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Abstract
We present Translatotron 2, a neural direct speech-
to-speech translation model that can be trained
end-to-end. Translatotron 2 consists of a speech
encoder, a linguistic decoder, an acoustic syn-
thesizer, and a single attention module that con-
nects them together. Experimental results on three
datasets consistently show that Translatotron 2
outperforms the original Translatotron by a large
margin on both translation quality (up to +15.5
BLEU) and speech generation quality, and ap-
proaches the same of cascade systems. In addi-
tion, we propose a simple method for preserving
speakers’ voices from the source speech to the
translation speech in a different language. Unlike
existing approaches, the proposed method is able
to preserve each speaker’s voice on speaker turns
without requiring for speaker segmentation. Fur-
thermore, compared to existing approaches, it bet-
ter preserves speaker’s privacy and mitigates po-
tential misuse of voice cloning for creating spoof-
ing audio artifacts.

1. Introduction
Speech-to-speech translation (S2ST) is highly beneficial for
breaking down communication barriers between people not
sharing a common language. Conventional automatic S2ST
systems are composed of a cascade of three components:
automatic speech recognition (ASR), text-to-text machine
translation (MT), and text-to-speech (TTS) synthesis (Lavie
et al., 1997; Wahlster, 2000; Nakamura et al., 2006). In
the past few years, direct speech-to-text translation (ST) is
rapidly emerging, and has outperformed the cascade of ASR
and MT (Weiss et al., 2017; Jia et al., 2019a; Di Gangi et al.,
2019; McCarthy et al., 2020; Ansari et al., 2020; Wang
et al., 2021b; Anastasopoulos et al., 2021), which makes the
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cascade of ST and TTS as S2ST feasible (Jia et al., 2019b).

Recently, works on S2ST without relying on intermediate
text representation are emerging, such as end-to-end direct
S2ST (Jia et al., 2019b; Kano et al., 2021) and cascade S2ST
based on discrete speech representation (Tjandra et al., 2019;
Zhang et al., 2021; Lee et al., 2022; 2021a; Ma et al., 2021).
Compared to text-centric cascaded systems, although such
approaches require parallel S2ST data, which is scarce, they
have the potential advantages of: 1) Preserving paralinguis-
tic and non-linguistic information during translation, such
as speaker’s voice (Jia et al., 2019b), emotion and prosody;
2) Supporting languages without written form, or being
able to be trained without transcription of speech (Tjandra
et al., 2019; Zhang et al., 2021; Lee et al., 2022; 2021a);
3) Reduced computational requirements and lower inference
latency (Lee et al., 2022); 4) Avoiding error compounding
across sub-systems (Jia et al., 2022); 5) Easier on handling
contents that do not need to be translated, such as names
and proper nouns (Jia et al., 2019b).

Among these works, Translatotron (Jia et al., 2019b) is the
first model that is able to directly translate speech in one
language to speech in another language. It obtained reason-
able translation quality and high naturalness in the predicted
translation speech, and is able to preserve speakers’ voices
during the speech translation. However, the translation qual-
ity from Translatotron still underperforms cascade baselines
by a large margin, and the translation speech it produces suf-
fers from over-generation issues, such as babbling and long
pause. Such weaknesses make this model not yet practical
for production. Nevertheless, it remains the state-of-the-art
of end-to-end direct S2ST.

In this paper, we first tackle the performance gap between
end-to-end direct S2ST and cascade S2ST. We propose
Translatotron 2, a novel direct S2ST model that is able
to be trained end-to-end. We conduct experiments on three
S2ST datasets, including multilingual S2ST. The results
consistently suggest that Translatotron 2 significantly out-
performs Translatotron in terms of both translation quality
(up to +15.5 BLEU) and speech generation quality, and
approaches the same of cascade S2ST. When a simple data
augmentation ConcatAug is used, the translation quality gap
on the Fisher Spanish-English corpus (Post et al., 2013) is



reduced from 16.4 to 0.4 BLEU. These results are the first
time that end-to-end direct S2ST approaches cascade S2ST.

In addition, we propose a simple method for preserv-
ing speakers’ voices during S2ST without relying on any
speaker representation (ID or embedding). The proposed
method enables Translatotron 2 to preserve each speaker’s
voice on speaker turns without requiring for speaker separa-
tion, which is the first of its kind. Furthermore, compared
to existing approaches of voice preservation, the proposed
method better preserves speaker’s privacy (Pathak & Raj,
2012) and mitigates potential misuse of voice cloning for
creating spoofing audio artifacts.

Audio samples from Translatotron 2 are available online.1

2. Related works
S2ST Until very recently, automatic S2ST systems are
typically composed of a cascade of ASR, MT, and TTS
components (Lavie et al., 1997; Wahlster, 2000; Nakamura
et al., 2006; ITU, 2016). Translatotron (Jia et al., 2019b) is
the first direct S2ST model, which is a sequence-to-sequence
model trained end-to-end in a multi-objective task. It has
shown reasonable translation quality and speech naturalness,
but still underperformed a baseline of ST→ TTS cascade by
a large margin. It also demonstrated the capacity of preserv-
ing speakers’ voices during the translation, by leveraging a
speaker encoder separately trained in a speaker verification
task (Wan et al., 2018; Jia et al., 2018).

A few recent works proposed cascade S2ST systems using
learned discrete speech representation as the intermediate
representation instead of text or phoneme. Tjandra et al.
(2019) introduced such an S2ST system that first translated
the source speech into a discrete representation of the target
speech which was predicted from a separately trained VQ-
VAE (Oord et al., 2017), then constructed the target speech
spectrogram from the discrete representation using the VQ-
VAE decoder. Zhang et al. (2021) additionally trained the
VQ-VAE jointly with a supervised phoneme recognition ob-
jective in different languages. Lee et al. (2022; 2021a) used
a separately trained vocoder to directly predict waveform
from the discrete representation without relying on spec-
trogram; for the best performance, this vocoder included
a duration predictor, akin to a generative TTS model. All
these works require multiple components being trained in
multiple steps, but are not able to be trained end-to-end.
Another potential limitation of such an approach is that it
may not be effective in preserving paralinguistic and non-
linguistic information. Oppositely, it can be desired that
such variation be removed in the discrete representation
(Lee et al., 2021a).

1https://google-research.github.io/
lingvo-lab/translatotron2/

Kano et al. (2021) introduced an end-to-end S2ST model
with a cascade of three autoregressive decoders, and used
pre-trained MT and TTS models as teacher models to fa-
cilitate the training of the end-to-end model. It requires
pre-trained ASR, MT, and TTS models, and the end-to-end
model itself has to be trained in multiple steps.

While most of these works conducted experiments using
synthetic datasets with translation speech in a clean single
speaker’s voice, Jia et al. (2019b); Lee et al. (2021a) con-
ducted experiments using multi-speaker human recordings.

Although these recent works generated speech translation in
novel ways without relying on TTS subsystems, only a few
of them (Jia et al., 2019b; Lee et al., 2022) have evaluated
the perceptual quality (e.g. naturalness) of the produced
speech translation, which is critical to S2ST (Wagner et al.,
2019; Salesky et al., 2021), with the rest focused only on
the translation quality.

TTS Translatotron uses a decoder similar to the Tacotron 2
TTS model (Shen et al., 2018), which is an attention-based
autoregressive decoder. Due to the flexibility of the attention
mechanism, they both suffer from robustness issues such as
over-generation. Recent TTS models such as FastSpeech
(Ren et al., 2019; 2021) and Non-Attentive Tacotron (NAT)
(Shen et al., 2020) demonstrated that replacing the attention
module with a duration-based upsampler yields more robust
synthesized speech, as quantitatively evaluated at a large
scale in Shen et al. (2020). The synthesizer component in
this work resembles these works.

Voice conversion and anti-spoofing The performance
of voice conversion has progressed rapidly in the recent
years, and is reaching a quality that is hard for automatic
speaker verification (ASV) systems to detect (Yi et al., 2020).
ASVspoof 2019 (Todisco et al., 2019; Wang et al., 2020)
found that it was challenging to detect spoof audios gener-
ated from a zero-shot voice cloning TTS model (Jia et al.,
2018), which was followed by the original Translatotron
for preserving speakers’ voices during S2ST. Such progress
poses concerns on related techniques being misused for
creating spoofing artifacts. We propose a new voice preser-
vation method for S2ST with the motivation of avoiding
such potential misuse.

3. Translatotron 2
We designed the architecture of Translatotron 2 to address
three performance bottlenecks existing in the original Trans-
latotron: 1) The utilization of the auxiliary textual super-
vision during training is suboptimal, namely, the attention
alignment learned by the auxiliary ST task does not directly
contribute to the main S2ST task; 2) The challenge posed
by modeling the translation alignment between two very
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Figure 1: A Translatotron 2 model that translates Spanish speech into English speech.

long spectrogram sequences using the attention mechanism;
3) Attention-based speech generation is known to suffer
from robustness issues such as over-generation and under-
generation (Shen et al., 2020; Ren et al., 2019; He et al.,
2019; Zheng et al., 2019; Battenberg et al., 2020).

We addressed these bottlenecks by designing a novel S2ST
model architecture composed of a speech encoder, a linguis-
tic decoder, an acoustic synthesizer, and a single attention
module connecting them together (Figure 1a). The model is
jointly trained with a speech-to-speech translation objective
and a speech-to-phoneme translation objective.

The following subsections describe each component of
Translatotron 2. Note that as shown in the ablation studies in
Sec. 5.5.1, while the specific architectural choices of these
components help the performance of Translatotron 2, the pri-
mary improvement comes from the high-level architecture
rather than the choice of each individual component.

3.1. Speech encoder

The encoder of Translatotron 2 takes the mel-spectrogram
of the source speech as the input, and produces a hidden
representation which encodes both linguistic and acoustic
information from the source speech. We use Conformer
(Gulati et al., 2020) as the architecture of the encoder. It first
subsamples the input mel-spectrogram with a convolutional
layer, and then processes it with a stack of Conformer blocks.
Each Conformer block is composed of a feed-forward layer,
a self-attention layer, a convolution layer, and a second feed-
forward layer. SpecAugment (Park et al., 2019) is applied
at the training time as data augmentation.

3.2. Linguistic decoder

The autoregressive decoder is responsible for producing lin-
guistic information in the translation speech. It takes the
encoder output through the attention module, and predicts a
phoneme sequence corresponding to the translation speech.
We use an LSTM stack (Hochreiter & Schmidhuber, 1997)
as the decoder, assisted with regularization including Zo-
neout (Krueger et al., 2017) and label smoothing (Szegedy
et al., 2016). The combination of the encoder, the decoder,
and the attention module is similar to a typical ST model,
except that it predicts phonemes instead of subword tokens.

3.3. Acoustic synthesizer

The synthesizer is responsible for acoustic generation of the
translation speech. It takes the intermediate output from the
decoder (before a final projection and softmax for phoneme
prediction), as well as the context output from the attention
as its input, and generates a mel-spectrogram corresponding
to the translation speech. It is similar to the decoders in
typical neural TTS models. The predicted mel-spectrogram
can be converted to waveform using an estimation algorithm
such as Griffin & Lim (1984) or a neural vocoder such as
WaveRNN (Kalchbrenner et al., 2018).

We use the duration-based autoregressive synthesizer from
the NAT (Shen et al., 2020) TTS model (Figure 1b). It first
predicts durations for each elements in the input sequence,
then temporally upsamples the input sequence based on
the predicted durations. After that, an LSTM stack is used
for generating the target spectrogram without altering the
sequence length. A final residual convolutional block further
refines the generated spectrogram. Unlike in NAT, we do not
supervise the duration prediction on per-phoneme duration



labels, to avoid additional requirement on the training data.
Instead, an L2 loss on the total predicted duration of the
entire utterance is used (similar to the “naı̈ve approach” of
unsupervised duration modeling in Shen et al. (2020)).

3.4. A single attention

It is critical that Translatotron 2 utilizes a single attention
module for both the linguistic decoder and the acoustic syn-
thesizer. This attention models both linguistic and acoustic
alignments between the source and the target speeches. A
multi-head attention (Vaswani et al., 2017) is used.

The queries to this attention are from the linguistic decoder.
As a result, unlike in the original Translatotron, this attention
does not directly model the translation alignment between
two very long spectrogram sequences. Instead, it models
the alignment between a source spectrogram sequence and
a shorter target phoneme sequence, which is significantly
easier to learn.

In the meantime, the attention provides acoustic information
from the source speech to the synthesizer, summarized at
per-phoneme level. Such summarized acoustic information
is not only usually sufficient for speech generation but also
eases the duration prediction per-phoneme because it is of
the same granularity. Because a single attention is used,
the linguistic and acoustic information seen by the synthe-
sizer is synchronized temporally. Such synchronization
enables Translatotron 2 to preserve paralinguistic and non-
linguistic information at fine granularity, such as preserving
each speaker’s voice on speaker turns (Sec. 4.2).

Although the synthesizer takes attention output as part of
its input, the attention is not driven (i.e. queried) by the
synthesizer. As a result, while it benefits from the attention
on obtaining aligned acoustic information from the source
speech, it does not suffer from robustness issues as in typical
attention-based speech synthesis models.

4. Voice preserving
The original Translatotron (Jia et al., 2019b) demonstrated
the capacity of preserving source speakers’ voices in the
translation speech, by conditioning its synthesizer on a
speaker embedding generated from a separately trained
speaker encoder. In fact, it is capable of generating the
translation speech in a different speaker’s voice, as long as
a clip of the target speaker’s recording is used as the ref-
erence audio to the speaker encoder, or the embedding of
the target speaker is directly available. While this is impres-
sively powerful, it can potentially be misused for generating
spoofing audio with arbitrary content, posing a concern for
production deployment.

To mitigate such risks, we propose a new approach for
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Figure 2: Sample mel-spectrograms on input with speaker turns.
The input speech includes an utterance from a male speaker fol-
lowed by another utterance from a female speaker. Translatotron 2
preserves the voices of each speaker in the translation speech.

preserving speaker’s voice during S2ST, so that the trained
models are restricted to preserving the source speaker’s
voice, but not able to generate speech in a different speaker’s
voice. In addition, this approach enables S2ST models to
preserve each speaker’s voice on input speech with speaker
turns, without requiring for speaker segmentation.

4.1. Training-time voice transferring

In our approach, the key to restrict S2ST models to voice
preservation but not arbitrary voice cloning (from a different
speaker) is to move the powerful voice transferring to only
happen at the training time (or the training data preparation
time) but not the inference time. In contrast, it happens at
both the training time and the inference time in the original
Translatotron.

To preserve speakers’ voices across translation, we train
S2ST models on parallel utterances with the same speaker’s
voice on both sides. Such a dataset with human recordings
on both sides is extremely difficult to collect, because it
requires a large number of fluent bilingual speakers. Instead,
we use a TTS model capable of cross-lingual voice cloning
to synthesize such training targets.

We modified the PnG NAT (Jia et al., 2021; Shen et al., 2020)
TTS model by incorporating a separately trained speaker
encoder (Wan et al., 2018) in the same way as in Jia et al.
(2018), and trained it on the LibriTTS corpus (Zen et al.,
2019). The resulting TTS model is capable of zero-shot
voice transferring, but synthesizes in a better quality and



Table 1: Datasets for experiments with translation speech in a single-speaker’s voice.

Conversational
(Jia et al., 2019a)

Fisher Es-En
(Post et al., 2013)

CoVoST 2
(Wang et al., 2021a)

Languages es→en es→en es, fr, de, ca→ en
Domain Read, short-form Telephone conversation Read, short-form
Source sample rate 16-48 kHz 8 kHz 48 kHz
Utterance pairs 979k 120k 321k
Source hours 1,400 127 476
Target hours 619 96 296
Target synthesized by Tacotron 2 + Griffin-Lim Parallel WaveNet PnG NAT + WaveRNN

more robust than Jia et al. (2018).2 We used this model to
synthesize translation speech in the source speaker’s voice
as the training targets in our experiments. Other TTS models
capable of cross-lingual voice modeling, such as Zhang et al.
(2019); Chen et al. (2019); Xin et al. (2021), could also be
utilized.

4.2. Speaker turns

Because the single attention module provides linguistic and
acoustic information temporally synchronized (Sec. 3.4),
Translatotron 2 is theoretically capable of voice preservation
in complicated scenarios such as speaker turns. However,
proper training data with speaker turns is required to demon-
strate such capacity, which is difficult to obtain. We propose
a simple data augmentation to enable such training.

ConcatAug To enable direct S2ST models to preserve
each speaker’s voice for input with speaker turns, we aug-
mented the training data by randomly sampling pairs of
training examples and concatenating the source speech, the
target speech, and the target phoneme sequences to con-
struct new training examples. The resulting new examples
contain two speakers’ voices in both the source and the tar-
get speech, which enables the model to learn on examples
with speaker turns. See Figure 2 for an example of such
concatenation and the prediction from Translatotron 2 on it.

Such augmentation does not only enable the model to learn
voice retention on speaker turns, but also increases the diver-
sity of the speech content as well as the complexity of the
acoustic conditions in the training examples, which may fur-
ther improve the translation quality of the model, especially
on small datasets (Sec. 5.1). Narayanan et al. (2019) uses a
similar augmentation but in a more complicated fashion, for
improving ASR performance on multi-speaker inputs.

5. Experiments
We conducted experiments on three datasets, including
two Spanish→English datasets and a multilingual→English

2A detailed description of this zero-shot voice transferring TTS
model is available in our follow-up work (Jia et al., 2022).

dataset. All datasets use TTS synthesized target speech in
24 kHz sample rate. The phonemes used at training time
were converted from the transcripts using a proprietary G2P
system. See Table 1 for the details of each dataset. We evalu-
ated the translation quality, naturalness and robustness of the
produced translation speech, as well as speaker similarity
for voice preservation. All models were implemented using
the Lingvo framework (Shen et al., 2019). A comprehensive
table of hyper-parameters is available in Appendix A.

5.1. Translation quality

To evaluate the translation quality, we used the same two
datasets as in Jia et al. (2019b), both of which have transla-
tion speech in a single female speaker’s voice. Following
Jia et al. (2019b), the translation quality is measured by
BLEU on ASR transcription from the translation speech (in
lowercase, excluding punctuation marks except for apos-
trophes), compared to reference translation text. Because
ASR makes errors, such BLEU can be thought of as a lower
bound of the translation quality. We used an ASR model
from Park et al. (2020), trained on LibriSpeech (Panayotov
et al., 2015) and LibriLight (Kahn et al., 2020) corpora. For
a fair comparison, we retrained the baseline Translatotron
models and evaluated them using the same ASR model.
The same ST→TTS cascade S2ST baselines from Jia et al.
(2019b) were used and re-evaluated, which were composed
of strong ST models and a Tacotron 2 TTS model. The
predicted mel-spectrogram is converted to waveform using
the Griffin-Lim algorithm for all models.

As shown in Table 2, the translation quality from Transla-
totron 2 outperformed the original Translatotron by +15.5
BLEU on Fisher Es-En and +5.2 BLEU on Conversational.
Applying ConcatAug further improved the performance on
the smaller Fisher Es-En dataset by +0.5 BLEU. These im-
provements narrowed down the performance gap between
end-to-end direct S2ST and cascade S2ST from 16.4 / 8.4
down to 0.4 / 3.7 BLEU on the two datasets respectively.

5.2. Speech naturalness

The naturalness of the predicted translation speech is evalu-
ated by subjective listening test, reporting 5-scale mean opin-



Table 2: Performance of S2ST in a single speaker’s voice. BLEU were computed with 1 reference for the Conversational test set, and with
4 references for the Fisher test set.

Conversational Fisher Es-En

BLEU MOS UDR (%) BLEU MOS UDR (%)

End-to-end direct S2ST:
Translatotron 2 55.6 4.21 ± 0.06 0.16 42.4 3.98 ± 0.08 0.07

+ ConcatAug 55.1 4.19 ± 0.06 0.13 42.9 3.79 ± 0.09 0.14
Translatotron 50.4 4.15 ± 0.07 0.69 26.9 3.70 ± 0.08 0.48

Cascade (ST→ TTS) 58.8 4.31 ± 0.06 0.21 43.3 4.04 ± 0.08 0.13
Reference (synthetic) 81.9 3.37 ± 0.09 0.43 88.6 3.95 ± 0.07 0.07

Discrete representation-based cascade S2ST:
Zhang et al. (2021) (trained w/o text) - - - 9.4 - -
Lee et al. (2022) (trained w/ text) - - - 39.9 3.41 ± 0.14 -

ion scores (MOS) with 95% confidence interval on 1,000
randomly sampled predictions. A WaveRNN-based neu-
ral vocoder was used for converting the mel-spectrograms
predicted from S2ST models to waveforms.

As shown in Table 2, the naturalness of the translation
speech predicted from Translatotron 2 is significantly better
than from the original Translatotron, and is on-par with or
very close to the cascade systems which used one of the
state-of-the-art TTS models, Tacotron 2, for synthesizing
translation speech from text.

Consistent with Jia et al. (2019b), despite that the training
targets in the Conversational dataset is synthesized with a
lower quality Griffin-Lim vocoder, the trained S2ST model
is able to produce translation speech in significantly higher
naturalness when a higher quality neural vocoder is used at
inference time.

5.3. Speech robustness

We specifically evaluated the robustness issue of over-
generation in the predicted translation speech, such as bab-
bling or long pause, measured by unaligned duration ratio
(UDR) (Shen et al., 2020) with a 1-second threshold.3 The
ASR transcription from the translation speech is used for
alignment, using a confidence islands-based forced align-
ment model (Chiu et al., 2018).

As can be seen from Table 2, the UDR from Translatotron 2
is about 7 and 4 times lower than from Translatotron on the
Fisher Es-En and Conversational datasets, respectively. It is
even about 3 times lower than the training targets from the
Conversational set, while is about the same as the training
targets from Fisher Es-En. This can be explained by the
fact that the training targets in the Conversational set were
synthesized by the Tacotron 2 TTS model, which by itself

3Under-generation (i.e. WDR from Shen et al. (2020)) does
not apply because of the nature of translation. Related errors are
reflected in the BLEU evaluation.

Table 3: S2ST performance with voice preservation on Conver-
sational dataset. Speaker similarity MOS is evaluated between
Spanish source speech and English translation speech. (Numbers
not directly comparable to Table 2 because of dataset differences.)

BLEU Naturalness Similarity

Proposed:
Translatotron 2 57.3 3.24 ± 0.08 2.33 ± 0.08

+ ConcatAug 56.8 2.94 ± 0.08 2.12 ± 0.07
Translatotron 48.5 2.55 ± 0.09 2.30 ± 0.07

+ ConcatAug 51.3 2.76 ± 0.09 2.19 ± 0.07

Reference (synthetic) 81.3 3.40 ± 0.08 2.55 ± 0.07

Jia et al. (2019b):
Translatotron 36.2 3.15± 0.08 1.85± 0.06
Reference (human) 59.9 4.10± 0.06 -

suffered from over-generation, while the same in Fisher
Es-En were synthesized by a more robust Parallel WaveNet
(Oord et al., 2018) TTS model (see Table 1). The results
suggest that Translatotron 2 drastically improves robustness
than Translatotron, and is also robust to a small ratio of
disfluency in the training targets.

5.4. Voice preservation

To evaluate the ability of preserving speakers’ voices while
translating their speeches from one language to another, we
augmented the Conversational dataset by synthesizing target
speech using a voice-transferring TTS model as described
in Sec. 4.1. Examples with source speech shorter than 1
second were discarded for the stability of voice transferring.
The result dataset contains parallel utterances with similar
voices on both sides. S2ST models were trained on this
dataset without any explicit conditioning on speaker em-
beddings or IDs (i.e. no speaker encoder for the original
Translatotron). Following Jia et al. (2019b), we reduced the
pre-net dimension of the synthesizer to 16 to encourage it
to infer voice information from the encoder output instead
of from the teacher-forcing inputs.



Table 4: Voice preservation performance on speaker turns. Speaker similarity MOS between the leading/trailing 1.6-second segment from
the English translation speech and the entire 1st/2nd source speaker’s Spanish speech is reported. (↑ / ↓: higher/lower values are better.)

1st source speaker 2nd source speaker

Leading seg. ↑ Trailing seg. ↓ Leading seg. ↓ Trailing seg. ↑
Translatotron 2 2.22 ± 0.07 2.15 ± 0.07 2.04 ± 0.07 2.00 ± 0.07

+ ConcatAug 2.44 ± 0.07 1.82 ± 0.07 1.76 ± 0.07 2.51 ± 0.08
Translatotron 1.87 ± 0.06 1.90 ± 0.07 2.06 ± 0.07 2.05 ± 0.07

+ ConcatAug 2.18 ± 0.07 1.71 ± 0.06 1.93 ± 0.07 2.35 ± 0.07

Reference (synthetic) 2.58 ± 0.08 1.62 ± 0.06 1.83 ± 0.07 2.44 ± 0.07

5-point subjective MOS on both naturalness and speaker
similarity was evaluated with 1,000 random samples or pairs
of samples from the test set, reported with 95% confidence
interval. As Table 3 shows, when the proposed approach
for voice preservation was used, both Translatotron 2 and
Translatotron obtained about the same speaker similarity
MOS as the original Translatotron but significantly better
translation quality. Translatotron 2 further outperformed
Translatotron in terms of translation quality and speech nat-
uralness, which is consistent with the experimental results
for translating in a single speaker’s voice (Sec. 5.1, 5.2). It is
worth to note that the speaker similarity from S2ST models
is capped by the same of the training targets, which by itself
is limited. This can be partially due to the performance
of the voice-transferring TTS model used for synthesizing
the training targets, and partially due to the fact that cross-
lingual speaker similarity evaluation is more challenging to
raters (some rating comments are purely based on language
difference), as also observed in Zhang et al. (2019). Obtain-
ing better quality training targets, such as human recordings
instead of synthesized speech, may further improve the per-
formance of voice preservation with the proposed approach.

5.4.1. SPEAKER TURNS

Speaker similarity evaluation with speaker turns on entire
translation speech is challenging because it would require
speaker separation on both source and target speeches. The
content re-ordering during translation and translation errors
would also add extra difficulty. We approximated by consid-
ering the leading/trailing short segments in the translation
speech as corresponding to each of the two speakers in the
source speech with a single speaker turn.

We trained Translatotron 2 and Translatotron on the dataset
described in Sec. 5.4, with half of the training examples aug-
mented by ConcatAug. The evaluation set was artificially
constructed in a similar way by applying ConcatAug, so that
each utterance contains two speakers’ voices. We evaluated
subjective speaker similarity MOS between the two entire
source utterances before ConcatAug and the leading/trailing
1.6-second segments from the translation speech. Evalu-
ation examples with target speech shorter than 2 seconds

before ConcatAug were discarded.

As can be seen from Table 4, the impact of ConcatAug
is consistent on Translatotron 2 and Translatotron. When
ConcatAug was not used during training, for each source
speaker, the similarity compared to the leading/trailing seg-
ment from the translation speech was about the same; and
for each segment in the translation speech, the speaker simi-
larity compared to the first/second source speaker was also
close. This suggests that the translation speech imitated both
source speakers at the same time regardless of the speaker
turn. When ConcatAug was used, both models obtained sig-
nificantly higher speaker similarity on matched pairs than
mismatched pairs, indicating that the models successfully
separated two speakers and preserved voices for each of
them respectively. It can also be seen that Translatotron 2
obtained significantly higher speaker similarity than Trans-
latotron on matched pairs, indicating the effectiveness of
Translatotron 2.

Such quantitative evaluation cannot reflect how the pre-
dicted translation speech transits from one speaker’s voice
to another speaker’s. Listening to audio samples (available
online) verified that the voice changed instantly on sentence
boundaries without blurry, rather than a smoothed transition.
A sample of S2ST on such a speaker turn from Transla-
totron 2 is visualized in Figure 2.

While ConcatAug enables S2ST models to preserve speak-
ers’ voices on speaker turns and improves translation qual-
ity on small datasets, it may negatively impact the speech
naturalness and speaker similarity on models with strong
performance, as shown in Table 2 and Table 3. It may be ex-
plained by the fact that the augmented utterances sound less
natural and may involve abrupt change in volume and back-
ground noise on the artificial speaker turns. This suggests
headroom for improvement.

5.5. Multilingual S2ST

We also conducted experiments to evaluate the performance
of multilingual X→En S2ST. We trained Translatotron 2
and Translatotron on the 4 high-resource language pairs
from the CoVoST 2 corpus (Wang et al., 2021a), using



Table 5: Ablation studies of multilingual X→En S2ST on 4 high-
resource language pairs from CoVoST 2, measured by BLEU on
ASR transcription from the translation speech. + / − indicates
using or replacing a component (see Sec. 5.5.1).

fr de es ca

Translatotron 2 27.0 18.8 27.7 22.5
− SpecAugment 25.9 17.9 25.9 21.8
− Conformer encoder 26.4 18.1 26.4 21.8
− NAT synthesizer 26.9 18.3 27.0 22.0

Translatotron (w/ SpecAugment) 17.7 9.9 17.7 13.1
+ Conformer encoder 18.9 10.8 18.8 13.9
+ NAT synthesizer 4.0 2.1 3.5 2.5

ST (Wang et al., 2021a) 27.0 18.9 28.0 23.9

Reference (synthetic) 82.1 86.0 85.1 89.3

TTS synthesized target speech in a single female speaker’s
voice.4 The original Common Voice (Ardila et al., 2020)
data split instead of the CoVoST 2 data split was followed.
The models were not explicitly conditioned on languages.
For a fair comparison, both models used SpecAugment, but
did not use auxiliary supervision from the source phonemes.

The translation quality as measured by BLEU on ASR tran-
scription from the translation speech is shown in the first
rows of each block in Table 5. Translatotron 2 outperformed
Translatotron by +9.4 BLEU on average on the 4 language
pairs. Although the BLEU scores are not directly compara-
ble between S2ST and ST (because of ASR transcription and
BLEU calculation difference), the close numbers suggest
that Translatotron 2 obtained translation quality comparable
to the baseline ST model.

5.5.1. ABLATION STUDIES

To understand the importance of each component in Transla-
totron 2, we conducted ablation studies on this multilingual
X→En dataset. All models in the ablation used the same
input and output features, SpecAugment settings, and learn-
ing rate schedules (detailed in Appendix A). No auxiliary
supervision from source text was used. For models not
using a Conformer encoder, we first applied the same 4×
temporal subsampling as in the Conformer encoder, then
used a 256×8 bidirectional LSTM stack to encoder the sub-
sampled features. The number of parameters in this LSTM
encoder is close to the same in the Conformer encoder. For
the Translatotron model using a NAT synthesizer, the same
hyperparameters as in Translatotron 2 were used. For Trans-
latotron 2 not using a NAT synthesizer, a non-autoregressive
Conformer synthesizer (Sec. 5.6) was used. All the rest hy-
perparameters followed Appendix A for Translatotron 2, and

4An expanded version of this dataset is released as the CVSS
corpus (Jia et al., 2022). However, the results are not directly
comparable because of different data splits and reference texts.

Table 6: Ablation studies on Conversational dataset using an au-
toregressive RNN + Conv synthesizer and a non-autoregressive
Conformer synthesizer.

Synthesizer BLEU Naturalness

RNN + Conv 55.6 4.21 ± 0.06
Conformer 54.5 3.61 ± 0.09

followed the Conversational model from Jia et al. (2019b)
for Translatotron. All models were trained for 200K steps
with a batch size of 768. The checkpoints for evaluation
were picked by the best average BLEU on 4 language pairs
on the validation set.

The results are shown in Table 5. As can be seen, while
the use of Conformer, SpecAugment, and NAT synthe-
sizer helps the performance of Translatotron 2, replacing
them with alternative architectural choices or removing
SpecAugment only reduced the performance by a small
degree (<2 BLEU). Similarly, directly using these com-
ponents in Translatotron does not bring its performance
close to Translatotron 2. These results suggest that the im-
provements of Translatotron 2 primarily comes from the
high-level architectural design which addressed the perfor-
mance bottlenecks existing in Translatotron (Sec. 3), rather
than the choices of each individual component.

5.6. Non-autoregressive synthesizer

It is tempting to use a non-autoregressive architecture for
the synthesizer of Translatotron 2, which may significantly
reduce its inference latency, similar to recent works on non-
autoregressive TTS (Ren et al., 2019; 2021; Guo et al., 2021;
Lee et al., 2021b; Elias et al., 2021b;a). We experimented
with using a 6-layer Conformer synthesizer (Guo et al.,
2021) with a dimension of 512 and 8 attention heads on
both Conversational and CoVoST 2 datasets.

As can be seen from Table 5 and 6, using a Conformer-based
non-autoregressive synthesizer obtained comparable trans-
lation quality to using an autoregressive NAT synthesizer
(with BLEU on ASR transcription up to 1.1 BLEU lower).
However, it caused a significant regression on the natural-
ness of the predicted translation speech, which is consistent
with the observation in TTS in Shen et al. (2020); Peng
et al. (2020); Hwang et al. (2021), etc., suggesting more
exploration is needed on this direction.

6. Conclusion
We proposed Translatotron 2, a neural direct S2ST model
that can be trained end-to-end. Experimental results on
three datasets consistently suggest that Translatotron 2 out-
performs the original Translatotron by a large margin on
both translation quality (up to +15.5 BLEU) and speech



generation quality, and approaches cascade S2ST.

In addition, we proposed a simple method for preserving
speakers’ voices from the source speech to the translation
speech in a different language. Unlike existing approaches,
the proposed method is able to preserve each speaker’s voice
on speaker turns without requiring for speaker segmentation.
Furthermore, compared to existing approaches, it better
preserves speaker’s privacy and mitigates potential misuse
of voice cloning for creating spoofing audio artifacts.

Future works include extending Translatotron 2 to support
simultaneous translation, cross-lingual prosody transfer, un-
written languages, and further quality improvement by utiliz-
ing self-supervised pre-training (Baevski et al., 2020; Wang
et al., 2021b) and weakly supervised data (Jia et al., 2019a).
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A. Table of hyper-parameters

Table 7: Model hyper-parameters used in the experiments. (“×n”: n layers; †: 128-dim pre-net is used for translating in a single voice;
16-dim pre-net is used for voice preservation.)

Fisher Es-En CoVoST 2 Conversational

Input
Sample rate (Hz) 8,000 48,000 16,000 – 48,000
Mel channels 80
Mel lower band (Hz) 125
Mel upper band (Hz) 3,800 7,600 7,600
Frame size (ms) 25.0
Frame step (ms) 10.0

Output
Sample rate (Hz) 24,000
Mel channels 128
Mel lower band (Hz) 20
Mel upper band (Hz) 12,000
Frame size (ms) 50.0
Frame step (ms) 12.5

SpecAugment
Freq blocks 2
Time blocks 10
Freq block max length ratio 0.33
Time block max length ratio 0.05

Encoder
Conformer dims 144 × 16
Attention heads 4
Conv kernal size 32
Subsample factor 4

Attention
Output dim 256 512 512
Hidden dim 512 512 512
Attention heads 4 8 8
Dropout prob 0.1 0.2 0.2

Decoder
LSTM dims 256 × 4 512 × 6 512 × 4
Zoneout prob 0.1 0.1 0.1
Phoneme embedding dim 96 256 256
Label smoothing uncertainty 0.1 0.1 0.1
Loss weight 10.0 10.0 10.0

Duration predictor
Bi-LSTM (dim × layers) 64 × 2 128 × 2 128 × 2
Loss weight 1.0 1.0 1.0

Synthesizer
LSTM dims 1,024 × 2
LSTM zoneout prob 0.1
Pre-net dims 128 × 2 128 × 2 128 / 16 † × 2
Pre-net dropout prob 0.5
Post-net (kernel, channels) × layers (5, 512) × 4 + (5, 128)
Loss weight 1.0

Training
Optimizer Adam (Kingma & Ba, 2015)
Learning rate schedule Vaswani et al. (2017)
Learning rate (peak) 4.2×10−3 2.2×10−3 3.3×10−3

Warm-up steps 10K 20K 10K
Batch size 1,024 768 768
L2 regularization weight 10−6 10−6 10−6



src vs src tgt vs src tgt vs tgt s2st vs src s2st vs tgt

Figure 3: Affinity matrices of d-vector similarity among 100 random examples. (“s2st” refers to the predictions from Translatotron 2.)

Table 8: Objective d-vector similarity between the predicted translated speech (English) and the source human speech (Spanish) on
speaker turns. The similarity between the leading/trailing 1.6-second segment from the predicted speech and the entire 1st/2nd source
speaker’s speech is measured. (↑ / ↓ means higher/lower values are better.)

1st source speaker 2nd source speaker

Leading seg. ↑ Trailing seg. ↓ Leading seg. ↓ Trailing seg. ↑
Translatotron 2 0.21 0.19 0.21 0.19

+ ConcatAug 0.20 0.14 0.14 0.21
Translatotron 0.20 0.22 0.27 0.29

+ ConcatAug 0.32 0.16 0.14 0.35

Reference (synthetic) 0.48 0.17 0.15 0.48

B. Objective speaker similarity analysis
Subjective speaker similarity evaluation is costly and has a long turnaround. We explored alternative objective evaluation
using separately trained speaker encoders, such as d-vector (Wan et al., 2018). We evaluated the voice retention performance
using the cosine similarity of the d-vectors.

We first checked the scenario that each input contains a single speaker’s recording. Figure 3 visualizes the affinity matrices
of d-vector similarity among different input utterances for a Translatotron 2 model. The outstanding higher similarity values
on the diagonals indicate that the model is able to preserve the source speaker’s voice in the predicted translation speech.

We then conducted a detailed evaluation for the voice retention performance for speaker turns. The experiment setting up was
identical to Section 5.4.1, except that the speaker similarity was measured by d-vector similarity instead of subjective MOS
evaluation. The d-vectors for each source speaker were computed on the entire original utterance before concatenation; the
d-vectors for each speaker in the prediction is approximated by computing on the leading/trailing 1.6 seconds of predicted
speech.

The results are shown in Table 8. Consistent with the MOS evaluation results in Table 4, when the concatenation augmentation
was not used, the d-vector similarity to each source speaker is about the same regardless if it was compared to the leading or
trailing segments, indicating that the predicted speech was in a single speaker’s voice and the model was unable to separate
different speakers in the input, but rather optimized for both source speakers at the same time. When the concatenation
augmentation was used, the d-vector similarity was significantly higher between matched pairs than between unmatched
pairs, indicating that the models were able to separate different speakers in the input and preserve their voices in the predicted
translation speech respectively.

However, when these similarities are compared among different models, it seems to suggest that Translatotron performed
better than Translatotron 2, which is contradictory to the subjective evaluation results in Table 4. By carefully listening
to the audio samples, we found that such discrepancy may be due to the fact that the d-vector model was also sensitive to
non-voice related acoustic characteristics, such as reverb and channel noise in the audios. This is likely a consequence of the
fact that in the large-scale training set for the d-vector model used in the evaluation, each speaker is typically associated with
a particular recording condition, e.g. recording device and room. Because the encoder output from the Translatotron model
was of significantly larger dimension than from the Translatotron 2 model (2048 vs 144), it was capable of carrying more
non-voice acoustic information and thus obtained better d-vector similarity, which not necessarily indicating higher speaker
similarity.



These results suggest that while such speaker encoder-based objective analysis reveals insightful indications about the
performance of the S2ST models, it can be less reliable compared to subjective MOS evaluation. Such reliability also highly
depends on the training details of the speaker encoder model being used, especially the training corpus.


	Introduction
	Related works
	Translatotron 2
	Speech encoder
	Linguistic decoder
	Acoustic synthesizer
	A single attention

	Voice preserving
	Training-time voice transferring
	Speaker turns

	Experiments
	Translation quality
	Speech naturalness
	Speech robustness
	Voice preservation
	Speaker turns

	Multilingual S2ST
	Ablation studies

	Non-autoregressive synthesizer

	Conclusion
	Table of hyper-parameters
	Objective speaker similarity analysis

