
Score-based Generative Modeling of Graphs via
the System of Stochastic Differential Equations

Jaehyeong Jo 1 * Seul Lee 1 * Sung Ju Hwang 1 2

Abstract

Generating graph-structured data requires learn-
ing the underlying distribution of graphs. Yet,
this is a challenging problem, and the previous
graph generative methods either fail to capture the
permutation-invariance property of graphs or can-
not sufficiently model the complex dependency
between nodes and edges, which is crucial for
generating real-world graphs such as molecules.
To overcome such limitations, we propose a novel
score-based generative model for graphs with a
continuous-time framework. Specifically, we pro-
pose a new graph diffusion process that mod-
els the joint distribution of the nodes and edges
through a system of stochastic differential equa-
tions (SDEs). Then, we derive novel score match-
ing objectives tailored for the proposed diffusion
process to estimate the gradient of the joint log-
density with respect to each component, and in-
troduce a new solver for the system of SDEs to
efficiently sample from the reverse diffusion pro-
cess. We validate our graph generation method
on diverse datasets, on which it either achieves
significantly superior or competitive performance
to the baselines. Further analysis shows that our
method is able to generate molecules that lie close
to the training distribution yet do not violate the
chemical valency rule, demonstrating the effec-
tiveness of the system of SDEs in modeling the
node-edge relationships. Our code is available at
https://github.com/harryjo97/GDSS.

*Equal contribution 1Korea Advanced Institute of Science
and Technology (KAIST), Seoul, South Korea 2AITRICS,
South Korea. Correspondence to: Jaehyeong Jo <har-
ryjo97@kaist.ac.kr>, Seul Lee <seul.lee@kaist.ac.kr>, Sung Ju
Hwang <sjhwang82@kaist.ac.kr>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Learning the underlying distribution of graph-structured
data is an important yet challenging problem that has
wide applications, such as understanding the social net-
works (Grover et al., 2019; Wang et al., 2018), drug de-
sign (Simonovsky & Komodakis, 2018; Li et al., 2018c),
neural architecture search (NAS) (Xie et al., 2019; Lee et al.,
2021), and even program synthesis (Brockschmidt et al.,
2019). Recently, deep generative models have shown suc-
cess in graph generation by modeling complicated structural
properties of graphs, exploiting the expressivity of neural
networks. Among them, autoregressive models (You et al.,
2018b; Liao et al., 2019) construct a graph via sequential de-
cisions, while one-shot generative models (De Cao & Kipf,
2018; Liu et al., 2019) generate components of a graph
at once. Although these models have achieved a certain
degree of success, they also possess clear limitations. Au-
toregressive models are computationally costly and cannot
capture the permutation-invariant nature of graphs, while
one-shot generative models based on the likelihood fail to
model structural information due to the restriction on the
architectures to ensure tractable likelihood computation.

Apart from the likelihood-based methods, Niu et al. (2020)
introduced a score-based generative model for graphs,
namely, edge-wise dense prediction graph neural net-
work (EDP-GNN). However, since EDP-GNN utilizes the
discrete-step perturbation of heuristically chosen noise
scales to estimate the score function, both its flexibility
and its efficiency are limited. Moreover, EDP-GNN only
generates adjacency matrices of graphs, thus is unable to
fully capture the node-edge dependency which is crucial for
the generation of real-world graphs such as molecules.

To overcome the limitations of previous graph generative
models, we propose a novel score-based graph generation
framework on a continuous-time domain that can generate
both the node features and the adjacency matrix. Specifi-
cally, we propose a novel Graph Diffusion via the System of
Stochastic differential equations (GDSS), which describes
the perturbation of both node features and adjacency through
a system of SDEs, and show that the previous work of Niu
et al. (2020) is a special instance of GDSS. Diffusion via the
system of SDEs can be interpreted as the decomposition of

Score-based Generative Modeling of Graphs via the System of SDEs

the full diffusion into simpler diffusion processes of respec-
tive components while modeling the dependency. Further,
we derive novel training objectives for the proposed diffu-
sion, which enable us to estimate the gradient of the joint
log-density with respect to each component, and introduce
a new integrator for solving the proposed system of SDEs.

We experimentally validate our method on generic graph
generation tasks by evaluating the generation quality on
synthetic and real-world graphs, on which ours outperforms
existing one-shot generative models while achieving com-
petitive performance to autoregressive models. We further
validate our method on molecule generation tasks, where
ours outperforms the state-of-the-art baselines including the
autoregressive methods, demonstrating that the proposed
diffusion process through the system of SDEs is able to
capture the complex dependency between nodes and edges.
We summarize our main contributions as follows:

• We propose a novel score-based generative model for
graphs that overcomes the limitation of previous gen-
erative methods, by introducing a diffusion process for
graphs that can generate node features and adjacency ma-
trices simultaneously via the system of SDEs.

• We derive novel training objectives to estimate the gra-
dient of the joint log-density for the proposed diffusion
process and further introduce an efficient integrator to
solve the proposed system of SDEs.

• We validate our method on both synthetic and real-world
graph generation tasks, on which ours outperforms exist-
ing graph generative models.

2. Related Work
Score-based Generative Models Score-based generative
models generate samples from noise by first perturbing the
data with gradually increasing noise, then learning to re-
verse the perturbation via estimating the score function,
which is the gradient of the log-density function with re-
spect to the data. Two representative classes of score-based
generative models have been proposed by Song & Ermon
(2019) and Ho et al. (2020), respectively. Score matching
with Langevin dynamics (SMLD) (Song & Ermon, 2019)
estimates the score function at multiple noise scales, then
generates samples using annealed Langevin dynamics to
slowly decrease the scales. On the other hand, denoising
diffusion probabilistic modeling (DDPM) (Ho et al., 2020)
backtracks each step of the noise perturbation by consider-
ing the diffusion process as a parameterized Markov chain
and learning the transition of the chain. Recently, Song et al.
(2021b) showed that these approaches can be unified into
a single framework, describing the noise perturbation as
the forward diffusion process modeled by the stochastic dif-
ferential equation (SDE). Although score-based generative
models have shown successful results for the generation of

images (Ho et al., 2020; Song et al., 2021b;a; Dhariwal &
Nichol, 2021), audio (Chen et al., 2021; Kong et al., 2021;
Jeong et al., 2021; Mittal et al., 2021), and point clouds (Cai
et al., 2020; Luo & Hu, 2021), the graph generation task
remains to be underexplored due to the discreteness of the
data structure and the complex dependency between nodes
and edges. We are the first to propose a diffusion process for
graphs and further model the dependency through a system
of SDEs. It is notable that recent developments of score-
based generative methods, such as latent score-based gen-
erative model (LSGM) (Vahdat et al., 2021) and critically-
damped Langevin diffusion (CLD) (Dockhorn et al., 2021),
are complementary to our method as we can apply these
methods to improve each component-wise diffusion process.

Graph Generative Models The common goal of graph
generative models is to learn the underlying distribution
of graphs. Graph generative models can be classified into
two categories based on the type of the generation process:
autoregressive and one-shot. Autoregressive graph genera-
tive models include generative adversarial network (GAN)
models (You et al., 2018a), recurrent neural network (RNN)
models (You et al., 2018b; Popova et al., 2019), variational
autoencoder (VAE) models (Jin et al., 2018; 2020), and nor-
malizing flow models (Shi et al., 2020; Luo et al., 2021).
Works that specifically focus on the scalability of the genera-
tion comprise another branch of autoregressive models (Liao
et al., 2019; Dai et al., 2020). Although autoregressive mod-
els show state-of-the-art performance, they are computation-
ally expensive and cannot model the permutation-invariant
nature of the true data distribution. On the other hand, one-
shot graph generative models aim to directly model the
distribution of all the components of a graph as a whole,
thereby considering the structural dependency as well as the
permutation-invariance. One-shot graph generative mod-
els can be categorized into GAN models (De Cao & Kipf,
2018), VAE models (Ma et al., 2018), and normalizing
flow models (Madhawa et al., 2019; Zang & Wang, 2020).
There are also recent approaches that utilize energy-based
models (EBMs) and score-based models, respectively (Liu
et al., 2021b; Niu et al., 2020). Existing one-shot gener-
ative models perform poorly due to the restricted model
architectures for building a normalized probability, which is
insufficient to learn the complex dependency of nodes and
edges. To overcome these limitations, we introduce a novel
permutation-invariant one-shot generative method based on
the score-based model that imposes fewer constraints on the
model architecture, compared to previous one-shot methods.

Score-based Graph Generation To the best of our knowl-
edge, Niu et al. (2020) is the only work that approaches
graph generation with the score-based generative model,
which aims to generate graphs by estimating the score of
the adjacency matrices at a finite number of noise scales,
and using Langevin dynamics to sample from a series of

Score-based Generative Modeling of Graphs via the System of SDEs

𝒔𝒔𝝓𝝓,𝒕𝒕 = 𝜵𝜵𝑨𝑨𝒕𝒕 𝒍𝒍𝒍𝒍𝒍𝒍𝒑𝒑𝒕𝒕(𝑿𝑿𝒕𝒕,𝑨𝑨𝒕𝒕)

𝒑𝒑(𝑨𝑨𝟎𝟎)

𝒕𝒕

𝒑𝒑(𝑿𝑿𝟎𝟎)GDSS (Ours)
GDSS-seq (Ours)
Independent 𝑿𝑿, 𝑨𝑨

GDSS-seq (Ours)GDSS (Ours)

𝑿𝑿𝑻𝑻

𝑨𝑨𝑻𝑻

Valid Molecule

Continuous-time Reverse Diffusion Discrete-step Sampling

𝑿𝑿𝑻𝑻 𝑿𝑿𝟎𝟎 𝑨𝑨𝑻𝑻 𝑨𝑨𝟎𝟎

EDP-GNN
𝑿𝑿𝟎𝟎 𝑨𝑨𝑻𝑻 𝑨𝑨𝟎𝟎

~

𝑿𝑿𝑻𝑻,𝑨𝑨𝑻𝑻 𝑿𝑿𝟎𝟎,𝑨𝑨𝟎𝟎
Invalid Molecule

Node-Edge Mismatch

𝒔𝒔𝜽𝜽,𝒕𝒕 = 𝜵𝜵𝑿𝑿𝒕𝒕 𝒍𝒍𝒍𝒍𝒍𝒍𝒑𝒑𝒕𝒕(𝑿𝑿𝒕𝒕,𝑨𝑨𝒕𝒕)

Figure 1: (Left) Visualization of graph generation through the reverse-time diffusion process. The colored trajectories denote
different types of diffusion processes in the joint probability space of node features X and adjacency A. We compare three types
of diffusion: GDSS (green) can successfully generate samples from the data distribution by modeling the dependency between the
components, whereas GDSS-seq (red) or the independent diffusion of each component (orange) fails. (Right) Illustration of the proposed
score-based graph generation framework. GDSS generates X and A simultaneously by modeling the dependency through time,
whereas GDSS-seq generates them sequentially. EDP-GNN generates only A with X sampled from the training data. Note that GDSS
and GDSS-seq are based on a continuous-time diffusion process, while EDP-GNN is based on a discrete-step perturbation procedure.

decreasing noise scales. However, Langevin dynamics re-
quires numerous sampling steps for each noise scale, thereby
taking a long time for the generation and having difficulty
in generating large-scale graphs. Furthermore, Niu et al.
(2020) focuses on the generation of adjacency without the
generation of node features, resulting in suboptimal learning
of the distributions of node-attributed graphs such as molec-
ular graphs. A naive extension of the work of Niu et al.
(2020) that generates the node features and the adjacency
either simultaneously or alternately will still be suboptimal,
since it cannot capture the complex dependency between the
nodes and edges. Therefore, we propose a novel score-based
generative framework for graphs that can interdependently
generate the nodes and edges. Specifically, we propose a
novel diffusion process for graphs through a system of SDEs
that smoothly transforms the data distribution to known
prior and vice versa, which overcomes the limitation of the
previous discrete-step perturbation procedure.

3. Graph Diffusion via the System of SDEs
In this section, we introduce our novel continuous-time
score-based generative framework for modeling graphs us-
ing the system of SDEs. We first explain our proposed graph
diffusion process via a system of SDEs in Section 3.1, then
derive new objectives for estimating the gradients of the
joint log-density with respect to each component in Sec-
tion 3.2. Finally, we present an effective method for solving
the system of reverse-time SDEs in Section 3.3.

3.1. Graph Diffusion Process

The goal of graph generation is to synthesize graphs that
closely follow the distribution of the observed set of graphs.
To bypass the difficulty of directly representing the distribu-
tion, we introduce a continuous-time score-based generative
framework for the graph generation. Specifically, we pro-
pose a novel graph diffusion process via the system of SDEs

that transforms the graphs to noise and vice versa, while
modeling the dependency between nodes and edges. We be-
gin by explaining the proposed diffusion process for graphs.

A graph G with N nodes is defined by its node features
X∈RN×F and the weighted adjacency matrix A∈RN×N as
G=(X,A)∈RN×F×RN×N:= G, where F is the dimension
of the node features. To model the dependency between X
and A, we propose a forward diffusion process of graphs
that transforms both the node features and the adjacency ma-
trices to a simple noise distribution. Formally, the diffusion
process can be represented as the trajectory of random vari-
ables {Gt=(Xt,At)}t∈[0,T] in a fixed time horizon [0,T],
where G0 is a graph from the data distribution pdata. The
diffusion process can be modeled by the following Itô SDE:

dGt = ft(Gt)dt+ gt(Gt)dw, G0 ∼ pdata, (1)

where ft(·) :G→G 1 is the linear drift coefficient, gt(·):G→
G×G is the diffusion coefficient, and w is the standard
Wiener process. Intuitively, the forward diffusion process of
Eq. (1) smoothly transforms both X0 and A0 by adding in-
finitesimal noise dw at each infinitesimal time step dt. The
coefficients of the SDE, ft and gt, are chosen such that at the
terminal time horizon T , the diffused sample GT approxi-
mately follows a prior distribution that has a tractable form
to efficiently generate the samples, for example Gaussian
distribution. For ease of the presentation, we choose gt(Gt)
to be a scalar function gt. Note that ours is the first work
that proposes a diffusion process for generating a whole
graph consisting of nodes and edges with attributes, in that
the work of Niu et al. (2020) (1) utilizes the finite-step per-
turbation of multiple noise scales, and (2) only focuses on
the perturbation of the adjacency matrices while using the
fixed node features sampled from the training data.

In order to generate graphs that follow the data distribu-
tion, we start from samples of the prior distribution and

1t-subscript represents functions of time: Ft(·) :=F (·, t).

Score-based Generative Modeling of Graphs via the System of SDEs

traverse the diffusion process of Eq. (1) backward in time.
Notably, the reverse of the diffusion process in time is also
a diffusion process described by the following reverse-time
SDE (Anderson, 1982; Song et al., 2021b):

dGt =
[
ft(Gt)− g2t∇Gt

log pt(Gt)
]
dt+ gtdw̄, (2)

where pt denotes the marginal distribution under the forward
diffusion process at time t, w̄ is a reverse-time standard
Wiener process, and dt is an infinitesimal negative time step.
However, solving Eq. (2) directly requires the estimation
of high-dimensional score ∇Gt

log pt(Gt)∈RN×F×RN×N ,
which is expensive to compute. To bypass this computation,
we propose a novel reverse-time diffusion process equivalent
to Eq. (2), modeled by the following system of SDEs:{
dXt=

[
f1,t(Xt)− g21,t∇Xt log pt(Xt,At)

]
dt+ g1,tdw̄1

dAt =
[
f2,t(At)− g22,t∇At log pt(Xt,At)

]
dt+ g2,tdw̄2

(3)

where f1,t and f2,t are linear drift coefficients satisfying
ft(X,A) = (f1,t(X), f2,t(A)), g1,t and g2,t are scalar dif-
fusion coefficients, and w̄1, w̄2 are reverse-time standard
Wiener processes. We refer to these forward and reverse dif-
fusion processes of graphs as Graph Diffusion via the System
of SDEs (GDSS). Notably, each SDE in Eq. (3) describes
the diffusion process of each component, X and A, respec-
tively, which presents a new perspective of interpreting the
diffusion of a graph as the diffusion of each component that
are interrelated through time. In practice, we can choose
different types of SDEs for each component-wise diffusion
that best suit the generation process.

The key property of GDSS is that the diffusion processes
in the system are dependent on each other, related by the
gradients of the joint log-density ∇Xt log pt(Xt,At) and
∇At

log pt(Xt,At), which we refer to as the partial score
functions. By leveraging the partial scores to model the de-
pendency between the components through time, GDSS is
able to represent the diffusion process of a whole graph, con-
sisting of nodes and edges. To demonstrate the importance
of modeling the dependency, we present two variants of our
proposed GDSS and compare their generative performance.

The first variant is the continuous-time version of EDP-
GNN (Niu et al., 2020). By ignoring the diffusion pro-
cess of X in Eq. (3) with f1,t = g1,t = 0 and choosing
the prior distribution of X as the data distribution, we ob-
tain a diffusion process of A that generalizes the discrete-
step noise perturbation procedure of EDP-GNN. There-
fore, EDP-GNN can be considered as a special example
of GDSS without the diffusion process of the node fea-
tures, which further replaces the diffusion by the discrete-
step perturbation with a finite number of noise scales.
We present another variant of GDSS that generates X
and A sequentially instead of generating them simultane-
ously. By neglecting some part of the dependency through

the assumptions ∇At
log pt(Xt,At)≈∇Xt

log pt(Xt) and
∇At log pt(Xt,At)≈∇At log pt(X0,At), we can derive the
following SDEs for the diffusion process of the variant:

dXt=
[
f1,t(Xt)− g21,t∇Xt log pt(Xt)

]
dt+ g1,tdw̄1,

dAt=
[
f2,t(At)− g22,t∇At log pt(X0,At)

]
dt+ g2,tdw̄2,

(4)

which are sequential in the sense that the reverse diffusion
process of A is determined by X0, the result of the reverse
diffusion of X . Thus simulating Eq. (4) can be interpreted
as generating the node features X first, then generating the
adjacency A sequentially, which we refer to as GDSS-seq.

The reverse diffusion process of these two variants, EDP-
GNN and GDSS-seq, are visualized in Figure 1 as the red
trajectory in the joint (X,A)-space, where the trajectory is
constrained to the hyperplane defined by Xt=X0, there-
fore do not fully reflect the dependency. On the other hand,
GDSS represented as the green trajectory is able to diffuse
freely from the noise to the data distribution by modeling
the joint distribution through the system of SDEs, thereby
successfully generating samples from the data distribution.

(a) Data (b) GDSS (Ours) (c) GDSS-seq (Ours) (d) Independent

Figure 2: A toy experiment on modeling the dependency.
GDSS successfully models the correlation, whereas others fail.
See Appendix C.1 for more details of the experiment.

To empirically verify this observation, we conduct a simple
experiment where the data distribution is a bivariate Gaus-
sian mixture. The generated samples of each process are
shown in Figure 2. While GDSS successfully represents the
correlation of the two variables, GDSS-seq fails to capture
their covariance and generates samples that deviate from the
data distribution. We observe that EDP-GNN shows a simi-
lar result. We further extensively validate the effectiveness
of our GDSS in modeling the dependency in Section 4.

Note that once the partial scores in Eq. (3) are known for
all t, the system of reverse-time SDEs can be used as a
generative model by simulating the system backward in time,
which we further explain in Section 3.3. In order to estimate
the partial scores with neural networks, we introduce novel
training objectives for GDSS in the following subsection.

3.2. Estimating the Partial Score Functions

Training Objectives The partial score functions can be
estimated by training the time-dependent score-based mod-
els sθ,t and sϕ,t, so that sθ,t(Gt) ≈ ∇Xt

log pt(Gt) and
sϕ,t(Gt) ≈ ∇At

log pt(Gt). However, the objectives in-
troduced in the previous works for estimating the score
function are not directly applicable, since the partial score
functions are defined as the gradient of each component, not

Score-based Generative Modeling of Graphs via the System of SDEs

the gradient of the data as in the score function. Thus we
derive new objectives for estimating the partial scores.

Intuitively, the score-based models should be trained to min-
imize the distance to the corresponding ground-truth partial
scores. In order to minimize the Euclidean distance, we
introduce new objectives that generalize the score match-
ing (Hyvärinen, 2005; Song et al., 2021b) to the estimation
of the partial scores for the given graph dataset, as follows:

min
θ

Et

{
λ1(t)EG0EGt|G0

∥sθ,t(Gt)−∇Xt log pt(Gt)∥22
}

min
ϕ

Et

{
λ2(t)EG0EGt|G0

∥sϕ,t(Gt)−∇At log pt(Gt)∥22
}
,

(5)

where λ1(t) and λ2(t) are positive weighting functions and
t is uniformly sampled from [0, T]. The expectations are
taken over the samples G0∼pdata and Gt∼p0t(Gt|G0),
where p0t(Gt|G0) denotes the transition distribution from
p0 to pt induced by the forward diffusion process.

Unfortunately, we cannot train directly with Eq. (5) since the
ground-truth partial scores are not analytically accessible in
general. Therefore we derive tractable objectives equivalent
to Eq. (5), by leveraging the idea of denoising score match-
ing (Vincent, 2011; Song et al., 2021b) to the partial scores,
as follows (see Appendix A.1 for the derivation):

min
θ

Et

{
λ1(t)EG0

EGt|G0

∥∥sθ,t(Gt)−∇Xt log p0t(Gt|G0)
∥∥2

2

}
min
ϕ

Et

{
λ2(t)EG0

EGt|G0

∥∥sϕ,t(Gt)−∇At log p0t(Gt|G0)
∥∥2

2

}
.

Since the drift coefficient of the forward diffusion process
in Eq. (1) is linear, the transition distribution p0t(Gt|G0)
can be separated in terms of Xt and At as follows:

p0t(Gt|G0) = p0t(Xt|X0) p0t(At|A0). (6)

Notably, we can easily sample from the transition distribu-
tions of each components, p0t(Xt|X0) and p0t(At|A0), as
they are Gaussian distributions where the mean and variance
are tractably determined by the coefficients of the forward
diffusion process (Särkkä & Solin, 2019). From Eq. (6),
we propose new training objectives which are equivalent to
Eq. (5) (see Appendix A.2 for the detailed derivation):

min
θ

Et

{
λ1(t)EG0

EGt|G0

∥∥sθ,t(Gt)−∇Xt log p0t(Xt|X0)
∥∥2
2

}
min
ϕ

Et

{
λ2(t)EG0

EGt|G0

∥∥sϕ,t(Gt)−∇At log p0t(At|A0)
∥∥2
2

} (7)

The expectations in Eq. (7) can be efficiently computed us-
ing the Monte Carlo estimate with the samples (t,G0,Gt).
Note that estimating the partial scores is not equivalent to
estimating ∇Xt

log pt(Xt) or ∇At
log pt(At), the main ob-

jective of previous score-based generative models, since
estimating the partial scores requires capturing the depen-
dency between Xt and At determined by the joint probabil-
ity through time. As we can effectively estimate the partial

scores by training the time-dependent score-based models
with the objectives of Eq. (7), what remains is to find the
models that can learn the partial scores of the underlying
distribution of graphs. Thus we propose new architectures
for the score-based models in the next paragraph.

Permuation-equivariant Score-based Model Now we
propose new architectures for the time-dependent score-
based models that can capture the dependencies of Xt and
At through time, based on graph neural networks (GNNs).
First, we present the score-based model sϕ,t to estimate
∇At

log pt(Xt,At) which has the same dimensionality as
At. We utilize the graph multi-head attention (Baek et al.,
2021) to distinguish important relations between nodes, and
further leverage the higher-order adjacency matrices to rep-
resent the long-range dependencies as follows:

sϕ,t(Gt) = MLP
([
{GMH (Hi,A

p
t)}

K,P
i=0,p=1

])
, (8)

where Ap
t are the higher-order adjacency matrices, Hi+1=

GNN(Hi,At) with H0 = Xt given, [·] denotes the con-
catenation operation, GMH denotes the graph multi-head
attention block, and K denotes the number of GMH lay-
ers. We also present the score-based model sθ,t to estimate
∇Xt log pt(Xt,At) which has the same dimensionality as
Xt, where we use multiple layers of GNNs to learn the
partial scores from the node representations as follows:

sθ,t(Gt) = MLP([{Hi}Li=0]), (9)

where Hi+1 = GNN(Hi,At) with H0 = Xt given and
L denotes the number of GNN layers. Here GMH layers
can be used instead of simple GNN layers with additional
computation costs, which we analyze further in Section 4.3.
The architectures of the score-based models are illustrated in
Figure 5 of Appendix. Moreover, following Song & Ermon
(2020), we incorporate the time information to the score-
based models by scaling the output of the models with the
standard deviation of the transition distribution at time t.

Note that since the message-passing operations of GNNs
and the attention function used in GMH are permutation-
equivariant (Keriven & Peyré, 2019), the proposed score-
based models are also equivariant, and theryby from the re-
sult of Niu et al. (2020), the log-likelihood implicitly defined
by the models is guaranteed to be permutation-invariant.

3.3. Solving the System of Reverse-time SDEs

In order to use the reverse-time diffusion process as a gen-
erative model, it requires simulating the system of reverse-
time SDEs in Eq. (3), which can be approximated using the
trained score-based models sθ,t and sϕ,t as follows:{

dXt= f1,t(Xt)dt+ g1,tdw̄1 −g21,tsθ,t(Xt,At)dt
dAt = f2,t(At)dt+ g2,tdw̄2 −g22,tsϕ,t(Xt,At)dt︸ ︷︷ ︸

F

︸ ︷︷ ︸
S

(10)

Score-based Generative Modeling of Graphs via the System of SDEs

However, solving the system of two diffusion processes
that are interdependently tied by the partial scores brings
about another difficulty. Thus we propose a novel integrator,
Symmetric Splitting for System of SDEs (S4) to simulate
the system of reverse-time SDEs, that is efficient yet ac-
curate, inspired by the Symmetric Splitting CLD Sampler
(SSCS) (Dockhorn et al., 2021) and the Predictor-Corrector
Sampler (PC sampler) (Song et al., 2021b).

Specifically, at each discretized time step t, S4 solver con-
sists of three steps: the score computation, the correction,
and the prediction. First, S4 computes the estimation of
the partial scores with respect to the predicted Gt, using
the score-based models sθ,t and sϕ,t, where the computed
partial scores are later used for both the correction and the
prediction steps. After the score computation, we perform
the correction step by leveraging a score-based MCMC
method, for example Langevin MCMC (Parisi, 1981), in
order to obtain calibrated sample G′

t from Gt. Here we
exploit the precomputed partial scores for the score-based
MCMC approach. Then what remains is to predict the solu-
tion for the next time step t− δt, going backward in time.

The prediction of the state at time t′ follows the marginal
distribution pt′ described by the Fokker-Planck equation
induced by Eq. (10), where the Fokker-Planck operators
L̂∗
F and L̂∗

S correspond to the F -term and S-term, respec-
tively 2. Inspired by Dockhorn et al. (2021), we formal-
ize an intractable solution to Eq. (10) with the classical
propagator et(L̂

∗
F+L̂∗

S) which gives light to finding efficient
prediction method. From the result of the symmetric Trot-
ter theorem (Trotter, 1959; Strang, 1968), the propagation
of the calibrated state G′

t from time t to t − δt following
the dynamics of Eq. (10) can be approximated by applying
e

δt
2 L̂∗

F eδtL̂
∗
Se

δt
2 L̂∗

F to G′
t. Observing the operators individu-

ally, the action of first e
δt
2 L̂∗

F describes the dynamics of the
F -term in Eq. (10) from time t to t−δt/2, which is equal to
sampling from the transition distribution of the forward dif-
fusion in Eq. (1) as follows (see Appendix A.4 and A.5 for
the derivation of the action and the transition distribution.):

e
δt
2 L̂∗

F G = G̃ ∼ pt,t−δt/2(G̃|G). (11)

On the other hand, the action of eδtL̂
∗
S is not analytically

accessible, so we approximate the action with a simple Eu-
ler method (EM) that solves the ODE corresponding to the
S-term in Eq. (10). Here we use the precomputed partial
scores again, which is justified due to the action of the first
e

δt
2 L̂∗

F on a sufficiently small half-step δt/2. Lastly, the
action of remaining e

δt
2 L̂∗

F corresponds to sampling from
the transition distribution from time t−δt/2 to t−δt, which
results in the approximated solution Gt−δt. We provide the
pseudo-code for the S4 solver in Algorithm 1 of Appendix.

2Details of the Fokker-Planck operators are given in Appendix A.3.

To obtain more accurate solution with additional cost of com-
putation, one might consider using a higher-order integrator
such as Runge-Kutta method to approximate the action of
the operator eδtL̂

∗
S , and further leverage HMC (Neal, 2012)

for the correction step instead of Langevin MCMC.

Note that although S4 and PC sampler both carry out the
prediction and correction steps, S4 solver is far more ef-
ficient in terms of computation since compared to the PC
sampler, S4 requires half the number of forward passes to
the score-based models which dominates the computational
cost of solving the SDEs. Moreover, the proposed S4 solver
can be used to solve a general system of SDEs, including
the system with mixed types of SDEs such as those of Vari-
ance Exploding (VE) SDE and Variance Preserving (VP)
SDE (Song et al., 2021b), whereas SSCS is limited to solv-
ing a specific type of SDE, namely CLD.

4. Experiments
We experimentally validate the performance of our method
in generation of generic graphs as well as molecular graphs.

4.1. Generic Graph Generation

To verify that GDSS is able to generate graphs that follow
the underlying data distribution, we evaluate our method on
generic graph generation tasks with various datasets.

Experimental Setup We first validate GDSS by evalu-
ating the quality of the generated samples on four generic
graph datasets, including synthetic and real-world graphs
with varying sizes: (1) Ego-small, 200 small ego graphs
drawn from larger Citeseer network dataset (Sen et al.,
2008), (2) Community-small, 100 randomly generated com-
munity graphs, (3) Enzymes, 587 protein graphs which rep-
resent the protein tertiary structures of the enzymes from the
BRENDA database (Schomburg et al., 2004), and (4) Grid,
100 standard 2D grid graphs. For a fair comparison, we
follow the experimental and evaluation setting of You et al.
(2018b) with the same train/test split. We use the maximum
mean discrepancy (MMD) to compare the distributions of
graph statistics between the same number of generated and
test graphs. Following You et al. (2018b), we measure the
distributions of degree, clustering coefficient, and the num-
ber of occurrences of orbits with 4 nodes. Note that we use
the Gaussian Earth Mover’s Distance (EMD) kernel to com-
pute the MMDs instead of the total variation (TV) distance
used in Liao et al. (2019), since the TV distance leads to an
indefinite kernel and an undefined behavior (O’Bray et al.,
2021). Please see Appendix C.2 for more details.

Implementation Details and Baselines We compare our
proposed method against the following deep generative mod-
els. GraphVAE (Simonovsky & Komodakis, 2018) is a one-

Score-based Generative Modeling of Graphs via the System of SDEs

Table 1: Generation results on the generic graph datasets. We report the MMD distances between the test datasets and generated
graphs. Best results are highlighted in bold (smaller the better). The results of the baselines for Ego-small and Community-small dataset
are taken from Niu et al. (2020) and Luo et al. (2021). Hyphen (-) denotes out-of-resources that take more than 10 days or not applicable
due to the memory issue. ∗ denotes our own implementation and † indicates unreproducible results. Due to the space limitation, we
provide the standard deviations in Appendix D.1.

Ego-small Community-small Enzymes Grid

Real, 4 ≤ |V | ≤ 18 Synthetic, 12 ≤ |V | ≤ 20 Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg.

Autoreg.

DeepGMG 0.040 0.100 0.020 0.053 0.220 0.950 0.400 0.523 - - - - - - - -
GraphRNN 0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.080 0.017 0.062 0.046 0.042 0.064 0.043 0.021 0.043
GraphAF∗ 0.03 0.11 0.001 0.047 0.18 0.20 0.02 0.133 1.669 1.283 0.266 1.073 - - - -
GraphDF∗ 0.04 0.13 0.01 0.060 0.06 0.12 0.03 0.070 1.503 1.061 0.202 0.922 - - - -

One-shot

GraphVAE∗ 0.130 0.170 0.050 0.117 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
GNF† 0.030 0.100 0.001 0.044 0.200 0.200 0.110 0.170 - - - - - - - -
EDP-GNN 0.052 0.093 0.007 0.051 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.455 0.238 0.328 0.340

GDSS-seq (Ours) 0.032 0.027 0.011 0.023 0.090 0.123 0.007 0.073 0.099 0.225 0.010 0.111 0.171 0.011 0.223 0.135
GDSS (Ours) 0.021 0.024 0.007 0.017 0.045 0.086 0.007 0.046 0.026 0.061 0.009 0.032 0.111 0.005 0.070 0.062

Community-small Enzymes

Solver Deg. Clus. Orbit Avg. Time (s) Deg. Clus. Orbit Avg. Time (s)

EM 0.055 0.133 0.017 0.068 29.64 0.060 0.581 0.120 0.254 153.58
Reverse 0.058 0.125 0.016 0.066 29.75 0.057 0.550 0.112 0.240 155.06

EM + Langevin 0.045 0.086 0.007 0.046 59.93 0.028 0.062 0.010 0.033 308.42
Rev. + Langevin 0.045 0.086 0.007 0.046 59.40 0.028 0.064 0.009 0.034 310.35

S4 (Ours) 0.042 0.101 0.007 0.050 30.93 0.026 0.061 0.009 0.032 157.57

Figure 3: (Left) Complexity of the score-based models measured by the Frobenius norm of the Jacobian of the model. We compare
GDSS (green) against GDSS-seq (red), where the solid and dotted lines denote the models estimating the partial scores with respect to X
and A, respectively. (Right) Comparison between fixed step size SDE solvers. We measure the time for the generation of 128 graphs.

shot VAE-based model. DeepGMG (Li et al., 2018a) and
GraphRNN (You et al., 2018b) are autoregressive RNN-
based models. GNF (Liu et al., 2019) is a one-shot flow-
based model. GraphAF (Shi et al., 2020) is an autoregres-
sive flow-based model. EDP-GNN (Niu et al., 2020) is a
one-shot score-based model. GraphDF (Luo et al., 2021) is
an autoregressive flow-based model that utilizes discrete la-
tent variables. For GDSS, we consider three types of SDEs
introduced by Song et al. (2021b), namely VESDE, VPSDE,
and sub-VP SDE, for the diffusion processes of each compo-
nent, and either use the PC sampler or the S4 solver to solve
the system of SDEs. We provide further implementation
details of the baselines and our GDSS in Appendix C.2.

Results Table 1 shows that the proposed GDSS signif-
icantly outperforms all the baseline one-shot generative
models including EDP-GNN, and also outperforms the au-
toregressive baselines on most of the datasets, except Grid.
Moreover, GDSS shows competitive performance to the
state-of-the-art autoregressive model GraphRNN on gener-
ating large graphs, i.e. Grid dataset, for which GDSS is the
only method that achieves similar performance. We observe
that EDP-GNN, a previous score-based generation model
for graphs, completely fails in generating large graphs. The
MMD results demonstrate that GDSS can effectively capture
the local characteristics of the graphs, which is possible due
to modeling the dependency between nodes and edges. We
visualize the generated graphs of GDSS in Appendix E.1.

Complexity of Learning Partial Scores Learning the par-
tial score ∇At

log pt(Xt,At) regarding both Xt and At may
seem difficult, compared to learning ∇At log pt(X0,At) that
concerns only At. We empirically demonstrate this is not
the case, by measuring the complexity of the score-based
models that estimate the partial scores. The complexity of
the models can be measured via the squared Frobenius norm
of their Jacobians JF (t), and we compare the models of
GDSS and GDSS-seq trained with the Ego-small dataset.
As shown in Figure 3, the complexity of GDSS estimat-
ing ∇At log pt(Xt,At) is significantly smaller compared to
the complexity of GDSS-seq estimating ∇At

log pt(X0,At),
and similarly for Xt. The result stresses the importance
of modeling the node-edge dependency, since whether to
model the dependency is the only difference between GDSS
and GDSS-seq. Moreover, the generation result of GDSS
compared to GDSS-seq in Table 1 verifies that the reduced
complexity enables the effective generation of larger graphs.

4.2. Molecule Generation

To show that GDSS is able to capture the complex depen-
dency between nodes and edges, we further evaluate our
method for molecule generation tasks.

Experimental Setup We use two molecular datasets,
QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin
et al., 2012), where we provide the statistics in Table 6 in

Score-based Generative Modeling of Graphs via the System of SDEs

Table 2: Generation results on the QM9 and ZINC250k dataset. Results are the means of 3 different runs, and the best results are
highlighted in bold. Values denoted by * are taken from the respective original papers. Other results are obtained by running open-source
codes. Val. w/o corr. denotes the Validity w/o correction metric, and values that do not exceed 50% are underlined. Due to the space
limitation, we provide the results of validity, uniqueness, and novelty as well as the standard deviations in Appendix D.2.

QM9 ZINC250k

Method Val. w/o corr. (%)↑ NSPDK↓ FCD↓ Time (s)↓ Val. w/o corr. (%)↑ NSPDK↓ FCD↓ Time (s)↓

Autoreg.

GraphAF (Shi et al., 2020) 67* 0.020 5.268 2.52e3 68* 0.044 16.289 5.80e3

GraphAF+FC 74.43 0.021 5.625 2.55e3 68.47 0.044 16.023 6.02e3

GraphDF (Luo et al., 2021) 82.67* 0.063 10.816 5.35e4 89.03* 0.176 34.202 6.03e4

GraphDF+FC 93.88 0.064 10.928 4.91e4 90.61 0.177 33.546 5.54e4

One-shot

MoFlow (Zang & Wang, 2020) 91.36 0.017 4.467 4.60 63.11 0.046 20.931 2.45e1

EDP-GNN (Niu et al., 2020) 47.52 0.005 2.680 4.40e3 82.97 0.049 16.737 9.09e3

GraphEBM (Liu et al., 2021b) 8.22 0.030 6.143 3.71e1 5.29 0.212 35.471 5.46e1

GDSS-seq (Ours) 94.47 0.010 4.004 1.13e2 92.39 0.030 16.847 2.02e3

GDSS (Ours) 95.72 0.003 2.900 1.14e2 97.01 0.019 14.656 2.02e3

GraphAF MoFlow GraphDF GraphEBMTrain GDSS (Ours)

Q
M

9
ZI

N
C2

50
k

0.5000 0.3846 0.3099 0.1500 0.1867

0.5600 0.2581 0.2857 0.1818 0.2500

GDSS-seq (Ours)

0.2714

0.2857

EDP-GNN

0.2769

0.3448

Figure 4: Visualization of the generated molecules with maximum Tanimoto similarity to the molecule from the dataset. The top
row shows QM9 molecules while the bottom row shows ZINC250k molecules. For each generated molecule, we display the similarity
value at the bottom. The pairwise Tanimoto similarity is calculated based on the standard Morgan fingerprints with radius 2 and 1024 bits.

Appendix. Following previous works (Shi et al., 2020; Luo
et al., 2021), the molecules are kekulized by the RDKit li-
brary (Landrum et al., 2016) with hydrogen atoms removed.
We evaluate the quality of the 10,000 generated molecules
with the following metrics. Fréchet ChemNet Distance
(FCD) (Preuer et al., 2018) evaluates the distance between
the training and generated sets using the activations of the
penultimate layer of the ChemNet. Neighborhood sub-
graph pairwise distance kernel (NSPDK) MMD (Costa
& De Grave, 2010) is the MMD between the generated
molecules and test molecules which takes into account both
the node and edge features for evaluation. Note that FCD
and NSPDK MMD are salient metrics that assess the ability
to learn the distribution of the training molecules, measur-
ing how close the generated molecules lie to the distribu-
tion. Specifically, FCD measures the ability in the view of
molecules in chemical space, while NSPDK MMD mea-
sures the ability in the view of the graph structure. Validity
w/o correction is the fraction of valid molecules without va-
lency correction or edge resampling, which is different from
the metric used in Shi et al. (2020) and Luo et al. (2021),
since we allow atoms to have formal charge when check-
ing their valency following Zang & Wang (2020), which is
more reasonable due to the existence of formal charge in
the training molecules. Time measures the time for gen-
erating 10,000 molecules in the form of RDKit molecules.
We provide further details about the experimental settings,
including the hyperparameter search in Appendix C.3.

Baselines We compare our GDSS against the following
baselines. GraphAF (Shi et al., 2020) is an autoregressive
flow-based model. MoFlow (Zang & Wang, 2020) is a
one-shot flow-based model. GraphDF (Luo et al., 2021)
is an autoregressive flow-based model using discrete latent
variables. GraphEBM (Liu et al., 2021b) is a one-shot
energy-based model that generates molecules by minimiz-
ing energies with Langevin dynamics. We also construct
modified versions of GraphAF and GraphDF that consider
formal charge (GraphAF+FC and GraphDF+FC) for a
fair comparison with the baselines and ours. For GDSS, the
choice of the diffusion process and the solver is identical
to that of the generic graph generation tasks. We provide
further details of the baselines and GDSS in Appendix C.3.

Results As shown in Table 2, GDSS achieves the highest
validity when the post-hoc valency correction is disabled,
demonstrating that GDSS is able to proficiently learn the
chemical valency rule that requires capturing the node-edge
relationship. Moreover, GDSS significantly outperforms all
the baselines in NSPDK MMD and most of the baselines
in FCD, showing that the generated molecules of GDSS lie
close to the data distribution both in the space of graphs and
the chemical space. The superior performance of GDSS on
molecule generation tasks verifies the effectiveness of our
method for learning the underlying distribution of graphs
with multiple node and edge types. We further visualize
the generated molecules in Figure 4 and Figure 10 of Ap-

Score-based Generative Modeling of Graphs via the System of SDEs

Table 3: Generation results of EDP-GNN using GMH.

Community-small Enzymes

Method Deg. Clus. Orbit Deg. Clus. Orbit

EDP-GNN 0.053 0.144 0.026 0.023 0.268 0.082
EDP-GNN w/ GMH 0.033 0.130 0.035 0.047 0.328 0.051

GDSS (Ours) 0.045 0.086 0.007 0.026 0.061 0.009

Table 4: Generation results of the variants of GDSS.
ZINC250k

Method Val. w/o corr. (%) NSPDK FCD Time (s)

GDSS-discrete 53.21 0.045 22.925 6.07e3

GDSS w/ GMH in sθ,t 94.39 0.015 12.388 2.44e3

GDSS 97.01 0.019 14.656 2.02e3

pendix E.2, which demonstrate that GDSS is capable of
generating molecules that share a large substructure with
the molecules in the training set, whereas the generated
molecules of the baselines share a smaller structural portion
or even completely differ from the training molecules.

Time Efficiency To validate the practicality of GDSS, we
compare the inference time for generating molecules with
the baselines. As shown in Table 2, GDSS not only outper-
forms the autoregressive models in terms of the generation
quality, but also in terms of time efficiency showing 450×
speed up on QM9 datasets compared to GraphDF. Moreover,
GDSS and GDSS-seq require significantly smaller genera-
tion time compared to EDP-GNN, showing that modeling
the transformation of graphs to noise and vice-versa as a
continuous-time diffusion process is far more efficient than
the discrete-step noise perturbation used in EDP-GNN.

4.3. Ablation Studies

We provide an extensive analysis of the proposed GDSS
framework from three different perspectives: (1) The ne-
cessity of modeling the dependency between X and A, (2)
effectiveness of S4 compared to other solvers, and (3) fur-
ther comparison with the variants of EDP-GNN and GDSS.

Necessity of Dependency Modeling To validate that mod-
eling the node-edge dependency is crucial for graph genera-
tion, we compare our proposed methods GDSS and GDSS-
seq, since the only difference is that the latter only models
the dependency of A on X (Eq. (3) and Eq. (4)). From the
results in Table 1 and Table 2, we observe that GDSS con-
stantly outperforms GDSS-seq in all metrics, which proves
that accurately learning the distributions of graphs requires
modeling the dependency. Moreover, for molecule genera-
tion, the node-edge dependency can be directly measured in
terms of validity, and the results verify the effectiveness of
GDSS modeling the dependency via the system of SDEs.

Significance of S4 Solver To validate the effectiveness
of the proposed S4 solver, we compare its performance
against the non-adaptive stepsize solvers, namely EM and
Reverse sampler which are predictor-only methods, and the
PC samplers using Langevin MCMC. As shown in the table
of Figure 3, S4 significantly outperforms the predictor-only
methods, and further outperforms the PC samplers with half
the computation time, due to fewer evaluations of the score-
based models. We provide more results in Appendix D.3.

Variants of EDP-GNN and GDSS First, to comprehen-
sively compare EDP-GNN with GDSS, we evaluate the
performance of EDP-GNN with GMH layers instead of sim-
ple GNN layers. Table 3 shows that using GMH does not
necessarily increase the generation quality, and is still sig-
nificantly outperformed by our GDSS. Moreover, to verify
that the continuous-time diffusion process of GDSS is es-
sential, we compare the performance of the GDSS variants.
Table 4 shows that GDSS-discrete, which is our GDSS using
discrete-step perturbation as in EDP-GNN instead of the
diffusion process, performs poorly on molecule generation
tasks with an increased generation time, which reaffirms the
significance of the proposed diffusion process for graphs.
Furthermore, using GMH instead of GNN for the score-
based model sθ,t shows comparable results with GDSS.

5. Conclusion
We presented a novel score-based generative framework for
learning the underlying distribution of the graphs, which
overcomes the limitations of previous graph generative
methods. Specifically, we proposed a novel graph diffu-
sion process via the system of SDEs (GDSS) that transforms
both the node features and adjacency to noise and vice-versa,
modeling the dependency between them. Further, we de-
rived new training objectives to estimate the gradients of
the joint log-density with respect to each component, and
presented a novel integrator to efficiently solve the system of
SDEs describing the reverse diffusion process. We validated
GDSS on the generation of diverse synthetic and real-world
graphs including molecules, on which ours outperforms
existing generative methods. We pointed out that model-
ing the dependency between nodes and edges is crucial for
learning the distribution of graphs and shed new light on the
effectiveness of score-based generative methods for graphs.

Acknowledgements This work was supported by Institute
of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea govern-
ment(MSIT) (No. 2021-0-02068, Artificial Intelligence In-
novation Hub and No.2019-0-00075, Artificial Intelligence
Graduate School Program(KAIST)), and the Engineering
Research Center Program through the National Research
Foundation of Korea (NRF) funded by the Korean Govern-
ment MSIT (NRF-2018R1A5A1059921). We thank Geon
Park for providing the visualization of diffusion in Figure 1,
and Jinheon Baek for the suggestions for the experiments.

Score-based Generative Modeling of Graphs via the System of SDEs

References
Anderson, B. D. Reverse-time diffusion equation models.

Stochastic Processes and their Applications, 12(3):313–
326, 1982.

Baek, J., Kang, M., and Hwang, S. J. Accurate learning
of graph representations with graph multiset pooling. In
9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. In 7th
International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie,
S. J., Snavely, N., and Hariharan, B. Learning gradient
fields for shape generation. In ECCV, 2020.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation. In ICLR, 2021.

Costa, F. and De Grave, K. Fast neighborhood subgraph
pairwise distance kernel. In Proceedings of the 26th
International Conference on Machine Learning, pp. 255–
262. Omnipress; Madison, WI, USA, 2010.

Dai, H., Nazi, A., Li, Y., Dai, B., and Schuurmans, D.
Scalable deep generative modeling for sparse graphs. In
International Conference on Machine Learning, pp. 2302–
2312. PMLR, 2020.

De Cao, N. and Kipf, T. Molgan: An implicit generative
model for small molecular graphs. ICML 2018 workshop
on Theoretical Foundations and Applications of Deep
Generative Models, 2018.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis. arXiv:2105.05233, 2021.

Dockhorn, T., Vahdat, A., and Kreis, K. Score-based gener-
ative modeling with critically-damped langevin diffusion.
arXiv:2112.07068, 2021.

Grover, A., Zweig, A., and Ermon, S. Graphite: Iterative
generative modeling of graphs. In Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research,
pp. 2434–2444. PMLR, 2019.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Hyvärinen, A. Estimation of non-normalized statistical
models by score matching. J. Mach. Learn. Res., 6:695–
709, 2005.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. Zinc: a free tool to discover chemistry for
biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012.

Jeong, M., Kim, H., Cheon, S. J., Choi, B. J., and Kim, N. S.
Diff-tts: A denoising diffusion model for text-to-speech.
arXiv:2104.01409, 2021.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International Conference on Machine Learning, pp. 2323–
2332. PMLR, 2018.

Jin, W., Barzilay, R., and Jaakkola, T. Hierarchical gen-
eration of molecular graphs using structural motifs. In
International Conference on Machine Learning, pp. 4839–
4848. PMLR, 2020.

Keriven, N. and Peyré, G. Universal invariant and equiv-
ariant graph neural networks. In Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
7090–7099, 2019.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis.
In ICLR, 2021.

Landrum, G. et al. Rdkit: Open-source cheminfor-
matics software, 2016. URL http://www. rdkit. org/,
https://github. com/rdkit/rdkit, 2016.

Lee, H., Hyung, E., and Hwang, S. J. Rapid neural architec-
ture search by learning to generate graphs from datasets.
In 9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, 2021.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. W. Learning deep generative models of graphs.
arXiv:1803.03324, 2018a.

Li, Y., Zhang, L., and Liu, Z. Multi-objective de novo
drug design with conditional graph generative model. J.
Cheminformatics, 10(1):33:1–33:24, 2018b.

Li, Y., Zhang, L., and Liu, Z. Multi-objective de novo
drug design with conditional graph generative model. J.
Cheminformatics, 10(1):33:1–33:24, 2018c.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duve-
naud, D. K., Urtasun, R., and Zemel, R. Efficient graph
generation with graph recurrent attention networks. Ad-
vances in Neural Information Processing Systems, 32:
4255–4265, 2019.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. In NeurIPS, 2019.

Score-based Generative Modeling of Graphs via the System of SDEs

Liu, M., Luo, Y., Wang, L., Xie, Y., Yuan, H., Gui, S., Yu,
H., Xu, Z., Zhang, J., Liu, Y., Yan, K., Liu, H., Fu, C.,
Oztekin, B. M., Zhang, X., and Ji, S. DIG: A turnkey
library for diving into graph deep learning research. Jour-
nal of Machine Learning Research, 22(240):1–9, 2021a.

Liu, M., Yan, K., Oztekin, B., and Ji, S. Graphebm: Molecu-
lar graph generation with energy-based models. In Energy
Based Models Workshop-ICLR 2021, 2021b.

Luo, S. and Hu, W. Diffusion probabilistic models for 3d
point cloud generation. In CVPR, 2021.

Luo, Y., Yan, K., and Ji, S. Graphdf: A discrete flow model
for molecular graph generation. International Conference
on Machine Learning, 2021.

Ma, T., Chen, J., and Xiao, C. Constrained generation of
semantically valid graphs via regularizing variational au-
toencoders. Advances in Neural Information Processing
Systems, 31:7113–7124, 2018.

Madhawa, K., Ishiguro, K., Nakago, K., and Abe, M. Graph-
nvp: An invertible flow model for generating molecular
graphs. arXiv preprint arXiv:1905.11600, 2019.

Mittal, G., Engel, J. H., Hawthorne, C., and Simon, I. Sym-
bolic music generation with diffusion models. In ISMIR,
2021.

Neal, R. Mcmc using hamiltonian dynamics. Handbook of
Markov Chain Monte Carlo, 06 2012.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In AISTATS, 2020.

O’Bray, L., Horn, M., Rieck, B., and Borgwardt, K. M.
Evaluation metrics for graph generative models: Prob-
lems, pitfalls, and practical solutions. arXiv:2106.01098,
2021.

Parisi, G. Correlation functions and computer simulations.
Nuclear Physics B, 180(3):378–384, 1981.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Popova, M., Shvets, M., Oliva, J., and Isayev, O. Molecular-
rnn: Generating realistic molecular graphs with optimized
properties. arXiv preprint arXiv:1905.13372, 2019.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet chemnet distance: a metric for
generative models for molecules in drug discovery. Jour-
nal of chemical information and modeling, 58(9):1736–
1741, 2018.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,
O. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt,
C., Huhn, G., and Schomburg, D. Brenda, the enzyme
database: updates and major new developments. Nucleic
Acids Res., 32(Database-Issue):431–433, 2004.

Sen, P., Namata, G. M., Bilgic, M., Getoor, L., Gallagher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI Magazine, 29(3):93–106, 2008.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang,
J. Graphaf: a flow-based autoregressive model for molec-
ular graph generation. In International Conference on
Learning Representations, 2020.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In ICANN, 2018.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In ICLR, 2021a.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In NeurIPS, 2019.

Song, Y. and Ermon, S. Improved techniques for training
score-based generative models. In NeurIPS, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In ICLR, 2021b.

Strang, G. On the construction and comparison of difference
schemes. SIAM Journal on Numerical Analysis, 5:506–
517, 1968.

Särkkä, S. and Solin, A. Applied Stochastic Differential
Equations. Institute of Mathematical Statistics Textbooks.
Cambridge University Press, 2019.

Trotter, H. F. On the product of semi-groups of operators.
In Proceedings of the American Mathematical Society,
1959.

Vahdat, A., Kreis, K., and Kautz, J. Score-based generative
modeling in latent space. arXiv:2106.05931, 2021.

Vincent, P. A Connection Between Score Matching and
Denoising Autoencoders. Neural Computation, 23(7):
1661–1674, 07 2011.

Score-based Generative Modeling of Graphs via the System of SDEs

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang,
F., Xie, X., and Guo, M. Graphgan: Graph representation
learning with generative adversarial nets. In AAAI, 2018.

Xie, S., Kirillov, A., Girshick, R. B., and He, K. Exploring
randomly wired neural networks for image recognition. In
2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, pp. 1284–1293. IEEE, 2019.

You, J., Liu, B., Ying, R., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecu-
lar graph generation. In Proceedings of the 32nd Inter-
national Conference on Neural Information Processing
Systems, pp. 6412–6422, 2018a.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on ma-
chine learning, pp. 5708–5717. PMLR, 2018b.

Zang, C. and Wang, F. Moflow: an invertible flow model for
generating molecular graphs. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 617–626, 2020.

Score-based Generative Modeling of Graphs via the System of SDEs

Appendix

Organization The appendix is organized as follows: We first present the derivations excluded from the main paper due to
space limitation in Section A, and explain the details of the proposed score-based graph generation framework in Section B.
Then we provide the experimental details including the hyperparameters of the toy experiment, the generic graph generation,
and the molecule generation in Section C. Finally, we present additional experimental results and the visualizations of the
generated graphs in Section D.

A. Derivations
In this section, we present the detailed derivations of the proposed training objectives described in Section 3.2 and the
derivations of our novel S4 solver explained in Section 3.3.

A.1. Deriving the Denoising Score Matching Objectives

The original score matching objective can be written as follows:

EGt

∥∥∥sθ(Gt, t)−∇Xt
log pt(Gt)

∥∥∥2
2
= EGt

∥∥∥sθ(Gt, t)
∥∥∥2
2
− 2EGt

〈
sθ,∇Xt

log pt(Gt)
〉
+ C1, (12)

where C1 is a constant that does not depend on θ. Further, the denoising score matching objective can be written as follows:

EG0
EGt|G0

∥∥∥sθ(Gt, t)−∇Xt
log pt(Gt|G0)

∥∥∥2
2
= EG0

EGt|G0

∥∥∥sθ(Gt, t)
∥∥∥2
2

− 2EG0
EGt|G0

〈
sθ,∇Xt

log pt(Gt|G0)
〉
+ C2,

(13)

where C2 is also a constant that does not depend on θ. From the following equivalence,

EGt

〈
sθ,∇Xt log pt(Gt)

〉
=

∫
Gt

p(Gt)
〈
sθ,∇Xt log pt(Gt)

〉
dGt

=

∫
Gt

〈
sθ,∇Xtpt(Gt)

〉
dGt

=

∫
Gt

〈
sθ,∇Xt

∫
G0

p(G0)pt(Gt|G0)dG0

〉
dGt

=

∫
Gt

〈
sθ,∇Xt

∫
G0

p(G0)pt(Gt|G0)dG0

〉
dGt

=

∫
Gt

〈
sθ,

∫
G0

p(G0)∇Xtpt(Gt|G0)dG0

〉
dGt

=

∫
Gt

∫
G0

p(G0)p(Gt|G0)
〈
sθ,∇Xt log pt(Gt|G0)

〉
dG0dGt

=EG0
EGt|G0

〈
sθ,∇Xt

log pt(Gt|G0)
〉
,

we can conclude that the two objectives are equivalent with respect to θ:

EG0
EGt|G0

∥∥∥sθ(Gt, t)−∇Xt
log pt(Gt|G0)

∥∥∥2
2
= EGt

∥∥∥sθ(Gt, t)−∇Xt
log pt(Gt)

∥∥∥2
2
+ C2 − C1. (14)

Similarly, computing the gradient with respect to At, we can show that the following two objectives are also equivalent with
respect to ϕ:

EG0
EGt|G0

∥∥∥sϕ(Gt, t)−∇At
log pt(Gt|G0)

∥∥∥2
2
= EGt

∥∥∥sϕ(Gt, t)−∇At
log pt(Gt)

∥∥∥2
2
+ C4 − C3, (15)

where C3 and C4 are constants that does not depend on ϕ.

Score-based Generative Modeling of Graphs via the System of SDEs

A.2. Deriving New Objectives for GDSS

It is enough to show that ∇Xt log p0t(Gt|G0) is equal to ∇Xt log p0t(Xt|X0). Using the chain rule, we can derive that
∇Xt

log p0t(At|A0) = 0:

∂ log p0t(At|A0)

∂(Xt)ij
= Tr

[
∇At

log p0t(At|A0)
∂At

∂(Xt)ij︸ ︷︷ ︸
=0

]
= 0, (16)

Therefore, we can conclude that ∇Xt
log p0t(Gt|G0) is equal to ∇Xt

log p0t(Xt|X0):

∇Xt log p0t(Gt|G0) = ∇Xt log p0t(Xt|X0) +∇Xt log p0t(At|A0)︸ ︷︷ ︸
=0

= ∇Xt log p0t(Xt|X0). (17)

Similarly, computing the gradient with respect to At, we can also show that ∇At log p0t(Gt|G0) is equal to
∇At

log p0t(At|A0).

A.3. The Action of the Fokker-Planck Operators and the Classical Propagator

Fokker-Planck Operators Recall the system of reverse-time SDEs of Eq. (10):{
dXt= f1,t(Xt)dt+ g1,tdw̄1 −g21,tsθ,t(Xt,At)dt
dAt = f2,t(At)dt+ g2,tdw̄2 −g22,tsϕ,t(Xt,At)dt︸ ︷︷ ︸

F

︸ ︷︷ ︸
S

, (18)

Denoting the marginal joint distribution of Eq. (18) at time t as p̃t(Gt), the evolution of p̃t through time t can be described
by a partial differential equation, namely Fokker-Planck equation, as follows:

∂p̃t(Gt)

∂t
= −∇Gt

·
(
ft(Gt)p̃t(Gt)−

1

2
g2t p̃t(Gt)∇Gt

log p̃t(Gt)− g2t st(Gt)p̃t(Gt)

)
, (19)

where st(Gt) = (sθ,t(Gt),sϕ,t(Gt)). Then, the Fokker-Planck equation can be represented using the Fokker-Planck
operators as follows:

∂p̃t(Gt)

∂t
= (L̂∗

F + L̂∗
S)p̃t(Gt), (20)

where the action of the Fokker-Planck operators on the function A(Gt) is defined as:

L̂∗
FA(Gt) := −∇Gt

·
(
ft(Gt)A(Gt)−

1

2
g2tA(Gt)∇Gt

logA(Gt)

)
(21)

L̂∗
SA(Gt) := −∇Gt

·
(
−g2t st(Gt)A(Gt)

)
. (22)

Classical Propagator From the Fokker-Planck equation of Eq. (20), we can derive an intractable solution Ḡt := GT−t to
the system of reverse-time SDEs in Eq. (18) as follows:

Ḡt = et(L̂
∗
F+L̂∗

S)Ḡ0, (23)

which is called the classical propagator. The action of the operator et(L̂
∗
F+L̂∗

S) propagates the initial states Ḡ0 to time t
following the dynamics determined by the action of Fokker-Planck operators L̂∗

F and L̂∗
S , described in Eq. (22).

A.4. Symmetric Splitting for the System of SDEs

Let us take a look on each operator one by one. First, the action of the operator L̂∗
F on the marginal distribution p̃t(Gt)

corresponds to the diffusion process described by the F -term in Eq. (18) as follows:{
dXt = f1,t(Xt)dt+ g1,tdw̄1

dAt = f2,t(At)dt+ g2,tdw̄2

, (24)

Score-based Generative Modeling of Graphs via the System of SDEs

Algorithm 1 Symmetric Splitting for the System of SDEs (S4)
Input: Score-based models sθ,t and sϕ,t, number of sampling steps M , step size δt, transition distributions pst(·|·) of the
forward diffusion in Eq. (1), Lagevin MCMC step size α, scaling coefficient ϵs
Output: X0, A0: the solution to Eq. (10)
1: t = T
2: Sample from the prior distribution XM ,AM ∼ pT
3: for m = M − 1 to 0 do
4: SX ← sθ,t(Xm+1,Am+1); SA ← sϕ,t(Xm+1,Am+1) ▷ score computation step
5: Xm+1 ←Xm+1 +

α
2
SX + ϵs

√
αzX ; zX ∼ N (0, IX) ▷ correction step: X

6: Am+1 ← Am+1 + α
2
SA + ϵs

√
αzA; zA ∼ N (0, IA) ▷ correction step: A

7: t′ ← t− δt/2

8: X̃m ∼ pt,t′(X̃m|Xm+1); Ãm ∼ pt,t′(Ãm|Am+1) ▷ prediction step: action of e
δt
2

L̂∗
F

9: X̃m ← X̃m + g21,tSXδt; Ãm ← Ãm + g22,tSAδt ▷ prediction step: action of eδtL̂
∗
S

10: t← t− δt

11: Xm ∼ pt′,t(Xm|X̃m); Am ∼ pt′,t(Am|Ãm) ▷ prediction step: action of e
δt
2

L̂∗
F

12: end for
13: Return: X0, A0

Notice that the diffusion process described by Eq. (24) is similar to the forward diffusion process of Eq. (1), with a slight
difference that Eq. (24) is a system of reverse-time SDEs. Therefore, the action of the operator e

δt
2 L̂∗

F can be represented by
the transition distribution of the forward diffusion process pst(·|·) as follows:

e
δt
2 L̂∗

FG = G̃ ∼ pt,t−δt/2(G̃|G). (25)

We provide the explicit form of the transition distribution in Section A.5 of the Appendix. Furthermore, the operator L̂∗
S

corresponds to the evolution of Xt and At described by the S-term in Eq. (18), which is a system of reverse-time ODEs:{
Xt = −g21,tsθ,t(Xt,At)dt

At = −g22,tsϕ,t(Xt,At)dt
, (26)

Hence, the action of the operator eδtL̂
∗
S can be approximated with the simple Euler method for a positive time step δt:

eδtL̂
∗
SXt ≈ Xt + g21,tsθ,t(Xt,At)δt

eδtL̂
∗
SAt ≈ At + g22,tsϕ,t(Xt,At)δt,

(27)

which we refer to this approximated action as eδtL
Euler
S . Using the symmtric Trotter theorem (Trotter, 1959), we can

approximate the intractable solution et(L̂
∗
F+L̂∗

S) as follows (Dockhorn et al., 2021):

et(L̂
∗
F+L̂∗

S) ≈
[
e

δt
2 L̂∗

F eδtL̂
∗
Se

δt
2 L̂∗

F

]M
+O(Mδt3)

=
[
e

δt
2 L̂∗

F eδtL
Euler
S e

δt
2 L̂∗

F

]M
+MO(δt2) (28)

=
[
e

δt
2 L̂∗

F eδtL
Euler
S e

δt
2 L̂∗

F

]M
+O(δt), (29)

for a sufficiently large number of steps M and a time step δt = t/M . Note that from Eq. (28) and Eq. (29), we can see that
the prediction step of S4 has local error O(δt2) and global error O(δt). From the action of the Fokker-Planck operators and
the result of Eq. (29), we can derive the prediction step of the S4 solver described in Section 3.3. We further provide the
pseudo-code for the proposed S4 solver in Algorithm 1.

A.5. Derivation of the transition distribution

We provide an explicit form of the transition distribution for two types of SDE, namely VPSDE and VESDE (Song et al.,
2021b). We consider the transition distribution from time t to t− δt for sufficiently small time step δt with xt given, and
considering the input as discrete state corresponding to normal distribution with 0 variance.

Score-based Generative Modeling of Graphs via the System of SDEs

𝑨𝑨𝒕𝒕𝟐𝟐
𝑨𝑨𝒕𝒕

MLP

𝑿𝑿𝒕𝒕
GMH

𝜵𝜵𝑨𝑨𝒕𝒕 𝒍𝒍𝒍𝒍𝒍𝒍𝒑𝒑𝒕𝒕(𝑿𝑿𝒕𝒕,𝑨𝑨𝒕𝒕)

MLP

GCN

GCN

GCN

𝜵𝜵𝑿𝑿𝒕𝒕 𝒍𝒍𝒍𝒍𝒍𝒍𝒑𝒑𝒕𝒕(𝑿𝑿𝒕𝒕,𝑨𝑨𝒕𝒕)𝑨𝑨𝒕𝒕

𝑿𝑿𝒕𝒕

Figure 5: The architecture of the score-based models of GDSS. (Left) The score-based model sϕ estimating∇At log pt(Xt,At) is
composed of GMH blocks and MLP layers. (Right) The score-based model sθ estimating ∇Xt log pt(Xt,At) is composed of GCN
layers and MLP layers. Both models take Xt and At as input and estimate the partial scores with respect to At and Xt, respectively.

VPSDE The process of the VPSDE is given by the following SDE:

dx = −1

2
βtxdt+

√
βtdw, (30)

where βt = βmin + t(βmax − βmin) for the hyperparameters βmin and βmax, and t ∈ [0, 1]. Since Eq. (30) has a linear
drift coefficient, the transition distribution of the process is Gaussian, and the mean and covariance can be derived using the
result of Eq.(5.50) and (5.51) of Särkkä & Solin (2019) as follows:

pt,t−δt(xt−δt|xt) = N (xt−δt | µtxt,Σt) , (31)

where µt = eCt and Σt = I − Ie−2Ct for

Ct =
1

2

∫ t

t−δt

βsds =
δt

4

(
2βmin + (2t+ δt)(βmax − βmin)

)
. (32)

VESDE The process of the VESDE is given by the following SDE:

dx = σmin

(
σmax

σmin

)t √
2 log

σmax

σmin
dw, (33)

for the hyperparameters σmin and σmax, and t ∈ (0, 1]. Since Eq. (33) has a linear drift coefficient, the transition distribution
of the process is Gaussian, and the mean and covariance can be derived using the result of Eq.(5.50) and (5.51) of Särkkä &
Solin (2019) as follows:

pt,t−δt(xt−δt|xt) = N (xt−δt | xt,Σt) , (34)

where Σt = ΣtI is given as:

Σt = σ2
min

(
σmax

σmin

)2t

− σ2
min

(
σmax

σmin

)2t−2δt

. (35)

B. Details for Score-based Graph Generation
In this section, we describe the architectures of our proposed score-based models, and further provide the details of the
graph generation procedure through the reverse-time diffusion process.

B.1. Score-based Model Architecture

We illustrate the architecture of the proposed score models sθ,t and sϕ,t in Figure 5, which are described in Section 3.2.

Score-based Generative Modeling of Graphs via the System of SDEs

Table 5: Hyperparameters of GDSS used in the generic graph generation tasks and the molecule generation tasks. We provide the
hyperparameters of the score-based models (sθ and sϕ), the diffusion processes (SDE for X and A), the SDE solver, and the training.

Hyperparameter Ego-small Community-small Enzymes Grid QM9 ZINC250k

sθ
Number of GCN layers 2 3 5 5 2 2
Hidden dimension 32 32 32 32 16 16

sϕ

Number of attention heads 4 4 4 4 4 4
Number of initial channels 2 2 2 2 2 2
Number of hidden channels 8 8 8 8 8 8
Number of final channels 4 4 4 4 4 4
Number of GCN layers 5 5 7 7 3 6
Hidden dimension 32 32 32 32 16 16

SDE for X

Type VP VP VP VP VE VP
Number of sampling steps 1000 1000 1000 1000 1000 1000
βmin 0.1 0.1 0.1 0.1 0.1 0.1
βmax 1.0 1.0 1.0 1.0 1.0 1.0

SDE for A

Type VP VP VE VP VE VE
Number of sampling steps 1000 1000 1000 1000 1000 1000
βmin 0.1 0.1 0.2 0.2 0.1 0.2
βmax 1.0 1.0 1.0 0.8 1.0 1.0

Solver
Type EM EM + Langevin S4 Rev. + Langevin Rev. + Langevin Rev. + Langevin
SNR - 0.05 0.15 0.1 0.2 0.2
Scale coefficient - 0.7 0.7 0.7 0.7 0.9

Train

Optimizer Adam Adam Adam Adam Adam Adam
Learning rate 1× 10−2 1× 10−2 1× 10−2 1× 10−2 5× 10−3 5× 10−3

Weight decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Batch size 128 128 64 8 1024 1024
Number of epochs 5000 5000 5000 5000 300 500
EMA - - 0.999 0.999 - -

B.2. Generating Samples from the Reverse Diffusion Process

We first sample N , the number of nodes to be generated from the empirical distribution of the number of nodes in the
training dataset as done in Li et al. (2018b) and Niu et al. (2020). Then we sample the noise of batch size B from the prior
distribution, where XT is of dimension N×F×B and AT is of dimension N×N×B, and simulate the reverse-time system
of SDEs in Eq. (10) to obtain the solution X0 and A0. Lastly, we quantize X0 and A0 with the operation depending on the
generation tasks. We provide further details of the generation procedure in Section C, including the hyperparameters.

C. Experimental Details
In this section, we explain the details of the experiments including the toy experiments shown in Figure 2, the generic graph
generation tasks, and the molecule generation tasks. We describe the implementation details of GDSS and the baselines, and
further provide the hyperparameters used in the experiments in Table 5.

C.1. Toy Experiment

Here, we provide the details for the toy experiment presented in Section 3.1. We construct the distribution of the data with
bivariate Gaussian mixture with the mean and the covariance as follows:

pdata(x) = N (x | µ1,Σ1) +N (x | µ2,Σ2), (36)

µ1 =

(
0.5
0.5

)
, µ2 =

(
−0.5
−0.5

)
, Σ1 = Σ2 = 0.12

(
1.0 0.9
0.9 1.0

)
.

For each diffusion method, namely GDSS, GDSS-seq, and independent diffusion, we train two models, where each model
estimates the partial score or score with respect to the variable. We fix the number of linear layers in the model to 20
with the residual paths, and set the hidden dimension as 512. We use VPSDE for the diffusion process of each variable
with βmin = 0.01 and βmax = 0.05. We train the models for 5000 epochs with batch size 2048 sampled from the data
distribution. We generate 213 samples for each diffusion method, shown in Figure 2.

Score-based Generative Modeling of Graphs via the System of SDEs

Table 6: Statistics of QM9 and ZINC25ok datasets used in the molecule generation tasks.

Dataset Number of graphs Number of nodes Number of node types Number of edge types

QM9 133,885 1 ≤ |V | ≤ 9 4 3
ZINC250k 249,455 6 ≤ |V | ≤ 38 9 3

C.2. Generic Graph Generation

The information and the statistics of the graph datasets, namely Ego-small, Community-small, Enzymes and Grid, are shown
in Section 4.1 and Table 1. We carefully selected the datasets to have varying sizes and characteristics, for example synthetic
graphs, real-world graphs, social graphs or biochemical graphs.

Implementation Details For a fair evaluation of the generic graph generation task, we follow the standard setting of
existing works (You et al., 2018b; Liu et al., 2019; Niu et al., 2020) from the node features to the data splitting. Especially,
for Ego-small and Community-small datasets, we report the means of 15 runs, 3 different runs for 5 independently trained
models. For Enzymes and Grid dataset, since the baselines including GraphVAE and EDP-GNN take more than 3 days
for a single training, we report the means of 3 different runs. For the baselines, we use the hyperparameters given by
the original work, and further search for the best performance if none exists. For GDSS, we initialize the node features
as the one-hot encoding of the degrees. We perform the grid search to choose the best signal-to-noise ratio (SNR) in
{0.05, 0.1, 0.15, 0.2} and the scale coefficient in the {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We select the best MMD
with the lowest average of three graph statistics, degree, clustering coefficient, and orbit. Further, we observed that applying
the exponential moving average (EMA) Song & Ermon (2020) for larger graph datasets, namely Enzymes and Grid, improves
the performance and lowers the variance. After generating the samples by simulating the reverse diffusion process, we
quantize the entries of the adjacency matrices with the operator 1x>0.5 to obtain the 0-1 adjacency matrix. We empirically
found that the entries of the resulting samples after the simulation of the diffusion process do not deviate much from the
integer values 0 and 1. We report the hyperparameters used in the experiment in Table 5.

C.3. Molecule Generation

The statistics of the molecular datasets, namely, QM9 and ZINC250k datasets, are summarized in Table 6.

Implementation Details of GDSS and GDSS-seq Each molecule is preprocessed into a graph with the node features
X ∈{0, 1}N×F and the adjacency matrix A∈{0, 1, 2, 3}N×N , where N is the maximum number of atoms in a molecule
of the dataset, and F is the number of possible atom types. The entries of A indicate the bond types, i.e. single, double,
or triple bonds. Following the standard procedure (Shi et al., 2020; Luo et al., 2021), the molecules are kekulized by the
RDKit library (Landrum et al., 2016) and hydrogen atoms are removed. As explained in Section 4.2, we make use of the
valency correction proposed by Zang & Wang (2020). We perform the grid search to choose the best signal-to-noise ratio
(SNR) in {0.1, 0.2} and the scale coefficient in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Since the low novelty value
leads to low FCD and NSPDK MMD values even though it is undesirable and meaningless, we choose the hyperparameters
that exhibit the best FCD value among those which show the novelty that exceeds 85%. After generating the samples by
simulating the reverse diffusion process, we quantize the entries of the adjacency matrices to {0, 1, 2, 3} by clipping the
values as: (−∞, 0.5) to 0, the values of [0.5, 1.5) to 1, the values of [1.5, 2.5) to 2, and the values of [2.5,+∞) to 3. We
empirically observed that the entries of the resulting samples after the simulation of the diffusion process do not deviate
much from the integer values 0, 1, 2, and 3. We report the hyperparameters used in the experiment in Table 5.

Implementation Details of Baselines We utilize the DIG (Liu et al., 2021a) library to generate molecules with GraphDF
and GraphEBM. To conduct the experiments with GraphAF, we use the DIG library for the QM9 dataset, and use the official
code3 for the ZINC250k dataset. We use the official code4 for MoFlow. We follow the experimental settings reported in the
respective original papers and the codes for these models. For EDP-GNN, we use the same preprocessing and postprocessing
procedures as in GDSS and GDSS-seq, except that we divide the adjacency matrices by 3 to ensure the entries are in the
range of [0, 1] before feeding them into the model. We conduct the grid search to choose the best size of the Langevin step
in {0.01, 0.005, 0.001} and noise scale in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and apply the same tuning criterion
as in GDSS and GDSS-seq.

3https://github.com/DeepGraphLearning/GraphAF
4https://github.com/calvin-zcx/moflow

Score-based Generative Modeling of Graphs via the System of SDEs

Table 7: Generation results of GDSS on the Ego-small and the Community-small datasets. We report the MMD distance between
the test datasets and generated graphs with the standard deviation.

Ego-small Community-small

Real, 4 ≤ |V | ≤ 18 Synthetic, 12 ≤ |V | ≤ 20

Deg. Clus. Orbit Deg. Clus. Orbit

GDSS-seq (Ours) 0.032 ± 0.006 0.027 ± 0.005 0.011 ± 0.007 0.090 ± 0.021 0.123 ± 0.200 0.007 ± 0.003
GDSS (Ours) 0.021 ± 0.008 0.024 ± 0.007 0.007 ± 0.005 0.045 ± 0.028 0.086 ± 0.022 0.007 ± 0.004

Table 8: Generation results on the Enzymes and the Grid datasets. We report the MMD distance between the test datasets and
generated graphs with the standard deviation. Best results are highlighted in bold (smaller the better). Hyphen (-) denotes out-of-resources
that take more than 10 days or not applicable due to memory issue. ∗ denotes our own implementation.

Enzymes Grid

Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Deg. Clus. Orbit Deg. Clus. Orbit

GraphRNN 0.017 ± 0.007 0.062 ± 0.020 0.046 ± 0.031 0.064 ± 0.017 0.043 ± 0.022 0.021 ± 0.007
GraphAF∗ 1.669 ± 0.024 1.283 ± 0.019 0.266 ± 0.007 - - -
GraphDF∗ 1.503 ± 0.011 1.061 ± 0.011 0.202 ± 0.002 - - -

GraphVAE∗ 1.369 ± 0.020 0.629 ± 0.005 0.191 ± 0.020 1.619 ± 0.007 0.0 ± 0.000 0.919 ± 0.002
EDP-GNN 0.023 ± 0.012 0.268 ± 0.164 0.082 ± 0.078 0.455 ± 0.319 0.238 ± 0.380 0.328 ± 0.278

GDSS-seq (Ours) 0.099 ± 0.083 0.225 ± 0.051 0.010 ± 0.007 0.171 ± 0.134 0.011 ± 0.001 0.223 ± 0.070
GDSS (Ours) 0.026 ± 0.008 0.061 ± 0.010 0.009 ± 0.005 0.111 ± 0.012 0.005 ± 0.000 0.070 ± 0.044

C.4. Computing Resources

For all the experiments, we utilize PyTorch (Paszke et al., 2019) to implement GDSS and train the score models on TITAN
XP, TITAN RTX, GeForce RTX 2080 Ti, and GeForce RTX 3090 GPU. For the generic graph generation tasks, the time
comparison between the SDE solvers in Figure 3 was measured on 1 GeForce RTX 2080 Ti GPU and 40 CPU cores. For the
molecule generation tasks, the inference time of each model is measured on 1 TITAN RTX GPU and 20 CPU cores.

D. Additional Experimental Results
In this section, we provide additional experimental results.

D.1. Generic Graph Generation

We report the standard deviation of the generation results of Table 1 in Table 7 and Table 8.

Table 9: Generation results of MMD using a larger number (1024) of samples.

Ego-small Community-small Avg.
Deg. Clus. Orbit Deg. Clus. Orbit

GraphRNN 0.040 0.050 0.060 0.030 0.010 0.010 0.033
GNF 0.010 0.030 0.001 0.120 0.150 0.020 0.055
EDP-GNN 0.010 0.025 0.003 0.006 0.127 0.018 0.031

GDSS (Ours) 0.023 0.020 0.005 0.029 0.068 0.004 0.030

For a fair evaluation of the generative methods,
following You et al. (2018b), we have measured
MMD between the test datasets and the set of
generated graphs that have the same number
of graphs as the test datasets. To further com-
pare extensively with the baselines, following
Liu et al. (2019); Niu et al. (2020), we provide
the results of MMD measured between the test
datasets and the set of 1024 generated graphs in Table 9. We can observe that GDSS still outperforms the baselines using a
larger number of samples (1024) to measure the MMD, and significantly outperforms EDP-GNN.

D.2. Molecule Generation

We additionally report the validity, uniqueness, and novelty of the generated molecules as well as the standard deviation of
the results in Table 10 and Table 11. Validity is the fraction of the generated molecules that do not violate the chemical
valency rule. Uniqueness is the fraction of the valid molecules that are unique. Novelty is the fraction of the valid molecules
that are not included in the training set.

Score-based Generative Modeling of Graphs via the System of SDEs

Table 10: Generation results on the QM9 dataset. Results are the means and the standard deviations of 3 runs. Values denoted by * are
taken from the respective original papers. Other results are obtained by running open-source codes. Best results are highlighted in bold.

Method Validity w/o ↑ NSPDK ↓ FCD ↓ Validity (%) ↑ Uniqueness (%) ↑ Novelty (%) ↑correction (%) MMD

Autoreg.

GraphAF (Shi et al., 2020) 67* 0.020±0.003 5.268±0.403 100.00* 94.51* 88.83*
GraphAF+FC 74.43±2.55 0.021±0.003 5.625±0.259 100.00±0.00 88.64±2.37 86.59±1.95
GraphDF (Luo et al., 2021) 82.67* 0.063±0.001 10.816±0.020 100.00* 97.62* 98.10*
GraphDF+FC 93.88±4.76 0.064±0.000 10.928±0.038 100.00±0.00 98.58±0.25 98.54±0.48

One-shot

MoFlow (Zang & Wang, 2020) 91.36±1.23 0.017±0.003 4.467±0.595 100.00±0.00 98.65±0.57 94.72±0.77
EDP-GNN (Niu et al., 2020) 47.52±3.60 0.005±0.001 2.680±0.221 100.00±0.00 99.25±0.05 86.58±1.85
GraphEBM (Liu et al., 2021b) 8.22±2.24 0.030±0.004 6.143±0.411 100.00±0.00* 97.90±0.14* 97.01±0.17*

GDSS-seq (Ours) 94.47±1.03 0.010±0.001 4.004±0.166 100.00±0.00 94.62±1.40 85.48±1.01
GDSS (Ours) 95.72±1.94 0.003±0.000 2.900±0.282 100.00±0.00 98.46±0.61 86.27±2.29

Table 11: Generation results on the ZINC250k dataset. Results are the means and the standard deviations of 3 runs. Values denoted by
* are taken from the respective original papers. Other results are obtained by running open-source codes. Best results are marked as bold.

Method Validity w/o ↑ NSPDK ↓ FCD ↓ Validity (%) ↑ Uniqueness (%) ↑ Novelty (%) ↑correction (%) MMD

Autoreg.

GraphAF (Shi et al., 2020) 68* 0.044±0.006 16.289±0.482 100.00* 99.10* 100.00*
GraphAF+FC 68.47±0.99 0.044±0.005 16.023±0.451 100.00±0.00 98.64±0.69 99.99±0.01
GraphDF (Luo et al., 2021) 89.03* 0.176±0.001 34.202±0.160 100.00* 99.16* 100.00*
GraphDF+FC 90.61±4.30 0.177±0.001 33.546±0.150 100.00±0.00 99.63±0.01 100.00±0.00

One-shot

MoFlow (Zang & Wang, 2020) 63.11±5.17 0.046±0.002 20.931±0.184 100.00±0.00 99.99±0.01 100.00±0.00
EDP-GNN (Niu et al., 2020) 82.97±2.73 0.049±0.006 16.737±1.300 100.00±0.00 99.79±0.08 100.00±0.00
GraphEBM (Liu et al., 2021b) 5.29±3.83 0.212±0.075 35.471±5.331 99.96±0.02* 98.79±0.15* 100.00±0.00*

GDSS-seq (Ours) 92.39±2.72 0.030±0.003 16.847±0.097 100.00±0.00 99.94±0.02 100.00±0.00
GDSS (Ours) 97.01±0.77 0.019±0.001 14.656±0.680 100.00±0.00 99.64±0.13 100.00±0.00

Table 12: Comparison between fixed step size SDE solvers. We additionally provide the results of the proposed S4 solver on other
datasets not included in the table of Figure 3. Best results are highlighted in bold (smaller the better).

Ego-small Grid QM9 ZINC250k

Solver Deg. Clus. Orbit Time (s) Deg. Clus. Orbit Time (s) Val. w/o corr. (%) NSPDK FCD Time (s) Val. w/o corr. (%) NSPDK FCD Time (s)

EM 0.021 0.024 0.007 40.31 0.278 0.008 0.089 235.36 67.44 0.016 4.809 63.87 15.92 0.086 26.049 1019.89
Reverse 0.032 0.046 0.010 41.55 0.278 0.008 0.089 249.86 69.32 0.016 4.823 65.23 46.02 0.052 21.486 1021.09

EM + Langevin 0.032 0.040 0.009 78.17 0.111 0.005 0.070 483.47 93.98 0.008 3.889 111.49 94.47 0.025 15.292 2020.87
Rev. + Langevin 0.032 0.046 0.021 77.82 0.111 0.005 0.070 500.01 95.72 0.003 2.900 114.57 97.01 0.019 14.656 2020.06

S4 (Ours) 0.032 0.044 0.009 41.25 0.125 0.008 0.076 256.24 95.13 0.003 2.777 63.78 95.52 0.021 14.537 1021.21

D.3. Ablation Studies

In Table 12, we provide the full results of the table in Figure 3, which shows the comparison between the fixed step size
SDE solvers on other datasets. As shown in Table 12, S4 significantly outperforms the predictor-only methods, and further
shows competitive results compared to the PC samplers with half the computation time.

E. Visualization
In this section, we additionally provide the visualizations of the generated graphs for the generic graph generation tasks and
molecule generation tasks.

E.1. Generic Graph Generation

We visualize the graphs from the training datasets and the generated graphs of GDSS for each datasets in Figure 6-9. The
visualized graphs are the randomly selected samples from the training datasets and the generated graph set. We additionally
provide the information of the number of edges e and the number of nodes n of each graph.

Score-based Generative Modeling of Graphs via the System of SDEs

(a) Training Data (b) GDSS (Ours)

Ego small

Figure 6: Visualization of the graphs from the Ego small dataset and the generated graphs of GDSS.

(a) Training Data (b) GDSS (Ours)

Community small

Figure 7: Visualization of the graphs from the Community small dataset and the generated graphs of GDSS.

(a) Training Data (b) GDSS (Ours)

ENZYMES

Figure 8: Visualization of the graphs from the ENZYMES dataset and the generated graphs of GDSS.

Score-based Generative Modeling of Graphs via the System of SDEs

(a) Training Data (b) GDSS (Ours)

Grid

Figure 9: Visualization of the graphs from the Grid dataset and the generated graphs of GDSS.

E.2. Molecule Generation

We visualize the generated molecules that are maximally similar to certain training molecules in Figure 10. The similarity
measure is the Tanimoto similarity based on the Morgan fingerprints, which are obtained by the RDKit (Landrum et al.,
2016) library with radius 2 and 1024 bits. As shown in the figure, GDSS is able to generate molecules that are structurally
close to the training molecules while other baselines generate molecules that deviate from the training distribution.

GraphAF MoFlow GraphDF GraphEBMTrain GDSS (Ours)

Q
M

9
ZI

N
C2

50
k

HO

0.3191 0.2885 0.2462 0.2128 0.2037

0.6000 0.4800 0.3438 0.2727 0.3182

GDSS-seq (Ours)

0.2857

0.4800

EDP-GNN

0.2540

0.4483

0.3519 0.3111 0.2593 0.1633 0.17300.2941 0.2571

0.3871 0.3800 0.2143 0.1786 0.16670.3559 0.3043

0.4242 0.2750 0.3514 0.1667 0.28570.3125 0.3529

0.5357 0.2821 0.3529 0.1707 0.30300.3333 0.4688

N

Figure 10: Visualization of generated molecules with maximum Tanimoto similarity with the molecule from the dataset. For each
generated molecule, we display the similarity value at the bottom.

