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Abstract
We consider a price-based revenue management
problem with reusable resources over a finite time
horizon T . The problem finds important appli-
cations in car/bicycle rental, ridesharing, cloud
computing, and hospitality management. Cus-
tomers arrive following a price-dependent Pois-
son process and each customer requests one unit
of c homogeneous reusable resources. If there is
an available unit, the customer gets served within
a price-dependent exponentially distributed ser-
vice time; otherwise, she waits in a queue un-
til the next available unit. The decision maker
assumes that the inter-arrival and service inter-
vals have an unknown linear dependence on a
df -dimensional feature vector associated with the
posted price. We propose a rate-optimal online
learning and pricing algorithm, termed Batch Lin-
ear Confidence Bound (BLinUCB), and prove
that the cumulative regret is Õ(df

√
T ). In estab-

lishing the regret, we bound the transient system
performance upon price changes via a coupling
argument, and also generalize linear bandits to
accommodate sub-exponential rewards.

1. Introduction
Revenue management with reusable resources finds a wide
range of applications in modern economy that heavily in-
volves resource sharing. In these applications, a firm is en-
dowed with a finite capacity of reusable products and each
customer requests a product, uses it for some random time,
and returns it to the firm, at which point the product unit
can be used by other customers (see Levi & Radovanović,
2010; Chen et al., 2017; Rusmevichientong et al., 2020).
For example, firms such as Amazon and Microsoft offer
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cloud computing services and users utilize virtual machines
for a certain duration of time to finish computing tasks (see
Kaewpuang et al., 2013; Püschel et al., 2015). The exact
usage duration of a request in a cloud is not specified a pri-
ori and thus the departure of demand is also stochastic. The
firm needs to dynamically decide what price to offer to users
based on the current capacity utilization as well as the re-
ceived requests (see Doan et al., 2020). More examples can
be found in car/bicycle rental business (Oliveira et al., 2018),
parking facility management (Owen & Simchi-Levi, 2018),
and on-demand service platforms, such as ride-hailing ser-
vices including Uber and Lyft (Banerjee et al., 2015; Liu &
Li, 2017; Bimpikis et al., 2019). In all the aforementioned
applications, customers’ willingness for using the service
is affected by the price being offered; however, the deci-
sion maker may not know the demand distribution and how
demand reacts to price changes (see Xu & Li, 2013). The
problem is even more challenging when the candidate price
set is continuous (i.e., learning an optimal pricing strategy
over a continuous action space).

Brief Problem Statement. We consider the following prob-
lem: A service-providing firm is endowed with a pool of c
homogeneous reusable resources and can dynamically post
prices (for this pool) over a finite horizon T . Customers
arrive following a price-dependent Poisson process, and
request one unit from c reusable resources. If there is a
resource unit available for use, the arriving customer gets
the unit and spends a random time that is exponentially
distributed. Upon service completion, this customer pays
the firm the amount of the posted price multiplied by the
actual service time, and the resource unit is freed up to serve
other customers. If all units are occupied upon arrival, the
customer waits in a queue until the next available unit. The
goal is to find the optimal pricing policy that maximizes the
total expected revenue. In this paper, we assume that the
inter-arrival and service intervals have an unknown linear
dependence on a df -dimensional feature vector associated
with the posted price. Thus, we need to learn the underly-
ing linear functions, while maximizing the total expected
revenue on the fly. The performance measure is cumulative
regret, which is the difference between the revenue attained
by a learning algorithm and by a clairvoyant optimal pricing
policy under full distributional information.



Online Learning and Pricing with Reusable Resources: Linear Bandits with Sub-Exponential Rewards

Main Result and Contributions. We propose a Batch
Linear Confidence Bound (BLinUCB) algorithm and prove
that the cumulative regret is Õ(df

√
T ), which matches the

lower bound up to a logarithmic factor.

The state-of-the-art literature in revenue management pre-
dominantly focuses on perishable resources (i.e., the unit
sold is gone and cannot be re-used by other customers)
and the problem then belongs to the general class of online
knapsack problems (e.g., Ferreira et al., 2018; Chen & Shi,
2019b). In contrast, the reusable resource setting naturally
embeds multi-server queueing systems that are more diffi-
cult to analyze. One major complication is that whenever
we change a price, the system still contains “old” customers
from the previously posted price and also takes time to reach
steady state when the new stream of customers comes in (so
as to extract the performance under the newly posted price).

On a high level, our algorithm separates the learning hori-
zon into successive batches and selects a price using past
sales collected in previous batches. For each batch, we
need to further divide it into two intervals. The first in-
terval is for (i) completing serving the existing customers
(under previously posted prices) and reaching the steady
state of the corresponding queue under the newly posted
price and (ii) eliminating the heavy-tailed effects brought
by sub-exponential observations. The system maintains a
steady state in the second interval.

This paper develops a new linear-bandits-based approach
for revenue management of reusable resources under a con-
tinuous price set. We highlight two main techniques in es-
tablishing the optimal regret upper bound. First, leveraging
the coupling arguments developed by Jia et al. (2020), we
bound the loss of nonstationarity due to transient system per-
formance. Whenever a new price is posted, the underlying
queueing dynamics change, and it takes time for the system
to reach steady state. We analyze the length of this transient
period for M/M/c queues upon price changes (see Proposi-
tions 4 and 5). Second, the typical linear bandits assume
sub-Gaussian errors, which allow these algorithms to be
directly integrated with linear (ridge) regression techniques.
Our regret analysis provides a theoretical study of linear ban-
dits with sub-exponential observations and contributes to the
broad landscape of linear bandit literature by delineating the
impact of heavy-tailed rewards. Our BLinUCB accumulates
a carefully designed set of observations for invoking Bern-
stein’s inequality. We use the empirical statistics as data
points to update the estimations of regression coefficients
with a probabilistic guarantee (see Propositions 2 and 3).

2. Literature Review
Our work is closely related to the following streams of
literature.

Revenue Management with Reusable Resources. The ma-
jority of the prior revenue management literature studies per-
ishable resources (den Boer, 2015; Deng et al., 2020; 2021).
Here we only focus on the literature of revenue management
with reusable resources. One key challenge in the reusable
resource setting is the need to dynamically match demands
with the varying inventory of reusable resources. Several
recent studies developed provably near-optimal heuristic
admission controls (see, e.g, Levi & Radovanović, 2010;
Chen & Shi, 2017; Chen et al., 2017). Besides admission
control, there has been a stream of literature considering
static and dynamic pricing for both single resource setting
(see, e.g., Maglaras, 2006; Araman & Caldentey, 2009; Xu
& Li, 2013; Besbes et al., 2022) and multi-resource setting
(Doan et al., 2020; Lei & Jasin, 2020; Owen & Simchi-Levi,
2018; Rusmevichientong et al., 2020). The aforementioned
literature assumed that the distributional information of the
underlying model is known to the decision-maker a priori
and there has been very little work considering the incom-
plete information. To the best of our knowledge, the only
two learning papers are by Chen et al. (2020b) and Jia
et al. (2020). The former developed a stochastic gradient
descent algorithm, which is different from our proposed lin-
ear bandit algorithm in this paper. Jia et al. (2020) applied
multi-armed bandit techniques and involved intertempo-
ral dynamics (i.e., customers waiting, getting served, and
leaving) but it was restricted to a finite discrete price set.
In contrast, our work considers a continuous price space,
which is highly non-trivial to analyze. The concentration
bounds for linear bandits under our setting are new and the
analysis for sub-optimality is also new (showing how the
feature vector norm over the data matrix evolves).

Linear Bandits. There have been several well-developed
studies on linear bandits (see, e.g., Li et al., 2010; Abbasi-
Yadkori et al., 2011; Tao et al., 2018; Alieva et al., 2021),
including various focuses, such as generalization to non-
linear bandits (Filippi et al., 2010), extensions to delayed
rewards (Zhou et al., 2019), multi-task linear bandit (Cella
et al., 2020; Hu et al., 2021), ans so on. All these general
linear bandit algorithms assume sub-Gaussian errors (see,
e.g., Assumption 1 in Rusmevichientong & Tsitsiklis, 2010),
which allow these algorithms to be directly integrated with
linear (ridge) regression techniques. To the best of our
knowledge, our regret analysis provides the first theoretical
study of linear bandits with sub-exponential observations
(which can also be reviewed as sub-exponential rewards) and
contributes to the broad landscape of linear bandit literature
by delineating the impact of heavy-tailed rewards.

Bandit Problems with Infrequent Action Changes. Ban-
dit problems with infrequent action changes have also been
studied in recent years, varying from static batch design
(Perchet et al., 2016) to adaptively determined batch size
(Gao et al., 2019). Several literature considers switching
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cost explicitly (Cesa-Bianchi et al., 2013; Simchi-Levi &
Xu, 2019; Han et al., 2020). Specifically, Cheung et al.
(2017); Chen & Chao (2019); Chen et al. (2020a) discussed
practical reasons of infrequent price changes in revenue
management and developed pricing algorithms with limited
price switches. In our work, we consider a static batch de-
sign with O(log(T )) batches, which is in the same order
as those in Auer et al. (2002); Auer & Ortner (2010); Gao
et al. (2019). The departure from related literature is that
we do not enforce a strict budget on action changes nor an
objective for minimizing the action changes.

Reinforcement Learning via MDP. The process that a
firm decides prices based on the current number of cus-
tomers in the system can also be abstracted as a Markov
Decision Process (MDP). Reinforcement Learning (RL) is
widely used for solving MDP (Szepesvári, 2010; Sutton &
Barto, 2018). However, popular RL approaches, such as
Q-Learning (Even-Dar et al., 2003), UCRL2 (Auer et al.,
2008), and Thompson Sampling for RL (Russo et al., 2018),
all assume a discounted summation relationship between
immediately observable rewards and the state-action value
function, which does not hold in our setting. The key point is
that adapting any of the above methods to our setting would
require estimation of the value function under steady state
conditions, which necessitates the coupling analysis. Our
framework opens many doors to conducting RL in complex
stochastic systems.

Transient Analysis of Queues. The analysis of M/M/c
queues under transient state has a long history. Although
the distribution is explicitly known in terms of modified
Bessel functions of the first kind, further studies were con-
ducted to understand how the queue evolves over time (Led-
ermann & Reuter, 1954; Abate & Whitt, 1987; 1988; Bailey,
1954; Kelton & Law, 1985; Morisaku, 1976; Parthasarathy
& Sharafali, 1989). Kelton & Law (1985) pointed out that
a queue needs to run “long-enough” to dissipate the initial
starting point and to collect observations during the ensuing
“steady-state” portion of the run. Our result gives the first fi-
nite sample bound on mixing times of M/M/c queues (upon
action changes). Specifically, we develop a coupling argu-
ment between this target system and a virtual system starting
from a state sampled from the steady-state distribution and
maintaining the steady state thereafter.

3. Problem Formulation
We consider a service-providing firm who supplies cus-
tomers with reusable resources of finite capacity c over a
finite horizon T . At the beginning of period t ≤ T , the
firm posts a price pt between a fixed range [pL, pU ] to max-
imize the total cumulative revenue. Under the posted price
p, ∀p ∈ [pL, pU ], customers arrive at the system accord-
ing to a Poisson process with rate λp and they are served

on a first-arrive-first-serve basis by occupying one unit of
the resource with the service time following an exponen-
tial distribution with rate µp. Customers pay p for per unit
time of service. If there is not enough resource capacity,
the customer will join the queue until being served. Note
that the service system under any posted price p ∈ [pL, pU ]
can be reduced to an M/M/c queue (when the system only
contains customers arriving under this price, i.e., after fin-
ishing serving other customers arriving under the previously
posted prices). The assumption of exponential service time
is standard in the literature (see, e.g., Savin et al., 2005;
Gans & Savin, 2007; Owen & Simchi-Levi, 2018).

We consider a linear relationship between feature vectors
and arrival/service rates. More precisely, for every price p ∈
[pL, pU ], the firm can observe a feature vector xp ∈ Rdf .
For example, a simple non-trivial case is when the rates
are typically linear on price itself (i.e., df = 1), and this
example is well supported by literature (see Mankiw, 2014);
and df = 3 can include price itself, a major competitor’s
price, and neighborhood income level and willing to pay.
The arrival rate λp and the service rate µp have the following
relationship with the feature vector xp:

1

λp
= θTλ xp and

1

µp
= θTµxp,

where θλ ∈ Rdf and θµ ∈ Rdf are two unknown coeffi-
cient vectors. Recall that 1/λp is the average time interval
between two consecutively arrived customers and 1/µp is
the average service time under price p.

We assume that the firm does not know the underlying co-
efficients θλ and θµ a priori. The firm aims at finding
a periodic review pricing policy as π : {(n, t) : n =
0, 1, . . . ,∞, t = 1, . . . , T} → [pL, pU ], where the firm
selects price π(n, t) ∈ [pL, pU ] for period t when there
are n customers in the system at the beginning of period t.
The goal is to maximize the expected total revenue. The
expected revenue under pricing policy π during period t is
denoted by Jπt and the cumulative expected revenue over
periods {1, . . . , T} is denoted by Jπ =

∑T
t=1 J

π
t .

Assumption 1.

1. The utilization factor ρp =
λp
cµp

< 1 for any candidate
price p ∈ [pL, pU ].

2. log(T ) ≥ 4.

3. A constant rmax is known such that rmax ≥
maxp∈[pL,pU ] λp/µp.

Assumption 1 says the following: 1) the system is stable for
any candidate price; 2) we require the planning horizon to
be sufficiently long, since it takes time for the underlying
service system to reach a steady state under any posted
price; 3) this assumption can be simply satisfied by letting
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rmax = c and it further implies that a valid upper bound of
the stationary revenue rate of all candidate prices is known.

Assumption 2. For any two candidate prices ph, pl ∈
[pL, pU ] and ph > pl, we have:

1. λpl ≥ λph .

2. λpl − λph ≤
ρl

−3e log ρl
.

3. if µpl > µph , then ρl ≥ ρ2
h.

Assumption 2 says the following: 1) the arrival rate under
a lower price is higher than or equal to that under a higher
price; 2) the difference in arrival rates between two prices
is bounded (by a large constant); and 3) if the service rate
under a lower price is higher than that under a higher price,
the utilization factor in the former case must be greater
than the latter squared. This condition (which is later used
to justify inequalities (18g) and (24c)) is rather mild in
the following sense: if µpl ≤ µph , we do not need any
conditions; otherwise, if µpl > µph , a simple sufficient
condition to guarantee that ρl ≥ ρ2

h is ρl ≥ ρh, which
reduces to λpl/λph ≥ µpl/µph , meaning that the ratio of
arrival-rate changes (with respect to price) exceeds the ratio
of change in service-rate changes.

3.1. Regret, Relaxed Regret, and LP Benchmark

The notion of cumulative regret is commonly used in online
learning (see Shalev-Shwartz et al., 2011) to evaluate the
performance of a policy if the decision-maker has limited
information of the system against the optimal performance
under full information. In our problem, the full information
means that the firm knows the underlying mappings between
price p, ∀p ∈ [pL, pU ] and the associated arrival rate λp
and service rate µp, i.e., the firm knows θλ and θµ. Under
full information, we have state-dependent optimal policy
π∗ = argmaxπJ

π and state-dependent optimal expected
revenue J∗ = Jπ

∗
. Thus, we can define the regret of

any pricing policy π as the difference between the total
state-dependent optimal expected revenue J∗ and the total
expected revenue under the given policy π, i.e., Jπ . In short,
we aim at finding heuristic pricing policies that lead to a
small regret.

Definition 1. The cumulative regret by the end of period T
of policy π is defined as:

Regret(π, T ) = J∗ − Jπ.

However, finding the state-dependent optimal pricing policy
π∗ requires the firm to solve a dynamic program with an in-
finite number of potential states, in the form of (n, t), under
uncertain parameters, which is computationally intractable.
Moreover, the transient system performance is complex and
hard to analyze when the offered price changes over periods.

Thus, it is impractical to solve this dynamic program, and
further impossible to obtain π∗ and J∗. To tackle this prob-
lem, we develop an upper bound on the expected revenue
achievable by any policy, and therefore, also an upper bound
of the state-dependent optimal expected revenue.

We uniformly discretize [pL, pU ] as a set P where the dis-
cretizing interval can be arbitrarily small. Consider con-
tinuous decision variables πpnt for n = 0, . . . ,∞, t =
1, . . . , T, p ∈ P , ant for n = 0, . . . ,∞, t = 1, . . . , T ,
and Jnt for n = 0, . . . ,∞, t = 1, . . . , T . Let variable ant
represent the probability that the system has n customers at
the beginning of period t under an arbitrary policy; let vari-
able πpnt represent the probability that this policy chooses
price p at state (n, t); and constraints (1e) show that variable
Jnt take the value at most the expected revenue collected
before the end of period T from the customers who arrive
during period t at state (n, t). Thus, we can formulate a
linear program (LP) as follows.

J
LP

= (1a)

max
π,a,J

∞∑
n=0

T∑
t=1

antJnt (1b)

s.t.
∞∑
n=0

ant = 1 ∀t = 1, . . . , T (1c)

∑
p∈P

π
p
nt = 1 ∀n = 0, . . . ,∞, ∀t = 1, . . . , T (1d)

Jnt ≤
∑
p∈P

π
p
nt

λp

µp
p ∀n = 0, . . . ,∞, ∀t = 1, . . . , T (1e)

0 ≤ ant ≤ 1 ∀n = 0, . . . ,∞, ∀t = 1, . . . , T (1f)

0 ≤ πpnt ≤ 1 ∀n = 0, . . . ,∞, ∀t = 1, . . . , T, ∀p ∈ P. (1g)

Proposition 1. The LP solution provides an upper bound
on the optimal revenue, i.e., J∗ ≤ JLP.

Proof sketch: We show that the decisions variables (π, a, J)
associated with any admissible policy satisfy the constraints
of the linear program (1), and the expected revenue of this
admissible policy is exactly the corresponding objective
value in (1). Recall that the discretizing interval of P can
be arbitrarily small and thus JLP ≥ Jπ for any admissible
policy π as well as the optimal state-dependent policy π∗.
The detailed proof can be found in Appendix A.

By defining p̃ = argmaxp∈[pL,pU ]
λp
µp
p, we find an optimal

solution (π̃, ã, J̃) to the LP in (1) as follows (we discretize
[pL, pU ] as P such that p̃ ∈ P).

π̃p̃nt = 1, ∀n = 0, . . . ,∞, ∀t = 1, . . . , T

π̃pnt = 0, ∀n = 0, . . . ,∞, ∀t = 1, . . . , T, ∀p ∈ P\{p̃}

J̃0t =
λp̃
µp̃
p̃ ∀t = 1, . . . , T

J̃nt = 0 ∀n = 1, . . . ,∞, ∀t = 1, . . . , T

ã0t = 1 ∀t = 1, . . . , T

ãnt = 0 ∀n = 1, . . . ,∞, ∀t = 1, . . . , T.
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We can compute JLP = T
λp̃
µp̃
p̃. Note that λpµp p is the station-

ary revenue rate of price p, denoted as r(λp, µp, p). Thus,
we call the price p̃ the (static) optimal state-independent
price, i.e., the price with the highest stationary revenue rate.
This result can be seen as the “reusable analog” of the clas-
sical static pricing upper bound for revenue management
with perishable resources (see Gallego & Van Ryzin, 1994).

Corollary 1. The single static price policy πp̃ : π(n, t) =
p̃, ∀n = 0, 1, . . . ,∞, ∀t = 1, . . . , T is asymptotically
optimal as T →∞, and we also have JLP−Jπp̃ ≤ o(

√
T ).

This corollary follows directly from Propositions 1 and 4
and we provide the detailed proof in Appendix A. From
Corollary 1, for any finite T , the loss between the static
benchmark and any arbitrarily complex state-dependent pol-
icy is roughly on the order of log(T ), which is insignificant
compared to the tight

√
T loss due to learning a static policy.

As a result, learning a static pricing policy is already prov-
ably near-optimal and also arguably more implementable
and fairer in practical settings.

Definition 2. The relaxed regret is defined as

Regret(π, T ) = JLP − Jπ.

Based on Proposition 1, we have that for any policy π, the
corresponding relaxed regret is a valid upper bound of its
regret, i.e., Regret(π, T ) ≥ Regret(π, T ).

4. Online Learning and Pricing: BLinUCB
Without loss of generality, we consider a known feature
generation function F (·) : [pL, pU ] → Rdf , which gives
the firm the feature vector xp of a price p ∈ [pL, pU ].

4.1. M/M/c Queue Parameters under Linear
Relationship

Consider a price p ∈ [pL, pU ] with a feature vector xp.
Without loss of generality, we first analyze the arrival pro-
cess. The arrival time interval is a random variable follow-
ing an exponential distribution with mean 1/λp = θTλ xp.
Consider nm(p) observations of arrival times d̂i(p), i =
1, . . . , nm(p) and denote d̄p as the empirical mean of ar-
rival time intervals d̄p =

∑nm(p)
i=1 d̂i(p)/nm(p). Then

the random variable d̄p follows an Erlang distribution,
Erlang(nm(p), nm(p)λp). For each implemented price p,
we have a set of correspondent data with it, which can be
represented by a tuple (p,xp, d̄p, nm(p)).

Let SE denote sub-exponentials. By Lemma 2, d̂i(p) ∼
SE(4/λ2

p, 2/λp). Then derived from Lemmas 3 and 4 (in
Appendix B), we have

d̄p ∼ SE(4/(nm(p)λ2
p), 2/(nm(p)λp)).

Therefore, we can equivalently write it as

d̄p = θTλ xp + εp, (2)

where the random error term

εp ∼ SE
(
4/(nm(p)λ2

p), 2/(nm(p)λp)
)
.

Furthermore, by analyzing the Erlang distribution, we can
derive that the mean of εp is 0 and the variance of εp is
1/(nm(p)λ2

p), where 1/λp = θTλ xp. Based on the weighted
least squares approach (Seber & Lee, 2012) for linear re-
gression models with heteroscedasticity, we estimate the
coefficient θλ as follows. Consider we have observations of
N different prices and N ≥ df . Define a diagonal matrix
Ω where the ith element is the variance of the error term
of the ith implemented price, i.e., 1/(nm(pi)λ

2
pi). Note

that λp is unknown and we use an approximate matrix Ω̂ to
substitute Ω later. We use a matrix X ∈ RN×df to denote
the features of implemented prices and use a vector d ∈ RN
to denote the empirical arrival time means of implemented
prices. Then we can estimate the unknown coefficients by

θ̂λ = (XTΩ−1X)−1XTΩ−1d. (3)

By letting ~ε = [ε1, . . . , εN ]T , we can write θ̂λ = θλ +
(XTΩ−1X)−1XTΩ−1~ε. In the following analysis, we as-
sume that the dependency between X and ~ε is negligible,
due to batching. If such dependency is not assumed away,
one can develop a sub-exponential self-normalized bound
of vector-valued martingales for ||XTΩ−1~ε||2(XTΩ−1X)−1

following the scheme in Abbasi-Yadkori et al. (2011).

WithN ≥ df , XTΩ−1X is non-singular and thus θ̂λ is well-
defined. In addition, we can easily prove that E[θ̂λ] = θλ
and Var(θ̂λ) = (XTΩ−1X)−1. For any price p′ with a
feature vector x′, we can estimate θTλ x

′ by θ̂Tλ x
′ and further

derive an upper confidence bound for θTλ x
′.

Proposition 2. (Sub-exponential Tail Bound for Poisson
Process under Linear Relationship.) Consider N imple-
mented prices with N ≥ df and nm(p) ≥ 8 log(T ) for any
implemented price p. Then, for any new valid feature vector
x′ and θ̂λ computed in (3), one has

P

(
|θ̂Tλ x′ − θTλ x′|√

x′T (XTΩ−1X)−1x′
≥
√

32 log(T )

)
≤ 2

T 4
. (4)

Proof sketch: Let matrix A = (XTΩ−1X)−1XTΩ−1.
Use column vector a·i to denote the ith column
of A and adi to denote elements of A. We
firstly show that the dth element of θ̂λ follows
SE(
∑N
i=1 a

2
di(4/niλ

2
i ),maxi=1,...,N 2|adi|/(niλi))

with mean θλ,d. We further show that θ̂Tλ x
′ follows

SE(4x′T (XTΩ−1X)−1x′,maxi=1,...,N 2|x′Ta·i|/(niλi))
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with mean θTλ x
′. With nm(p) ≥ 8 log(T ), we can further

prove that it meets the requirement for applying the
sub-Gaussian behavior type of concentration bound for
SE variables (this inequality can be found in literature,
e.g., Boucheron et al., 2013; Rigollet & Hütter, 2015). We
provide the detailed proof in Appendix B. The essential idea
here is to eliminate the heavy-tailed effects by accumulating
observations (see Jia et al., 2021).

In the above analysis, we consider a known covariance ma-
trix Ω. However, in the reality, this matrix is also unknown.
Therefore, we estimate it with Ω̂ (also denoted by Ω̂λ for
arrival process). We estimate the ith element, i.e., the vari-
ance of the error term of the ith implemented price, by
d̄2
pi/(nm(pi)). By the linear regression analysis with het-

eroscedasticity (see, e.g., Seber & Lee, 2012), the estimated
coefficient

θ̂λ = (XT Ω̂−1
λ X)−1XT Ω̂−1

λ d (5)

shares the same properties as the estimated coefficient in
(3). Therefore, Proposition 2 also holds for θ̂ defined in (5).
In the following analysis, we use Ω̂ to substitute Ω for both
arrival and service processes.

We apply the same technique to the service process. Use
nsm(p) to denote the number of customers who have been
successfully serviced and ĝi(p) to denote the observed ser-
vice time of customer i. Define Ω̂µ and yµ similarly and
therefore we can compute an estimation as

θ̂µ = (XT Ω̂−1
µ X)−1XT Ω̂−1

µ yµ. (6)

Therefore, we can reach the same concentration result:

P

 |θ̂Tµx′ − θTµx′|√
x′T (XT Ω̂−1

µ X)−1x′
≥
√

32 log(T )


≤ 2exp

(
−

32 log(T ) · x′T (XT Ω̂−1
µ X)−1x′

8x′T (XT Ω̂−1
µ X)−1x′

)
≤ 2

T 4
.

(7)

Proposition 3. For price p with a feature vector x, we have:

P

(∣∣∣∣∣λpµp − θ̂Tµx

θ̂Tλ x

∣∣∣∣∣ ≤
√

32 log(T )

θ̂Tλ x
G

)
≥ 1− 4

T 4
,

where

G =

(
rmax

√
xT (XT Ω̂−1

λ X)−1x +

√
xT (XT Ω̂−1

µ X)−1x

)
.

The proof of Proposition 3 is based on Proposition 2. The
LHS can be lowered bounded by the product of two terms
and both the two terms are in the same format as the LHS
of Proposition 2. We provide detailed proof in Appendix B.

4.2. BLinUCB

We present Batch LinUCB (BLinUCB) in Algorithm 1.
We divide the total horizon into two phases, Warm-up
Phase and Learning Phase. In the Warm-up Phase, the
algorithm gives a start of valid estimations of parameters
θλ and θµ as computed in (5) and (6). To initiate in-
vertible matrices XT Ω̂−1

µ X and XT Ω̂−1
λ X, we select df

number of prices, whose feature vectors form a basis for
span(xp, p ∈ [pL, pU ]), and collect 8 log(T ) number of ar-
rival and service time observations. Denote this set of basis
prices as Pb. In the Learning Phase, the algorithm separates
the time as consecutive batches where the length of batch
m = 1, . . . ,M is Imτ with Im = 2m and τ = (log(T ))2.
At the beginning of each batch, BLinUCB selects a price
over the range [pL, pU ] with the highest upper confidence
bound of the revenue rate.

Definition 3. The upper confidence bound of the revenue
rate associated with price p by the end of batch m is:

Um(p) =

(
θ̂Tµx

θ̂Tλ x
+

√
32 log(T )

θ̂Tλ x
G

)
p, (8)

and the lower confidence bound of the revenue rate of price
p by the end of batch m is:

Lm(p) =

(
θ̂Tµx

θ̂Tλ x
−
√

32 log(T )

θ̂Tλ x
G

)
p. (9)

Define Radm(p) =

√
32 log(T )

θ̂Tλ x
Gp as the confidence radius

of price p by end of batch m.

5. Performance Analysis of BLinUCB
We analyze the performance by the relaxed regret defined
in Definition 2. First, we derive the probability that a sys-
tem reaches the steady state after a certain amount of time
starting from (i) an empty state (i.e., zero customers in the
system) under a fixed price (Proposition 4) and (ii) the steady
state under another price (Proposition 5). Then, based on
the probability analysis, we provide the regret bound for
BLinUCB in Theorem 1.

5.1. High Probability Bound for Mixing Time

When the firm starts service from the empty state or switches
to another price from the currently offered price, the service
(queueing) system enters a transient state and needs a certain
amount of time to reach the steady state again. Therefore,
the time spent on reaching the steady state, which is also
referred to as the mixing time, is crucial for computing the
practical revenue under a specific policy and thus crucial
for the regret analysis. To the best of our knowledge, this



Online Learning and Pricing with Reusable Resources: Linear Bandits with Sub-Exponential Rewards

Algorithm 1 Online Batch LinUCB Algorithm (BLinUCB).

1: Input: T , pL, pU , df .
2: Initialize: τ , Im, M , Pb as in Section 4.2.
3: Warm-up Phase:
4: for p ∈ Pb do
5: Offer price p, record d̂i(p) for arriving customers and

ĝi(p
′), ∀p′ ∈ [pL, pU ] for leaving customers.

6: if nsm(p) ≥ 8 log(T ) then
7: Update X, Ω̂λ, Ω̂µ,d,yµ
8: Continue.
9: end if

10: end for
11: Compute θ̂λ and θ̂µ by (5) and (6)
12: Learning Phase:
13: for m = 1, . . . ,M do
14: Choose pm = argmaxp∈[pL,pU ]Um−1(p).
15: Offer pm in batch m, i.e., for Imτ periods.
16: Record d̂i(pm) for arriving customers and

ĝi(p), ∀p ∈ P for leaving customers.
17: Update X, Ω̂λ, Ω̂µ,d, yµ; Compute θ̂λ and θ̂µ.
18: end for

is the first result giving a finite-time high probability bound
on mixing times of M/M/c queues (upon action changes).
Specifically, we develop a coupling argument between this
target system and a virtual system starting from a state
sampled from the steady-state distribution and maintaining
the steady state thereafter.

Without loss of generality, we first focus on a system under
fixed arrival rate λ and service rate µ. Let St denote the
target system that starts from the empty state and Ŝt denote
the virtual system that starts with a state sampled from
steady-state distribution and remains thereafter. Let S∞
denote the steady-state overshoot. The random variable
St (Ŝt), t ≥ 0 denotes the number of customers in the
system at time t of system St (Ŝt). The analysis in this
section relies on busy period An = min{t: n customers in
the system at time 0+ and n − 1 customers in the system
at time t}, ∀n = {1, . . . ,∞}, (see Omahen & Marathe,
1978; Daley & Servi, 1998) and the first-order stochastic
dominance between two random variables (see Hadar &
Russell, 1969; Seth & Yalonetzky, 2014).

Proposition 4. (Adapted from Proposition 4 in Jia et al.
(2020), Coupling Probability of M/M/c Queue starting
from Empty State) For t ≥ τ , where τ = (log(T ))2, then

P(St = Ŝt after time τ) ≥ 1− 2

T 2
.

The proof of Proposition 4 is provided in Appendix C, which
follows the law of total probability, the length of the time
horizon T in Assumption 1, the first-order stochastic dom-
inance in Lemma 5, and the concentration inequality for

independent samples in Lemma 6.

When implementing our learning algorithms, the M/M/c
queue does not really start from empty state. This is because
whenever a new price is posted, the customers who arrived
under the previously posted price remain in the system. We
need to ensure that the coupling occurs with high probability
even with price changes (with the aid of Assumption 2),
which is encapsulated in Proposition 5.
Proposition 5. (Adapted from Proposition 5 in Jia et al.
(2020), Coupling Probability of M/M/c Queue when Price
Changes) The probability that the system reaches the steady
state within 2τ after the price changes is bounded by 1− 4

T 2 ,
where τ = (log(T ))2.

The proof of Proposition 5 is based on Proposition 4 and
Assumption 2. Specifically, we decompose possible price
changes into two cases, i.e., when the price changes from a
lower price pl to a higher price ph and vice versa. For each
case, we further consider two sub-cases, (i) the unit service
rate µpl > µph and (ii) µpl ≤ µph . For each case, we con-
struct a virtual system and derive the coupling probability
of the corresponding virtual system. Then we show that the
actual coupling probability is bounded from below by the
probability with which the virtual system reaches the steady
state. The full proof is given in Appendix C.

5.2. Regret Bound

Theorem 1. The T -period cumulative regret of BLinUCB
is bounded by Õ

(
df
√
T
)

.

For comparison, the state-of-the-art regret lower bound for
linear bandits is of order Ω(df

√
T ) (see, e.g., Rusmevichien-

tong & Tsitsiklis, 2010). Our result matches this lower
bound up to a logarithmic factor.

Proof sketch: The proof consists of two parts, where we
bound the regret of Warm-up and Learning Phases sepa-
rately. The regret of the Warm-up phase is at most linear on
the length of the Warm-up Phase, i.e., O(df log(T )). The
regret of the Learning Phase can be further decomposed into
the loss of nonstationarity and suboptimality.

Loss of nonstationarity. With the key coupling results
from Propositions 4 and 5, we can use the steady-state
revenue rate to compute the expected revenue of each
batch with at most a loss linear on 2τ . As a result, we
have JLP

Learning, m − J
πBLinUCB
Learning, m ≤ ∆(pm)Imτ +O(τ), where

∆(pm) = r(λp̃, µp̃, p̃)− r(λpm , µpm , pm).

Loss of suboptimality. By Defintion 3, we can derive that
∆(pm) can be upper bounded by the sum of three terms:
∆(pm) ≤ min

{(
Um(pm) − Lm(pm)

)
, r(λp̃, µp̃, p̃)

}
+(

r(λp̃, µp̃, p̃) − Um(p̃)
)

+
(
Lm(pm) − r(λpm , µpm , pm)

)
.

The first term is analyzed with the help of Lemmas 7 and
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8, which are provided in Appendix D. The second and third
terms can be easily bounded with the help of Proposition
3. We derive that the regret during the Learning Phase is
O
(

log(T )
√
dfT log(T )

)
. Combine the results together,

we have the regret of BLinUCB algorithm is Õ
(
df
√
T
)

.

6. Numerical Experiments
Experimental Setup. The total operation time horizon
is 8000 periods and the capacity of the reusable resource
is c = 100. We choose the price from a fixed range of
[10, 18], of which the corresponding service rates are equal.
We consider a three-dimensional feature vector (p, φ(p), 1)
for price p, where the second feature vector is defined as
(we plot the value below in Figure 1):

φ(p) =
1

1 + exp
(
− 5(2p−(pL+pU ))

pU−pL

) .
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Figure 1: Function value of φ(p).

We consider three scenarios of the arrival rates associated
with candidate prices and thus the corresponding system
dynamics (three instances correspondingly). In Instance
#1, the state-independent optimal price has a relatively low
utilization factor. In Instance #2, the state-independent op-
timal price has a relatively moderate utilization factor. In
Instance #3, the state-independent optimal price has the
highest utilization factor. Instance details are in Table 1.

Benchmark. We adopt the ε-greedy algorithm (a commonly
used benchmark that balances exploration and exploitation;
see, e.g., Filippi et al. (2010)) to our settings as the bench-
mark. The ε-greedy algorithm will estimate the coefficients
through the same regression step as that of BLinUCB. It
will choose the price with the best estimated revenue rate
with probability 1− ε and randomly select a price with prob-
ability ε. Further, we use the same batch framework as that
of BLinUCB for the benchmark and the algorithm makes
pricing decisions for each batch. Algorithm 2 presents the
algorithmic details of ε-greedy benchmark we used in this
section. To conclude, for each instance, we implement four

Table 1: Parameter Settings and Experimental Design.

Arrival Coef. Service Coef. Utilization Revenue
θλ θµ Factor Rate

Inst. #1 (0.0102,−0.0018, 0.0020) (0, 0, 10)

10 11 12 13 14 15 16 17 18
Price

0.6

0.7

0.8

0.9

ut
iliz

at
io

n_
fa

ct
or

10 11 12 13 14 15 16 17 18
Price

962.5

965.0

967.5

970.0

972.5

975.0

977.5

980.0

Re
ve

nu
e 

Ra
te

Inst. #2 (0.0115,−0.03, 0) (0, 0, 10)

10 11 12 13 14 15 16 17 18
Price

0.55

0.60

0.65

0.70

0.75

0.80

0.85

ut
iliz

at
io

n_
fa

ct
or

10 11 12 13 14 15 16 17 18
Price

880

900

920

940

960

980

1000

1020

Re
ve

nu
e 

Ra
te

Inst. #3 (0.01, 0.05, 0) (0, 0, 10)

10 11 12 13 14 15 16 17 18
Price

0.5

0.6

0.7

0.8

0.9

1.0

ut
iliz

at
io

n_
fa

ct
or

10 11 12 13 14 15 16 17 18
Price

800

850

900

950

1000

Re
ve

nu
e 

Ra
te

pricing algorithms: BLinUCB and three benchmark poli-
cies with ε = 0.3, 0.2, and 0.1, i.e., the probability for
conducting exploration.

Algorithm 2 ε-greedy Benchmark.

1: Input: T , pL, pU , df , ε.
2: Initialize: τ , Im, M , Pb.
3: for p ∈ Pb do
4: Offer price p, record d̂i(p) for arriving customers and

ĝi(p
′), ∀p′ ∈ [pL, pU ] for leaving customers.

5: if nsm(p) ≥ 8 log(T ) then
6: Update X, Ω̂λ, Ω̂µ,d,yµ
7: Continue.
8: end if
9: end for

10: Compute θ̂λ and θ̂µ by (5) and (6)
11: for m = 1, . . . ,M do
12: With probability 1− ε: Choose

pm = argmaxp∈[pL,pU ] p ·
θ̂Tµ xp

θ̂Tλ xp
.

13: Otherwise, Choose pm ∈ [pL, pU ] uniformly.
14: Offer pm in batch m, i.e., for Imτ periods.
15: Record d̂i(pm) for arriving customers and

ĝi(p), ∀p ∈ P for leaving customers.
16: Update X, Ω̂λ, Ω̂µ,d, yµ; Compute θ̂λ and θ̂µ.
17: end for

We compare the results of the above four pricing policies
with state-independent optimal price (OPT). We present
two figures for the results of each instance (see Figure 2):
the first row shows the offered price over periods of each
algorithm and the second row depicts the cumulative time-
average relaxed regret, i.e., (

∑t
t′=1 J

LP
t′ −

∑t
t′=1 J

π
t′)/t.

Compared with ε-greedy Benchmarks. From the numer-
ical results, BLinUCB performs the best for all instances.
BLinUCB ends up with the state-independent optimal price
in Instances #1 and #3, and with a near-optimal price in
Instance #2. The difference of the revenue rate between the
state-independent optimal price and the last price chosen by
BLinUCB of Instance #2 is small, where the former is 1023
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(a) The offered prices of #1.
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(b) The offered prices #2.
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(c) The offered prices #3..
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(d) Time-average regret of #1.
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(e) Time-average regret #2..
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Figure 2: Offered Price and Time-average Cumulative Regret of Policies in Instances #1 to #3.

and the latter is 1020. One interesting observation is that all
three ε-greedy benchmarks fail to identify the optimal price
for these three instances. One possible reason could be the
lack of exploration in the region where feature vectors are
more vertical to those of implemented prices, resulting in
inaccurate estimation of the coefficients in the linear rela-
tionship. The performance of three ε-greedy benchmarks,
parametrized by ε, varies among different instances.

7. Conclusion
We consider a price-based revenue management problem
with a single reusable resource over a finite time horizon
under incomplete information and give the first rate-optimal
online learning and pricing algorithm that admits a regret
bound of Õ(df

√
T ). Numerical results demonstrate that

BLinUCB converges to optimality very fast and outperforms
other benchmark algorithms.

There are several future research avenues. First, one may
consider multi-product settings (see, e.g., Owen & Simchi-
Levi, 2018; Doan et al., 2020). Second, one may consider
generalizing the current model to accommodate general
arrival and service distributions. However, this would re-
quire developing new coupling arguments to bound the loss
of nonstationarity. Lastly, one may consider settings with
nonstationary demand and/or inhomogeneous personal ac-
tivities (see, Borgs et al., 2014; Besbes et al., 2015; Lei &
Jasin, 2020). Extensions to any of the above settings would
require new methods and techniques.
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A. Appendix for Section 3
Proof of Proposition 1. We show that the decisions variables (π, a, J) associated with any admissible policy must satisfy
the constraints of the linear program (1), and the expected revenue of this admissible policy is exactly the corresponding
objective value in (1).

Consider an arbitrary policy π̂. We obtain the values of decision variables by the following steps. Variable ânt takes the
value of probability that the system has n customers at the beginning of period t under the policy π̂ for n = 0, . . . ,∞ and
t = 1, . . . , T . Therefore, constraints (1c) are immediately satisfied. Variable π̂pnt = 1 if the policy π̂ chooses price p at
state (n, t), otherwise, π̂pnt = 0, for n = 0, . . . ,∞, t = 1, . . . , T , p ∈ P . As a result, constraints (1d) hold because in the
left-hand side we have one variable equal to 1 and others all zero. Variable Ĵnt takes the value of expected revenue collected
before the end of period T from the customers who arrive during period t, when the system has n customers at the beginning
of period t, for n = 0, . . . ,∞, t = 1, . . . , T . Consider arbitrary n and t, we denote the price chosen at state (n, t) by the
policy π̂ as p̂. Then, by plugging in π̂p̂nt = 1, in the right-hand side of constraints (1e), we have λp̂

µp̂
p̂, where λp̂ is the average

number of arrived customers during period t, 1
µp̂

is the average service time for each customer, and p̂ is the revenue when

one customer occupies one unit of resource for one unit of time. Therefore, λp̂µp̂ p̂ denotes the expected revenue collected from
customers who arrive during period t (where assuming all arrived customers being served successfully). Consequently, we
can conclude that the right-hand side of (1e) is as large as the left-hand side, because the right-hand side may also compute
the revenue collected after the end of period T . Hence, constraints (1e) are also satisfied. By the value assignment steps of
ânt and Ĵnt, for n = 0, . . . ,∞, t = 1, . . . , T , one has that the corresponding LP objective value at solution (π̂, â, Ĵ) is J π̂ .
Recall that the discretizing interval of P can be arbitrarily small and thus JLP ≥ Jπ for any admissible policy π as well as
the optimal state-dependent policy π∗.

Proof of Corollary 1. This corollary follows directly from Propositions 1 and 4 in Section 5.1. Based on the above
constructed optimal solution (π̃, ã, J̃), one can compute that the difference between the revenue upper bound JLP and the
collected revenue under the single-price policy Jπ

p̃

is from the transient performance of the system when it starts serving
customers from an empty state at t = 1. The length of the transient state is less than (log(T ))2 with probability higher than
1− 2/T 2 by Proposition 4. Thus, one can derive that when T →∞, JLP − Jπp̃ ≤ O((log(T ))2), which suggests that πp̃ is
asymptotically optimal.

B. Appendix for Section 4
Definition 4. A random variable X with mean E[X] is (τ2, b)-sub-exponential (SE) if

E[exp(λ(X − E[X]))] ≤ exp

(
λ2τ2

2

)
for |λ| ≤ 1

b
.

Examples of sub-exponential (SE) variables include (i) exponential random variables and (ii) χ2 random variables. We refer
readers to Foss et al. (2011) for more properties of sub-exponential distributions.

We invoke a standard concentration inequality for sub-exponentials from Bernstein’s inequality (see, e.g., Rigollet & Hütter
(2015); Boucheron et al. (2013)).
Lemma 1 (Concentration of sub-exponentials from Bernstein’s Inequality). Let X be (τ2, b)-sub-exponential. Then for a
non-negative number t ≥ 0:

P(|X − E[X]| ≥ t) ≤
{

2 exp

(
− t2

2τ2

)
if 0 ≤ t ≤ τ2

b
; 2 exp

(
− t

2b

)
if t ≥ τ2

b

}
.

Lemma 2. (Sub-exponential Property.) If a random variable X follows an exponential distribution with mean 1/λ, then
the random variable X − 1

λ is ( 4
λ2 ,

2
λ )-sub-exponential.

Proof of Lemma 2. According to the definition of sub-exponential random variables, we need to prove that

E
[
exp

(
s

(
X − 1

λ

))]
≤ exp

(
s2 4
λ2

2

)
, ∀s ≤ λ

2
.
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By the moment generating function of exponential distribution, we have for s ≤ λ
2 < λ:

E
[
exp

(
s

(
X − 1

λ

))]
= E [exp (sX)] · exp

(
− s
λ

)
=

λ

λ− s
· exp

(
− s
λ

)
.

Let t = s
λ , we have:

log

(
λ

λ− s
· exp

(
− s
λ

))
= − log(1− t)− t ≤ 2t2 = log

(
exp

(
s2 4
λ2

2

))
.

Lemma 3. Consider a random variable Xi ∼ SE(ν2, α) and β is a non-zero scalar, then βXi ∼ SE(β2ν2, |β|α).

Lemma 4. Consider independent random variables Xi ∼ SE(ν2
i , αi) for i = 1, . . . , n, then X =

∑n
i=1Xi follows

SE(
∑n
i=1 ν

2
i ,maxi αi).

The proofs of Lemma 3 and Lemma 4 follow directly from the definitions of SE variables and we omit the details here.

Proof of Proposition 2. We first show the SE property of θ̂Tλ x
′ and then derive the tail bound.

SE property of θ̂λ. By the computing equation of θ̂λ in (3) and d = Xθλ + ~ε, we can derive

θ̂λ = (XTΩ−1X)−1XTΩ−1Xθλ + (XTΩ−1X)−1XTΩ−1~ε = θλ + (XTΩ−1X)−1XTΩ−1~ε,

where ~ε ∈ RN is a vector of all error terms εi of implemented prices in (2). Let matrix A = (XTΩ−1X)−1XTΩ−1 and
thus θ̂λ = θλ +A~ε. Use row vector ad· to denote the dth row of A and adi to denote elements of A. The dth element of A~ε
is ad·~ε, which follows SE(

∑N
i=1 a

2
di(4/niλ

2
i ),maxi=1,...,N 2|adi|/(niλi)) by Lemmas 3 and 4. Therefore, the dth element

of θ̂λ follows SE(
∑N
i=1 a

2
di(4/niλ

2
i ),maxi=1,...,N 2|adi|/(niλi)) with mean θλ,d.

SE property of θ̂Tλ x′. One has
θ̂Tλ x

′ = x′T (θλ +A~ε) = x′T θλ + x′TA~ε.

Then we focus on the second term. Similarly, use column vector a·i to denote the ith column of A, and thus we
have x′TA = [x′Ta·1,x

′Ta·2, . . . ,x
′Ta·n]. By Lemmas 3 and 4, we can easily derive the second term follows

SE(
∑N
i=1(x′Ta·i)

2(4/niλ
2
i ),maxi=1,...,N 2|x′Ta·i|/(niλi)). By the definitions of matrices Ω andA, the first SE parameter

can be rewritten as
N∑
i=1

(x′Ta·i)
2(4/niλ

2
i ) = 4x′TAΩATx′ = 4x′T (XTΩ−1X)−1x′.

Hence we can rewrite the SE distribution as SE(4x′T (XTΩ−1X)−1x′,maxi=1,...,N 2|x′Ta·i|/(niλi)). Therefore, θ̂Tλ x
′

follows SE(4x′T (XTΩ−1X)−1x′,maxi=1,...,N 2|x′Ta·i|/(niλi)) with mean θTλ x
′.

Concentration bound for SE random variable θ̂Tλ x′. We apply the concentration inequality for SE variables. For SE
variableX with parameters (ν2, α), then P(|X−E[X]| ≥ t) ≤ 2exp(−t2/(2ν2)) if t ≤ ν2/α (this concentration inequality
can be found in, e.g., Boucheron et al., 2013). We can show(

max
i=1,...,N

|x′Ta·i|
niλi

)2

= max
i=1,...,N

(x′Ta·i)
2

n2
iλ

2
i

≤
∑

i=1,...,N

(x′Ta·i)
2

n2
iλ

2
i

(10a)

≤ 1

8 log(T )
·
∑

i=1,...,N

(x′Ta·i)
2

niλ2
i

=
x′T (XTΩ−1X)−1x′

8 log(T )
, (10b)

where the first inequality in (10b) is derived from ni ≥ 8 log(T ). Further, we have√
32 log(T ) · x′T (XTΩ−1X)−1x′ =

4x′T (XTΩ−1X)−1x′

2
√

x′T (XTΩ−1X)−1x′√
8 log(T )

≤ 4x′T (XTΩ−1X)−1x′

maxi=1,...,N 2|x′Ta·i|/(niλi)
. (11a)
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Therefore, we meet the requirement for applying the sub-Gaussian behavior type of concentration bound and we have

P

(
|θ̂Tλ x′ − θTλ x′|√

x′T (XTΩ−1X)−1x′
≥
√

32 log(T )

)
≤ 2exp(−32 log(T ) · x′T (XTΩ−1X)−1x′

8x′T (XTΩ−1X)−1x′
) ≤ 2

T 4
. (12)

Proof of Proposition 3. The proof is based on Proposition 2.

P

(∣∣∣∣∣λpµp − θ̂Tµx

θ̂Tλ x

∣∣∣∣∣ ≤
√

32 log(T )

θ̂Tλ x
G

)

=P

(∣∣∣∣∣λpµp − θTµx

θ̂Tλ x
+
θTµx

θ̂Tλ x
−
θ̂Tµx

θ̂Tλ x

∣∣∣∣∣ ≤
√

32 log(T )

θ̂Tλ x

(
rmax

√
xT (XT Ω̂−1

λ X)−1x +

√
xT (XT Ω̂−1

µ X)−1x

))

≥P

∣∣∣∣∣λpµp − θTµx

θ̂Tλ x

∣∣∣∣∣ ≤ rmax

√
32 log(T ) xT (XT Ω̂−1

λ X)−1x

θ̂Tλ x

 · P
∣∣∣∣∣θTµxθ̂Tλ x

−
θ̂Tµx

θ̂Tλ x

∣∣∣∣∣ ≤
√

32 log(T ) xT (XT Ω̂−1
µ X)−1x

θ̂Tλ x

 .

We analyze the two terms separately. For the first term, we have

P

∣∣∣∣∣λpµp − θTµx

θ̂Tλ x

∣∣∣∣∣ ≤ rmax

√
32 log(T ) xT (XT Ω̂−1

λ X)−1x

θ̂Tλ x


=P

λp
∣∣∣θTλ x− θ̂Tλ x∣∣∣
µp · θ̂Tλ x

≤
rmax

√
32 log(T ) xT (XT Ω̂−1

λ X)−1x

θ̂Tλ x


≥P
(∣∣∣θTλ x− θ̂Tλ x∣∣∣ ≤√32 log(T ) xT (XT Ω̂−1

λ X)−1x

)
≥ 1− 2

T 4
.

For the second term, we have the following inequality by (7):

P

∣∣∣∣∣θTµxθ̂Tλ x
−
θ̂Tµx

θ̂Tλ x

∣∣∣∣∣ ≤
√

32 log(T ) xT (XT Ω̂−1
µ X)−1x

θ̂Tλ x


=P
(∣∣∣θTµx− θ̂Tµx∣∣∣ ≤√32 log(T ) xT (XT Ω̂−1

µ X)−1x

)
≥ 1− 2

T 4
.

Therefore, we have

P

(∣∣∣∣∣λpµp − θ̂Tµx

θ̂Tλ x

∣∣∣∣∣ ≤
√

32 log(T )

θ̂Tλ x
G

)
≥
(

1− 2

T 4

)2

≥ 1− 4

T 4
.

C. Appendix for Section 5.1
The analysis in this section relies on busy period An, ∀n = {1, . . . ,∞}, defined as the minimum time that the system takes
to have n− 1 customers if starting with n customers in the system, i.e., An = min{t: n customers in the system at time
0+ and n − 1 customers in the system at time t}. Note that An, n = 1, . . . , c, are random variables following different
distributions due to difference in the number of servers in use, while An, n = c, . . . ,∞, are i.i.d. random variables (see
Omahen & Marathe, 1978; Daley & Servi, 1998). The analysis also considers the first-order stochastic dominance between
two random variables defined in Definition 1 in Hadar & Russell (1969) and in Seth & Yalonetzky (2014).

Lemma 5. (Lemma 4 in Jia et al. (2020), First-order Stochastic Dominance between Ai and Aj in M/M/c Queue) For
random variables Ai and Aj where i < j ≤ c, Ai first-order dominates Aj , i.e., P(Aj ≤ x) > P(Ai ≤ x) for any x > 0.
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Proof of Lemma 5 (Adapted from Jia et al. (2020)). To compare random variables Ai and Aj where i < j of an M/M/c
queue process Q, we construct an auxiliary process Q̂, which is the same to Q except that when the system has n customers
with j ≤ n ≤ c + j − i, the service rate of Q̂ is n − j + i. Similarly, we define Ân for n = 1, . . . ,∞ of Q̂. Lemma
1 in Omahen & Marathe (1978); Daley & Servi (1998) shows the recursion between An, for n = 1, . . . ,∞. An can be
decomposed into intervals shown in Figure 3. For n = 1, . . . ,∞, define events Ban as where a new customer arrives before

Figure 3: Intervals within Busy Period An.

any current customers leave starting from n customers in the system, and tan as the time when the new customer arrives.
Similarly, define events Bln as where a current customer leaves before any new customer arrives, starting from n customers
in the system and define tln as the time when the first current customer leaves. Therefore, for n = 1, . . . ,∞, the following
recursion holds:

Ān = P (Ban) ·
(
E [tan] + Ān+1 + Ān

)
+ P

(
Bln
)
· E
[
tln
]
. (13)

Comparing Q and Q̂, we conclude that:

1. Âj and Ai have the same distribution, because they have the same arrival and departure rates in every interval in
Figure 3.

2. P(Aj ≤ x) > P(Âj ≤ x), because Âj has the same arrival rate, but a smaller (when n < c+ j − i) or same (when
n ≥ c+ j − i) departure rate in the intervals in Figure 3.

Therefore, P(Aj ≤ x) > P(Ai ≤ x). By Definition 1 in Seth & Yalonetzky (2014), one further has EAj [u(x)] < EAi [u(x)]
for all strictly increasing, continuous utility functions u(x) : [0,∞]→ R. This completes the proof.

Lemma 6. (Lemma 5 in Jia et al. (2020), Concentration Inequality for Independent Samples) This lemma is similar to
Lemma 11 in Chen & Shi (2019a). Let ξi be i.i.d. random variables with mean 0 and standard deviation σ. If the moment
generating function of ξi around 0 is finite, i.e., there exists a constant δ > 0 such that for any s ∈ (−δ, δ) it holds that

E[esξi ] <∞,

then

P

 1

S̄

S̄∑
i=1

ξi > 2σ
√
− log ρ

 ≤ e− log(T )3/2

.
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where S̄ =
⌊

log(T )3/2

− log ρ

⌋
.

Proof of Lemma 6 (Adapted from Jia et al. (2020)). For s in [−δ, δ] define

Φ(s) = logE[esξi ].

For x > 0 and s ∈ [0, ρ), by Markov’s inequality one has

P

 1

S̄

S̄∑
i=1

ξi > x

 ≤ eS̄(Φ(s)−sx).

Let s∗ = x
σ2 and apply Taylor’s expansion to the third order around 0, one has

Φ(s∗) =
1

2
σ2(s∗)2 +

1

6
Φ′′′(0)(s∗)3.

Therefore, one has

Φ(s∗)− s∗x ≤ − x2

2σ2
+ C3

x3

σ6
≤ − x2

4σ2
.

Plug in x = 2σ
√
− log ρ then we have

P

 1

S̄

S̄∑
i=1

ξi > 2σ
√
− log ρ

 ≤ eS̄(− x2

4σ2

)
= e− log(T )3/2

.

For t = 0, . . . , T , define events
At = {St = Ŝt after time t}.

Therefore, systems St and Ŝt couple after t is equivalent to that event At happens, ∀t ≥ 0.

Proof of Proposition 4 (Adapted from Jia et al. (2020)). For any t ≥ τ , one has

P(Aτ ) = P(Ŝτ = Sτ ),

where the equality holds because once Ŝτ = Sτ , then the two processes have an equal number of customers at any time
thereafter and thus the two processes couple. Define S̄ =

⌊
(log(T ))3/2

− log ρ

⌋
, we have

P(Ŝτ = Sτ ) ≥ P(Ŝτ = Sτ |Ŝ0 ≤ S̄)P(Ŝ0 ≤ S̄) ≥ P

 S̄∑
n=1

An ≤ τ

P(Ŝ0 ≤ S̄). (14a)

Define the stationary distribution for n customers in the system as `n, n ≥ 0, one has (by Assumption 1)

P(S0 ≤ S̄) = 1− `0c
c

c!
ρS̄+1 ≥ 1− 1

T 2
.

By Lemma 5, A1 first-order dominates An where n > 1, and thus one can derive that P(
∑S̄
n=1A1 ≤ τ) is a valid lower

bound of P(
∑S̄
n=1An ≤ τ). Define Ā1 as the mean and σ1 as the standard deviation of random variable A1. Based on the

recursive analysis of M/M/c queue (see Omahen & Marathe, 1978; Daley & Servi, 1998), Ā1 can be derived by Āc, where
Āc = 1

cµ−λ . By Lemma 6, we have

P(Ŝτ = Sτ ) ≥ P

 S̄∑
n=1

A1 ≤ τ

(1− 1

T 2

)
(15a)
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=

1− P

 S̄∑
n=1

(
A1 − Ā1

)
> τ − S̄Ā1

(1− 1

T 2

)
(15b)

=

1− P

 S̄∑
n=1

(
A1 − Ā1

)
> (log(T ))2 − Ā1

⌊
(log(T ))3/2

− log ρ

⌋(1− 1

T 2

)
(15c)

≥

1− P

 S̄∑
n=1

(
A1 − Ā1

)
> C3(log(T ))

7
4

(1− 1

T 2

)
(15d)

≥

1− P

 1

S̄

S̄∑
n=1

(
A1 − Ā1

)
> C4(log(T ))

1
4

(1− 1

T 2

)
(15e)

≥

1− P

 1

S̄

S̄∑
n=1

(
A1 − Ā1

)
> 2σ1

√
− log ρ

(1− 1

T 2

)
(15f)

≥
(

1− e−(log(T ))3/2
)(

1− 1

T 2

)
(15g)

≥
(

1− 1

T 2

)2

≥ 1− 2

T 2
, (15h)

where C3 and C4 are positive constants.

Proof of Proposition 5 (Adapted from Jia et al. (2020)). Without loss of generality, we consider two cases, (i) the price
changes from a lower price pl to a higher price ph and (ii) the price changes from a higher price ph to a lower price pl. For
each case, we further consider two sub-cases, (i) the unit service rate µpl > µph and (ii) µpl ≤ µph . For each case, we
construct a virtual system and show that the actual probability is bounded by the probability with which the virtual system
reaches the steady state, respectively. Denote the actual system as S and the virtual system as S̆. For t ∈ {τ, 2τ}, define
events:

Ct = {S reaches the steady state under the new price before t}, (16)

C̆t = {S̆ reaches the steady state under the new price before t}. (17)

Case (1.1): from pl to ph and µpl > µph . Without loss of generality, the system starts from t = 0 with S0 customers in the
system under service rate µpl . New customers arrive under rate λph with an exponential service time with mean 1/µph .
Consider a virtual system S̆ starts with S0 customers. The future customers arrive following the same process as the actual
system, i.e., with rate λph . All the existing customers and future customers have an exponential service time with mean
1/µph . Therefore, the probability of the virtual system reaching the steady state before 2τ is the probability that an M/M/c
queue under price ph reaching the steady state with the number of initial customers as S0. Therefore, we can compute the
probability as:

P
(
C̆2τ
)

(18a)

≥P
(
C̆2τ
∣∣∣S0 ≤ 2S̄h

)
· P
(
S0 ≤ 2S̄h

)
(18b)

≥P

2S̄h∑
n=1

Ā1h ≤ 2τ

 · P (S0 ≤ 2S̄h
)

(18c)

≥

P

 S̄h∑
n=1

Ā1h ≤ τ

2

· P
(
S0 ≤ 2S̄h

)
(18d)

≥
(

1− 1

T 2

)2(
1− `0lc

c

c!
ρ2S̄h+1
l

)
(18e)

≥
(

1− 1

T 2

)2(
1− ρ

2
log ρh

(−(log(T ))3/2)

l

)
(18f)
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≥
(

1− 1

T 2

)3

(18g)

≥1− 3

T 2
, (18h)

where S̄h = (log(T ))3/2

− log ρph
and `0l is the steady-state probability of the system with zero customers under price pl. The

inequality (18g) holds because of Assumption 2.3.

The virtual system considers a longer service time for the existing customers arrived under a lower price in the previous
batch. Therefore, in probabilistic sense, the virtual system takes longer time to reach steady state:

P(C2τ ) ≥ P(C̆2τ ) ≥ 1− 3

T 2
. (19)

Case (1.2): from pl to ph and µpl ≤ µph . Consider a virtual system S̆ starts with S0 customers. The future customers
arrive as the process under pl, i.e., with rate λpl . All the existing customers and future customers have an exponential
service time with mean 1

µpl
. Therefore, the virtual system is still an M/M/c queue under pl. Denote the first time that the

virtual system has zero customers as t̂. After t̂, the further customers arrive with rate λph have an exponential service time
with mean 1/µph . Denote the time starting from t̂ that the virtual system uses to reach the steady state as t̆. Therefore, the
probability of the virtual system reaching the steady state under pl before 2τ is the probability that t̂+ t̆ ≤ 2τ . Therefore,
we can compute the probability as:

P
(
C̆2τ
)

(20a)

=P
(
t̆+ t̂ ≤ 2τ

)
(20b)

≥P
(
t̆+ t̂ ≤ 2τ |S0 ≤ 2S̄l

)
· P
(
S0 ≤ 2S̄l

)
(20c)

≥P
(
t̆ ≤ τ

)
· P
(
t̂ ≤ τ |S0 ≤ 2S̄l

)
· P
(
S0 ≤ 2S̄l

)
(20d)

≥
(

1− 2

T 2

)2

(20e)

≥1− 4

T 2
, (20f)

where (20e) is by Proposition 4. The virtual system considers a longer (or equal) service time for the existing customers
arrived under a lower price in the previous batch. Therefore, in probabilistic sense, the virtual system takes longer (or equal)
time to reach steady state:

P(C2τ ) ≥ P(C̆2τ ) ≥ 1− 4

T 2
. (21)

Case (2.1): from ph to pl and µpl > µph . Without loss of generality, the system starts from t = 0 with S0 customers in
the system under service rate µph . New customers arrive under rate λpl = λph + ∆λ, where ∆λ ≥ 0 by Assumption 2.1
and ∆λ ≤

ρpl
−3e log pl

by Assumption 2.2. We can manually split the arriving process of new customers as two independent
Poisson arrival processes with rates λph and ∆λ. Consider a virtual system that starts with S0 customers. The arrival
processes of the new customers are the same as the actual system, i.e., λph and ∆λ. The customers arrive according to the
process with rate λph enter the system with an exponential service time with mean 1/µph . The customers arriving according
to the process with rate ∆λ are waiting in another buffer queue. Denote the first time that the virtual system (except for
the buffer queue) has zero customers as t̂ and the length of the buffer queue at this time as S̆buffer

t̂
. Starting from t̂, the

buffer queue merges with the virtual service system. All the customers in the buffer queue and further customers have an
exponential service time with mean 1

µpl
. Therefore, after t̂, the system is an M/M/c queue with balking and reneging under

price pl with an initial number of customers as S̆buffer
t̂

. We analyze the virtual system before and after t̂ separately. Before t̂,
the virtual system starts with a steady state under price ph and keeps in the steady state until t̂. As in Proposition 4, the
virtual system reaches an empty state within time τ with a high probability:

P
(
t̂ ≤ τ

)
≥ 1− 2

T 2
. (22)
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Similarly, by Proposition 4, if the starting length of the system S̆buffer
t̂

is less than (log(T ))3/2

− log ρpl
, then the virtual system reaches

the steady state under price pl after τ with probability 1− 1
T 2 , starting at time t̂. Therefore, we can compute the probability

that the virtual queue reaches the steady state within 2τ as:

P
(
C̆2τ
)

(23a)

≥P
(
C̆2τ |t̂ ≤ τ

)
· P
(
t̂ ≤ τ

)
(23b)

≥P
(
C̆2τ
∣∣∣t̂ ≤ τ, S̆buffer

t̂
≤ (log(T ))3/2

− log ρpl

)
· P
(
S̆buffer
t̂

≤ (log(T ))3/2

− log ρpl

∣∣∣t̂ ≤ τ) · P (t̂ ≤ τ) (23c)

=

(
1− 2

T 2

)(
1− 1

T 2

)
· P
(
S̆buffer
t̂

≤ (log(T ))3/2

− log ρpl

∣∣∣t̂ ≤ τ) (23d)

≥
(

1− 3

T 2

)
· P
(
S̆buffer
τ ≤ (log(T ))3/2

− log ρpl

)
. (23e)

The random variable S̆buffer
τ follows a Poisson distribution with mean τ∆pl and thus we have:

P
(
S̆buffer
τ ≥ (log(T ))3/2

− log ρpl

)
(24a)

≤min
a

e
τ∆pl

ea−τ∆pl
−a (log(T ))3/2

− log ρpl (24b)

≤e
−(log(T ))3/2

(
1+log(− log ρpl

∆λ

√
log(T ))

log ρpl

)
(24c)

≤e−(log(T ))3/2

(24d)

≤ 1

T 2
, (24e)

where (24b) is by Chernoff bound. The inequality (24c) holds because 1+log(− log ρpl∆λ

√
log(T ))

log ρpl
≥ 1 by Assumption 2.3.

Therefore, we can future derive that

P
(
C̆2τ
)
≥
(

1− 3

T 2

)(
1− 1

T 2

)
≥ 1− 4

T 2
. (25)

The virtual system considers a longer service time for part of the new customers and holds the rest part of the new customers
in the buffer queue even there are available resources before t̂. Therefore, in probabilistic sense, the virtual system takes
longer time to reach steady state:

P (C2τ ) ≥ P
(
C̆2τ
)
≥ 1− 4

T 2
. (26)

Case (2.2): from ph to pl and µpl ≤ µph . Without loss of generality, the system starts from t = 0 with S0 customers
in the system under service rate µph . Consider a virtual system S̆ starts with S0 customers in the system under service
rate µpl . The future customers arrive in the process under rate λpl with an exponential service time with mean 1

µpl
. To

compare the coupling speed of the virtual queue, we consider the speed conditional on S0 ≤ S̄l. Consider another virtual
system Ŝ starts with Ŝ0, sampled from the steady-state distribution under pl and keeps in steady-state thereafter. Therefore,
similar to Proposition 4, the probability that the actual system S and the virtual system S̆ reach the steady-state equals to
the probability that these two systems couple with the virtual system Ŝ. We have shown that once they reach empty state
together, then they couple with each other. For this case, we show an even stronger result that the actual system reaches the
steady-state under pl within τ . Define events:

C̆0
τ = {S̆ reaches the empty state before τ}, (27)

Ĉ0
τ = {Ŝ reaches the empty state before τ}, (28)

C0
τ = {S reaches the empty state before τ}. (29)
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Based on the above analysis, we can derive:

P (Cτ ) (30a)

≥P
(
Cτ |S0 ≤ S̄l

)
· P
(
S0 ≤ S̄l

)
(30b)

≥P
(
C0
τ |S0 ≤ S̄l

)
· P
(
S0 ≤ S̄l

)
· P
(
Ĉ0
τ

)
(30c)

≥P
(
C̆0
τ |S0 ≤ S̄l

)
· P
(
S0 ≤ S̄l

)
· P
(
Ĉ0
τ

)
(30d)

≥P
(
C̆0
τ |S0 ≤ S̄l

)
· P
(
S0 ≤ S̄l

)
· P
(
Ĉ0
τ |Ŝ0 ≤ S̄l

)
· P
(
Ŝ0 ≤ S̄l

)
(30e)

≥P
(
C̆0
τ |S0 ≤ S̄h

)
· P
(
S0 ≤ S̄h

)
· P
(
Ĉ0
τ |Ŝ0 ≤ S̄l

)
· P
(
Ŝ0 ≤ S̄l

)
(30f)

≥
(

1− 1

T 2

)4

(30g)

≥1− 4

T 2
, (30h)

where S̄l = (log(T ))3/2

− log ρpl
and S̄h = (log(T ))3/2

− log ρph
. The inequality (30f) is by Assumption 2.1 and µpl < µph . The inequality

(30g) is by the intermediate results we derive in Proposition 4.

D. Appendix for Section 5.2

For notation simplicity, we use ‖x‖M =
√
xTMx to denote the matrix norm of vector x induce by a positive semidefinite

matrix M . Let Mλ,m = XT
mΩ̂−1

λ,mXm and Mµ,m = XT
mΩ̂−1

µ,mXm, where the subscript m represents the results and
information at the beginning of batch m. Therefore, at the beginning of batch m with a set of implemented prices
p = 1, . . . , df +m− 1, we can rewrite U(p) as(

θ̂Tµ,mx

θ̂Tλ,mx
+

√
32 log(T )

θ̂Tλ,mx

(
rmax‖x‖M−1

λ,m
+ ‖x‖M−1

µ,m

))
p (31)

for any new price p with a feature vector x. We also rewrite the confidence radius of price p at the beginning of batch m as

Radm(p) =

√
32 log(T )

θ̂Tλ,mx

(
rmax‖x‖M−1

λ,m
+ ‖x‖M−1

µ,m

)
p.

For the sake of regret analysis, we shall further assume that the following assumptions hold.
Assumption 3. The norm of covariates in {xp, p ∈ [pL, pU ]} is bounded: there exists Cλ, Cµ <∞ such that for all price
p ∈ [pL, pU ], the corresponding feature vector xp and the underlying arrival and service rates satisfy λp‖xp‖2 ≤ Cλ and
µp‖xp‖2 ≤ Cµ.
Assumption 4. The smallest eigenvalue of

∑
p∈Pb λ

2
mxpx

T
p is lower-bounded by lλ and the smallest eigenvalue of∑

p∈Pb µ
2
mxpx

T
p is lower-bounded by lµ.

These two assumptions are mild, only requiring information about boundary cases of unknown system parameters. Assump-
tion 3 can be satisfied if the firm knows upper bounds of the covariates of any context vectors ‖xp‖2 ≤ Cf , any arrival rates
λp ≤ λmax, and any service rates µp ≤ µmax. Then Cλ can take the value of λmaxCf and Cµ can take the value of µmaxCf .
Assumption 4 can be satisfied if the firm knows an lower bound lf for the smallest eigenvalue of

∑
p∈Pb xpx

T
p , and lower

bounds for any arrival rates λp ≥ λmin and any service rates µp ≥ µmin. Then lλ can take the value of λ2
minlf and lµ can

take the value of µ2
minlf . Both assumptions are used in the proof of Lemma 8.

Proof of Theorem 1. We bound the regret of Warm-up and Learning Phases separately.

Regret of the Warm-up Phase. The difference between J∗Warm-up and JBLinUCB
Warm-up is at most linear on the length of the

Warm-up Phase, which is O(df log(T )). Therefore we can directly have

RegretWarm-up(πBLinUCB, T ) = O(df log(T )). (32)
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Regret of nonstationarity during the Learning Phase. The expected revenue collected in batch m can be separated into
two parts: the revenue collected during the transient state (i.e., the first 2τ periods) and during the steady state (i.e., the
rest periods in this batch). We denote the offered price of batch m in BLinUCB as pm. Therefore, the expected revenue
collected in batch m is

Jm(pm) = Jm,0∼2τ (pm) + Jm,2τ∼Imτ (pm),

where Jm,0∼2τ (pm) denotes the expected revenue collected in the first 2τ periods and Jm,2τ∼Imτ (pm) denotes the expected
revenue collected from (2τ + 1)th period to the end of batch m. We define event C2τ as that the system reaches the steady
state under the new price within the first 2τ periods and define C̄2τ as the complementary event of C2τ . By Proposition 5, we
have P[C2τ ] ≥ 1− 4

T 2 . Consequently, we define Jm,C2τ (pm) to be the expected value of Jm,2τ∼Imτ (pm) conditional on
C2τ and Jm,C̄2τ (pm) similarly. As a result, we can express the expected revenue during batch m as:

Jm(pm) = Jm,0∼2τ (pm) + Jm,C2τ (pm)P(C2τ ) + Jm,C̄2τ (pm)
(
1− P(C2τ )

)
≥ O(τ) +

(
pmλpm
µpm

)
(Imτ − 2τ)

(
1− 4

T 2

)
+O

(
Imτ − 2τ

T 2

)
=

(
pmλpm
µpm

)
Imτ −O(τ)

= r(λpm , µpm , pm)Imτ −O(τ).

(33)

Define ∆(pm) = r(λp̃, µp̃, p̃)− r(λpm , µpm , pm). Recall JLP
Learning, m = r(λp̃, µp̃, p̃)Imτ . Therefore, the relaxed regret of

batch m can be bounded by
JLP

Learning, m − J
πBLinUCB
Learning, m ≤ ∆(pm)Imτ +O(τ).

Regret of suboptimality during the Learning Phase. We start by analyzing the regret of one batch. If the algorithm
selects pm for batch m, then we can still compute the time average regret of batch m (i.e., the loss of the revenue rate due to
suboptimality). Furthermore, we can have ∆(pm) bounded by

min
{(
r(λp̃, µp̃, p̃)− Um(p̃)

)
+
(
Um(pm)− Lm(pm)

)
+
(
Lm(pm)− r(λpm , µpm , pm)

)
, r(λp̃, µp̃, p̃)

}
(34a)

≤min
{(
Um(pm)− Lm(pm)

)
, r(λp̃, µp̃, p̃)

}
+
(
r(λp̃, µp̃, p̃)− Um(p̃)

)
+
(
Lm(pm)− r(λpm , µpm , pm)

)
, (34b)

where (34a) is because the revenue rates are all non-negative. In the following proof we will consider the above three terms
separately.

We further analyze the first term of (34b).

min
{(
Um(pm)− Lm(pm)

)
, r(λp̃, µp̃, p̃)

}
= min

{
2Radm(pm),

λp̃
µp̃
p̃

}
= min

{
2rmaxpm

√
32 log(T )

(
1

θ̂Tλ,mx
‖xm‖M−1

λ,m
+

1

rmaxθ̂Tµ,mxm
‖xm‖M−1

µ,m

)
,
λp̃
µp̃
p̃

}

≤min

{
2rmaxp̃

√
32 log(T )

(
1

θ̂Tλ,mxm
‖xm‖M−1

λ,m
+

1

rmaxθ̂Tµ,mxm
‖xm‖M−1

µ,m

)
, rmaxp̃

}

≤rmaxp̃ ·min

{
2
√

32 log(T )

(
1

θ̂Tλ,mxm
‖xm‖M−1

λ,m
+

1

rmaxθ̂Tµ,mxm
‖xm‖M−1

µ,m

)
, 1

}
,

with rmax = maxp λp/µp and Radm(pm) defined in (31). Take the expectation of both sides, we can derive that the
expected value of this time average suboptimality loss is upper bounded by

E
[
min

{
2Radm(pm),

λp̃
µp̃
p̃

}]
(35a)
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≤E

[
rmaxp̃ ·min

{
2
√

32 log(T )

(
E

[
1

θ̂Tλ,mxm

]
‖xm‖M−1

λ,m
+ E

[
1

rmaxθ̂Tλ,mxm

]
‖xm‖M−1

µ,m

)
, 1

}]
(35b)

≤E
[
rmaxp̃ ·min

{
2
√

32 log(T )

(
λpm‖xm‖M−1

λ,m
+
λpm
rmax

‖xm‖M−1
µ,m

)
, 1

}]
(35c)

≤E
[
rmaxp̃ ·min

{
2
√

32 log(T )
(
λpm‖xm‖M−1

λ,m
+ µpm‖xm‖M−1

µ,m

)
, 1
}]

. (35d)

Now we can analyze the cumulative regret by the end of the learning phase.

RegretLearning(πBLinUCB, T ) =

M∑
m=1

(
JLP

Learning, m − J
πBLinUCB
Learning, m

)
(36a)

≤
M∑
m=1

Imτ min
{(
Um(pm)− Lm(pm)

)
, r(λp̃, µp̃, p̃)

}
+

M∑
m=1

Imτ
(
r(λp̃, µp̃, p̃)− Um(p̃)

)
(36b)

+

M∑
m=1

Imτ
(
Lm(pm)− r(λpm , µpm , pm)

)
+

M∑
m=1

O(τ).

We first analyze the first term of (36b). The total number of batches is log2

(
1 +

T−df log T
2(log(T ))2

)
= O

(
log(T )

)
. Plug in the

result in (35) we have:
M∑
m=1

Imτ min
{(
Um(pm)− Lm(pm)

)
, r(λp̃, µp̃, p̃)

}
≤

M∑
m=1

Imτ · rmaxp̃ ·min
{

2
√

32 log(T )
(
λpm‖xm‖M−1

λ,m
+ µpm‖xm‖M−1

µ,m

)
, 1
}

+O(τ log(T ))

=rmaxp̃ ·
M∑
m=1

Imτ ·
(

min
{

2
√

32 log(T )λpm‖xm‖M−1
λ,m

, 1
}

+ min
{

2
√

32 log(T )µpm‖xm‖M−1
µ,m

, 1
})

+O(τ log(T )).

(37)

By Cauchy-Schwarz inequality, we can derive that
M∑
m=1

Imτ ·min
{

2
√

32 log(T )λpm‖xm‖M−1
λ,m

, 1
}

(38a)

≤
√
T ·

√√√√ M∑
m=1

Imτ ·min

{
128 log(T )λ2

pm‖xm‖
2
M−1

λ,m

, 1

}
(38b)

≤
√
T ·

√√√√ M∑
m=1

Imτ · 128 log(T ) ·min

{
λ2
pm‖xm‖

2
M−1

λ,m

,
1

128 log(T )

}
(38c)

≤
√
T ·

√√√√ M∑
m=1

Imτ · 128 log(T )

(
1 +

1

128 log(T )

)
· log

(
1 + λ2

pm‖xm‖
2
M−1

λ,m

)
(38d)

=
√

(128 log(T ) + 1)T ·

√√√√ M∑
m=1

Imτ · log

(
1 + λ2

pm‖xm‖
2
M−1

λ,m

)
(38e)

=
√

(128 log(T ) + 1)T ·O


√√√√ M∑
m=1

nm · log

(
1 + λ2

pm‖xm‖
2
M−1

λ,m

) (38f)

≤
√

(128 log(T ) + 1)T ·O

(√
O(τ) + 2Kλdf log

(
C2
λO(T )

8lλ log(T )

))
, (38g)
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where (38d) is by the fact that x ≤ (α+ 1) log(1 + x) with 0 ≤ x ≤ α, (38f) is by O(Imτ) = O(nm), and (38g) is from
Lemma 7 (see Appendix D).

With (38), we can bound the regret in (37) as:

M∑
m=1

Imτ min
{(
Um(pm)− Lm(pm)

)
, r(λp̃, µp̃, p̃)

}

≤rmaxp̃ ·

[√
(128 log(T ) + 1)T ·O

(√
O(τ) + 2dfKλ log

(
C2
λO(T )

8lλ log(T )

)
+√

O(τ) + 2dfKµ log

( C2
µO(T )

8lµ log(T )

))]
+O(τ log(T ))

≤O
(

log(T )
√
dfT log(T )

)
.

Below we analyze the second term of (36b), and the same logic applies to the third term, of which we omit the details here.

M∑
m=1

E
[(
r(λp̃, µp̃, p̃)− Um(p̃)

)]
Imτ (39a)

≤
M∑
m=1

E
[(
r(λp̃, µp̃, p̃)− Um(p̃)

)
1
(
r(λp̃, µp̃, p̃) > Um(p̃)

)]
Imτ (39b)

≤
M∑
m=1

E
[
r(λp̃, µp̃, p̃)1

(
r(λp̃, µp̃, p̃) > Um(p̃)

)
− Um(p̃)1

(
r(λp̃, µp̃, p̃) > Um(p̃)

)]
Imτ (39c)

=

M∑
m=1

r(λp̃, µp̃, p̃)P
(
r(λp̃, µp̃, p̃) > Um(p̃)

)
Imτ −

M∑
m=1

E
[
Um(p̃)1

(
r(λp̃, µp̃, p̃) > Um(p̃)

)]
Imτ (39d)

≤
M∑
m=1

r(λp̃, µp̃, p̃)P
(
r(λp̃, µp̃, p̃) > Um(p̃)

)
Imτ (39e)

≤O
(

1

T 3

)
, (39f)

where (39e) is because Um(p̃) > 0 by Definition 3, and (39f) follows Proposition 3.

Summing over the four terms of (36b) we bound the relaxed regret during the learning phase as:

RegretLearning(πBLinUCB, T ) =

M∑
m=1

E
[
∆(pm)Imτ

]
+

M∑
m=1

O(τ)

=O

(
log(T )

√
dfT log(T )

)
+O

(
1

T 3

)
+O

(
((log(T ))3

)
=O

(
log(T )

√
dfT log(T )

)
.

Total Regret of BLinUCB algorithm. By adding up the relaxed regret during the Warm-up and Learning Phases, we have
the regret of BLinUCB algorithm as:

Regret(πBLinUCB, T ) = RegretWarm-up(πBLinUCB, T ) + RegretLearning(πBLinUCB, T ) (40a)

= O(df log(T )) +O

(
log(T )

√
dfT log(T )

)
(40b)

= O
(
df log(T )

√
T log(T )

)
(40c)
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= Õ
(
df
√
T
)
. (40d)

Lemma 7. ConsiderKλ is a positive constant such that for any two prices p1 and p2, the collected arrival time observations
nm(p1) and nm(p2) during a certain length of periods (≥ 2τ ) has nm(p1) ≤ Kλnm(p2) with a high probability, i.e.,
1− 1/T 4. Constant Kλ is defined similarly for the number of service time observations. For BLinUCB algorithm, one has

M∑
m=1

nm · log
(

1 + λ2
pm‖xm‖

2
M−1

λ,m

)
≤ O(τ) + 2Kλdf log

(
C2
λO(T )

8lλ log(T )

)
and

M∑
m=1

nm · log
(

1 + µ2
pm‖xm‖

2
M−1

µ,m

)
≤ O(τ) + 2Kµdf log

(
C2
µO(T )

8lµ log(T )

)
.

Proof of Lemma 7. Without loss of generality, it is enough to prove the equation for the arrival process, i.e., the equation
related to λ. By the definition ofMλ,m, we have

Mλ,m+1 =Mλ,m + nλ,mλ
2
mxmxTm.

We further consider notationMλ,m,i = Mλ,m + i · λ2
mxmxTm and thusMλ,m,0 = Mλ,m andMλ,m,nm = Mλ,m+1.

Therefore, we have

log
(

1 + λ2
pm+1
‖xm+1‖2M−1

λ,m+1

)
≤ log

(
1 + λ2

pm+1
‖xm+1‖2M−1

λ,m,i

)
, ∀i = 1, . . . , nλ,m.

By the theory of projection and by the definition ofMλ,m,i, we further have

log
(

1 + λ2
pm+1
‖xm+1‖2M−1

λ,m,i

)
≤ log

(
1 + λ2

pm‖xm‖
2
M−1

λ,m,i

)
, ∀i = 1, . . . , nλ,m.

The number of observations in one batch is in the same order as the length of the batch, i.e, nm = O(Imτ). Recall the
batch size is Imτ = 2mτ , thus with a high probability that nm ≤ 2Kλnm−1. Further we can derive the following bound for
m = 2, . . . ,M :

nm · log
(

1 + λ2
pm‖xm‖

2
M−1

λ,m

)
≤2

nm/2∑
i=1

log
(

1 + λ2
pm−1

‖xm−1‖2M−1
λ,m−1,i

)
≤2Kλ

nm−1∑
i=1

log
(

1 + λ2
pm−1

‖xm−1‖2M−1
λ,m−1,i

)
.

Sum over batches m = 1, . . . ,M , we can reach the following result:

M∑
m=1

nm · log
(

1 + λ2
pm‖xm‖

2
M−1

λ,m

)
(41a)

≤O(τ) + 2Kλ
M∑
m=2

nm−1∑
i=1

log
(

1 + λ2
pm−1

‖xm−1‖2M−1
λ,m−1,i

)
(41b)

≤O(τ) + 2Kλdf log

(
C2
λO(T )

8lλ log(T )

)
. (41c)

where (41c) is by Lemma 8.
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Lemma 8. The feature vector of the price selected in batch m is denoted by xm, the number of arrival time observations of
this price is denoted by nm, and the number of service time observations of this price is denoted by nsm. Then

M−1∑
m=1

nm−1∑
i=1

log
(

1 + λ2
pm‖xm‖

2
M−1

λ,m,i

)
≤ df log

(
C2
λO(T )

8lλ log(T )

)
.

and
M−1∑
m=1

nm−1∑
i=1

log
(

1 + µ2
pm‖xm‖

2
M−1

µ,m,i

)
≤ df log

(
C2
µO(T )

8lµ log(T )

)
.

Proof of Lemma 8. The proof follows similar ideas of the proof of Proposition 3 in Filippi et al. (2010). Without loss
of generality, we firstly prove for arrival processes, i.e., the equation related to λ. By the definition of Mλ,m,i for
i = 0, 1, . . . , nm, we have

Mλ,m,i+1 =Mλ,m,i + λ2
mxmxTm, ∀i = 1, . . . , nm

and two boundary equations,Mλ,m,0 =Mλ,m andMλ,m,nm =Mλ,m+1. Therefore, we can compute:

det(Mλ,m+1) = det
(
Mλ,m,nm−1(I + λmM−1/2

λ,m,nm−1xm(λmM−1/2
λ,m,nm−1xm)T )

)
(42a)

= det (Mλ,m,nm−1) · det
(
I + λmM−1/2

λ,m,nm−1xm(λmM−1/2
λ,m,nm−1xm)T

)
(42b)

= det (Mλ,m,nm−1) ·
(

1 + λ2
m‖xm‖2M−1

λ,m,nm−1

)
(42c)

= det (Mλ,m)

nm−1∏
i=0

(
1 + λ2

m‖xm‖2M−1
λ,m,i

)
(42d)

= det (Mλ,1)

m∏
k=1

nk−1∏
i=0

(
1 + λ2

k‖xk‖2M−1
λ,k,i

)
, (42e)

where (42c) follows the fact that 1 + λ2
m‖xm‖2M−1

λ,m

is an eigenvalue of the matrix I + λmM−1/2
λ,m xm(λmM−1/2

λ,m xm)T

and that all the other eigenvalues are equal to 1.

Considering the left-hand side of the equation in the lemma, we have

M−1∑
m=1

nm−1∑
i=1

log
(

1 + λ2
pm‖xm‖

2
M−1

λ,m,i

)
<

M∑
m=1

nm−1∑
i=1

log
(

1 + λ2
pm‖xm‖

2
M−1

λ,m,i

)
≤ log

M∏
m=1

nm−1∏
i=0

(
1 + λ2

m‖xm‖2M−1
λ,m,i

)
= log

(
det(Mλ,M )

det(Mλ,1)

)
.

Denote the collected arrival time observations during the Warm-up Phase as nw. Note that the trace ofMm+1 is upper
bounded by C2

λ(nw +
∑m
k=1 nk) according to Assumption 3. Then, since the trace of the positive definite matrixMm+1 is

equal to the sum of its eigenvalues and det(Mm+1) is the product of its eigenvalues, we have det(Mm+1) ≤ (C2
λ(nw +∑m

k=1 nk))df . In addition, det(Mλ,1) ≥ (8 log(T ) · lλ)df by Assumption 4 and the algorithmic design that each price
p ∈ Pb has more than 8 log(T ) number of observations during the Warm-up phase. Thus

M−1∑
m=1

nm−1∑
i=1

log
(

1 + λ2
pm‖xm‖

2
M−1

λ,m,i

)
≤ df log

(
C2
λ

∑M
m=1 nm

8lλ log(T )

)
= df log

(
C2
λO(T )

8lλ log(T )

)
.

Similarly, we can prove the part for the service process, i.e., the equation related to µ.


