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Abstract
Stochastic gradient descent (SGD) with momen-
tum is widely used for training modern deep learn-
ing architectures. While it is well-understood
that using momentum can lead to faster conver-
gence rate in various settings, it has also been
observed that momentum yields higher general-
ization. Prior work argue that momentum stabi-
lizes the SGD noise during training and this leads
to higher generalization. In this paper, we adopt
another perspective and first empirically show that
gradient descent with momentum (GD+M) signifi-
cantly improves generalization compared to gradi-
ent descent (GD) in some deep learning problems.
From this observation, we formally study how
momentum improves generalization. We devise a
binary classification setting where a one-hidden
layer (over-parameterized) convolutional neural
network trained with GD+M provably generalizes
better than the same network trained with GD,
when both algorithms are similarly initialized.
The key insight in our analysis is that momen-
tum is beneficial in datasets where the examples
share some feature but differ in their margin. Con-
trary to GD that memorizes the small margin data,
GD+M still learns the feature in these data thanks
to its historical gradients. Lastly, we empirically
validate our theoretical findings.

1. Introduction
It is commonly accepted that adding momentum to an op-
timization algorithm is required to optimally train a large-
scale deep network. Most of the modern architectures main-
tain during the training process a heavy momentum close to
1 (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014;
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He et al., 2016; Zagoruyko & Komodakis, 2016). Indeed,
it has been empirically observed that architectures trained
with momentum outperform those which are trained without
(Sutskever et al., 2013). Several papers have attempted to
explain this phenomenon. From the optimization perspec-
tive, (Defazio, 2020) assert that momentum yields faster
convergence of the training loss since, at the early stages,
it cancels out the noise from the stochastic gradients. On
the other hand, (Leclerc & Madry, 2020) empirically ob-
serves that momentum yields faster training convergence
only when the learning rate is small. While these works shed
light on how momentum acts on neural network training,
they fail to capture the generalization improvement induced
by momentum (Sutskever et al., 2013). Besides, the noise
reduction property of momentum advocated by (Defazio,
2020) contradicts the observation that, in deep learning, hav-
ing a large noise in the training improves generalization
(Li et al., 2019; HaoChen et al., 2020). To the best of our
knowledge, there is no existing work which theoretically
explains how momentum improves generalization in deep
learning. Therefore, this paper aims to close this gap and
addresses the following question:

Why does momentum improve generalization? What is the
underlying mechanism of momentum improving

generalization in deep learning?

In computer vision, practitioners usually train their archi-
tectures with stochastic gradient descent with momentum
(SGD+M). It is therefore natural to investigate whether the
generalization improvement induced by momentum is tied
to the stochasticity of the gradient. We train a VGG-19
(Simonyan & Zisserman, 2014) using SGD, SGD+M, gra-
dient descent (GD) and GD with momentum (GD+M) on
the CIFAR-10 image classification task. To further isolate
the regularization effect of momentum, we turn off data
augmentation and batch normalization. Figure 1 displays
the training loss and test accuracy of the four models. Not
only momentum improves generalization in the full batch
setting but the generalization improvement increases as the
batch size is larger. Motivated by this empirical observa-
tion, we focus on the contribution of momentum in gradient
descent. We emphasize that this setting allows to isolate
the contribution of momentum on generalization since the
stochastic gradient noise influences generalization (Li et al.,
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(a) (b)
Figure 1: Training loss (a) and test accuracy (b) obtained with VGG-19 trained with SGD, SGD+M, GD and GD+M on CIFAR-10. The
model is trained for 300 epochs to ensure zero training error. To isolate the effect of momentum, we turn off data augmentation and batch
normalization (see Section 2 for further implementation details). GD and SGD respectively refer to stochastic gradient descent with batch
sizes 50k (full batch) and 128. Results are averaged over 5 seeds.

XXXXXXXXXXStudent
Teacher

Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.48/93.25 92.32/92.18 84.3/83.68 94.18/94.12 76.04/76.12
2-MLP 93.45/92.85 91.02/91.78 83.82/83.25 94.14/94.20 75.50/75.56
1-CNN 92.21/92.34 92.31/92.33 83.39/83.44 94.39/94.39 79.44/78.32
2-CNN 91.04/91.22 91.51/91.56 82.44/82.12 93.91/93.79 80.86/78.56

Table 1: Test accuracy obtained using GD/GD+M on a Gaussian synthetic dataset trained using neural network with ReLU activations.
The training dataset consists in 500 points in dimension 30 and test set in 5000 points. The student networks are trained for 1000 epochs
to ensure that the loss stays constant. Results are averaged over 3 seeds and we only report the mean (see Appendix A for full table).

2019; HaoChen et al., 2020).

Given the success of momentum in different deep learning
tasks such as image classification (Simonyan & Zisserman,
2014; He et al., 2016) or language modelling (Vaswani
et al., 2017; Devlin et al., 2018), we start our investigation
by raising the following question:

Does momentum unconditionally improve generalization in
deep learning?

We respond in the negative to this question through the fol-
lowing synthetic binary classification example. We consider
a Gaussian dataset where each data-point is sampled from a
standard normal distribution. We generate the labels using
multiple teacher networks. Starting from the same initial-
ization, we train several student networks on this dataset
using GD and GD+M and compare their test accuracies
in Table 1. Whether the target function is simple (linear)
or complex (neural network), momentum does not improve
generalization for any of the student networks. The same ob-
servation holds for SGD/SGD+M as shown in Appendix A.
Therefore, momentum does not always lead to a higher gen-
eralization in deep learning. Instead, such benefit seems to
heavily depend on both the structure of the data and the
learning problem.

Motivated by the aforementioned observations, this paper
aims to determine the underlying mechanism produced by
momentum to improve generalization. Our work is a first

step to formally understand the role of momentum in deep
learning. Our contributions are divided as follows:

– In Section 2, we empirically confirm that momentum con-
sistently improves generalization when using different
architectures on a wide range of batch sizes and datasets.
We also observe that as the batch size increases, momen-
tum contributes more significantly to generalization.

– In Section 3, we introduce our synthetic data structure and
learning problem to theoretically study the contribution
of momentum to generalization.

– In Section 4, we present our main theorems along with
the intermediate lemmas. We theoretically show that a
1-hidden layer neural network trained with GD+M on our
synthetic dataset is able to generalize better than the same
model trained with GD. Above all, we rigorously char-
acterize the mechanism by which momentum improves
generalization. A sketch of the proof is presented in Sec-
tion 5 and Section 6.

Insights on the setting. The previous experiments sug-
gest that momentum improves generalization in CIFAR-10
while it does not for Gaussian datasets. This means that
this generalization improvement must be specific to the data
structure and the learning problem. In Section 3, we devise
a binary classification problem where the data are linearly
separated by a hyperplane directed by the vector w∗ as de-
picted in Figure 2. We refer to this vector as the feature and
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Figure 2: Our synthetic dataset in 2D. Each data-point is Xi =
[ci ·w∗, di ·n] ∈ R4 for some ci, di ∈ R. We project these points
in the 2D space (span(w∗), span(n)). The feature is w∗ and
the noisy patch is in span(n). The large margin data (squares)
have large component along w∗ and relatively small noise compo-
nent. The small margin data (circles) have relatively large noise
component and thus, these data are well-spread on span(n).

the goal is to learn it. Each data-point is a vector constituted
of a single signal patch equal to θw∗ and of multiple noise
patches. For µ ≪ 1, we assume that with probability 1− µ,
the sampled data-point has large margin i.e. θ = α ≫ 1
while it has small margin i.e. θ = β ≪ 1 with probability
µ. The noise patches are Gaussian random vectors with
small variance. We underline that all the examples share
the same feature but differ in their margins. Our dataset
can be viewed as an extreme simplification of real-world
object-recognition datasets with data of different level of
difficulty. Indeed, images are divided into signal patches
that are helpful for the classification such as the nose of a
dog and noise patches e.g. the background of an image that
are uninformative. Besides, the signal patch may be strong
i.e. the feature is clearly visible or weak when the feature
is indistinguishable e.g. in a car image, the wheel feature is
more or less visible depending on the orientation of the car.

Why does GD+M generalize better than GD? This pa-
per proposes a theory to explain why momentum improves
generalization. The following informal theorems charac-
terize the generalization of a 1-hidden layer convolutional
neural network trained with GD and GD+M on the afore-
described dataset. They dramatically simplify Theorem 4.1
and Theorem 4.2 but highlight the intuitions.

Theorem 1.1 (Informal, GD). There exists a dataset of
size N such that a 1-hidden layer (over-parameterized)
convolutional network trained with GD:

1. initially only learns the (1− µ)N large margin data.

2. has small gradient after learning these data.

3. memorizes the remaining small margin data from the
µN examples.

The model thus reaches zero training loss and well-classifies
the large margin data at test. However, it fails to classify the
small margin data because of the memorization step during
training.
Theorem 1.2 (Informal, GD+M). There exists a dataset of
size N such that a one-hidden layer (over-parameterized)
convolutional network trained with GD+M:

1. initially only learns the (1− µ)N large margin data.

2. has large historical gradients that contain the feature
w∗ present in small margin data.

3. keeps learning the feature in the small margin data
using its momentum historical gradients.

The model thus reaches zero training error and perfectly
classify large and small margin data at test.

Theorem 1.1 and Theorem 1.2 indicate that since the large
margin data are dominant, the two models learn in priority
these examples to decrease their training losses. Since the
training loss is the logistic one, this implies that the gradient
terms stemming from the large margin data thus become
negligible. Consequently, the current gradient becomes
a sum of the small margin data gradients. Thus, it is in
the direction of βw∗ (signal patch) and Gaussian vectors
g (noise patches). Since ∥βw∗∥2 ≪ ∥g∥2, the current
gradient is noisy. Therefore, the GD model keeps decreasing
its training loss and memorizes the small margin data. On
the other hand, contrary to GD, GD+M updates its weights
using a weighted average of the historical gradients. In
particular, it has large past gradients (stemming from large
margin data) that are in the direction αw∗. Therefore, even
though the current gradient is noisy, the GD+M uses its
historical gradients to learn the small margin data since all
the examples share the same feature. We name this process
historical feature amplification and believe that it is key to
understand why momentum improves generalization.

Numerical validation of the theory. Our theory relies
on the ability of momentum to well-classify small margin
data. We first perform experiments in our theoretical setting
described in Section 3. We set the dimension to d = 30,
the number of training examples to N = 20000, the test
examples to 2000. Regarding the architecture, we set the
number of neurons to m = 5 and the number of patches
to P = 5. The parameters α, β, µ are set as in Section 3.
We refer to stochastic gradient descent optimizer with full
batch size as GD/GD+M. Note that for each optimizer, we
grid-search over stepsizes to find the best one in terms of
test accuracy. We trained the models for 50 epochs. We
set the momentum parameter to 0.9. We apply a linear
decay learning rate scheduling during training. Figure 3
shows that the models trained with GD and GD+M get zero
training loss and well-classify large-margin data at test time.
Contrary to GD, GD+M well-classifies small margin data.
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(a) (b) (c)
Figure 3: Training loss (a), accuracy on the large margin (b) and the small margin test data (c) in the setting described in Section 3. While
GD and GD+M get zero training loss, GD+M generalizes better on small margin data than GD.

(a)
(b)

(c)
Figure 4: Training (a) and test (b) accuracy obtained with VGG-19 on the artificially modified CIFAR-10 dataset with small margin
data (c). The architectures are trained using GD/GD+M for 300 epochs to ensure zero training error. Data augmentation and batch
normalization are turned off. (SM) stands for the test accuracy obtained by the algorithm on the small margin data. Results are averaged
over 5 runs with best scheduled learning rate and weight decay for each individual algorithm separately.

Small-margin data in CIFAR-10. To further validate
our theory, we artificially generate small-margin data in
CIFAR-10. We first randomly sample 10% of the training
and test images. As displayed in Figure 4c, for each im-
age, we randomly shuffle the RGB channels. We train a
VGG-19 without data augmentation nor batch normaliza-
tion. While the GD and GD+M models reach 100% training
accuracy, Figure 4 shows that GD+M gets higher test accu-
racy than GD. Above all, GD+M generalizes better than GD
on small-margin data as the accuracy drop factor for GD+M
is 79.47/53.30 = 1.49 while for GD, this drop factor is
68.33/34.80 = 1.96.

Related Work

Non-convex optimization with momentum. A long line
of work consists in understanding the convergence speed
of momentum methods when optimizing non-convex func-
tions. (Mai & Johansson, 2020; Liu et al., 2020; Cutkosky
& Mehta, 2020; Defazio, 2020) show that SGD+M reaches
a stationary point as fast as SGD under diverse assumptions.
Besides, (Leclerc & Madry, 2020) empirically shows that

momentum accelerates neural network training for small
learning rates and slows it down otherwise. Our paper dif-
fers from these works as we work in the batch setting and
theoretically investigate the generalization benefits brought
by momentum (and not the training ones).

Generalization with momentum. Momentum-based
methods such as SGD+M, RMSProp (Tieleman & Hinton,
2012) and Adam (Kingma & Ba, 2014) are standard in
deep learning training since the seminal work of (Sutskever
et al., 2013). Although it is known that momentum improve
generalization in deep learning, only a few works formally
investigate the role of momentum in generalization. (Leclerc
& Madry, 2020) empirically report that momentum yields
higher generalization when using a large learning rate. How-
ever, they assert that this benefit can be obtained by applying
an even larger learning rate on vanilla SGD. We suspect that
this is due to data augmentation and batch normalization
(Ioffe & Szegedy, 2015) which are known to bias the algo-
rithm’s generalization (Bjorck et al., 2018). To our knowl-
edge, our work is the first that theoretically investigates the
generalization of momentum in deep learning.
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(a) (b)
Figure 5: Training loss (a) and test accuracy (b) obtained with VGG-19 trained with SGD, SGD+M, GD and GD+M on CIFAR-100.
Data augmentation and batch normalization are turned off. Momentum significantly improves generalization whether in the stochastic
case (SGD) or in the full batch setting (GD).

(a) (b)
Figure 6: Test accuracy obtained with a VGG-19 using the stochastic gradient descent optimizer on CIFAR-10 when batch normalization
and data augmentation are turned off (a) and on (b). In (a), as the batch size increases, the generalization improvement induced by
momentum gets larger. When the network is trained with batch normalization and data augmentation, momentum slightly improves
generalization for large batch sizes.

2. Numerical performance of momentum
To evaluate the contribution of momentum to generaliza-
tion, we conducted extensive experiments on CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009). We used VGG-19
(Simonyan & Zisserman, 2014) and Resnet-18 (He et al.,
2016) as architectures. In this section, we only present the
plots obtained with VGG-19 and invite the reader to look at
Appendix A for the Resnet-18 experiments.

In all of our experiments, we refer to the stochastic gradient
descent optimizer with batch size 128 as SGD/SGD+M and
the optimizer with full batch size as GD/GD+M. We turn
off data augmentation and batch normalization to isolate
the contribution of momentum to the optimization. Note
that for each algorithm, we grid-search over stepsizes and
momentum parameter to find the best one in terms of test
accuracy. We train the models for 300 epochs. The stepsize
is decayed by a factor 10 at epochs 190 and 265 during
training. All the results are averaged over 5 seeds.

Momentum improves generalization. Figure 5 shows
the performance of GD, GD+M, SGD and SGD+M when
training a VGG-19 on CIFAR-100. We observe that

GD+M/SGD+M consistently outperform GD/SGD. Besides,
we highlight that the generalization improvement induced is
more significant for GD than for SGD. Similar observations
hold for Resnet-18 (see Appendix A).

Influence of batch size. Figure 6a shows the test accu-
racy of a VGG-19 trained on CIFAR-10 with the stochastic
gradient descent optimizer on a wide range of batch sizes.
We compare the generalization obtained with momentum
and without. We remark that momentum does not improve
generalization when the batch size is tiny. However, as the
batch size increases, the gap between the momentum curve
and the no momentum one widens.

Batch normalization and data augmentation. Practition-
ers usually add batch normalization and data augmentation
when training their architectures. Figure 6b displays the
test accuracy obtained when training a VGG-19 with these
two regularizers. We remark that they inhibit the general-
ization improvement of momentum for small and middle
range batch sizes. For large batch sizes, momentum slightly
improves generalization. Additional experiments on the in-
fluence of batch normalization and data augmentation are in
Appendix A.
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3. Setting and algorithms
In this section, we introduce our theoretical setting to an-
alyze the implicit bias of momentum. We first formally
define the data distribution sketched in the introduction and
the neural network model we use to learn it. We finally
present the GD and GD+M algorithms.

General notations. For a matrix W ∈ Rm×d, we denote
by wr its r-th row. For a function f : Rm×d → R, we
denote by ∇wrf(W ) the gradient of f with respect to wr

and ∇f(W ) the gradient with respect to W . For an opti-
mization algorithm updating a vector w, w(t) represents its
iterate at time t. We use Id for the d× d identity matrix and
1m the all-ones vector of dimension m. Finally, we use the
asymptotic complexity notations when defining the different
constants in the paper. We use Õ, Θ̃, Ω̃ to hide logarithmic
dependency on d.

Data distribution. We define a data distribution D where
each sample consists in an input X and a label y such that:

1. Uniformly sample the label y from {−1, 1}.
2. X = (X[1], . . . ,X[P ]) where each patch X[j] ∈ Rd.

3. Signal patch: one patch P (X) ∈ [P ] satisfies

X[P (X)] = cw∗,where c ∈ R,w∗ ∈ Rd, ∥w∗∥2 = 1.

4. c is distributed as c = αy with probability 1− µ
and c = βy otherwise.

5. Noisy patches: X[j] ∼ N (0, (Id −w∗w∗⊤)σ2),
for j ∈ [P ]\{P (X)}.

To keep the analysis simple, the noisy patches are sampled
from the orthogonal complement of w∗ and the parameters
are set to β = d−0.251, α = polylog(d)

√
dβ, σ = 1

d0.509

and P ∈ [2,polylog(d)].

Using this model, we generate a training dataset Z =
{(Xi, yi)}i∈[N ] where Xi = (Xi[j])j∈[P ]. We set µ =

1/poly(d) and N = Θ
(

log log(d)
µ

)
. We let Z to be parti-

tioned in two sets Z1 and Z2 such that Z1 gathers the large
margin data while Z2 the small margin ones. Lastly, we
define µ̂ = |Z2|

N the fraction of small margin data.

Learner model. We use a 1-hidden layer convolutional
neural network with cubic activation to learn the training
dataset Z . The cubic is the smallest polynomial degree
that makes the network non-linear and compatible with our
setting. Indeed, the quadratic activation would only output
positive labels and mismatch our labeling function. The first
layer weights are W ∈ Rm×d and the second layer is fixed
to 1m. Given a input data X , the output of the model is

fW (X) =

m∑
r=1

P∑
j=1

⟨wr,X[j]⟩3. (CNN)

The number of neurons is set as m = polylog(d) to ensure
that (CNN) is mildly over-parametrized.

Training objective. We solve the following logistic re-
gression problem for λ ∈ [0, 1/poly(d)N ],

min
W

1

N

N∑
i=1

log(1 + e−yifW (Xi)) +
λ

2
∥W ∥22 = L̂(W ). (P)

Importance of non-convexity. When λ > 0, if the loss
1
N

∑N
i=1 log (1 + exp (−yifW (Xi))) is convex, then there

is a unique global optimal solution, so the choice of opti-
mization algorithm does not matter. In our case, due to the
non-convexity of the training objective, GD+M converges
to a different (approximate) global optimal compared to GD,
with better generalization properties.

Test error. We assess the quality of a predictor Ŵ using
the classical 0-1 loss used in binary classification. Given
a sample (X, y), the individual test (classification) error
is defined as L (X, y) = 1{f

Ŵ
(X)y < 0}. While L

measures the error of f
Ŵ

on an individual data-point, we
are interested in the test error that measures the average loss
over data points generated from D and defined as

L (f
Ŵ

) := E(X,y)∼D[L (f
Ŵ

(X), y)]. (TE)

Algorithms. We solve the training problem (P) using GD
and GD+M. GD is defined for t ≥ 0 by

W (t+1) = W (t) − η∇L̂(W (t)), (GD)

where η > 0 is the learning rate. On the other hand, GD+M
is defined by the update rule{

g(t+1) = γg(t) + (1− γ)∇L̂(W (t))

W (t+1) = W (t) − ηg(t+1)
, (GD+M)

where g(0) = 0m×d and γ ∈ (0, 1) is the momentum factor.
We now detail how to set parameters in GD and GD+M.

Parametrization 3.1. When running GD and GD+M
on (P), the number of iterations is any T ∈[
poly(d)N/η, dO(log d)/(η)

]
. For both algorithms, the

weights w
(0)
1 , . . . ,w

(0)
m are initialized using independent

samples from a normal distribution N (0, σ2
0Id) where

σ2
0 = polylog(d)

d . The learning rate is set as:

1. GD: the learning rate is reasonable η ∈ (0, Õ(1)].

2. GD+M: the learning rate is large: η = Θ̃(1).1

1This is consistent with the empirical observation that
only momentum with large learning rate improves generaliza-
tion (Sutskever et al., 2013)
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Lastly, the momentum factor is set to γ = 1− polylog(d)
d .

Our Parametrization 3.1 matches with the parameters used
in practice as the weights are generally initialized from
Gaussian with small variance and momentum is set close to
1 (Sutskever et al., 2013).

4. Main results
We now formally state our main theorems regarding the
generalization of models trained using (GD) and (GD+M)
in the setting described in Section 3. We first introduce
some notations.

Main objects. Let r ∈ [m], i ∈ [N ], j ∈ P\{P (Xi)}
and t ≥ 0. Our analysis tracks w

(t)
r the r-th weight of

the network, ∇wr
L̂(W (t)) the gradient of L̂ with respect

to wr, g(t)
r the momentum gradient defined by g

(t+1)
r =

γg
(t)
r + (1− γ)∇wr L̂(W

(t)). We introduce the projection
of these objects on the feature w∗ and noise patches Xi[j]:

– Projection on w∗: c(t)r = ⟨w(t)
r ,w∗⟩.

– Projection on Xi[j] : Ξ
(t)
i,j,r = ⟨w(t)

r ,Xi[j]⟩.

– Total noise: Ξ(t)
i =

∑m
r=1

∑
j∈[P ]\{P (Xi)} yi(Ξ

(t)
i,j,r)

3.

– Maximum signal: c(t) = maxr∈[m] c
(t)
rmax .

Lastly, we define the negative sigmoid S(x) = 1/(1 + ex).

We now provide our first result which states that the learner
model trained with GD does not generalize well on D.
Theorem 4.1. Assume that we run GD on P for T iterations
with parameters set as in Parametrization 3.1. With high
probability, the weights learned by GD

1. partially learn w∗: for r ∈ [m], |c(T )
r | ≤ Õ(1/α).

2. memorize small margin data: for i ∈ Z2, Ξ
(T )
i ≥ Ω̃(1).

Consequently, the training error is smaller than
O(µ/poly(d)) and the test error is at least Ω̃(µ).

Intuitively, the training process of the GD model is described
as follows. Given |Z1| ≫ |Z2| and our choice of parame-
ters for α, β, σ, the gradient points mainly in the direction
of w∗. Therefore, GD eventually learns the feature in Z1

(Lemma 5.1) and the gradients from Z1 quickly become
small. Afterwards, the gradient is dominated by the gradi-
ents from Z2 (Lemma 5.2). Because Z2 has small margin,
the full gradient is now directed by the noisy patches. It
implies that GD memorizes noise in Z2 (Lemma 5.4). Since
these gradients also control the amount of remaining feature
to be learned (Lemma 5.3), we conclude that the GD model
partially learns the feature and introduces a huge noise com-
ponent in the learned weights. We provide a proof sketch
of Theorem 4.1 in Section 5. On the other hand, the model
trained with GD+M generalizes well on D.

Theorem 4.2. Assume that we run GD+M on (P) for T
iterations with parameters set as in Parametrization 3.1.
With high probability, the weights learned by GD+M

1. at least one of them is correlated with w∗: c(T ) > Ω̃(1/β).

2. are barely correlated with noise: for all r ∈ [m], i ∈ [N ],
j ∈ [P ]\{P (Xi)}. |Ξ(T )

i,j,r| ≤ Õ(σ0).

The training loss and test error are at most O(µ/poly(d)).

Intuitively, the GD+M model follows this training process.
Similarly to GD, it first learns the feature in Z1 (Lemma 6.1).
Contrary to GD, the momentum gradient is still highly cor-
related with w∗ after this step (Lemma 6.2). Indeed, the key
difference is that momentum accumulates historical gradi-
ents. Since these gradients were accumulated when learning
Z1, the direction of momentum gradient is highly biased
towards w∗. Therefore, the GD+M model amplifies the
feature from these historical gradients to learn the feature in
small margin data (Lemma 6.3). Subsequently, the gradient
becomes small (Lemma 6.4) and the GD+M model man-
ages to ignore the noisy patches (Lemma 6.5) and learns the
feature from both Z1 and Z2. We provide a proof sketch of
Theorem 4.2 in Section 6.

Signal and noise iterates. Our analysis is built upon a
decomposition of the updates (GD) and (GD+M) on w∗

and Xi[j]. The projection of the vanilla and momentum
gradients along these directions are

– G
(t)
r = ⟨∇wr

L̂(W (t)),w∗⟩ and G(t)
r = ⟨g(t)

r ,w∗⟩.
– G(t)

i,j,r = ⟨∇wr
L̂(W (t)),Xi[j]⟩ and G

(t)
i,j,r = ⟨g(t)

r ,Xi[j]⟩.

We now define the projected updates as follows:

c(t+1)
r = c(t)r − ηG (t)

r (1) Ξ
(t+1)
i,j,r = Ξ

(t)
i,j,r − ηG(t)

i,j,r (2)

G(t+1)
r = γG(t)

r + (1− γ)G (t)
r

c(t+1)
r = c(t)r − ηG(t+1)

r

(3)
G

(t+1)
i,j,r = γG

(t)
i,j,r + (1− γ)G(t)

i,j,r

Ξ
(t+1)
i,j,r = Ξ

(t)
i,j,r −G

(t+1)
i,j,r

(4)

We detail how to use these dynamics to analyze GD+M
and GD in Section 5 and Section 6. Our analysis depends
on the gradients of L̂ which involve S(x) = (1 + ex)

−1
.

We define the derivative of a data-point i as ℓ
(t)
i =

sigmoid(yifW (t)(Xi)), derivatives ν
(t)
k = 1

N

∑
i∈Zk

ℓ
(t)
i

for k ∈ {1, 2} and full derivative ν(t) = ν
(t)
1 + ν

(t)
2 .

5. Analysis of GD
In this section, we provide a proof sketch for Theorem 4.1
that reflects the behavior of GD with λ = 0. A more detailed
proof extending to λ > 0 can be found in the Appendix.
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Step 1: Learning Z1. At the beginning of the learning
process, the gradient is mostly dominated by the gradients
coming from the Z1 samples. Since these data have large
margin, the gradient is thus highly correlated with w∗ and
c
(t)
r increases as shown in the following Lemma.

Lemma 5.1. For all r ∈ [m] and t ≥ 0, (1) is simplified as:

c(t+1)
r ≥ c(t)r +Θ(η)α3(c(t)r )2 ·S(

∑t
s=1 α

3(c
(t)
s )3).

Consequently, after T0 = Θ̃
(

1
ηα3σ0

)
iterations, for all

t ∈ [T0, T ], we have c(t) ≥ Ω̃(1/α).

Intuitively, the increment in the update in Lemma 5.1 is non-
zero when the sigmoid is not too small which is equivalent
to c(t) ≤ Õ(1/α). Therefore, c(t) keeps increasing until
reaching this threshold. After this step, the Z1 data have
small gradient and therefore, GD has learned these data.

Lemma 5.2. Let T0 = Θ̃
(

1
ηα3σ0

)
. After

t ∈ [T0, T ] iterations, ν
(t)
1 is bounded as

ν
(t)
1 ≤ Õ

(
1

η(t−T0+1)α

)
+ Õ

(
β3

α

)
ν
(t)
2 .

By our choice of parameter, Lemma 5.2 indicates that the
full gradient is dominated by the gradients from Z2 data
after T0 = Ω̃

(
1

µ̂ηα

)
. Consequently, ν(t)2 also rules the

amount of feature learnt by GD.

Lemma 5.3. Let T0 = Θ̃
(

1
ηα3σ0

)
. For t ∈ [T0, T ], (1)

becomes c(t+1) ≤ Õ(1/α) + Õ(ηβ3/α)
∑t

τ=T0
ν
(τ)
2 .

Lemma 5.3 implies that quantifying the decrease rate of ν(t)2

provides an estimate on the quantity of feature learnt by the
model. We remark that ν(t)2 = S(β3

∑m
s=1(c

(t)
s )3 + Ξ

(t)
i )

for some i ∈ Z2. We thus need to determine whether the
feature or the noise terms dominates in the sigmoid.

Step 2: Memorizing Z2. We now show that the total
correlation between the weights and the noise in Z2 data
increases until being large.

Lemma 5.4. Let i ∈ Z2, j ∈ [P ]\{P (Xi)} and r ∈ [m].
For t ≥ 0, (2) is simplified as:

yiΞ
(t+1)
i,j,r ≥ yiΞ

(0)
i,j,r +

Θ̃(ησ2d)

N

t∑
τ=0

(Ξ
(τ)
i,j,r)

2S(Ξ
(τ)
i )

− Õ(Pσ2
√
d/α).

Let T1 = Θ̃
(

N
σ0σ

√
dσ2d

)
. Consequently, for t ∈ [T1, T ], we

have Ξ
(t)
i ≥ Ω̃(1). Thus, GD memorizes.

By Lemma 5.4, the noise Ξ
(t)
i dominates in ν

(t)
2 . Conse-

quently, the algorithm memorizes the Z2 data which implies
a fast decay of ν(t)2 .

Lemma 5.5. Let T1 = Θ̃
(

N
σ0σ

√
dσ2d

)
. For t ∈ [T1, T ], we

have
∑t

τ=0 ν
(τ)
2 ≤ Õ(1/ησ0).

Combining Lemma 5.5 and Lemma 5.3, we prove that GD
partially learns the feature.

Lemma 5.6. For t ≤ T , we have c(t) ≤ Õ(1/α).

Lemma 5.4 and Lemma 5.6 respectively yield the first two
items in Theorem 4.1. Bounds on the training loss and test
errors are obtained by plugging these results in (P) and (TE).

6. Analysis of GD+M
In this section, we provide a proof sketch for Theorem 4.2
that reflects the behavior of GD+M with λ = 0. A proof
extending to λ > 0 can be found in the Appendix.

Step 1: Learning Z1. Similarly to GD, by our initializa-
tion choice, the early gradients and so, momentum gradients
are large. They are in the span of w∗ and therefore, the
GD+M model also increases its correlation with w∗.

Lemma 6.1. For all r ∈ [m] and t ≥ 0, as long as c(t) ≤
Õ(1/α), the momentum update (3) is simplified as:

−G(t+1)
r = −γG(t)

r + (1− γ)Θ(α3)(c(t)r )2

Consequently, after T0 = Θ̃
(

1
σ0α2 + 1

1−γ

)
iterations, for

all t ∈ [T0, T ], we have c(t) ≥ Ω̃(1/α).

Step 2: Learning Z2. Contrary to GD, GD+M has a large
momentum that contains w∗ after Step 1.

Lemma 6.2. Let T0 = Θ̃
(

1
σ0α3 + 1

1−γ

)
. Let rmax =

argmaxr∈[m]c
(t)
r . For t ∈ [T0, T ], we have G(t)

rmax ≥
Ω̃(

√
1− γ/α).

Lemma 6.2 hints an important distinction between GD and
GD+M: while the current gradient along w∗ is small at
time T0, the momentum gradient stores historical gradients
that are spanned by w∗. It amplifies the feature present in
previous gradients to learn the feature in Z2.

Lemma 6.3. Let T0 = Θ̃
(

1
σ0α3 + 1

1−γ

)
. After T1 =

T0 + Θ̃
(

1
1−γ

)
iterations, for t ∈ [T1, T ], we have c(t) ≥

Ω̃
(

1√
1−γα

)
. Our choice of parameter in Section 3, this

implies c(t) ≥ Ω̃(1/β).

Lemma 6.3 states that at least one of the weights that is
highly correlated with the feature compared to GD where
c(t) = Õ(1). This result implies that ν(t) converges fast.

Lemma 6.4. Let T0 = Θ̃
(

1
ησ0α3 + 1

1−γ

)
. After T1 =
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T0 + Θ̃
(

1
1−γ

)
iterations, for t ∈ [T1, T ], ν(t) ≤

Õ
(

1
η(t−T1+1)β

)
.

With this fast convergence, Lemma 6.4 implies that the
correlation of the weights with the noisy patches does not
have enough time to increase and thus, remains small.

Lemma 6.5. Let i ∈ [N ], j ∈ [P ]\{P (Xi)} and r ∈ [m].
For t ≥ 0, (4) can be rewritten as |G(t+1)

i,j,r | ≤ γ|G(t)
i,j,r| +

(1− γ)Õ(σ2
0σ

4d2)ν(t). As a consequence, after t ∈ [T1, T ]
iterations, we thus have |Ξ(t)

i,j,r| ≤ Õ(σ0σ
√
d).

Lemma 6.3 and Lemma 6.5 respectively yield the two first
items in Theorem 4.2.

7. Discussion
Our work is a first step towards understanding the algo-
rithmic regularization of momentum and leaves room for
improvements. We constructed a data distribution where
historical feature amplification may explain the generaliza-
tion improvement of momentum. However, it would be
interesting to understand whether this phenomenon is the
only reason or whether there are other mechanisms explain-
ing momentum’s benefits. An interesting setting for this
question is NLP where momentum is used to train large
models as BERT (Devlin et al., 2018). Lastly, our analysis
is in the batch setting to isolate the generalization induced
by momentum. It would be interesting to understand how
the stochastic noise and the momentum together contribute
to the generalization of a neural network.
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A. Additional Experiments
In this section, we present additional experiments to further strengthen our empirical results. We verify on Resnet-18 that
momentum induces generalization improvement when trained without batch normalization and data augmentation. We
then check that when these two regualizers are used, momentum does not improve generalization. We then confirm on
Resnet-18 that the generalization improvement gets larger as the batch size increases. Then, we provide the performance of
SGD and SGD+M on the Gaussian experiment introduced in the introduction. Lastly, we give additional plots showing that
momentum allows to well-classify small margin data as mentioned at the end of the introduction.

A.1. Experiments with Resnet-18

Figure 7 displays the training loss and test accuracy obtained by training a Resnet-18 on CIFAR-10 and CIFAR-100.
Similarly to the case where we trained a VGG-19, momentum significantly improves generalization whether in the stochastic
case (SGD) or in the full batch setting (GD).

(a) (b)

(c) (d)
Figure 7: Training loss and test accuracy obtained with Resnet-18 trained with SGD, SGD+M, GD and GD+M on CIFAR-10 (a-b) and
CIFAR-100 (c-d). Data augmentation and batch normalization are turned off.

A.2. Influence of the batch size

Figure 8 shows the test accuracy obtained with a Resnet-18 using the stochastic gradient descent optimizer on CIFAR-10.
Similarly to the VGG-19 experiment in Section 2, the generalization improvement induced by momentum gets larger as the
batch size increases.

A.3. Influence of batch normalization and data augmentation

As mentioned in Section 2, batch normalization and data augmentation significantly reduce the generalization improvement
induced by momentum. We further confirm this observation in Figure 9 and Figure 10.
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Figure 8: Test accuracy obtained with a Resnet-18 using the stochastic gradient descent optimizer on CIFAR-10 when batch normalization
and data augmentation are turned off.

(a) (b)

(c) (d)

Figure 9: Training loss and test accuracy obtained with VGG-19 trained with SGD, SGD+M, GD and GD+M on CIFAR-10 (a-b) and
CIFAR-100 (c-d). Data augmentation and batch normalization are turned on.

A.4. Synthetic Gaussian data experiments

We provide a complete table with mean and standard deviations obtained by using different student networks to learn the
Gaussian synthetic experiment mentioned in the introduction.

XXXXXXXXXXStudent
Teacher

Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.48± 0.13 92.32± 0.50 84.30± 0.82 94.18± 0.42 76.04± 0.29
2-MLP 93.45± 0.22 91.02± 0.41 83.82± 0.43 94.14± 0.47 75.50± 0.35
1-CNN 92.21± 0.16 92.31± 0.57 83.39± 0.48 94.39± 0.17 79.44± 0.58
2-CNN 91.04± 0.48 91.51± 0.40 82.44± 0.45 93.91± 0.35 80.86± 0.92

(a)
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(a) (b)

(c) (d)

Figure 10: Training loss and test accuracy obtained with Resnet-18 trained with SGD, SGD+M, GD and GD+M on CIFAR-10 (a-b) and
CIFAR-100 (c-d). Data augmentation and batch normalization are turned on.

XXXXXXXXXXStudent
Teacher

Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.25± 0.22 92.18± 0.53 83.68± 0.74 94.12± 0.43 76.12± 0.22
2-MLP 92.85± 0.34 91.78± 0.62 83.25± 0.70 94.20± 0.13 75.56± 0.33
1-CNN 92.34± 0.21 92.33± 0.64 83.44± 0.52 94.39± 0.15 78.32± 0.34
2-CNN 91.22± 0.39 91.56± 0.52 82.12± 0.55 93.79± 0.25 78.56± 0.64

(b)

XXXXXXXXXXStudent
Teacher

Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.58± 0.32 92.56± 0.62 85.74± 0.56 94.18± 0.42 76.06± 0.39
2-MLP 93.51± 0.25 91.82± 0.83 85.33± 0.81 94.14± 0.33 75.33± 0.47
1-CNN 92.42± 0.05 92.03± 0.53 84.57± 0.47 94.22± 0.18 80.02± 0.45
2-CNN 91.54± 0.37 92.04± 0.48 83.81± 0.47 93.95± 0.31 82.86± 0.59

(c)



Towards understanding how momentum improves generalization in deep learning

XXXXXXXXXXStudent
Teacher

Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.56± 0.28 92.82± 0.26 84.65± 0.45 94.16± 0.42 76.01± 0.33
2-MLP 93.24± 0.34 92.26± 0.76 84.27± 0.79 94.24± 0.40 75.04± 0.47
1-CNN 92.50± 0.05 91.68± 0.72 83.39± 0.44 94.07± 0.035 78.92± 0.41
2-CNN 91.61± 0.41 91.94± 0.54 83.70± 0.37 93.89± 0.33 80.50± 0.45

(d)

Table 2: Test accuracy obtained using GD (a), GD+M (b), SGD (c) and GD+M (d) on a Gaussian synthetic dataset trained
using neural network with ReLU activations. The training dataset consists in 500 data points in dimension 50 and test set in
5000 points. The student networks are trained for 1000 epochs to ensure zero training error. Results averaged over 3 runs.

A.5. Additional justification for the theory

In this section, we present further experiments to consolidate the experiment on the artificially decimated CIFAR-10 dataset
described in the introduction.

(a) (b)

(c) (d)

Figure 11: Training and test accuracy obtained with Resnet-18 on the artificially modified CIFAR-10 dataset with small margin data. The
architectures are trained using GD/GD+M (a-b) and SGD/SGD+M (c-d) for 300 epochs to ensure zero training error. Data augmentation
and batch normalization are turned off.

In Figure 11a, we observe that using a Resnet-18, momentum still improves generalization on the small margin images.In
Figure 11d and Figure 12b, we see that using stochastic updates lead SGD to classify small margin images as well as
SGD+M. Lastly, Figure 13 and Figure 14 show that batch normalization and data augmentation also reduce the generalization
improvement of momentum: GD/SGD perform similarly as well as GD+M/SGD+M on the small margin data.
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(a)
(b)

Figure 12: Training and test accuracy obtained with VGG-19 on the artificially modified CIFAR-10 dataset with small margin data. The
architectures are trained using SGD/SGD+M (a-b). Data augmentation and batch normalization are turned off.

(a)
(b)

(c)
(d)

Figure 13: Training and test accuracy obtained with VGG-19 on the artificially modified CIFAR-10 dataset with small margin data. The
architectures are trained using GD/GD+M (a-b) and SGD/SGD+M (c-d). Data augmentation and batch normalization are turned on.
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(a) (b)

(c) (d)
Figure 14: Training and test accuracy obtained with Resnet-18 on the artificially modified CIFAR-10 dataset with small margin data.
The architectures are trained using GD/GD+M (a-b) and SGD/SGD+M (c-d). Data augmentation and batch normalization are turned on.

B. Additional related work
Momentum in convex setting. GD+M (a.k.a. heavy ball or Polyak momentum) consists in using an exponentially
weighted average of the past gradients to update the weights. For convex functions near a strict twice-differentiable
minimum, GD+M is optimal regarding local convergence rate (Polyak, 1963; 1964; Nemirovskij & Yudin, 1983; Nesterov,
2003). However, it may fail to converge globally for general strongly convex twice-differentiable functions (Lessard et al.,
2015) and is no longer optimal for the class of smooth convex functions. In the stochastic setting, GD+M is more sensitive to
noise in the gradients; that is, to preserve their improved convergence rates, significantly less noise is required (d’Aspremont,
2008; Schmidt et al., 2011; Devolder et al., 2014; Kidambi et al., 2018). Finally, other momentum methods are extensively
used for convex functions such as Nesterov’s accelerated gradient (Nesterov, 1983). Our paper focuses on the use of GD+M
and contrary to the aforementioned papers, our setting is non-convex. Besides, we mainly focus on the generalization of
the model learned by GD and GD+M when both methods converge to global optimal. Contrary to the non-convex case,
generalization is disentangled from optimization for (strictly) convex functions.

Algorithmic regularization. The question we address concerns algorithmic regularization which characterizes the
generalization of an optimization algorithm when multiple global solutions exist in over-parametrized models (Soudry
et al., 2018; Lyu & Li, 2019; Ji & Telgarsky, 2019; Chizat & Bach, 2020; Gunasekar et al., 2018; Arora et al., 2019). This
regularization arises in deep learning mainly due to the non-convexity of the objective function. Indeed, this latter potentially
creates multiple global minima scattered in the space that vastly differ in terms of generalization. Algorithmic regularization
is induced by and depends on many factors such as learning rate and batch size (Goyal et al., 2017; Hoffer et al., 2017;
Keskar et al., 2016; Smith et al., 2018), initialization (Allen-Zhu & Li, 2020), adaptive step-size (Kingma & Ba, 2014;
Neyshabur et al., 2015; Wilson et al., 2017), batch normalization (Arora et al., 2018; Hoffer et al., 2019; Ioffe & Szegedy,
2015) and dropout (Srivastava et al., 2014; Wei et al., 2020). However, none of these works theoretically analyzes the
regularization induced by momentum.
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C. Notations
In this section, we introduce the different notations used in the proofs. We start by defining the notations that appear for GD
and GD+M. We first consider the case when λ = 0, we will extend the proof to λ > 0 in section H

C.1. Notations for GD and GD+M

Our paper rely on the notions of signal and noise components of the iterates.

– Signal intensity: θ = α if i ∈ Z1 and β otherwise.

– Signal: c(t)r = ⟨w∗,w
(t)
r ⟩ for r ∈ [m].

– Max signal: c(t) = c
(t)
rmax where rmax ∈ argmaxr∈[m]c

(t)
r .

– Noise: Ξ(t)
i,j,r = ⟨w(t)

r ,Xi[j]⟩ for i ∈ [N ] and j ∈ [P ]\{P (Xi)}.

– Max noise: Ξ(t)
max = maxi∈[N ],j ̸=P (Xi),r∈[m] |Ξ

(t)
i,j,r|2.

– Total noise: Ξ(t)
i =

∑
r∈[m],j∈[P ],j ̸=P (Xi)

yi

(
Ξ
(t)
i,j,r

)3
.

We also use the following notations when dealing with the loss function and its gradient.

– Signal loss: L̂(t)(a) = log
(
1 + exp

(
−
∑m

r=1(c
(t)
r )3a3

))
for a ∈ R.

– Noise loss: L̂(t)(Ξ
(t)
i ) = log

(
1 + exp

(
−Ξ

(t)
i

))
.

– Negative sigmoid function: S(x) = (1 + exp(x))−1, for x ∈ R.

– Signal derivative: ℓ̂(t)(a) = S
(∑m

r=1(c
(t)
r )3a3

)
, for a ∈ R.

– Noise derivative: ℓ̂(t)(Ξ(t)
i ) = S(Ξ

(t)
i ).

– Derivative: ℓ(t)i = S
(
−
∑m

r=1

∑P
j=1 yi⟨w

(t)
r ,Xi[j]⟩3

)
, for i ∈ [N ].

– Zk derivative: ν(t)k = 1
N

∑
i∈Zk

ℓ
(t)
i for k ∈ {1, 2}.

– Full derivative: ν(t) = ν
(t)
1 + ν

(t)
2 .

– Gradient on signal: G
(t)
r = ⟨∇wr L̂(W

(t)),w∗⟩ for r ∈ [m].

– Gradient on noise: G(t)
i,j,r = ⟨∇wr

L̂(W (t)),Xi[j]⟩ for i ∈ [N ], j ∈ [P ]\{P (Xi)} and r ∈ [m].

– Gradient on normalized noise: G(t)
r =

〈
∇wr

L̂(W (t)),χ
〉
, for r ∈ [m], where χ =

1
N

∑
i∈Z2

∑
j ̸=P (Xi)

Xi[j]

∥ 1
N

∑
i∈Z2

∑
j ̸=P (Xi)

Xi[j]∥2
.

C.2. Notations specific to GD+M

We now introduce the notations that only appear in the proofs involving GD+M.

– Momentum gradient oracle: g(t)
r = γg

(t−1)
r + (1− γ)∇wr

L̂(W (t)) for r ∈ [m].

– Signal momentum: G(t)
r := ⟨g(t)

r ,w∗⟩ for r ∈ [m].

– Max signal momentum: G(t) = G(t)
rmax , where rmax = argmaxr∈[m]c

(t)
r .

– Noise momentum: G(t)
i,j,r = ⟨g(t)

r ,Xi[j]⟩ for i ∈ [N ], j ∈ [P ]\{P (Xi)} and r ∈ [m].



Towards understanding how momentum improves generalization in deep learning

D. Induction hypotheses
We prove our main result using an induction. More specifically, we make the following assumptions for every time t ≤ T.

Induction hypothesis D.1 (Bound on the noise component for GD). Throughout the training process using GD for t ≤ T ,
we maintain that:

1. (Large signal data have small noise component). For every i ∈ Z1, for every j ∈ [P ]\{P (Xi)} and r ∈ [m], we
maintain:

|Ξ(t)
i,j,r| ≤ Õ(σ0σ

√
d). (5)

2. (Small signal data have large noise component). For every i ∈ Z2, for every j ∈ [P ]\{P (Xi)} and r ∈ [m], we have:

|Ξ(t)
i,j,r| ≤ Õ(1), yiΞ

(t)
i,j,r ≥ −Õ(σ0σ

√
d). (6)

Induction hypothesis D.2 (Bound on the signal component for GD). Throughout the training process using GD for t ≤ T ,
the signal component is bounded for every r ∈ [m] as

−Õ(σ0) ≤ c(t)r ≤ Õ(1/α).

Induction hypothesis D.3 (Max noise is bounded by max signal component). Throughout the training process using GD
for t ≤ T , we maintain:

αmin{κ, α2(c(t))2} ≥ Ω̃
(
Ξ(t)
max

)
,

where κ = Õ(1).

Induction hypothesis D.4 (Bound on the noise component for GD+M). Throughout the training process using GD+M for
t ≤ T , for every i ∈ [N ], for every j ∈ [P ]\{P (Xi)}, we have that:

|Ξ(t)
i,j,r| ≤ Õ(σ0σ

√
d) (7)

Induction hypothesis D.5 (Bound on the signal component for GD+M). Throughout the training process using GD+M for
t ≤ T , for r ∈ [m], we have that:

−Õ(σ0) ≤ c(t)r ≤ Õ(1/β). (8)

In what follows, we assume these induction hypotheses for t < T to prove our generalization results. We then prove these
hypotheses for t+ 1.

E. Gradients and updates

In this section, we first derive the gradient of the loss L̂. We then provide its projection on w∗ (signal gradient) and on
Xi[j] (noise gradient). We first derive the gradient of the loss L̂.

Lemma E.1 (Gradient of L̂). For t ≥ 0 and r ∈ [m], the gradient of the loss L̂ with respect to wr is:

∇wr
L̂(W (t)) = − 3

N

(∑
i∈Z1

α3ℓ
(t)
i +

∑
i∈Z2

β3ℓ
(t)
i

)
(c(t)r )2w∗ +

N∑
i=1

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2Xi[j]

 .

Proof of Lemma E.1. . We derive L̂ with respect to wr and obtain:

∇wr
L̂(W (t)) = − 3

N

N∑
i=1

P∑
j=1

yi⟨w(t)
r ,Xi[j]⟩2

1 + exp(fW (t)(Xi))
Xi[j]. (9)

By rewriting (9), we obtain the desired result.
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E.1. Signal gradient

To track the signal learnt by our models, we compute the signal gradient which is the projection of the gradient on w∗.

Lemma E.2 (Signal gradient). For all t ≥ 0 and r ∈ [m], the signal gradient is:

−G (t)
r =

3

N

(∑
i∈Z1

α3ℓ
(t)
i +

∑
i∈Z2

β3ℓ
(t)
i

)
(c(t)r )2.

Proof of Lemma E.2. We obtain the desired result by projecting the gradient from Lemma E.1 on w∗ and using Xi[j] ⊥
w∗.

E.2. Noise gradient

To prove the memorization of GD and the non-memorization of GD+M, we also need to compute the noise gradient which
is the projection of the gradient ∇wr L̂ on Xi[j].

Lemma E.3 (Noise gradient). For all t ≥ 0, i ∈ [N ] and j ∈ [P ]\{P (Xi)} and r ∈ [m], the noise gradient is:

−G(t)
i,j,r =

3

N
ℓ
(t)
i (Ξ

(t)
i,j,r)

2∥Xi[j]∥22

+
3

N

∑
k ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,k,r)

2⟨Xi[k],Xi[j]⟩

+
3

N

∑
a ̸=i

∑
k ̸=P (Xa)

ℓ(t)a (Ξ
(t)
a,k,r)

2⟨Xa[k],Xi[j]⟩.

Proof of Lemma E.3. Similarly to Lemma E.2, we obtain the desired result by projecting the gradient from Lemma E.1 on
Xi[j] and using Xi[j] ⊥ w∗.

Remark 1. The gradient in Lemma E.1 involve sigmoid terms ℓ(t)i . In several parts of the proof, we focus on the time where
these terms are small. We consider that the sigmoid term is small for a κ such that

T∑
τ=0

1

1 + exp(κ)
≤ Õ(1) =⇒ κ ≥ log(Ω̃(T )) ⇐⇒ κ ≥ Ω̃(1). (10)

Intuitively, (10) means that the sum of the sigmoid terms for all time steps is bounded (up to a logarithmic dependence).

F. Learning with GD
In this section, we detail the proofs of the lemmas in Section 5 and Theorem 4.1. We first characterize the dynamics of the
signal c(t)r in subsection F.1. We then analyze the dynamics of the noise Ξ

(t)
i,j,r in subsection F.2 and show the memorization

of the GD model. We finally prove Theorem 4.1 in subsection F.3 and the induction hypotheses in subsection F.4.

F.1. Learning signal with GD

To track the amount of signal learnt by GD, we make use of the following update.

Lemma F.1 (Signal update). For all t ≥ 0 and r ∈ [m], the signal update (1) is equal:

c(t+1)
r = c(t)r + 3η

(
α3ν

(t)
1 + β3ν

(t)
2

)
(c(t)r )2.

Consequently, it satisfies:

Θ̃(η)(1− µ̂)α3ℓ̂(t)(α)(c(t)r )2 ≤ c(t+1)
r − c(t)r ≤ Θ̃(η)

(
(1− µ̂)α3ℓ̂(t)(α) + β3ν

(t)
2

)
(c(t)r )2. (11)
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Proof of Lemma F.1. The signal update is obtained by using (1) and the signal gradient (Lemma E.2). This yields

c(t+1)
r = c(t)r +

3η

N

(∑
i∈Z1

α3ℓ
(t)
i +

∑
i∈Z2

β3ℓ
(t)
i

)
(c(t)r )2. (12)

To obtain the desired lower bound, we first drop the sum over Z2 in (12). Then, for i ∈ Z1, we apply Lemma I.1 to get
ℓ
(t)
i = Θ(1)ℓ̂(t)(α).

To obtain the desired upper bound, we apply the same reasoning as above to bound the Z1 term.

F.1.1. EARLY STAGES OF THE LEARNING PROCESS t ∈ [0, T0]: LEARNING Z1 DATA

Since w
(0)
r ∼ N (0, σ2

0Id) with σ0 small, the sigmoid terms ℓ̂(t)(α) and ℓ
(t)
i in the signal update are large at early iterations.

As c(t)r is non-decreasing (by Lemma F.1), ℓ̂(t)(α) eventually becomes small at a time T0 > 0. As mentioned in Remark 1,
the sigmoid term S(x) is small when x ≥ κ ≥ Ω̃(1). We therefore simplify (12) for t ∈ [0, T0].

Lemma F.2 (Signal update at early iterations). Let T0 > 0 the time where there exists s ∈ [m] such that c(t)s ≥ Ω̃(1/α).
Then, for t ∈ [0, T0] and for all r ∈ [m], the signal update is simplified as:

Θ(η)(1− µ̂)α3(c(t)r )2 ≤ c(t+1)
r − c(t)r ≤ Θ(η)

(
(1− µ̂)α3 + µ̂β3

)
(c(t)r )2. (13)

Proof of Lemma F.2. For t ∈ [0, T0], we know that for all s ∈ [m], we have c
(t)
s ≤ κ

m1/3α
. Therefore, we have

1

1 + exp(Ω̃(1))
≤ ℓ̂(t)(α) =

1

1 + exp
(∑m

s=1 α
3(c

(t)
s )3

) ≤ 1. (14)

From Remark 1, the sigmoid is small when it is equal to 1
1+exp(Ω̃(1))

. Thus, for t ∈ [T0, T ], we have:

ℓ̂(t)(α) = Θ(1). (15)

Plugging (15) in the left-hand side of (11) yields the desired lower bound.

To get the upper bound, we start from the right-hand side of (11). We upper bound 1
N

∑
i∈Z2

ℓ
(t)
i ≤ µ̂ since ℓ

(t)
i ≤ 1.

Moreover, we use (15) to upper bound the ℓ̂(t)(α) term.

We now prove Lemma 5.1 that quantifies the amount of signal learnt by GD when the derivative is large.

Lemma 5.1. For all r ∈ [m] and t ≥ 0, (1) is simplified as:

c(t+1)
r ≥ c(t)r +Θ(η)α3(c(t)r )2 ·S(

∑t
s=1 α

3(c
(t)
s )3).

Consequently, after T0 = Θ̃
(

1
ηα3σ0

)
iterations, for all t ∈ [T0, T ], we have c(t) ≥ Ω̃(1/α).

Proof of Lemma 5.1. Let r ∈ [m]. From Lemma F.2, the signal update for t ∈ [0, T0] is{
c
(t+1)
r ≤ c

(t)
r +A(c

(t)
r )2

c
(t+1)
r ≥ c

(t)
r +B(c

(t)
r )2

, (16)

where A and B are respectively defined as:

A := Θ̃(η)
(
(1− µ̂)α3 + µ̂β3

)
,

B := Θ̃(η)(1− µ̂)α3.

Now, we would like to find the time T0 where c
(t)
r ≥ Ω̃(1/α). This time exists as c(t)r is non-decreasing. To this end, we

apply the Tensor Power method (Lemma K.15). This lemma only applies to non-negative sequences. Since we initialize
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the weights w(0)
r ∼ N (0, σ2

0Id), we have c
(0)
r ∼ N (0, σ2

0). Since all the w
(0)
r ’s are i.i.d. so do the c

(0)
r ’s. Therefore, the

probability that at least one of the c(0)r is non-negative is 1− (1/2)m = 1−o(1). We thus conclude that with high probability,
there exist an index r ∈ [m] such that c(0)r ≥ 0. Among the possible indices r that satisfy this inequality, we now focus on
r = rmax where rmax ∈ argmax c

(0)
r .

Setting υ = Θ̃(1/α) in Lemma K.15, we deduce that the time T0 is

T0 =
Θ̃(1)

ηα3σ0
+

Θ̃(1)
(
(1− µ̂)α3 + µ̂β3

)
(1− µ̂)α3

⌈
− log(Θ̃(σ0α))

log(2)

⌉

We now prove Lemma 5.2. It states that since the signal c(t) has significantly increased, the Z1 derivative ν
(t)
1 is now small.

Before proving this result, we introduce an auxiliary Lemma.

Lemma F.3 (Lower bound on the signal update). Run GD on the loss function L̂(W ). After T0 = Θ̃
(

1
ηα3σ0

)
iterations,

the signal update is satisfies for t ≥ t0

c(t+1) ≥ c(t) + ηΩ̃(α)ν
(t)
1 .

Proof of Lemma F.3 . From Lemma F.1, we know that

c(t+1) ≥ c(t) + Θ̃(η)ν
(t)
1 α3(c(t))2. (17)

Plugging c(t) ≥ Ω̃(1/α) (Lemma 5.1) in (17), we obtain the desired result.

Lemma 5.2. Let T0 = Θ̃
(

1
ηα3σ0

)
. After t ∈ [T0, T ] iterations, ν(t)1 is bounded as ν(t)1 ≤ Õ

(
1

η(t−T0+1)α

)
+ Õ

(
β3

α

)
ν
(t)
2 .

Proof of Lemma 5.2. From Lemma F.3, we deduce an upper bound on ν
(t)
1 :

ν
(t)
1 ≤ Õ

(
1

ηα

)
(c(t+1) − c(t)). (18)

On the other hand, using Lemma E.2, the signal difference is bounded as:

c(t+1) − c(t) ≤
m∑
r=1

c(t+1)
r − c(t)r

≤ (1− µ̂)Θ(ηα)

m∑
r=1

(αc(t)r )2ℓ̂(t)(α) + µ̂Θ(ηβ3)

m∑
r=1

(c(t)r )2ν
(t)
2 . (19)

By applying Induction hypothesis D.1 in (19) and using m = Θ̃(1), we obtain:

c(t+1) − c(t) ≤ (1− µ̂)Θ(ηα)

m∑
r=1

(αc(t)r )2ℓ̂(t)(α) + µ̂Õ(ηβ3)ν
(t)
2 . (20)

We now bound (20) by a loss term by applying Lemma K.20. Using Lemma 5.1 and Induction hypothesis D.2, we have:

0 < Ω̃(1/α) ≤ Ω̃(1/α)−mÕ(σ0) ≤ c(t) −
∑

r ̸=rmax

c(t)r ≤
m∑
r=1

αc(t)r ≤ mÕ(1) ≤ Õ(1). (21)

We can now apply Lemma K.20 and get:

m∑
r=1

(αc(t)r )2ℓ̂(t)(α) ≤ 20mαemÕ(σ0)

Ω̃(1)
L̂(t)(α) ≤ Õ(α)L̂(t)(α). (22)
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Plugging (22) in (20) yields:

c(t+1) − c(t) ≤ (1− µ̂)Õ(ηα2)L̂(t)(α) + µ̂Õ(ηβ3)ν
(t)
2 . (23)

Combining (18) and (23), we thus obtain:

ν
(t)
1 ≤ Õ

(
1

α

)(
(1− µ̂)Õ(α2)L̂(t)(α) + µ̂Õ(β3)ν

(t)
2

)
. (24)

From Lemma I.7, we have the convergence rate of L̂(t)(α). We use it to bound ν
(t)
1 .

The bound on ν(t) is obtained by using its definition ν(t) = ν
(t)
1 + ν

(t)
2 .

F.1.2. LATE STAGES OF LEARNING PROCESS t ∈ [T0, T ]: AMOUNT OF LEARNT SIGNAL CONTROLLED BY Z2

DERIVATIVE

We earlier proved that after T0 iterations, the signal c(t) learnt by the GD model significantly increases until making ν
(t)
1

small. We therefore need to rewrite the signal update in this case.

Lemma F.4 (Rewriting of signal update). For t ∈ [T ], the maximal signal c(t) updates as:

c(t+1) − c(t) ≤ Θ(η)

(
αν

(t)
1 min{κ, (c(t))2α2}+ β3

α2
ν
(t)
2

)
.

Proof of Lemma F.4. From the signal update given by Lemma F.1, we know that:

c(t+1) = c(t) +
3ηα

N

∑
i∈Z1

(αc(t))2ℓ
(t)
i + 3ηβ3ν

(t)
2 (c(t))2. (25)

To obtain the desired result, we need to prove for i ∈ Z1:

(αc(t))2ℓ
(t)
i ≤ Θ(1)min{κ, α2(c(t))2}. (26)

Indeed, we remark that:

(αc(t))2ℓ
(t)
i =

α3(c(t))2

1 + exp
(
α3
∑m

s=1(c
(t)
s )3 + Ξ

(t)
i

) . (27)

By using Induction hypothesis D.1 and Induction hypothesis D.2, (27) is bounded as:

(αc(t))2ℓ
(t)
i =

α3(c(t))2

1 + exp
(
α3(c(t))3 + α3

∑
s̸=rmax

(c
(t)
s )3 + Ξ

(t)
i

)
≤ α3(c(t))2

1 + exp
(
α3(c(t))3 − Õ(mα3σ3

0)− Õ(mP (σσ0

√
d)3)

)
=

Θ(α)(αc(t))2

1 + exp((αc(t))3)
. (28)

Using Remark 1, the sigmoid term in (28) becomes small when αc(t) ≥ κ1/3. To summarize, we have:

(αc(t))2ℓ
(t)
i =

{
0 if αc(t) ≥ κ1/3

(αc(t))2ℓ
(t)
i otherwise

. (29)

(29) therefore implies (αc(t))2ℓ(t)i ≤ Θ(1)min{κ2/3, (αc(t))2} which implies (26).

Besides, we use Induction hypothesis D.2 to bound (c(t))2 in the right-hand side of (25).
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We now show that once ν
(t)
1 is small, the amount of learnt signal is controlled by ν

(t)
2 .

Lemma 5.3. Let T0 = Θ̃
(

1
ηα3σ0

)
. For t ∈ [T0, T ], (1) becomes c(t+1) ≤ Õ(1/α) + Õ(ηβ3/α)

∑t
τ=T0

ν
(τ)
2 .

Proof of Lemma 5.3. Let τ ∈ [T0, T ). From Lemma F.4, we know that:

c(τ+1) − c(τ) ≤ Θ(η)

(
αν

(τ)
1 min{κ, (c(τ))2α2}+ β3

α2
ν
(τ)
2 (c(τ))2

)
(30)

Let t ∈ [τ, T ). We now sum up (30) for τ = T0, . . . , t and obtain:

c(t+1) ≤ c(T0) +Θ(ηα)

t∑
τ=T0

ν
(τ)
1 min{κ, (c(τ))2α2}+ Θ(ηβ3)

α2

t∑
τ=T0

ν
(τ)
2 . (31)

We now plug the bound on ν
(t)
1 from Lemma 5.2 in (31). This implies:

c(t+1) ≤ c(T0) +

t∑
τ=T0

Õ(1)

τ − T0 + 1
+ Õ(ηβ3)

(
1 +

1

α2

) t∑
τ=T0

ν
(τ)
2 . (32)

Plugging
∑

τ 1/τ ≤ Õ(1) and c(T0) ≤ Õ(1/α) (Induction hypothesis D.2) in (32), we obtain:

c(t+1) ≤ Õ(1)

α
+

Õ(ηβ3)

α2

t∑
τ=T0

ν
(τ)
2 .

F.2. Memorization process of GD

Lemma 5.2 shows that after T0 iterations, the gradient is controlled by ν
(t)
2 . In this section, we show that this yields the GD

model to memorize.

F.2.1. MEMORIZING Z2 (t ∈ [0, T1])

Using Lemma F.1, we simplify the noise update.

Lemma F.5 (Noise update). Let all t ≥ 0, i ∈ [N ], j ∈ [P ]\{P (Xi)} and r ∈ [m]. Then, with probability at least 1− o(1),
the noise update (2) is bounded as∣∣∣∣∣yiΞ(t+1)

i,j,r − yiΞ
(t)
i,j,r −

Θ̃(ησ2d)

N
ℓ
(t)
i (Ξ

(t)
i,j,r)

2

∣∣∣∣∣ ≤ Θ̃(ησ2
√
d)

N

N∑
a=1

ℓ(t)a

∑
k ̸=P ((Xa)

(Ξ
(t)
a,k,r)

2. (33)

Proof of Lemma F.5. Let i ∈ [N ], j ∈ [P ]\{P (Xi)} and r ∈ [m]. From Lemma E.3, we know that the noise update
satisfies:

yiΞ
(t+1)
i,j,r = yiΞ

(t)
i,j,r +

3η

N
ℓ
(t)
i (Ξ

(t)
i,j,r)

2∥Xi[j]∥22 +
3η

N
ℓ
(t)
i

∑
k ̸=P (Xi)

k ̸=j

(Ξ
(t)
i,k,r)

2⟨Xi[k],Xi[j]⟩

+
3η

N

∑
a̸=i

ℓ(t)a

∑
k ̸=P (Xa)

(Ξ
(t)
a,k,r)

2⟨Xa[k],Xi[j]⟩.
(34)

We now apply Lemma K.5 and Lemma K.7 to respectively bound ∥Xi[j]∥22 and ⟨Xa[k],Xi[j]⟩ in (34) and obtain the
desired result.

In the next lemma, we further simplify the noise update from Lemma F.5.
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Lemma F.6 (Sum of noise updates). Let i ∈ Z2, j ∈ [P ]\{P (Xi)} and r ∈ [m]. Let T = Θ̃
(

Pσ2
√
d

ηβ3µ̂

)
. For t ≤ T, the

noise update satisfies: ∣∣∣∣∣yiΞ(t+1)
i,j,r − yiΞ

(0)
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=0

ℓ̂(τ)(Ξ
(τ)
i )(Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)
. (35)

Proof of Lemma F.6. Let i ∈ Z2, j ∈ [P ]\{P (Xi)} and r ∈ [m]. Our starting point is Lemma I.4 which states that:∣∣∣∣∣yiΞ(t)
i,j,r − yiΞ

(0)
i,j,r −

ηΘ̃(σ2d)

N

t−1∑
τ=0

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)
+ Õ

(
ηβ3

α

) t∑
j=0

ν
(j)
2 . (36)

Since t ≤ T = Θ̃
(

Pσ2
√
d

ηβ3µ̂

)
, we bound the second sum term in (36) as:

Õ

(
ηβ3

α

) t∑
j=0

ν
(j)
2 ≤ Õ

(
ηβ3

α

)
µ̂t ≤ Õ

(
ηβ3µ̂T

α

)
≤ Õ

(
Pσ2

√
d

α

)
. (37)

From (37), we deduce that∣∣∣∣∣yiΞ(t)
i,j,r − yiΞ

(0)
i,j,r −

ηΘ̃(σ2d)

N

t−1∑
τ=0

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)
. (38)

Lastly, we know from Lemma I.2 that ℓ(τ)i = Θ(1)ℓ̂(t)(Ξ
(τ)
i ). Plugging this in (38) yields the desired result.

Since w
(0)
r ∼ N (0, σ2

0Id) with σ0 small, the sigmoid terms ℓ̂(t)(Ξ(t)
i ) in the noise update are large at early iterations. After

a certain time T1 > 0, there exist an index s ∈ [m] such that Ξ(t)
i,j,s becomes large and ℓ̂(t)(Ξ

(t)
i ) eventually becomes small.

We therefore simplify (35) for t ∈ [0, T1].

Lemma F.7 (Noise update at early iterations). Let i ∈ Z2 and j ∈ [P ]\{P (Xi)}. Let T1 > 0 be the time where there exists
s ∈ [m] such that Ξ(t)

i,j,s ≥ Ω̃(1). Then, for t ∈ [0, T1] and for all r ∈ [m], the noise update is simplified as:∣∣∣∣∣yiΞ(t+1)
i,j,r − yiΞ

(0)
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=0

(Ξ
(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)
. (39)

Proof of Lemma F.7. Let t ≤ T1. We assume for now that T1 ≤ T = Θ̃
(

Pσ2
√
d

ηβ3µ̂

)
and will check this hypothesis in the

proof of Lemma 5.4. Let i ∈ Z2, j ∈ [P ]\{P (Xi)} and r ∈ [m]. From Lemma F.6, we know that∣∣∣∣∣yiΞ(t+1)
i,j,r − yiΞ

(0)
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=0

ℓ̂(τ)(Ξ
(τ)
i )(Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)
. (40)

From Remark 1, we know that ℓ̂(τ)(Ξ(τ)
i ) is small when Ξ

(τ)
i ≥ κ ≥ Ω̃(1). To have this condition, it is sufficient that there

exists an index s ∈ [m] such that yiΞ
(τ)
i,j,s ≥ Ω̃(1). Indeed, by using Induction hypothesis D.1, we have:

Ξ
(t)
i = (yiΞ

(t)
i,j,s)

3 +

m∑
s=1

∑
k ̸=P (Xi)

(yiΞ
(t)
i,k,s)

3 ≥ Ω̃(1)− Õ(mP (σσ0

√
d)3) ≥ Ω̃(1).

Therefore, for t ∈ [0, T1] and τ ≤ t, we have ℓ̂(τ)(Ξ
(τ)
i ) = Θ(1). In this case, the noise update (40) is:∣∣∣∣∣yiΞ(t+1)

i,j,r − yiΞ
(0)
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=0

(Ξ
(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)
. (41)
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Lemma F.7 indicates that yiΞ
(t)
i,j,r is not non-decreasing but overall, this quantity gets large over time. We now want to

determine the time T1 where one of the yiΞ
(t)
i,j,r becomes large.

Lemma F.8. Let i ∈ Z2, j ∈ [P ]\{P (Xi} and T1 = Θ̃
(

N
σ0σ

√
dσ2d

)
. After T1 iterations, there exists s ∈ [m] such that

Ξ
(t)
i,j,s ≥ Ω̃(1).

Proof of Lemma F.8. Lemma F.7 indicates that the noise iterate satisfies for t ∈ [0, T1]:{
yiΞ

(t)
i,j,r ≥ yiΞ

(0)
i,j,r +A

∑t−1
τ=0(Ξ

(τ)
i,j,r)

2 − C

yiΞ
(t)
i,j,r ≤ yiΞ

(0)
i,j,r +A

∑t−1
τ=0(Ξ

(τ)
i,j,r)

2 + C
, (42)

where A,C > 0 are constants defined as

A =
Θ̃(ησ2d)

N
, C = Õ

(
Pσ2

√
d

α

)
. (43)

To find T1, we apply the Tensor Power method (Lemma K.16) to (42). We initialize the weights w(0)
r ∼ N (0, σ2

0Id) and
Xi[j] ∼ N (0, σ2Id). Therefore, we have P[yiΞ(0)

i,j,r ≥ 0] = 1/2. Since all the w
(0)
r ’s are i.i.d. so do the Ξ

(0)
i,j,r’s. Therefore,

the probability that at least one of the Ξ
(0)
i,j,r is non-negative is 1− (1/2)m = 1− o(1). We thus conclude that with high

probability, there exist an index r ∈ [m] such that yiΞ
(0)
i,j,r ≥ Ω(σσ0

√
d) ≥ Ω(C). In what follows, we focus on such index

r.

Setting the constants A,C as in (43) and υ = Õ(1), the time T1 obtained with the Tensor Power method is

T1 =
21N

Θ̃(ησ2d)yiΞ
(0)
i,j,r

+
8N

Θ̃(ησ2d)(yiΞ
(0)
i,j,r)


log

(
Õ(1)

yiΞ
(0)
i,j,r

)
log(2)

 .

We thus obtain T1 = Θ̃
(

N
ησ2dσ0σ

√
d

)
. We indeed verify that T1 ≤ T since Θ̃

(
N

ησ2dσ0σ
√
d

)
≪ Θ̃

(
NPσ2

√
d

ηβ3µ̂

)
.

Lemma 5.4. Let i ∈ Z2, j ∈ [P ]\{P (Xi)} and r ∈ [m]. For t ≥ 0, (2) is simplified as:

yiΞ
(t+1)
i,j,r ≥ yiΞ

(0)
i,j,r +

Θ̃(ησ2d)

N

t∑
τ=0

(Ξ
(τ)
i,j,r)

2S(Ξ
(τ)
i )

− Õ(Pσ2
√
d/α).

Let T1 = Θ̃
(

N
σ0σ

√
dσ2d

)
. Consequently, for t ∈ [T1, T ], we have Ξ

(t)
i ≥ Ω̃(1). Thus, GD memorizes.

Proof of Lemma 5.4. The simplified (2) update is obtained from Lemma F.6. Besides, we know that T1 is the first time
where there exists s ∈ [m] such that Ξ(t)

i,j,s ≥ Ω̃(1). As explained in the proof of Lemma F.7, Ξ(t)
i,k,s ≥ Ω̃(1) implies that

Ξ
(t)
i ≥ Ω̃(1). We can therefore apply Lemma F.8 to obtain the aimed result.

F.2.2. LATE STAGES OF MEMORIZATION t ∈ [T1, T ]: CONVERGENCE TO A MINIMUM

We proved in the previous section that after T1 iterations, the amount of noise memorized by the GD model significantly
increases. We want to show that after this phase, ν(t)2 is well-controlled.

Lemma F.9 (Bound on Z2 derivative at late iterations). Let T1 = Θ̃
(

N
σ0σ

√
dσ2d

)
. For t ∈ [T1, T ], we have

∑t
τ=T1

ν
(τ)
2 ≤

Õ
(

1
ησ0

)
.
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Proof of Lemma F.9 . In Lemma F.8, we proved that after T1 iterations, for all i ∈ Z2 and j ∈ [P ]\{P (Xi)}, there exists
s ∈ [m] such that yiΞ

(t)
i,j,s ≥ Ω̃(1). Therefore, for t ∈ [T1, T ], there exists s ∈ [m] such that the noise update (from

Lemma I.4) satisfies:
t∑

τ=T1

ν
(τ)
2 ≤ Õ

(
1

ησ2d

) ∑
i∈Z2

yi(Ξ
(t+1)
i,j,s − Ξ

(T1)
i,j,s)

+ Õ

(
P

αη
√
d

)
+ Õ

(
β3

ασ2d

) t−1∑
j=T1

ν
(j)
2 .

(44)

On the other hand, from Lemma I.4, we know that for all r ∈ [m]:

∑
i∈Z2

yi(Ξ
(t+1)
i,j,r − Ξ

(T1)
i,j,r) ≤

ηΘ̃(σ2d)

N

t−1∑
τ=T1

∑
i∈Z2

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

+ Õ

(
Pσ2

√
d

α

)
+ Õ

(
ηβ3

α

) t−1∑
j=T1

ν
(j)
2 .

(45)

Combining (44) and (45) yields:

t∑
τ=T1

ν
(τ)
2 ≤ Õ(1)

N

t−1∑
τ=T1

∑
i∈Z2

ℓ
(τ)
i (Ξ

(τ)
i,j,s)

2 + Õ

(
β3

ασ2d

) t−1∑
j=T1

ν
(j)
2

+ Õ

(
P

ηα
√
d

) (46)

Again, because Õ
(

β3

ασ2d

)
≪ 1, we further simplify (46):

t∑
τ=T1

ν
(τ)
2 ≤ Õ(1)

N

t−1∑
τ=T1

∑
i∈Z2

ℓ
(τ)
i (Ξ

(τ)
i,j,s)

2 + Õ

(
P

ηα
√
d

)
. (47)

We apply Lemma I.2 to bound ℓ
(τ)
i on the right-hand side of (47) and get

t∑
τ=T1

ν
(τ)
2 ≤ Õ(1)

N

t−1∑
τ=T1

∑
i∈Z2

ℓ̂(τ)(Ξ
(τ)
i )(Ξ

(τ)
i,j,s)

2 + Õ

(
P

ηα
√
d

)
. (48)

We add
∑

j ̸=P (Xi)

∑
r ̸=s ℓ̂

(τ)(Ξ
(τ)
i )(Ξ

(τ)
i,j,r)

2 ≥ 0 to the right-hand side of (48) and obtain:

1

N

t∑
τ=T1

∑
i∈Z2

ℓ
(τ)
i ≤ Õ(1)

N

t−1∑
τ=T1

∑
i∈Z2

m∑
r=1

∑
j ̸=P (Xi)

ℓ̂(τ)(Ξ
(τ)
i )(Ξ

(τ)
i,j,r)

2 + Õ

(
P

ηα
√
d

)
. (49)

Moreover, by applying Lemma K.20 to (49), we have:

1

N

t∑
τ=T1

∑
i∈Z2

ℓ
(τ)
i ≤ Õ(1)

N

t−1∑
τ=T1

∑
i∈Z2

L̂(τ)(Ξ
(τ)
i ) + Õ

(
P

ηα
√
d

)
. (50)

We now apply Lemma I.8 to bound the loss in (50).

1

N

t∑
τ=T1

∑
i∈Z2

ℓ
(τ)
i ≤ Õ(1)

η

t∑
τ=T1

1

τ − T1 + 1
+ Õ

(
P

α
√
d

)
≤ Õ

(
1

η

)
+ Õ

(
P

ηα
√
d

)
≤ Õ

(
1

η

)
, (51)

where we used in (51)
∑t

τ=T1+1 1/τ ≤ Õ(1) and P/α = Õ(1).
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Using Lemma F.9, we can obtain a bound on the sum over time of Z2 derivatives .

Lemma 5.5. Let T1 = Θ̃
(

N
σ0σ

√
dσ2d

)
. For t ∈ [T1, T ], we have

∑t
τ=0 ν

(τ)
2 ≤ Õ(1/ησ0).

Proof of Lemma 5.5 . We know that:

T1−1∑
j=0

ν
(j)
2 ≤ µ̂T1. (52)

Combining the bound on
∑T

j=T1
ν
(j)
2 from Lemma F.9 and (52) yields:

T∑
j=0

ν
(j)
2 =

T1−1∑
j=0

ν
(j)
2 +

T∑
j=T1

ν
(j)
2 ≤ Θ̃

(
µ̂N

ησ0σ
√
dσ2d

)
+ Õ

(
1

η

)
≤ Õ

(
1

ησ0

)
. (53)

We have thus a control on the sum over time of ν(t)2 . We can make use of Lemma 5.3 to get the final control on the signal
iterate c(t).

Lemma 5.6. For t ≤ T , we have c(t) ≤ Õ(1/α).

Proof of Lemma 5.6. Let t ∈ [T ]. From Lemma 5.3, we know that the signal is bounded as

c(t) ≤ Õ(1/α) + Õ(ηβ3/α2)

t−1∑
τ=T0

ν
(τ)
2 . (54)

We plug the bound from Lemma 5.5 to bound the last term in the right-hand side of (54).

F.3. Proof of Theorem 4.1

We proved that the weights learnt by GD satisfy for r ∈ [m]

w(T )
r = c(T )

r w∗ + v(T )
r , (55)

where for all r ∈ [m], c
(T )
r ≤ Õ(1/α) (Lemma 5.6) and v

(T )
r ∈ span(Xi[j]) ⊂ span(w∗)⊥. By Lemma 5.4, since

Ξ
(t)
i ≥ Ω̃(1), we have ∥v(T )

r ∥2 ≥ 1. We are now ready to prove the generalization achieved by GD and stated in
Theorem 4.1.

Theorem 4.1. Assume that we run GD on P for T iterations with parameters set as in Parametrization 3.1. With high
probability, the weights learned by GD

1. partially learn w∗: for r ∈ [m], |c(T )
r | ≤ Õ(1/α).

2. memorize small margin data: for i ∈ Z2, Ξ
(T )
i ≥ Ω̃(1).

Consequently, the training error is smaller than O(µ/poly(d)) and the test error is at least Ω̃(µ).

Proof of Theorem 4.1. We now bound the training and test error achieved by GD at time T.

Train error. Lemma I.8 provides a convergence bound on the training loss.

L̂(W (T )) ≤ Θ̃(1)

η(T − T0 + 1)
. (56)
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Plugging T ≥ poly(d)N/η and µ = Θ(1/N) in (56) yields:

L̂(W (T )) ≤ Õ

(
1

poly(d)N

)
≤ Õ

(
µ

poly(d)

)
. (57)

Test error. Let (X, y) be a datapoint. We remind that X = (X[1], . . . ,X[P ]) where X[P (X)] = θyw∗ and X[j] ∼
N (0, σ2Id) for j ∈ [P ]\{P (X)}. We bound the test error as follows:

L (fW (T )) = E Z∼D
(X,y)∼Z

[1yf
W (T ) (X)<0]

= E(X,y)∼Z1
[1yf

W (T ) (X)<0]P[Z1] + E(X,y)∼Z2
[1yfWT (X)<0]P[Z2]

= (1− µ̂)P[yfW (T )(X) < 0|(X, y) ∼ Z1] (58)
+ µ̂P[yfW (T )(X) < 0|(X, y) ∼ Z2]. (59)

We now want to compute the probability terms in (58) and (59). We remind that (X, y) ∼ Z1, yfW (T )(X) is given by

yfW (T )(X) = y

m∑
s=1

P∑
j=1

⟨w(T )
s ,X[j]⟩3

= α3
m∑
s=1

(c(T )
s )3 + y

m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3. (60)

We now apply Lemma 5.6 in (60) and obtain:

yfW (T )(X) ≤ Õ(1) + y

m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3. (61)

Let (X, y) ∼ Z2. Similarly, by applying Lemma 5.6, yfW (T )(X) is bounded as:

yfW (T )(X) ≤ Õ((β/α)3) + y

m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3. (62)

Therefore, using (122), we upper bound the test error (120) as:

L (fW (T )) ≥ (1− µ̂)P

y m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≤ −Ω̃ (1)


+ µ̂P

y m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≤ −Ω̃((β/α)3)


≥ µ̂P

y m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≤ −Ω̃((β/α)3)

 .

(63)

Since y is taken uniformly from {−1, 1}, we further simplify (63) as:

L (fW (T )) ≥
µ̂

2
P

∣∣∣∣∣∣
m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3

∣∣∣∣∣∣ ≥ Ω̃((β/α)3)

 . (64)

We know that Θ̃(β3) = Θ̃(σ3). Therefore, we now apply Lemma K.12 to bound (64) and finally obtain:

L (fW (T )) ≥
µ̂

2
P

∣∣∣∣∣∣
m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3

∣∣∣∣∣∣ ≥ Ω̃((β/α)3)

 ≥ µ̂

2

(
1− Õ(d)

2d

)
≥ Ω̃(µ). (65)
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F.4. Proof of the GD induction hypotheses

To prove Theorem 4.1, we used the induction hypotheses stated in Appendix D. The goal of this section is to prove them for
t+ 1.

Proof of Induction hypothesis D.1. We prove here the main hypotheses we made on the noise when using GD.

GD Noise for i ∈ Z2. Let i ∈ Z2, j ∈ [P ]\{P (Xi)} and r ∈ [m]. We know that for t ∈ [T ], yiΞ
(t)
i,j,r ≤ Õ(1). Let’s

prove the result for t+ 1. From Lemma I.5, we have:∣∣∣∣∣yi(Ξ(t+1)
i,j,r − Ξ

(0)
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=0

ℓ
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2}

∣∣∣∣∣
≤ Õ

(
Pσ2

√
d

α

)
+ Õ

(
ηβ3

α2

) t∑
τ=0

ν
(τ)
2 .

(66)

Let’s start with the upper bound yiΞ
(t)
i,j,r for i ∈ Z2. Using Lemma I.6, Lemma 5.5 and Induction hypothesis D.1, we deduce

from (66) that:

yiΞ
(t+1)
i,j,r ≤ Õ(1) + Õ(σ2d) + Õ

(
Pσ2

√
d

α

)
+ Õ

(
β3

α2σ0

)
≤ Õ(1), (67)

which proves the induction hypothesis for t+1. Regarding the lower bound, using Induction hypothesis D.1 and Lemma 5.5,
we deduce from (66) that:

yiΞ
(t+1)
i,j,r ≥ −Õ(σσ0

√
d)− Õ

(
Pσ2

√
d

α

)
− Õ

(
β3

α2σ0

)
≥ −Õ(σσ0

√
d), (68)

which proves the induction hypothesis for t+ 1.

GD Noise for i ∈ Z1. Let i ∈ Z1. We know that for t ∈ [T ], yiΞ
(t)
i,j,r ≤ Õ(σσ0

√
d). Let’s prove the result for t + 1.

Using Lemma E.3, we know that the (2) update is:

yiΞ
(t+1)
i,j,r ≤ yiΞ

(0)
i,j,r +

Θ̃(ησ2d)

N

t∑
τ=0

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z1

∑
k ̸=P (Xa)

t∑
τ=0

ℓ(τ)a (Ξ
(τ)
a,k,r)

2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z2

∑
k ̸=P ((Xa)

t∑
τ=0

ℓ(τ)a (Ξ
(τ)
a,k,r)

2.

(69)

Using Induction hypothesis D.1, we bound yiΞ
(0)
i,j,r and (Ξ

(τ)
a,k,r)

2 in (69). We obtain:

yiΞ
(t+1)
i,j,r ≤ Õ(σσ0

√
d) +

Θ̃(ησ2
0σ

4d2)

N

t∑
τ=0

ℓ
(τ)
i

+ Θ̃(ηPσ2
0σ

4d3/2)

t∑
τ=0

ν
(τ)
1

+
Θ̃(ησ2

√
d)

N

∑
a∈Z2

∑
k ̸=P ((Xa)

t∑
τ=0

ℓ(τ)a (Ξ
(τ)
a,k,r)

2

(70)
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Now, we apply Lemma I.3 to bound ν
(τ)
1 and ℓ

(τ)
i /N in (70).

yiΞ
(t+1)
i,j,r ≤ Õ(σσ0

√
d) + Õ

(
σ2
0σ

4d2

α

)
+ Õ

(
ησ2

0σ
4d2β3

α

) t∑
τ=0

ν
(τ)
2

+ Õ

(
Pσ2

0σ
4d3/2

α

)
+ Õ

(
ηPσ2

0σ
4d3/2β3

α

) t∑
τ=0

ν
(τ)
2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z2

∑
k ̸=P ((Xa)

t∑
τ=0

ℓ(τ)a (Ξ
(τ)
a,k,r)

2

(71)

We now apply Lemma I.5 and Lemma 5.5 to bound the derivative terms in (71).

yiΞ
(t+1)
i,j,r ≤ Õ(σσ0

√
d) + Õ

(
σ2
0σ

4d2

α

)
+ Õ

(
σ0σ

4d2β3

α

)
+ Õ

(
Pσ2

0σ
4d3/2

α

)
+ Õ

(
Pσ0σ

4d3/2β3

α

)
+ Õ(Pσ2

√
d)

≤ Õ(σσ0

√
d),

which proves the induction hypothesis for t+ 1. Now, let’s prove that yiΞ
(t+1)
i,j,r ≥ −Õ(σσ0

√
d). Similarly to above, the (2)

update is bounded as:

yiΞ
(t+1)
i,j,r ≥ yiΞ

(0)
i,j,r +

Θ̃(ησ2d)

N

t∑
τ=0

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

− Θ̃(ησ2
√
d)

N

∑
a∈Z1

∑
k ̸=P ((Xa)

t∑
τ=0

ℓ(τ)a (Ξ
(τ)
a,k,r)

2

− Θ̃(ησ2
√
d)

N

∑
a∈Z2

∑
k ̸=P ((Xa)

t∑
τ=0

ℓ(τ)a (Ξ
(τ)
a,k,r)

2.

(72)

Using the same type of reasoning as for the upper bound, one can show that (72) yields:

yiΞ
(t+1)
i,j,r ≥ −Õ(σσ0

√
d)− Õ

(
σ0σ

4d2β3

α

)
− Õ

(
Pσ2

0σ
4d3/2

α

)
+ Õ

(
Pσ0σ

4d3/2β3

α

)
− Õ(Pσ2

√
d)

≥ −Õ(σσ0

√
d).

(73)

(73) shows the induction hypothesis for t+ 1.

Proof of Induction hypothesis D.2. We prove the induction hypotheses for the signal c(t)r .

Proof of c(t+1)
r ≥ −Õ(σ0). We know that with high probability, c(0)r ≥ −Õ(σ0). By Lemma F.1, c(t)r is a non-decreasing

sequence and therefore, we always have c
(t)
r ≥ −Õ(σ0).



Towards understanding how momentum improves generalization in deep learning

Proof of c
(t+1)
r ≤ Õ(1/α). Using the same proof as the one for Lemma 5.6, we get c(t+1) ≤ Õ(1/α). Besides,

c
(t+1)
r ≤ c(t+1) which implies the induction hypothesis for t+ 1.

Proof of Induction hypothesis D.3. αmin{1, (c(t))2α2} ≥ (Ξ
(t)
i,j,r)

2 is true for all t. Indeed, we proved in Lemma 5.1 that

after T0 iterations, c(t) ≥ Ω̃(1/α). Moreover, we proved Induction hypothesis D.1 claiming that |Ξ(t)
i,j,r| ≤ Õ(1) Therefore,

we have αmin{1, (c(t))2α2} ≥ (Ξ
(t)
i,j,r)

2.

G. Learning with GD+M
In this section, we prove the Lemmas in Section 6 and Theorem 4.2.

G.1. Learning signal with GD+M

To track the amount of signal learnt by GD, we make use of the following update.

Lemma G.1 (Signal momentum). For all t ≥ 0 and r ∈ [m], the signal momentum in (3) is equal to:

G(t+1)
r = γG(t)

r − 3(1− γ)
(
α3ν

(t)
1 + β3ν

(t)
2

)
(c(t)r )2.

We can further simplify this update as:

G(t+1)
r = γG(t)

r −Θ(1− γ)
(
α3(1− µ̂)ℓ̂(t)(α) + β3µ̂ℓ̂(t)(β)

)
(c(t)r )2.

Proof of Lemma G.1. By definition of the momentum update, we have: g(t+1)
r = γg

(t)
r +(1− γ)∇wr

L̂(W (t)). We project
this update onto w∗ and use Lemma E.2 to get:

G(t+1)
r = γG(t)

r − 3(1− γ)
(
α3ν

(t)
1 + β3ν

(t)
2

)
(c(t)r )2. (74)

By applying Lemma J.1, we have ν(t)1 = Θ(1− µ̂)ℓ̂(t)(α) and ν
(t)
2 = Θ(µ̂)ℓ̂(t)(β). Plugging this observation in (74) yields

the desired result.

G.1.1. EARLY STAGES OF THE LEARNING PROCESS t ∈ [0, T0]: LEARNING Z1 DATA

Similarly to GD, since we initialize w
(0)
r ∼ N (0, σ2

0Id) with σ0 small, the sigmoid terms ℓ̂(t)(α) and ℓ̂(t)(β) in the
momentum are large at early iterations. As c(t)r is non-decreasing, ℓ̂(t)(α) eventually becomes small at a time T0 > 0. We
therefore simplify the signal momentum update for t ∈ [0, T0].

Lemma G.2 (Signal momentum at early iterations). Let T0 > 0 the time where there exists s ∈ [m] such that c(t)s ≥ Ω̃(1/α).
Then, for t ∈ [0, T0] and r ∈ [m], the signal momentum is simplified as:

G(t+1)
r = γG(t)

r −Θ(α3(1− γ))(c(t)r )2. (75)

Proof of Lemma G.2. From Lemma G.1, we can simplify the momentum update as:

−µ̂ℓ̂(t)(β)(c(t)r )2 ≤ G(t+1)
r − γG(t)

r +Θ(1− γ)α3(1− µ̂)ℓ̂(t)(α)(c(t)r )2 ≤ 0. (76)

For t ∈ [0, T0], we know that for all s ∈ [m], we have c
(t)
s ≤ κ

m1/3α
. Thus, we have:

1

1 + exp(Ω̃(1))
≤ ℓ̂(t)(α) =

1

1 + exp
(∑m

s=1 α
3(c

(t)
s )3

) ≤ 1. (77)
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By Remark 1, we know that the sigmoid is small only when we have 1
1+exp(Ω̃(1))

. From (77), we have

ℓ̂(t)(α) = Θ(1). (78)

Besides, we have:

1

1 + exp(Ω̃(1))
≤ 1

1 + exp(Ω̃(β3/α3))
≤ ℓ̂(t)(β) =

1

1 + exp
(∑m

s=1 β
3(c

(t)
s )3

) ≤ 1. (79)

From (79), we have:

ℓ̂(t)(β) = Θ(1). (80)

Plugging (78) and (80) in (76) yields the desired result.

We now prove Lemma 6.1 that quantifies the signal learnt by GD when ν
(t)
1 is non-zero.

Lemma 6.1. For all r ∈ [m] and t ≥ 0, as long as c(t) ≤ Õ(1/α), the momentum update (3) is simplified as:

−G(t+1)
r = −γG(t)

r + (1− γ)Θ(α3)(c(t)r )2

Consequently, after T0 = Θ̃
(

1
σ0α2 + 1

1−γ

)
iterations, for all t ∈ [T0, T ], we have c(t) ≥ Ω̃(1/α).

Proof of Lemma 6.1. By Lemma G.2, the signal update for t ∈ [0, T0] satisfies:{
G(t+1)
r = γG(t)

r − (1− γ)Θ̃(α3)(c
(t)
r )2

c
(t+1)
r = c

(t)
r − ηG(t+1)

r

. (81)

As c
(t)
r is non-decreasing, it will eventually reach Ω̃(1/α). We can use the arguments as in the proof of Lemma 5.1 to

argue that there exists an index r such that c(t)r > 0. Among all the possible indices, we focus on r = rmax, where
rmax = argmaxr∈[m]c

(0)
r .

To find T0, we apply the Tensor Power Method (Lemma K.17) to (81). Setting υ = Õ(1/α) in Lemma K.17, we deduce that
the time T0 is

T0 =
1

1− γ

⌈
log(Õ(1/α))

log(1 + δ)

⌉
+

1 + δ

η(1− e−1)α3c(0)
,

where δ ∈ (0, 1).

G.1.2. LATE STAGES OF LEARNING PROCESS t ∈ [T0, T ]: LEARNING Z2 DATA

We now show that contrary to GD, GD+M still has a large momentum in the w∗ direction. In other words, we want to show
that −G(t) is still large after T0 iterations. Given that the small margin and large margin data share the same feature w∗, this
large momentum helps to learn Z2.

Before proving such result, we need some intermediate lemmas.

Lemma G.3. Let T > 0 the time such that −G(T ) ≤ Õ(
√
1− γ/α). Then, for all t′ ≤ T , we have:

−G(t′) ≤ Õ(
√
1− γ)

αγT −t′
.
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Proof of Lemma G.3. Using the momentum update rule, we know that:

−G(T ) = −γT −t′G(t′) − (1− γ)

T −1∑
τ=t′

γT −τG (τ). (82)

Since −G (τ) > 0 for all τ ≥ 0, (82) implies −γT −t′G(t′) ≤ −G(T ). Using −G(T ) ≤ Õ(
√
1− γ/α), we obtain the aimed

result.

Lemma G.4. Let T0 be the first iteration where c(t) > Ω̃(1/α). Assume that G(T0) ≤ Õ(
√
1− γ/α) Then, for all

t ∈
[
T0 − 1√

1−γ
, T0
]
, we have:

c(t) ≥ 0.5Ω̃(1/α).

Proof of Lemma G.4. Let’s define t′ := T0 − 1√
1−γ

. We start by summing the GD+M update (3) for τ = t′, . . . , T0 to get

c(T0) = c(t
′) − η

T0−1∑
τ=t′

G(τ). (83)

Applying Lemma G.3 to bound the momentum gradient, we further bound (83) to get:

c(t
′) = c(T0) − η

T0−1∑
τ=t′

G(τ)

≥ c(T0) − ηÕ(
√
1− γ)

α

T0−1∑
τ=t′

1

γT0−τ

= c(T0) −
ηÕ(

√
1− γ)

α

T0−t′∑
j=1

γ−j

= c(T0) − ηÕ(
√
1− γ)

α

1− γT0−t′

1− γ
. (84)

We now use the fact that T0 − t′ = 1√
1−γ

in (84) to get:

c(t
′) ≥ c(T0) − Õ(η)

1− γ
1√
1−γ

√
1− γα

. (85)

Since γ = 1− ε with ε ≪ 1, we linearize the right-hand side in (85) to obtain:

c(t
′) ≥ c(T0) − Õ(η)

1− (1− ε)
1√
ε

√
ϵα

= c(T0) − Õ(η)
1− (1− ε)

1√
ε

√
ϵα

= c(T0) − Õ(η)

α
. (86)

Given our choice of η, we therefore conclude that c(t
′) ≥ 0.5Ω̃(1/α).

Using Lemma G.4, we can therefore show that once we learn Z1, G(t) still stays large.

Lemma 6.2. Let T0 = Θ̃
(

1
σ0α3 + 1

1−γ

)
. Let rmax = argmaxr∈[m]c

(t)
r . For t ∈ [T0, T ], we have G(t)

rmax ≥ Ω̃(
√
1− γ/α).
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Proof of Lemma 6.2. By contradiction, let’s assume that −G(T0) ≤ Õ(
√
1− γ/α). Let’s define t′ := T0 − 1√

1−γ
. Since

−G(t′) ≥ 0, −G(T0) is bounded as:

−G(T0) ≥ Θ(1− γ)α3
T0−1∑
τ=t′

γT0−1−τ (c(τ)r )2. (87)

Using Lemma G.4, we bound (c
(τ)
r ) in (87) and get:

−G(T0) ≥ (1− γ)Ω̃(α)

T0−1∑
τ=t′

γT0−1−τ

= (1− γ)Ω̃(α)

T0−1−t′∑
τ=0

γj

= Ω̃(α)(1− γT0−t′).

= Ω̃(α)(1− γ1/
√
1−γ) (88)

Since γ = 1− ε with ϵ ≪ 1, we have (1− γ1/
√
1−γ) ≥

√
1− γ. Therefore, we proved that −G(T0) ≥ Ω̃(α)

√
1− γ which

is a contradiction.

Since the signal momentum is large (Lemma 6.2), we want to argue that GD+M keeps learning the feature to eventually
have a large signal.

Lemma 6.3. Let T0 = Θ̃
(

1
σ0α3 + 1

1−γ

)
. After T1 = T0+Θ̃

(
1

1−γ

)
iterations, for t ∈ [T1, T ], we have c(t) ≥ Ω̃

(
1√

1−γα

)
.

Our choice of parameter in Section 3, this implies c(t) ≥ Ω̃(1/β).

Proof of Lemma 6.3. Let T1 ∈ [T ] such that T0 < T1. From the signal momentum update, we deduce:

−G(T1) ≥ −γT1−T0G(T0) +

T1∑
τ=T0

γT1−τ (G (τ))2 ≥ −γT1−T0G(T0). (89)

We now apply Lemma 6.2 to bound −G(T1) in (89) and get:

−G(T1) ≥ γT1−T0Ω̃(
√
1− γ/α). (90)

We would like to find the time T1 such that γT1−T0 is a constant factor a ≤ 1 i.e. such that

γT1−T0 = a ⇐⇒ T1 − T0 =
− log(a)

− log(γ)
≤ log(a)

1− γ
, (91)

where we used the fact that log(x) ≤ x− 1 for x > 0 in the last inequality. Therefore, we proved that T1 = T0 + Õ( 1
1−γ )

and

−G(T1) ≥ −aG(T0) = Ω̃

(
1√

1− γα

)
. (92)

From (3) update rule, we know that c(T1) = c(T1−1) − ηG(T1). Using successively c(T1−1) ≥ 0, (92) and η = Θ̃(1), we
obtain:

c(T1) ≥ −ηG(T1) ≥ Ω̃

(
η√

1− γα

)
= Ω̃

(
1√

1− γα

)
. (93)

Let t ∈ (T1, T ]. Using (3) update rule, we have

c(t) = c(T1) − η

t∑
τ=T1

G(τ)

≥ c(T1), (94)



Towards understanding how momentum improves generalization in deep learning

where we used the fact that −G(τ) ≥ 0 in (94). Plugging (93) in (94) yields the desired bound.

G.2. GD+M does not memorize

Lemma 6.3 implies that after T1 iterations, the learnt signal is very large. We would like to show that this implies that the
full derivative quickly decreases (Lemma 6.4) which implies that the GD+M cannot memorize (Lemma 6.5). Before proving
Lemma 6.4, we need an auxiliary lemma that connects the signal momentum and the full derivative ν(t).

Lemma G.5 (Bound on signal momentum). For t ∈ [T1, T ], the signal momentum is bounded as

− G(t+1) ≥ −γG(t) + (1− γ)Ω
(
ν(t)β2

)
Proof of Lemma G.5. From Lemma G.1 we know that the signal momentum is equal to

−G(t+1) = −γG(t) + 3(1− γ)
(
α3ν

(t)
1 + β3ν

(t)
2

)
(c(t))2. (95)

Since β ≤ α, (95) becomes
−G(t+1) ≥ −γG(t) +Θ(1)(1− γ)β3ν(t)(c(t))2. (96)

We finally apply Lemma 6.3 to bound c(t) in (96) to obtain the desired result.

We now present the proof of Lemma 6.4.

Lemma 6.4. Let T0 = Θ̃
(

1
ησ0α3 + 1

1−γ

)
. After T1 = T0 + Θ̃

(
1

1−γ

)
iterations, for t ∈ [T1, T ], ν(t) ≤ Õ

(
1

η(t−T1+1)β

)
.

Proof of Lemma 6.4 . Lemma G.5 provides an upper bound on ν(t) since:

ν(t) ≤ Õ

(
1

(1− γ)β

)
(G(t+1) − γG(t)). (97)

We now would like to give a convergence rate on the iterates G(t+1) − γG(t). Since Lemma J.9 gives a rate on the loss
function, we connect the momentum increment with a loss term. Applying Lemma G.1, we have:

G(t+1) − γG(t) ≤
m∑
r=1

|G(t+1)
r − γG(t)

r |

= Θ(1)(1− γ)

m∑
r=1

(
(1− µ̂)α3ℓ̂(t)(α) + µ̂β3ℓ̂(t)(β)

)
(c(t)r )2. (98)

We now show that for t ∈ [T1, T ], we have:

(1− µ̂)α3ℓ̂(t)(α) ≤ µ̂β3ℓ̂(t)(β). (99)

Indeed, by using Lemma 6.3 and Induction hypothesis D.5, we have:

(1− µ̂)α3ℓ̂(t)(α) ≤ (1− µ̂)α3

1 + exp(Ω̃(α3/β3))
, (100)

µ̂β3ℓ̂(t)(β) ≥ µ̂β3

1 + exp(Õ(1))
. (101)

Thus, combining (100) and (101) yields:

(1− µ̂)α3ℓ̂(t)(α)

µ̂β3ℓ̂(t)(β)
≤ (1− µ̂)α3

µ̂β3

1 + exp(Õ(1))

1 + exp(Ω̃(α3/β3))
. (102)
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Given our choice of α, β and µ̂, we finally bound (102) as:

(1− µ̂)α3ℓ̂(t)(α)

µ̂β3ℓ̂(t)(β)
≤ 1. (103)

Therefore, plugging (99) in (98) yields:

G(t+1) − γG(t) ≤ 2Θ(1− γ)

m∑
r=1

µ̂β3ℓ̂(t)(β)(c(t)r )2. (104)

We now apply Lemma K.20 to link (104) with a loss term. By Lemma 6.3 and Induction hypothesis D.5, we have:

Ω̃(1) ≤ Ω̃(1)−mÕ(σ0) ≤
m∑
r=1

βc(t)r ≤ Õ(m) ≤ Õ(1). (105)

Therefore, applying Lemma K.20 in (104) gives:

G(t+1) − γG(t) ≤ 40µ̂Θ(1− γ)
mβemÕ(σ0)

Ω̃(1)
L̂(t)(β) ≤ Õ(β)µ̂(1− γ)L̂(t)(β). (106)

Thus, plugging (106) in (97) yields:

ν(t) ≤ Õ(1)µ̂L̂(t)(β). (107)

We finally apply Lemma J.9 to bound the loss term in (107) and get the desired result.

After T1 iterations, the gradient is now very small and the noise component learnt by GD+M stays very small.

Lemma 6.5. Let i ∈ [N ], j ∈ [P ]\{P (Xi)} and r ∈ [m]. For t ≥ 0, (4) can be rewritten as |G(t+1)
i,j,r | ≤ γ|G(t)

i,j,r|+ (1−
γ)Õ(σ2

0σ
4d2)ν(t). As a consequence, after t ∈ [T1, T ] iterations, we thus have |Ξ(t)

i,j,r| ≤ Õ(σ0σ
√
d).

Proof of Lemma 6.5 . This Lemma is intended to prove Induction hypothesis D.4. At time t = 0, we have |Ξ(0)
i,j,r| ≤

Õ(σσ0

√
d) by Lemma K.7. Assume that Induction hypothesis D.4 is true for t ∈ [T1, T ). Now, let’s prove this induction

hypothesis for time t+ 1. For s ∈ [T1, t], we remind that (4) update rule is

Ξ
(s+1)
i,j,r = Ξ

(s)
i,j,r − ηG

(s+1)
i,j,r . (108)

We sum up (108) for s = T1, . . . , t and obtain:

Ξ
(t+1)
i,j,r = Ξ

(T1)
i,j,r − η

t∑
s=T1

G
(s+1)
i,j,r . (109)

We apply the triangle inequality in (109) and obtain:

|Ξ(t+1)
i,j,r | ≤ |Ξ(T1)

i,j,r|+ η

t∑
s=T1

|G(s+1)
i,j,r |. (110)

We now use Induction hypothesis D.4 to bound |Ξ(T1)
i,j,r| in (110):

|Ξ(t+1)
i,j,r | ≤ Õ(σσ0

√
d) + η

t∑
s=T1

|G(s+1)
i,j,r |. (111)
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We now plug the bound on
∑t

s=T1
|G(s+1)

i,j,r | given by Lemma J.6 and obtain:

|Ξ(t+1)
i,j,r | ≤ Õ(σσ0

√
d) + Õ(σ4σ2

0d
2)

(
ηT1 +

1

β

)
. (112)

Given the values of T1, η, γ and β, we can deduce that

Õ(σ4σ2
0d

2)

(
ηT1 +

1

β

)
≤ σσ0

√
d. (113)

Plugging (113) in (112) proves the induction hypothesis for t+ 1.

G.3. Proof of Theorem 4.2

We proved that the weights learnt by GD+M satisfy for r ∈ [m]

w(T )
r = c(T )

r w∗ + v(T )
r , (114)

where at least one of the c
(T )
r ≥ Ω̃(1/β) (Lemma 6.3) and v

(T )
r ∈ span(Xi[j]) ⊂ span(w∗)⊥. By Lemma 6.5, since

Ξ
(t)
i,j,r ≤ Õ(σ0), we have ∥v(T )

r ∥2 ≤ 1. We are now ready to prove the generalization achieved by GD+M and stated in
Theorem 4.2.
Theorem 4.2. Assume that we run GD+M on (P) for T iterations with parameters set as in Parametrization 3.1. With high
probability, the weights learned by GD+M

1. at least one of them is correlated with w∗: c(T ) > Ω̃(1/β).

2. are barely correlated with noise: for all r ∈ [m], i ∈ [N ], j ∈ [P ]\{P (Xi)}. |Ξ(T )
i,j,r| ≤ Õ(σ0).

The training loss and test error are at most O(µ/poly(d)).

Proof of Theorem 4.2. We now bound the training and test error achieved by GD+M at time T.

Train error. Lemma J.9 provides a convergence bound on the fake loss. Indeed, we know that:

(1− µ̂)L̂(T )(α) + µ̂L̂(T )(β) ≤ Õ

(
1

η(T − T1 + 1)

)
. (115)

Using Lemma K.24 along with Induction hypothesis D.4, we lower bound the loss term in (115) by the true loss.

Θ(1)L̂(W (T )) ≤ (1− µ̂)L̂(T )(α) + µ̂L̂(T )(β). (116)

Combining (115) and (116), we obtain a bound on the training loss.

L̂(W (T )) ≤ Õ(1)

η(T − T1 + 1)
. (117)

Plugging T ≥ poly(d)N/η and µ = Θ(1/N) in (117) yields:

L̂(W (T )) ≤ Õ

(
1

poly(d)N

)
≤ Õ

(
µ

poly(d)

)
. (118)

Test error. Let (X, y) be a datapoint. We remind that X = (X[1], . . . ,X[P ]) where X[P (X)] = θyw∗ and X[j] ∼
N (0, σ2Id) for j ∈ [P ]\{P (X)}. We bound the test error as follows:

L (fWT ) = E Z∼D
(X,y)∼Z

[1yfWT (X)<0]

= E(X,y)∼Z1
[1yfWT (X)<0]P[Z1] + E(X,y)∼Z2

[1yfWT (X)<0]P[Z2]

= (1− µ̂)P[yfWT (X) < 0|(X, y) ∼ Z1] (119)
+ µ̂P[yfWT (X) < 0|(X, y) ∼ Z2]. (120)
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We now want to compute the probability terms in (119) and (120). We remind that yfWT (X) is given by

yfWT (X) = y

m∑
s=1

P∑
j=1

⟨w(T )
s ,X[j]⟩3

= θ3
m∑
s=1

(c(T )
s )3 + y

m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3

≥ θ3(c(T ))3 + y

m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3. (121)

We now apply Lemma 6.3, (121) is finally bounded as:

yf(X) ≥ Ω

(
θ3

β3

)
+ y

m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3. (122)

Therefore, using (122), we upper bound the test error (120) as:

L (fWT ) ≤ (1− µ̂)P

y m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≤ −Ω̃

(
α3

β3

)
+ µ̂P

y m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≤ −Ω̃(1)

 .

(123)

Since y is uniformly sampled from {−1, 1}, we further simplify (123) as:

L (fWT ) ≤ 1− µ̂

2
P

 m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≤ −Ω̃

(
α3

β3

)
+

1− µ̂

2
P

 m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≥ Ω̃

(
α3

β3

)
+

µ̂

2
P

 m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≤ −Ω̃(1)


+

µ̂

2
P

 m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≥ Ω̃(1)

 .

(124)

We know that ⟨v(T )
s ,X[j]⟩ ∼ N (0, ∥v(T )

s ∥22σ2). Therefore, ⟨v(T )
s ,X[j]⟩3 is the cube of a centered Gaussian.This random

variable is symmetric. By Lemma K.1, we know that
∑m

s=1

∑
j ̸=P (X)⟨v

(T )
s ,X[j]⟩3 is also symmetric. Therefore, we

simplify (124) as:

L (fWT ) ≤ (1− µ̂)P

 m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s , X[j]⟩3 ≥ Ω̃

(
α3

β3

)
+ µ̂P

 m∑
s=1

∑
j ̸=P (X)

⟨v(T )
s ,X[j]⟩3 ≥ Ω̃(1)

 .

(125)

From Lemma K.14, we know that
∑m

s=1

∑
j ̸=p⟨v

(T )
s ,X[j]⟩3 is σ3

√
P − 1

√∑m
s=1 ∥v

(T )
s ∥62-subGaussian. Therefore, by
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applying Lemma K.3, (125) is further bounded by:

L (fWT ) ≤ 2(1− µ) exp

(
−Ω̃

(
α6

β6

)
1

σ6
∑m

s=1 ∥v
(T )
s ∥62

)

+ 2µ exp

(
− Ω̃(1)

σ6
∑m

s=1 ∥v
(T )
s ∥62

)
.

(126)

Using the fact that ∥v(T )
s ∥2 ≤ 1 in (126) finally yields:

L (fWT ) ≤ 2(1− µ) exp

(
−Ω̃

(
α6

β6σ6

))
+ 2µ exp

(
−Ω̃

(
1

σ6

))
. (127)

Since exp(−α6/(β6σ6)) ≤ µ/poly(d) and exp(−Ω̃(1/σ6)) ≤ 1/poly(d) , we obtain the desired result.

G.4. Proof of the GD+M induction hypotheses

Proof of Induction hypothesis D.5. We prove the induction hypotheses for the signal c(t)r .

Proof of c(t+1)
r ≥ −Õ(σ0). We know that with high probability, c(0)r ≥ −Õ(σ0). By Lemma F.1, c(t)r is a non-decreasing

sequence and therefore, we always have c
(t)
r ≥ −Õ(σ0).

Proof of c(t+1)
r ≤ Õ(1/β). Assume that Induction hypothesis D.4 is true for t ∈ [T1, T ). Now, let’s prove this induction

hypothesis for time t+ 1. For τ ∈ [t], we remind that (3) update rule is

c(τ+1)
r = c(τ)r − ηG(τ+1)

r . (128)

We sum up (128) for τ = T1, . . . , t and obtain:

c(t+1)
r = c(T1)

r − η

t∑
τ=T1

G(τ+1)
r . (129)

We apply the triangle inequality in (129) and obtain:

|c(t+1)
r | ≤ |c(T1)

r |+ η

t∑
τ=T1

|G(τ+1)
r |. (130)

We now use Induction hypothesis D.5 to bound |c(T1)
r | in (130):

|c(t+1)
r | ≤ Õ(1/β) + η

t∑
τ=T1

|G(τ+1)
r |. (131)

We now plug the bound on
∑t

τ=T1
|G(τ+1)

r | given by Lemma J.3. We have:

|c(t+1)
r | ≤ Õ(1/β) + Õ(ηαT0) + Õ(ηµ̂βT1) + Õ(1) ≤ Õ(1/β), (132)

where we used Õ(ηαT0) + Õ(ηµ̂βT1) + Õ(1) ≤ 1/β. This proves the induction hypothesis for t+ 1.

H. Extension to λ > 0

Now we discuss how to extend the result to λ > 0. In our result, since λ = 1
Npoly(d) , we know that before T = Θ̃

(
1
ηλ

)
iterations, the weight decay would not affect the learning process and we can show everything similarly.
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After iteration T , by Lemma I.8 and Lemma J.9, we know that for GD:

ν(t) ≤ Õ (λ)

and for GD + M:
ν(t) ≤ Õ

(
λ/(β2)

)
For GD, we just need to maintain that c(t) = Õ(1/α) and Ξ

(t)
i = Ω̃(1). To see this, we know that if c(t) = Ω̃(1/α), then

c(t+1) ≤ (1− ηλ)c(t) + ηÕ

(
ν(t)

β3

α2

)
≤ c(t)

To show that Ξ(t)
i = Ω̃(1), assuming that Ξ(t)

i = 1/polylog(d), we know that

Ξ
(t+1)
i ≥ (1− ηλ)Ξ

(t)
i + Ω̃

(
η
1

N

)
≥ Ξ

(t)
i + Ω̃

(
η
1

N

)

Similarly, for GD + M, since ν(t) ≤ Õ
(
λ/(β2)

)
, we know that

∇L̂(W (t)) ≤ Õ
(
λα3/(β2)

)
This implies that

∥W (t+1) −W (t)∥2 ≤ Õ
(
ηλα3/(β2)

)
We need to show that c(t) = Ω̃(1/β) and all |Ξ(t)

i,j,r| ≤ Õ(σ0σ
√
d). To see this, we know that when c(t) = Θ

(
1
β

)
, we know

that c(t−t0) = Θ
(

1
β

)
for every t0 ≤ 1

γ . This implies that

c(t+1) ≥ c(t) −O

(
ηλ

1

β

)
+Ω

( η

N
β
)
≥ c(t) +Ω

( η

N
β
)

On the other hand, for Ξ(t)
i,j,r we know that:

|Ξ(t+1)
i,j,r | ≤ (1− ηλ)|Ξ(t)

i,j,r|+ Õ
(
ην(t)σ2

0(σ
√
d)2
)
≤ Õ(σ0σ

√
d)

I. Technical lemmas for GD
This section presents the technical lemmas needed in Appendix F. These lemmas mainly consists in different rewritings of
GD.

I.1. Rewriting derivatives

Using Induction hypothesis D.1 and Induction hypothesis D.2, we rewrite the sigmoid terms ℓ(t)i when using GD.

Lemma I.1 (Z1 derivative). Let i ∈ Z1. We have ℓ
(t)
i = Θ(1)ℓ̂(t)(α).

Proof of Lemma I.1. Let i ∈ Z1. Using Induction hypothesis D.1, we bound ℓ
(t)
i as

1

1 + exp
(
α3
∑m

s=1(c
(t)
s )3 + Õ((σσ0

√
d)3)

) ≤ ℓ
(t)
i ≤ 1

1 + exp
(
α3
∑m

s=1(c
(t)
s )3 − Õ((σσ0

√
d)3)

)
⇐⇒ e−Õ((σσ0

√
d)3)ℓ̂(t)(α) ≤ ℓ

(t)
i ≤ eÕ((σσ0

√
d)3)ℓ̂(t)(α). (133)

(133) yields the aimed result.
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Lemma I.2 (Z2 derivative). Let i ∈ Z2. We have ℓ
(t)
i = Θ(1)ℓ̂(t)(Ξ

(t)
i ).

Proof. Let i ∈ Z2. Using Induction hypothesis D.2, we bound ℓ
(t)
i as

1

1 + exp
(
Õ(β3/α3) + Ξ

(t)
i

) ≤ ℓ
(t)
i ≤ 1

1 + exp
(
−Õ(β3σ3

0) + Ξ
(t)
i

)
⇐⇒ e−Õ(β3/α3)ℓ̂(t)(Ξ

(t)
i ) ≤ ℓ

(t)
i ≤ eÕ(β3σ3

0)ℓ̂(t)(Ξ
(t)
i ). (134)

(134) yields the aimed result.

I.2. Signal lemmas

In this section, we present a lemma that bounds the sum over time of the GD increment.

Lemma I.3. Let t,T ∈ [T ] such that T < t. Then, the Z1 derivative is bounded as:

t∑
τ=T

ν
(τ)
1 min{κ, α2(c(τ))2} ≤ Õ

(
1

ηα2

)
+ Õ

(
β3

α2

) t∑
τ=T

ν
(τ)
2 .

Proof of Lemma I.3. From Lemma F.4, we know that:

c(t+1) ≥ c(t) + Θ̃(ηα)ν
(t)
1 min{κ, α2(c(t))2} (135)

Let T , t ∈ [T ] such that T < t. We now sum up (135) for τ = T , . . . , t and get:

t∑
τ=T

ν
(τ)
1 min{κ, α2(c(τ))2} ≤ Õ

(
1

ηα

)
(c(t+1) − c(T )). (136)

We now consider two cases.

Case 1: t < T0. By definition, we know that c(t) ≤ Õ(1/α). Therefore, (136) yields:

t∑
τ=T

ν
(τ)
1 min{κ, α2(c(τ))2} ≤ Õ

(
1

ηα2

)
. (137)

Case 2: t ∈ [T0, T ]. We distinguish two subcases.

– Subcase 1: T < T0. From Lemma 5.3, we know that:

c(t+1) ≤ Õ(1/α) + Õ(ηβ3/α2)

t∑
τ=T0

ν
(τ)
2 . (138)

We can further bound (138) as:

c(t+1) ≤ Õ(1/α) + Õ(ηβ3/α2)

t∑
τ=T

ν
(τ)
2 , (139)

which combined with (136) implies:

t∑
τ=T

ν
(τ)
1 min{κ, α2(c(τ))2} ≤ Õ

(
1

ηα2

)
+ Õ

(
β3

α2

) t∑
τ=T

ν
(τ)
2 (140)
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– Subcase 2: T > T0. From Lemma 5.3, we know that:

c(t+1) ≤ Õ(1/α) + Õ(ηβ3/α2)

t∑
τ=T

ν
(τ)
2 , (141)

which combined with (136) yields (140).

We therefore managed to prove that in all the cases, (140) holds.

I.3. Noise lemmas

In this section, we present the technical lemmas needed in subsection F.2. The following lemma bounds the projection of the
GD increment on the noise.
Lemma I.4. Let i ∈ [N ], j ∈ [P ]\{P (Xi)} and r ∈ [m]. Let T , t ∈ [T ] such that T < t. Then, the noise update (2)
satisfies ∣∣∣∣∣yi(Ξ(t)

i,j,r − Ξ
(T )
i,j,r)−

Θ̃(ησ2d)

N

t−1∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)
+ Õ

(
ηβ3

α

) t−1∑
j=T

ν
(j)
2 .

Proof of Lemma I.4. Let i ∈ [N ], j ∈ [P ]\{P (Xi)} and r ∈ [m]. We set up the following induction hypothesis:∣∣∣∣∣yiΞ(t)
i,j,r − yiΞ

(T )
i,j,r −

Θ̃(ησ2d)

N

t−1∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣
≤ Õ

(
Pσ2

√
d

α

(
1 +

α

σ2d
+

αη

N

) t−1−T∑
τ=0

P τ

dτ/2

)

+ Õ

(
ηβ3

α2

) t−1−T∑
τ=0

P τ

dτ/2

t−τ∑
j=T

ν
(j)
2 ,

(142)

Let’s first show this hypothesis for t = T . From Lemma F.5, we have:∣∣∣∣∣yi(Ξ(T +1)
i,j,r − Ξ

(T )
i,j,r)−

Θ̃(ησ2d)

N
ℓ
(T )
i (Ξ

(T )
i,j,r)

2

∣∣∣∣∣
≤ Θ̃(ησ2

√
d)

N

∑
a∈Z2

∑
k ̸=P (Xa)

ℓ(T )
a (Ξ

(T )
a,k,r)

2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z1

∑
k ̸=P (Xa)

ℓ(T )
a (Ξ

(T )
a,k,r)

2.

(143)

Now, we apply Induction hypothesis D.3 to bound (Ξ
(T )
a,k,r)

2 in (143) and obtain:∣∣∣∣∣yiΞ(T +1)
i,j,r − yiΞ

(T )
i,j,r −

Θ̃(ησ2d)

N
ℓ
(T )
i (Ξ

(T )
i,j,r)

2

∣∣∣∣∣
≤ Θ̃(ηPσ2

√
d)ν

(T )
2 min{κ, (c(T ))2α2}α

+ Θ̃(ηPσ2
√
d)ν

(T )
1 min{κ, (c(T ))2α2}α.

(144)

We successively apply Lemma I.3, use ν
(T )
2 min{κ, (c(T ))2α2}α ≤ µ̂Õ(1) ≤ Õ(µ̂) and µ̂ = Θ(1/N) in (144) to finally

obtain: ∣∣∣∣∣yiΞ(T +1)
i,j,r − yiΞ

(T )
i,j,r −

Θ̃(ησ2d)

N
ℓ
(T )
i (Ξ

(T )
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

(
1 +

ηα

N

))
.
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Therefore, the induction hypothesis is verified for t = T . Now, assume (142) for t. Let’s prove the result for t+ 1. We start
by summing up the noise update from Lemma F.5 for τ = T , . . . , t which yields:

∣∣∣∣∣yi(Ξ(t+1)
i,j,r − Ξ

(T )
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣
≤ Θ̃(ησ2

√
d)

N

t−1∑
τ=T

∑
a∈Z2

ℓ(τ)a

∑
k ̸=P (Xa)

(Ξ
(τ)
a,k,r)

2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z2

ℓ(t)a

∑
k ̸=P (Xa)

(Ξ
(t)
a,k,r)

2

+
Θ̃(ησ2

√
d)

N

t∑
τ=T

∑
a∈Z1

ℓ(τ)a

∑
k ̸=P (Xa)

(Ξ
(τ)
a,k,r)

2

(145)

We apply Induction hypothesis D.3 to bound (Ξ
(t)
a,k,r)

2 in (145) and obtain:

∣∣∣∣∣yi(Ξ(t+1)
i,j,r − Ξ

(T )
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣
≤ Θ̃(ησ2

√
d)

N

t−1∑
τ=T

∑
a∈Z2

ℓ(τ)a

∑
k ̸=P (Xa)

(Ξ
(τ)
a,k,r)

2

+ Θ̃(ηPσ2
√
d)ν

(t)
2 αmin{κ, (c(t))2α2}

+ Θ̃(ηPσ2
√
d)

t∑
τ=T

ν
(τ)
1 αmin{κ, (c(τ))2α2}

(146)

Similarly to above, we apply Lemma I.3 to bound
∑t

τ=0 ν
(τ)
1 αmin{κ, (c(τ))2α2}. We also use ν(t)2 αmin{κ, (c(t))2α2} ≤

Õ(µ̂) and µ̂ = Θ(1/N) in (146) and obtain:

∣∣∣∣∣yi(Ξ(t+1)
i,j,r − Ξ

(T )
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣
≤ Θ̃(ησ2

√
d)

N

t−1∑
τ=T

∑
a∈Z2

ℓ(τ)a

∑
k ̸=P (Xa)

(Ξ
(τ)
a,k,r)

2

+ Õ

(
Pσ2

√
d

α

(
1 +

ηα

N

))

+ Õ

(
ηβ3

α2

) t∑
j=T

ν
(j)
2 .

(147)

To bound the first term in the right-hand side of (147), we use the induction hypothesis (142). Plugging this inequality in
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(147) yields: ∣∣∣∣∣yi(Ξ(t+1)
i,j,r − Ξ

(T )
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣
≤ 1√

d

∑
a∈Z2

∑
k ̸=P (Xk)

ya(Ξ
(t)
a,k,r − Ξ

(T )
a,k,r)

+ Õ

(
P 2σ2

α
√
d

(
1 +

α

σ2d
+

αη

N

) t−1−T∑
τ=0

P τ

dτ/2

)

+
P√
d
Õ

(
ηβ3

α2

) t−1−T∑
τ=0

P τ

dτ/2

t−1−τ∑
j=T

ν
(j)
2

+ Õ

(
Pσ2

√
d

α

(
1 +

ηα

N

))

+ Õ

(
ηβ3

α2

) t∑
j=T

ν
(j)
2 .

(148)

Now, we apply Induction hypothesis D.1 to have ya(Ξ
(t)
a,k,r − Ξ

(0)
a,k,r) ≤ Õ(1) in (148) and therefore,∣∣∣∣∣yiΞ(t+1)

i,j,r − yiΞ
(T )
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣
≤ Õ(P )√

d
+ Õ

(
Pσ2

√
d

α

(
1 +

α

σ2d
+

αη

N

) t−T∑
τ=1

P τ

dτ/2

)

+ Õ

(
ηβ3

α2

) t−T∑
τ=1

P τ

dτ/2

t−τ∑
j=T

ν
(j)
2

+ Õ

(
Pσ2

√
d

α

(
1 +

ηα

N

))

+ Õ

(
ηβ3

α2

) t∑
j=T

ν
(j)
2 .

(149)

By rearranging the terms, we finally have:∣∣∣∣∣yiΞ(t+1)
i,j,r − yiΞ

(T )
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣
≤ Õ

(
Pσ2

√
d

α

(
1 +

α

σ2d
+

αη

N

) t−T∑
τ=0

P τ

dτ/2

)

+ Õ

(
ηβ3

α2

) t−T∑
τ=0

P τ

dτ/2

t−τ∑
j=T

ν
(j)
2 ,

(150)

which proves the induction hypothesis for t+ 1.

Now, let’s simplify the sum terms in (142). Since P ≪
√
d, by definition of a geometric sequence, we have:

t−T∑
τ=0

P τ

dτ/2
≤ 1

1− P√
d

= Θ(1). (151)
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Plugging (151) in (142) yields∣∣∣∣∣yi(Ξ(t)
i,j,r − Ξ

(T )
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)

+ Õ

(
ηβ3

α2

) t−1−T∑
τ=0

P τ

dτ/2

t−1−τ∑
j=T

ν
(j)
2 .

(152)

Now, let’s simplify the second sum term in (152). Indeed, we have:

t−1−T∑
τ=0

P τ

dτ/2

t−1−τ∑
j=T

ν
(j)
2 ≤

t−1−T∑
τ=0

P τ

dτ/2

t−1∑
j=T

ν
(j)
2 ≤ Θ(1)

t−1∑
j=T

ν
(j)
2 , (153)

where we used (151) in the last inequality. Plugging (153) in (152) gives the final result.

After T1 iterations, we prove with Lemma 5.4 that for i ∈ Z2 and j ∈ [P ]\{P (Xi)}, there exists r ∈ [m] such that Ξ(τ)
i,j,r is

large. This implies that (Ξ(τ)
i,j,r)

2ℓ
(τ)
i (Ξ

(τ)
i ) stays well controlled. We therefore rewrite Lemma I.4 to take this into account.

Lemma I.5. Let i ∈ [N ], j ∈ [P ]\{P (Xi)} and r ∈ [m]. Let T , t ∈ [T ] such that T < t. Then, the noise update (2)
satisfies ∣∣∣∣∣yi(Ξ(t)

i,j,r − Ξ
(T )
i,j,r)−

Θ̃(ησ2d)

N

t−1∑
τ=T

ℓ
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2}

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)
+ Õ

(
ηβ3

α2

) t−1∑
j=T

ν
(j)
2 .

Proof of Lemma I.5. From Lemma I.4, we know that∣∣∣∣∣yi(Ξ(t)
i,j,r − Ξ

(T )
i,j,r)−

Θ̃(ησ2d)

N

t−1∑
τ=T

ℓ
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ

(
Pσ2

√
d

α

)
+ Õ

(
ηβ3

α2

) t−1∑
j=T

ν
(j)
2 . (154)

Using Remark 1, we know that a sufficient condition to have ℓ̂(τ)(Ξ
(t)
i is (Ξ(τ)

i,j,r)
2 ≥ κ ≥ Ω̃(1). Therefore, we can replace

ℓ̂(t)(Ξ
(t)
i )(Ξ

(τ)
i,j,r)

2 = min{κ, (Ξ(τ)
i,j,r)

2}. Plugging this equality in (154) yields the aimed result.

Lemma I.6. Let T1 = Õ
(

N
σ0σ

√
dσ2d

)
. For t ∈ [T1, T ], we have 1

N

∑t
τ=0

∑
i∈Z2

ℓ
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} ≤ Õ

(
1
η

)
.

Proof of Lemma I.6. From Lemma F.9, we know that:

t∑
τ=T1

ν
(τ)
2 ≤ Õ

(
1

ησ0

)
. (155)

On the other hand we know from Lemma I.5 that:

Θ̃(ησ2d)

N

T1−1∑
τ=0

∑
i∈Z2

ℓ
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} ≤ yi(Ξ

(T1)
i,j,r − Ξ

(0)
i,j,r) + Õ

(
Pσ2

√
d

α

)

+ Õ

(
ηµ̂β3

α

)
T1.

(156)

Besides, we have: Õ
(

ηµ̂β3

α

)
T1 ≤ Õ

(
Pσ2

√
d

α

)
. Plugging this inequality yields

Θ̃(ησ2d)

N

T1−1∑
τ=0

∑
i∈Z2

ℓ
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} ≤ yi(Ξ

(T1)
i,j,r − Ξ

(0)
i,j,r) + Õ

(
Pσ2

√
d

α

)
. (157)
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By applying Induction hypothesis D.1, (157) is eventually bounded as:

1

N

t∑
τ=0

∑
i∈Z2

ℓ
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} ≤ Õ

(
1

ησ2d

)
+ Õ

(
P

ηα
√
d

)
≤ Õ

(
1

η

)
. (158)

By combining (51) and (158) we deduce that for all j ∈ [P ]\{P (Xi)} and r ∈ [m]:

1

N

t∑
τ=0

∑
i∈Z2

ℓ
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} =

1

N

T1∑
τ=0

∑
i∈Z2

ℓ
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2}

+
1

N

t∑
τ=T1

∑
i∈Z2

ℓ
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2}

≤ Õ

(
1

η

)
.

(159)

I.4. Convergence rate of the training loss using GD

In this section, we prove that when using GD, the training loss converges sublinearly in our setting.

I.4.1. CONVERGENCE AFTER LEARNING Z1 (t ∈ [T0, T ])

Lemma I.7 (Convergence rate of the Z1 loss). Let t ∈ [T0, T ]. Run GD with learning rate η for t iterations. Then, the Z1

loss sublinearly converges to zero as:

(1− µ̂)L̂(t)(α) ≤ Õ(1)

ηα2(t− T0 + 1)
.

Proof of Lemma I.7. Let t ∈ [T0, T ]. From Lemma F.1, we know that the signal update is lower bounded as:

c(t+1) ≥ c(t) +Θ(ηα)(1− µ̂)ℓ̂(t)(α)(αc(t))2. (160)

From Lemma 5.1, we know that c(t) ≥ Ω̃(1/α). Thus, we simplify (160) as:

c(t+1) ≥ c(t) + Ω̃(ηα)(1− µ̂)ℓ̂(t)(α). (161)

Since α3
∑m

r=1(c
(t)
r )3 ≥ Ω̃(1/α)−mÕ(σ0) ≥ Ω̃(1/α) > 0, we can apply Lemma K.22 and obtain:

c(t+1) ≥ c(t) + Ω̃(ηα)(1− µ̂)L̂(t)(α). (162)

Let’s now assume by contradiction that for t ∈ [T0, T ], we have:

(1− µ̂)L̂(t)(α) >
Ω̃(1)

ηα2(t− T0 + 1)
. (163)

From the (3) update, we know that c(τ)r is a non-decreasing sequence which implies that
∑m

r=1(αc
(τ)
r )3 is also non-decreasing.

Since x 7→ log(1 + exp(−x)) is non-increasing, this implies that for s ≤ t, we have:

Ω̃(1)

ηα2(t− T0 + 1)
< (1− µ̂)L̂(t)(α) ≤ (1− µ̂)L̂(s)(α). (164)

Plugging (164) in the update (162) yields for s ∈ [T0, t]:

c(s+1) > c(s) +
Ω̃(1)

α(t− T0 + 1)
. (165)
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Let t ∈ [T0, T ]. We now sum (165) for s = T0, . . . , t and obtain:

c(t+1) > c(T0) +
Ω̃(1)(t− T0 + 1)

α(t− T0 + 1)
>

Ω̃(1)

α
, (166)

where we used the fact that c(T0) ≥ Ω̃(1/α) > 0 (Lemma 5.1) in the last inequality. Therefore, we have for t ∈ [T0, T ],
c(t) ≥ Ω̃(1/α) > 0. Let’s now show that (166) implies a contradiction. Indeed, we have:

ηα2(t− T0 + 1)(1− µ̂)L̂(t)(α)

≤ηα2T (1− µ̂) log

1 + exp(−(αc(t))3 −
∑

r ̸=rmax

(αc(t)r )3


≤ηα2T (1− µ̂) log

(
1 + exp(−Ω̃(1)

)
, (167)

where we used
∑

r ̸=rmax
(c

(t)
r )3 ≥ −mÕ(σ3

0) along with (166) in (167). We now apply Lemma K.22 in (167) and obtain:

ηα2(t− T0 + 1)(1− µ̂)L̂(t)(α) ≤ (1− µ̂)ηα2T

1 + exp(Ω̃(1))
. (168)

Given the values of T, η, α, µ̂, we finally have:

ηα2(t− (T0 − 1))(1− µ̂)L̂(t)(α) < Õ(1), (169)

which contradicts (163).

I.4.2. CONVERGENCE AT LATE STAGES (t ∈ [T1, T ])

Lemma I.8 (Convergence rate of the loss). Let t ∈ [T1, T ]. Run GD with learning rate η ∈ (0, 1/L) for t iterations. Then,
the loss sublinearly converges to zero as:

L̂(W (t)) ≤ Õ(1)

η(t− T1 + 1)
.

Proof of Lemma I.8. We first apply the classical descent lemma for smooth functions (Lemma K.18). Since L̂(W ) is
smooth, we have:

L̂(W (t+1)) ≤ L̂(W (t))− η

2
∥∇L̂(W (t))∥22 = L̂(W (t))− η

2

m∑
r=1

∥∇wr
L̂(W (t))∥22. (170)

Lemma I.9 provides a lower bound on the gradient. We plug it in (170) and get:

L̂(W (t+1)) ≤ L̂(W (t))− Ω̃(η)L̂(W (t))2. (171)

Applying Lemma K.19 to (171) yields the aimed result.

I.4.3. AUXILIARY LEMMAS FOR THE PROOF OF LEMMA I.8

To obtain the convergence rate in Lemma I.8, we used the following auxiliary lemma.

Lemma I.9 (Bound on the gradient for GD). Let t ∈ [T1, T ]. Run GD for t iterations. Then, the norm of gradient is lower
bounded as follows:

m∑
r=1

∥∇wr L̂(W
(t))∥22 ≥ Ω̃(1)L̂(W (t))2.

Proof of Lemma I.9. Let t ∈ [T1, T ]. To obtain the lower bound, we project the gradient on the the signal and on the noise.
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Projection on the signal. Since ∥w∗∥2 = 1, we lower bound ∥∇wr
L̂(W (t))∥22 as

∥∇wr L̂(W
(t))∥22 ≥ ⟨∇wr L̂(W

(t)), w∗⟩2 = (G (t)
r )2. (172)

By successively applying Lemma E.2 and Lemma I.1, (G (t)
r )2 is lower bounded as

(G (t)
r )2 ≥

(
α3

N

∑
i∈Z1

ℓ
(t)
i (c(t)r )2

)2

≥ Ω(1)
(
α3(1− µ̂)ℓ̂(t)(α)(c(t)r )2

)2
. (173)

Combining (172) and (173) yields:

∥∇wr L̂(W
(t))∥22 ≥ Ω(1)

(
α3(1− µ̂)ℓ̂(t)(α)(c(t)r )2

)2
. (174)

Projection on the noise. For a fixed i ∈ Z2 and j ∈ [P ]\{P (Xi)}, we know that ∥∇wr L̂(W
(t))∥22 is lower bounded as

∥∇wr
L̂(W (t))∥22 ≥

〈
∇wr

L̂(W (t)),

1
N

∑
i∈Z2

∑
j ̸=P (Xi)

Xi[j]

∥ 1
N

∑
i∈Z2

∑
j ̸=P (Xi)

Xi[j]∥2

〉2

= (G(t)
r )2. (175)

On the other hand, by Lemma I.14, we lower bound G
(t)
r term with probability 1− o(1) as:

(G(t)
r )2 ≥

 Ω̃(σ
√
d)

N

∑
i∈Z2

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2 − Õ(σ)

N

∑
i∈Z1

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2

2

(176)

Gathering the bounds. Combining (172), (175), (173) and (176) and using 2a2 + 2b2 ≥ (a + b)2, we thus bound
∥∇wr L̂(W

(t))∥22 as:

∥∇wr
L̂(W (t))∥22 ≥

(
α+ Õ(σ)

N

∑
i∈Z1

ℓ
(t)
i α2(c(t)r )2

+
Ω̃(σ

√
d)

N

∑
i∈Z2

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2

− Õ(σ)

N

∑
i∈Z1

∑
j ̸=P (Xi)

ℓ
(t)
i

(
(α2(c(t)r )2 + (Ξ

(t)
i,j,r)

2
)2

.

(177)

We now sum up (177) for r = 1, . . . ,m and apply Cauchy-Schwarz inequality to get:

m∑
r=1

∥∇wr
L̂(W (t))∥22 ≥ 1

m

(
α+ Õ(σ)

N

m∑
r=1

ℓ
(t)
i (α)α2(c(t)r )2

+
Ω̃(σ

√
d)

N

∑
i∈Z2

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2

− Õ(σ)

N

∑
i∈Z1

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i

(
(α2(c(t)r )2 + (Ξ

(t)
i,j,r)

2
)2

.

(178)
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We apply Lemma I.1 to further lower bound (178) and get:
m∑
r=1

∥∇wr
L̂(W (t))∥22 ≥ Ω

(
1

m

)(
(α+ Õ(σ))(1− µ̂)

m∑
r=1

ℓ̂(t)(α)α2(c(t)r )2

+
Ω̃(σ

√
d)

N

∑
i∈Z2

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2

− Õ(σ)

N

∑
i∈Z1

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i

(
(α2(c(t)r )2 + (Ξ

(t)
i,j,r)

2
)2

.

(179)

Bound the gradient terms by the loss. Using Lemma I.10, Lemma I.11 and Lemma I.12 we have:

(α+ Õ(σ))(1− µ̂)

m∑
r=1

ℓ̂(t)(α)α2(c(t)r )2 ≥ Ω̃(α+ Õ(σ))L̂(t)(α), (180)

Õ(σ)

N

∑
i∈Z1

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i

(
(α2(c(t)r )2 + (Ξ

(t)
i,j,r)

2
)
≤ Õ(σ)(1− µ̂)L̂(t)(α), (181)

Ω̃(σ
√
d)

N

∑
i∈Z2

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2 ≥ Ω̃(σ
√
d)

N

∑
i∈Z2

L̂(t)(Ξ
(t)
i ). (182)

Plugging (180), (181) and (182) in (179) yields:
m∑
r=1

∥∇wr
L̂(W (t))∥22 ≥ Ω

(
1

m

)(
(α+ Õ(σ))(1− µ̂)L̂(t)(α)

+
Ω̃(σ

√
d)

N

∑
i∈Z2

L̂(t)(Ξ
(t)
i )− (1− µ̂)Õ(σ)L̂(t)(α)

)2

≥ Ω̃(1)

(
(1− µ̂)L̂(t)(α) +

1

N

∑
i∈Z2

L̂(t)(Ξ
(t)
i )

)2

, (183)

Finally, we use Lemma I.13 and lower bound (183) by L̂(W (t))2. This gives the aimed result.

We now present auxiliary lemmas that link the gradient terms with their corresponding loss.
Lemma I.10. Let t ∈ [T1, T ]. Run GD for t iterations. Then, we have:

m∑
r=1

ℓ̂(t)(α)α2(c(t)r )2 ≥ Ω̃(1)L̂(t)(α).

Proof of Lemma I.10. In order to bound
∑m

r=1 ℓ̂
(t)(α)α2(c

(t)
r )2, we apply Lemma K.20. We first verify that the conditions

of the lemma are met. From Lemma 5.1 we know that for t ∈ [T0, T ], we have c(t) ≥ Ω̃(1/α). Along with Induction
hypothesis D.1, this implies that

Ω̃(1) ≤ Ω̃(1)−mÕ(ασ0) ≤
m∑
r=1

αc(t)r ≤ Õ(α)m ≤ Õ(1). (184)

Therefore, we can apply Lemma K.20 and get the lower bound:
m∑
r=1

ℓ̂(t)(α)(αc(t)r )2 ≥ 0.05e−mÕ(σ0)

Õ(1)
(
1 +

m2Õ(σ2σ2
0d)

Ω̃(1)2

) log
(
1 + e−

∑m
r=1(αc

(t)
r )3

)
≥ Ω̃(1)L̂(t)(α). (185)



Towards understanding how momentum improves generalization in deep learning

Lemma I.11. Let t ∈ [T1, T ]. Run GD for t iterations. Then, we have:

1

N

∑
i∈Z1

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i

(
(α2(c(t)r )2 + (Ξ

(t)
i,j,r)

2
)
≤ Õ(1)(1− µ̂)L̂(t)(α).

Proof of Lemma I.11. We again verify that the conditions of Lemma K.20 are met. By using Induction hypothesis D.1,
Induction hypothesis D.2 and Lemma 5.1, we have:

m∑
r=1

αc(t)r +

m∑
r=1

∑
j ̸=P (Xi)

yiΞ
(t)
i,j,r ≤ mÕ(α) +mPÕ(σσ0

√
d) ≤ Õ(1),

m∑
r=1

αc(t)r +

m∑
r=1

∑
j ̸=P (Xi)

yiΞ
(t)
i,j,r ≥ Ω̃(1)−mÕ(ασ0) ≥ Ω̃(1).

(186)

By applying Lemma K.20, we have:

1

N

∑
i∈Z1

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i

(
(α2(c(t)r )2 + (Ξ

(t)
i,j,r)

2
)

≤ memÕ(σ0)

Ω̃(1)N

∑
i∈Z1

log

(
1 + exp

(
−

m∑
r=1

α3(c(t)r )3 − Ξ
(t)
i

))

≤ Õ(1)

N

∑
i∈Z1

log

(
1 + exp

(
−

m∑
r=1

α3(c(t)r )3 − Ξ
(t)
i

))
. (187)

Lastly, we want to link the loss term in (187) with L̂(t)(α). By applying Induction hypothesis D.1 and Lemma K.24 in
(187), we finally get:

1

N

∑
i∈Z1

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i

(
(α2(c(t)r )2 + (Ξ

(t)
i,j,r)

2
)
≤ (1− µ̂)(1 + eÕ((σσ0

√
d)3))L̂(t)(α)

≤ (1− µ̂)L̂(t)(α).

(188)

Combining (187) and (188) yields the aimed result.

Lemma I.12. Let t ∈ [T1, T ]. Run GD for t iterations. Then, we have:

1

N

∑
i∈Z2

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2 ≥ Ω̃(1)

N

∑
i∈Z2

L̂(t)(Ξ
(t)
i ).

Proof of Lemma I.12. We again verify that the conditions of Lemma K.20 are met. Using Induction hypothesis D.1,
Induction hypothesis D.2 and Lemma 5.4, we have:

m∑
r=1

βc(t)r +

m∑
r=1

∑
j ̸=P (Xi)

yiΞ
(t)
i,j,r ≤ mÕ(β) +mPÕ(1) ≤ Õ(1)

m∑
r=1

βc(t)r +

m∑
r=1

∑
j ̸=P (Xi)

yiΞ
(t)
i,j,r ≥ Ω̃(1)−mÕ(σ0)−mPÕ(σ0σ

√
d) ≥ Ω̃(1).

(189)
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By applying Lemma K.20, we have:

1

N

∑
i∈Z2

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2

≥ 0.05e−mÕ(σσ0

√
d)

NÕ(1)
(
1 + m2(σσ0

√
d)2

Ω̃(1)

) ∑
i∈Z2

log

(
1 + exp

(
−

m∑
r=1

β3(c(t)r )3 − Ξ
(t)
i

))

≥ Ω̃(1)

N

∑
i∈Z2

log

(
1 + exp

(
−

m∑
r=1

β3(c(t)r )3 − Ξ
(t)
i

))
.

(190)

Lastly, we want to link the loss term in (190) with L̂(t)(Ξ
(t)
i ). By applying Induction hypothesis D.1 and Lemma K.24 in

(190), we finally get:

Ω̃(1)

N

∑
i∈Z2

m∑
r=1

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2 ≥ Ω̃(1)e−mÕ(β3)

N

∑
i∈Z2

L̂(t)(Ξ
(t)
i )

≥ Ω̃(1)

N

∑
i∈Z2

L̂(t)(Ξ
(t)
i ).

(191)

Combining (190) and (191) yields the aimed result.

Lemma I.13. Let t ∈ [0, T ] Run GD for for t iterations. Then, we have:

(1− µ̂)L̂(t)(α) +
1

N

∑
i∈Z2

L̂(t)(Ξ
(t)
i ) ≥ Θ(1)L̂(W (t)). (192)

Proof of Lemma I.13. we need to lower bound L̂(t)(α). By successively applying Lemma K.24 and Induction hypothe-
sis D.1, we obtain:

(1− µ̂)L̂(t)(α) =
1

N

∑
i∈Z1

1 + e−Ξ
(t)
i

1 + e−Ξ
(t)
i

log

(
1 + exp

(
−

m∑
r=1

(αc(t)r )3

))

≥ 1

N

∑
i∈Z1

1

1 + e−Ξ
(t)
i

log

(
1 + exp

(
−

m∑
r=1

(αc(t)r )3

)
− Ξ

(t)
i

)

≥ L̂Z1(W
(t))

1 + eÕ((σσ0

√
d)3)

≥ Θ(1)L̂Z1(W
(t)). (193)

By successively applying Lemma K.24 and Induction hypothesis D.1, we obtain:

1

N

∑
i∈Z2

L̂(t)(Ξ
(t)
i ) =

1

N

∑
i∈Z2

1 + e−
∑m

r=1(βc
(t)
r )3

1 + e−
∑m

r=1(βc
(t)
r )3

log
(
1 + exp

(
−Ξ

(t)
i

))
≥ 1

N

∑
i∈Z2

1

1 + e−
∑m

r=1(βc
(t)
r )3

log

(
1 + exp

(
−

m∑
r=1

(βc(t)r )3

)
− Ξ

(t)
i

)

≥ L̂Z2(W
(t))

1 + eÕ((βσ0)3)

≥ Θ(1)L̂Z2
(W (t)). (194)

Combining (193) and (194) yields the aimed result.
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Lastly, to obtain Lemma I.8, we need to bound G
(t)
r which is given by the next lemma.

Lemma I.14 (Gradient on the normalized noise). For r ∈ [m], the gradient of the loss L̂(W (t)) projected on the normalized
noise χ satisfies with probability 1− o(1) for r ∈ [m]:

−G(t)
r ≥ Θ̃(σ

√
d)

N

∑
i∈Z2

ℓ
(t)
i

∑
j ̸=P (Xi)

(Ξ
(t)
i,j,r)

2 − Õ(σ)

N

∑
i∈Z1

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2.

Proof of Lemma I.14. Projecting the gradient (given by Lemma E.1) on χ yields:

−G(t)
r =

3

N2

∑
i∈Z2

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2 ∥Xi[j]∥22
∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

+
3

N2

∑
i∈Z2

ℓ
(t)
i

∑
j ̸=P (Xi)

∑
k ̸=P (Xi)

k ̸=j

(Ξ
(t)
i,k,r)

2

〈
Xi[k],

Xi[j]

∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

〉

+
3

N2

∑
i∈Z2

∑
a∈Z2
a ̸=i

ℓ(t)a

∑
k ̸=P (Xa)

(Ξ
(t)
a,k,r)

2
∑

j ̸=P (Xi)

〈
Xa[k],

Xi[j]

∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

〉

+
3

N

∑
a∈Z1

∑
k ̸=P (Xa)

ℓ(t)a (Ξ
(t)
a,k,r)

2

〈
Xa[k],

1
N

∑
i∈Z2

∑
j ̸=P (Xi)

Xi[j]

∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

〉
.

(195)

We further bound (195) as:

∣∣∣∣∣∣G(t)
r +

3

N2

∑
i∈Z2

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2 ∥Xi[j]∥22
∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

− 3

N2

∑
i∈Z2

∑
a∈Z2

ℓ(t)a

∑
j ̸=P (Xi)

∑
k ̸=P (Xa)

(Ξ
(t)
a,k,r)

2

∣∣∣∣∣
〈
Xa[k],

Xi[j]

∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

〉∣∣∣∣∣
∣∣∣∣∣∣

≤ 3

N

∑
a∈Z1

∑
k ̸=P (Xa)

ℓ(t)a (Ξ
(t)
a,k,r)

2

∣∣∣∣∣
〈
Xa[k],

1
N

∑
i∈Z2

∑
j ̸=P (Xi)

Xi[j]

∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

〉∣∣∣∣∣ .
(196)

Since
1
N

∑
i∈Z2

∑
j ̸=P (Xi)

Xi[j]

∥ 1
N

∑
b∈Z2

∑
l̸=P (Xi)

Xb[l]∥2
is a unit Gaussian vector, using Lemma K.8, we bound the right-hand side of (196) with

probability 1− o(1), as:

∣∣∣∣∣∣G(t)
r +

3

N2

∑
i∈Z2

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2 ∥Xi[j]∥22
∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

− 3

N2

∑
i∈Z2

∑
a∈Z2

ℓ(t)a

∑
j ̸=P (Xi)

∑
k ̸=P (Xa)

(Ξ
(t)
a,k,r)

2

∣∣∣∣∣
〈
Xa[k],

Xi[j]

∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

〉∣∣∣∣∣
∣∣∣∣∣∣

≤ σ

N

∑
a∈Z1

∑
k ̸=P (Xa)

ℓ(t)a (Ξ
(t)
a,k,r)

2.

(197)
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Now, using Lemma Lemma K.10 , we can further lower bound the left-hand side of (197) as:∣∣∣∣∣∣G(t)
r +

3

N2

∑
i∈Z2

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2 ∥Xi[j]∥22
∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

− Θ̃(P )√
dN2

∑
a∈Z2

ℓ(t)a

∑
k ̸=P (Xa)

(Ξ
(t)
a,k,r)

2 ∥Xa[k]∥22
∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

∣∣∣∣∣∣
≤ σ

N

∑
a∈Z1

∑
k ̸=P (Xa)

ℓ(t)a (Ξ
(t)
a,k,r)

2.

(198)

Rewriting (198) yields: ∣∣∣∣∣∣G(t)
r +

Θ(1)

N2

∑
i∈Z2

∑
j ̸=P (Xi)

ℓ
(t)
i (Ξ

(t)
i,j,r)

2 ∥Xi[j]∥22
∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2

∣∣∣∣∣∣
≤ σ

N

∑
a∈Z1

∑
k ̸=P (Xa)

ℓ(t)a (Ξ
(t)
a,k,r)

2.

(199)

Remark that 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l] ∼ N (0, µ̂P
N σ2). By applying Lemma K.9, we have:

1

N

∥Xi[j]∥22
∥ 1
N

∑
b∈Z2

∑
l ̸=P (Xi)

Xb[l]∥2
=

1

N
Θ̃

(
σ

√
dN

µ̂P

)
= Θ̃

(
σ

√
d

µ̂NP

)
= Θ̃(σ

√
d), (200)

where we used P = Θ̃(1) and µ̂N = Θ̃(1) in the last equality of (200). Plugging this in (199) yields the desired result.
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J. Auxiliary lemmas for GD+M
This section presents the auxiliary lemmas needed in Appendix G.

J.1. Rewriting derivatives

Lemma J.1 (Derivatives for GD+M). Let i ∈ Zk, for k ∈ {1, 2}. Then, ℓ(t)i = Θ(1)ℓ̂(t)(θ).

Proof. Let i ∈ [N ]. Using Induction hypothesis D.4, we have:

ℓ
(t)
i = sigmoid

−θ3
m∑
s=1

(c(t)s )3 −
m∑
s=1

∑
j ̸=P (Xi)

(Ξ
(t)
i,j,s)

3

 .

Therefore, we deduce that:

e−Õ((σσ0

√
d)3)ℓ̂(t)(θ) ≤ ℓ

(t)
i ≤ eÕ((σσ0

√
d)3)ℓ̂(t)(θ)

which yields the aimed result.

J.2. Signal lemmas

In this section, we present the auxiliary lemmas needed to prove Induction hypothesis D.5. We first rewrite the (3) update to
take into account the case where the signal c(τ) becomes large.

Lemma J.2 (Rewriting signal momentum). For t ∈ [T ], the maximal signal momentum G(t) is bounded as:

G(t+1) ≤ Θ(1− γ)

t∑
τ=0

γt−τ
(
αν

(τ)
1 min{κ, (αc(τ))2}+ βν

(τ)
2 min{κ, (βc(τ))2}

)
.

Proof of Lemma J.2. Let t ∈ [T ]. Using the signal momentum given by Lemma G.1, we know that:

G(t+1) = Θ(1− γ)

t∑
τ=0

γt−τ

(
α

N

∑
i∈Z1

(αc(τ))2ℓ
(τ)
i +

β

N

N∑
i=1

(βc(τ))2ℓ
(τ)
i

)
. (201)

To obtain the desired result, we need to prove for i ∈ Z1:

(αc(t))2ℓ
(τ)
i ≤ Θ(1)min{κ, (αc(τ))2}ℓ(τ)i . (202)

Indeed, we remark that:

(αc(τ))2ℓ
(τ)
i =

α2(c(τ))2

1 + exp
(
α3
∑m

s=1(c
(τ)
s )3 + Ξ

(τ)
i

) . (203)

By using Induction hypothesis D.4 and Induction hypothesis D.5, (203) is bounded as:

(αc(τ))2ℓ
(τ)
i =

α3(c(τ))2

1 + exp
(
α2(c(τ))3 + α3

∑
s̸=rmax

(c
(τ)
s )3 + Ξ

(τ)
i

)
≤ α2(c(τ))2

1 + exp
(
α3(c(τ))3 − Õ(mα3σ3

0)− Õ(mP (σσ0

√
d)3)

)
=

Θ(1)(αc(τ))2

1 + exp((αc(τ))3)
. (204)
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Using Remark 1, the sigmoid term in (204) becomes small when αc(τ) ≥ κ1/3. To summarize, we have:

(αc(τ))2ℓ
(τ)
i =

{
0 if αc(τ) ≥ κ1/3

(αc(τ))2ℓ
(τ)
i otherwise

. (205)

(205) therefore implies (αc(t))2ℓ(t)i ≤ Θ(1)min{κ2/3, (αc(t))2}ℓ(t)i which implies (202).

A similar reasoning implies for i ∈ Z2:

(βc(t))2ℓ
(τ)
i ≤ Θ(1)min{κ, β2(c(t))2}ℓ(τ)i . (206)

Plugging (202) and (206) in (201) yields the aimed result.

We proved in Lemma 6.1 that after T0 iterations, the signal c(t) ≥ Ω̃(1/α) which makes ν(t)1 small. Besides, in Lemma 6.3,
we show that after T1 iterations, the signal c(t) ≥ Ω̃(1/β) which makes ν(t)2 small. We use these two facts to bound the sum
over time of signal momentum.

Lemma J.3 (Sum of signal momentum at late stages). For t ∈ [T1, T ), the sum of maximal signal momentum is bounded as:

t∑
s=T1

|G(s+1)| ≤ Õ(αT0) + Õ(µ̂βT1) +
Õ(1)

η
. (207)

Proof of Lemma J.3. Let s ∈ [T1, T ]. From Lemma J.2, the signal momentum is bounded as:

|G(s+1)| ≤ Θ(1− γ)

T0−1∑
τ=0

γs−ταν
(τ)
1 min{κ, (αc(τ))2}

+Θ(1− γ)

s∑
τ=T0

γs−ταν
(τ)
1 min{κ, (αc(τ))2}

+Θ(1− γ)

T1−1∑
τ=0

γs−τβν
(τ)
2 min{κ, (βc(τ))2}

+Θ(1− γ)

s∑
τ=T1

γs−τβν
(τ)
2 min{κ, (βc(τ))2}.

(208)

We know that for τ ≥ T0, c(τ) ≥ Ω̃(1/α) and for τ ≥ T1, c(τ) ≥ Ω̃(1/β). Plugging these two facts and using ν
(τ)
1 ≤ 1− µ̂

and ν
(τ)
2 ≤ µ̂ in (208) leads to:

G(s+1) ≤ (1− µ̂)αÕ(1− γ)

T0−1∑
τ=0

γs−τ + αÕ(1− γ)

s∑
τ=T0

γs−τν
(τ)
1

+ µ̂βÕ(1− γ)

T1−1∑
τ=0

γs−τ + βÕ(1− γ)

s∑
τ=T1

γs−τν
(τ)
2

(209)

For τ ∈ [T0 − 1], we have γs−τ ≤ γs−T0+1 and for τ ∈ [T1 − 1], γs−τ ≤ γs−T1+1. From Lemma J.8 and Lemma 6.4, we
can bound ν

(τ)
1 and ν

(τ)
2 . Therefore, (209) is further bounded as:

G(s+1) ≤ (1− µ̂)T0αÕ(1− γ)γs−T0+1 +
Õ(1− γ)

η

s−T0+1∑
τ=1

γs−T0+1−τ

τ

+ µ̂T1βÕ(1− γ)γs−T1+1 +
Õ(1− γ)

η

s−T1+1∑
τ=1

γs−T1+1−τ

τ

(210)
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We now use Lemma K.25 to bound the sum terms in (210). We have:

G(s+1) ≤ (1− µ̂)T0αÕ(1− γ)γs−T0+1 + µ̂T1βÕ(1− γ)γs−T1+1

+
Õ(1− γ)

η

(
γs−T0 + γ(s−T0+1)/2 log

(
s− T0 + 1

2

)
+

1

1− γ

2

s− T0 + 1

)
+

Õ(1− γ)

η

(
γs−T1 + γ(s−T1+1)/2 log

(
s− T1 + 1

2

)
+

1

1− γ

2

s− T1 + 1

)
.

(211)

We now sum (211) for s = T1, . . . , t. Using the geometric sum inequality
∑

s γ
s ≤ 1/(1− γ) and obtain:

t∑
s=T1

G(s+1) ≤ Õ(T0α) + Õ(µ̂βT1)

+
Õ(1)

η

(
1 + (1− γ) log(t)

t∑
s=T1

(
√
γ)s−T0+1 +

t∑
s=T1

2

s− T0 + 1

)

+
Õ(1)

η

(
1 + (1− γ) log(t)

t∑
s=T1

(
√
γ)s−T1+1 +

t∑
s=T1

2

s− T1 + 1

) (212)

We plug
∑

s

√
γs ≤ 1/(1−√

γ) and
∑t−T1+1

s=1 1/s ≤ log(t) + 1 in (212). This yields the desired result.

J.3. Noise lemmas

In this section, we present the technical lemmas to prove Lemma 6.5.

Lemma J.4 (Bound on noise momentum). Run GD+M on the loss function L̂(W ). Let i ∈ [N ], j ∈ [P ]\{P (Xi)}. At a
time t, the noise momentum is bounded with probability 1− o(1) as:∣∣∣−G

(t+1)
i,j,r + γG

(t)
i,j,r

∣∣∣ ≤ (1− γ)Õ(σ4σ2
0d

2)ν(t).

Proof of Lemma J.4. Let i ∈ [N ] and j ∈ [P ]\{P (Xi)}. Combining the (4) update rule and Lemma E.3 to get the noise
gradient G(t)

i,j,r, we obtain∣∣∣−G
(t+1)
i,j,r + γG

(t)
i,j,r

∣∣∣
≤ 3(1− γ)

N
ℓ
(t)
i (Ξ

(t)
i,j,r)

2∥Xi[j]∥22 +

∣∣∣∣∣∣3(1− γ)

N

N∑
a=1

ℓ(t)a

∑
k ̸=P (Xa)

(Ξ
(t)
a,k,r)

2⟨Xa[k],Xi[j]⟩

∣∣∣∣∣∣ .
(213)

Using Lemma K.5 and Lemma K.7, (213) becomes with probability 1− o(1),∣∣∣−G
(t+1)
i,j,r + γG

(t)
i,j,r

∣∣∣
≤ (1− γ)Θ̃(σ2d)

N
ℓ
(t)
i (Ξ

(t)
i,j,r)

2 +
(1− γ)Θ̃(σ2

√
d)

N

N∑
a=1

ℓ(t)a

∑
k ̸=P (Xa)

(Ξ
(t)
a,k,r)

2.
(214)

Using ℓ
(t)
i /N ≤ ν(t), Induction hypothesis D.4, we upper bound the first term in (214) to get:∣∣∣−G

(t+1)
i,j,r + γG

(t)
i,j,r

∣∣∣
≤ (1− γ)Õ(σ4σ2

0d
2)ν(t) +

(1− γ)Θ̃(σ2
√
d)

N

N∑
a=1

ℓ(t)a

∑
k ̸=P (Xa)

(Ξ
(t)
a,k,r)

2.
(215)
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We upper bound the second term in (215) by again using Induction hypothesis D.4:∣∣∣−G
(t+1)
i,j,r + γG

(t)
i,j,r

∣∣∣ ≤ (1− γ)
(
Õ(σ4σ2

0d
2) + Õ(Pσ2

0σ
4d3/2)

)
ν(t). (216)

By using P ≤ Õ(1) and thus, Õ(Pσ2
0σ

4d3/2) ≤ Õ(σ4σ2
0d

2) in (216), we obtain the desired result.

Lemma J.5. Let t ∈ [T ]. The noise momentum is bounded as

|G(t+1)
i,j,r | ≤ (1− γ)Õ(σ4σ2

0d
2)

t∑
τ=0

γt−1−τν(τ).

Proof of Lemma J.5. Let τ ∈ [T ]. From Lemma J.4, we know that:

|G(τ+1)
i,j,r | ≤ |γG(τ)

i,j,r|+ (1− γ)Õ(σ4σ2
0d

2)ν(τ). (217)

We unravel the recursion (217) rule for τ = 0, . . . , t and obtain:

|G(t+1)
i,j,r | ≤ (1− γ)Õ(σ4σ2

0d
2)

t∑
τ=0

γt−τν(τ).

Lemma J.6 (Noise momentum at late stages). For t ∈ [T1, T ), the sum of noise momentum is bounded as:

t∑
s=T1

|G(s+1)
i,j,r | ≤ Õ(σ4σ2

0d
2)

(
T1 +

1

ηβ

)
.

Proof of Lemma J.6. Let s ∈ [T1, T ). We first apply Lemma J.5 and obtain:

|G(s+1)
i,j,r | ≤ (1− γ)Õ(σ4σ2

0d
2)

(T1−1∑
τ=0

γs−τν(τ) +

t∑
τ=T1

γs−τν(τ)

)
. (218)

Using the bound from Lemma 6.4, (218) becomes

|G(s+1)
i,j,r | ≤ (1− γ)Õ(σ4σ2

0d
2)

(T1−1∑
τ=0

γs−τ +

s∑
τ=T1

γs−τ

ηβ(τ − T1 + 1)

)
(219)

For τ ∈ [0, T1 − 1], we have γs−1−τ ≤ γs−T1+1. Plugging these two bounds in (219) implies:

|G(s+1)
i,j,r | ≤ (1− γ)Õ(σ4σ2

0d
2)

(
T1γs−T1+1 +

1

ηβ

s−T1+1∑
τ=1

γs−T1+1−τ

τ

)
. (220)

We now use Lemma K.25 to bound the sum terms in (220). We have:

|G(s+1)
i,j,r |

≤ (1− γ)Õ(σ4σ2
0d

2)T1γs−T1+1

+
1− γ

ηβ
Õ(σ4σ2

0d
2)

(
γs−T1 + γ(s−T1+1)/2 log

(
s− T1 + 1

2

)
+

1

1− γ

2

s− T1 + 1

)
.

(221)

We now sum (221) for s = T1, . . . , t. Using the geometric sum inequality
∑

s γ
s ≤ 1/(1− γ), we obtain:

t∑
s=T1

|G(s+1)
i,j,r | ≤ Õ(σ4σ2

0d
2)T1 +

Õ(σ4σ2
0d

2)

ηβ

(
log (t) +

t∑
s=T1

2

s− T1 + 1

)
. (222)

We finally use the harmonic series inequality
∑t−T1

s=1 1/s ≤ 1 + log(t) in (222) to obtain the desired result.
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J.4. Convergence rate of the training loss using GD+M

In this section, we prove that when using GD+M, the training loss converges sublinearly in our setting.

J.4.1. CONVERGENCE AFTER LEARNING Z1 (t ∈ [T0, T ])

Lemma J.7. For t ∈ [T0, T ] Using GD+M with learning rate η, the loss sublinearly converges to zero as

(1− µ̂)L̂(t)(α) ≤ Õ

(
1

ηα2(t− T0 + 1)

)
. (223)

Proof of Lemma J.9. Let t ∈ [T0, T ]. Using Lemma J.11, we bound the signal momentum as:

−G(t) ≥ Θ(1− γ)α

t∑
s=T0

γt−sℓ̂(s)(α)(αc(s))2

≥ (1− µ̂)Θ(1− γ)α(αc(t))2ℓ̂(t)(α)

t∑
s=T0

γt−s

≥ (1− µ̂)Θ(1)α(αc(t))2ℓ̂(t)(α). (224)

From Lemma 6.1, we know that c(t) ≥ Ω̃(1/α). Thus, we simplify (224) as:

−G(t) ≥ (1− µ̂)Ω̃(α)ℓ̂(t)(α). (225)

We now plug (225) in the signal update (3).

c(t+1) ≥ c(t) + Ω̃(ηα)(1− µ̂)ℓ̂(t)(α). (226)

We now apply Lemma K.22 to lower bound (226) by loss terms. We have:

c(t+1) ≥ c(t) + Ω̃(ηα)(1− µ̂)L̂(t)(α). (227)

Let’s now assume by contradiction that for t ∈ [T0, T ], we have:

(1− µ̂)L̂(t)(α) >
Ω̃(1)

ηα2(t− T0 + 1)
. (228)

From the (3) update, we know that c(τ)r is a non-decreasing sequence which implies that
∑m

r=1(αc
(τ)
r )3 is also non-decreasing

for τ ∈ [T ]. Since x 7→ log(1 + exp(−x)) is non-increasing, this implies that for s ≤ t, we have:

Ω̃(1)

ηα2(t− T0 + 1)
< (1− µ̂)L̂(t)(α) ≤ (1− µ̂)L̂(s)(α). (229)

Plugging (229) in the update (228) yields for s ∈ [T0, t]:

c(s+1) > c(s) +
Ω̃(1)

α(t− T0 + 1)
(230)

We now sum (230) for s = T0, . . . , t and obtain:

c(t+1) > c(T0) +
Ω̃(1)(t− T0 + 1)

α(t− T0 + 1)
>

Ω̃(1)

α
, (231)

where we used the fact that c(T0) ≥ Ω̃(1/α) > 0 (Lemma 6.2) in the last inequality. Thus, from Lemma 6.1 and (231), we
have for t ∈ [T0, T ], c(t) ≥ Ω̃(1/α). Let’s now show that this leads to a contradiction. Indeed, for t ∈ [T0, T ], we have:

ηα2(t− T0 + 1)(1− µ̂)L̂(t)(α) ≤ ηα2T (1− µ̂) log
(
1 + exp(−Ω̃(1)

)
, (232)
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where we used c(t) ≥ Ω̃(1/α) in (232). We now apply Lemma K.22 in (232) and obtain:

ηα2(t− T0 + 1)(1− µ̂)L̂(t)(α) ≤ (1− µ̂)ηα2T

1 + exp(Ω̃(1))
. (233)

Given the values of α, η, T , we finally have:

ηα2(t− T0 + 1)(1− µ̂)L̂(t)(α) ≤ Õ(1), (234)

which contradicts (228).

We now link the bound on the loss to the derivative ν
(t)
1 .

Lemma J.8. For t ∈ [T0, T ], we have ν
(t)
1 ≤ Õ

(
1

η(t−T0+1)α

)
.

Proof of Lemma J.8. The proof is similar to the one of Lemma 6.4.

J.4.2. CONVERGENCE AT LATE STAGES (t ∈ [T1, T ])

Lemma J.9 (Convergence rate of the loss). For t ∈ [T1, T ] Using GD+M with learning rate η > 0, the loss sublinearly
converges to zero as

(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β) ≤ Õ

(
1

ηβ2(t− T1 + 1)

)
. (235)

Proof of Lemma J.9. Let t ∈ [T1, T ]. From Lemma J.10, we know that the signal gradient is bounded as −G (t) ≥ −G (s)

for s ∈ [T1, t].

−G(t) = −γt−T1G(T1) − (1− γ)

t∑
s=T1

γt−sG (s)

≥ −(1− γ)

t∑
s=T1

γt−sG (s)

≥ −(1− γ)G (t)
t∑

s=T1

γt−s

= −Θ(1)G (t). (236)

From Lemma E.2, the signal gradient is:

−G (t) = Θ(1)
(
α3ℓ̂(t)(α) + β3ℓ̂(t)(β)

)
(c(t))2. (237)

From Lemma 6.3, we know that c(t) ≥ Ω̃(1/β). Thus, we simplify (237) as:

−G (t) ≥ Ω̃(β)
(
(1− µ̂)ℓ̂(t)(α) + µ̂βℓ̂(t)(β)

)
. (238)

By combining (236) and (238), we finally obtain:

−G(t) ≥ Ω̃(β)
(
(1− µ̂)ℓ̂(t)(α) + µ̂ℓ̂(t)(β)

)
. (239)

We now plug (239) in the signal update (3).

c(t+1) ≥ c(t) + Ω̃(ηβ)
(
(1− µ̂)ℓ̂(t)(α) + µ̂ℓ̂(t)(β)

)
. (240)
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We now apply Lemma K.22 to lower bound (240) by loss terms. We have:

c(t+1) ≥ c(t) + Ω̃(ηβ)
(
(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β)

)
. (241)

Let’s now assume by contradiction that for t ∈ [T1, T ], we have:

(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β) >
Ω̃(1)

ηβ2(t− T1 + 1)
. (242)

From the (3) update, we know that c(τ)r is a non-decreasing sequence which implies that
∑m

r=1(θc
(τ)
r )3 is also non-decreasing

for τ ∈ [T ]. Since x 7→ log(1 + exp(−x)) is non-increasing, this implies that for s ≤ t, we have:

Ω̃(1)

ηβ2(t− T1 + 1)
< (1− µ̂)L̂(t)(α) + µ̂L̂(t)(β) ≤ (1− µ̂)L̂(s)(α) + µ̂L̂(s)(β). (243)

Plugging (243) in the update (241) yields for s ∈ [T1, t]:

c(s+1) > c(s) +
Ω̃(1)

β(t− T1 + 1)
(244)

We now sum (244) for s = T1, . . . , t and obtain:

c(t+1) > c(T1) +
Ω̃(1)(t− T1 + 1)

β(t− T1 + 1)
>

Ω̃(1)

β
, (245)

where we used the fact that c(T1) ≥ Ω̃(1/β) > 0 (Lemma 6.2) in the last inequality. Thus, from Lemma 6.2 and (245), we
have for t ∈ [T1, T ], c(t) ≥ Ω̃(1/β). Let’s now show that this leads to a contradiction. Indeed, for t ∈ [T1, T ], we have:

ηβ2(t− T1 + 1)
(
(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β)

)
≤ηβ2T

(1− µ̂) log

1 + exp(−(αc(t))3 −
∑

r ̸=rmax

(αc(t)r )3


+µ̂ log

1 + exp(−(βc(t))3 −
∑

r ̸=rmax

(βc(t)r )3


≤ηβ2T

(
(1− µ̂) log

(
1 + exp(−Ω̃(α3/β3)

)
+ µ̂ log

(
1 + exp(−Ω̃(1)

))
, (246)

where we used
∑

r ̸=rmax
(c

(t)
r )3 ≥ −mÕ(σ3

0) and c(t) ≥ Ω̃(1/β) in (246). We now apply Lemma K.22 in (246) and obtain:

ηβ2(t− T1 + 1)
(
(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β)

)
≤ (1− µ̂)ηβ2T

1 + exp(Ω̃(α3/β3))
+

µ̂ηβ2T

1 + exp(Ω̃(1))
. (247)

Given the values of α, β, η, T, µ̂, we finally have:

ηβ2(t− T1 + 1)
(
(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β)

)
≤ Õ(1), (248)

which contradicts (242).

J.4.3. AUXILIARY LEMMAS

We now provide an auxiliary lemma needed to obtain (J.9).

Lemma J.10. Let t ∈ [T1, T ]. Then, the signal gradient decreases i.e. −G (s) ≥ −G (t) for s ∈ [T1, t].
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Proof of Lemma J.10. From Lemma E.2, we know that

−G (t) = Θ(1)
(
α3ℓ̂(t)(α) + β3ℓ̂(t)(β)

)
(c(t))2. (249)

Since c
(t)
r ≥ −Õ(σ0), we bound (249) as:

−G (t) ≤ Θ(1)
(
α3S((αc(t))3) + β3S((βc(t))3)

)
(c(t))2. (250)

The function x 7→ x2S(x3) is non-increasing for x ≥ 1. Since c(t) ≥ Ω̃(1/β), we have:

−G (t) ≤ Θ(1)
(
α3S((αc(T1))3) + β3S((βc(T1))3)

)
(c(T1))2 = −G (T1). (251)

Lemma J.11. Let t ∈ [T0, T ]. Then, the signal Z1 gradient decreases i.e. ℓ̂(s)(α)(αc(s))2 ≥ ℓ̂(t)(α)(αc(t))2 for s ∈ [T0, t].

Proof of Lemma J.11. The proof is similar to the one of Lemma J.10.

K. Useful lemmas
In this section, we provide the probabilistic and optimization lemmas and the main inequalities used above.

K.1. Probabilistic lemmas

In this section, we introduce the probabilistic lemmas used in the proof.

K.1.1. HIGH-PROBABILITY BOUNDS

Lemma K.1. The sum of of symmetric random variables is symmetric.

Lemma K.2 (Sum of sub-Gaussians (Vershynin, 2018)). Let σ1, σ2 > 0. Let X and Y respetively be σ1- and σ2-
subGaussian random variables. Then, X + Y is

√
σ1 + σ2-subGaussian random variable.

Lemma K.3 (High probability bound subGaussian (Vershynin, 2018)). Let t > 0. Let X be a σ-subGaussian random
variable. Then, we have:

P [|X| > t] ≤ 2e−
t2

2σ2 .

Theorem K.1 (Concentration of Lipschitz functions of Gaussian variables (Wainwright, 2019)). Let X1, . . . , XN be N
i.i.d. random variables such that Xi ∼ N (0, σ2) and X := (X1, . . . , Xn). Let f : Rd → R be L-Lipschitz with respect to
the Euclidean norm. Then,

P[|f(X)− E[f(X)]| ≥ t] ≤ 2e−
t2

2L . (252)

Lemma K.4 (Expectation of Gaussian vector (Wainwright, 2019)). Let X ∈ Rd be a Gaussian vector such that X ∼
N (0, σ2I). Then, its expectation is equal to E[∥X∥2] = Θ(σ

√
d).

Lemma K.5 (High-probability bound on squared norm of Gaussian). Let X ∈ Rd be a Gaussian vector such that
X ∼ N (0, σ2Id). Then, with probability at least 1− o(1), we have ∥X∥22 = Θ(σ2d).

Proof of Lemma K.5. We know that the ∥ · ∥2 is 1-Lipschitz and by applying Theorem K.1, we therefore have::

P [|∥X∥2 − E[∥X∥2]| > ϵ] ≤ exp

(
− ϵ2

2σ2

)
. (253)
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By rewriting (253) and using Lemma K.4, we have with probability 1− δ,

Θ(σ
√
d)− σ

√
2 log

(
1

δ

)
≤ ∥X∥2 ≤ Θ(σ

√
d) + σ

√
2 log

(
1

δ

)
. (254)

By squaring (254) and using (a+ b)2 ≤ a2 + b2, we obtain the aimed result.

Lemma K.6 (Precise bound on squared norm of Gaussian). Let X ∈ Rd be a Gaussian vector such that X ∼ N (0, σ2Id).
Then, we have:

P
[
∥X∥2 ∈

[
1

2
σ
√
d,

3

2
σ
√
d

]]
≥ 1− e−d/8.

Proof of Lemma K.6. We know that the ∥ · ∥2 is 1-Lipschitz and by applying Theorem K.1, we therefore have:

P [|∥X∥2 − E[∥X∥2]| > ϵ] ≤ exp

(
− ϵ2

2σ2

)
. (255)

We use Lemma K.4 and set ϵ = σ
√
d

2 in (255) to finally get:

P

[
|∥X∥2 − E[∥X∥2]| >

σ
√
d

2

]
≤ exp

(
−d

8

)
.

Lemma K.7 (High-probability bound on dot-product of Gaussians). Let X and Y be two independent Gaussian vectors
in Rd such that X,Y independent and X ∼ N (0, σ2I) and Y ∼ N (0, σ2

0Id). Assume that σσ0 ≤ 1/d. Then, with
probability 1− o(1), we have:

|⟨X,Y ⟩| ≤ Õ(σσ0

√
d).

Proof of Lemma K.7 . Let’s define Z := ⟨X,Y ⟩. We first remark that Z is a sub-exponential random variable. Indeed, the
generating moment function is:

MZ(t) = E[et⟨X,Y ⟩] =
1

(1− σ2σ2
0t

2)d/2
= e−

d
2 log(1−σ2σ2

0t
2) ≤ e

dσ2σ2
0t2

2 , for t ≤ 1

σσ0
.

where we used log(1− x) ≥ −x for x < 1 in the last inequality. Therefore, by definition of a sub-exponential variable, we
have:

P [|Z − E[Z]| > ϵ] ≤

2e
− ϵ2

2dσ2σ2
0 for 0 ≤ ϵ ≤ dσσ0

2e−
ϵ

2σσ0 for ϵ ≥ dσσ0

. (256)

Since σ2d ≤ 1 and ϵ ∈ [0, 1], (256) is bounded as:

P [|Z − E[Z]| > ϵ] ≤ 2e
− ϵ2

2dσ2σ2
0 . (257)

We know that E[Z] = M ′(0) =
(
d(1− σ2σ2

0t
2)−

d
2−1σ2σ2

0t
)
(0) = 0. By plugging this expectation in (257), we have

with probability 1− δ,

|⟨X,Y ⟩| ≤ σσ0

√
2d log

(
2

δ

)
.
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Lemma K.8 (High-probability bound on dot-product of Gaussians). Let X and Y be two independent Gaussian vectors in
Rd such that X,Y ∼ N (0, σ2Id). Then, with probability 1− δ, we have:∣∣∣∣〈 X

∥X∥2
,Y

〉∣∣∣∣ ≤ Õ(σ).

Proof of Lemma K.7 . Let U := X/∥X∥2 and Z := ⟨U ,Y ⟩. We know that the pdf of U in polar coordinates is fU (θ) =
Γ(d/2)
2πd/2 . Therefore, the generating moment function of Z is:

MZ(t) =

∫
Sd−1

∫
Rd

et⟨u,y⟩fU (u)fY (y)dudy

=
Γ(d/2)

2πd/2(2πσ2)d/2

∫
Sd−1

∫
Rd

et⟨u,y⟩e−
∥y∥22
2σ2 dydu

=
Γ(d/2)

2πd/2(2πσ2)d/2

∫
Sd−1

∫
Rd

e−
∥y−tσ2u∥22

2σ2 e
t2σ2∥u∥22

2 dydu

=
Γ(d/2)

2πd/2(2πσ2)d/2

∫
Sd−1

e
σ2t2∥u∥22

2 du

=
Γ(d/2)

2πd/2(2πσ2)d/2

∫
Sd−1

e
σ2t2

2 du

= e
σ2t2

2 . (258)

(258) indicates that Z is a sub-Gaussian random variable of parameter σ. By definition, it satisfies

P[|Z| > ϵ] ≤ 2e−
ϵ2

2σ2 . (259)

Setting δ = 2e−
ϵ2

2σ2 in (259) yields that we have with probability 1− δ,∣∣∣∣〈 X

∥X∥2
,Y

〉∣∣∣∣ ≤
√

2 log

(
2

δ

)
.

Lemma K.9 (High probability bound for ratio of norms). Let X1, . . . ,Xn i.i.d. vectors from N (0, σ2I). Then, with
probability 1− o(1), we have:

∥X1∥22
∥
∑n

i=1 Xi∥2
= Θ̃

(
σ

√
d

n

)
. (260)

Proof of Lemma K.9. We know that for X1 ∼ N (0, σ2d), we have:

P
[
∥X1∥22 ∈

[
σ2d

4
,
9σ2d

4

]]
≤ e−d/8. (261)

Therefore, using the law of total probability and (261), we have:

P
[

∥X1∥22
∥
∑n

i=1 Xi∥2
> t

]
= P

[
∥X1∥22

∥
∑n

i=1 Xi∥2
> t

∣∣∣∣ ∥X1∥22 >
9σ2d

4

]
P
[
∥X1∥22 >

9σ2d

4

]
+ P

[
∥X1∥22

∥
∑n

i=1 Xi∥2
> t

∣∣∣∣ ∥X1∥22 <
9σ2d

4

]
P
[
∥X1∥22 <

9σ2d

4

]
≤ e−d/8 + P

[
∥X1∥22

∥
∑n

i=1 Xi∥2
> t

∣∣∣∣ ∥X1∥22 <
9σ2d

4

]
. (262)
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Now, we can further bound (262) as:

P
[

∥X1∥22
∥
∑n

i=1 Xi∥2
> t

]
≤ e−d/8 + P

[
9σ2d

4t
> ∥

n∑
i=1

Xi∥2

]
. (263)

Since
∑n

i=1 Xi ∼ N (0, nσ2Id), we also have

P

[
∥

n∑
i=1

Xi∥2 ∈

[
σ
√
nd

2
,
3σ

√
nd

2

]]
≤ e−d/8. (264)

Therefore by setting t = 3σ
2

√
d
n , we obtain:

P

[
∥X1∥22

∥
∑n

i=1 Xi∥2
>

3σ

2

√
d

n

]
≤ 2e−d/8. (265)

Doing the similar reasoning for the lower bound yields:

P

[
∥X1∥22

∥
∑n

i=1 Xi∥2
<

σ

2

√
d

n

]
≤ 2e−d/8. (266)

Lemma K.10 (High probability bound norms vs dot product). Let X1, . . . ,Xn i.i.d. vectors from N (0, σ2Id). Then, with
probability 1− o(1), we have:

√
d|⟨X1,X2⟩|

∥
∑N

i=1 Xi∥2
≤ ∥X1∥22

∥
∑N

i=1 Xi∥2
. (267)

Proof of Lemma K.10. To show the result, it’s enough to upper bound the following probability:

P
[
∥X1∥22 >

√
d|⟨X1,X2⟩|

]
. (268)

By using the law of total probability we have:

P
[
∥X1∥22 >

√
d|⟨X1,X2⟩|

]
=P
[
∥X1∥22 >

√
d|⟨X1,X2⟩|

∣∣∣∣ ∥X1∥22 ∈
[
σ2d

2
,
9σ2d

4

]]
P
[
∥X1∥22 ∈

[
σ2d

2
,
9σ2

4

]]
+P
[
∥X1∥22 >

√
d|⟨X1,X2⟩|

∣∣∣∣ ∥X1∥22 ̸∈
[
σ2d

2
,
9σ2d

4

]]
P
[
∥X1∥22 ̸∈

[
σ2d

2
,
9σ2

4

]]
≤P
[
∥X1∥22 >

√
d|⟨X1,X2⟩|

∣∣∣∣ ∥X1∥22 ∈
[
σ2d

2
,
9σ2d

4

]]
+ e−d/8, (269)

where we used Lemma K.6 in (269). Using Lemma K.6 again, we can simplify (269) as:

P
[
∥X1∥22 >

√
d|⟨X1,X2⟩|

]
≤ P

[
9σ2

√
d

4
> |⟨X1,X2⟩|

]
+ e−d/8

≤ 2e−d/8.
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K.1.2. ANTI-CONCENTRATION OF GAUSSIAN POLYNOMIALS

Theorem K.2 (Anti-concentration of Gaussian polynomials (Carbery & Wright, 2001; Lovett, 2010)). Let P (x) =
P (x1, . . . , xn) be a degree d polynomial and x1, . . . , xn be i.i.d. Gaussian univariate random variables. Then, the
following holds for all d, n.

P
[
|P (x)| ≤ ϵVar[P (x)]1/2

]
≤ O(d)ϵ1/d.

Lemma K.11 (Gaussians and Hermite). Let P(x1, . . . , xP ) =
∑d

k=1

∑
I⊂[P ]:|I|=k cI

∏
i∈I xi be a degree d polynomial

where x1, . . . , xP
i.i.d.∼ N (0, σ2) and cI ∈ R.

Let H(x) =
∑

e∈NP :|e|≤d c
H
e

∏P
i=1 Hei(xi) be the corresponding Hermite polynomial to P where {Hek}dk=1 is the Hermite

polynomial basis. Then, the variance of P is given by Var[P (x)2] =
∑

e |cHe |2.
Lemma K.12. Let {vr}mr=1 be vectors in Rd such that there exist a unit norm vector x that satisfies |

∑m
r=1⟨vr,x⟩3| ≥ 1.

Then, for ξ1, . . . , ξk ∼ N (0, σ2Id) i.i.d., we have:

P

∣∣∣∣∣∣
P∑

j=1

m∑
r=1

⟨vr, ξj⟩3
∣∣∣∣∣∣ ≥ Ω̃(σ3)

 ≥ 1− O(d)

21/d
.

Proof of Lemma K.12. Let ξ1, . . . , ξj ∼ N (0, σ2Id) i.i.d. We decompose ξj as ξj = ãjx+ bj where bj is an independent
Gaussian on the orthogonal complement of x and ãj ∼ N (0, σ2). Finally, we rewrite ãj as ãj = σaj where aj ∼ N (0, 1).

Therefore, we can rewrite
∑P

j=1

∑m
r=1⟨vr, ξj⟩3 as a polynomial P(a1, . . . , aP ) defined as:

P(a1, . . . , aP ) = σ3
P∑

j=1

a3j

(
m∑
r=1

⟨vr,x⟩3
)

+ 3σ2
P∑

j=1

a2j

(
m∑
r=1

⟨vr,x⟩2⟨vr, bj⟩

)

+ 3σ

P∑
j=1

aj

(
m∑
r=1

⟨vr,x⟩⟨vr, bj⟩2
)

+

P∑
j=1

m∑
r=1

⟨vr, bj⟩3.

(270)

We now compute the mean and variance of P(a1, . . . , aP ). Those quantities are obtained through the corresponding Hermite
polynomial of P as stated in Lemma K.11. Let H(x) be an Hermite polynomial of degree 3. Since the Hermite basis is
given by H0(x) = 1, He1(x) = x, He2(x) = x2 − 1 and He3(x) = x3 − 3x, for αj , βj , γj , δj ∈ R, we have:

H(a1, . . . , aP ) =

P∑
j=1

αjHe3(aj) +

P∑
j=1

βjHe2(aj) + γ

P∑
j=1

He1(aj) + δ

P∑
j=1

He0(aj)

=

P∑
j=1

αj(a
3
j − 3aj) +

P∑
j=1

βj(a
2
j − 1) +

P∑
j=1

γjaj +

P∑
j=1

δj

=

P∑
j=1

αja
3
j +

P∑
j=1

βja
2
j +

P∑
j=1

(γj − 3αj)aj +

P∑
j=1

(δj − βj). (271)

Since the decomposition of a polynomial in the monomial basis is unique, we can equate the coefficients of H and P and
obtain: 

αj = σ3
∑m

r=1⟨vr,x⟩3

βj = 3σ2
∑m

r=1⟨vr,x⟩2⟨vr, bj⟩
γj = 3σ

∑m
r=1⟨vr,x⟩⟨vr, bj⟩2 + 3σ3

∑m
r=1⟨vr,x⟩3

δj =
∑m

r=1⟨vr, bj⟩3 + 3σ2
∑m

r=1⟨vr,x⟩2⟨vr, bj⟩

. (272)

By applying Lemma K.11, we get that Var[P (a)] =
∑P

j=1 α
2
j +

∑P
j=1 β

2
j +

∑P
j=1 γ

2
j ≥

∑P
j=1 α

2
j . By using this lower
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bound on the variance, the fact that |
∑m

r=1⟨vr,x⟩3| ≥ 1 and Theorem K.2, we obtain

P

∣∣∣∣∣∣
P∑

j=1

m∑
r=1

⟨vr, ξj⟩3
∣∣∣∣∣∣ ≥ ϵσ3

 ≥ 1−O(d)ϵ1/d (273)

Setting ϵ = 1/2 in (273) yields the desired result.

K.1.3. PROPERTIES OF THE CUBE OF A GAUSSIAN

Lemma K.13. Let X ∼ N (0, σ2). Then, X3 is σ3-subGaussian.

Proof of Lemma K.13. By definition of the moment generating function, we have:

MX3(t) =

∞∑
i=0

tiE[X3i]

i!
=

∞∑
k=0

t2kσ6k(2k − 1)!!

(2k)!
=

∞∑
k=0

t2kσ6k

2kk!
= e

t2σ6

2 .

Lemma K.14. Let (X[1], . . . ,X[P − 1]) be i.i.d. random variables such that X[j] ∼ N (0, σ2Id). Let (w1, . . . ,wm) be
fixed vectors such that wr ∈ Rd. Therefore,

m∑
s=1

P−1∑
j=1

⟨ws,X[j]⟩3 is (σ3
√
P − 1

√∑m
s=1 ∥ws∥62)− subGaussian.

Proof. We know that ⟨ws,X[j]⟩ ∼ N (0, ∥ws∥22σ2). Therefore, ⟨ws,X[j]⟩3 is the cube of a centered Gaussian.
From Lemma K.13, ⟨ws,X[j]⟩3 is σ3∥ws∥32-subGaussian. Using Lemma K.2, we deduce that

∑P−1
j=1 ⟨ws,X[j]⟩3

is
√
Pσ3∥ws∥32-subGaussian. Applying again Lemma K.2, we finally obtain that

∑m
s=1

∑P−1
j=1 ⟨ws,X[j]⟩3 is

σ3
√
P − 1

√∑m
s=1 ∥ws∥62-subGaussian.

K.2. Tensor Power Method Bound

In this subsection we establish a lemma for comparing the growth speed of two sequences of updates of the form z(t+1) =
z(t) + ηC(t)(z(t))2. This technique is reminiscent of the classical analysis of the growth of eigenvalues on the (incremental)
tensor power method of degree 2 and is stated in full generality in (Allen-Zhu & Li, 2020).

K.2.1. BOUNDS FOR GD

Lemma K.15. Let {z(t)}Tt=0 be a positive sequence defined by the following recursions{
z(t+1) ≥ z(t) +m(z(t))2

z(t+1) ≤ z(t) +M(z(t))2
,

where z(0) > 0 is the initialization and m,M > 0.Let υ > 0 such that z(0) ≤ υ. Then, the time t0 such that zt ≥ υ for all
t ≥ t0 is:

t0 =
3

mz(0)
+

8M

m

⌈
log(υ/z0)

log(2)

⌉
.

Proof of Lemma K.15. Let n ∈ N∗. Let Tn be the time where z(t) ≥ 2nz(0). This time exists because z(t) is a non-
decreasing sequence. We want to find an upper bound on this time. We start with the case n = 1. By summing the recursion,
we have:

z(T1) ≥ z(0) +m

T1−1∑
s=0

(z(s))2. (274)
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We use the fact that z(s) ≥ z(0)) in (274) and obtain:

T1 ≤ z(T1) − z(0)

m(z(0))2
. (275)

Now, we want to bound z(T1) − z(0). Using again the recursion and z(T1−1) ≤ 2z(0), we have:

z(T1) ≤ z(T1−1) +M(z(T1−1))2 ≤ 2z(0) + 4M(z(0))2. (276)

Combining (275) and (276), we get a bound on T1.

T1 ≤ 1

m(z(0))
+

4M

m
. (277)

Now, let’s find a bound for Tn. Starting from the recursion and using the fact that z(s) ≥ 2n−1z(0) for s ≥ Tn−1 we have:

z(Tn) ≥ z(Tn−1) +m

Tn−1∑
s=Tn−1

(z(s))2 ≥ z(Tn−1) + (2n−1)2m(z(0))2(Tn − Tn−1). (278)

On the other hand, by using z(Tn−1) ≤ 2nz(0) we upper bound z(Tn) as follows.

z(Tn) ≤ z(Tn−1) +M(z(Tn−1))2 ≤ 2nz(0) +M22n(z(0))2. (279)

Besides, we know that z(Tn−1) ≥ 2n−1z(0). Therefore, we upper bound z(Tn) − z(Tn−1) as

z(Tn) − z(Tn−1) ≤ 2n−1z(0) +M22n(z(0))2. (280)

Combining (278) and (280) yields:

Tn ≤ Tn−1 +
1

2n−1m(z(0))
+

4M

m
. (281)

We now sum (281) for n = 2, . . . , n, use (277) and obtain:

Tn ≤ T1 +
2

mz(0)
+

4Mn

m
≤ 3

mz(0)
+

4M(n+ 1)

m
≤ 3

mz(0)
+

8Mn

m
. (282)

Lastly, we know that n satisfies 2nz(0) ≥ υ this implies that we can set n =
⌈
log(υ/z0)
log(2)

⌉
in (282).

Lemma K.16. Let {z(t)}Tt=0 be a positive sequence defined by the following recursion{
z(t) ≥ z(0) +A

∑t−1
s=0(z

(s))2 − C

z(t) ≤ z(0) +A
∑t−1

s=0(z
(s))2 + C

, (283)

where A,C > 0 and z(0) > 0 is the initialization. Assume that C ≤ z(0)/2. Let υ > 0 such that z(0) ≤ υ. Then, the time t0
such that z(t) ≥ υ is upper bounded as:

t0 = 8

⌈
log(υ/z0)

log(2)

⌉
+

21

(z(0))A
.

Proof of Lemma K.16. Let n ∈ N∗. Let Tn be the time where z(t) ≥ 2n−1z(0). We want to upper bound this time. We start
with the case n = 1. We have:

z(T1) ≥ z(0) +A

T1−1∑
s=0

(z(s))2 − C (284)
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By assumption, we know that C ≤ z(0)/2. This implies that for all z(t) ≥ z(0)/2 for all t ≥ 0. Plugging this in (284) yields:

z(T1) ≥ z(0) +
A

4
T1(z

(0))2 − C (285)

From (285), we deduce that:

T1 ≤ 4
z(T1) − z(0) + C

A(z(0))2
. (286)

Now, we want to upper bound z(T1) − z(0). Using (283), we deduce that:{
z(T1) ≥ z(0) +A

∑T1−1
s=0 (z(s))2 − C

z(T1−1) ≤ z(0) +A
∑T1−2

s=0 (z(s))2 + C
. (287)

Combining the two equations in (287) yields

z(T1) − z(T1−1) ≤ A(z(T1−1))2 + 2C. (288)

Since T1 is the first time where z(T1) ≥ z(0), we have z(T1−1) ≤ z(0). Plugging this in (288) leads to:

z(T1) ≤ z(0) +A(z(0))2 + 2C. (289)

Finally, using (289) in (286) and C = o(z(0)) gives an upper bound on T1.

T1 ≤ 4 +
3C

A(z(0))2
≤ 4 +

3

A(z(0))
. (290)

Now, let’s find a bound for Tn. Starting from the recursion, we have:{
z(Tn) ≥ z(0) +A

∑Tn−1
s=0 (z(s))2 − C

z(Tn−1) ≤ z(0) +A
∑Tn−1−1

s=0 (z(s))2 + C
. (291)

We substract the two equations in (291), use z(s) ≥ 2n−2 for s ≥ Tn−1 and obtain:

z(Tn) − z(Tn−1) ≥ A

Tn−1∑
s=Tn−1

(z(s))2 − 2C ≥ 22(n−2)(z(0))2A(Tn − Tn−1)− 2C. (292)

On the other hand, from the recursion, we have the following inequalities:{
z(Tn) ≤ z(0) +A

∑Tn−1
s=0 (z(s))2 − C

z(Tn−1) ≥ z(0) +A
∑Tn−2

s=0 (z(s))2 − C
. (293)

We substract the two equations in (293), use z(Tn−1) ≤ 2n−1z(0) and upper bound z(Tn) as follows.

z(Tn) ≤ z(Tn−1) +A(z(Tn−1))2 + 2C ≤ 2n−1z(0) + 22(n−1)A(z(0))2 + 2C. (294)

Besides, we know that z(Tn−1) ≥ 2n−2z(0). Therefore, we upper bound z(Tn) − z(Tn−1) as

z(Tn) − z(Tn−1) ≤ 2n−2z(0) + 22(n−1)A(z(0))2 + 2C. (295)

Combining (292) and (295) yields:

Tn ≤ Tn−1 + 4 +
1

2(n−2)(z(0))A
+

4C

22(n−2)(z(0))2A
(296)

We now sum (296) for n = 2, . . . , n, use C = o(z(0)) and then (290) to obtain:

Tn ≤ T1 + 4n+
2

(z(0))A
+

16C

(z(0))2A
≤ T1 + 4n+

18

(z(0))A
≤ 4(n+ 1) +

21

(z(0))A
. (297)

Lastly, we know that n satisfies 2nz(0) ≥ υ this implies that we can set n =
⌈
log(υ/z0)
log(2)

⌉
in (297).
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K.2.2. BOUNDS FOR GD+M

Lemma K.17 (Tensor Power Method for momentum). Let γ ∈ (0, 1). Let {c(t)}t≥0 and {G(t)} be positive sequences
defined by the following recursions {

G(t+1) = γG(t) − α3(c(t))2,

c(t+1) = c(t) − ηG(t+1)
,

and respectively initialized by z(0) ≥ 0 and G(0) = 0. Let υ ∈ R such that z(0) ≤ υ. Then, the time t0 such that z(t) ≥ υ is:

t0 =
1

1− γ

⌈
log(υ)

log(1 + δ)

⌉
+

1 + δ

η(1− e−1)α3c(0)
,

where δ ∈ (0, 1).

Proof of Lemma K.17. Let δ ∈ (0, 1). We want to prove the following induction hypotheses:

1. After Tn = n
1−γ +

∑n−2
j=0

δ(δ+1)j

η(1−e−1)α3c(0)
∑j

τ=0 e−(j−τ)(1+δ)2τ
iterations, we have:

−G(Tn) ≥ (1− e−1)α3(c(0))2
n−1∑
τ=0

e−(n−1−τ)(1 + δ)2τ . (TPM-1)

2. After T ′
n = n

1−γ +
∑n−1

j=0
δ(δ+1)j

η(1−e−1)α3c(0)
∑j

τ=0 e−(j−τ)(1+δ)2τ
, we have:

c(T
′
n) ≥ (1 + δ)nc(0). (TPM-2)

Let’s first prove (TPM-1) and (TPM-2) for n = 1. First, by using the momentum update, we have:

−G(T1) = (1− γ)α3
T1−1∑
τ=0

γT1−1−τ (c(τ))2 ≥ α3(1− γT0)(c(0))2. (298)

Setting T1 = 1/(1 − γ) and using γ = 1 − ε, we have 1 − γ
1

1−γ = 1 − exp(log(1 − ε)/ε) = 1 − e−1. Plugging this in
(298) yields (TPM-1) for n = 1.

Regarding (TPM-2), we use the iterate update to have:

c(T
′
1) = c(T1) − η

T ′
1−1∑

τ=T1

G(τ)

≥ c(0) + ηα3(1− e−1)(c(0))2(T ′
1 − T1), (299)

where we used c(T1) ≥ c(0) and (298) to obtain (299). Since T ′
1 + 1 is the first time where c(t) ≥ (1 + δ)c(0), we further

simplify (299) to obtain:

T ′
1 = T1 +

δ

ηα3(1− e−1)c(0)
=

1

1− γ
+

δ

ηα3(1− e−1)c(0)
. (300)

We therefore obtained (TPM-2) for n = 1. Let’s now assume (TPM-1) and (TPM-2) for n. We now want to prove these
induction hypotheses for n+ 1. First, by using the momentum update, we have:

−G(Tn+1) = −γTn+1−T ′
nG(T ′

n) + (1− γ)α3

Tn+1−1∑
τ=T ′

n

γTn+1−1−τ (c(τ))2. (301)
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From (TPM-2) for n, we know that c(t) ≥ (1 + δ)nc(0) for t > T ′
n. Therefore, (301) becomes:

−G(Tn+1) = −γTn+1−T ′
nG(T ′

n) + α3(1− γTn+1−T ′
n)(1 + δ)2n(c(0))2. (302)

From (TPM-1), we know that −G(T ′
n) ≥ (1−e−1)α3(c(0))2

∑n−1
τ=0 e

−(n−1−τ)(1+δ)2τ for t ≥ Tn. Therefore, we simplify
(302) as:

−G(Tn+1) ≥ γTn+1−T ′
n(1− e−1)α3(c(0))2

n−1∑
τ=0

e−(n−1−τ)(1 + δ)2τ

+ α3(1− γTn+1−T ′
n)(1 + δ)2n(c(0))2.

(303)

When we set Tn+1 as in (TPM-1), we have Tn+1 − T ′
n = 1

1−γ . Moreover, since γ = 1− ε, we have γ
1

1−γ = e−1. Using
these two observations, (303) is thus equal to:

−G(Tn+1) ≥ (1− e−1)α3(c(0))2
n−1∑
τ=0

e−(n−τ)(1 + δ)2τ

+ α3(1− e−1)(1 + δ)2n(c(0))2

= (1− e−1)α3(c(0))2
n∑

τ=0

e−(n−τ)(1 + δ)2τ . (304)

We therefore proved (TPM-1) for n+ 1. Now, let’s prove (TPM-2). We use the iterates update and obtain:

c(T
′
n+1) = c(Tn+1) − η

T ′
n+1−1∑

τ=Tn+1

G(τ)

≥ (δ + 1)nc(0) + η(1− e−1)α3(c(0))2
n∑

τ=0

e−(n−τ)(1 + δ)2τ (Tn+1 − T ′
n+1), (305)

where we used c(Tn+1) ≥ (δ + 1)nc(0) and (304) in the last inequality. Since T ′
n+1 + 1 is the first time where c(t) ≥

(1 + δ)n+1c(0), we further simplify (305) to obtain:

T ′
n+1 = Tn+1 +

δ(δ + 1)n−1

η(1− e−1)α3(c(0))2
∑n

τ=0 e
−(n−τ)(1 + δ)2τ

=
n+ 1

1− γ
+

n−1∑
j=0

δ(δ + 1)j

η(1− e−1)α3c(0)
∑j

τ=0 e
−(j−τ)(1 + δ)2τ

+
δ(δ + 1)n

η(1− e−1)α3(c(0))2
∑n

τ=0 e
−(n−τ)(1 + δ)2τ

=
n+ 1

1− γ
+

n∑
j=0

δ(δ + 1)j

η(1− e−1)α3c(0)
∑j

τ=0 e
−(j−τ)(1 + δ)2τ

. (306)

We therefore proved (TPM-2) for n+ 1.

Let’s now obtain an upper bound on T ′
n. We have:

T ′
n ≤ n

1− γ
+

δ

η(1− e−1)α3c(0)

n−1∑
j=0

1

(1 + δ)j

≤ n

1− γ
+

1 + δ

η(1− e−1)α3c(0)
:= Tn. (307)

Finally, we choose n such that (1 + δ)n ≥ υ or equivalently, n =
⌈

log(υ)
log(1+δ)

⌉
. Plugging this choice in Tn yields the desired

bound.
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K.3. Optimization lemmas

Definition K.1 (Smooth function). Let f : Rn×d → R. f is β-smooth if ∥∇f(X) − ∇f(Y )∥2 ≤ β∥X − Y ∥2, for all
X,Y ∈ Rn×d. A consequence of the smoothness is the inequality:

f(X) ≤ f(Y ) + ⟨∇f(Y ),X − Y ⟩+ L

2
∥X − Y ∥22, for all X,Y ∈ Rn×d.

Lemma K.18 (Descent lemma for GD). Let f : Rn×d → R be a β-smooth function. Let W (t+1) ∈ Rn×d be an iterate of
GD with learning rate η ∈ (0, 1/L). Then, we have

f(W (t+1)) ≤ f(W (t))− η

2
∥∇f(W (t))∥22.

Proof of Lemma K.18. By applying the definition of smooth functions and the GD update, we have:

f(W (t+1)) ≤ f(W (t)) + ⟨∇f(W (t)),W (t+1) −W (t)⟩+ L

2
∥W (t+1) −W (t)∥22

= f(W (t))− η∥∇f(W (t))∥22 +
Lη2

2
∥∇f(W (t))∥22. (308)

Setting η < 1/L in (308) leads to the expected result.

Lemma K.19 (Sublinear convergence). Let T ≥ 0. Let (xt)t>T be a non-negative sequence that satisfies the recursion:
x(t+1) ≤ x(t) −A(x(t))2, for A > 0. Then, it is bounded at a time t > T as

x(t) ≤ 1

A(t− T )
. (309)

Proof of Lemma K.19. Let τ ∈ (T , t]. By multiplying each side of the recursion by (x(τ)x(τ+1))−1, we get:

Ax(τ)

x(τ+1)
≤ 1

x(τ+1)
− 1

x(τ)
. (310)

Besides, the update rule indicates that x(τ) is non-increasing i.e. x(τ+1) ≤ x(τ). Using this fact in (310) yields:

A ≤ 1

x(τ+1)
− 1

x(τ)
. (311)

Now, we sum up (311) for τ = T , . . . , t− 1 and obtain:

A(t− T ) ≤ 1

x(t)
− 1

x(T )
≤ 1

x(t)
. (312)

Inverting (312) yields the expected result.

K.4. Other useful lemmas

K.4.1. LOGARITHMIC INEQUALITIES

Lemma K.20 (Connection between derivative and loss). Let a1, . . . , am ∈ R such that −δ ≤ ai ≤ A where A, δ > 0.
Assume that

∑m
i=1 ai ∈ (C−, C+), where C+, C− > 0.Then, the following inequality holds:

0.05e−6mA2δ

C+

(
1 + m2δ2

C2
−

) log
(
1 + e−

∑m
i=1 a3

i

)
≤

∑m
i=1 a

2
i

1 + exp(
∑m

i=1 a
3
i )

≤ 20me6mA2δ

C−
log
(
1 + e−

∑m
i=1 a3

i

)
.
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Proof of Lemma K.20. We apply Lemma K.21 to the sequence ai + δ and obtain:

0.1

C+
log

(
1 + exp

(
−

m∑
i=1

(ai + δ)3

))
≤

∑m
i=1(ai + δ)2

1 + exp(
∑m

i=1(ai + δ)3)

≤ 10m

C−
log

(
1 + exp

(
−

m∑
i=1

(ai + δ)3

))
.

(313)

We apply Lemma K.24 to further simplify (313).

0.1e−
∑m

i=1(3a
2
i δ+3aiδ

2+δ3)

C+
log

(
1 + exp

(
−

m∑
i=1

a3i

))

≤
∑m

i=1(ai + δ)2

1 + exp(
∑m

i=1(ai + δ)3)

≤ 10m(1 + e−
∑m

i=1(3a
2
i δ+3aiδ

2+δ3))

C−
log

(
1 + exp

(
−

m∑
i=1

a3i

))
.

(314)

We remark that the term inside the exponential in (314) can be bounded as:

0 ≤ 2

m∑
i=1

a2i δ ≤
m∑
i=1

(3a2i δ − 2δ3) ≤
m∑
i=1

(3a2i δ + 3aiδ
2 + δ3) ≤ 6

m∑
i=1

a2i δ ≤ 6A2mδ. (315)

Plugging (315) in (314) yields:
0.1e−6mA2δ

C+
log

(
1 + exp

(
−

m∑
i=1

a3i

))

≤
∑m

i=1(ai + δ)2

1 + exp(
∑m

i=1(ai + δ)3)

≤ 20m

C−
log

(
1 + exp

(
−

m∑
i=1

a3i

))
.

(316)

Lastly, we need to bound the term in the middle in (316). On one hand, we have:

m∑
i=1

(ai + δ)2 = 2

m∑
i=1

a2i + 2mδ2 ≤ 2

(
1 +

m2δ2

(
∑m

i=1 ai)
2

)
m∑
i=1

a2i ≤ 2

(
1 +

m2δ2

C2
−

) m∑
i=1

a2i . (317)

Besides, since x 7→ x3 is non-decreasing, we have the following lower bound:

m∑
i=1

(ai + δ)3 ≥
m∑
i=1

a3i . (318)

Combining (317) and (318) yields:∑m
i=1(ai + δ)2

1 + exp(
∑m

i=1(ai + δ)3)
≤ 2

(
1 +

m2δ2

C2
−

) ∑m
i=1 a

2
i

1 + exp(
∑m

i=1 a
3
i )
. (319)

On the other hand, we have:
m∑
i=1

(ai + δ)2 ≥
m∑
i=1

a2i + 2δ

m∑
i=1

ai ≥
m∑
i=1

a2i + 2δC− ≥
m∑
i=1

a2i . (320)

Besides, using (315), we have:

m∑
i=1

(ai + δ)3 ≤
m∑
i=1

a3i + 6A2mδ. (321)
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Thus, using (320) and (321) yields: ∑m
i=1(ai + δ)2

1 + exp(
∑m

i=1(ai + δ)3)
≥

e−6mA2δ
∑m

i=1 a
2
i

1 + exp(
∑m

i=1 a
3
i )
. (322)

Finally, we obtain the desired result by combining (316), (319) and (322).

Lemma K.21 (Connection between derivative and loss for positive sequences). Let a1, . . . , am ∈ R such that ai ≥ 0.
Assume that

∑m
i=1 ai ∈ (C−, C+), where C+, C− > 0. Then, the following inequality holds:

0.1

C+
log

(
1 + exp

(
−

m∑
i=1

a3i

))
≤

∑m
i=1 a

2
i

1 + exp(
∑m

i=1 a
3
i )

≤ 10m

C−
log

(
1 + exp

(
−

m∑
i=1

a3i

))
.

Proof of Lemma K.21. We first remark that:

∑m
i=1 a

2
i

1 + exp(
∑m

i=1 a
3
i )

=

(∑m
i=1 a

2
i

) (∑m
j=1 aj

)
(1 + exp(

∑m
i=1 a

3
i ))
(∑m

j=1 aj

)
=

∑m
i=1 a

3
i +

∑m
i=1

∑
j ̸=i a

2
i aj

(1 + exp(
∑m

i=1 a
3
i ))
(∑m

j=1 aj

) . (323)

Upper bound. We upper bound (323) by successively applying
∑n

i=1 ai > C− and ai > 0 for all i:∑m
i=1 a

2
i

1 + exp(
∑m

i=1 a
3
i )

≤
∑m

i=1 a
3
i +

∑m
i=1

∑
j ̸=i a

2
i aj

C− (1 + exp(
∑m

i=1 a
3
i ))

≤
∑m

i=1 a
3
i +

∑m
i=1

∑m
j=1 a

2
i aj

C− (1 + exp(
∑m

i=1 a
3
i ))

(324)

where we used ai > 0 for all i in (323). By applying the rearrangement inequality to (324), we obtain:∑m
i=1 a

2
i

1 + exp(
∑m

i=1 a
3
i )

≤ m

C−

∑m
i=1 a

3
i

1 + exp(
∑m

i=1 a
3
i )
. (325)

We obtain the final bound by applying Lemma K.22 to (325).

Lower bound. We lower bound (323) by using
∑n

i=1 ai ≤ C+ and
∑m

i=1

∑
j ̸=i a

2
i aj :∑m

i=1 a
2
i

1 + exp(
∑m

i=1 a
3
i )

≥
∑m

i=1 a
3
i +

∑m
i=1

∑
j ̸=i a

2
i aj

C+ (1 + exp(
∑m

i=1 a
3
i ))

≥
∑m

i=1 a
3
i

C+ (1 + exp(
∑m

i=1 a
3
i ))

. (326)

We obtain the final bound by applying Lemma K.22 to (326).

Lemma K.22 (Connection between derivative and loss). Let x > 0. Then, we have:

0.1 log(1 + exp(−x)) ≤ S(x) ≤ 10 log(1 + exp(−x)) (327)

Lemma K.23. Let (x(t))t≥0 be a non-negative sequence. Let A > 0. Assume that
∑T

τ=0 x
(τ) ≤ A. Then, there exists a

time T ∈ [T ] such that x(T ) ≤ A/T.
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Proof of Lemma K.23. Assume by contradiction that for all τ ∈ [T ], x(τ) > A/T . By summing up xτ , we obtain∑T
τ=0 x

(τ) > A. This contradicts the assumption that
∑T

τ=0 x
(τ) ≤ A.

Lemma K.24 (Log inequalities). Let x, y > 0. Then, the following inequalities holds:

1. Assume that y ≤ x. We have:

log(1 + xy) ≤ (1 + y) log(1 + x).

2. Assume y < 1. We have:

y log(1 + x) ≤ log(1 + xy).

Proof of Lemma K.24. We first remark that:

log(1 + xy)− log(1 + x) = log

(
1 + xy

1 + x

)
= log

(
1 +

x(y − 1)

1 + x

)
. (328)

From (328), we deduce an upper bound as:

log(1 + xy)− log(1 + x) ≤ log

(
1 +

x(y + 1)

1 + x

)
. (329)

Successively using the inequalities log(1 + x) ≤ x and x
1+x ≤ log(1 + x) for x > −1 in (329) yields:

log(1 + xy)− log(1 + x) ≤ (1 + y)
x

1 + x
≤ (1 + y) log(1 + x).

This proves item 1 of the Lemma. Let’s now prove item 2. Using az ≤ 1+ (a− 1)z for z ∈ (0, 1) and a ≥ 1, we know that:

(1 + x)y ≤ 1 + xy. (330)

Since log is non-decreasing, applying log to (330) proves item 2.

In Appendix J, we need to bound the sum
∑t

s=1
γt−s

s for γ < 1. We derive such bound here.

Lemma K.25. Let t ≥ 1. Then, we have:

t∑
s=1

γt−s

s
≤ γt−1 + γt/2 log

(
t

2

)
+

2

t

1

1− γ
.

Proof of Lemma K.25. Let t = 1. Then, we have:

t∑
s=1

γt−s

s
= 1 ≤ γ0 + γ1/2 log

(
1

2

)
+

2

1− γ
, (331)
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given our choice of γ. Let t ≥ 2. We split the sum in two parts as as follows.

t∑
s=1

γt−s

s
− γt−1 =

t∑
s=2

γt−s

s

=

⌊t/2⌋∑
s=2

γt−s

s
+

t∑
s=⌊t/2⌋+1

γt−s

s

≤ γt−⌊t/2⌋
⌊t/2⌋∑
s=2

1

s
+

1

⌊t/2⌋+ 1

t∑
s=⌊t/2⌋+1

γt−s

≤ γt/2

⌊t/2⌋∑
s=2

1

s
+

2

t

t−⌊t/2⌋−1∑
u=0

γu (332)

≤ γt/2 log

(
t

2

)
+

2

t

1

1− γ
, (333)

where we used the harmonic series inequality
∑T

s=2 1/s ≤ log(T ),
∑T

u=0 γ
u ≤ 1/(1− γ) and ⌊t/2⌋ ≤ t/2 in (333).


