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Abstract
We consider transfer learning approaches that fine-
tune a pretrained deep neural network on a target
task. We investigate generalization properties of
fine-tuning to understand the problem of overfit-
ting, which often happens in practice. Previous
works have shown that constraining the distance
from the initialization of fine-tuning improves
generalization. Using a PAC-Bayesian analysis,
we observe that besides distance from initializa-
tion, Hessians affect generalization through the
noise stability of deep neural networks against
noise injections. Motivated by the observation,
we develop Hessian distance-based generalization
bounds for a wide range of fine-tuning methods.
Next, we investigate the robustness of fine-tuning
with noisy labels. We design an algorithm that
incorporates consistent losses and distance-based
regularization for fine-tuning. Additionally, we
prove a generalization error bound of our algo-
rithm under class conditional independent noise
in the training dataset labels. We perform a de-
tailed empirical study of our algorithm on various
noisy environments and architectures. For ex-
ample, on six image classification tasks whose
training labels are generated with programmatic
labeling, we show a 3.26% accuracy improvement
over prior methods. Meanwhile, the Hessian dis-
tance measure of the fine-tuned network using
our algorithm decreases by six times more than
existing approaches.

1. Introduction
Fine-tuning a pretrained neural network is a commonly used
approach to perform transfer learning. With the emergence
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of foundation models [HZR+16; DCL+18; BMR+20], fine-
tuning has become an efficient approach in many settings, in-
cluding multitask learning [Rud17], meta-learning [FAL17],
and zero-shot learning [WIL+22]. While fine-tuning ap-
proaches improve over supervised learning in many cases
[LHC+19; RSR+20; VWM+20], their test performance are
often limited by overfitting [BHG+17; ZBH+17; LNR+20].
Understanding the cause of overfitting is a challenge as
addressing the problem requires a precise measure of gener-
alization in deep neural networks. In this work, we analyze
the generalization error of fine-tuned deep models using a
PAC-Bayesian approach. Based by the analysis, we design
an algorithm to improve the robustness of fine-tuning with
limited and noisy labels.

There is a large body of work concerning generalization in
deep neural networks, whereas less is known for fine-tuned
models [NSZ20]. A central result of the recent literature is
to show norm or margin based bounds that improve over
classical capacity bounds [BFT17; NBS18]. These results
can be applied to the fine-tuning setting, following a “dis-
tance from initialization” perspective [NK19; LS20]. Gouk
et al. [GHP21] and Li and Zhang [LZ21] show generaliza-
tion bounds depending on various normed distance between
fine-tuned and initialization models. These results highlight
that distance from initialization crucially affect generaliza-
tion for fine-tuning, and inform the design of distance-based
regularization to mitigate overfitting, due to fine-tuning a
large model on a small training dataset.

Our motivating observation is that in addition to distance
from initialization, Hessians crucially affect generalization.
We consider a PAC-Bayesian analysis approach. Previous
work has explored the noise stability properties of deep
networks [AGN+18] using Lipschitzness of the activation
functions. We instead quantify the loss stability of a deep
model against noise perturbations using Hessians. This
is a practical approach as computational frameworks for
deepnet Hessians are developed recently [YGK+20]. We
show that incorporating Hessians into the distance-based
measure accurately correlates with the generalization error
of fine-tuning. See Figure 1 for an illustration.

Results. Our theoretical contribution is to develop gener-
alization bounds for fine-tuned multilayer feedforward net-
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Figure 1: By incorporating Hessians with distance from
initialization, the Hessian distance measure better correlates
with the generalization error of fine-tuned models.
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Table 1: Summary of our theoretical results: By measuring
Hessians, our technique yields practical bounds for various
fine-tuning methods. See also Section 2.1 for the definition
of the notations.

works using Hessians. Our result applies to a wide range of
fine-tuning approaches, including vanilla fine-tuning (with
or without early stopping), distance-based regularization,
and fine-tuning with weighted losses. To describe our re-
sult, we introduce a few notations. Let fW be an L layer
feedforward neural network with weight matrices {Wi}, for
i from 1 to L. Given a pretrained initialization fW (s) with
weight matrices W (s)

1 , . . . ,W
(s)
L , let vi be a flatten vector

of Wi −W
(s)
i . For every i = 1, . . . , L, let Hi be the loss

Hessian over Wi. For technical reasons, denote H+
i as a

truncation of Hi with only nonnegative eigenvalues. We
prove that on a training dataset of size n sampled from a dis-
tributionD, with probability at least 0.99, the generalization
error of a fine-tuned L-layer network fW scales as

O

∑L
i=1

√
max(x,y)∼D v⊤i H

+
i [ℓ(fW (x), y)]vi

√
n

 . (1)

See Theorem 2.1 for the complete statement. Based on this
result, one can derive a generalization bound for distance-
based regularization of fine-tuning, assuming constrains on
the norm of vi for every i.

Next, we consider the robustness of fine-tuning against label
noise, by considering a class conditional label noise setting
[NDR+13]. Given training labels that are independently
flipped with some probability according to a confusion ma-
trix F , we extend our result by incorporating statistically-
consistent losses. Table 1 summarizes our theoretical results.
Compared to the result of Arora et al. [AGN+18], our proof
involves a perturbation analysis of the loss Hessian, which
may be of independent interest.

Our analysis leads to the design of a new algorithm with
practical interest. We propose to incorporate consistent
losses with distance-based regularization to improve the
robustness of fine-tuning with a small amount of labels. We
evaluate our algorithm on various tasks with noisy labels.
First, we show that under class conditional label noise, our
algorithm performs robustly compared to the baselines, even

when the noise rate is as high as 60%. Second, on six
image classification tasks whose labels are generated by
programmatic labeling [MCS+21], our approach improves
the prediction accuracy of fine-tuned models by 3.26% on
average compared to existing approaches. Third, we extend
our result for fine-tuning vision transformers and language
models on the same six tasks, showing similar results. In
ablation studies, we find that our algorithm reduces the
Hessian distance measure by six times more than previous
fine-tuning methods.

1.1. Related Work

The PAC-Bayesian analysis is an approach to deriving the
generalization error of a machine learning model. It was
introduced by McAllester [McA99b] and is used to an-
alyze generalization in model averaging [McA99a] and
co-training [DLM01]. In recent years, this approach has
been used to show generalization bounds for deep networks
[AGN+18; NK18; NBS18]. Besides, the PAC-Bayesian
analysis has been used to derive the generalization er-
ror of black-box models, including graph neural networks
[LUZ21] and data augmentation [CPD+21]. Empirically,
PAC-Bayesian bounds can be optimized to achieve nonva-
cuous generalization bounds in real-world settings [DR17;
ZVA+19; DHG+21]. We refer interested readers to the sur-
veys of Guedj [Gue19] and Alquier [Alq21] for references.

Recent work finds that generalization measures that cor-
relate with empirical performance rely on data-dependent
measures [DR17; FKM+21]. Jiang et al. [JNM+20] show
that sharpness-based generalization measures correlate with
empirical performance better than norm or margin bounds.
Tsuzuku et al. [TSS20] propose a matrix-normalized sharp-
ness measure. These works focus on the numerical optimiza-
tion of the PAC-Bayes bound. To our knowledge, provable
bounds that capture notions such as sharpness have not been
developed. Our Hessian distance-based measure is different
from sharpness-based measures since the Hessian measures
average perturbation whereas sharpness measures adversar-
ial perturbation. It is conceivable that the techniques we
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have developed might be helpful for understanding sharp-
ness. This is an interesting direction for future work. Our
experiments with multiple datasets and architectures sug-
gest that the Hessian distance measure is a practical tool for
measuring generalization for fine-tuning.

While our work focuses on the PAC-Bayesian approach
to understand generalization for fine-tuning, it is worth
mentioning that there are many theoretical works concern-
ing generalization in the broader space of transfer learn-
ing. The seminal work of Ben-David et al. [BBC+10]
(and the earlier work of Crammer et al. [CKW08]) derives
generalization bounds for learning from multiple sources.
Recent works have proposed new theoretical frameworks
and techniques to explain transfer including transfer expo-
nent [HK19], task diversity [TJJ20], random matrix theory
[WZR20; YZW+21], and minimax estimators [LHL21].
Shachaf et al. [SBG21] consider a deep linear network and
the impact of the similarity between the source (on which a
model is pretrained) and target domains on transfer.

There is a significant body of work on learning with noisy
labels, so it is beyond the scope of this work to provide a
comprehensive discussion. See, e.g., Song et al. [SKP+22]
for a recent survey. Some works that are related to ours
involve the design of robust losses [LT15; LNR+20], the
estimation of the confusion matrix [PRK+17; XLW+19;
YLH+20; ZLA21], the implicit regularization of early stop-
ping, [YRC07; LSO20], and label smoothing [LBM+20].
The work most related to ours within this literature is
Natarajan et al. [NDR+13], which provides Rademacher
complexity-based learning bounds under class conditional
label noise. Our work differs from this work in two aspects.
First, we use the PAC-Bayesian approach to study general-
ization. Second, we consider deep neural networks as the
hypothesis class. Our work highlights the importance of
explicit regularization for improving generalization given
limited and noisy labels.

Organization. The rest of this paper is organized as fol-
lows. In Section 2, we first introduce the problem setup for
fine-tuning with a deep model. Then, we state our main re-
sults including PAC-Bayesian bounds for fine-tuned models
using Hessians. In Section 3, we describe experiments to
validate the algorithmic implications of our PAC-Bayesian
analysis. In Section 4, we summarize this paper and discuss
several questions for future work. We present a detailed
proof of our results in Appendix A. In Appendix B, we fill
in missing details in the implementation of the experiments.

2. Generalization Bounds for Fine-Tuning
using Hessians

This section presents our approach to understand general-
ization in fine-tuning. After setting up the problem formally,

we first present PAC-Bayesian bounds for (vanilla) fine-
tuning and distance-based regularization. Then, we consider
the robustness of fine-tuning against label noise, and extend
our result by incorporate consistent losses. Lastly, we give
an overview of the proofs.

2.1. Problem setup

Suppose we want to solve a target task given a training
dataset of size n. Denote the feature vectors and labels
as xi and yi, for every i = 1, . . . , n, in which xi is d-
dimensional and yi is a class label between 1 to k. Assume
that the training examples are drawn independently from
an unknown distribution D. Let X be the support of the
features vectors of D.

Given a pretrained L-layer feedforward network with weight
matrices Ŵ (s)

i , for i = 1, . . . , L, we fine-tune the weights
to solve the target task. Let fW be an L-layer network
initialized with Ŵ (s). The dimension of layer i, Wi, is di
by di−1. Let di be the output dimension of layer i. Thus,
d0 is equal to the input dimension d and dL is equal to the
output dimension k. Let ϕi(·) be the activation function of
layer i. Given a feature vector x ∈ X , the output of fW is

fW (x) = ϕL

(
WL · ϕL−1

(
WL−1 · · ·ϕ1

(
W1 · x

)))
. (2)

Given a loss function ℓ : Rk × {1, . . . , k} → R, let
ℓ(fW (x), y) be the loss of fW . The empirical loss of fW ,
denoted by L̂(fW ), is the loss of fW averaged among the
training examples. The expected loss of fW , denoted by
L(fW ), is the expectation of ℓ(fW (x), y) over x sampled
from D with label y. The generalization error of fW is
defined as its expected loss minus its empirical loss.

Notations. For any vector v, let ∥v∥ be the Euclidean norm
of v. For any matrix X ∈ Rm×n, let ∥X∥

F
be the Frobenius

norm and ∥X∥2 be the spectral norm of X . Let ∥X∥1,∞ be
defined as max1≤j≤n

∑m
i=1 |Xi,j |. If X is a squared matrix,

then the trace of X , Tr [X], is equal to the sum of X’s diago-
nal entries. For two matrices X and Y with the same dimen-
sion, let ⟨X,Y ⟩ = Tr

[
X⊤Y

]
be the matrix inner product

of X and Y . For every i from 1 to L, let Hi[ℓ(fW (x), y)] be
a didi−1 by didi−1 Hessian matrix of the loss ℓ(fW (x), y)
over Wi. Given an eigendecomposition of the Hessian ma-
trix, UDU⊤, let H+

i [ℓ(fW (x), y)] = U max(D, 0)U⊤ be
a truncation into the positive eigen space. Let vi be a flatten
vector of the matrix Wi − Ŵ

(s)
i .

For two functions f(n) and g(n), we write g(n) = O(f(n))
if there exists a fixed value C that does not grow with n
such that g(n) ≤ C · f(n) when n is large enough.

2.2. PAC-Bayesian bounds for fine-tuned models

To better understand what impacts the performance of fine-
tuning, we investigate it with a PAC-Bayesian approach
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Figure 2: 2a, 2b, 2c: The Hessian measures accurately correlate with empirical generalization errors for seven fine-tuning
methods. 2d: Di is smaller for fine-tuning with explicit distance-based regularization compared to implicit early-stopped
regularization. Each dot represents one model. See Section B for the experimental setup.

[AGN+18; NBS18; LUZ21]. We consider a prior distri-
bution P defined as a noisy perturbation of the pretrained
weight matrices Ŵ (s). We also consider a posterior distri-
bution Q defined as a noisy perturbation of the fine-tuned
weights Ŵ . From a PAC-Bayesian perspective, the gener-
alization performance of a deep network depends on how
such noisy perturbations affect its predictions.

Previous work [AGN+18] has explored the noise stabil-
ity properties of deep networks and showed how to de-
rive stronger generalization bounds that depend on prop-
erties of the network. Let ℓQ(fW (x), y) be the loss of
fW (x), after a noisy perturbation following Q. Denote
ℓQ(fW (x), y) minus ℓ(fW (x), y) as I(fW (x), y): A lower
value of I(fW (x), y) means that the network is more error
resilient. The result of Arora et al. [AGN+18] shows how
to quantify the error resilience of fW using Lipschitzness
and smoothness of the activation functions across different
layers. However, there is still a large gap between the gen-
eralization bounds achieved by Arora et al. [AGN+18] and
the empirical generalization errors. Thus, a natural question
is whether one can achieve generalization bounds that better
capture empirical performance.

The key idea of our approach is to measure generalization
using the Hessian of ℓ(fW (x), y). From a technical per-
spective, this goes beyond the previous works by leveraging
Lipschitzness and smoothness of the derivatives of fW . Be-
sides, computational frameworks [YGK+20] are developed
for efficiently computing deep net Hessians, such as Hessian
vector products [SBL16; Pap18; GKX19; Pap19]. Our cen-
tral observation is that incorporating Hessians with distance
from initialization leads to provable bounds that accurately
correlate with empirical performance.

How can we connect Hessians with generalization? Con-
sider a Taylor’s expansion of the loss ℓ(fW+U (x), y) at
W , for some small perturbation U over W . Suppose U
has mean zero and covariance Σ. Then, I(fW (x), y) is
equal to ⟨Σ,H[ℓ(fW (x), y)]⟩ plus higher-order expansion
terms. While this expansion applies to every sample, the
next question is how to argue the uniform convergence of

the Hessians. This requires a perturbation analysis of the
Hessian of all layers, but can be achieved assuming Lips-
chitness and smoothness of the derivatives of the activation
functions. We state our result formally below.

Theorem 2.1. Assume the activation functions ϕi(·) for
all i = 1, . . . , L and the loss function ℓ(·, ·) are all twice-
differentiable, and their first-order and second-order deriva-
tives are all Lipschitz-continuous. Suppose the loss function
ℓ(x, y) is bounded by a fixed value C for any x ∈ X with
class label y. Given an L-layer network fŴ , with probabil-
ity at least 0.99, for any fixed ϵ close to zero, we have

L
(
fŴ
)
≤
(
1 + ϵ

)
L̂
(
fŴ
)
+

(1 + ϵ)
√
C
∑L

i=1

√
Hi√

n
+ ξ, (3)

where Hi is any value greater than
max(x,y)∈D v⊤i H

+
i [ℓ(fŴ (x), y)]vi, for all i = 1, . . . , L,

and ξ = O(n−3/4) represents an error term from the
Taylor’s expansion.

Theorem 2.1 applies to vanilla fine-tuning (with or without
early stopping). A corollary of this result can be derived for
distance-based regularization, which restricts the distance
between Wi and Ŵ

(s)
i for every layer [LXW+18; LGD18;

GHP21]:

∥Wi − Ŵ
(s)
i ∥F ≤ αi, ∀ i = 1, . . . , L. (4)

SinceHi ≤ α2
i max(x,y)∈X Tr[H+

i (ℓ(fŴ (x), y))], we thus
obtain a PAC-Bayes bound for distance-based regularization
of fine-tuning.

We demonstrate that the generalization bound of Theorem
2.1 accurately correlate with empirical generalization errors.
We experiment with seven methods, including fine-tuning
with and without early stopping, distance-based regulariza-
tion, label smoothing, mixup, etc. Figure 2 shows that the
Hessian measure (i.e. second part of equation (3)) correlate
with the generalization errors of these methods. Second,
we plot the value of Di (averaged over all layers) between
fine-tuning with implicit (early stopping) regularization and
explicit (distance-based) regularization. We fine that Di

is smaller for explicit regularization compared to implicit
regularization.
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Algorithm 1 Consistent loss reweighting with layerwise projection
Input: Training dataset {(xi, ỹi)}ni=1 with input feature xi and noisy label ỹi, for i = 1, . . . , n
Require: Pretrained network fŴ (s) , layerwise distance αi for i = 1, . . . , L, number of epochs T , learning rate η, and
confusion matrix F
Output: A trained model fW (T )

1: Let Λ = F−1

2: At t = 0, initialize model parameters with pretrained weight matrices W (0) = Ŵ (s)

3: while 0 < t < T do
4: Let L̄(fW (t−1)) = 1

n

∑n
i=1

∑k
c=1 Λỹi,c · ℓ(fW (t−1)(xi), c)

5: Update W (t) ←W (t−1) − η · ∇L̄(fW (t−1)) using SGD
6: Project W (t)

i in constrained region: W (t)
i ← min

(
1, αi

∥W (t)
i −W

(0)
i ∥

F

)(
W

(t)
i −W

(0)
i

)
+W

(0)
i , ∀i = 1, . . . , L

7: end while

2.3. Incorporating consistent losses with distance-based
regularization

Next, we consider the robustness of fine-tuning with noisy
labels. We consider a random classification noise model
where in the training dataset, each label yi is independently
flipped to 1, . . . , k with some probability [AL88]. Denote
the noisy label by ỹi. With class conditional label noise
[NDR+17; KLA18], ỹ is equal to z with probability Fy,z ,
for any z = 1, . . . , k, where F is a k by k confusion matrix.

Previous works [NDR+13; PRK+17] have suggested mini-
mizing statistically-consistent losses for learning with noisy
labels. Let ℓ̄ be a weighted loss parametrized by a k by k
weight matrix Λ,

ℓ̄(fW (x), ỹ) =

k∑
i=1

Λỹ,i · ℓ(fW (x), i). (5)

It is known that for Λ = F−1 (recall that F is the confusion
matrix), the weighted loss ℓ̄ is unbiased in the sense that
the expectation of ℓ̄(fW (x), ỹ) over the labeling noise is
ℓ(fW (x), y):

Ẽ
y

[
ℓ̄(fW (x), ỹ) | y

]
= ℓ(fW (x), y). (6)

See Lemma 1 in Natarajan et al. [NDR+13] for the binary
setting and Theorem 1 in Patrini et al. [PRK+17] for the
multiclass setting. As a result, a natural approach to design
theoretically grounded fine-tuning algorithm is to minimize
weighted losses with Λ = F−1. However, this approach
does not take overfitting into consideration.

Our proposed approach involves incorporating consistent
losses with distance-based regularization. Let L̄(fW ) be
the average of the weighted loss ℓ̄(fW (xi), ỹi) over i =
1, . . . , n. We extend Theorem 2.1 to this setting as follows.

Theorem 2.2. Assume the activation functions {ϕi(·)}Li=1
and the loss function ℓ(·, ·) satisfy the assumptions stated in
Theorem 2.1. Suppose the noisy labels are independent of

the feature vector conditional on the class label. Suppose
the loss function ℓ(x, z) is bounded by C for any x ∈ X
and any z ∈ {1, . . . , k}. Let Λ = F−1. With probability
0.99, for any fixed ϵ close to zero, we have

L
(
fŴ
)
≤(1 + ϵ)L̄

(
fŴ
)

+
(1 + ϵ)

√
C ∥Λ⊤∥1,∞

∑L
i=1

√
α2
i Hi

√
n

+ ξ,

where αi is any value greater than ∥Ŵi − Ŵ
(s)
i ∥F , for any

i = 1, . . . , L, ξ = O
(
n−3/4

)
represents an error term from

the Taylor’s expansion, and

Hi = max
x∈X ,y∈{1,...,k}

|Tr[Hi(ℓ(fŴ (x), y))]| .

Theorem 2.2 shows that combining consistent losses and
leads to a method that is provably robust under class condi-
tional label noise. Notice that this result uses the trace of the
Hessian Hi as opposed to the truncated Hessian H+

i . The
reason is that the reweighing matrix Λ might include nega-
tive coefficients, and H+

i deals with this problem. Based on
the theory, we propose Algorithm 1, which instantiates the
idea. In Section 3, we evaluate the robustness of Algorithm
1 for both image and text classification tasks.

2.4. Proof overview

We give an overview of the proof of Theorems 2.1 and 2.2.
First, we show that the noise stability of an L-layer network
fW admits a layerwise Hessian approximation. Let U ∼ Q
be a random variable drawn from a posterior distribution
Q. We are interested in the perturbed loss, ℓQ(fU (x), y),
which is the expectation of ℓ(fU (x), y) over U .

Lemma 2.3. In the setting of Theorem 2.1, for any i =
1, 2, · · · , L, let Ui ∈ Rdidi−1 be a random vector sampled
from a Gaussian distribution with mean zero and variance
Σi. Let the posterior distribution Q be centered at Wi

and perturbed with an appropriately reshaped Ui at every
layer. Then, there exists a fixed value C1 > 0 that does not
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Table 2: Showing the relative residual sum of squares (RSS) of the Hessian approximation (7) under isotropic noise
perturbation of variance σ2. The noise stability results are estimated by the average of 500 noise injections. All the
experiments are done with the CIFAR-100 dataset.

σ
ResNet-18 ResNet-50

Noise Stability Hessian Approx. Noise Stability Hessian Approx.

0.01 0.86± 0.19 1.07 0.39± 0.10 1.24
0.011 1.13± 0.24 1.29 1.12± 0.20 1.50
0.012 1.45± 0.29 1.54 1.56± 0.26 1.79
0.013 1.82± 0.35 1.80 2.10± 0.33 2.10
0.014 2.23± 0.40 2.09 2.71± 0.38 2.43
0.015 2.65± 0.43 2.34 3.30± 0.40 2.79
0.016 3.07± 0.45 2.73 3.80± 0.40 3.18
0.017 3.47± 0.47 3.08 4.17± 0.40 3.59
0.018 3.84± 0.49 3.46 4.60± 0.44 4.02
0.019 4.15± 0.51 3.85 4.77± 0.44 4.48
0.020 4.43± 0.55 4.27 5.03± 0.82 4.97

Relative RSS 0.75% 2.98%

grow with n, such that for any x ∈ X and y ∈ {1, . . . , k},
ℓQ(fW (x), y)− ℓ(fW (x), y) is upper bounded by

L∑
i=1

(〈
Σi,Hi[ℓ(fW (x), y)]

〉
+ C1 ∥Σi∥3/2F

)
. (7)

See Appendix A.3 for the proof of Lemma 2.3. Interestingly,
we find that the Hessian estimate is remarkably accurate in
practice. We use ResNet-18 and ResNet-50 fine-tuned on
the CIFAR-100 dataset. We estimate the noise stability in
equation (7) by randomly sampling 500 isotropic Gaussian
perturbations and average the perturbed losses. Then, we
compute the Hessian term in right hand side of equation (7)
by measuring the traces of the loss’s Hessian at each layer of
the network and average over the same data samples. Table
2 shows the result. The relative error of the Hessian estimate
is within 3% on ResNet.

Based on the Hessian approximation, consider applying
a PAC-Bayes bound over the L-layer network fW (see
also Catoni [Cat07], Guedj [Gue19], and Dziugaite et al.
[DHG+21]). The KL divergence between the prior distribu-
tion and the posterior distribution is equal to

L∑
i=1

〈
Σ−1

i , viv
⊤
i

〉
. (8)

Minimizing the sum of the Hessian estimate and the above
KL divergence (8) in the PAC-Bayes bound leads to a co-
variance matrix per layer, which depends on vi and H+

i :
L∑

i=1

(
⟨Σi,Hi⟩+

1

n
⟨Σ−1

i , viv
⊤
i ⟩
)

≤
L∑

i=1

(
⟨Σ,H+

i ⟩+
1

n
⟨Σ−1

i , viv
⊤
i ⟩
)
,

where the 1/n factor comes from the PAC-Bayes bound
(cf. Theorem A.1). Thus, minimizing the above over the
covariance matrices leads to a Hessian distance based gen-
eralization bound of Theorem 2.1.

The above sketch highlights the crux of our result. The rigor-
ous proof, on the other hand, is significantly more involved.
One technical challenge is to argue the uniform conver-
gence of the Hessian operator Hi between the empirical
loss and the expected loss over D. This requires a perturba-
tion analysis of the Hessian, and uses the assumption that
the second-order derivatives of the activation functions (and
the loss) are Lipschitz-continuous.

Lemma 2.4. In the setting of Theorem 2.1, there exist some
fixed values C2, C3 that do not grow with n and 1/δ, such
that with probability at least 1− δ over the randomness of
the training set,

∥∥∥ 1
n

n∑
j=1

Hi[ℓ(fW (xj), yj)]− E
(x,y)∼D

[Hi[ℓ(fW (x), y)]]
∥∥∥

≤ C2

√
log(C3n/δ)√

n
, (9)

for any i = 1, . . . , L, where C2 = 4Hi

√∑L
i=1 didi−1,

C3 = 5L
(√∑L

i=1 ∥Wi∥2F
)
G/Hi, and G is a fixed value

that depends on
∏L

i=1 ∥Wi∥ and the Lipschitness of the
activation functions and their first-order and second-order
derivatives (cf. equation (29)).

See Appendix A.4 for the proof of Lemma 2.4, which is
based on an ϵ-net argument. The rest of the proof of Theo-
rem 2.1 can be found in Appendix A.1.
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Figure 3: Illustrating the intuition behind Theorem 2.2: With consistent losses, the noisy stability of the loss Hessian with
noisy labels is equal to the noise stability of the loss Hessian with class labels in expectation. Thus, the unbiased weighted
losses enjoy similar noise stability properties as training with class labels. Further, the unbiased loss favors stable models as
the trace of the Hessian is smallest when ỹ = y.

The key to handling noisy labels is a consistency condition
for the weighted loss ℓ̄(fW (x), ỹ) with noisy label ỹ:

L(fW ) = E
(x,y)∼D

E
ỹ|y

[
ℓ̄(fW (x), ỹ)

]
.

Thus, consider a noisy data distribution D̃, with the label y
of every x flipped independently to ỹ. Our key observation is
that ℓ̄(fW (x), ỹ) enjoys similar noise stability properties as
ℓ(fW (x), y). See Figure 3 for an illustration. The detailed
proof of Theorem 2.2 can be found in Appendix A.2.

3. Experiments
This section conducts experiments to complement our the-
ory. We evaluate the robustness of Algorithm 1 under vari-
ous noisy environments and architectures. First, we validate
that when the training labels are corrupted with class con-
ditional label noise, our approach is robust even under up
to 60% of label noise. Second, on six weakly-supervised
image classification tasks, our algorithm improves the pre-
diction accuracy over prior approaches by 3.26% on aver-
age. Lastly, we present a detailed analysis that validates
the theory, including comparing our generalization bound
with previous results and comparing the Hessian distance
measure for various fine-tuning methods.

3.1. Experimental setup

Datasets. We evaluate the robustness of our approach in
image and text classification tasks. For image classification,
we use six domains of object classification tasks from the
DomainNet [PBX+19] dataset. We consider two kinds of
label noise. First, we generate synthetic random noise by
randomly flipping the labels of training samples uniformly
with a given noise rate. Second, we create labels using weak
supervision approaches [MCS+21]. The statistics of the six
datasets are described in Table 6 from Section B.2. We refer
the reader to Mazzetto et al. [MCS+21] for more details.

For text classification, we use the MRPC dataset from the

GLUE benchmark [WSM+18], which is to predict whether
two sentences are semantically equivalent.

Models. In fine-tuning from noisy labels, we use pretrained
ResNet-18 and ResNet-101 [HZR+16] models on image
classification tasks and extend our results to Vision Trans-
former (ViT) model [DBK+20]. We use the RoBERTa-Base
[LOG+19] model on text classification tasks.

Baselines. We show that our fine-tuning algorithm is
competitive with or even outperforms baseline methods
on datasets with noisy labels. We consider the follow-
ing three kinds of baselines: (i) Regularization: Fine-
tuning with early stop (Early stopping), label smooth-
ing [MKH19], Mixup [ZCD+18; WZV+20], and Early-
Learning Regularization (ELR) [LNR+20]; (iii) Self-
training: FixMatch [SBL+20] and Self-Adaptive Train-
ing (SAT) [HZZ20]; (ii) Robust loss function: Active Pas-
sive Loss (APL) [MHW+20], Generalized Jensen-Shannon
Divergence (GJS) [EA21], dual transition estimator (Du-
alT) [YLH+20], Supervised Contrastive learning (SupCon)
[GDC+20], and Sharpness-Aware Minimization (SAM)
[FKM+21].

For the implementation of our algorithm, we use the con-
fusion matrix F estimated by the method from the work of
Yao et al. [YLH+20]. We use layerwise distances [LZ21] for
applying the regularization constraints in Equation (4). We
describe the implementation details and hyper-parameters
in Section B.2.

3.2. Experimental results

Improved robustness against independent label noise.
Our result in Section 2.3 illustrates why our algorithm might
be expected to achieve provable robustness under class con-
ditional label noise. To validate its effectiveness, we apply
our algorithm in both image and text classification tasks
with different levels of synthetic random labels. Table 3
reports the test accuracy.
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Table 3: Test accuracy of fine-tuning with noisy labels. We consider two settings: one where the training labels are
independently flipped to incorrect labels, and another where the training labels are created using programmatic labeling
approaches. The reported results are averaged over 10 random seeds.

Independent label noise Sketch, ResNet-18 Sketch, ResNet-101 MRPC, RoBERTa-Base

40% 60% 40% 60% 20% 40%

Early Stopping 72.41±3.53 53.84±3.09 77.14±3.09 61.39±1.28 81.39±0.73 66.05±0.63
Label Smooth [MKH19] 74.69±1.97 55.35±1.60 81.47±1.36 64.90±2.93 80.00±0.62 65.87±0.95
Mixup [ZCD+18] 70.65±1.85 58.49±3.25 76.04±2.29 60.12±2.37 80.62±0.14 68.37±1.33
FixMatch [SBL+20] 73.35±3.15 61.51±2.17 76.19±1.39 62.19±1.57 81.10±1.76 68.48±1.43
ELR [LNR+20] 74.29±2.52 63.14±2.05 80.00±1.45 64.35±3.98 82.78±0.86 67.86±1.44
APL [MHW+20] 75.63±1.81 64.69±2.72 78.69±2.45 64.82±2.41 80.49±0.24 66.49±0.93
SAT [HZZ20] 75.18±1.54 62.33±2.24 80.00±2.96 65.58±2.91 82.80±0.42 67.50±1.00
GJS [EA21] 73.22±2.34 59.63±5.15 77.14±2.46 63.27±2.37 81.42±1.03 67.57±1.53
DualT [YLH+20] 72.49±3.17 59.59±3.44 77.96±0.33 62.31±3.98 82.49±0.53 66.49±0.93
SupCon [GDC+20] 75.14±1.73 61.06±3.20 78.86±1.80 63.92±2.15 82.30±1.80 68.32±1.16
SAM [FKM+21] 77.63±2.16 64.53±2.84 80.57±2.70 67.27±2.39 82.61±0.91 69.06±1.41

Ours 81.96±0.98 70.00±1.71 85.44±1.26 71.84±2.72 83.55±0.63 72.64±1.77

Correlated label noise
DomainNet, ResNet-18

Clipart Infograph Painting Quickdraw Real Sketch
41.47% 63.29% 44.50% 60.54% 34.64% 47.68%

Early Stopping 73.88±2.04 38.82±2.59 69.69±1.35 44.16±1.92 78.52±1.03 61.84±3.67
Label Smooth [MKH19] 74.56±2.30 38.40±2.67 70.76±1.74 46.50±3.03 81.39±0.93 62.29±2.48
Mixup [ZCD+18] 72.88±0.94 39.27±3.10 69.28±3.18 47.66±3.20 80.17±2.05 62.08±3.06
FixMatch [SBL+20] 77.04±2.52 41.95±1.52 73.31±2.10 48.74±2.08 86.33±2.54 64.61±3.28
ELR [LNR+20] 76.08±2.03 40.14±2.74 72.06±1.73 47.40±3.09 83.64±2.09 65.76±3.19
APL [MHW+20] 77.40±2.33 41.22±2.58 73.61±3.12 49.88±3.24 85.79±1.59 64.69±2.30
SAT [HZZ20] 75.24±2.79 39.58±1.47 70.69±2.69 48.18±2.95 81.90±1.07 65.39±2.77
GJS [EA21] 77.20±2.59 40.94±2.19 72.51±2.87 48.14±3.40 85.05±1.94 65.43±3.35
DualT [YLH+20] 75.24±2.02 38.75±2.12 70.27±2.24 46.62±3.16 83.33±3.01 65.47±1.91
SupCon [GDC+20] 76.56±3.53 40.38±1.94 72.51±2.45 49.20±2.63 81.87±0.84 65.67±2.90
SAM [FKM+21] 79.04±1.57 41.50±1.94 73.23±2.29 50.10±1.66 84.61±2.04 66.73±2.88

Ours 83.28±1.64 43.38±2.45 76.32±1.08 50.32±2.74 92.36±0.78 66.86±3.29

• First, we fine-tune ResNet-18 on the Sketch domain
from the DomainNet dataset with 40% and 60% syn-
thetic noise. We observe that our algorithm improves
upon the baseline methods by 6.43% on average. The
results corroborate our theory that provides generaliza-
tion guarantees for our algorithm.

• Second, to evaluate our algorithm with deeper models,
we apply ResNet-101 on the same label noise settings.
We observe a higher average performance with ResNet-
101, and our algorithm achieves a similar performance
boost of 6.03% on average over the previous methods.

• Third, we fine-tune RoBERTa-Base model on MRPC
dataset with 20% and 40% synthetic noise. Our algo-
rithm outperforms previous methods by 2.91% on av-
erage. These results show that our algorithm is robust
to label noise across various tasks and architectures.

Improved robustness against correlated label noise. Next,
we show that our algorithm can also achieve competitive
performance under real-world label noise. We evaluate
our algorithm on weakly-supervised image classification
tasks. We fine-tune ResNet-18 on the six domains from the
DomainNet dataset and report the test accuracy in Table 3.
We find that Algorithm 1 outperforms previous methods by
3.26%, averaged over the six tasks.

Extension to other architectures. Lastly, we expect our re-
sults under correlated label noise to hold with various model
architectures. As an extension of the above experiment,
we fine-tune Vision Transformer [DBK+20] models on the
same set of tasks. Table 4 reports the results on the Clipart
and Sketch domain (the results for the other domains are
similar and thus omitted). We notice that using ViT as the
base model boosts the performance across all approaches
significantly (e.g., over 4% for early stopping). We find that
our approach still outperforms baseline methods by 2.42%
on average.

3.3. Detailed analysis

How does our generalization bound compare to previ-
ous results? Our result suggests that Hessian-based gener-
alization bounds correlate with empirical performance of
fine-tuning. Next, we further compare our result with previ-
ous generalization bounds, including norm bounds [LS20;
GHP21; LZ21], and margin bounds [PDV17; AGN+18;
NBS18]. See Appendix B.1 for a precise description of the
measured results. For our result, we numerically calculate∑L

i=1

√
C · Hi/

√
n+ ξ from equation 3. We computeHi

using Hessian vector product with PyHessian [YGK+20].
We take the maximum over the training and test dataset. Fol-
lowing prior works, we evaluate the results using the CIFAR-
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Figure 4: Our algorithm reduces the Hessian distance mea-
sure more effectively than baseline methods.
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Table 5: Numerical comparison between our generalization
bound using Hessians and previous results. The base models
include ResNet-50 and BERT-Base.

Generalization bound CIFAR-10 CIFAR-100 MRPC SST2

Pitas et al. [PDV17] 5.51E+10 3.13E+12 / /
Arora et al. [AGN+18] 1.62E+06 9.66E+07 / /
Long and Sedghi [LS20] 6.30E+13 8.32E+13 / /
Gouk et al. [GHP21] 2.04E+69 2.72E+69 / /
Li and Zhang [LZ21] 1.63E+27 1.31E+29 / /
Neyshabur et al. [NBS18] 3.13E+11 1.62E+13 / /
Our result 2.26 7.23 3.83 9.71

10 and CIFAR-100 datasets [KH+09]. We use ResNet-50
as the base model for fine-tuning. Additionally, we evaluate
our results on text classification tasks, including MRPC and
SST-2 from the GLUE benchmark. We use BERT-Base-
Uncased [DCL+18] as the base model for fine-tuning.

Table 5 shows the result. We find that our bound is orders
of magnitude smaller than previous results. This shows our
theory leads to practical bounds for real-world settings.

How much does the Hessian distance measure drop? The
design of our algorithm is motivated by our Hessian-based
generalization guarantees. We hypothesize that our algo-
rithm can effectively reduce the Hessian distance measure∑L

i=1

√Hi (cf. Equation 3) of fine-tuned models. We com-
pare the Hessian quantity of models fine-tuned by different
algorithms. We select five baseline methods to compare with
our algorithm and expect similar results for comparison with
other baselines. Figure 4 shows the results on ResNet-18
models fine-tuned on the Clipart dataset with weak supervi-
sion noise. We notice that our algorithm reduces the quantity
by six times more than previous fine-tuning algorithms.

Both components of Algorithm 1 contribute to final re-
sults. We study the influence of each component of our

Table 4: Test accuracy of fine-tuning vision transformers
with correlated noisy labels on Clipart and Sketch domains
from the DomainNet dataset. Results are averaged over 10
random seeds.

Correlated label noise DomainNet, ViT-Base

Clipart Sketch

Early Stopping 80.48±2.65 66.29±3.82
Label Smooth [MKH19] 80.00±3.23 67.02±1.38
Mixup [ZCD+18] 81.44±2.33 69.06±1.05
FixMatch [SBL+20] 81.92±1.35 68.08±2.52
ELR [LNR+20] 82.48±2.32 68.33±3.27
APL [MHW+20] 79.12±3.75 68.33±2.39
SAT [HZZ20] 81.20±2.35 68.57±2.70
GJS [EA21] 80.48±2.61 66.94±2.98
DualT [YLH+20] 82.24±3.55 67.92±2.97
SupCon [GDC+20] 82.64±2.80 65.22±2.18
SAM [FKM+21] 80.16±2.00 68.24±2.36

Ours 84.40±1.94 71.02±1.81

algorithm: the weighted loss scheme and the regulariza-
tion constraints. We ablate the effect of our weighted loss
and regularization constraints, showing that both are cru-
cial to the final performance. We run the same experiments
with only one component from the algorithm. As shown
in Table 7 from Section B.2, removing either component
affects the performance negatively. This suggests that both
the weighted loss and the regularization constraints play an
important role in the final performance.

4. Conclusion
This work approached generalization for fine-tuning deep
networks using a PAC-Bayesian analysis. The analysis
shows that besides distance from initialization, Hessians
play a crucial role in measuring generalization. Our theoret-
ical contribution involves Hessian distance based general-
ization bounds for a variety of fine-tuning methods on deep
networks. We empirically show that the Hessian distance
measure accurately correlates with the generalization error
of fine-tuning in practice. Our theory implies an algorithm
for fine-tuning with noisy labels. Experiments demonstrate
the robustness of our algorithm under both synthetic and
real-world label noise.

We describe two questions for future work. First, is it possi-
ble to extend our result to networks with non-differentiable
activation functions? In light of the wide use of ReLU
activations, it is conceivable that non-differentiable points
rarely happen in practice. One approach would be to use
the smoothed analysis framework [ST04] and argue that
such non-differentiable points occur with negligible proba-
bility. Second, it would be interesting to apply Hessians to
understand generalization in other black-box models.
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A. Proofs
We will analyze the generalization performance of fine-tuning using PAC-Bayesian analysis. One chooses a prior distribution,
denoted as P , and a posterior distribution, denoted as Q. The perturbed empirical loss of fW , denoted by L̂Q(fW ), is
the average of ℓQ(fU (x), y) over the training dataset. The perturbed expected loss of fW , denoted by LQ(fW ), is the
expectation of ℓQ(fW (x), y), for a sample x drawn from D with class label y. We will use the following PAC-Bayes bound
from Theorem 2, McAllester [McA13].

Theorem A.1. Suppose the loss function ℓ(x, y) lies in a bounded range [0, C] given any x ∈ X with label y. For any
β ∈ (0, 1) and δ ∈ (0, 1], with probability at least 1− δ, the following holds

LQ(fW ) ≤ 1

β
L̂Q(fW ) +

C
(
KL(Q||P) + log 1

δ

)
2β(1− β)n

. (10)

This result provides a flexibility in setting β. Our results will set β to balance the perturbation error of Q and the KL
divergence between P andQ. We will need the KL divergence between the prior P and the posteriorQ in the PAC-Bayesian
analysis. This is stated in the following result.

Proposition A.2. Suppose the noise perturbation at layer i is drawn from a Gaussian distribution with mean zero and
covariance Σi, for every i = 1, . . . , L. Then, the KL divergence between P and Q is equal to

KL(Q||P) = 1

2

L∑
i=1

vec(Wi − Ŵ
(s)
i )⊤Σ−1

i vec(Wi − Ŵ
(s)
i ).

As a corollary, if the population covariance of the noise distribution at every layer is isotropic, i.e., Σi = σ2
i Id, for any

i = 1, . . . , L, then the KL divergence between P and Q is equal to

KL(Q||P) =
L∑

i=1

∥Wi − Ŵ
(s)
i ∥2F

2σ2
i

.

Proof. The proof is based on the definition of multivariate normal distributions. Let Zi be the weight matrix of every layer i
in the posterior distribution, for i from 1 to L. By the definition of the KL divergence between two distributions, we have

KL(Q||P) = E
Z∼Q

[
log
(Q(Z)

P(Z)

)]
= E

Z∼Q
[logQ(Z)− logP(Z)]

= E
Z∼Q

[
L∑

i=1

−1

2
vec(Zi −Wi)

⊤Σ−1
i vec(Zi −Wi) +

1

2
vec(Zi − Ŵ

(s)
i )⊤Σ−1

i vec(Zi − Ŵ
(s)
i )

]

=− 1

2
E

Z∼Q

[
L∑

i=1

Tr
[
vec(Zi −Wi)vec(Zi −Wi)

⊤Σ−1
i

]
− Tr

[
vec(Zi − Ŵ

(s)
i )vec(Zi − Ŵ

(s)
i )⊤Σ−1

i

]]
.

In the above equation, we recall that the expectation of Zi is Wi. Additionally, the population covariance of Zi is Σi.
Therefore, after cancelling out common terms, we get

KL(Q||P) =
L∑

i=1

1

2
vec(Wi − Ŵ

(s)
i )⊤Σ−1

i vec(Wi − Ŵ
(s)
i ).

The proof is complete.

As stated in Theorem 2.1, we require the activation functions ϕi(·) (for any 1 ≤ i ≤ L) and loss function ℓ(·, ·) to be
twice-differentiable. Additionally, we require that they are Lipschitz-continuous. For brevity, We restate these conditions
below.

Assumption A.3. Assume that the activation functions ϕi(·) (for any 1 ≤ i ≤ L) and the loss function ℓ(·, ·) over the first
argument are twice-differentiable and κ0-Lipschitz. Their first-order derivatives are κ1-Lipschitz and their second-order
derivatives are κ2-Lipschitz.
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We give several examples of these Lipschitz constants for commonly used activation functions.
Example A.4. For the Sigmoid function S(x), we have S(x) ∈ (0, 1) for any x ∈ R. Since the derivative of the Sigmoid
function S′(x) = S(x)(1− S(x)), we get that κ0, κ1, and κ2 are at most 1/4.

For the Tanh function Tanh(x), we have Tanh(x) ∈ (−1, 1) for any x ∈ R. Since the derivative of the Tanh function satisfies
Tanh′(x) = 1− (Tanh(x))2, we get that κ0, κ1, and κ2 are at most 1.

For the GELU function GELU(x) [HG16], we have GELU(x) = x · F (x) where F (x) be the cumulative density function
(CDF) of the standard normal distribution. Let p(x) be the probability density function (PDF) of the standard normal
distribution. We have that F ′(x) = p(x) and p′(x) = −xp(x). Then, we can get that κ0, κ1, and κ2 at most 1 +
e−1/2/

√
2π ≈ 1.242.

A.1. Proof of Theorem 2.1

Proof of Theorem 2.1. First, we separate the gap of L(fŴ ) and 1
β L̂(fŴ ) into three parts:

L(fŴ )− 1

β
L̂(fŴ ) = L(fŴ )− LQ(fŴ ) + LQ(fŴ )− 1

β
L̂Q(fŴ ) +

1

β
L̂Q(fŴ )− 1

β
L̂(fŴ ).

By the Taylor’s expansion of Lemma 2.3, we can bound the noise stability of fŴ (x) with respect to the empirical loss and
the expected loss:

L(fŴ )− 1

β
L̂(fŴ ) ≤

(
− E

(x,y)∼D

[
L∑

i=1

〈
Σi,Hi[ℓ(fŴ (x), y)]

〉]
+

L∑
i=1

C1 ∥Σi∥3/2F

)

+

(
LQ(fŴ )− 1

β
L̂Q(fŴ )

)
+

1

β

(
1

n

L∑
i=1

n∑
j=1

〈
Σi,Hi[ℓ(fŴ (xj), yj)]

〉
+

L∑
i=1

C1 ∥Σi∥3/2F

)
,

which is equivalent to the following equation:

L(fŴ )− 1

β
L̂(fŴ ) ≤

(
− E

(x,y)∼D

[
L∑

i=1

〈
Σi,Hi[ℓ(fŴ (x), y)]

〉]
+

1

nβ

L∑
i=1

n∑
j=1

〈
Σi,Hi[ℓ(fŴ (xj), yj)]

〉)

+
( 1
β
+ 1
) L∑

i=1

C1 ∥Σi∥3/2F +
(
LQ(fŴ )− 1

β
L̂Q(fŴ )

)
. (11)

Next, we combine the upper bound of the noise stability of fŴ (x) with respect to the empirical loss and the expected loss:

1

nβ

L∑
i=1

n∑
j=1

〈
Σi,Hi[ℓ(fŴ (xj), yj)]

〉
− E

(x,y)∼D

[
L∑

i=1

〈
Σi,Hi[ℓ(fŴ (x), y)]

〉]

=

L∑
i=1

(
1

n

n∑
j=1

⟨Σi,Hi[ℓ(fŴ (xj), yj)]
〉
− E

(x,y)∼D

[
⟨Σi,Hi[ℓ(fŴ (x), y)]

〉])
(12)

+
( 1
β
− 1
) 1
n

L∑
i=1

n∑
j=1

〈
Σi,Hi[ℓ(fŴ (xj), yj)]

〉
.

We use the uniform convergence result of Lemma 2.4 to bound equation (12), leading to a concentration error term of

L∑
i=1

〈
Σi,

1

n

n∑
j=1

Hi(ℓ[fŴ (xj), yj)]− E
(x,y)∼D

[
Hi[ℓ(fŴ (x), y)]

] 〉

≤
L∑

i=1

∥Σi∥F

∥∥∥∥∥∥ 1n
n∑

j=1

Hi[ℓ(fŴ (xj), yj)]− E
(x,y)∼D

[
Hi[ℓ(fŴ (x), y)]

]∥∥∥∥∥∥
F

≤C2

√
log(C3n/δ)√

n

L∑
i=1

∥Σi∥F . (13)
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Recall that vi is a flatten vector of the matrix Ŵi − Ŵ
(s)
i . By the PAC-Bayes bound of Theorem A.1 and the KL divergence

result of Proposition A.2,

LQ(fŴ )− 1

β
L̂Q(fŴ ) ≤ C

(
KL(Q||P) + log 1

δ

)
2β(1− β)n

≤
C
(

1
2

∑L
i=1⟨vi,Σ−1

i vi⟩+ log 1
δ

)
2β(1− β)n

. (14)

Combining equations (11), (13), (14) with probability at least 1− 2δ, we get

L(fŴ )− 1

β
L̂(fŴ ) ≤C2

√
log(C3n/δ)√

n

L∑
i=1

∥Σi∥F +
( 1
β
− 1
) 1
n

L∑
i=1

n∑
j=1

〈
Σi,Hi[ℓ(fŴ (xj), yj)]

〉

+
( 1
β
+ 1
)
C1

L∑
j=1

∥Σi∥3/2F +
C( 12

∑L
i=1⟨vi,Σ−1

i vi⟩+ log 1
δ )

2β(1− β)n
.

Recall the truncated Hessian H+
i [ℓ(fŴ (x), y)] is equal to Ui max(Di, 0)U

T
i , where UiDiU

T
i is the eigendecomposition of

Hi[ℓ(fŴ (x), y)]. We have 〈
Σi,Hi[ℓ(fŴ (x), y)]

〉
≤
〈
Σi,H

+
i [ℓ(fŴ (x), y)]

〉
.

Next, the upper bound of L(fŴ )− 1
β L̂(fŴ ) relies on Σi and β. Our goal is to select some Σi and β ∈ (0, 1) to minimize

this quantity. For any x ∈ X , let Σi be the matrix that satisfies( 1
β
− 1
)〈

Σi,H
+
i [ℓ(fŴ (x), y)]

〉
=

C⟨vi,Σ−1
i vi⟩

4β(1− β)n
, (15)

which implies

Σi =

√
C

4(1− β)2n∥vi∥2
H+

i [ℓ(fŴ (x), y)]−
1
2 viv

⊤
i . (16)

If the truncated Hessian is zero, then Σi will be equal to zero. Next, we substitute Σi into equation (15) and get( 1
β
− 1
)〈

Σi,H
+
i (ℓ(fŴ (x), y))

〉
=

C⟨vi,Σ−1
i vi⟩

4β(1− β)n
=

√
C

4β2n∥vi∥2
〈
H+

i [ℓ(fŴ (x), y)]
1
2 , viv

⊤
i

〉
≤
√

C

4β2n∥vi∥2
∥∥∥H+

i [ℓ(fŴ (x), y)]
1
2 vi

∥∥∥ · ∥vi∥
=

√
C · v⊤i H+

i [ℓ(fŴ (x), y)]vi
4β2n

≤
√

CHi

4β2n
.

Thus, we have shown that equation (15) is less than
√

CHi

4β2n . Next, the gap between L(fŴ ) and 1
β L̂(fŴ ) is

L(fŴ ) ≤
(
1

β
L̂(fŴ ) +

L∑
i=1

√
CHi

β2n

)

+

(
C2

√
log(C3n/δ)√

n

L∑
i=1

∥Σi∥F +
(
1 +

1

β

)
C1

L∑
i=1

∥Σi∥3/2F +
C

2β(1− β)n
log

1

δ

)
. (17)

Based on equation (17), we set ϵ = (1− β)/β. Then we have

L(fŴ ) ≤(1 + ϵ)
(
L̂(fŴ ) +

L∑
i=1

√
CHi

n

)
+

(
C2

√
log(C3n/δ)√

n

L∑
i=1

∥Σi∥F +
(
1 +

1

β

)
C1

L∑
i=1

∥Σi∥3/2F +
C

2β(1− β)n
log

1

δ

)
.
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Let ξ be defined as follows. We have

ξ =
C2

√
log(C3n/δ)√

n

L∑
i=1

∥Σi∥F +
(
1 +

1

β

)
C1

L∑
i=1

∥Σi∥3/2F +
C

2β(1− β)n
log

1

δ
= O

(
n−3/4

)
,

where we use that ∥Σi∥F = O
(
n−1/2

)
from equation (16). Hence, we conclude that

L(fŴ ) ≤ (1 + ϵ)L̂(fŴ ) + (1 + ϵ)

L∑
i=1

√
CHi

n
+ ξ.

Thus, we have finished the proof.

A.2. Proof of Theorem 2.2

Proof of Theorem 2.2. By equation (6), we have the expected loss of fŴ using ℓ̄ as

L(fŴ ) = E
(x,y)∼D

[
ℓ̄(fŴ (x), y)

]
= E

(x,y)∼D,ỹ|y

[
ℓ̄(fŴ (x), ỹ)

]
.

Denote the empirical loss of fŴ using ℓ̄ as

L̄(fŴ ) =
1

n

n∑
i=1

ℓ̄(fŴ (xi), ỹi).

We separate the gap between L
(
fŴ
)

and 1
β L̄
(
fŴ
)

into three parts:

L
(
fŴ
)
− 1

β
L̄
(
fŴ
)
≤ L

(
fŴ
)
− LQ

(
fŴ
)
+ LQ

(
fŴ
)
− 1

β
L̄Q
(
fŴ
)
+

1

β
L̄Q
(
fŴ
)
− 1

β
L̄
(
fŴ
)
.

We denote ℓ̄Q(fŴ (x), ỹ) as an expectation of ℓ̄(fŴ (x), ỹ) under the posterior Q. Define LQ
(
fŴ
)

as
E(x,y)∼D,ỹ|y

[
ℓ̄Q(fŴ (x), ỹ)

]
. Define L̄Q(fŴ ) as 1

n

∑n
i=1 ℓ̄Q(fŴ (xi), ỹi). By equation (6), we have

L
(
fŴ
)
− LQ

(
fŴ
)
= E

(x,y)∼D,ỹ|y

[
ℓ̄Q(fŴ (x), ỹ)− ℓ̄(fŴ (x), ỹ)

]
= E

(x,y)∼D

[
E
ỹ|y

[
ℓ̄Q(fŴ (x), ỹ)− ℓ̄(fŴ (x), ỹ)

]]
= E

(x,y)∼D

[
ℓQ(fŴ (x), y)− ℓ(fŴ (x), y)

]
.

Then, by equation (5), the noise stability of fŴ with respect to the empirical loss is equal to

1

β
L̄Q
(
fŴ
)
− 1

β
L̄
(
fŴ
)
=

1

nβ

n∑
j=1

ℓ̄Q(fŴ (xj), ỹj)−
1

nβ

n∑
j=1

ℓ̄(fŴ (xj), ỹj)

=
1

nβ

k∑
l=1

Λỹ,l

(
n∑

j=1

(
ℓQ(fŴ (xj), l)− ℓ(fŴ (xj), l)

))
.

By the Taylor’s expansion of Lemma 2.3, we can bound the noise stability of fŴ with respect to the empirical loss and the
expected loss:

L
(
fŴ
)
− 1

β
L̄
(
fŴ
)

≤
(
− E

(x,y)∼D

[
L∑

i=1

σ2
i Tr

[
Hi[ℓ(fŴ (x), y)]

]]
+

L∑
i=1

C1σ
3
i

)
+
(
LQ
(
fŴ
)
− 1

β
L̄Q
(
fŴ
))

+
1

β

(
1

n

L∑
i=1

σ2
i

( k∑
l=1

Λỹ,l

( n∑
j=1

Tr
[
Hi[ℓ(fŴ (xj), l)]

] ))
+

k∑
l=1

Λỹ,l

L∑
i=1

C1σ
3
i

)
,
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which is equivalent to the following equation:

L
(
fŴ
)
− 1

β
L̄
(
fŴ
)

≤
(
− E

(x,y)∼D

[
L∑

i=1

σ2
i Tr

[
Hi[ℓ(fŴ (x), y)]

]]
+

1

nβ

L∑
i=1

σ2
i

( k∑
l=1

Λỹ,l

( n∑
j=1

Tr
[
Hi[ℓ(fŴ (xj), l)]

] )))

+

(
L∑

i=1

C1σ
3
i +

1

β

k∑
l=1

Λỹ,l

L∑
i=1

C1σ
3
i

)
+
(
LQ
(
fŴ
)
− 1

β
L̄Q
(
fŴ
))

. (18)

Next, we combine the upper bound of the noise stability of fŴ (x) with respect to the empirical loss and the expected loss:

1

nβ

L∑
i=1

σ2
i

( k∑
l=1

Λỹ,l

( n∑
j=1

Tr
[
Hi[ℓ(fŴ (xj), l)]

] ))
− E

(x,y)∼D

[
L∑

i=1

σ2
i Tr

[
Hi[ℓ(fŴ (x), y)]

]]

=

L∑
i=1

σ2
i

(
k∑

l=1

Λỹ,l

( 1
n

n∑
j=1

Tr
[
Hi[ℓ(fŴ (xj), l)]

]
− E

(x,y)∼D

[
Tr
[
Hi[ℓ(fŴ (x), y)]

]] ))
(19)

+
( 1
β
− 1
) L∑

i=1

σ2
i

(
k∑

l=1

Λỹ,l

( 1
n

n∑
j=1

Tr
[
Hi[ℓ(fŴ (xj), l)]

] ))
. (20)

We use the uniform convergence result of Lemma 2.4 to bound equation (19), leading to a concentration error term of

L∑
i=1

σ2
i max

ỹ

L∑
j=1

|Λỹ,j |
C2

√
log(C3n/δ)√

n
=

C2

√
log(C3n/δ)√

n

L∑
i=1

σ2
i ρ. (21)

For equation (20), the upper bound will be

( 1
β
− 1
) L∑

i=1

σ2
i

(
k∑

l=1

Λỹ,l

( 1
n

n∑
j=1

Tr
[
Hi[ℓ(fŴ (xj), l)]

] ))

≤
( 1
β
− 1
) L∑

i=1

σ2
i ρ max

x∈X ,y∈{1,...,k}

∣∣Tr[Hi(ℓ(fŴ (x), y))]
∣∣ . (22)

where ρ = ∥Λ⊤∥1,∞. Recall that vi is a flatten vector of the matrix Ŵi − Ŵi
(s)

. By the PAC-Bayes bound of Theorem A.1
and Proposition A.2,

LQ
(
fŴ
)
− 1

β
L̄Q
(
fŴ
)
≤

C
(
KL(Q||P) + log 1

δ

)
2β(1− β)n

≤
C
(∑L

i=1
∥vi∥2

2σ2
i

+ log 1
δ

)
2β(1− β)n

. (23)

Combining equations (18), (22), (23), with probability at least 1− 2δ, we get

L
(
fŴ
)
− 1

β
L̄
(
fŴ
)
≤C2ρ

√
log(C3n/δ)√

n

L∑
i=1

σ2
i +

( 1
β
− 1
)
ρ

L∑
i=1

σ2
i max
x∈X ,y∈{1,...,k}

∣∣Tr[Hi(ℓ(fŴ (x), y))]
∣∣

+
( ρ
β
+ 1
) L∑

j=1

C1σ
3
i +

C(
∑L

i=1
∥vi∥2

2σ2
i

+ log 1
δ )

2β(1− β)n
. (24)
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In equation (24), the upper bound of L
(
fŴ
)
− 1

β L̄
(
fŴ
)

relies on σi and β. Our goal is to select σi > 0 and β ∈ (0, 1) to
minimize equation (24). This is achieved when

σ2
i =

√
C ∥vi∥2

4ρ(1− β)2n ·maxx∈X ,y∈{1,...,k}
∣∣Tr[Hi(ℓ(fŴ (x), y))]

∣∣ , for any 1 ≤ i ≤ L, (25)

following the condition( 1
β
− 1
)
ρσ2

i max
x∈X ,y∈{1,...,k}

∣∣Tr[Hi(ℓ(fŴ (x), y))]
∣∣ = C

2β(1− β)n

∥vi∥2
2σ2

i

.

Then, equation (24) becomes

L
(
fŴ
)
≤
(
1

β
L̄
(
fŴ
)
+

L∑
i=1

√
Cρmaxx∈X ,y∈{1,...,k}

∣∣Tr[Hi(ℓ(fŴ (x), y))]
∣∣ · ∥vi∥2

β2n

)
(26)

+

(
C2ρ

√
log(C3n/δ)√

n

L∑
i=1

σ2
i +

C

2β(1− β)n
log

1

δ
+
( ρ
β
+ 1
)
C1

L∑
i=1

σ3
i

)
. (27)

Set β as a fixed value close to 1 that does not grow with n and 1/δ. Let ϵ = (1− β)/β. We get

L
(
fŴ
)
≤(1 + ϵ)

(
L̄
(
fŴ
)
+

L∑
i=1

√
Cρmaxx∈X ,y∈{1,...,k}

∣∣Tr[Hi(ℓ(fŴ (x), y))]
∣∣ · ∥vi∥2

n

)

+

(
C2ρ

√
log(C3n/δ)√

n

L∑
i=1

σ2
i +

( ρ
β
+ 1
)
C1

L∑
i=1

σ3
i +

C

2β(1− β)n
log

1

δ

)
.

Let ξ be defined as follows. We have

ξ =
C2ρ

√
log(C3n/δ)√

n

L∑
i=1

σ2
i +

( ρ
β
+ 1
)
C1

L∑
i=1

σ3
i +

C

2β(1− β)n
log

1

δ
= O

(
n−3/4

)
,

where we notice that σ2
i = O

(
n−1/2

)
because of equation (25). Thus, we conclude that

L
(
fŴ
)
≤ (1 + ϵ)L̄

(
fŴ
)
+ (1 + ϵ)

L∑
i=1

√
Cρmaxx∈X ,y∈{1,...,k}

∣∣Tr[Hi(ℓ(fŴ (x), y))]
∣∣ · ∥vi∥2

n
+ ξ.

Since ∥vi∥ ≤ αi, for any i = 1, . . . , L, we have finished the proof.

A.3. Proof of Lemma 2.4

In this section, we provide the proof of Lemma 2.4. We need a perturbation analysis of the Hessian as follows. Given an
L-layer neural network fW : X → RdL and any input z0 ∈ X , let ziW = ϕi(Wiz

i−1
W ) be the activated output vector from

layer i, for any i = 1, 2, . . . , L.

Proposition A.5. Suppose that Assumption A.3 holds. The change in the Hessian of output of the loss function ℓ(fW (x), y)
with respect to Wi under perturbation U can be bounded as follows:

∥Hi[ℓ(fW (x), y)] |Wi+Ui,∀1≤i≤L −Hi[ℓ(fW (x), y)]∥F ≤ G∥U∥
F
, (28)

where G has the following equation:

G =
3

2
(L+ 1)2e6κ2κ

2
1κ

3(L+1)
0

(
max
x∈X
∥x∥

L∏
l=0

dl

L∏
h=1

∥Wh∥2
)3(

max
1≤i≤L

1

∥Wi∥22

L∑
h=1

1

∥Wh∥2

)
. (29)

where κ0, κ1, κ2 ≥ 1 is the maximum over the Lipschitz constants, first-order derivative Lipschitz constants, and second-
order derivative Lipschitz constants of all the activation functions and the loss function.
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We divide the proof of Proposition A.5 into several parts. First, we derive the perturbation of the network output.

Claim A.6. Suppose that Assumption A.3 holds. For any j = 1, 2, · · · , L, the change in the output of the j layer network
zjW with perturbation U can be bounded as follows:

∥∥∥zjW+U − zjW

∥∥∥ ≤ (1 + 1

L

)j
κj
0

(
max
x∈X
∥x∥

j∏
h=1

∥Wh∥2
j∑

h=1

∥Uh∥2
∥Wh∥2

)
. (30)

where κ0 ≥ 1 is the maximum over the Lipschitz constants of all the activation functions and the loss function.

See Lemma 2 in Neyshabur et al. [NBS18] for a proof. Second, we derive the perturbation of the derivative of the network.

Claim A.7. Suppose that Assumption A.3 holds. The change in the Jacobian of output of the j layer network zjW with
respect to Wi under perturbation U can be bounded as follows:∥∥∥∥ ∂

∂Wi
zjW

∣∣∣
Wk+Uk,∀1≤k≤j

− ∂

∂Wi
zjW

∥∥∥∥
F

≤ Ai,j

(
max
x∈X
∥x∥

j∏
h=1

∥Wh∥2
j∑

h=1

∥Uh∥2
∥Wh∥2

)
. (31)

For any j = 1, 2, · · · , L, Ai,j has the following equation:

Ai,j = (j − i+ 2)
(
1 +

1

L

)3j
κ1κ

2j−1
0

(
max
x∈X
∥x∥ 1

∥Wi∥2

j∏
l=i−1

dl

j∏
h=1

∥Wh∥2

)
,

where κ0, κ1 ≥ 1 is the maximum over the Lipschitz constants and first-order derivative Lipschitz constants of all the
activation functions and the loss function.

Proof. For any fixed i = 1, 2, · · · , L, we will prove using induction with respect to j. If j < i, we have ∂
∂Wi

zjW = 0 since
zjW remains unchanged regardless of any change of Wi. When j = i, we have∥∥∥∥∥∥ ∂

∂W p,q
i

ziW

∣∣∣∣∣
Wk+Uk,∀1≤k≤i

− ∂

∂W p,q
i

ziW

∥∥∥∥∥∥ =

∥∥∥∥∥∥ ∂

∂W p,q
i

ϕi(Wiz
i−1
W )

∣∣∣∣∣
Wk+Uk,∀1≤k≤i

− ∂

∂W p,q
i

ϕi(Wiz
i−1
W )

∥∥∥∥∥∥
=

∣∣∣∣∣∣[zi−1
W+U ]

qϕ′
i

(
di−1∑
r=1

(
(W p,r

i + Up,r
i )[zi−1

W+U ]
r
))
− [zi−1

W ]qϕ′
i

( di−1∑
r=1

W p,r
i [zi−1

W ]r
)∣∣∣∣∣∣,

where W p,q
i , Up,q

i are the (p, q)’th entry of Wi and Ui. [zi−1
W ]q is the q’th entry of zi−1

W . Next, by the triangle inequality, the
above equation is smaller than

∣∣[zi−1
W+U ]

q
∣∣∣∣∣∣∣∣ϕ′

i

( di−1∑
r=1

(
(W p,r

i + Up,r
i )[zi−1

W+U ]
r
)
− ϕ′

i

( di−1∑
r=1

W p,r
i [zi−1

W ]r
)∣∣∣∣∣∣ (32)

+
∣∣[zi−1

W+U ]
q − [zi−1

W ]q
∣∣∣∣∣∣∣∣ϕ′

i

( di−1∑
r=1

W p,r
i [zi−1

W ]r
)∣∣∣∣∣∣. (33)

Since ϕ′
i is κ1-Lipschitz by Assumption A.3, equation (32) is at most

∣∣[zi−1
W+U ]

q
∣∣ · κ1

∣∣∣∣∣∣
di−1∑
r=1

(W p,r
i + Up,r

i )[zi−1
W+U ]

r −
di−1∑
r=1

W p,r
i [zi−1

W ]r

∣∣∣∣∣∣. (34)

Since Assumption A.3 holds, we have |ϕ′
i(·)| ≤ κ0, by the Lipschitz condition on the first-order derivatives. Thus, equation

(33) is at most ∣∣[zi−1
W+U ]

q − [zi−1
W ]q

∣∣ · κ0. (35)
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Taking equation (34) and (35) together, the Frobenius norm of the Jacobian is∥∥∥∥∥∥ ∂

∂Wi
ziW

∣∣∣∣∣
Wk+Uk,∀1≤k≤i

− ∂

∂Wi
ziW

∥∥∥∥∥∥
F

=

√√√√√ di∑
p=1

di−1∑
q=1

∥∥∥∥∥∥ ∂

∂W p,q
i

ziW

∣∣∣∣∣
Wk+Uk,∀1≤k≤i

− ∂

∂W p,q
i

ziW

∥∥∥∥∥∥
2

≤di
∥∥zi−1

W+U

∥∥ · k1di−1

∥∥(Wi + Ui

)
zi−1
W+U −Wiz

i−1
W

∥∥+ κ0di
∥∥zi−1

W+U − zi−1
W

∥∥ .
By the Lipschitz continuity of zi−1

W+U and equation (30) in Claim A.6, we have

∥∥zi−1
W+U

∥∥ ≤ (1 + 1

L

)i−1

κi−1
0 max

x∈X
∥x∥

i−1∏
h=1

∥Wh∥2 . (36)

∥∥zi−1
W+U − zi−1

W

∥∥ ≤ (1 + 1

L

)i−1

κi−1
0 max

x∈X
∥x∥

i−1∏
h=1

∥Wh∥2
i−1∑
h=1

∥Uh∥2
∥Wh∥2

. (37)

By the triangle inequality, we have∥∥(Wi + Ui

)
zi−1
W+U −Wiz

i−1
W

∥∥ ≤ ∥Wi + Ui∥2
∥∥zi−1

W+U − zi−1
W

∥∥+ ∥Ui∥2
∥∥zi−1

W

∥∥ . (38)

From equation (36), (37), and (38), we finally obtain that the Jacobian of ziW with respect to Wi is at most∥∥∥∥∥∥ ∂

∂Wi
ziW

∣∣∣∣∣
Wk+Uk,∀1≤k≤i

− ∂

∂Wi
ziW

∥∥∥∥∥∥
F

≤
(
2
(
1 +

1

L

)2i−1

κ1κ
2i−1
0 didi−1 max

x∈X
∥x∥

i−1∏
h=1

∥Wh∥2

)(
max
x∈X
∥x∥

i∏
h=1

∥Wh∥2
i∑

h=1

∥Uh∥2
∥Wh∥2

)
.

Hence, we know that equation (30) will be correct when j = i. Assuming that equation (30) will be correct for any i up to
j ≥ i, we have∥∥∥∥∥∥ ∂

∂Wi
zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

− ∂

∂Wi
zjW

∥∥∥∥∥∥
F

≤(j − i+ 2)
(
1 +

1

L

)3j
κ1κ

2j−1
0

(
max
x∈X

∥x∥ 1

∥Wi∥2

j∏
l=i−1

dl

j∏
h=1

∥Wh∥2

)(
max
x∈X

∥x∥
j∏

h=1

∥Wh∥2
j∑

h=1

∥Uh∥2
∥Wh∥2

)
.

From layer i to layer j + 1, we calculate the derivative on zj+1
W = ϕj+1(Wj+1z

j
W ) with respect to W p,q

i :

∂

∂W p,q
i

ϕj+1(Wj+1z
j
W ) = ϕ′

j+1(Wj+1z
j
W )⊙

(
Wj+1

∂

∂W p,q
i

zjW

)
,

where ⊙ is the Hadamard product operator between two vectors. Then we have∥∥∥∥∥∥ ∂

∂W p,q
i

zj+1
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j+1

− ∂

∂W p,q
i

zj+1
W

∥∥∥∥∥∥
=

∥∥∥∥∥∥ϕ′
j+1

(
(Wj+1 + Uj+1)z

j
W+U

)
⊙

(
(Wj+1 + Uj+1)

∂

∂W p,q
i

zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

)
− ϕ′

j+1(Wj+1z
j
W )⊙

(
Wj+1

∂

∂W p,q
i

zjW

)∥∥∥∥∥∥
By the Cauchy-Schwarz inequality and the triangle inequality, the above equation is at most

∥∥∥ϕ′
j+1

(
(Wj+1 + Uj+1)z

j
W+U

)
− ϕ′

j+1(Wj+1z
j
W )
∥∥∥
∥∥∥∥∥∥(Wj+1 + Uj+1)

∂

∂W p,q
i

zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ (39)

+
∥∥∥ϕ′

j+1(Wj+1z
j
W )
∥∥∥
∥∥∥∥∥∥(Wj+1 + Uj+1)

∂

∂W p,q
i

zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

−Wj+1
∂

∂W p,q
i

zjW

∥∥∥∥∥∥ . (40)
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Using the triangle inequality and the κ1-Lipschitz of ϕ′
j+1(·), equation (39) is at most

κ1

(
∥Wj+1 + Uj+1∥2

∥∥∥zjW+U − zjW

∥∥∥+ ∥Uj+1∥2
∥∥∥zjW∥∥∥) · ∥Wj+1 + Uj+1∥2

∥∥∥∥∥∥ ∂

∂W p,q
i

zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ .
Using the triangle inequality and |ϕ′

j+1(·)| ≤ κ0, equation (40) is at most

dj+1κ0 ·

(
∥Wj+1 + Uj+1∥2

∥∥∥∥∥∥ ∂

∂W p,q
i

zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

− ∂

∂W p,q
i

zjW

∥∥∥∥∥∥+ ∥Uj+1∥2

∥∥∥∥ ∂

∂W p,q
i

zjW

∥∥∥∥
)
.

From Claim A.6, we have the norm of the derivative of zjW with respect to W p,q
i bounded by its Lipschitzness in equation

(30): ∥∥∥∥ ∂

∂W p,q
i

zjW

∥∥∥∥ ≤ (1 +
1

L
)jκj

0 max
x∈X

∥x∥ 1

∥Wi∥2

j∏
h=1

∥Wh∥2 . (41)∥∥∥∥∥∥ ∂

∂W p,q
i

zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ ≤ (1 +
1

L
)2j−1κj

0 max
x∈X

∥x∥ 1

∥Wi∥2

j∏
h=1

∥Wh∥2 . (42)

Then, the Frobenius norm of the Jacobian is at most∥∥∥∥∥∥ ∂

∂Wi
zj+1
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j+1

− ∂

∂Wi
zj+1
W

∥∥∥∥∥∥
F

≤didi−1 · κ1

(
∥Wj+1 + Uj+1∥2

∥∥∥zjW+U − zjW

∥∥∥+ ∥Uj+1∥2
∥∥∥zjW∥∥∥

)
∥Wj+1 + Uj+1∥2

∥∥∥∥∥∥ ∂

∂W p,q
i

zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ (43)

+ dj+1κ0 ·

(
∥Wj+1 + Uj+1∥2

∥∥∥∥∥∥ ∂

∂W p,q
i

zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

− ∂

∂W p,q
i

zjW

∥∥∥∥∥∥
F

+ didi−1 ∥Uj+1∥2

∥∥∥∥ ∂

∂W p,q
i

zjW

∥∥∥∥
)
. (44)

From equation (36), (37), (42), we have equation (43) will be at most

(
1 +

1

L

)3j+3

κ1κ
2j+1
0

(
max
x∈X

∥x∥ 1

∥Wi∥2

j+1∏
l=i−1

dl

j+1∏
h=1

∥Wh∥2
)(

max
x∈X

∥x∥
j+1∏
h=1

∥Wh∥2
j+1∑
h=1

∥Uh∥2
∥Wh∥2

)
. (45)

From the induction and equation (36) and (41), the term in equation (44) will be at most

(j − i+ 2)
(
1 +

1

L

)3j+3

κ1κ
2j+1
0

(
max
x∈X

∥x∥ 1

∥Wi∥2

j+1∏
l=i−1

dl

j+1∏
h=1

∥Wh∥2
)(

max
x∈X

∥x∥
j+1∏
h=1

∥Wh∥2
j+1∑
h=1

∥Uh∥2
∥Wh∥2

)
. (46)

After we combine equation (45) and (46), the proof is complete.

Based on the above two results, we state the proof of Proposition A.5.

Proof of Proposition A.5. We will prove using induction. Let zjW be an j layer neural network with parameters W . The
change in the Hessian of output of the j layer network zjW with respect to Wi under perturbation U can be bounded as
follows: ∥∥∥∥Hi[z

j
W ]
∣∣∣
Wk+Uk,∀1≤k≤j

−Hi[z
j
W ]

∥∥∥∥
F

≤ Gi,j

(
max
x∈X
∥x∥

j∏
h=1

∥Wh∥2
j∑

h=1

∥Uh∥2
∥Wh∥2

)
. (47)

For any j = 1, 2, · · · , L, Gi,j has the following equation:

Gi,j =
3

2
(j − i+ 2)2

(
1 +

1

L

)6j
κ2κ

2
1κ

3j−3
0

j∏
l=i−1

d3l

(
max
x∈X
∥x∥ 1

∥Wi∥2

j∏
h=1

∥Wh∥2
)2

,
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For any fixed i = 1, 2, · · · , L, we will prove using induction with respect to j. If j < i, we have ∂2

∂W 2
i
zjW = 0 since zjW

remains unchanged regardless of any change of Wi. When j = i, we have∥∥∥∥∥∥ ∂2

∂W p,q
i ∂W s,t

i

ziW

∣∣∣∣∣
Wk+Uk,∀1≤k≤i

− ∂2

∂W p,q
i ∂W s,t

i

ziW

∥∥∥∥∥∥
=

∣∣∣∣∣∣([zi−1
W+U ]

q[zi−1
W+U ]

t
)
ϕ′′
i

(
di−1∑
r=1

(
(W p,r

i + Up,r
i )[zi−1

W+U ]
r
))
− ([zi−1

W ]q[zi−1
W ]t)ϕ′′

i

( di−1∑
r=1

W p,r
i [zi−1

W ]r
)∣∣∣∣∣∣,

where p = s. If p ̸= s, we have ∂2

∂Wp,q
i ∂W s,t

i

ziW = 0, where W p,q
i , Up,q

i are the (p, q)’th entry of Wi and Ui. Let [zi−1
W ]q be

the q’th entry of zi−1
W . Next, by the triangle inequality, the above equation is smaller than

∣∣[zi−1
W+U ]

q[zi−1
W+U ]

t
∣∣∣∣∣∣∣∣ϕ′′

i

( di−1∑
r=1

(
(W p,r

i + Up,r
i )[zi−1

W+U ]
r
)
− ϕ′′

i

( di−1∑
r=1

W p,r
i [zi−1

W ]r
)∣∣∣∣∣∣ (48)

+
∣∣[zi−1

W+U ]
q[zi−1

W+U ]
t − [zi−1

W ]q[zi−1
W ]t

∣∣∣∣∣∣∣∣ϕ′′
i

( di−1∑
r=1

W p,r
i [zi−1

W ]r
)∣∣∣∣∣∣. (49)

Since ϕ′′
i is κ2-Lipschitz by Assumption A.3, equation (48) is at most

∣∣[zi−1
W+U ]

q[zi−1
W+U ]

t
∣∣ · κ2

∣∣∣∣∣∣
di−1∑
r=1

(W p,r
i + Up,r

i )[zi−1
W+U ]

r −
di−1∑
r=1

W p,r
i [zi−1

W ]r

∣∣∣∣∣∣. (50)

Since Assumption A.3 holds, we have |ϕ′′
i (·)| ≤ κ1 by the Lipschitz condition on the second-order derivatives. Thus,

equation (49) is at most∣∣[zi−1
W+U ]

q[zi−1
W+U ]

t − [zi−1
W ]q[zi−1

W ]t
∣∣ · κ1

≤
(∣∣[zi−1

W+U ]
q[zi−1

W+U ]
t − [zi−1

W ]q[zi−1
W+U ]

t
∣∣+ ∣∣[zi−1

W ]q[zi−1
W+U ]

t − [zi−1
W ]q[zi−1

W ]t
∣∣) · κ1. (51)

We use the triangle inequality in the last step. Taking equation (50) and (51) together, the Frobenius norm of the Hessian is∥∥∥∥Hi[z
i
W ]
∣∣∣
Wk+Uk,∀1≤k≤i

−Hi[z
i
W ]

∥∥∥∥
F

≤di
∥∥zi−1

W+U

∥∥2 · k2di−1

∥∥(Wi + Ui

)
zi−1
W+U −Wiz

i−1
W

∥∥+ κ1di
∥∥zi−1

W+U − zi−1
W

∥∥(∥∥zi−1
W+U

∥∥+ ∥∥zi−1
W

∥∥).
By the Lipschitz continuity of Zi−1

W+U and equation (30) in Claim A.6, we have

∥∥zi−1
W+U

∥∥ ≤(1 + 1

L

)i−1

κi−1
0 max

x∈X
∥x∥

i−1∏
h=1

∥Wh∥2 . (52)

∥∥zi−1
W+U − zi−1

W

∥∥ ≤(1 + 1

L

)i−1

κi−1
0 max

x∈X
∥x∥

i−1∏
h=1

∥Wh∥2
i−1∑
h=1

∥Uh∥2
∥Wh∥2

. (53)

By the triangle inequality, we have∥∥(Wi + Ui

)
zi−1
W+U −Wiz

i−1
W

∥∥ ≤ ∥Wi + Ui∥2
∥∥zi−1

W+U − zi−1
W

∥∥+ ∥Ui∥2
∥∥zi−1

W

∥∥ . (54)
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From equation (52), (53), and (54), we finally obtain that the Hessian of ziW with respect to Wi is at most∥∥∥∥Hi[z
i
W ]
∣∣∣
Wk+Uk,∀1≤k≤i

−Hi[z
i
W ]

∥∥∥∥
F

≤3
(
1 +

1

L

)3i
κ2κ1κ

3i−3
0 didi−1

(
max
x∈X
∥x∥

i−1∏
h=1

∥Wh∥2

)2(
max
x∈X
∥x∥

i∏
h=1

∥Wh∥2
i∑

h=1

∥Uh∥2
∥Wh∥2

)
.

Thus, we have known that equation (47) is correct when j = i with respect to Hi. Assume that (47) is correct for any i up
to j ≥ i with respect to Hi. We have the following inequality:∥∥∥∥Hi[z

j
W ]
∣∣∣
Wk+Uk,∀1≤k≤j

−Hi[z
j
W ]

∥∥∥∥
F

≤3

2
(j − i+ 2)2

(
1 +

1

L

)6j
κ2κ

2
1κ

3(j−1)
0

j∏
l=i−1

d3l

(
max
x∈X

∥x∥ 1

∥Wi∥2

j∏
h=1

∥Wh∥2

)2(
max
x∈X

∥x∥
j∏

h=1

∥Wh∥2
j∑

h=1

∥Uh∥2
∥Wh∥2

)
.

Then, we will calculate the twice-derivative on zj+1
W = ϕj+1(Wj+1z

j
W ) with respect to W p,q

i and W s,t
i :

∂2

∂W p,q
i ∂W s,t

i

ϕj+1(Wj+1z
j
W ) =ϕ′′

j+1(Wj+1z
j
W )⊙

(
Wj+1

∂

∂W p,q
i

zjW

)
⊙
(
Wj+1

∂

∂W s,t
i

zjW

)

+ ϕ′
j+1(Wj+1z

j
W )⊙

(
Wj+1

∂2

∂W p,q
i ∂W s,t

i

zjW

)
,

where ⊙ is the Hadamard product operator between two vectors. Then, we have∥∥∥∥∥∥ ∂2

∂Wp,q
i ∂W s,t

i

z
j+1
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j+1

−
∂2

∂Wp,q
i ∂W s,t

i

z
j+1
W

∥∥∥∥∥∥
=

∥∥∥∥∥ϕ′′
j+1((Wj+1 + Uj+1)z

j
W+U ) ⊙

(
(Wj+1 + Uj+1)

∂

∂Wp,q
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

)
⊙
(
(Wj+1 + Uj+1)

∂

∂W s,t
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

)

+ ϕ
′
j+1((Wj+1 + Uj+1)z

j
W+U ) ⊙

(
(Wj+1 + Uj+1)

∂2

∂Wp,q
i ∂W s,t

i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

)

− ϕ
′′
j+1(Wj+1z

j
W ) ⊙

(
Wj+1

∂

∂Wp,q
i

z
j
W

)
⊙
(
Wj+1

∂

∂W s,t
i

z
j
W

)
− ϕ

′
j+1(Wj+1z

j
W ) ⊙

(
Wj+1

∂2

∂Wp,q
i ∂W s,t

i

z
j
W

)∥∥∥∥∥.
By the Cauchy-Schwarz inequality and the triangle inequality, the above equation is at most

∥∥∥ϕ′′
j+1((Wj+1 + Uj+1)z

j
W+U ) − ϕ

′′
j+1(Wj+1z

j
W )
∥∥∥
∥∥∥∥∥∥(Wj+1 + Uj+1)

∂

∂Wp,q
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥
∥∥∥∥∥∥(Wj+1 + Uj+1)

∂

∂W s,t
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥
(55)

+
∥∥∥ϕ′′

j+1(Wj+1z
j
W )
∥∥∥
∥∥∥∥∥∥(Wj+1 + Uj+1)

∂

∂Wp,q
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

− Wj+1
∂

∂Wp,q
i

z
j
W

∥∥∥∥∥∥
∥∥∥∥∥∥(Wj+1 + Uj+1)

∂

∂W s,t
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ (56)

+
∥∥∥ϕ′′

j+1(Wj+1z
j
W )
∥∥∥ ∥∥∥∥Wj+1

∂

∂Wp,q
i

z
j
W

∥∥∥∥
∥∥∥∥∥∥(Wj+1 + Uj+1)

∂

∂W s,t
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

− Wj+1
∂

∂W s,t
i

z
j
W

∥∥∥∥∥∥ (57)

+
∥∥∥ϕ′

j+1((Wj+1 + Uj+1)z
j
W+U ) − ϕ

′
j+1(Wj+1z

j
W )
∥∥∥
∥∥∥∥∥∥(Wj+1 + Uj+1)

∂2

∂Wp,q
i ∂W s,t

i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ (58)

+
∥∥∥ϕ′

j+1(Wj+1z
j
W )
∥∥∥
∥∥∥∥∥∥(Wj+1 + Uj+1)

∂2

∂Wp,q
i ∂W s,t

i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

− Wj+1
∂2

∂Wp,q
i ∂W s,t

i

z
j
W

∥∥∥∥∥∥ . (59)

Thus, using the triangle inequality and the fact that ϕ′′(·) is κ2-Lipschitz, equation (55) is at most

κ2

(
∥Wj+1 + Uj+1∥2

∥∥∥zj
W+U − z

j
W

∥∥∥+ ∥Uj+1∥2

∥∥∥zj
W

∥∥∥) ∥Wj+1 + Uj+1∥2
2

∥∥∥∥∥∥ ∂

∂Wp,q
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥
∥∥∥∥∥∥ ∂

∂W s,t
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ .
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Using the triangle inequality and |ϕ′′(·)| ≤ κ1, equation (56) is at most

κ1dj+1

(∥∥Wj+1 + Uj+1

∥∥
2

∥∥∥∥∥∥ ∂

∂W
p,q
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

−
∂

∂W
p,q
i

z
j
W

∥∥∥∥∥∥ +
∥∥Uj+1

∥∥
2

∥∥∥∥∥ ∂

∂W
p,q
i

z
j
W

∥∥∥∥∥
)∥∥Wj+1 + Uj+1

∥∥
2

∥∥∥∥∥∥ ∂

∂W
s,t
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ .

Using the triangle inequality and |ϕ′′(·)| ≤ κ1, equation (57) is at most

κ1dj+1 ∥Wj+1∥2

∥∥∥∥ ∂

∂Wp,q
i

z
j
W

∥∥∥∥
(

∥Wj+1 + Uj+1∥2

∥∥∥∥∥∥ ∂

∂W s,t
i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

−
∂

∂W s,t
i

z
j
W

∥∥∥∥∥∥+ ∥Uj+1∥2

∥∥∥∥∥ ∂

∂W s,t
i

z
j
W

∥∥∥∥∥
)
.

Using the triangle inequality and the fact that ϕ′(·) is κ1-Lipschitz, equation (58) is at most

κ1

(
∥Wj+1 + Uj+1∥2

∥∥∥zj
W+U − z

j
W

∥∥∥+ ∥Uj+1∥2

∥∥∥zj
W

∥∥∥) ∥Wj+1 + Uj+1∥2

∥∥∥∥∥∥ ∂2

∂Wp,q
i ∂W s,t

i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ .
Using the triangle inequality and that |ϕ′(·)| ≤ κ0, equation (59) is at most

κ0dj+1

(
∥Wj+1 + Uj+1∥2

∥∥∥∥∥∥ ∂2

∂Wp,q
i ∂W s,t

i

z
j
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

−
∂2

∂Wp,q
i ∂W s,t

i

z
j
W

∥∥∥∥∥∥+ ∥Uj+1∥2

∥∥∥∥∥ ∂2

∂Wp,q
i ∂W s,t

i

z
j
W

∥∥∥∥∥
)
.

From Claim A.6, we know that the norm of the derivative of zjW with respect to W p,q
i is bounded by its Lipschitzness in

equation (30): ∥∥∥∥ ∂

∂W p,q
i

zjW

∥∥∥∥ ≤ (1 +
1

L
)jκj

0 max
x∈X
∥x∥ 1

∥Wi∥2

j∏
h=1

∥Wh∥2 . (60)

∥∥∥∥ ∂

∂W p,q
i

zjW

∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥ ≤ (1 +
1

L
)2j−1κj

0 max
x∈X
∥x∥ 1

∥Wi∥2

j∏
h=1

∥Wh∥2 . (61)

From Claim A.7, the norm of the twice-derivative of zjW with respect to W p,q
i and W s,t

i is bounded by its Lipschitzness in
equation (31): ∥∥∥∥ ∂2

∂W p,q
i ∂W s,t

i

zjW

∥∥∥∥ ≤ Ai,j max
x∈X
∥x∥ 1

∥Wi∥2

j∏
h=1

∥Wh∥2 . (62)∥∥∥∥∥∥ ∂2

∂W p,q
i ∂W s,t

i

zjW

∣∣∣∣∣
Wk+Uk,∀1≤k≤j

∥∥∥∥∥∥ ≤
(
1 +

1

L

)2j−2

Ai,j max
x∈X
∥x∥ 1

∥Wi∥2

j∏
h=1

∥Wh∥2 . (63)

Then, the Frobenius norm of the Hessian Hi is at most

∥∥∥∥Hi[z
j+1
W ]

∣∣∣
Wk+Uk,∀1≤k≤j+1

−Hi[z
j+1
W ]

∥∥∥∥
F

≤ (didi−1)
2

∥∥∥∥∥∥ ∂2

∂W p,q
i ∂W s,t

i

zj+1
W

∣∣∣∣∣
Wk+Uk,∀1≤k≤j+1

− ∂2

∂W p,q
i ∂W s,t

i

zj+1
W

∥∥∥∥∥∥
Since we have listed the upper bound of all the terms in the Hessian with respect to Wi from equation (52), (53), (60), (61),
(62), (63), and the induction, equation (55) times (didi−1)

2 is at most

(
1 +

1

L

)6(j+1)

κ2κ
2
1κ

3j
0

j+1∏
l=i−1

d3l

(
max
x∈X

∥x∥ 1

∥Wi∥2

j+1∏
h=1

∥Wh∥2

)2(
max
x∈X

∥x∥
j+1∏
h=1

∥Wh∥2
j+1∑
h=1

∥Uh∥2
∥Wh∥2

)
.

Equation (56),(57), and (58) times (didi−1)
2 is at most

(j − i+ 2)
(
1 +

1

L

)6(j+1)

κ2κ
2
1κ

3j
0

j+1∏
l=i−1

d3l

(
max
x∈X

∥x∥2
1

∥Wi∥2

j+1∏
h=1

∥Wh∥2

)2(
max
x∈X

∥x∥
j+1∏
h=1

∥Wh∥2
j+1∑
h=1

∥Uh∥2
∥Wh∥2

)
.
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Equation (59) times (didi−1)
2 is at most

3

2
(j − i+ 2)2

(
1 +

1

L

)6(j+1)

κ2κ
2
1κ

3j
0

j+1∏
l=i−1

d3l

(
max
x∈X

∥x∥ 1

∥Wi∥2

j+1∏
h=1

∥Wh∥2

)2(
max
x∈X

∥x∥
j+1∏
h=1

∥Wh∥2
j+1∑
h=1

∥Uh∥2
∥Wh∥2

)
.

After we combine above five terms, the proof of induction is complete.

Now we are ready to state the proof of Lemma 2.4.

Proof of Lemma 2.4. Let B, ϵ > 0, p =
∑L

i=1 didi−1, and let S = {vec(W ) ∈ Rp : ∥vec(W )∥2 ≤ B}. Then there exists

an ϵ-cover of S with respect to the ℓ2-norm at most max
((

3B
ϵ

)p
, 1
)

elements from Example 5.8, Wainwright [Wai19].
From Proposition A.5, the Hessian Hi[ℓ(fW (x), y)] is G-Lipschitz for all (W +U),W ∈ S and any i = 1, 2, · · · , L. Then
we have

∥Hi[ℓ(fW+U (x), y)]−Hi[ℓ(fW (x), y)]∥F ≤ G ∥U∥F ,

where we can find G from equation (29). Here we follow the proof in Ma [Ma21]. For parameters δ, ϵ > 0, let N be the
ϵ-cover of S with respect to the ℓ2-norm. Define event

E =
{
∀W ∈ N ,

∥∥∥∥∥∥ 1n
n∑

j=1

Hi[ℓ(fW (xj), yj)]− E
(x,y)∼D

[Hi[ℓ(fW (x), y)]]

∥∥∥∥∥∥
F

≤ δ
}
.

By the matrix Bernstein inequality (cf. Theorem 6.1.1 in Tropp [Tro15]), we have

Pr(E) ≥ 1− 4|N |didi−1 exp(−nδ2/(2H2
i )).

Next, for any W ∈ S, we can pick some W + U ∈ N such that ∥U∥F ≤ ϵ. We have∥∥∥∥ E
(x,y)∼D

[Hi[ℓ(fW+U (x), y)]]− E
(x,y)∼D

[Hi[ℓ(fW (x), y)]]

∥∥∥∥
F

≤ G ∥U∥F ≤ Gϵ, and∥∥∥∥∥∥ 1n
n∑

j=1

Hi[ℓ(fW+U (xj), yj)]−
1

n

n∑
j=1

Hi[ℓ(fW (xj), yj)]

∥∥∥∥∥∥
F

≤ G ∥U∥F ≤ Gϵ.

Therefore, for any W ∈ S, we obtain∥∥∥∥∥∥ 1n
n∑

j=1

Hi[ℓ(fW (xj), yj)]− E
(x,y)∼D

[Hi[ℓ(fW (x), y)]]

∥∥∥∥∥∥
F

≤ 2Gϵ+ δ.

We also need to choose the suitable parameter δ and ϵ. First, set ϵ = δ/(2G) so that conditional on E,∥∥∥∥∥∥ 1n
n∑

j=1

Hi[ℓ(fW (xj), yj)]− E
(x,y)∼D

[Hi[ℓ(fW (x), y)]]

∥∥∥∥∥∥
F

≤ 2δ.

The event E happens with probability

1− 4|N |didi−1 exp(−nδ2/(2H2
i )) = 1− 4didi−1 exp(log |N | − nδ2/(2H2

i )).

We have log |N | ≤ p log(3B/ϵ) = p log(6BG/δ). If we set

δ =

√
4pH2

i log(3τBGn/Hi)

n
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with log(3τBGn/Hi) ≥ 1 (n ≥ eHi

3BG , τ ≥ 1). Then we get

p log(6BG/δ)− nδ2/(2H2
i )

=p log(
6BG

√
n√

4pH2
i log(3τBGn/Hi)

)− 2p log(3τBGn/Hi)

=p log(
3BG

√
n

Hi

√
p log(3τBGn/Hi)

)− 2p log(3τBGn/Hi)

≤p log(3τBGn/Hi)− 2p log(3τBGn/Hi) (τ ≥ 1, log(3τBGn/Hi) ≥ 1)
=− p log(3τBGn/Hi)

≤− p log(eτ). (3BGn/Hi ≥ e)

Therefore, with probability greater than

1− 4|N |didi−1 exp(−nδ2/(2H2
i )) ≥ 1− 4didi−1(eτ)

−p ≥ 1− 4didi−1/(eτ),

we have ∥∥∥∥∥∥ 1n
n∑

j=1

Hi[ℓ(fW (xj), yj)]− E
(x,y)∼D

[Hi[ℓ(fW (x), y)]]

∥∥∥∥∥∥
F

≤
√

16pH2
i log(3τBGn/Hi)

n
.

Denote δ′ = 4didi−1/(eτ), C2 = 4Hi
√
p, and C3 = 12didi−1BG/(eHi). With probability greater than 1− δ′, we have

the final result: ∥∥∥∥∥∥ 1n
n∑

j=1

Hi[ℓ(fW (xj), yj)]− E
(x,y)∼D

[Hi[ℓ(fW (x), y)]]

∥∥∥∥∥∥
F

≤ C2

√
log(C3n/δ′)

n
.

A.4. Proof of Lemma 2.3

Claim A.8. Let fW be a feedforward neural network with the activation function ϕi for any i = 1, 2, · · · , L, parametrized
by the layer weight matrices W . Let U be any matrices that have the same dimension as W . For any W and U , the following
identity holds

ℓ(fW+U (x), y) = ℓ(fW (x), y) + ⟨U,∇W (ℓ(fW (x), y))⟩
+ ⟨vec(U),H[ℓ(fW (x), y)]vec(U)⟩+R2(ℓ(fW (x), y)).

where R2(ℓ(fW (x), y))) is a second-order error term in the Taylor’s expansion.

Proof. The proof of Claim A.8 follows by the fact that the activation ϕi(x) is twice-differentiable. From the mean value
theorem, let η be an matrix that has the same dimension as W and U . There must exist an η between W and U +W to keep
the following equality:

R2(ℓ(fW (x), y)) = ⟨vec(U),
(
H[ℓ(fW (x), y)] |η −H[ℓ(fW (x), y)]

)
vec(U)⟩.

Proof of Lemma 2.3. We take the expectation of U for both sides of the equation in Lemma A.8. The result becomes

EU [ℓ(fW+U (x), y)] =EU

[
ℓ(fW (x), y) + ⟨U,∇W (ℓ(fW (x), y))⟩

+ ⟨vec(U),H[ℓ(fW (x), y)]vec(U)⟩+R2(ℓ(fW (x), y))
]
.
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Then, we use the notation of the distribution Q on EU [ℓ(fW+U (x), y)]. We have

ℓQ(fW (x), y) =EU [ℓ(fW (x), y)] + EU [⟨U,∇W (ℓ(fW (x), y))⟩]
+ EU [⟨vec(U),H[ℓ(fW (x), y)]vec(U)⟩] + EU [R2(ℓ(fW (x), y))].

Since E[Ui] = 0 for every i = 1, 2, · · · , L, the first-order term will be

EU [⟨U,∇W (ℓ(fW (x), y))⟩] =
L∑

i=1

EUi
[⟨Ui,∇W (ℓ(fW (x), y))⟩] = 0. (64)

Since we assume that Ui and Uj are independent variables for any i ̸= j, we have

EU [⟨vec(U),H[ℓ(fW (x), y)]vec(U)⟩]

=

L∑
i,j=1

EU [⟨vec(Ui),
∂2

∂vec(Wi)∂vec(Wj)
ℓ(fW (x), y)vec(Uj)⟩]

=

L∑
i=1

EU [⟨vec(Ui),Hi[ℓ(fW (x), y)]vec(Ui)⟩].

For each Ui, let Σi be the variance of Ui. The second-order term will be

EUi
[⟨vec(Ui),Hi[ℓ(fW (x), y)]vec(Ui)⟩] =

〈
Σi,Hi[ℓ(fW (x), y)]

〉
. (65)

The expectation of the error term R2(ℓ(fW (x), y)) be the following

EU [R2(ℓ(fW (x), y))] = EU [⟨vec(U)vec(U)⊤,
(
H[ℓ(fW (x), y)] |η −H[ℓ(fW (x), y)]

)
⟩]

=

L∑
i=1

EUi [⟨vec(Ui)vec(Ui)
⊤,
(
Hi[ℓ(fW (x), y)] |ηi −Hi[ℓ(fW (x), y)]

)
⟩].

From Proposition A.5, let
√
3
9 C1 equal to the following number

3

2
(L+ 1)2e6κ2κ

2
1κ

3L
0

(
max
x∈X
∥x∥2 max

1≤i≤L

1

∥Wi∥2

L∏
h=0

dh

L∏
h=1

∥Wh∥2
)3

.

Hence, we have the following inequality:

EUi [⟨vec(Ui)vec(Ui)
⊤,
(
Hi[ℓ(fW (x), y)] |ηi −Hi[ℓ(fW (x), y)]

)
⟩]

≤EUi

[
∥Ui∥2F ∥Hi[ℓ(fW (x), y)] |ηi −Hi[ℓ(fW (x), y)]∥F

]
≤EUi

[
∥Ui∥2F

√
3

9
C1 ∥Ui∥F

]
=

√
3

9
C1EUi

[
∥Ui∥3F

]
.

From Lemma 2 in Jin et al. [JNG+19], we have (EUi ∥Ui∥3F )1/3 ≤
√
3 ∥Σi∥F . Then, the error term R2(ℓ(fW (x), y)) is

smaller than
√
3
9 C1

∑L
i=1(
√
3 ∥Σi∥F )3 = C1

∑L
i=1 ∥Σi∥3/2F . Thus, the proof is complete.

B. Omitted Details in the Experiments
B.1. Experimental setup for measuring generalization

Figure 1 compares our Hessian distance measure with previous distance measures and generalization errors of fine-tuning.
In this illustration, we fine-tune the ViT-Base [DBK+20] model on the Clipart dataset with weakly-supervised label noise.
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We control the model distance from the initialization vi in fine-tuning and sweep the range of distance constraints in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. For the distance measure, we evaluate the generalization bound from Pitas
et al. [PDV17]. For the scale of the bound is orders of magnitude larger than the generalization error, we show their values
divided by 1074 in Figure 1. For Hessian distance measure, we evaluate the quantity

√
C
∑L

i=1

√Hi/
√
n from Equation 3.

The generalization error is measured by the difference between averaged test loss and averaged training loss.

Figure 2a and 2b compare our generalization measure from Theorem 2.1 with the empirical generalization errors in fine-
tuning ResNet. We use ResNet-50 models fine-tuned on the Indoor and CalTech-256 datasets. We study the following
regularization method: (1) fine-tuning with early stopping; (2) weight decay; (3) label smoothing [MKH19]; (4) Mixup
[ZCD+18]; (5) ℓ2 soft penalty [LGD18]; and (6) ℓ2 projection gradient methods [GHP21]. Figure 2c compares our
generalization measure with the generalization errors in BERT fine-tuning. We consider BERT-Base on the MRPC dataset.
We study the following regularization methods: (1) early stopping; (2) weight decay. (3) ℓ2 soft penalty [LGD18]. (4) ℓ2

projected gradient descent [GHP21]. Figure 2d numerically measures our Hessian distances
∑L

i

√Hi on ResNet-50 and
BERT-Base models. We measure these quantities for models fine-tuned with early stopping (implicit regularization) and ℓ2

projection gradient methods [GHP21] (explicit regularization). Hyper-parameters in the fine-tuning algorithms are selected
based on the accuracy of the validation dataset.

Figure 3 measures the traces of the loss’s Hessian by varying the noisy label. We fine-tune both ResNet-18 and ResNet-50
on CIFAR-10 and CIFAR-100. Each subfigure is a matrix corresponding to ten classes. We use the 10 classes for CIFAR-10
and randomly select 10 classes for CIFAR-100. The (i, j)-th entry of the matrix is the trace of the loss’s Hessian calculated
from using noisy label ỹ = j on samples with true label i. For presentation, we select samples whose loss value under the
true label is less than 1e-4. The trace values are then averaged over 200 samples from each class.

Figure 4 shows our Hessian distance measure of models fine-tuned with different algorithms, including early stopping,
label smoothing [MKH19], Mixup [ZCD+18], SupCon [GDC+20], SAM [FKM+21], and our algorithm. We fine-tune
ResNet-18 models on the Clipart dataset with weakly-supervised label noise. The Hessian distance measures are evaluated
as
∑L

i=1

√Hi from Equation 3.

Table 5 compares the our generalization measure from Equation 3 with previous generalization bounds. We report the results
of fine-tuning ResNet-50 on CIFAR-10 and CIFAR-100. We also include the results of fine-tuning BERT-Base on MRPC
and SST-2. We describe the precise quantity for previous results:

• Theorem 1 from Gouk et al. [GHP21]: 1√
n

∏L
i=1(2||Wi||∞)

∑L
i=1(

||Wi−W
(s)
i ||∞

||Wi||∞ ) where || · ||∞ is the maximum
absolute row sum matrix norm.

• Theorem 4.1 from Li and Zhang [LZ21]:

√
1

ϵ2n

(∑L
i=1

∏L
j=1(Bj+Dj)

Bi+Di

)2 (∑L
i=1 D

2
i

)
where ϵ is a small constant value

set as 0.1 of the average training loss, Bi = ||W (s)
i ||2, and Di = ||Wi −W

(s)
i ||F .

• Theorem 2.1 from Long and Sedghi [LS20]:
√

M
n

∏L
i=1 ||Wi||22

∑L
i=1 ||Wi −W

(s)
i ||2 where M is the total number of

trainable parameters.

• Theorem 1 from Neyshabur et al. [NBS18]:
√

1
γ2n

∏L
i=1 ||Wi||22

∑L
i=1

||Wi||2F
||Wi||22

• Theorem 4.2 from Pitas et al. [PDV17]:

√
1

γ2n

∏L
i=1 ||Wi||22

∑L
i=1

||Wi−W
(s)
i ||2F

||Wi||22

• Theorem 5.1 from Arora et al. [AGN+18]:
√

1
γ2n maxx ||fw(x)||22

∑L
i=1

β2c2i ⌈κ/s⌉
µ2
i→µ2

i

The margin bounds require specifying the desired margin γ. In Figure 5, we show the classification error rates, i.e., the
margin loss values, of fine-tuned ResNet-50 on CIFAR-10 and CIFAR-100 with regard to the margin. The results show
that the classification error depends heavily on γ. For a fair comparison, we select the largest margin so that the difference
between margin loss and zero-one loss is less than 1%. This leads to a margin of 0.4 on CIFAR-10 and 0.01 on CIFAR-100.

Optimization procedure. In the experiments on image classification datasets, we fine-tune the model for 30 epochs. We
use Adam optimizer with learning rate 1e-4 and decay the learning rate by 10 every 10 epochs. In the experiments on text
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Figure 5: Evaluating the margin loss with various margins for a fine-tuned network on CIFAR-10 and CIFAR-100 datasets.

classification datasets, we fine-tune the BERT-Base model for 5 epochs. We use Adam optimizer with an initial learning rate
of 5e-4 and then linearly decay the learning rate.

B.2. Experimental setup for fine-tuning with noisy labels

Datasets. We evaluate our algorithm for both image and text classification tasks. We use six image classification tasks
derived from the DomainNet dataset [PBX+19]. The DomainNet dataset contains images from 345 different classes in 6
different domains, including Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. We use the same data processing as
in Mazzetto et al. [MCS+21] and use 5 classes randomly selected from the 25 classes with the largest number of instances.
We also use MRPC dataset from the GLUE benchmark [WSM+18].

We consider independent and correlated label noise in our experiments. Independent label noise is generated by flipping the
labels of a given proportion of training samples to other classes uniformly. Correlated label noise is generated following the
Mazzetto et al. [MCS+21] for annotating images from the DomainNet dataset. For completeness, we include a description
of the protocol. For each domain, we learn a multi-class predictor for the 5 classes. The predictor is trained by fine-tuning a
pretrained ResNet-18 network [HZR+16], using 60% of the labeled data for that domain. For each domain, we consider the
classifiers trained in other domains as weak supervision sources. We generate noisy labels by taking majority votes from the
weak supervision sources. Table 6 shows the statistics of the dataset.

Models. For the experiments on the six tasks from DomainNet, we fine-tune ResNet-18 and ResNet-101 with the Adam
optimizer. We use an initial learning rate of 0.0001 for 30 epochs and decay the learning rate by 0.1 every 10 epochs. For
the experiments on MRPC, we fine-tune the RoBERTa-Base model for 10 epochs. We use the Adam optimizer with an
initial learning rate of 5e-4 and then linearly decay the learning rate. We report the Top-1 accuracy on the test set. We
average the result over 10 random seeds.

Implementation. In our algorithm, we use the confusion matrix F obtained by the estimation method from Yao et al.
[YLH+20]. For applying regularization constraints, we use the layerwise regularization method in Li and Zhang [LZ21].
The distance constraint parameter Di = γi−1D is set for layer i in equation (4). γ is a hyperparameter controlling the
scaling of the constraints, and D is the constraint set for layer 1. We search the distance constraint parameter D in [0.05, 10]
and the scaling parameter γ in [1, 5]. For the results reported in Table 3, we searched the hyper-parameters for 30 times via
cross-validation. We use the Optuna [ASY+19] package to search for the two hyper-parameters.

For the baselines, we report the results from running their open-sourced implementations. The hyper-parameters for each
baseline are as follows.

Table 6: Basic statistics for six datasets with noisy labels [MCS+21].

DomainNet

Clipart Infograph Painting Quickdraw Real Sketch

Number of training Samples 750 858 872 1500 1943 732
Number of validation Samples 250 286 291 500 648 245
Number of test Samples 250 287 291 500 648 245
Noise rate 0.4147 0.6329 0.4450 0.6054 0.3464 0.4768
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Table 7: Removing either component in Algorithm 1 degrades the test accuracy. Results are averaged over 10 random seeds.

Correlated label noise DomainNet, ResNet-18

Clipart Infograph Painting Quickdraw Real Sketch

Using only loss reweighting 77.96±1.57 41.78±2.86 72.13±1.66 49.10±2.42 85.34±1.51 64.78±1.60
Using only regularization 82.84±1.11 42.34±1.92 75.81±2.07 49.76±2.86 91.67±0.85 65.96±2.73
Ours 83.28±1.64 43.38±2.45 76.32±1.08 50.32±2.74 92.36±0.78 66.86±3.29

• For label smoothing [MKH19], we search the hyper-parameter α in {0.2, 0.4, 0.6, 0.8}.
• For Mixup [ZCD+18], we search the hyper-parameter α in {0.2, 0.4, 0.6, 0.8, 1.0, 2.0}.
• For FixMatch [SBL+20], we adopt it on fine-tuning from noisy labels. We set a starting epoch to apply FixMatch

algorithm. We search its pseudo-labeling threshold in {0.7, 0.8, 0.9}. The starting epoch is searched in {2, 4, 6, 8}.
• For APL [MHW+20], we choose the active loss as normalized cross-entropy loss and the passive loss as reversed

cross-entropy loss. We search the loss factor α in {1, 10, 100} and β in {0.1, 1.0, 10}.
• For ELR [LNR+20], we search the momentum factor β in {0.5, 0.7, 0.9, 0.99} and the weight factor λ in
{0.05, 0.3, 0.5, 0.7}.
• For SAT [HZZ20], the start epoch is searched in {3, 5, 8, 10, 13}, and the momentum is searched in {0.6, 0.8, 0.9, 0.99}.
• For GJS [EA21], we search the weight in generalized Jensen-Shannon Divergence in {0.1, 0.3, 0.5, 0.7, 0.9}.
• For DualT[YLH+20], we search the epoch to start reweighting in {1, 3, 5, 7, 9}.
• For SupCon[GDC+20], we search the contrastive loss weighting parameter λ in {0.1, 0.3, 0.5, 0.7, 0.9, 1.0} and the

temperature parameter τ in {0.1, 0.3, 0.5, 0.7}.
• For SAM [FKM+21], we search the neighborhood size parameter ρ in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.


