducing points is reduced
drastically since they depend on the input data.
This makes our method scale to larger datasets
and have faster training and prediction times.
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1. Introduction
Gaussian Processes (GPs) are non-parametric models that
can be used to address regression and classification machine
learning problems (Rasmussen & Williams, 2006). GPs
become more expressive as the number of training instances
N grows and, since they are Bayesian models, they provide
a predictive distribution that estimates the uncertainty asso-
ciated to the predictions made. This uncertainty estimation
or ability to know what is not known is critical in many
practical applications (Gal, 2016). Nevertheless, GPs suffer
from poor scalability as their training cost is O(N3) per it-
eration due to the need of computing the inverse of aN×N
covariance matrix. Another limitation is that approximate
inference is needed with non-Gaussian likelihoods.

Sparse approximations can improve the cost of GPs. The
most popular ones introduce a set of M � N inducing
points. The inducing points and their associated posterior
values completely specify the posterior process at test points.
In Snelson & Ghahramani (2006), the computational gain
is obtained by assuming independence among the process
values at the training points given the inducing points and
their values. This can also be seen as using an approximate
GP prior (Quiñonero-Candela & Rasmussen, 2005). By con-
trast, in Titsias (2009) the computational gain is obtained
by combining variational inference (VI) with a posterior
approximation q that has a fixed part and a tunable part. In
both methods the cost is O(NM2) per iteration and the in-
ducing points, considered as model’s hyper-parameters, are
found by maximizing an estimate of the marginal likelihood.

Importantly, the VI approach of Titsias (2009) maximizes a
lower bound on the log-marginal likelihood as an indirect
way of minimizing the KL-divergence between an approx-
imate posterior distribution for the process values at the
inducing points and the corresponding exact posterior. The
advantage is that the objective is expressed as a sum over
the training instances, allowing for mini-batch training and
stochastic optimization techniques to be applied on the ob-
jective (Hensman et al., 2015b). This reduces the cost to
O(M3) per iteration, making GPs scalable to large datasets.

In sparse approximations one often observes in practice
that after the optimization process the inducing points are
located in regions of the input space in which the latent
function changes (Snelson & Ghahramani, 2006; Titsias,
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2009; Hensman et al., 2015a; Bauer et al., 2016). Therefore,
the expressive power of the model depends on the number
of inducing points M and their correct location on the input
space. Some problems may require a large number of induc-
ing points, in the order of thousands, to get good prediction
results (Hensman et al., 2015b; Shi et al., 2020; Tran et al.,
2021). Thus, using inducing point based sparse GPs in those
problems becomes very expensive.

Some works tried to improve the training cost of sparse
approximations. Cheng & Boots (2017) consider different
sets of inducing points for the computation of the posterior
mean and variance. Shi et al. (2020) use an orthogonal
decomposition of the GP that allows to introduce an extra
set of inducing points with less cost. Finally, Tran et al.
(2021) consider a large set of inducing points, but restrict
the computations for a particular data point to the nearest
neighbors to that point from the set of inducing points.

Inspired by Tran et al. (2021), we propose here a new
method to improve the cost of sparse GPs. Our method
also tries to produce a set of inducing points (and associ-
ated VI approximation q) that are specific of each input data
point. For that, we note that previous works have shown that
one can learn a mapping from the inputs to the parameters
of the approximate distribution q, instead of directly opti-
mizing the parameters of q (Kingma & Welling, 2014; Shu
et al., 2018). This approach, known as amortized variational
inference, is a key contribution of variational auto-encoders
(VAE) (Kingma & Welling, 2014), and has also been ex-
plored in the context of GPs to solve other problems such
as multi-class classification with input noise (Villacampa-
Calvo et al., 2021). Amortized inference has also been
empirically shown to have useful regularization properties
that improve generalization (Shu et al., 2018).

Here, we combine sparse GPs with a neural network (NN)
architecture that computes, for each potential data point, the
associated inducing points to be used for prediction. We
also employ a NN to carry out amortized VI. The NN also
computes the parameters of the variational distribution q
approximating the posterior of the process values for the
outputted inducing points. While the number of parameters
that need optimization may increase with the use of a neu-
ral network, the extra parameters are parameters of the VI
approximation, not the model. Importantly, this approach
allows for a big reduction in the total number of inducing
points without losing expressive power. In particular, it
enables different sets of inducing points associated to each
input location. The inducing points are simply given by a
mapping from the inputs provided by a neural network. We
show on several experiments that the proposed method is
able to perform similar or better than standard sparse GPs
and related methods for improving the cost of sparse GPs
(Tran et al., 2021; Shi et al., 2020). However, the training

and prediction times of our method are much better.

2. Gaussian Processes
A Gaussian Process (GP) is a stochastic process for which
any finite set of variables has a Gaussian distribution (Ras-
mussen & Williams, 2006). Consider a dataset D =
{(xi, yi)}Ni=1, where we assume that yi = f(xi) + εi, with
f(·) a latent function and εi Gaussian noise with variance
σ2, i.e., εi ∼ N (0, σ2). A GP can be used as a prior
for f(·). Then, Bayes’ rule is used for making predic-
tions by computing a posterior for f(·) given D. The GP
prior for f(·) is specified by a mean function m(x) (often
set to zero) and a covariance function k(x,x′) such that
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. Covariance
functions often have parameters θ. Given D, the posterior
of f at a new point x? is Gaussian with mean and variance

µ(x?) = k(x?)T(K+ σ2I)−1y , (1)

σ2(x?) = k? − k(x?)T(K+ σ2I)−1k(x?) , (2)

respectively. k? = k(x?,x?) and k(x?), is a vector with
the covariances between f(x?) and each f(xi). Simi-
larly, K has the covariances between f(xi) and f(xj) for
i, j = 1, . . . , N . Finally, I stands for the identity matrix.
Popular covariances functions k(·, ·) are the squared ex-
ponential and the Matérn (Rasmussen & Williams, 2006).
Their parameters, θ, and σ2 can be found by maximizing
p(y) (Rasmussen & Williams, 2006). The cost of this ap-
proach isO(N3) since it needs the inversion of K, aN×N
matrix. This makes GPs unsuitable for large data sets.

2.1. Sparse Variational Gaussian Processes

Sparse approximations improve the cost of GPs. The most
popular methods introduce, in the same input space as the
original data, a new set of M � N points , called the
inducing points, denoted by Z = (z1, . . . , zM )T (Snelson
& Ghahramani, 2006; Titsias, 2009). Let the corresponding
latent function values be u = (f(z1), . . . , f(zM ))T. The
inducing points are not restricted to be part of the observed
data and their location can be learned during training. A GP
prior is placed on u. Namely, p(u) ∼ N (0,KZ), where
KZ is a matrix with the covariances associated to each pair
of points from Z. The idea is that the posterior for f can be
approximated in terms of the posterior for u.

In this work we focus on a widely used variational inference
(VI) approach to approximate the posterior for f (Titsias,
2009). Let f = (f(x1), . . . , f(xN ))T. In VI, the goal is
to find an approximate posterior for f and u, q(f ,u), that
resembles as much as possible the true posterior p(f ,u|y).
Critically, q is constrained to be q(f ,u) = p(f |u)q(u), with
p(f |u) fixed and q(u) a tunable multi-variate Gaussian. To
find q(u) a lower bound of the marginal likelihood is maxi-
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mized. The evidence lower bound (or ELBO) is obtained via
Jensen’s inequality, leading to (after some simplifications):

L =
∑N

i=1 Eq(f)[log p(yi|fi)]− KL[q(u)|p(u)] , (3)

where p(yi|fi) is the model’s likelihood for the i-th point
and KL[·|·] is the Kullback-Leibler divergence between
probability distributions. In Titsias (2009), they optimize
q(u) in closed-form. The resulting expression is then maxi-
mized to estimate Z, θ and σ2. This leads to a complexity
of O(NM2). However, if the variational posterior q(u)
is optimized alongside with Z, θ and σ2, as proposed in
Hensman et al. (2013), the ELBO can be expressed as a
sum over training instances, which allows for mini-batch
training and stochastic optimization. Stochastic variational
inference (SVI) reduces the training cost to O(M3) per iter-
ation (Hensman et al., 2013). Importantly, the expectation
in (3) has a closed-form solution in the case of Gaussian
likelihoods. It needs to be approximated in other cases,
e.g., binary classification. The second term in (3) is the
KL-divergence between the q and the prior, which can be
computed analytically, since both are Gaussian.

The expressive power of the sparse GP heavily depends
on the number of inducing points M and on their correct
placement in the input space via optimizing (3) (Titsias,
2009; Hensman et al., 2015a; Bauer et al., 2016). Critically,
in some problems several thousands of inducing points may
be required to get good results (Hensman et al., 2015b; Shi
et al., 2020; Tran et al., 2021). This makes difficult and
expensive using sparse GPs in those problems. In the next
section we describe how to alleviate this using our method.

3. Input Dependent Sparse GPs
We develop a new formulation of sparse GPs which for
every given input computes the corresponding inducing
points to be used for prediction, and also the associated
parameters of the approximate distribution q. To achieve
this, we consider a meta-point x̃ that is used to determine
the inducing points Z and the corresponding u. Namely,
now u depends on x̃, i.e., u ∼ p(u|x̃). In particular, we
set p(u|x̃) = N (0,KZ(x̃)) where the inducing points Z
depend non-linearly, e.g., via a deep neural network, on x̃.
The joint distribution of u and x̃ is then given by p(u, x̃) =
p(u|x̃)p(x̃) for some prior distribution p(x̃). Following
Tran et al. (2021), we can consider an implicit distribution
p(x̃). That is, its analytical form is unknown, but we can
draw samples from it. Later on, we fully specify p(x̃).

Note that the marginalized prior p(u) is no longer Gaussian.
However, we can show that this formulation does not impact
on the prior over f . For an arbitrary selected meta-point x̃

p(f ,u|x̃) =N
(
0,

[
K KX,Z(x̃)

KZ(x̃),X KZ(x̃)

])
, (4)

where KX,Z(x̃) are the cross-covariances between f and u.
Therefore, if u is marginalized out in (4), the prior for f is
the standard GP prior and does not depend on x̃. Hence,
p(f |x̃) = p(f). Thus, p(f ,u) =

∫
p(f ,u|x̃)p(x̃)dx̃ is a

mixture of Gaussian densities, where the marginal over f
is the same for every component of the mixture. In the
standard sparse GP, the inducing points also have an impact
on the variational approximation q via the fixed conditional
p(f |u) (Titsias, 2009). Therefore, we also incorporate in the
next section the input dependence on x̃ in q.

3.1. Lower Bound on the Log-Marginal Likelihood

We follow Tran et al. (2021) to derive a lower bound on the
log-marginal likelihood of the extended model described
above. Consider a posterior approximation of the form
q(f ,u, x̃) = p(f |u)q(u|x̃)p(x̃), where only q(u|x̃) can be
adjusted and the other factors are fixed. Using this poste-
rior’s factorization and Jensen’s inequality we obtain the
lower bound after some simplifications:

L = Eq

[
log

p(y|f)p(f |u)p(u|x̃)p(x̃)
q(f ,u, x̃)

]
= Eq

[
log

p(y|f)���p(f |u)p(u|x̃)���p(x̃)

���p(f |u)q(u|x̃)���p(x̃)

]
=
∑N

i=1

∫
p(x̃)

[
p(fi|u)q(u|x̃) log p(yi|fi)dfdu

− 1
N KL[q(u|x̃)|p(u|x̃)]

]
dx̃ . (5)

Assume that p(x̃) is an implicit distribution. We can draw
samples from it and approximate the expectation w.r.t p(x̃).
Thus, for a sample x̃s from p(x̃), (5) is approximated as

L ≈
∑N

i=1

[
Ep(fi|u)q(u|x̃s)[log p(yi|fi)]

− 1
N KL[q(u|x̃s)|p(u|x̃s)]

]
. (6)

We can evaluate (6) and its gradients to maximize the origi-
nal objective in (5) using stochastic optimization techniques.
This is valid for any implicit distribution p(x̃). Consider
now that we use mini-batch-based training for optimization,
and we set x̃s = xi. In this case, the value of x̃ remains
random, as it depends on the points (xi, yi) that are se-
lected in the random mini-batch. This results in a method
that computes different inducing points for each input loca-
tion. In practice, we use the same sample to approximate
the expectation w.r.t. p(x̃) and the sum across the data in
(6). This could introduce a bias in the objective. However,
such a reusing of the samples is done in Tran et al. (2021)
with good empirical results. Moreover, our experiments in
Section 5 also validate this approximation.

3.2. Amortized Variational Inference and Deep Neural
Networks

Maximizing the lower bound finds the optimal approximate
distribution q. A problem, however, is that we have a poten-
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tial large number of parameters to fix, corresponding to each
q(u|xi). In particular, if we set q(u|xi) to be Gaussian, we
will have to infer different means and covariance matrices
for each different xi. This is expected to be memory inef-
ficient and to make optimization more difficult. To reduce
the number of parameters of our method we use amortized
variational inference and specify a function that can gener-
ate these parameters for each xi (Shu et al., 2018). More
precisely, we set the mean and covariance matrix of q(u|xi)
to be m(xi) and S(xi), for some non-linear functions.

Deep neural networks (DNN) are flexible models that can
describe complicated functions. In DNNs, the inputs go
through several layers of non-linear transformations. We
use these models to compute the non-linearities that gen-
erate from xi the inducing points, Z(xi), and the means
and covariances of q(u|xi), i.e., m(xi) and S(xi). The
architecture employed is displayed in Figure 1. At the out-
put of the DNN we obtain Z, a mean vector m and the
Cholesky factor of the covariance matrix S = LLT. The
maximization of the lower bound in (5) when using DNNs
for the non-linearities is shown in Algorithm 1. In binary
classification, the required expectations are computed using
1-dimensional quadrature, as in Hensman et al. (2015a).

X nd

X nd
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P
1

h(1)P −1

h(1)2
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h(2)P

h(2)P −1

h(2)2
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h(L )P −1

h(L )2
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Figure 1. The network’s inputs is x̃. The outputs are the inducing
points Z, the mean m and the Cholesky factor, L, of q(u|xi).

3.3. Predictions and Training Cost

As in Tran et al. (2021), at test time, instances are not ran-
domly chosen. We set p(x̃) to be a deterministic distribution
placed on the candidate point x?. The DNN is used to obtain
Z, and the parameters of q(u|x?), m and S. The predictive
distribution for f(x?) is Gaussian with mean and variance:

m? = kx?,ZK
−1
Z m , (7)

s? = k? + kx?,ZK
−1
Z (S−KZ)K

−1
Z kT

x?,Z . (8)

Given this distribution for f(x?), the probability distribu-
tion for y? can be computed in closed-form in regression
problems and with 1-dimensional quadrature in binary clas-
sification. Initially, we only consider predictions at indi-
vidual test points, as in Tran et al. (2021). This is enough

in most learning applications. However, if test covariances
are needed, a multi-variate Gaussian can also be computed
using (7) and (8) (Titsias, 2009). In this case, however, there
will be as many different predictive covariances as candidate
test points since each test point will generate different Z, m
and S. We simply average all the covariances corresponding
to each Z, m and S. The mean is set equal to the mean of
individual predictions. Empirically, this gives good results.

Algorithm 1 Training input dependent sparse GPs
Require: D,M , neural network NNet withL hidden layers

and P hidden units
Ensure: Optimal parameters of the model

initialize NN’s weights and kernel’s parameters θ
while stopping criteria is False do

Loglk = 0, KLdiv = 0
gather mini-batch Mb of size n from D
for (xi,yi) in Mb do

(Zxi ,mxi ,Lxi) = NNet(xi)
Loglk += Eq(fi,u)[log p(yi|fi)]
KLdiv += KL[q(u|xi)|p(u|xi)]

end for
ELBO← N

n× Loglk − 1
n× KLdiv

Update parameters of the model using the gradient of
ELBO

end while

The cost of our method is smaller than the cost of a standard
sparse GP if a smaller number of inducing points M is used.
Given a mini-batch of size n, the cost of a DNN with L
layers, P hidden units, di dimension of the input data, and
output dimension do isO(ndiP+nP 2L+nPdo+n(L+1)).
The cost of the sparse GPs is O(nM3). Therefore, the cost
of our method per iteration is O(ndiP + nP 2L+ nPdo +
n(L+1)+nM3). Since in our method the inducing points
are input dependent, we expect to obtain good prediction
results even for M values that are fairly small.

4. Related Work
Early works on sparse GPs simply chose a subset of the
training data for inference based on an information crite-
rion (Csató & Opper, 2002; Lawrence et al., 2003; Seeger
et al., 2003; Henao & Winther, 2012). This approach is
limited in practice and more advanced methods in which
the inducing points need not be equal to the training points
are believed to be superior. In the literature there are sev-
eral works analyzing and studying sparse GP approxima-
tions based on inducing points. Some of these works in-
clude Quiñonero-Candela & Rasmussen (2005); Snelson
& Ghahramani (2006); Naish-Guzman & Holden (2007);
Titsias (2009); Bauer et al. (2016); Hernández-Lobato &
Hernández-Lobato (2016). We focus here on a variational
approach (Titsias, 2009) which allows for stochastic op-
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timization (Hensman et al., 2013; 2015a). This enables
learning in very large datasets with a cost of O(M3) per
iteration, with M the number of inducing points.

In some problems, however, several thousands of inducing
points must be considered to get good prediction results
(Hensman et al., 2015b; Shi et al., 2020; Tran et al., 2021).
There is hence a need to improve the cost of sparse GPs,
without losing expressive power. One work addressing this
task is that of Cheng & Boots (2017). In that work it is
proposed to decouple the process of inferring the posterior
mean and variance, allowing to consider a different number
of inducing points for each one. Importantly, the computa-
tion of the mean has a linear complexity, which allows to
have more expressive posterior means at a lower cost. A
disadvantage is that such an approach suffers from optimiza-
tion difficulties. An alternative decoupled parameterization
adopts an orthogonal basis in the mean Salimbeni et al.
(2018a). Such a method can be considered as a specific
case of Shi et al. (2020). There, the authors introduce a new
interpretation of sparse variational approximations for GP
using inducing points. For this, the GP is decomposed as
a sum of two independent processes. This leads to tighter
lower bounds on the marginal likelihood and new inference
algorithms considering two different sets of inducing points.
This enables using more inducing points at a linear cost.

Our work is closer to that of Tran et al. (2021). They also
describe a mechanism to consider input dependent inducing
points in the context of sparse GP. However, the difference is
significant. In particular, in Tran et al. (2021) a very large set
of inducing points M is considered initially. Then, for each
input point, a subset of these inducing points is considered.
This subset is obtained by finding the H � M nearest
inducing points to the current data instance xi. IDSGP
does not require the large initial set, and uses a NN to
output Z(xi). The approach suggested by Tran et al. (2021)
significantly reduces the cost of the standard sparse GP
described in Titsias (2009). However, it suffers from the
difficulty of having to find the H nearest neighbors for each
point in a mini-batch, which is expensive. Therefore, the
final cost is higher than what would be thought initially.
Our method is expected to be better because of the extra
flexibility of the non-linear relation between xi and Z given
by the DNN. Furthermore, the DNN is expected to make
a better use of GPU acceleration. Our proposed method,
IDSGP, also amortizes the parameters of q. The approach of
Tran et al. (2021) does not. Amortization has been shown
to improve performance (Shu et al., 2018).

Wu et al. (2022) also consider a sparse approximation to
GPs based on nearest neighbors. That work is different from
IDGSP in that we do not change the prior for f , which is
the standard GP prior. In the work of Wu et al. (2022) they
do approximate the GP prior. Moreover, they approximate

p(f |u) using a factorizing distribution across the training in-
stances. IDSGP does not need this approximation in p(f |u).

Another method to improve the training cost of GP is de-
scribed by Wilson & Nickisch (2015); Evans & Nair (2018);
Gardner et al. (2018). It consists in placing the inducing
points on a grid. This allows to perform a fast computation
exploiting the inducing points structure. One can easily con-
sider values for M that are even larger than N . However,
to get such benefits the inducing points need to be fixed
due to the structure constraints. This may be detrimental in
high-dimensional problems.

Instead of using inducing points, there are some works that
scale GPs by approximating the posterior GP process using
an inference network (Shi et al., 2019; Sun et al., 2019). An
inference network receives some random noise and outputs
function values for each input. Particular examples include
among others Bayesian DNNs. Inference networks are ex-
pected to lead to flexible stochastic processes. However, it
is difficult to enforce that the approximate posterior process
looks similar to the prior GP in regions where there is no
data. For this, approximate inference is carried out on a fi-
nite subset of points chosen at random from the input space.
This is expected to lead to poor results in high-dimensional
spaces. Moreover, another problem of using an inference
network is that tuning the prior GP hyper-parameters is
challenging and has often to be done in a separate step.

Amortized variational inference (Shu et al., 2018) has also
been explored in the context of GPs in Villacampa-Calvo
et al. (2021). There, input noise is considered in a multi-
class problem and the performance of the final GP model
is improved by amortizing the variational parameters of the
posterior approximation for the noiseless inputs. A DNN
that receives both xi and yi as an input is used for this task.

Other sparse GPs in the literature do not fully rely on in-
ducing points, e.g., (Tresp, 2000; Snelson, 2007; Gramacy
& Apley, 2015). These techniques, however, cannot use,
in general, stochastic optimization and do not scale to very
large problems. Finally, sparse GPs, and our method, can
benefit from natural-gradients (Salimbeni et al., 2018b).
They could result in an orthogonal improvement.

5. Experiments
We evaluate the performance of our method, to which we
refer to as Input Dependent Sparse GP (IDSGP). We con-
sider regression and binary classification with a probit like-
lihood. In this later case, we approximate the expectation in
the ELBO using 1-dimensional quadrature Hensman et al.
(2015a). The code of IDSGP in Tensorflow 2.0 (Abadi et al.,
2015) is given in the supplementary material. We com-
pare results with the standard variational sparse GP (VSGP)
(Hensman et al., 2013) and with two methods described in
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Section 4. Namely, the sparse within sparse GP (SWSGP)
proposed by Tran et al. (2021), and the sparse GP based on
an orthogonal decomposition that considers two different
sets of inducing points (Shi et al., 2020). We refer to this last
method as SOLVE. All methods use a Matérn 3/2 covari-
ance function (Rasmussen & Williams, 2006) and estimate
all hyper-parameters by maximizing the ELBO. The DNN
architecture used in IDSGP is detailed in Appendix B.

5.1. Toy Problems

We show the posterior mean and standard deviation of each
method on the 1-dimensional regression problem from (Snel-
son & Ghahramani, 2006). We compare results with a
full GP. Figure 2 shows the results obtained, including the
learned locations of the inducing points. In the case of
IDSGP we show the locations of the inducing points for the
point represented with a star at x = 3.9. The number of in-
ducing points, for each method, are indicated in the figure’s
caption. We consider a small number of inducing points
to study the benefits of having input dependent inducing
points. IDSGP uses smaller number of inducing points than
the other methods. The figure shows that, in regions with ob-
served data, IDSGP’s predictions look closer to those of the
full GP. This is a consequence of the extra flexibility given
by the NN. In regions with no data, the uncertainty increases
and the predictions of IDSGP become similar to those of
the GP prior, although the uncertainty is a bit smaller. This
underestimation also happens, to some extent, in the other
sparse GP methods. See the results of, e.g. SWSGP. Ap-
pendix F.1 has results for an increasing number of inducing
points M . They show that as M increases, IDSGP becomes
more and more similar to the full GP, also in regions with
no observed data, as expected. Appendix F.2 shows results
for the VSGP method when q is not optimized, as in Titsias
(2009). They are very similar to the ones in Appendix F.1
for VSGP. Predicting the prior in regions with no data is not
guaranteed in IDSGP. The predictions will depend on the
particular output of the NN. However, Figure 2 shows that in
IDSGP, as we move away from the observed data, the mean
becomes closer to zero and the variance increases, which
is the expected behavior. This could be due to the term
KL(q(u|x̃)|p(u|x̃)), which enforces that the NN output is
similar to the prior.

Finally, Figure 3 shows the decision boundary of each
method on the banana classification dataset (Hensman et al.,
2013). We observe that IDSGP produces the most accurate
boundaries. This is so, even though it uses a smaller num-
ber of inducing points M that the other methods. See the
caption of the figure.

5.2. Experiments on UCI Datasets

We consider several regression and binary classification
datasets extracted from the UCI repository (Dua & Graff,
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bottom of each figure. In IDSGP, the inducing points correspond
to the point drawn with a star. The mean and std. deviation of full
GP (each method) are shown with blue and brown dashed lines
(solid blue and dashed red), respectively. In VSGP M = 4. In
IDSGP M = 2 and the NN has 2 layers with 50 units. In SWSGP
M = 4 and H = 2 neighbors. In SOLVE M1 = M2 = 2.
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Figure 3. Banana classification data set with N = 5300 points. The final location of inducing points are shown inside the figures. For
IDSGP, we show the location of inducing points related to the green colored point. VSGP with M = 4. IDSGP with M = 2 and a neural
network with 2 hidden layers, each with 50 hidden units. SWSGP with M = 4 and 2 neighbors. SOLVE with M1 = M2 = 2.

2017). Namely, 8 regression datasets and 8 binary classifi-
cation datasets (see Appendix D for the datasets’ details).
These datasets have large number of instances N so we use
a large number of inducing points M for the non-input de-
pendent methods, as in Shi et al. (2020). In SOLVE we use
M1 = 1024 and M2 = 1024 inducing points. In VSGP we
set M = 1024. In SWSGP we set M = 1024 and H = 50
neighbors. The number of inducing points of IDSGP is set
to M = 15, which is significantly smaller. All the meth-
ods are trained using ADAM (Kingma & Ba, 2015) with a
mini-batch size of 100 and a learning rate of 0.01. In the
classification setting we use the same setup, but the number
of inducing points of IDSGP is set even smaller. Namely,
M = 3. All methods are trained on a Tesla P100 GPU with
16GB of memory. On each dataset we use 80% of the data
for training and the rest for testing. We report results across
5 splits of the data since the datasets are already quite big.

The average negative test log-likelihood of each method
on each dataset is displayed in Table 1, for the regression
datasets, and in Table 2, for the classification datasets, re-

spectively. The average rank of each method is also dis-
played at the last row of each table. The RMSE and pre-
diction accuracy results are similar to those displayed here.
They can be found in Appendix F.3 and F.4. We observe
that in the regression datasets, the proposed method, IDSGP,
obtains best results in 6 out of the 8 datasets. IDSGP also
obtains the best average rank (closer to always performing
best on each train / test data split). This is remarkable given
that IDSGP uses a much smaller number of inducing points
(e.g., M = 15 for IDSGP vs. M = 1024 for VSGP). This
due to the extra flexibility that the input dependent inducing
points provide. In classification, however, all the methods
seem to perform similar to each other and the differences be-
tween them are smaller. Again, IDSGP uses here a smaller
number of M = 3 inducing points. We tried increasing M
in IDSGP, but it does not improve the results obtained.

In these experiments we also measure the average training
time per epoch, for each method. The results corresponding
to the UCI regression datasets are displayed in Table 3.
The results for the UCI classification datasets are found in
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Table 1. Avg. neg. test log-likelihood values for the UCI regression
datasets. The numbers in parentheses are standard errors. Best
mean values are highlighted in bold face.

VSGP SOLVE SWSGP IDSGP
Kin40k -0.047 (0.003) -0.093 (0.005) -0.110 (0.008) -1.461 (0.018)
Protein 2.848 (0.002) 2.847 (0.002) 2.835 (0.003) 2.775 (0.007)
KeggDirected -1.955 (0.013) -2.031 (0.015) -2.256 (0.013) -2.410 (0.014)
KEGGU -2.344 (0.013) -2.421 (0.007) -2.396 (0.007) -2.908 (0.050)
3dRoad 3.691 (0.006) 3.681 (0.004) 3.879 (0.023) 3.399 (0.010)
Song 3.613 (0.002) 3.617 (0.002) 3.618 (0.003) 3.637 (0.003)
Buzz 6.272 (0.012) 6.284 (0.018) 6.137 (0.007) 6.317 (0.060)
HouseElectric -1.737 (0.005) -1.739 (0.004) -1.711 (0.010) -1.774 (0.004)
Avg. Ranks 2.925 (0.158) 2.525 (0.206) 2.700 (0.114) 1.850 (0.177)
# Ind. points 1024 1024 / 1024 (H=50) / 1024 15

Table 2. Avg. test neg. log-likelihood values for the UCI classifi-
cation datasets. The numbers in parentheses are standard errors.
Best mean values are highlighted in bold face.

VSGP SOLVE SWSGP IDSGP
MagicGamma 0.308 (0.004) 0.307 (0.004) 0.371 (0.005) 0.311 (0.002)
DefaultOrCredit 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
NOMAO 0.113 (0.004) 0.112 (0.004) 0.134 (0.004) 0.121 (0.004)
BankMarketing 0.206 (0.001) 0.205 (0.001) 0.304 (0.023) 0.209 (0.002)
Miniboone 0.151 (0.001) 0.149 (0.001) 0.180 (0.008) 0.153 (0.001)
Skin 0.005 (0.000) 0.004 (0.000) 0.006 (0.001) 0.003 (0.000)
Crop 0.003 (0.000) 0.003 (0.000) 0.002 (0.000) 0.003 (0.000)
HTSensor 0.003 (0.001) 0.001 (0.000) 0.030 (0.009) 0.005 (0.001)
Avg. Ranks 2.525 (0.129) 1.750 (0.147) 3.075 (0.204) 2.650 (0.158)
# Ind. points 1024 1024 / 1024 (H=50) / 1024 3

Appendix F.4. They look very similar to ones reported here.
We observe that the fastest method is IDSGP. The speed-up
obtained is very high even though there is some overhead
of having to compute the output of the DNN and update its
parameters. IDSGP also results in fastest prediction times
than VSGP, SOLVE or SWSGP. See Appendix F.3 and F.4.

5.3. Large Scale Datasets

We consider two very large datasets. The first dataset is the
Airlines Delay binary classification dataset, as described in
Hernández-Lobato & Hernández-Lobato (2016), with N =
2, 127, 068 data instances and d = 8 attributes. The second
dataset is the regression Yellow taxi dataset, as described in
Salimbeni & Deisenroth (2017), with N = 1 billion data-
points and d = 9 attributes. In each dataset we use a test
set of 10, 000 instances chosen at random. The number
of inducing points in IDSGP is set to M = 50. In the
other methods, we use the same number of inducing points
as in the previous section. The mini-batch size is set to
100. Training is also performed on the same GPU as in the
previous section. The ADAM learning rate is set to 0.001.

The average negative test log-likelihood of each method is
displayed in Figure 4, for each dataset. We report perfor-
mance in terms of the training time, in a log10 scale. The
results corresponding to the RMSE are very similar to the
ones displayed here. They can be found in Appendix F.5.
We observe that the proposed method IDSGP performs best
on each dataset. In particular, it obtains a better perfor-
mance in a smaller computational time. We believe this
due to using a smaller number of inducing points, and also

because of the extra flexibility of the NN that can specify an
input-dependent location of the inducing points.
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Figure 4. Negative log-likelihood on the test set for each method
as a function of the training time in seconds, in log10 scale, for the
Yellow taxi and the Airline delays datasets. Best seen in color.

5.4. Joint Predictive Covariances

We evaluate each method when computing a joint predictive
distribution. In IDSGP, given a test mini-batch on which
to compute the joint predictive distribution, we get the co-
variances obtained when each point from the mini-batch is
an input to the NN. Recall from Section 3.3 that there are
different predictive covariances for each test point. We get
the final covariances by averaging them across all test points
in the mini-batch. The mean for each test point is equal to
mean computed for individual predictions. We also compare
results with SWSGP, using the approach described in Tran
et al. (2021). That is, we train the model using the union
of nearest neighbors for the points within a mini-batch, so
that the effective number of inducing points is at most 128,
and with a total number of inducing points M of 512. We
compute the average multivariate neg. test log-likelihood
across test mini-batches of the same size as in training. We
consider the Kin40k dataset and report average results across
5 training/test splits, as in Section 5.2. We also evaluate
here SOLVE with M1 = 512 and M2 = 512.
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Table 3. Average training time per epoch across the 5 splits for the UCI regression datasets. The numbers in parentheses are standard
errors. Best mean values are highlighted.

Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric
VSGP 591.7 (0.58) 737.2 (1.16) 932.7 (2.56) 1128.1 (3.78) 7880.9 (66.79) 9777.7 (42.84) 9901.0 (146.07) 32784.2 (190.18)
SOLVE 1739.3 (0.45) 2015.9 (0.66) 2357.3 (1.70) 2909.1 (1.19) 19567.1 (10.34) 23196.6 (98.35) 25769.5 (20.12) 92214.9 (452.18)
SWSGP 875.7 (0.68) 1023.5 (0.35) 1220.6 (1.89) 1458.0 (5.57) 10203.4 (12.03) 12241.7 (62.01) 13371.5 (12.34) 46163.3 (427.23)
IDSGP 190.3 (0.75) 371.5 (1.25) 533.0 (1.73) 693.7 (5.77) 4070.1 (201.09) 4296.5 (25.03) 3640.4 (33.36) 16352.2 (90.15)
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Figure 5. Average joint predictive negative log-likelihood on the test set for SVGP, IDSGP, SOLVE and SWSGP for an increasing
mini-batch size (for training and testing). We report the average the multivariate NLL across test mini-batches and a 95% CI.

Figure 5 shows the results obtained for an increasing size
of the mini-batch used for training and testing. Moreover,
in the case of SWSGP and IDSGP, we show results for an
increasing number of neighbors H and inducing points M .
Horizontal lines represent a 95% confidence interval. We
observe that IDSGP gives good results, specially for batch
sizes bigger than 4. Also, the performance is better as we in-
creaseM . SWSGP gives worse results than VSGP, probably
because we are using at most 128 inducing points at each
training step. Finally, SOLVE performs better than VSGP.
These results confirm that IDSGP can provide accurate joint
predictive distributions.

5.5. Comparison with a Simple Neural Network

Consider a Neural Network (NN) such as the one used in
IDSGP. Assume it is trained via maximum likelihood to
compute the parameters of a Gaussian predictive distribu-
tion. Appendix F.6 shows that such an approach will have
high confidence in regions with no data, unlike IDSGP.

6. Conclusions
Gaussian processes (GPs) are flexible models for regression
and classification. However, they have a cost of O(N3)
per iteration with N the number of training points. Sparse
approximations based on M � N inducing points reduce
such a cost to O(M3). A problem, however, is that in some
situations a large number of inducing points have to be used,
since they determine the flexibility of the resulting approxi-
mation. There is hence a need to reduce their training cost.

We have proposed a method that can improve the train-
ing time and the flexibility of sparse GP approximations.
Namely, input dependent sparse GP (IDSGP). IDSGP uses
a deep neural network (DNN) to output specific inducing

points for each point at which the predictive distribution of
the GP needs to be computed. The DNN also outputs the
parameters of the corresponding variational approximation
on the inducing values associated to the inducing points.
IDSGP can be obtained under a formulation that considers
an implicit distribution for the input instance to the DNN.
Importantly, such a formulation keeps intact the GP prior on
the latent function values associated to the training points.

The extra flexibility provided by the DNN allows to signif-
icantly reduce the number M of inducing points used in
IDSGP. Such a model provides similar or better results than
other sparse GP approximations from the literature, at a
smaller training cost. IDSGP has been evaluated on several
regression and binary classification problems. The results
obtained show that it improves the quality of the predictive
distribution and reduces the training cost. Better results are
most of the times obtained in regression problems. In classi-
fication problems, however, the performances obtained are
similar to those of the state-of-the-art. Nevertheless, the
training and prediction times are always shorter. The scala-
bility of IDSGP is also illustrated on massive datasets of up
to 1 billion points. There, IDSGP also obtains better results
than alternative sparse GP approximations at a smaller train-
ing cost. IDSGP also provides joint predictive distributions
that are better in terms of the test log-likelihood than those
of the other state-of-the-art sparse GP approximations.
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A. Datasets Pre-Processing
All the datasets are publicly available. The UCI repository datasets can be downloaded from the repository (Dua & Graff,
2017). Yellow taxi dataset was preprocessed following Salimbeni & Deisenroth (2017) and downloaded from https:
//www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, where we have used data records from
year 2015. Similarly, the Airlines Delay dataset was preprocessed following Hernández-Lobato & Hernández-Lobato
(2016) and was downloaded from https://community.amstat.org/jointscsg-section/dataexpo/
dataexpo2009, keeping only the records from January 2008 to April 2008. All regression datasets have been standardized
using scikit-learn’s built-int StandardScaler class (Pedregosa et al., 2011), which removes the mean and scales to unit
variance. Classification datasets have been standardized using RobustScaler, on the other hand.

B. Neural Network Architecture
About the choice of architecture for the DNN we have tried to keep it small in order to take more advantage of the
computational gain of the amortized scheme. In particular, we used a 2 hidden-layer with 50 hidden units network for the
toy problems in Section 5.1, a 1 layer with 50 hidden units network for the UCI datasets in Section 5.2 and a 2 layer with
25 hidden units for the large scale datasets in Section 5.3. We used sigmoid activation functions. Keeping the network
small reduces the number of parameters to optimize making the optimization process easier. In all problems we are using
fully-connected layers with batch normalization and no skip layers. Regarding the initialization of the weights, all were
initialized using the Glorot initialization (Glorot & Bengio, 2010). In our experiments we did not exhaustively explore the
DNN architecture. This choice of architecture and initialization was based on some preliminary tests done before running
the experiments. This does not mean that this is the best possible configuration. We did not optimize the architecture of the
neural network. In practical applications, we suggest to run some preliminary tests in order to choose a configuration that
performs well. The main suggestion, however, is to keep the network small as the input dependence will make the model
expressive enough to still get very good results.

C. Choosing the Number of Inducing Points
We have observed that our proposed method IDSGP performs well in general with a fairly small number of inducing points,
much smaller than the number of inducing points used in the other methods. Namely, SOLVE, VSGP and SWSGP. This
is probably related to the extra flexibility of having input-dependent inducing points in IDSGP. In very large datasets we
recommend using around M = 50 inducing points. In medium-size regression datasets M = 15 inducing points seem
enough. In medium-size binary classification datasets, however, a smaller number of inducing points is enough M = 3. We
believe the reason is that binary classification problems require less complicated latent functions. We did not optimize the
number of inducing points. In practical applications, we suggest to run some preliminary tests in order to choose a number
of inducing points that performs well.

D. Details of the UCI Datasets
Tables 4 and 5 show the characteristics of the regression and binary classification datasets considered from the UCI repository
in the main document. These tables show, for each problem, the number of instances N and the number of attributes d.

Table 4. Characteristics of the UCI regression datasets.
Dataset N d
Kin40k 32,000 8
Protein 36,584 9
KeggDirected 42,730 19
KEGGU 51,686 26
3dRoad 347,899 3
Song 412,276 90
Buzz 466,600 77
HouseElectric 1,639,424 6

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009
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Table 5. Characteristics of the UCI binary classification datasets.
Dataset N d
MagicGamma 15,216 10
DefaultOrCredit 24,000 30
NOMAO 27,572 174
BankMarketing 36,169 51
Miniboone 104,051 50
Skin 196,046 3
Crop 260,667 174
HTSensor 743,193 11

E. KL-Divergence Minimization
In this section we show that maximizing (5) effectively minimizes the KL-divergence between q(x̃, f ,u) and p(x̃, f ,u|y).
In particular,

KL(q(x̃, f ,u)|p(x̃, f ,u|y)) = −
∫
q(x̃, f ,u) log

p(y, x̃, f ,u)

q(x̃, f ,u)
dxdfdu+ const.

= −
∫
q(x̃, f ,u) log

p(y|f)p(f |u)p(u|x̃)p(x̃)
p(f |u)q(u|x̃)p(x̃)

dxdfdu+ const.

= −
∫
q(x̃, f ,u) log

p(y|f)p(u|x̃)
q(u|x̃)

dxdfdu+ const.

= −
∫
q(f , x̃,u) log p(y|f)dfdxdu

+

∫
q(u, x̃) log

p(u|x̃)
q(u|x̃)

dxdu+ const.

= −Eq[log p(y|f)] + Ep(x̃)[KL(q(u|x̃)|p(u|x̃))]
= −L+ const. , (9)

where we have used that the posterior is equal to the joint p(x̃, f ,u,y) divided by a normalization constant, i.e., the marginal
likelihood. Moreover, L is simply the lower bound defined in (5). Therefore, maximizing L effectively leads to the
minimization of the KL-divergence between q(x̃, f ,u) and p(x̃, f ,u|y).

F. Extra Experimental Results
In this section, we include some extra results that do not fit in the main manuscript. Namely, the RMSE in the test set results
and prediction times for the UCI regression datasets, and the accuracy in the test set, training and prediction times for the
UCI classification datasets. In both cases, the setup is the same as described in Section 5 and the results are similar that the
ones obtained in terms of the negative test log likelihood and training times in that section. Finally, we include similar plots
to those in Section 5.3 but in terms of the test RMSE for the Yellow Taxi dataset and in terms of the test classification error
for the Airline Delays dataset.

F.1. Toy Regression Datasets

Our method looks more and more similar to the full GP as number of inducing points M increases. However, with a small
number of inducing points, it gives similar results to those of the full GP and similar to the results obtained when more
inducing points are considered, which does not happen in the other methods. This is probably due to the extra flexibility of
the neural network. The figures below (Figures 7 to 9) show the results of each method on the toy regression problem as we
increase the number of inducing points M . For M = 128 IDSGP gives almost the same results as VSGP.
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Figure 6. Toy regression example by varying number of inducing points Mx = {2, 4, 8, 16, 32, 64, 128} with location of initial and final
inducing points for an arbitrary selected point x from training sets. The mean and standard deviation of full GP prediction are shown with
dashed blue and brown lines, respectively. The blue lines and the dashed red lines are the mean and standard deviation of IDSGP.
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Figure 7. Toy regression example by varying number of inducing points Mu,Mv = {2, 4, 8, 16, 32, 64, 128} with location of initial and
final inducing points. The mean and standard deviation of full GP prediction are shown with dashed blue and brown lines, respectively.
The blue lines and the dashed red lines are the mean and standard deviation of SOLVE.
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Figure 8. Toy regression example by varying number of inducing points M = {2, 4, 8, 16, 32, 64, 128} with location of initial and final
inducing points. The mean and standard deviation of full GP prediction are shown with dashed blue and brown lines, respectively. The
blue lines and the dashed red lines are the mean and standard deviation of VSGP.
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Figure 9. Toy regression example by varying number of the neighbor inducing points Mc = {2, 4, 8, 16, 32, 64, 128} and total number of
inducing points M = 128, with location of initial and final inducing points. The mean and standard deviation of full GP prediction are
shown with dashed blue and brown lines, respectively. The blue lines and the dashed red lines are the mean and standard deviation of
SWSGP.
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F.2. Extra Results for the Toy Regression Experiment

Here we run the 1D toy regression experiment of Section 5.1 using the closed-form solution approach of Titsias (2009) for
finding q. More precisely, this method is exactly the same as the SVGP method we compare results with, but where the
approximate distribution q is not optimized at all. The reason for this is that it is possible to find a closed-form solution for
q. However and importantly, the resulting method does not allow for mini-batch training. Since SVGP* does not allow
for stochastic optimization, the batch size is set equal to the number of training points (N = 200). Figure 10 shows the fit
obtained for an increasing number of inducing points M . The results are very similar to the ones of SVGP in Figure 8.

Figure 10. Toy regression example by varying number of inducing points M = {2, 4, 8, 16, 32, 64, 128} with location of initial and final
inducing points. The mean and standard deviation of full GP prediction are shown with dashed blue and brown lines, respectively. The
blue lines and the dashed red lines are the mean and standard deviation of VSGP*.
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F.3. UCI Regression Datasets

Table 6. Test Root Mean Squared Error (RMSE) values for the UCI regression datasets. The numbers in parentheses are standard errors.
Best mean values are highlighted.

N d VSGP SOLVE SWSGP IDSGP
Kin40k 32,000 8 0.198 (0.002) 0.188 (0.002) 0.215 (0.002) 0.050 (0.002)
Protein 36,584 9 4.161 (0.010) 4.153 (0.007) 4.133 (0.007) 3.756 (0.021)
KeggDirected 42,730 19 0.032 (0.001) 0.030 (0.001) 0.024 (0.000) 0.022 (0.001)
KEGGU 51,686 26 0.024 (0.000) 0.022 (0.000) 0.022 (0.000) 0.014 (0.000)
3dRoad 347,899 3 9.641 (0.070) 9.559 (0.029) 11.726 (0.303) 7.250 (0.072)
Song 412,276 90 8.966 (0.025) 9.007 (0.018) 9.013 (0.026) 9.068 (0.011)
Buzz 466,600 77 175.076 (17.772) 177.757 (17.992) 160.744 (14.046) 166.784 (15.661)
HouseElectric 1,639,424 6 0.035 (0.000) 0.034 (0.000) 0.036 (0.001) 0.032 (0.000)
Avg. Ranks 2.800 (0.169) 2.525 (0.203) 2.850 (0.116) 1.825 (0.168)
# Inducing points 1024 1024 / 1024 (H=50) / 1024 15

Table 7. Average prediction time per epoch across the 5 splits for the UCI regression datasets. The numbers in parentheses are standard
errors. Best mean values are highlighted.

Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric
VSGP 0.9(0.00) 1.1(0.0) 1.4(0.01) 1.7(0.01) 11.6(0.07) 14.5(0.08) 18.0(0.08) 48.3(0.12)
SOLVE 2.4(0.00) 2.8(0.0) 3.2(0.00) 4.0(0.00) 27.0(0.04) 31.8(0.19) 37.0(0.03) 127.7(0.43)
SWSGP 1.3(0.00) 1.5(0.0) 1.8(0.01) 2.1(0.01) 14.8(0.03) 17.6(0.02) 21.3(0.10) 66.2(0.88)
IDSGP 0.3(0.00) 0.5(0.0) 0.7(0.00) 1.0(0.02) 5.7(0.26) 5.6(0.05) 8.1(0.08) 22.1(0.14)

F.4. UCI Classification Datasets

Table 8. Test Accuracy values for the UCI classification datasets. The numbers in parentheses are standard errors. Best mean values are
highlighted.

N d VSGP SOLVE SWSGP IDSGP
MagicGamma 15,216 10 0.876 (0.001) 0.876 (0.001) 0.867 (0.002) 0.877 (0.002)
DefaultOrCredit 24,000 30 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NOMAO 27,572 174 0.956 (0.002) 0.957 (0.002) 0.961 (0.001) 0.955 (0.002)
BankMarketing 36,169 51 0.906 (0.001) 0.907 (0.001) 0.897 (0.001) 0.905 (0.001)
Miniboone 104,051 50 0.941 (0.001) 0.941 (0.000) 0.938 (0.000) 0.937 (0.001)
Skin 196,046 3 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000)
Crop 260,667 174 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000)
HTSensor 743,193 11 0.999 (0.000) 1.000 (0.000) 0.989 (0.003) 0.999 (0.000)
Avg. Ranks 2.513 (0.143) 2.938 (0.143) 2.125 (0.188) 2.425 (0.169)
# Inducing points 1024 1024 / 1024 (H=50) / 1024 3

Table 9. Average training time per epoch across the 5 splits for the UCI classification datasets. The numbers in parentheses are standard
errors. Best mean values are highlighted.

Magic DefaultOrCredit NOMAO BankMarket Miniboone Skin Crop HTSensor
VSGP 3105(459) 4759(516) 4445(549) 6231(862) 18447(1279) 37835(7065) 49962(9292) 115463(17511)
SOLVE 5154(1061) 7554(1039) 6718(1028) 8949(1635) 37022(7902) 64606(13314) 88819(18864) 168709(21194)
SWSGP 1547(145) 2354(182) 2728(188) 3682(351) 10040(347) 20283(2796) 21770(3038) 67687(5880)
IDSGP 1143(100) 1293(90) 2026(94) 2987(354) 7654(134) 15700(1918) 21378(2561) 53895(5652)

Table 10. Average prediction time per epoch across the 5 splits for the UCI classification datasets. The numbers in parentheses are standard
errors. Best mean values are highlighted.

MagicGamma DefaultOrCredit NOMAO BankMarketing Miniboone Skin Crop HTSensor
VSGP 3.6(0.56) 4.1(0.59) 4.4(0.74) 9.5(4.39) 17.9(1.84) 49.7(11.15) 58.7(12.82) 139.7(41.67)
SOLVE 4.0(0.85) 5.4(0.73) 3.4(0.76) 4.9(1.24) 49.2(17.83) 48.8(16.73) 86.8(36.26) 93.5(15.73)
SWSGP 3.0(0.43) 3.9(0.38) 4.3(0.51) 5.4(0.72) 16.4(1.82) 36.0(8.00) 33.9(6.25) 88.4(9.16)
IDSGP 2.5(0.24) 2.5(0.21) 3.5(0.39) 4.8(0.54) 13.9(0.75) 26.1(4.92) 37.5(4.96) 83.4(8.23)
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F.5. Large Scale Datasets
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Figure 11. (left) Test RMSE for each method as a function of the training time in seconds, in log10 scale, for the Yellow taxi dataset.
(right) Prediction error on the test set for each method as a function of the training time in seconds, in log10 scale, for the Airlines Delays
dataset. Best seen in color

F.6. Neural Network Trained via Maximum Likelihood

We compare our method, IDSGP, with a neural network (NN) model trained via maximum likelihood. The architecture
of the NN is the same as the one of the network used in the proposed method IDSGP in the UCI regression experiments.
Training is done using ADAM with a learning rate of 0.001. The mini-batch size is the same than for the GP-based methods.
We use the NN to predict the mean and variance of the Gaussian predictive distribution.

A NN approach is expected to be limited by the fact that it does not consider epistemic uncertainty. This results in that
the NN can be very confident in regions with no data, which is contrary to what one should expect. On the other hand,
GP-based approaches do not suffer from this problem since, in regions far from the observed data, the predictive distribution
is expected to be similar to the prior. This behavior happens in GPs because the covariances are expected to be small in
regions where observed data is far away.

To confirm this, we compare the quality of the predictive distribution of IDSGP and the neural network approach in
in-between data (Morales-Alvarez et al., 2021; Foong et al., 2019). That is, in a region between two clusters of observed
points. Standard train/test splits are not adequate to estimate the quality of the predictive distribution in regions with no data
Morales-Alvarez et al. (2021); Foong et al. (2019). Gap splits are preferred. In gap splits one sorts the data across each
dimension (there is one split per dimension) to then use for training the first 1/3 of the instances and the last 1/3 of the
instances. The middle 1/3 of the instances are left aside for testing.

We have evaluated the NN approach and IDSGP on the Energy dataset extracted from the UCI repository, using gap splits.
It is well known that this dataset requires sensible in-between data uncertainty estimation to get good prediction results
when using gap splits (Morales-Alvarez et al., 2021). The results are summarized in Table 11. We observe that the NN
approach and IDSGP have similar RMSE test values when using gap splits. However, the negative test log-likelihood of the
NN approach is much worse. Because the RMSE is similar, the explanation is that the NN approach is providing a less
sensible estimation of the prediction uncertainty. This confirms that the NN approach underestimates the predictive variance
in regions with no observed data.

Table 11. Avg. neg. test log-likelihood and RMSE on the Energy dataset with gap splits for IDSGP and the neural network. The numbers
in parentheses are standard errors. Best results are highlighted in bold-face.

IDSGP NN
NLL 3.568 (0.69) 167.497 (105.80)
RMSE 5.117 (1.38) 4.795 (1.22)
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F.7. Neural network architecture

We evaluate the robustness of the IDSGP by adding more layers and increasing the number of hidden units. Figure 12 shows
the performance of IDSGP using two layered neural network and 25, 50, 100 and 200 hidden units. Figure 13 shows the
performance of IDSGP where the number of hidden layers is fixed to be three and we change the number of hidden units to
be 25, 50, 100, and 200. The number of inducing points are set to be 64 in all these experiments.
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Figure 12. We evaluate the impact of increasing the number of hidden units in two layered neural network using IDGSP.
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Figure 13. We evaluate the impact of increasing the number of hidden units in three layered neural network using IDGSP.
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