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Abstract
Based on the Fourier duality between a station-
ary kernel and its spectral density, modeling the
spectral density using a Gaussian mixture density
enables one to construct a flexible kernel, known
as a Spectral Mixture kernel, that can model any
stationary kernel. However, despite its expressive
power, training this kernel is typically difficult
because scalability and overfitting issues often
arise due to a large number of training parameters.
To resolve these issues, we propose an approxi-
mate inference method for estimating the Spectral
mixture kernel hyperparameters. Specifically, we
approximate this kernel by using the finite random
spectral points based on Random Fourier Feature
and optimize the parameters for the distribution of
spectral points by sampling-based variational in-
ference. To improve this inference procedure, we
analyze the training loss and propose two special
methods: a sampling method of spectral points to
reduce the error of the approximate kernel in train-
ing, and an approximate natural gradient to accel-
erate the convergence of parameter inference.

1. Introduction
In constructing a Gaussian process (GP) model, selecting a
proper kernel function is vital because the selected kernel
determines the overall structure of the target function by
specifying the covariance of GP , a prior for the target func-
tion. In general, under the assumption that the covariance of
two target function values is related to the distance between
two inputs, a stationary kernel whose output is a function
of the difference between two inputs, is commonly used.
One of the main characteristics of the stationary kernel is
that it has Fourier duality with its spectral density. That is,
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stationary kernel k(x1 − x2) for inputs x1 and x2 can be
expressed by an inverse Fourier transform of its spectral
density p(s) as

k(x1 − x2) =

∫
ei2πs

T(x1−x2)p(s)ds. (1)

For example, the RBF kernel, which is defined as k(x1 −
x2) = exp(− 1

2∥
2π(x1−x2)

l ∥
2
), is obtained when specifying

p(s) = N(s; 0, l−2I) with RBF hyperparameter l in Eq. (1).
Based on the Fourier duality, selecting a specific kernel
is equivalent to modeling the form of p(s). If the model
assumption for the spectral density is not flexible enough
to express the spectral density of the true kernel, the GP
model with the induced kernel may not explain the dataset
well. Thus, a flexible model for p(s) is necessary in order
to find a stationary kernel that can describe the dataset well.

As an attempt to construct a flexible kernel, Wilson &
Adams (2013) represent p(s) as a Gaussian mixture den-
sity

∑Q
q=1 wqN(s;µq, diag(σ2

q )), where µq ∈ RD and
diag(σ2

q ) ∈ RD×D are the mean and the diagonal covari-
ance matrix, respectively. The Gaussian mixture density
can represent any p(s) flexibly based on the universal ap-
proximation theorem (Kostantinos, 2000) and thus, it can
induce the flexible kernel (SM kernel) by Eq. (1). In fact,
Wilson & Adams (2013); Wilson et al. (2014) demonstrate
that the SM kernel can find the suitable stationary kernel
that captures the covariance structure of the given datasets.
SM kernel has been employed in many applications: for
example, prediction on the time-series datasets (Ploysuwan,
2014; Kupilik & Witmer, 2018; Chen et al., 2021), anal-
ysis the brain states (Ulrich et al., 2014; 2015), Bayesian
optimization (Wu et al., 2017; Raj et al., 2020).

However, the improved expressive power also incurs two
challenges at the cost of kernel flexibility: high computa-
tional cost and overfitting issue. Specifically, given N data
points, training the SM kernel requires O((Q+ 2QD)N2)
computations per iteration in addition to O(N3) computa-
tions for the inversion of N ×N kernel matrix (Rasmussen,
2004). When N is large, training the SM kernel is gener-
ally difficult due to high computational cost. In addition,
training the SM kernel by conventional approach, i.e. the
maximization of the marginal likelihood, may induce over-
fitting because of its many parameters (Q+ 2QD) (Warnes
& Ripley, 1987; Simpson et al., 2021b).
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To tackle these issues, we propose an approximate in-
ference method for estimating the SM kernel parameters
{wq, µq, σ

2
q}

Q
q=1 efficiently. To be specific, we approximate

the kernel by employing the Random Fourier feature (RFF)
with finite spectral points because the approximate kernel
by finite spectral points can be trained in a scalable manner
(Lazaro-Gredilla et al., 2010). Instead of optimizing the
spectral points directly, which could induce the overfitting
(Lazaro-Gredilla et al., 2010), we introduce the distribu-
tion on the spectral points with the prior distribution, and
then optimize the parameters of the distribution through
sampling-based variational inference (Kingma & Welling,
2013). Based on the proposed inference scheme, we pro-
pose two special strategies to infer the parameters for the
distribution of the spectral points efficiently:

• We propose a sampling strategy of spectral points to min-
imize the error of approximate kernel occurring during
training. Specifically, we optimally control the number
of spectral points to be sampled from the mixture com-
ponents N(µq, diag(σ2

q )) for q = 1, .., Q when the total
number of spectral points is given.

• We employ a natural gradient to optimize the parame-
ters for the distribution of the spectral points because the
natural gradient reflects the curvature of probability den-
sity and can thus be used to update probability density
parameters efficiently (Amari, 1998).

We validate that the proposed sampling stabilizes the ap-
proximate inference, and the approximate natural gradient
leads the fast convergence of parameter inference empiri-
cally. Our contributions can be summarized as follows:

• Scalability: we approximate the SM kernel by using
the distribution of the finite spectral points, and use a
sampling-based variational inference for training.

• Stability: we analyze the evidence lower bound (ELBO)
of sampling-based variational inference, and propose a
sampling strategy for spectral points to reduce the error
of the approximate kernel during the training.

• Fast convergence: we propose an approximate natural
gradient to update the parameters for the distribution of
spectral points effectively.

2. Preliminaries
Spectral Mixture (SM) Kernel : Wilson & Adams (2013)
represent the spectral density p(s) as a weighted mixture of
Q symmetric Gaussian densities with the hyperparameters
{wq, µq, σ

2
q}

Q
q=1 as

p(s) =

Q∑
q=1

wqpq(s) (2)

pq(s) =
N(s|µq, diag(σ2

q )) +N(−s|µq, diag(σ2
q ))

2
(3)

where wq ∈ R+ is the weight parameter, µq =
[µ(q,1), .., µ(q,D)] ∈ RD the mean parameter, and σ2

q =

[σ2
(q,1), .., σ

2
(q,D)] ∈ RD the covariance parameter, i.e., the

diagonal part of diag(σ2
q ) ∈ RD×D. The symmetry of the

spectral density is used to define the kernel as a real-valued
function. They then apply the inverse Fourier transform to
p(s) using Eq. (1) to derive the SM kernel kSM (x1 − x2)

Q∑
q=1

wq exp
(
−2π2(σT

q (x1 − x2))
2
)
cos
(
2πµq

T (x1 − x2)
)
.

Random Fourier Feature (RFF): Rahimi & Recht (2008)
approximate the stationary kernel k(x1 − x2), by applying
a Monte Carlo integration to Eq. (1) with M spectral points
{si}Mi=1 sampled from p(s),

k(x1 − x2) ≈
1

M

M∑
i=1

cos(2πsi
T (x1 − x2)) (4)

= ϕ(x1, {si}Mi=1)ϕ(x2, {si}Mi=1)
T ,

ϕ(x, {si}Mi=1)=
1√
M

[
cos (2πsT1:Mx), sin (2πsT1:Mx)

]
∈R2M

is a random feature. Then, the random feature matrix
Φ(X)=

[
ϕ(x1, {si}Mi=1); ...;ϕ(xN , {si}Mi=1)

]
∈ RN×2M ,

for inputs X={xn}Nn=1 can approximate the kernel
Gram matrix K(X,X)∈RN×N by K̂(X,X; {si}Mi=1) :=
Φ(X)ΦT (X).

Sparse Spectrum GP: Approximate kernel obtained by
the RFF enables the scalable training for GP model (Lazaro-
Gredilla et al., 2010). Let f be a function, with GP prior,
to model the relationship between X = {xn}Nn=1 and
Y = {yn}Nn=1. Then, the prior distribution of f(X) =
[f(x1), .., f(xN )] using the approximate kernel of Eq. (4)
can be defined as

p (f(X)| {si}Mi=1) = N(f(X); 0, K̂(X,X; {si}Mi=1)). (5)

If likelihood p(Y |f(X)) is defined as N
(
Y |f(X), σ2

ϵ I
)
,

then the marginal likelihood p(Y |X, {si}Mi=1) is exactly
computed as N(Y ; 0, K̂(X,X; {si}Mi=1) + σ2

ϵ I).

To find the optimal spectral points {si}Mi=1 (regarded
as the hyperparameters) and noise hyperparameter σ2

ϵ ,
log p(Y |X, {si}Mi=1) is maximized based on gradient-
based optimization. Evaluating log p(Y |X, {si}Mi=1) uses
O(NM) memory and takes O(NM2) computational time
for computing the inversion and determinant by inversion
lemma. When M ≪ N , employing log p(Y |X, {si}Mi=1)
for training takes less training time because the original GP
model training using the exact kernel uses O(N2) memory
and takes O(N3) computation time (Rasmussen, 2004).

Natural Gradient Optimization (NGO): NGO is known
to be efficient in updating the probability density parameters
(Amari, 1998). Given the loss L(θ) parameterized by the
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Figure 1. Outline of the proposed approximate inference procedure.

parameter θ of the probability density pθ(z), and a small
ϵ > 0, the natural gradient ∇̃θL(θ) can be defined as

∇̃θL(θ) = argmin
{∆θ;KL(pθ∥pθ+∆θ)=ϵ}

L(θ +∆θ). (6)

By assuming that ∆θ is small, solving the optimization
problem of Eq. (6) using the Lagrangian method with
the first-order Taylor approximation of L(θ + ∆θ) ≈
L(θ) + ∇θL(θ)T∆θ and KL(pθ∥pθ+∆θ) ≈ 1

2∆θTFθ∆θ
(Pascanu & Bengio, 2013) with Fisher Information matrix
Fθ = Epθ(z)[∇ log pθ(z)∇ log pθ(z)

T
], induces the natural

gradient to be expressed as

∇̃θL(θ) = argmin
∆θ

L(θ) +∇θL(θ)T∆θ +
λ

2
∆θTFθ∆θ,

where λ is the Lagrangian multiplier. This explains that
natural gradient is a second-order gradient using the local
geometric information around θ with Fisher Information
matrix Fθ, and why natural gradient could lead the fast
convergence of probability density parameter inference.

3. Methodology
In this section, we first describe the approximate inference
method to estimate the hyperparameters of the SM kernel
{wq, µq, σ

2
q}

Q
q=1. Then, we analyze our approximate infer-

ence and discuss the two special schemes to improve the
proposed inference. We describe the outline of the approxi-
mate inference scheme in Fig. 1.

3.1. Approximate Inference for {wq, µq, σ
2
q}

Q
q=1

Kernel Approximation: Since the SM kernel can also be
expressed as the weighted sum of inverse Fourier transform
of each Gaussian component pq(s) of Eq. (3)

kSM (x1 − x2) =

Q∑
q=1

wq

(∫
ei2πs

T (x1−x2)pq(s)ds

)
︸ ︷︷ ︸

q−th integral

,

the SM kernel can be approximated in an unbiased manner
by approximating each q-th integral term for q = 1, .., Q
based on RFF of Eq. (4), and then summing these approxi-
mated terms after multiplying the weight wq to q-th approx-
imation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
frequency (Hz)

0

3

p(s
)

1 th component
2 th component
3 th component
#sampled spt

(a) sampling from Eq. (7)

0 1 2 3 4 5

0

3

k(
)

appr 1 appr 2 appr 3 exact

(b) kernel sampling

Figure 2. Generative Process; Fig. 2a shows the sampled spectral
points from Eq. (7). (Q=3,mq=10). Fig. 2b shows 3 samples of
the approximate kernel function and its exact kernel function (red).

For approximating each q-th integral term, we consider
mq spectral points, i.e., {sq,1, .., sq,mq}, each of which fol-
lows the Gaussian distribution with the shared parameters
{µq, σ

2
q} i.e.,

∏mq

i=1 N(sq,i;µq, σ
2
q ). We introduce the dis-

tribution of the spectral points for all Q mixtures as

q(∪Q
q=1{sq,1, .., sq,mq

}) =
Q∏

q=1

mq∏
i=1

N(sq,i;µq, σ
2
q ), (7)

Given the total number of spectral points M =
∑Q

q=1 mq,
the distribution of spectral points in Eq. (7) enables us to
define the random feature map with weights {wq}Qq=1 as

ϕSM(x;∪Q
q=1{sq,1, .., sq,mq

}) (8)

=
[√

w1ϕ (x, {s1,i}m1
i=1) , ...,

√
wQϕ

(
x, {sQ,i}

mQ

i=1

) ]
,

where ϕ is the random feature map defined in Eq. (4). Fig. 2
shows the sampled spectral points from Eq. (7), and three
samples of the approximate kernel constructed by Eq. (8)
with its exact kernel. We later elaborate on how to allocate
total M spectral points into each mixture component, i.e.
{mq}Qq=1, that reflects the parameters {wq, µq, σ

2
q}

Q
q=1.
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Using the feature map of Eq. (8), we can define the random
feature matrix ΦSM(X) for X = {xn}Nn=1, as explained
in Eq. (4), and build the unbiased estimator of KSM(X,X)
such that E[ΦSM(X)ΦSM(X)T ] = KSM(X,X). Proposi-
tion 3.1 states the error bound of this estimator.

Proposition 3.1. Let W0 =
√∑Q

q=1 w
2
q and M = Qm1

under the assumption m1 = .. = mQ. Then, for a small
ϵ > 0, the error bound for the estimator K̂SM(X,X) :=
ΦSM(X)ΦSM(X)T is obtained as

Pr
(∥∥K̂SM(X,X)−KSM(X,X)

∥∥
2
≥ ϵ
)

(9)

≤ N exp
( −3ϵ2M

NW0Q
(
6∥KSM(X,X)∥2 + 3NW0

√
Q+ 8ϵ

)).
where ∥ · ∥2 denotes the matrix spectral norm. See Ap-
pendix E.1 for a proof.

Intuitively, this means that the error of K̂SM(X,X) could
be reduced in a probabilistic sense as the number of the
sampled spectral points M increases.

ELBO estimator L̂J : To train the parameters {µq, σ
2
q}

Q
q=1

of the spectral point distributions, weight parameters
{wq}Qq=1 and noise parameter σ2

ϵ , we employ sampling-
based VI inference (Kingma & Welling, 2013). For brevity,
we denote the spectral points ∪Q

q=1{sq,1, .., sq,mq} as s̃, i.e.
s̃ = ∪Q

q=1{sq,1, .., sq,mq}. We derive ELBO estimator L̂J

of log p(Y |X) by using the distribution of spectral points in
Eq. (7) as variational distribution q(s̃) as follows:

log p(Y |X) (10)

≥
∫

log p(Y |X, s̃)q(s̃)ds̃−KL(q(s̃)||p(s̃))

≈ 1

J

J∑
j=1

log p(Y |X, s̃(j))−KL(q(s̃)||p(s̃)) := L̂J

where s̃(j) denotes the spectral points sampled from q(s̃) at
j-th times. Sampling s̃(j) during optimization is conducted
by the reparameterization (RP) trick as s(j)q,i = µq + σq ◦ ϵi
with ϵi ∼ N(ϵ; 0, I). The marginal likelihood p(Y |X, s̃(j))
can be computed as Eq. (5) by using the random covariance
K̂

(j)
SM(X,X) + σ2

ϵ I constructed by s̃(j).

For the tractability of KL term, we set the prior distribu-
tion p(s̃) to have same form with q(s̃) of Eq. (7) with the
parameters ∪Q

q=1{µ̃q,i, σ̃
2
q,i}

mq

i=1. We compute KL term as
KL(q(s̃)||p(s̃))=

∑Q
q=1 KL(N(µq, σ

2
q )||N(µ̃q,1, σ̃

2
q,1)) by

letting µ̃q,i=µq, σ̃2
q,i=σ2

q for i ≥ 2. The prior parameters
{µ̃q,1, σ̃

2
q,1}

Q
q=1 are initialized by using the prior knowledge

such as the empirical spectral density of dataset (Tobar,
2018; de Wolff et al., 2020) or the RBF prior. Further de-
tails are explained in Appendix C.3.

We denote this scheme as a sampling-based variational
sparse spectrum (SVSS), which is the basic approximate
inference method in this work.

Error Analysis of ELBO Estimator L̂J : We analyze the
gap between the log marginal likelihood log p(Y |X) and
its estimator 1

J

∑J
j=1 log p(Y |X, s̃(j)) in L̂J constructed

using the sampled spectral points during training. This error
is represented as

log p(Y |X)−
(
L̂J +KL(q(s̃)||p(s̃))

)
(11)

=
1

2J

J∑
j=1

Y T K̂
(j)
SM

−1
(
KSM − K̂

(j)
SM

)
K−1

SMY + log
|K̂(j)

SM|
|KSM|

,

where KSM=KSM(X,X)+σ2
ϵ I with identity matrix I .

K̂
(j)
SM denotes the corresponding matrix of K̂(j)

SM(X,X). We
bound the error in Eq. (11) as follows:

Proposition 3.2. The error of ELBO estimator L̂J in
Eq. (11) is bounded as

log p(Y |X)−
(
L̂J +KL(q(s̃)||p(s̃))

)
(12)

≤

(
∥Y ∥22 +Nσ2

ϵ

2σ4
ϵ

)
E[∥KSM − K̂SM∥2]

where E[∥KSM − K̂SM∥2] is integrated over the spectral
point s̃ with the density q(s̃). See Appendix E.2 for a proof.

Proposition 3.2 implies that when E[∥KSM − K̂SM∥2] be-
comes smaller for given Y and σ2

ϵ , log p(Y |X) − L̂J

is more tightly bounded. According to Proposition 3.1,
E[∥KSM − K̂SM∥2] could be smaller when the number of
total sampled spectral points M becomes larger. However,
a large M can in turn increase the computational cost in
proportion to M2. Thus, given fixed M spectral points, we
devise a way to reduce E[∥KSM − K̂SM∥2] for the stable
training with the tight ELBO estimator L̂J .

3.2. Strategies for Improving Approximate Inference

Weighted Sampling for Spectral Points: KSM and K̂SM

are made by the Q mixture, KSM − K̂SM is decomposed as

KSM − K̂SM =

Q∑
q=1

wq

(
Kq − K̂q

)
(13)

where Kq ∈ RN×N is the kernel matrix constructed by
the q-th spectral density pq(s) of Eq. (3), and K̂q ∈
RN×N denotes its estimator matrix constructed by the
spectral points {sq,i}

mq

i=1. This decomposition implies that
given M=

∑Q
q=1 mq spectral points, allocating each spec-

tral points {mq}Qq=1 depending on the weights {wq}Qq=1



Efficient Approximate Inference for Stationary Kernel on Frequency Domain

and errors {K̂q − Kq}Qq=1 can reduce the error K̂SM −
KSM. Hence, we find the optimal number of spec-
tral points {m∗

q}
Q
q=1 by minimizing E[∥KSM − K̂SM∥F ],

with the Frobenius norm ∥ · ∥F , because minimizing
E[∥KSM − K̂SM∥F ] induces E[∥KSM − K̂SM∥2] in Propo-
sition 3.2 to be smaller due to ∥A∥2 ≤ ∥A∥F for any matrix
A ∈ Rm×n. Also, this objective is analytically computable.
Proposition 3.3 states (1) optimization problem of finding
the optimal number of the spectral points and (2) its solution.

Proposition 3.3. Given inputs X={xn}Nn=1, let mq be the
number of spectral points sampled from N(µq, σ

2
q ), and

M=
∑Q

q=1 mq be the total number of spectral points. Let
aq=

mq

M be the ratio of spectral points. Then, the optimal
a∗1, .., a

∗
Q=argmina1,..,aQ

E[∥K̂SM −KSM∥F ] is given

a∗q =
wq

[∑N
i=1

∑
i<j gq(xi − xj)

]1/2
∑Q

q=1 wq

[∑N
i=1

∑
i<j gq(xi − xj)

]1/2 (14)

where gq(τ)=1+kq(2τ)−2k2q(τ) and kq(τ) denotes the q-
th component term in SM kernel related to {µq, σ

2
q}. The

optimal spectral point m∗
q is obtained as the integer closest

to max{1,Ma∗q}. See Appendix E.3 for a detailed proof.

Proposition 3.3 implies that each m∗
q spectral point is propor-

tional to the product of weight wq and sum of the variances
for the q-th random features

∑N
i=1

∑
i<j gq(xi − xj).

Approximate Natural Gradient: Employing a natural gra-
dient for updating the parameters of Gaussian distribution
can lead the fast convergence of the parameter inference
(Khan & Nielsen, 2018; Khan et al., 2018).

We propose to use the approximate natural gradient that
updates the parameters of Eq. (7) in the logarithm domain so
that updating these parameters should be numerically stable
for Cholesky decomposition error in training. The proposed
approximate natural gradient can be easily computed from
the original gradient via pre-conditioning and normalization.
Proposition 3.4 presents the way to compute approximate
natural gradient under valid condition.

Proposition 3.4. Let µ(t)
q and σ

(t)
q be the t-th iterated pa-

rameters of N(µq, σ
2
q ) which is q-th component distribution

for q(s̃). The natural gradient of L̂J w.r.t µq and σq in
log domain, i.e. ∇̃log µq

L̂J and ∇̃log σq
L̂J , can be approxi-

mated as

∇̃log µq L̂J ≈

(
σ
(t+1)
q

µ
(t)
q

)2

◦ ∇log µq L̂J

∇̃log σq
L̂J ≈ 1

2
∇log σq

L̂J , (15)

for
∣∣∣ (σ(t+1)

q

µ
(t)
q

)2

◦∇log µq
L̂N

∣∣∣ < 1 and
∣∣∣∇log σq

L̂N

∣∣∣ < 1 in

element-wise sense. See Appendix E.4 for a proof.

The constraints are satisfied by normalizing the revised gra-
dient by its two norm ∥ · ∥2. The derived gradients are used
with the adaptive optimizer like ADAM.

4. Related Work
Natural gradient. Natural gradient has been employed to
update the variational parameters in variational inference
framework (Honkela et al., 2007; Hoffman et al., 2013;
Khan & Lin, 2017). For the training of GP model, natural
gradient has been applied to update the variational parame-
ters of the inducing variables (Hensman et al., 2013; Salim-
beni et al., 2018). However, to the best of our knowledge,
the proposed method is the first method that employs the
natural gradient to update the SM kernel hyperparameters
instead of the variational parameters of inducing variables.

Spectral Mixture (SM) Kernel. Fourier duality between
the stationary kernel and its spectral density has been em-
ployed to construct a flexible kernel. Wilson & Adams
(2013) employed a mixture of Gaussian density function
to model a spectral density , and then constructed the SM
kernel. Later, this approach was extended to construct multi-
output spectral kernels (Ulrich et al., 2015; Parra & Tobar,
2017; Simpson et al., 2021a) and non-stationary spectral
kernels (Remes et al., 2017; Shen et al., 2019). Also, the hy-
brid spectral kernels combined with neural network (Remes
et al., 2018; Xue et al., 2019) have been proposed.

Stationary Kernel Approximation and Its Inference. Ap-
proximate stationary kernel by RFF enables scalable train-
ing of the stationary kernel such as RBF, Periodic, and SM
kernel by optimizing the spectral points of the approximate
kernel (Rahimi & Recht, 2008; 2009; Lazaro-Gredilla et al.,
2010; Yang et al., 2015; Tompkins & Ramos, 2018; 2020).
However, the direct optimization of the spectral points has
known to induce the overfitting.

To relax overfitting issue, variational inference scheme have
been employed to train the spectral points of approximate
kernel. Gal & Turner (2015) introduced the variational
distribution of spectral points along with inducing variables,
and used them for training the stationary kernel including
SM kernel. Since this work has some common points with
the proposed inference, we compare the proposed inference
and Gal & Turner (2015), referred as VSS, to clarify the
difference of each methods and reveal our contribution:

Kernel Approximation. Let us first remind that how the
q-th spectral density pq(s) in Eq. (3) can construct the q-th
component kernel kq(τ) as

kq(τ) =

∫
ei2πs

T τ pq(s)ds ≈
1

mq

mq∑
m=1

cos
(
2πsTq,mτ

)
,

where sq,m denotes m-th spectral points sampled from
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N(s;µq,diag(σ
2
q )), and mq denotes the number of the sam-

pled spectral points. As considering τ = x − y, we can
represent the sum of cosine as

1

mq

mq∑
m=1

cos
(
2πsTq,mτ

)
:= ϕq(x)ϕq(y)

T

where the random feature ϕq(x) is defined differently de-
pending on the inference method. VSS uses the random
feature ϕq(x) ∈ Rmq as

ϕq(x) =

√
2

mq

[
..., cos (2πsTq,mx+ bq,m), ...

]
,

by using random phase parameters {bq,m}mq

m=1 ∼
U([0, 2π]). This leads O(NM2) computational complexity
for training for N dataset, and the training of the additional
phase parameters {bq,m}mq

m=1.

On the other hand, SVSS uses the random feature ϕq(x) ∈
R2mq as

ϕq(x) =

√
1

mq

[
..., cos (2πsTq,mx), sin (2πsTq,mx), ...

]
.

This results in O(N(2M)2) computational complexity with-
out training additional phase parameters. We use this feature
because this has smaller variance in approximating RBF ker-
nel as analyzed in (Sutherland & Schneider, 2015).

Spectral Points Modeling. As considering the spectral
points {sq,i}

mq

i=1 ∼ N(s;µq,diag(σ
2
q )) are sampled as

sq,i = µq + σq ◦ zi, zi ∼ N(0, I),

VSS introduces the variational distribution on zi, i.e
{q(zi)}

mq

i=1 with q(zi) = N(zi;mi, si), to relax the over-
fitting. In training, VSS optimizes both the parameters of
variational distribution of the spectral points {mi, si}

mq

i=1

for q = 1, .., Q, and kernel hyperparameter {wq, µq, σ
2
q}

together. However, we believe that using each parame-
ters {mi, si}

mq

i=1 for the variational distributions of {zi}
mq

i=1

seems to be redundant in sense of modeling the weighted
Gaussian spectral density p(s) in Eq. (2) because the
kernel hyperpameters {µq, σq} and vaiational parameters
{mi, si}

mq

i=1 are all used for modeling the q-th Gaussian
spectral density pq(s) in Eq. (3).

On the other hand, SVSS introduces the variational distribu-
tion on sq,i directly, i.e., {q(sq,i)}

mq

i=1 that have the shared
variational parameters {µq, σ

2
q}, but could have different

prior p(sq,i) for each sq,i. For training, we optimize varia-
tional parameters {µq, σ

2
q}

Q
q=1, which can also be regraded

as the kernel hyperparameters, and weight hyperparameters
{wq}Qq=1 together. Thus, SVSS uses the smaller number of

trainable parameters compared to VSS, and can alleviate
overfitting.

Evidence Lower bound of log p(Y |X). VSS takes the
lower bound of p(Y |X) as follows:

log p(Y |X) =

∫∫
p(Y |X,A, s)p(A)p(s̃)d(A)ds̃ ≥∫∫

log p(Y |X,A, s̃)q(A, s̃)dAds̃−KL(q(s̃, A)||p(s̃, A))

where s̃ = ∪Q
q=1{sq,1, .., sq,mq} denotes M spectral points,

and A ∈ RM denotes the random weight. p(Y |X,A, s̃)
is computed as N(Y ; Φ(X)A, σ2

ϵ I) with random feature
matrix Φ(X) ∈ RN×M obtained by the random feature of
VSS. This can be understood as Bayesian Linear regression
that uses the random feature matrix Φ(X), random weight
parameter A, and variance parameters σ2

ϵ .

On the other hand, SVSS takes the lower bound of p(Y |X)
as shown in Eq. (10). This difference comes from that
VSS employs the classical variational inference (VI) that
requires the exact expectation terms (analytical form of
integral) necessary to update the variational parameters,
whereas SVSS uses the stochastic gradient variational bayes
(SGVB) (Kingma & Welling, 2013) that uses the estimate
of expectations instead of the exact expectations due to the
reparametrization (RP) trick.

Due to the use of different lower bound of log marginal like-
lihood log p(Y |X), VSS is required to take more variational
approximation for random weight A compared to SVSS.
This leads that the ELBO of SVSS is closer to log p(Y |X)
than that of VSS; note that KL(q(s̃, A)||p(s̃, A)) ≥
KL(q(s̃)||p(s̃)). Also, VSS use much more number of the
trainable parameters including the variational parameters
for q(A) and parameters of the inducing variable, phase,
and slope; Further detail are explained in Table 2.

Additional Consideration. Based on the analysis of the
ELBO estimator error of SVSS, SVSS can employ the
weighted sampling strategy to stabilize the stochastic ap-
proximate kernel learning. Also, SVSS can employ the
approximate natural gradient to expedite the convergence of
parameter inference for the spectral points distribution.

5. Experiments
In this section, we provide the experiments results validat-
ing the performances of the proposed model using the var-
ious data sets. We provide our implementation at https:
//github.com/becre2021/ABInferGSM and addi-
tional results in Appendix D.

5.1. SM Kernel Approximation in Training

Effect of weighted sampling on log p(Y |X; s̃). We
first investigate how the weighted sampling of Proposi-

https://github.com/becre2021/ABInferGSM
https://github.com/becre2021/ABInferGSM
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tion 3.3 can reduce the error of the ELBO estimator as
analyzed in Proposition 3.2. To this end, we train the SM
kernel hyperparameters, {wq, µq, σ

2
q}7q=1, with Passenger

data set used in (Wilson & Adams, 2013). The conventional
log marginal likelihood estimation (MLE-Type 2) is used.
We refer to this as Baseline learning method.
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Figure 3. Weighted sampling Effect on log p(Y |X; s̃). In Fig. 3d,
we depict 2 standard deviations error bounds for log p(Y |X; s̃)
(Ws and Es) by filling its color between bounds, respectively.

Figs. 3a and 3b show how the parameters are being opti-
mized by Baseline method over iterations. At each iteration
during the training, we allocate the number of spectral points
to be sampled from each mixture component using the pro-
posed weighted sampling (Ws) of Proposition 3.3 given a
fixed total 28 spectral points, i.e, M = 28. As comparing
model, we also consider equal sampling (Es) that samples 4
spectral points for each mixture component. Fig. 3c shows
the varying number of optimal spectral points sampled from
each mixture component by Ws. At each iteration, we also
compute log p(Y |X; s̃) using the approximate kernel matrix
K̂

(t)
SM constructed by the Ws and Es. Fig. 3d compares the

mean and two-standard error of log p(Y |X; s̃) computed by
the two sampling methods (Ws and Es) for 50 samplings at
each iterations and its true log p(Y |X) computed from the
exact kernel K(t)

SM.

The difference log p(Y |X)− log p(Y |X; s̃) in Fig. 3d is the
same as the approximation error of Eq. (11). This shows
that Ws induces a more stable estimation for log p(Y |X)
than Es during training, and reduces the approximation error
as desired from Propositions 3.2 and 3.3.

Effect of weighted sampling on training by SVSS.

We further investigate how the training by SVSS using
weighted sampling (SVSS-Ws) helps obtain better SM ker-
nel parameters compared to SVSS (without using weighted
sampling) in the same experiment setting. We run a total 10
experiments with the different initialization and compute the

test RMSE and MNLL for each prediction experiment on
test data set. For prediction, we use the exact kernel KSM

with the estimated parameters {ŵq, µ̂q, σ̂
2
q}7q=1 by SVSS

and SVSS-Ws.
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Figure 4. Predictive performance for SVSS and SVSS-Ws.
Figs. 4a and 4b compare the extrapolation prediction, respectively.
Figs. 4c and 4d compare the estimated spectral density of SVSS
and SVSS-Ws, respectively.

Among 10 experiments of estimating the hyperparameters,
we arbitrarily chose one experiment result (the 6-th experi-
ment result), and depict its prediction results in Fig. 4. For
the additional results, we report it in Appendix D.2.

Figs. 4a and 4b show how SVSS (without using weighted
sampling) and SVSS-Ws conduct the prediction task, re-
spectively. These figures show that SVSS-Ws predicts more
accurately than SVSS. Figs. 4c and 4d show the spectral
density p(s) constructed by using the parameters estimated
by SVSS and SVSS-Ws, respectively.

In each figure, the estimated spectral density of SVSS and
SVSS-Ws is compared to the empirical power spectral den-
sity (black) computed directly from the data and the spectral
density of the Baseline method (MLE-Type 2) (blue). We
observe that the parameters having good prediction results
tend to match the spectral modes having the high-energies
(it can be checked in Appendix D.2). In Fig. 4d, SVSS-Ws
captures the spectral modes more accurately in that SVSS
misses the third spectral mode shown in Fig. 4c. We believe
that this explains why the Ws could improve SVSS.

Table 1. Comparison of Prediction performance.
RMSE MNLL RMSE (Top 1-5) MNLL (Top 1-5)

M = 28 (Q = 7,m = 4)

Baseline (MLE-2) 61.85± 22.54 5.66± 0.49 26.88± 1.29 4.63± 0.02

SVSS 94.38± 22.30 5.53± 0.20 34.11± 1.68 4.92± 0.04

SVSS-Ws 54.00± 11.55 5.62± 0.34 28.62± 1.12 4.92± 0.03

M = 28 (Q = 28,m = 1)

SVSS 101.04± 13.33 5.85± 0.15 78.72± 6.92 5.72± 0.21
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Figure 5. Comparison of training progress over varying M spectral points; the mean and one-standard error of the validation RMSE for
5 experiments are depicted. The predictive distribution is computed as 1

J

∑J
j=1 p(f

∗|x∗, X, Y, K̂
(j)
SM ) where the predictive mean and

variance is averaged over J = 3.
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Figure 6. Comparison of prediction performance over varying M spectral points; the mean and one-standard error of validation RMSE for
5 experiments are depicted. Predictive distribution using the approximate kernel K̂SM is computed as described in Fig. 5. Predictive
distribution of exact KSM is computed as p(f∗|X∗, X, Y,KSM ) for the predictive inputs X∗, i.e., the conventional prediction method.

Table 1 shows the mean and one-standard error of test RMSE
and MNLL computed using 10 experiments and its top-5 ex-
periments because the result of 10 experiments is somewhat
volatile due to the model complexity (Q = 7) and its param-
eter initialization affected by random seeds. Additionally,
we consider the SVSS allocating M = 28 spectral points
to each of Q = 28 mixture components (the most flexible
model under the constrained computational cost M = 28,
without the weighted sampling) to validate the necessity of
the weighted sampling; note that we fix M = 28 to ensure
that two models have the computational cost. This table
indicates that SVSS-Ws results in a superior prediction than
SVSS employing computational cost M = 28.

5.2. Ablation Study

In this section, we investigate how the number of the
sampled spectral points affects the inference procedure
of SVSS using the weighted sampling of Proposition 3.3,
and the approximate natural gradient of Proposition 3.4
for learning the SM kernel hyperparameters. We set
Q = 6 for the mixture components and consider M ∈
{18, 30, 60, 90, 120, 150, 180, 240} spectral points while
using the bike dataset (N=17379, D=17) in UCI bench-
mark set (Dua & Graff, 2017). We equally divide five parti-
tions of the dataset and randomly select the training, valida-

tion, and test set with a ratio of 8:1:1 for each partition. We
pick the best kernel parameters with the lowest RMSE on
validation set and used them for conducting predictions on
test set.

We conduct an ablation study comparing the following in-
ference methods:

• SS: optimizes {wq, µq, σ
2
q}

Q
q=1 using the approximate

kernel without a reparameterization (RP) trick, which
is similar inference with GM in A la Carte (Yang et al.,
2015) without fastfood trick (Le et al., 2013) designed
for a high-dimension data.

• SS+RP: SS with reparameterization trick (RP).
• SVSS: optimizes {wq, µq, σ

2
q}

Q
q=1 via L̂J in Eq. (10) with

J = 1 (i.e. SS+RP+KL using RBF prior).
• SVSS-Ws: SVSS combined with Proposition 3.3.
• SVSS-Ng: SVSS combined with Proposition 3.4.
• SVSS-WsNg: SVSS combined with Propositions 3.3

and 3.4.

For the SVSS-Ws and SVSS-WsNg using the weighted
sampling, we randomly select r percentage subset of
X={xn}Nn=1 every iteration to scalably compute a∗q of
Eq. (14) for large N ; r = 1 means that the entire input
X is used. Here, we use r = .05.
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Fig. 5 shows how the validation RMSE decreases as
the training proceeds (up to 1200 iterations) for M ∈
{18, 60, 120, 180}, thus showing the effect of the number of
M samples on the learning trends. The observations found
from theses results are summarized as:

• Comparison between SS and SS+RP shows that the effect
of RP trick. RP trick reduces the number of the iterations
for the parameters to reach the local optimum by adding
a random perturbed noise to the sampled spectral points
every iterations.

• Comparison between SS+RP and SVSS shows the ef-
fect of KL terms using RBF prior. KL term reduces the
number of the iterations by introducing the RBF spectral
density prior on q(s̃) in Eq. (7).

• Comparison between SVSS and SVSS-Ws shows the
effect of weighted sampling. Weighted sampling seems
to help find the parameters having the lower validation
RMSE (Q=6, M=120, 180).

• Comparison between SVSS and SVSS-Ng or between
SVSS-Ws and SVSS-WsNg shows the effect of the natu-
ral gradient. It seems that natural gradient leads the fast
convergence of parameter inferences consistently, and
thus helps to obtain the good parameters earlier.

Fig. 6 compares the prediction performances of all the mod-
els under the varying M spectral points. We compare the
two types of prediction; the prediction using approximate
kernel K̂SM and the the exact kernel KSM with the hyperpa-
rameters estimated by the proposed approximate inferences.
When a small M is used, SVSS-Ng and SVSS-WsNg ob-
tains the lowest RMSE and MNLL for both the approximate
kernel and exact kernel, as shown in Figs. 6a and 6b. As
M increases, SVSS-Ws and SVSS-WsNg lead the trained
model to have the lower test RMSE and MNLL compared to
the SVSS and SVSS-Ng, respectively. This trend confirms
that the weighted sampling improves the prediction perfor-
mance due to the optimal allocation of the spectral points.
We check the consistent results for different UCI datasets,
and those results are reported in Appendix D.3.

5.3. UCI Dataset Regression Task

We conduct a regression task on the large-scale and high-
dimensional datasets that are difficult to be trained using a
conventional inference. We add the following approximate
inference methods for comparison : (1) VFE: variational
inducing variable inference (Titsias, 2009). We use the SM
kernel and the RBF (ARD) kernel that is widely used for
GP regression, and (2) VSS: variational sparse spectrum
approximation (Gal & Turner, 2015) that uses the classical
variational approximation of the spectral points and induc-
ing variables. SM kernel is used. The detailed comparison
with baseline methods is described in Appendix B.
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Figure 7. Trade-off between the prediction performance and the
training time for different M sampled spectral points. For the
datasets denoted by asterisk *, we equally divide 5 partitions of
the dataset and obtain the averaged result as the regression task
done in (Wilson et al., 2016) due to the memory issue of VFE.

Fig. 7 shows how the number of the sampled spectral points
affects the trade-off relationships between the prediction
performance and the training time. The y-axis represents
the averaged mean of test RMSE, and the x-axis represents
the averaged training time taken for obtaining the best pa-
rameters on validation set within 1500 iterations. These
statistics, marked with a point in each figure, are computed
using 5 repeated experiments for all the models. In addition,
each point is also marked with the number of spectral points
(the smallest M : 1, the largest M : 5). This result shows that
SVSS and its variants require an order of magnitude smaller
training time to achieve a similar prediction performance to
VFE. Additional results are reported in the Appendix D.4.

6. Conclusion
We propose an approximate inference method (SVSS) to
train the SM kernel efficiently, and extra strategies to im-
prove SVSS; weighted sampling method for improving sta-
bility and the approximate natural gradient for expediting
the convergence of the parameter inference.
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Supplementary Material :
Efficient Approximate Inference for Stationary Kernel on Frequency domain

A. Algorithm
A.1. Implementation

We use PyTorch (1.7.0) (Paszke et al., 2019) and employ RTX2080TI-11GB and V100-16GB for GPU. We provide our
implementation at https://github.com/becre2021/ABInferGSM. We describe the SVSS algorithm combined
with Propositions 3.3 and 3.4 as follow:

Algorithm 1 Approximate Inference for the spectral density parameters {wq, µq, σq}Qq=1 and noise parameter σϵ.

1: INPUT: Dataset D = {xn, yn}Nn=1, Parameters {wq, µq, σq}Qq=1 and σϵ,
#Parameters update iterations T , #Sampled spectral points M =

∑Q
q=1 mq , #Sampling for ELBO J

2: OUTPUT: Optimal parameters {w∗
q , µ

∗
q , σ

∗
q}

Q
q=1 and σ∗

ϵ

3: for t = 1 . . . T do
4: Step 1. Compute the optimal number of spectral points {m∗

q}
Q
q=1 satisfying

∑Q
q=1 m

∗
q = M by Proposition 3.3.

5: Step 2. Sample spectral points s̃(j) =
⋃Q

q=1{sq,1, .., sq,m∗
q
} for j = 1, .., J such that

sq,i = µq + σq ◦ ϵi ϵi ∼ N(0, I)

6: Step 3. Compute the approximate natural gradients for updating {logµq, log σq}Qq=1 by Proposition 3.4{
∇̃log µq L̂J , ∇̃log σq L̂J

}Q

q=1
,
{
∇logwq L̂J

}Q

q=1
, and ∇log σϵL̂J

7: Step 4. Update {wq, µq, σq}Qq=1 and σϵ in log domain by ADAM with the estimated gradients
8: end for

A.2. Practical Implementation of Proposition 3.3.

Given the inputs X = {xn}Nn=1, and kernel hyperparameters {wq, µq, σ
2
q}

Q
q=1, the optimal ratio of spectral points a∗q in

Proposition 3.3 is computed as

a∗q =
wq

[∑N
i=1

∑
i<j gq(xi − xj)

]1/2
∑Q

q=1 wq

[∑N
i=1

∑
i<j gq(xi − xj)

]1/2 .
However, when applying a∗q directly during training via SVSS, there are some issue; (1) some dominant weight parameters in
training, i.e. wq ≫ w1, .., wq−1, wq+1, .., wQ, or (2) the sum of variance terms

∑N
i=1

∑
i<j gq(xi − xj) make a∗q ≈ 1 and

a∗i = 0 for i = 1, .., q − 1, q + 1, .., Q, which samples all spectral points from single component N(µq, σ
2
q ), i.e. mq = M .

To resolve these issues, in the implementation, (1) we replace wq by 1
1+exp (−wq/T ) with T = median{w1, .., wQ}, i.e

bounded increasing function w.r.t wq, and (2) we guarantee the minimal number of each sampled spectral points, i.e.
mq ≥ m0 for q = 1, .., Q with the minimal number of spectral points m0. As a result, these tricks stabilize the ELBO
estimator L̂J and improve the training by SVSS.

https://github.com/becre2021/ABInferGSM
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B. Comparison with Baseline Inference methods
We employ the following baseline inference methods to validate the proposed inference SVSS.

• VFE : denotes the variational inducing variables inference method (Titsias, 2009). We refer to the implementation 1. We
not only use the SM kernel, but also the RBF (ARD) kernel because the RBF is one of the most widely used kernels for
GP regression.

• SS: denotes the GM in A la Carte (Yang et al., 2015) without the fastfood trick (Le et al., 2013) designed for a high-
dimensional dataset. This inference method optimizes the parameters of SM kernel {wq, µq, σ

2
q}

Q
q=1 using the approximate

kernel K̂SM(X,X) without a reparameterization (RP) trick. That is, unlike SVSS, SS samples the Gaussian random
noise ϵ ∼ N(0, I) at first iteration (like initialization), and optimizes the parameters of {wq, µq, σ

2
q}

Q
q=1 without updating

the random noise ϵ during training. Since we could not find the published code, we implement the code by referring to the
implementation of Sparse Spectrum GP (Lazaro-Gredilla et al., 2010), which is designed for the RBF-ARD kernel 2.

• VSS: denotes the variational sparse spectrum approximation of GP (Gal & Turner, 2015), which is compared in detail
Section 4. We refer to the implementation 3. Notably, VSS introduces the variational distribution of spectral points to
relax the overfitting problem described in (Lazaro-Gredilla et al., 2010), and use SM kernel.

Table 2. Time complexity and trainable parameters for the inference methods
Inference Time Complexity Trainable Parameters
VFE (RBF) O(NM2 +M3) kernel {σ2

f , l}, inducing inputs {um}Mm=1, noise σ2
ϵ

VFE (SM) O(NM2 +M3) kernel {wq, µq, σ
2
q}Qq=1, inducing inputs {um}Mm=1, noise σ2

ϵ

SS O(4NM2 + 2M3) kernel {wq, µq, σ
2
q}Qq=1, noise σ2

ϵ

VSS O(NM2 +M3) kernel {wq, µq, σ
2
q}Qq=1, inducing inputs {um}Mm=1, noise σ2

ϵ , slope {α0, β0}
spectral points {mm, sm}Mm=1, phases {αm, βm}Mm=1, random weight {m,S}

SVSS O(4NM2 + 2M3) spectral points {µq, σ
2
q}Qq=1 and weights {wq}Qq=1, noise σ2

ϵ

Table 2 describes the time complexity and trainable parameters of the baseline inference methods where N , M , and Q
denote the number of data, the number of total spectral points (inducing inputs), and the number of the mixture components
for the SM kernel respectively. Although all inference methods have the same time complexity, the single iteration time for
each inference method could be different because the number of operations required to update the parameters based on the
gradient is proportional to the number of parameters (Rasmussen, 2004).

1https://github.com/GPflow/GPflow/blob/develop/gpflow/models/svgp.py
2http://www.tsc.uc3m.es/˜miguel/downloads.php
3https://github.com/yaringal/VSSGP

https://github.com/GPflow/GPflow/blob/develop/gpflow/models/svgp.py
http://www.tsc.uc3m.es/~miguel/downloads.php
https://github.com/yaringal/VSSGP
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C. Experimental Details
C.1. Preprocessing of Datasets

Airline Passenger: we employ the raw dataset X and Y as implemented in (Wilson & Adams, 2013) 4 (matlab version).

UCI benchmark dataset: We normalize X by X−µ(Xtrain)
σ(Xtrain)

and Y by Y−µ(Ytrain)
σ(Xtrain)

with the mean µ(Xtrain) and the standard
deviation σ(Xtrain) for the training inputs Xtrain and the mean µ(Ytrain) and the standard deviation σ(Ytrain) for the
training outputs Ytrain. We employ the processing code implemented in (Delbridge et al., 2020) 5.

C.2. Initialization of the variational distribution of spectral points q(∪Q
q=1{sq,1, .., sq,mq

}) of Eq. (7)

Initialization for a low-dimensional dataset (D = 1, 2): we refer to the initialization method implemented for (Wilson
et al., 2014) 6 and (de Wolff et al., 2020) 7. Specifically, we first compute the empirical power spectral density (PSD) by
applying the conventional FFT tool (scipy.signal.weltch). We then sample spectral points from the obtained empirical
normalized PSD, and fit the Gaussian mixture model to the sampled spectral points, which results in the parameters
{wq, µq, σ

2
q}

Q
q=1. These parameters are set as the initial parameters for the weights {wq}Qq=1 and {µq, σ

2
q}

Q
q=1 for q(s̃) =∏Q

q=1

∏mq

i=1 N(sq,i;µq, σ
2
q ).

Initialization for a high-dimensional UCI dataset (D ≥ 3): we employ the random initialization using uniform distribution
U(a, b). We refer to the initialization method for ARD and GM that are used in the supplementary material (Yang et al.,
2015). Since the initial values for the parameters a, b of Uniform distribution U are not proper to the baseline inference
methods (possibly due to the preprocessing of the dataset), we take the following parameterization for U and follow the step
described in the supplementary material (Yang et al., 2015).

Thus, we initialize the weight parameters as wq = 1 for all q = 1, .., Q, the mean parameters µq ∈ RD ∼ U(0, 0.25) and
the standard deviation parameters σq ∈ RD ∼ U(0.05, 0.5) in element-wise sense. We initialize the noise parameters
σϵ = std(Ytrain)/20. Given {wq, µq, σ

2
q}

Q
q=1 and σ2

ϵ , we run 100 optimization iterations with these initial candidate
parameters to minimize − log p(Ytrain|Xtrain). We repeat this procedure five times, and select the best parameters that have
the minimum of − log p(Ytrain|Xtrain) out of the five candidate parameters.

For the RBF (ARD) kernel, we initialize the length scale parameters l ∈ RD ∼ U(.5, 1.0) in element-wise, and conduct
similar procedure by minimizing − log p(Ytrain|Xtrain).

C.3. Initialization of the prior distribution of spectral points p(∪Q
q=1{sq,1, .., sq,mq

})

Before explaining the initialization of prior distribution of spectral points, we first want to explain the KL terms in
L̂J in terms of the prior distribution of spectral points. For tractability of KL terms, we set the prior distribution
p(∪Q

q=1{sq,1, .., sq,mq}) =
∏Q

q=1

∏mq

i=1 N(sq,i; µ̃q,i, σ̃
2
q,i) to have same form with q(∪Q

q=1{sq,1, .., sq,mq}) of Eq. (7) using
the parameters ∪Q

q=1{µ̃q,i, σ̃
2
q,i}

mq

i=1. We compute the KL term as

KL(q(s̃)||p(s̃))=
Q∑

q=1

KL(N(sq,1;µq, σ
2
q ))||N(sq,1; µ̃q,1, σ̃

2
q,1)),

by letting µ̃q,i = µq and σ̃2
q,i = σ2

q for i ≥ 2, which implies KL(N(sq,i;µq, σ
2
q ))||N(µ̃q,i, σ̃

2
q,i)) = 0.

When the maximizing the ELBO estimator L̂J of Eq. (10), the KL term in L̂J is minimized; each variational distribution of
the spectral points q(sq,i) = N(sq,i;µq, σ

2
q ) is pushed to become closer to its prior distribution p(sq,i) = N(µ̃q,1, σ̃

2
q,1) in

KL distance sense while it is also pushed to maximize the likelihood term 1
J

∑J
j=1 log p(Y |X, s̃(j)).

• This acts as the regularizer that prevents the collapsing phenomenon q(s1,i) = .. = q(sQ,i) for all i, i.e. single mode for
Q mixture components, that might be happen when only maximizing the likelihood term 1

J

∑J
j=1 log p(Y |X, s̃(j)) in L̂J .

4https://people.orie.cornell.edu/andrew/code/
5https://github.com/idelbrid/Randomly-Projected-Additive-GPs/
6https://people.orie.cornell.edu/andrew/pattern/#Kronecker
7https://github.com/GAMES-UChile/mogptk/

https://people.orie.cornell.edu/andrew/code/
https://github.com/idelbrid/Randomly-Projected-Additive-GPs/
https://people.orie.cornell.edu/andrew/pattern/#Kronecker
https://github.com/GAMES-UChile/mogptk/
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• This could help the parameter inference of q(sq,i) = N(sq,i;µq, σ
2
q ) by letting learnable parameters {µq, σ

2
q}

Q
q=1

exploring the optimal parameter around the prior parameters {µ̃q,1, σ̃
2
q,1}

Q
q=1 during training.

Using the described meaning of the prior distribution p(∪Q
q=1{sq,1, .., sq,mq

}) in optimizing L̂J , we initialize the parameters
of the prior distribution as follows:

Initialization for a low-dimensional dataset (D = 1, 2): In this case, since the initial parameters of q(∪Q
q=1{sq,1, .., sq,mq

})
can be obtained by using the empirical spectral density, which can be used as good prior, we set the parameters of prior
distribution p(sq,i) = N(µ̃q,1, σ̃

2
q,1) by adding the small random noise to the initial parameters of µ and scaling down σ

such as 0.1σ obtained from the initialization in Appendix C.2; scaling down is conducted because finding the frequency
region that having the condensed high spectral energy is important for training the SM kernel hyperparameters as shown in
Appendix D.2.

Initialization for a high-dimensional UCI dataset (D ≥ 3): In this case, we assign the small values for µ̃q,1 by
µ̃q,1 ∼ U(0, 0.05), σ̃q,1 ∼ U(0, 0.05). Assigning the small values for µ̃q,1 reflects our prior knowledge that the RBF kernel
(the case of µq = 0 for all q) could be suitable for describing the UCI dataset, and the optimized parameters of the SM
kernel are expected to be, at least, better model parameters than the parameters of the RBF kernel.

C.4. Training Details

SM Kernel Approximation in Training in Section 5.1: For the baseline learning method (maximization of log marginal
likelihood known as MLE-Type 2), SVSS, and SVSS-Ws, we use the Adam optimizer (Kingma & Ba, 2014) with the
learning rate lr = .005. For the sampling rate r to compute a∗ = [a∗1, .., a

∗
Q] in Proposition 3.3 efficiently, we use r = .5 for

SVSS-Ws. For the minimal spectral points, we set mq ≥ max{ M
10Q , 1}.

Ablation Study in Section 5.2: For all inference methods, we use the Adam optimizer with lr = .005. We run 1000 and
1200 iterations for training the Parkinsons and the Bike dataset, respectively. For the sampling rate, we use the r = .05. For
the minimal spectral points, we set mq ≥ max{ M

10Q , 1}.

UCI Regression Experiment in Section 5.3: For all inference methods, we use the Adam optimizer with lr ∈ {.01, .005}
and report the better result in sense of RMSE. We run 1500 iterations for training. For the sampling rate, we use the r = .05.
For the minimal spectral points, we set mq ≥ max{ M

10Q , 1}.
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D. Additional Experiment Results
D.1. Validation of the Claims for Propositions 3.1 to 3.3.

Research questions. In this experiment, we verify the following claims:

• The error of the ELBO estimator log p(Y |X)− 1
J

∑J
j=1 log p̂(Y |X, s̃j) in Eq. (11) is reduced as the number of the

sampled spectral points M increases as claimed in Propositions 3.1 and 3.2.

• The weighted sampling of Proposition 3.3 reduces the error of ELBO estimator as claimed in Propositions 3.2 and 3.3.

• Using the subset of dataset X for computing a∗q in Proposition 3.3 can reduce the error of ELBO estimator stably. This
enables us to compute a∗q for the large N dataset because evaluating a∗q takes O(N2).

Experimental settings. We consider X = {0, .01, .., 1.99} as inputs (N = 200), and generate Y = f(X) + ϵ with
ϵ ∼ N(0, .052) as the sample of random function f following GP prior using SM kernel (Q = 10). The weights of
SM kernel hyperparameter are initialized in two ways: case 1) {wq}Qq=1 ∼ U(0, 20) and case 2) {wq}Qq=1 ∼ U(0, 20).
Other parameters are initialized as {µq}Qq=1 ∼ U(0, 5) and {σq}Qq=1 ∼ U(0, .05). These initializations are considered to
demonstrate that the proposed sampling can reduce the error of ELBO estimator well in both cases where the target signal Y
is modeled by the f using SM kernel having the extremely different values of the weights {wq}Qq=1 and similar values of the
weights {wq}Qq=1.

To verify the effectiveness of the weighted sampling (Ws), we consider the following naive approaches: (1) equal sampling
(Es) by aq = 1/Q and (2) naive weighted sampling (NWs) by aq = wq/

∑Q
q=1 wq. For the Ws, we consider the sampling

rate r ∈ {0.1, 0.2, 1.0} to sample the fractions of X . For example, r = 1.0 denotes full data X is used for computing a∗q .
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Figure 8. Comparison of the error of ELBO estimator log p(Y |X)− log p̂(Y |X, s̃(1)) over varying sampling rate r ∈ {0.1, 0.2, 1.0};
figure (a) denotes the X and Y sampled by the SM kernel using (1) {wq}Qq=1 ∼ U(0, 20) (red) and (2) {wq}Qq=1 ∼ U(.49, .51) (blue).
Figure (b) and (c) denote the error of corresponding ELBO estimator for {wq}Qq=1 ∼ U(0, 20) and {wq}Qq=1 ∼ U(.49, .51) respectively
(Ws: weighted sampling of Proposition 3.3, Es: equal sampling, NWs: naive weighted sampling).

Experimental results. Fig. 8 shows the sampled function from GP prior function f that uses the described two SM kernel
hyperparameter setting and its error of ELBO estimator log p(Y |X) − 1

J

∑J
j=1 log p(Y |X, s̃(j)) with J = 1 in Eq. (11).

We consider the number of total spectral points M ∈ {30, 70, 50, 100} with Q = 10, and depict the mean and two-standard
error of the ELBO estimator error for 500 experiments. Figs. 8b and 8c show the results of case 1) {wq}Qq=1 ∼ U(0, 20) and
case 2) {wq}Qq=1 ∼ U(0.49, 0.51), respectively.

In Figs. 8b and 8c, the weighted sampling (Ws) obtains the smaller error of ELBO estimator than Es and NWs over
M ∈ {30, 70, 50, 100}. We obtain the following conclusion from this experiment:

• In both Figs. 8b and 8c, as the number of spectral points M increases, the ELBO estimator error for Ws and Es is
reduced, which is consistent with what Propositions 3.1 and 3.2 imply.

• In Figs. 8b and 8c, obtaining the smaller error by Ws, compared to Es, implies that the weighted sampling of
Proposition 3.3, that is designed to reduce the approximation gap of the ELBO estimator L̂J based on Proposition 3.2,
enables the ELBO estimator L̂J to be tight as desired.

• In Figs. 8b and 8c, Ws obtains the similar level of the ELBO estimator error in regardless of the sampling rate
r ∈ {0.1, 0.2, 1.0}, which implies the weighted sampling is quite stable.



Efficient Approximate Inference for Stationary Kernel on Frequency Domain

• In Fig. 8c, the effectiveness of employing the other parameters {µ2
q, σ

2
q}

Q
q=1 and dataset X for the weighed sampling of

Proposition 3.3 is revealed because the dataset in Fig. 8c is generated by the weight {wq}Qq=1 ∼ U(.49, .51).

D.2. Additional Results of Section 5.1

Additional results: Effect of weighted sampling. We report the additional result for the experiment as shown in
Section 5.1. Figs. 9a and 9b denote the result of the weighted sampling with M = 7× 4 and M = 7× 12, respectively.
Fig. 9c denotes the true log marginal likelihood log p(Y |X) and its estimator log p(Y |X, s̃) for M = 7×4 and M = 7×12.
We can confirm additionally that as the the sampled spectral points M increases, the estimator log p(Y |X, s̃) becomes closer
to the log p(Y |X). log p(Y |X, s̃) of the weighted sampling (Ws) is still closer to true log p(Y |X) compared to thaf of the
equal sampling (Es).
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Figure 9. Extension results of Fig. 3; Figs. 9a and 9b denote the result of the weighted sampling with M = 7 × 4 and M = 7 × 12,
respectively. Fig. 9c denotes the true log marginal likelihood log p(Y |X) and its estimator log p(Y |X, s̃).

Additional results: Effect of weighted sampling on training by SVSS. Since 10 experiment result of SVSS-Ws and
SVSS reported in Table 1, seems somewhat volatile because of the model complexity (Q = 7) and its parameter initialization
affected by random seeds, we raise the model complexity of SM kernel Q = 10 from Q = 7, and conduct the experiment
under the same setting except model complexity Q = 10. Table 3 shows that the result of SVSS-Ws and SVSS becomes
stable for 10 experiment result. The training by SVSS-Ws results in more accurate prediction than that of SVSS.

Table 3. Comparison of Prediction performance.
RMSE MNLL RMSE (Top 1-5) MNLL (Top 1-5)

Q = 10

Baseline (MLE-2) 29.61± 0.60 4.79± 0.03 28.44± 1.78 4.78± 0.12

M = 40 (Q = 10,m = 4)

SVSS 50.56± 9.75 5.08± 0.10 35.25± 2.06 4.92± 0.02

SVSS-Ws 44.58± 9.86 5.04± 0.09 29.64± 2.17 4.90± 0.02

M = 120 (Q = 10,m = 12)

SVSS 32.62± 1.20 4.77± 0.03 30.63± 1.41 4.72± 0.02

SVSS-Ws 33.56± 1.34 4.76± 0.03 30.76± 0.50 4.69± 0.01
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Additional results: Other Dataset for Section 5.1. We train the SM kernel hyperparameters (Q = 10) with CO2 dataset
used for SM kernel work (Wilson & Adams, 2013) under the same experiment setting in Section 5.1 except model complexity
Q = 10.

Figs. 10a and 10b denote the varying parameters of SM kernel (Q = 10) ordained by baseline training method (MLE-Type
2). Figs. 10c and 10d denote the optimal allocation by the weighted sampling for M = 10 × 4 and M = 10 × 12,
respectively. Fig. 10e denotes the true log marginal likelihood log p(Y |X) and its estimator log p(Y |X, s̃) for M = 10× 4
and M = 10 × 12. We can see that weighted sampling of Proposition 3.3 reduces the error of log p(Y |X, s̃) as claimed
through Propositions 3.2 and 3.3.
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Figure 10. Effect of the weighted sampling on log p(Y |X; s̃) on CO2 dataset; Figs. 10a and 10b denote the result of the weighted sampling
with M ∈ {10× 4, 10× 12}, respectively. Figs. 10c and 10d show the optimal allocation of spectral points with M ∈ {10× 4, 10× 12}
during training, respectively. Fig. 10e denotes the true log marginal likelihood log p(Y |X) and its estimator log p(Y |X, s̃).

Appendix D.2 reports the corresponding prediction results on CO2 dataset, obtained by SVSS and SVSS-Ws.

Table 4. Comparison of Prediction performance.
RMSE MNLL RMSE (Top 1-5) MNLL (Top 1-5)

Q = 10

Baseline (MLE-2) 1.24± 0.07 1.64± 0.03 1.11± 0.01 1.58± 0.01

M = 40 (Q = 10,m = 4)

SVSS 5.65± 1.21 2.95± 0.10 3.22± 0.42 2.78± 0.10

SVSS-Ws 4.34± 0.61 2.86± 0.07 2.62± 0.28 2.81± 0.13
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Additional prediction results: Effect of weighted sampling on training by SVSS. We report the additional results
described in Section 5.1. Figs. 11 and 12 show the top 1-3 prediction results and its spectral densities of the SVSS-Ws
and SVSS (without weighted sampling), respectively; we pick the top 3 estimated parameters that have led the most
accurate prediction (extrapolation) out of 10 experiments. Upon the closer analysis of experimental results with the accurate
predictions (top 3 estimated parameters), we found that the spectral densities composed of the estimated parameters were in
good agreement with the empirical power spectral density constructed directly from the data. In particular, the constructed
spectral densities tend to precisely match the spectral modes having the high-energies (low frequency area) as shown in
Figs. 11d to 11f and Figure Figs. 12d to 12f. Thus, the results of sixth-parameters described in Figs. 4c and 4d, where SVSS
misses the third spectral mode, explains why the weighted sampling could improve the SVSS.
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Figure 11. Predictive performance of SVSS-Ws with the chosen parameters. Figs. 11a to 11c describe the extrapolation results with
the top 3 estimated parameters out of 10 experiments, top-1: (rmse : 25.74,mnll : 4.92), top-2: (rmse : 27.30,mnll : 4.89), top-3:
(rmse : 28.58,mnll : 4.85). Figs. 11d to 11f denote the corresponding spectral densities of SVSS-Ws. Additionally, we depict the
empirical power spectral density and the spectral density using the best parameter obtained by Baseline learning methods (MLE-Type2).
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Figure 12. Predictive performance of SVSS with the chosen parameters. Figs. 12a to 12c describe the extrapolation results with the
top 3 estimated parameters out of 10 experiments, top-1: (rmse : 28.06,mnll : 4.82), top-2: (rmse : 33.90,mnll : 4.90), top-3:
(rmse : 38.87,mnll : 4.91). Figs. 12d to 12f denote the corresponding spectral densities of SVSS. We depict the same empirical power
spectral density and the spectral density as shown in Fig. 11 for comparison.
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D.3. Additional Results of Section 5.2

Bike (N=17379, D=17) dataset. We conduct the ablation study to investigate how the inference procedure of SVSS
can be improved. We change the number of M spectral points to investigate how M affects the inference procedure. We use
the Bike (N=17379, D=17) dataset. For the weighted sampling, we randomly select the 5 percent of X = {xn}Nn=1 every
iteration, i.e. r = .05, to compute a∗q of Proposition 3.3 scalably. For the experiment procedure to report the statics results,
we follow the same procedure as described in Section 5.2.
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Figure 13. Comparison of training progress over varying M spectral points and Q ∈ {6, 10}.
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(a) prediction by approximate K̂SM (Q = 6)
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(b) prediction by exact KSM (Q = 6)
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(c) prediction by approximate K̂SM (Q = 10)
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(d) prediction by exact KSM (Q = 10)

Figure 14. Comparison of prediction over varying M spectral points and fixed Q ∈ {6, 10}.

Experimental results. Fig. 13 shows the incremental improvements by RP tricks, RBF spectral density prior, weighted
sampling of Proposition 3.3, and the natural gradient of Proposition 3.4 as described in Section 5.2.
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Fig. 14 shows that as M increases, SVSS-Ws and SVSS-WsNg lead the trained model to have the lower test RMSE and
MNLL compared to the SVSS and SVSS-Ng, respectively.

Parkinsons (N=5875, D=20) dataset. We conduct the similar experiment with Parkinsons (N=5875, D=20) dataset.
For the efficient computation of the weighted sampling on large-scale dataset, we use r = .05.
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Figure 15. Comparison of training progress over varying M spectral points and Q ∈ {4, 8}.

12 20 40 60 80 100 120 160
# spectral points (M=Q x m, Q=4)

1.0

1.5

2.0

2.5

3.0

3.5

te
st

 r
m

se

1e 1

12 20 40 60 80 100 120 160
# spectral points (M=Q x m, Q=4)

1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

te
st

 m
nl

l

SS SS+RP SVSS SVSS Ng SVSS Ws SVSS WsNg

(a) prediction by approximate K̂SM (M = Q× 4)
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(b) prediction by exact KSM (M = Q× 4)
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(c) prediction by approximate K̂SM (M = Q× 8)
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(d) prediction by exact KSM (M = Q× 8)

Figure 16. Comparison of prediction over varying M spectral points and fixed Q ∈ {4, 8}.

Experimental results. Figs. 15 and 16 show the similar tendency described as shown in Figs. 13 and 14, respectively.
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D.4. Additional Results of Section 5.3

Experimental settings. For the large-scale UCI Dataset Regression Task, we conduct 5 experiments, and for each
experiment, randomly select the training, validation, and test sets with a ratio of 8:1:1 using a different random seed. We
pick the best kernel parameters that have the lowest validation RMSE obtained by the prediction using the approximate
kernel K̂SM , and use the chosen parameters to predict the test set with the exact kernel KSM . We set Q = 4 and Q = 6
(data sets denoted by asterisk *) for SM kernel. For the SVSS-Ws and SVSS-WsNg, we use the sampling rate r = .05 for
the weighted sampling. For the VFE, we use 2M inducing variables to use the same size of Gram matrix with SVSS.
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Figure 17. Test RMSE vs Training time taken for obtaining the estimated parameters on validation set (within 1500 iterations) ; for the
datasets denoted by asterisk *, we equally divide 5 partitions of the dataset and obtain the averaged result as the regression task done in
(Wilson et al., 2016) due to the memory issue of VFE.
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Figure 18. Test MNLL vs Training time taken for obtaining the estimated parameters on validation set (within 1500 iterations) ; these
results are obtained from the same experiment as shown in Fig. 17.

Experimental results. Fig. 17 compares the trade-off relationships between the test RMSE and the training time for
different M spectral points. For the datasets on the first rows (skillcraft, sml, parkinsons, and kin8nm), Q = 4 and
M ∈ {40, 80, 100, 200, 400} are used. For the second rows (pol, elevators, bike, and keggdirected), Q = 6 and M ∈
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(c) keggd.∗(N=48827, D=22)

Figure 19. Single iteration time (second) for training over M spectral points; we report the single iteration time measured for the
experiments as shown in Figs. 17 and 18.

{60, 120, 150, 300, 600} are used. In each figure, the y-axis represents the averaged mean of test RMSE, and the x-axis
represents the averaged training time taken for obtaining the best parameters on validation set within 1500 iterations. These
statistics, marked with a point in each figure, are computed using 5 repeated experiments for all the models. In addition,
each point is also marked with the magnitude of spectral points (the smallest M : 1, the largest M : 5). Fig. 18 compares the
trade-off between the test MNLL and the training time obtained from the same experiments as shown in Fig. 17, where
y-axis represents the averaged mean of test MNLL.

Figs. 17 and 18 show that SVSS and its variants require an order of magnitude smaller training time to achieve a similar level
of the prediction performance to that of the VFE (SM) for the most of the datasets. Note that training time of SVSS-WsNg
is generally smaller than that of SVSS and SVSS-Ws due to the fast convergence of parameter inference by the natural
gradient.

Fig. 19 compares the single iteration time (seconds) for the experiment as shown in Fig. 18. Generally, SVSS and its variants
take less single iteration time compared to that of VFE (SM).

Tables 5 and 6 report the mean and one standard of the RMSE and MNLL for the prediction on the test set, respectively;
We report the fractions of the results for Q=4,M ∈ {100, 400} (wine, skillcraft, sml, parkinsons, and kin8nm) and
Q=6,M ∈ {150, 600} (pol, elevators, bike, and keggdirected), to present the specific statistics. In these tables, SVSS
denotes the prediction using K̂SM with the parameters estimated by SVSS. The Exact, Exact-W, Exact-WN denote the
prediction using the exact KSM with the parameters estimated by SVSS, SVSS-Ws, and SVSS-WsNg, respectively.

We confirm the following results:

• Comparison between SVSS and Exact, Exact-W, and Exact-WN shows that the prediction using KSM with the parameters
{ŵq, µ̂q, σ̂

2
q}

Q
q=1 and σ̂2

ϵ estimated by SVSS and its variants have led to more accurate prediction compared to the
prediction using the approximate kernel K̂SM .

• Comparison between VFE (SM) and Exact, Exact-W, and Exact-WN shows that the parameters estimated by SVSS and
its variants have led to the similar level of test RMSE and the slightly degraded test MNLL compared to VFE (SM) for
Q = 4, M ∈ {100, 400} and Q = 6, M ∈ {150, 600}, while they take much less training time as shown in Figs. 17
and 18.

• Comparison between Exact-W and Exact-WN shows that the parameters estimated by SVSS-WsNg have led the slightly
degraded RMSE and MNLL compared to those of SVSS-Ws although SVSS-WsNg takes less training time due to the fast
convergence by natural gradient as shown in Figs. 17 and 18. This should be more concerned so that the SVSS replaces
the VFE by employing the advantage of the SVSS that it takes less training time compared to VFE generally.
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Table 5. Test RMSE of UCI Datasets regression task
Test RMSE

Dataset N D VFE (RBF) VFE (SM) SS VSS SVSS Exact Exact-W Exact-WN

M=100 (Q=4,m=25)
wine 1599 11 0.460± .038 0.435± .032 0.856± .095 0.644± .024 0.459± .023 0.431± .017 0.423± .018 0.423± .017

skillcraft 3338 19 0.637± .014 0.653± .016 1.034± .025 0.641± .013 0.641± .014 0.662± .013 0.670± .015 0.663± .012

sml 4137 26 0.042± .002 0.043± .002 0.741± .014 0.189± .002 0.076± .003 0.041± .002 0.041± .003 0.050± .002

parkinsons 5875 20 0.041± .001 0.041± .001 0.172± .013 0.312± .004 0.085± .001 0.044± .003 0.045± .003 0.069± .002

kin8nm 8192 8 0.304± .004 0.260± .006 0.320± .022 0.836± .001 0.294± .006 0.259± .004 0.262± .005 0.258± .004

M=400 (Q=4,m=100)
wine 1599 11 0.460± .038 0.447± .032 1.280± .095 0.663± .024 0.465± .038 0.464± .042 0.447± .029 0.464± .018

skillcraft 3338 19 0.638± .014 0.666± .015 1.202± .016 0.645± .016 0.689± .015 0.714± .013 0.703± .014 0.738± .029

sml 4137 26 0.028± .001 0.026± .001 0.682± .027 0.189± .002 0.033± .002 0.027± .003 0.026± .002 0.031± .002

parkinsons 5875 20 0.023± .002 0.022± .001 0.157± .049 0.329± .010 0.037± .003 0.028± .004 0.028± .004 0.035± .003

kin8nm 8192 8 0.270± .002 0.247± .003 0.266± .006 0.832± .012 0.258± .004 0.249± .004 0.249± .004 0.251± .004

M=150 (Q=6,m=25)
pol∗ 15000 26 0.154± .003 0.124± .003 0.764± .013 0.729± .003 0.175± .001 0.131± .002 0.124± .002 0.153± .002

elevator∗ 16599 18 0.384± .002 0.361± .001 0.677± .042 0.523± .006 0.383± .003 0.373± .003 0.374± .002 0.372± .001

bike∗ 17379 17 0.042± .021 0.027± .037 0.270± .064 0.544± .060 0.087± .101 0.053± .002 0.039± .002 0.059± .002

keggd∗ 48827 22 0.087± .002 0.091± .002 0.287± .024 0.260± .002 0.090± .003 0.087± .002 0.087± .002 0.087± .002

M=600 (Q=6,m=100)
pol∗ 15000 26 0.142± .002 0.115± .003 0.809± .004 0.732± .003 0.136± .002 0.124± .002 0.118± .002 0.128± .003

elevator∗ 16599 18 0.379± .003 0.363± .004 1.076± .065 0.516± .000 0.382± .003 0.375± .004 0.375± .004 0.382± .004

bike∗ 17379 17 0.031± .002 0.017± .002 0.339± .041 0.525± .008 0.066± .006 0.036± .003 0.039± .003 0.037± .002

keggd∗ 48827 22 0.086± .002 0.087± .002 0.169± .008 0.276± .002 0.087± .003 0.085± .002 0.085± .002 0.087± .002

Table 6. Test MNLL of UCI Datasets regression task
Test MNLL

Dataset N D VFE (RBF) VFE (SM) SS VSS SVSS Exact Exact-W Exact-WN

M=100 (Q=4,m=25)
wine 1599 11 0.720± .089 0.637± .069 4.572± .833 0.990± .044 0.951± .079 0.759± .052 0.733± .056 0.787± .069

skillcraft 3338 19 1.006± .019 1.013± .019 9.992± .785 0.986± .026 2.589± .129 2.307± .097 2.402± .115 2.377± .080

sml 4137 26 -1.716± .029 -1.713± .040 3.615± .149 -0.240± .009 -1.158± .035 -1.422± .011 -1.423± .025 -1.172± .027

parkinsons 5875 20 -1.755± .025 -1.760± .021 -0.347± .076 0.258± .012 -1.031± .012 -1.285± .013 -1.297± .014 -0.850± .009

kin8nm 8192 8 0.239± .012 0.073± .020 0.347± .112 1.653± .231 0.214± .025 0.064± .015 0.078± .017 0.060± .013

M=400 (Q=4,m=100)
wine 1599 11 0.724± .057 0.734± .049 79.80± 61.93 1.064± .025 0.729± .045 0.609± .037 0.699± .071 0.724± .065

skillcraft 3338 19 0.970± .027 1.029± .026 14.41± .549 1.095± .087 2.444± .101 1.741± .018 1.651± .053 1.745± .022

sml 4137 26 -2.117± .128 -2.174± .069 2.320± .219 -0.24± .010 -2.103± .041 -2.257± .019 -2.261± .021 -2.146± .019

parkinsons 5875 20 -2.330± .054 -2.348± .043 -0.606± .330 0.338± .045 -1.889± .107 -2.128± .033 -2.120± .054 -1.824± .007

kin8nm 8192 8 0.120± .012 0.022± .021 0.092± .014 1.358± .136 0.059± .014 0.025± .010 0.027± .009 0.032± .011

M=150 (Q=6,m=25)
pol∗ 15000 26 -0.383± .013 -0.627± .024 3.622± .142 1.164± .021 -0.344± .007 -0.481± .005 -0.532± .004 -0.261± .008

elevator∗ 16599 18 0.471± .007 0.406± .002 3.109± .043 0.820± .020 0.648± .018 0.584± .018 0.590± .018 0.571± .010

bike∗ 17379 17 -1.685± .070 -2.012± .179 0.633± .040 1.014± .021 -1.009± .023 -1.249± .013 -1.547± .023 -1.235± .021

keggd∗ 48827 22 -1.010± .022 -0.838± .031 0.239± .122 0.070± .005 -1.006± .023 -1.023± .022 -1.027± .023 -1.029± .023

M=600 (Q=6,m=100)
pol∗ 15000 26 -0.418± .021 -0.555± .033 2.486± .010 1.122± .007 -0.662± .017 -0.729± .015 -0.771± .014 -0.656± .014

elevator∗ 16599 18 0.451± .021 0.411± .055 1.397± .151 0.833± .026 0.612± .034 0.564± .015 0.564± .016 0.591± .017

bike∗ 17379 17 −1.836± .085 −2.472± .123 0.414± .203 0.957± .015 -1.505± .074 -1.679± .058 -1.792± .053 -1.710± .024

keggd∗ 48827 22 -1.030± .023 -1.018± .024 -0.572± .057 0.213± .035 -1.033± .029 -1.037± .029 -1.038± .029 -1.035± .029
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Performance difference between VSS and SVSS. In this experiment, we observe that VSS often yields significantly
inferior prediction results compared to SVSS as shown in Figs. 17 and 18 and Tables 5 and 6. For these results, we guess
the reason that since VSS employs the much large number of trainable parameters as described in Table 2, the training
performance of VSS could be more sensitive to those initial parameters, which could result in inferior prediction results.
Therefore, we check this claim by conducting the regression task on the Gas dataset in UCI benchmark dataset. We compare
the VSS, SVSS, SVSS-Ws (using the weighted sampling), and SVSS-WsNg (using both the weighted sampling and the
approximate natural gradient).

Fig. 20 shows the training ELBO (left) and its RMSE on validation set (right) for 5 different random seeds. In left figure,
we see that all inference methods shows consistent training ELBO progress for 5 experiments; SVSS, SVSS-Ws, and
SVSS-WsNg obtain higher ELBO than VSS as described in the lower bound part of Section 4. In the right figure, VSS shows
the volatile prediction progress. Especially, out of the 5 experiments, VSS shows the similar validation RMSE progress for 2
experiments, and totally different progress for the left 3 experiments; note that the results of the RMSE at 0-th iteration are
inconsistent for 5 experiments. On the other hand, SVSS, SVSS-Ws, and SVSS-WsNg show the consistent initial RMSE at
0-th iteration for 5 experiments, and leads the stable progress of RMSE on validation set. We believe that this explains why
SVSS and its variants results in superior prediction results than VSS.
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Figure 20. Comparison between VSS and SVSS on Gas (N = 2568, D = 128)
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E. Proofs
E.1. Proof for Proposition 3.1

To prove Proposition 3.1, we introduce Lemma E.1 for the Matrix Bernstein inequality and Lemma E.2 for the unbiasedness
of the random feature map. Using Lemmas E.1 and E.2, we prove Proposition 3.1.
Lemma E.1. Let {Xt}Tt=1 ∈ RN×N be a finite sequence of independent, random, Hermitian matrix. For all t, we assume

that E[Xt] = 0 and ∥Xt∥2 ≤ L where ∥ · ∥2 is spectral norm. We define Y =
∑T

t=1 Xt and v(Y ) =
∥∥∥∑T

t=1 E
[
X2

t

]∥∥∥
2
.

Then, we obtain the Matrix Bernstein bound of E[∥Y ∥2] as

E[∥Y ∥2] ≤
√

2v(Y ) log(N) +
1

3
L logN

Similarly, for ϵ ≥ 0, we obtain the Matrix Bernstein bound of Pr
(
∥Y ∥2 ≥ ϵ

)
as

Pr
(
∥Y ∥2 ≥ ϵ

)
≤ N exp

( −ϵ2/2

v(Y ) + Lϵ/3

)
Proof. See the proof of Theorem 6.6.1 in (Tropp et al., 2015).

Lemma E.2. Let s̃ = ∪Q
q=1{sq,1, .., sq,mq

} be the spectral points and us assume the variational distribution q(s̃) =∏Q
q=1

∏mq

i=1 N(sq,i;µq, σ
2
q ) where mq is the number of spectral points drawn from the q-th spectral density component. If

we independently sample the spectral points sq,i from N(sq,i;µq, σ
2
q ) by the reparameterization trick as sq,i = µq + σq ◦ ϵi

and ϵi ∼ N(ϵ; 0, I), we can define the random feature map ϕSM(x; s̃) as

ϕSM(x; s̃) =
[√

w1ϕ (x, {s1,i}m1
i=1) , ...,

√
wQϕ

(
x, {sQ,i}

mQ

i=1

) ]
∈ R1×2M ,

where M =
∑Q

q=1 mq is the total number of spectral points and ϕ
(
x, {sq,i}

mq

i=1

)
is the feature map of q-component of

mixture distribution defined as

ϕ
(
x, {sq,i}

mq

i=1

)
=

1
√
mq

[cos (2πsTq,1x), sin (2πs
T
q,1x), .., cos (2πs

T
q,mq

x), sin (2πsTq,mq
x)] ∈ R1×2mq

Then, for the inputs x1, x2 ∈ RD, the ϕSM(x1; s̃)ϕSM(x2; s̃)
T is the unbiased estimator kSM (x1 −x2) with the parameters

{wq, µq, σ
2
q}

Q
q=1 , i.e., Es̃∼q(s̃)[ϕSM(x1; s̃)ϕSM(x2; s̃)

T ] = kSM (x1 − x2)

Proof. To show that ϕSM(x1; s̃)ϕSM(x2; s̃)
T is the unbiased estimator of kSM (x1 − x2), we first compute the

ϕSM(x1; s̃)ϕSM(x2; s̃)
T as

ϕSM(x1; s̃)ϕSM(x2; s̃)
T =

Q∑
q=1

wq

mq

mq∑
i=1

cos
(
2πsTq,i(x1 − x2)

)
Then, we show that Es̃∼q(s̃)[ϕSM(x1; s̃)ϕSM(x2; s̃)

T ] turns out to be kSM (x1 − x2) as

Es̃∼q(s̃)

[
Q∑

q=1

wq

mq

mq∑
i=1

cos
(
2πsTq,i(x1 − x2)

)]
=

Q∑
q=1

wqEsq,1∼N(sq,1;µq,σ2
q)

[
cos
(
2πsTq,1(x1 − x2)

)]
=

Q∑
q=1

wqEsq,1

[
ei2πs

T
q,1(x1−x2) + e−i2πsTq,1(x1−x2)

2

]

=

Q∑
q=1

wqkq(x1 − x2) = kSM (x1 − x2)

where kq(x1 − x2) = Esq,1∼N(sq,1;µq,σ2
q)
[ei2πs

T
q,1(x1−x2)] is the q-th component of SM kernel. In the first equality, we use

linearity of expectation and {sq,i}
mq

i=1, that is independently sampled from N(sq,i;µq, σ
2
q ). In the second equality, we use

Euler’s identity. In the second equality, we use the symmetric property of stationary kernel.
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Proposition E.3. Given X = {xn}Nn=1, let us define the random feature matrix ΦSM(X) = [ϕSM(x1; s̃); ...;ϕSM(xN ; s̃)] ∈
RN×2M . Additionally, let us denote W0 =

(∑Q
q=1 w

2
q

)1/2
and M = Qm1 under the assumption of m1 = .. = mQ. Then,

for a small ϵ > 0, the error bound of K̂SM(X,X) := ΦSM(X)ΦSM(X)T using the matrix spectral norm ∥ · ∥2 is obtained
as

Pr
(∥∥K̂SM(X,X)−KSM(X,X)

∥∥
2
≥ ϵ
)
≤ N exp

( −3ϵ2M

NW0Q
(
6∥KSM(X,X)∥2 + 3NW0

√
Q+ 8ϵ

))

Proof. We employ Lemma E.1 of the matrix Bernstein bound inequality to prove our statement. We basically follow the
proof structure of theorem 3 in (Lopez-Paz et al., 2014).

We first define the error matrix E as

E = ΦSM(X)ΦSM(X)T −KSM(X,X)

and then show that E can be represented as
∑Q

q=1

∑mq

i=1 E
q
i such that Eq

i satisfies the condition of Xt in Lemma 1. For the
spectral point sq,i ∼ N(sq,i;µq, σ

2
q ), we define the Zi

q as

Zi
q =

[
exp (i2πsTq,ix1); ...; exp (i2πs

T
q,ixN )

]
∈ RN×1

and we show ΦSM(X)ΦSM(X)T =
∑Q

q=1

∑mq

i=1
wq

mq
Re
(
Zi
qZ

i
q

T
)

as

[ΦSM(X)ΦSM(X)T ]n,m =

Q∑
q=1

wq

mq

mq∑
i=1

cos
(
2πsTq,i(xn − xm)

)
=

Q∑
q=1

mq∑
i=1

wq

mq
Re
(
exp (i2πsTq,i(xn − xm))

)
=

Q∑
q=1

mq∑
i=1

wq

mq
Re

([
Zi
qZ

i
q

T
]
n,m

)

Then, using KSM (X,X) =
∑Q

q=1

∑mq

i=1
wq

mq
Esq,i

[
Re
(
Zi
qZ

i
q

T
)]

by the previous factorization and Lemma 2, we can

factorize the error matrix E =
∑Q

q=1

∑mq

i=1 E
q
i where

Eq
i =

wq

mq

(
Re
(
Zi
qZ

i
q

T
)
− Esq,i

[
Re
(
Zi
qZ

i
q

T
)])

We can check that Eq
i ∈ RN×N satisfy the condition of Lemma 1 because each Eq

i is independent random and symmetric
matrix satisfying Esq,i [E

q
i ] = 0.

Next, for the application of Lemma 1, we will find upper bound of ∥Eq
i ∥2 and

∥∥∥∑Q
q=1

∑mq

i=1 Esq,i [(E
q
i )

2
]
∥∥∥
2
. To this end,

we define the following notation and compute the necessary terms as

ciq = [cos (2πsTq,ix1); ..; cos (2πs
T
q,ixN )] ∈ RN×1,

siq = [sin (2πsTq,ix1); ..; sin (2πs
T
q,ixN )] ∈ RN×1,

Re
(
Zi
qZ

i
q
T
)
= ciqc

i
q
T + siqs

i
q
T .
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Then, we first bound ∥Eq
i ∥2 as

∥Eq
i ∥2 =

wq

mq

∥∥∥Re(Zi
qZ

i
q

T
)
− Esq,i

[
Re
(
Zi
qZ

i
q

T
)]∥∥∥

2

≤ wq

mq

(∥∥∥Re(Zi
qZ

i
q

T
)∥∥∥

2
+
∥∥∥Esq,i

[
Re
(
Zi
qZ

i
q

T
)]∥∥∥

2

)
≤ wq

mq

(∥∥∥Re(Zi
qZ

i
q

T
)∥∥∥

2
+ ∥ciq∥

2
+ ∥siq∥

2
)

≤ W0

m0

(
2∥ciq∥

2

2
+ 2∥siq∥

2

2

)
≤ W0

m0
4N · · · (∗)

In the second and third inequality, we use the triangle inequality and Jensen’s inequality. In addition, we use∥∥∥Re(Zi
qZ

i
q

T
)∥∥∥

2
= sup|v|22=1 v

T
(
ciqc

i
q
T + siqs

i
q
T
)
v = ∥ciq∥

2

2
+ ∥siq∥

2

2
≤ 2N for the fourth inequality.

For another bound of
∥∥∥∑Q

q=1

∑mq

i=1 Esq,i [(E
q
i )

2
]
∥∥∥
2
, we bound Esq,i [(E

q
i )

2
] in the sense of the matrix inequality ≼ where

A ≼ B implies B −A is a Positive Semi definite (PSD) matrix.

m2
q

w2
q

Esq,i [(E
q
i )

2] = Esq,i

[
Re
(
Zi
qZ

i
q
T
)2 ]

−
(
Esq,i

[
Re
(
Zi
qZ

i
q
T
)])

2

≼ Esq,i

[
Re
(
Zi
qZ

i
q
T
)

2
]

= Esq,i

[
(ciq

T ciq)c
i
qc

i
q
T + (siq

T siq)s
i
qs

i
q
T + (siq

T ciq)
(
siqc

i
q
T + ciqs

i
q
T
) ]

≼ NEsq,i

[
ciqc

i
q
T + siqs

i
q
T
]
+ Esq,i

[
(siq

T ciq)
(
siqc

i
q
T + ciqs

i
q
T
) ]

= NEsq,i

[
Re
(
Zi
qZ

i
q
T
) ]

+ Esq,i

[
(siq

T ciq)
(
siqc

i
q
T + ciqs

i
q
T
) ]

The first inequality holds because
(
Esq,i

[
Re
(
Zi
qZ

i
q
T
)])

2 is PSD matrix. Second inequality is explained using ciq
T ciq +

siq
T siq = N ,

NEsq,i

[
ciqc

i
q
T + siqs

i
q
T
]
− Esq,i

[
(ciq

T ciq)c
i
qc

i
q
T + (siq

T siq)s
i
qs

i
q
T
]
= Esq,i

[
(siq

T siq)c
i
qc

i
q
T + (ciq

T ciq)s
i
qs

i
q
T
]
,

which is PSD matrix because, for any a ∈ RN ,

aTEsq,i

[
(siq

T siq)c
i
qc

i
q
T + (ciq

T ciq)s
i
qs

i
q
T
]
a

=

N∑
m=1

N∑
n=1

amanEsq,i

[
(siq

T siq)cos(2πs
T
q,ixm)cos(2πsTq,ixn) + (ciq

T ciq)sin(2πs
T
q,ixm)sin(2πsTq,ixn)

]
= Esq,i

[
(siq

T siq)a
T (ciqc

i
q
T )a+ (ciq

T ciq)a
T (siqs

i
q
T )a
]
≥ 0

where (siq
T siq) ≥ 0, aT (ciqc

i
q
T )a ≥ 0, (ciq

T ciq) ≥ 0, and aT (siqs
i
q
T )a ≥ 0.
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Then, we can bound
∥∥∥∑Q

q=1

∑mq

i=1 E[(E
q
i )

2
]
∥∥∥
2

with the defined W0 =
(∑Q

q=1 w
2
q

)1/2
and m1 = .. = mQ as

∥∥∥∥∥
Q∑

q=1

mq∑
i=1

E[(Eq
i )

2]

∥∥∥∥∥
2

≤

∥∥∥∥∥
Q∑

q=1

mq∑
i=1

w2
q

m2
q

(
NEsq,i

[
Re
(
Zi
qZ

i
q
T
) ]

+ Esq,i

[
(siq

T ciq)
(
siqc

i
q
T + ciqs

i
q
T
) ])∥∥∥∥∥

2

=
W0

m1

∥∥∥∥∥
Q∑

q=1

wq

(
NEsq,i

[
Re
(
Zi
qZ

i
q
T
) ]

+ Esq,i

[
(siq

T ciq)
(
siqc

i
q
T + ciqs

i
q
T
) ])∥∥∥∥∥

2

≤ W0

m1

(
N∥KSM (X,X)∥2 +

Q∑
q=1

wq

∥∥∥Esq,i

[
(siq

T ciq)
(
siqc

i
q
T + ciqs

i
q
T
) ]∥∥∥

2

)

≤ W0

m1

(
N∥KSM (X,X)∥2 +

Q∑
q=1

wqEsq,i

[∥∥(siqT ciq) (siqciqT + ciqs
i
q
T
)∥∥

2

])

≤ W0

m1

(
N∥KSM (X,X)∥2 +

N

2

Q∑
q=1

wqEsq,i

[∥∥(siqciqT + ciqs
i
q
T
)∥∥

2

])
≤ W0N

m1

(
∥KSM (X,X)∥2 +

N

2
W0

√
Q
)

· · · (∗∗)

In the first inequality, we use that ∥A∥2 ≤ ∥B∥2 if B − A is PSD matrix and the summation of PSD matrices is PSD
matrix. In the second and third inequality, we use triangle inequality and Jensen’s inequality. In the fourth inequality, we use
|siqT ciq| ≤ N

2 . In the last inequality, we use

Esq,i

[∥∥(siqciqT + ciqs
i
q
T
)∥∥

2

]
= sup

|v|22=1

Esq,i

[
vT
(
siqc

i
q
T + ciqs

i
q
T
)
v
]

= sup
|v|22=1

Esq,i

[ N∑
n=1

N∑
m=1

vnvm sin 2πsTq,i (xn + xm)
]
≤ sup

|v|22=1

(
N∑

n=1

vn

)2

= N,

and
∑Q

q=1 wq ≤ W0

√
Q by the Cauchy–Schwarz inequality.

After applying the derived upper bounds of (∗) and (∗∗) to the L and v(Y ) in Lemma 1, we bound the probability of the
event {s̃;

∥∥ΦSM(X)ΦSM(X)T −KSM(X,X)
∥∥
2
≥ ϵ} as

Pr
(∥∥ΦSM(X)ΦSM(X)T −KSM(X,X)

∥∥
2
≥ ϵ
)
≤ N exp

( −3ϵ2M

NW0Q
(
6∥KSM(X,X)∥2 + 3NW0

√
Q+ 8ϵ

))
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E.2. Proof for Proposition 3.2

Proof for the ELBO Estimator L̂J in Eq. (10).

Let q(s̃) be the variational distribution of the spectral points defined in Eq. (7). We derive the ELBO estimator L̂j as follows:

log p(Y |X) = log

∫
p(Y |X, s̃)

p(s̃)

q(s̃)
q(s̃)ds̃

≥
∫

log
(
p(Y |X, s̃)

p(s̃)

q(s̃)

)
q(s̃)ds̃

=

∫
log p(Y |X, s̃)q(s̃)dS − (q(s̃)||p(s̃))

≈ 1

J

J∑
j=1

log p(Y |X, s̃(j))−KL(q(s̃)||p(s̃)) := L̂j

where p(Y |X, s̃(j)) = N(Y ; 0, K̂
(j)
SM(X,X)+σ2

ϵ I) is the log marginal likelihood using the approximate kernel K̂(j)
SM(X,X)

with the spectral points s̃(j) = ∪Q
q=1{s

(j)
q,1, .., s

(j)
q,mq} that are sampled from q(s̃) at j-th times. In the first inequality, we use

the Jensen inequality.

Proposition E.4. The error of ELBO estimator L̂J in Eq. (11) is bounded as

0 ≤ log p(Y |X)− L̂J ≤

(
∥Y ∥22 +Nσ2

ϵ

2σ4
ϵ

)
Eq(s̃)

[
∥KSM − K̂SM∥2

]
+KL(q(s̃)||p(s̃)).

Proof. Let us denote K̂
(j)
SM = K̂

(j)
SM(X,X) + σ2

ϵ I ∈ RN×N and KSM = KSM(X,X) + σ2
ϵ I ∈ RN×N . Then, the

approximation gap, log p(Y |X) − L̂J , between the log marginal likelihood log p(Y |X) and the ELBO estimator L̂J , is
derived as

log p(Y |X)− L̂J =
1

2J

J∑
j=1

Y T
(
K̂

(j)
SM

−1 −KSM
−1
)
Y +

1

2J

J∑
j=1

log
|K̂(j)

SM|
|KSM|

+KL(q(s̃)||p(s̃))

=
1

2J

J∑
j=1

Y T K̂
(j)
SM

−1
(
KSM − K̂

(j)
SM

)
K−1

SMY︸ ︷︷ ︸
(1) term

+
1

2J

J∑
j=1

log
|K̂(j)

SM|
|KSM|︸ ︷︷ ︸

(2) term

+KL(q(s̃)||p(s̃)).

In the second equality, we use A−1 − B−1 = A−1(B − A)B−1 where A ∈ RN×N and B ∈ RN×N are the invertible
matrix. We bound the (1) term and (2) term in the above equality.

For the (1) term, we bound it using matrix 2-norm as

Y T K̂
(j)
SM

−1(KSM − K̂
(j)
SM)K−1

SMY ≤ ∥Y T K̂
(j)
SM

−1(KSM − K̂
(j)
SM)K−1

SMY ∥2
≤ ∥Y ∥2∥K̂

(j)
SM

−1
(
KSM − K̂

(j)
SM

)
K−1

SMY ∥
2

≤ ∥Y ∥22∥K̂
(j)
SM

−1
(
KSM − K̂

(j)
SM

)
K−1

SM∥
2

≤ ∥Y ∥22∥K̂
(j)
SM

−1∥2∥KSM − K̂
(j)
SM∥2∥K

−1
SM∥2

≤
∥Y ∥22
σ4
ϵ

∥KSM − K̂
(j)
SM∥2

For the second - fourth inequalities, we employ that matrix inequality ∥AB∥2 ≤ ∥A∥2∥B∥2 for A ∈ Rm×n, B ∈ Rn×p.
For the last inequality, we employ that the last eigenvalue σN (KSM) = σN (KSM(X,X) + σ2

ϵ I) ≥ σ2
ϵ . Thus, the first

eigenvalue ∥K−1
SM∥2 = σ1(K

−1
SM) = 1

σN (KSM) ≤
1
σ2
ϵ

. Similarly, ∥K̂(j)
SM

−1∥2 ≤ 1
σ2
ϵ

.

For the (2) term, we bound it by using that the log determinant function f(A) = log |A| is a concave function for the
symmetric matrix A ∈ RN×N . Using the first-order inequality of concave function f(A), that is f(A) ≤ f(B) +
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⟨∇f(B), A−B⟩, ∇f(A) = A−1, and the matrix inner product ⟨A,B⟩ = Tr (ATB) with A,B ∈ RN×N , we obtain the
following upper bound of log |K̂(j)

SM| as

log |K̂(j)
SM| ≤ log |KSM|+Tr

(
K−1

SM(K̂
(j)
SM −KSM)

)
,

which implies the upper bound of log |K̂(j)
SM| − log |KSM| as

log |K̂(j)
SM| − log |KSM| ≤ Tr

(
K−1

SM(K̂
(j)
SM −KSM)

)
≤ Tr

(
K−1

SM

)
∥(K̂(j)

SM −KSM)∥2 ≤ N

σ2
ϵ

∥(K̂(j)
SM −KSM)∥2.

For the second inequality, we use Tr (AB) ≤ Tr (A)∥B∥2 for the P.S.D matrix A and symmetric real number matrix B that
is introduced in (Fang et al., 1994) theorem 1.

For the last inequality, we use Tr
(
K−1

SM

)
=
∑N

n=1
1

σi(KSM(X,X))+σ2
ϵ
≤ N

σ2
ϵ

where σi(KSM(X,X)) denotes i-th eigenvalue
for P.S.D matrix KSM(X,X) ∈ RN×N .

By employing the above two inequalities for (1) term and (2) term, we can obtain the upper bound of log p(Y |X)− L̂J as

log p(Y |X)− L̂J ≤ 1

2J

J∑
j=1

∥Y ∥22
σ4
ϵ

∥KSM − K̂
(j)
SM∥2︸ ︷︷ ︸

upper bound of (1) term

+
N

σ2
ϵ

∥K̂(j)
SM −KSM∥2︸ ︷︷ ︸

upper bound of (2) term

+KL(q(s̃)||p(s̃))

≤

(
∥Y ∥22 +Nσ2

ϵ

σ4
ϵ

)
1

2J

J∑
j=1

∥KSM − K̂
(j)
SM∥2 +KL(q(s̃)||p(s̃))

≤ lim sup
J−→∞

(
∥Y ∥22 +Nσ2

ϵ

σ4
ϵ

)
1

2J

J∑
j=1

∥KSM − K̂
(j)
SM∥2 +KL(q(s̃)||p(s̃))

=

(
∥Y ∥22 +Nσ2

ϵ

2σ4
ϵ

)
Eq(s̃)

[
∥KSM − K̂SM∥2

]
+KL(q(s̃)||p(s̃)),

where K̂SM = K̂SM(X,X) + σ2
ϵ I ∈ RN×N is the random kernel Gram matrix constructed by the set of spectral point s̃

sampled from q(s̃). In the first inequality, we use the derived upper bound for (1) term and (2) term. Thus, we can obtain the
result of Proposition 3.2 as

0 ≤ log p(Y |X)− L̂J ≤

(
∥Y ∥22 +Nσ2

ϵ

2σ4
ϵ

)
Eq(s̃)

[
∥KSM − K̂SM∥2

]
+KL(q(s̃)||p(s̃)).

where 0 ≤ log p(Y |X)− L̂J is obtained from that L̂J is the ELBO estimator of log p(Y |X).
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E.3. Proof for Proposition 3.3

We first explain the decomposition introduced in Eq. (13). Then, we introduce Lemma E.5 for the variance of the random
feature map described in (Sutherland & Schneider, 2015). We employ Lemma E.5 to prove Proposition 3.3. Additionally,
we prove Lemma E.7 that constraining the minimum number of the spectral points in the SVSS inference, to relax that all
M spectral points are sampled from a single component of the spectral density, reduces kernel approximation error.

Proof for the decomposition of Eq. (13).

Since K̂SM(X,X) is defined as ΦSM(X)ΦSM(X)T where s̃ = ∪Q
q=1{sq,1, .., sq,mq} is the set of the spectral points sampled

from q(S) in Eq. (7) and ΦSM(X) is the random feature matrix defined as

ΦSM(X) = [ϕSM(x1; s̃); ..;ϕSM(xN ; s̃)] ∈ RN×2M

ϕSM(x; s̃) =
[√

w1ϕ (x, {s1,i}m1
i=1) , ...,

√
wQϕ

(
x, {sQ,i}

mQ

i=1

)]
∈ R1×2M ,

ΦSM(X)ΦSM(X)T can also be decomposed as

ΦSM(X)ΦSM(X)T =

Q∑
q=1

wq

(
Φ{sq,i}

mq
i=1

(X)Φ{sq,i}
mq
i=1

(X)T
)
.

Thus, K̂SM −KSM = K̂SM(X,X)−KSM(X,X) can be decomposed as

K̂SM −KSM =

Q∑
q=1

wq

(
K̂q −Kq

)
,

where the K̂q ∈ RN×N is Φ{sq,i}
mq
i=1

(X)Φ{sq,i}
mq
i=1

(X)T and the Kq ∈ RN×N is the Gram matrix corresponding to the
q-th component spectral density of SM kernel.

Lemma E.5. Let ϕm(τ) be the unbiased estimator of the stationary kernel k(τ) obtained by random feature using m
sampled spectral points. Then, Var (ϕm(τ)) and Cov (ϕm(τ1), ϕm(τ2)) can be obtained as

Var (ϕm(τ)) =
1

2m

(
1 + k(2τ)− 2k2(τ)

)
Cov (ϕm(τ1), ϕm(τ2)) =

1

m

(
k(τ1 − τ2) + k(τ1 + τ2)

2
− k(τ1)k(τ2)

)

Proof. Let p(s) be the spectral density of the kernel k(τ) to satisfy k(τ) =
∫
s
ei2πs

T τp(s)ds by Bochner’s theorem. Using
the RFF (Rahimi & Recht, 2008), we define the unbiased estimator ϕm(τ) = 1

m

∑m
i=1 cos

(
2πsTi τ

)
with si ∼ p(S). Then,

Cov
(
ϕm(τ1), ϕm(τ2)

)
is computed as

Cov
(
ϕm(τ1), ϕm(τ2)

)
=
∑
i,j

1

m2
Cov

(
cos
(
2πsTi τ1

)
, cos

(
2πsTj τ2

) )
=
∑
i

1

m2
Cov

(
cos
(
2πsTi τ1

)
, cos

(
2πsTi τ2

) )
=

1

m
Cov

(
cos
(
2πsT1 τ1

)
, cos

(
2πsT1 τ2

) )
=

1

m

Es1

[
cos
(
2πsT1 (τ1 + τ2)

)
+ cos

(
2πsT1 (τ1 − τ2)

) ]
2

− Es1

[
cos
(
2πsT1 τ1

) ]
Es1

[
cos
(
2πsT1 τ2

) ])
=

1

m

(
k(τ1 + τ2) + k(τ1 − τ2)

2
− k(τ1)k(τ2)

)
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In the second equality, we use Cov
(
cos
(
2πsTi τ1

)
, cos

(
2πsTj τ2

) )
= 0 for i ̸= j, because the spectral points are

independently sampled. In the third equality, we use that each si for i = 1, ..,m is identically sampled from p(s). In the last
equality, we employ the Bochner’s theorem. For the variance of Var (ϕm(τ)) is obtained when τ1 = τ2.

Proposition E.6. Given inputs X={xn}Nn=1, let mq be the number of spectral points sampled from N(µq, σ
2
q ), and

M =
∑Q

q=1 mq be the total number of spectral points. Let aq=
mq

M be the ratio of spectral points. Then, the optimal
a∗1, .., a

∗
Q=argmina1,..,aQ

E[∥K̂SM −KSM∥F ] is given

a∗q =
wq

[∑N
i=1

∑
i<j gq(xi − xj)

]1/2
∑Q

q=1 wq

[∑N
i=1

∑
i<j gq(xi − xj)

]1/2
where gq(τ) = 1 + kq(2τ)− 2k2q(τ) and kq(τ)= exp

(
−2π2(τTσq)

2
)
cos
(
2πµT

q τ
)
. The integer m∗

q denotes the integer
closest to max{1,Mp∗q}.

Proof. Let us denote random spectral points s̃ = ∪Q
q=1{sq,1, .., sq,mq} and consider the variational distribution of spectral

points q(s̃) =
∏Q

q=1

∏mq

i=1 N(sq,i;µq, σ
2
q ). Our objective is to find the optimal number of spectral points {m∗

1, ..,m
∗
Q}

which minimizes the error E[∥K̂SM −KSM

∥∥2
F
] by solving the following optimization problem:

min
m1,..,mQ

N∑
i,j=1

Var (ϕSM (xi − xj)) s.t

Q∑
q=1

mq = M ∀mq ∈ Z+

where ϕSM (τp) =
∑Q

q=1
wq

mq

∑mq

i=1 cos
(
2πsTq,iτp

)
. Since the Jensen inequality implies that

0 ≤ E[∥K̂SM −KSM∥F ]
2 ≤ E

[
∥K̂SM −KSM∥

2

F

]
,

minimizing E[∥K̂SM −KSM∥
2

F ] leads to minimizing E[∥K̂SM −KSM∥F ]. The E[∥K̂SM −KSM

∥∥2
F
] is analytically com-

puted as
∑N

n,m=1 Var (ϕSM (xi − xj)) because of ∥K̂SM −KSM

∥∥2
F

=
∑N

i,j=1 (ϕSM (xi − xj)− kSM(xi − xj))
2 and

E [ϕSM (xi − xj)] = kSM(xi − xj).

Since this optimization is somewhat tricky integer programming problem, we take relaxation by transforming variable as
aq =

mq

M . Then, the above optimization problem is modified as

min
a1,..,aQ

N∑
i,j=1

Var (ϕSM (xi − xj)) s.t

Q∑
q=1

aq = 1 ∀aq ∈ [0, 1]

The transformed optimization is a convex optimization problem, and the optimal solution can be obtained by applying the
Lagrangian method with the KKT condition. Let L(a1, .., aQ, λ) be the Lagrangian operator with the multiplier λ.

L(a1, .., aQ, λ) =
N∑

i,j=1

Var (ϕSM (xi − xj)) + λ

(
Q∑

q=1

aq − 1

)

If we represent ϕSM (τp)=
∑Q

q=1 wqϕ
q
mq

(τp) where ϕq
mq

(τp)=
1

mq

∑mq

i=1 cos
(
2πsTq,iτp

)
, then

∑N
i,j=1 Var (ϕSM (xi − xj))
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can be computed as

N∑
i,j=1

Var (ϕSM (xi − xj)) =

N∑
i,j=1

Var

(
Q∑

q=1

wqϕ
q
mq

(xi − xj)

)

=

N∑
i,j=1

Q∑
q=1

w2
qVar

(
ϕq
mq

(xi − xj)
)

=

Q∑
q=1

w2
q

2Mpq

 N∑
i,j=1

gq(xi − xj)


where Var(ϕq

mq
(τ)) = 1

2mq
gq(τ), gq(τ) = 1 + kq(2τ) − 2k2q(τ), and kq(τ) is the q-th component of SM kernel, i.e.,

kq(τ) = exp
(
−2π2(τTσq)

2
)
cos
(
2πµT

q τ
)

by Lemma E.7 and Lemma E.7. Note that
∑N

i,j=1 gq(xi − xj) is computed as

2
∑N

i=1

∑
i<j gq(xi − xj) because of gq(xi − xi) = 0 for i = 1, .., N and gq(xi − xj) = gq(xj − xi) for i ̸= j.

Based on KKT condition, solving the following conditions ∂L(a1,..,aQ,λ)
∂λ = 0 and ∂L(a1,..,aQ,λ)

∂aq
= 0 for q = 1, .., Q leads

to the optimal solution {a∗1, .., a∗Q}.

a∗q =
wq

[∑N
i=1

∑
i<j gq(xi − xj)

]1/2
∑Q

q=1 wq

[∑N
i=1

∑
i<j gq(xi − xj)

]1/2
where ∂L(a1,..,aQ,λ)

∂aq
is computed as

−w2
q

Ma2
q

∑N
i=1

∑
i<j gq(xi − xj) + λ.

Lemma E.7. Let a∗ = [a∗1, .., a
∗
Q] ∈ RQ be the optimal ratio described in Proposition 3.3 and a0 = [1/Q, .., 1/Q] ∈ RQ

be the base ratio for equal sampling. Then, the mixed ratio aα = αa∗ + (1− α)a0 with α ∈ [1/2, 1] allocates the spectral
points {mα

q }
Q
q=1 with mα

q = Maα that has the smaller kernel approximation error than m0
q = M/Q for the equal sampling.

Proof. Let us denote the approximation error
∑N

i,j=1 Var (ϕSM (xi − xj)) := V (p) with a = [a1, .., aQ] and
∑Q

q=1 aq = 1.

Then, V (p) is a convex function in a because the ∂2V
∂ai∂aj

is a P.S.D matrix because of gq(xi −xj) ≥ 0 for all q, xi, xj . Thus,
we directly induce that V (aa) ≤ αV (a∗) + (1− α)V (a0) ≤ V (a0) by V (a∗) ≤ V (a0).
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E.4. Proof for Proposition 3.4

We describe how the natural gradient update for the Gaussian density parameters is conducted in Lemmas E.8 and E.9.
Finally, we prove Proposition 3.4 by employing Lemmas E.8 and E.9.

Lemma E.8. If the probability density pθ(z) belongs the class of the exponential family distribution, pθ(z) has other
parameterization of natural parameter η and mean parameter m, i.e., pθ(z) = pη(z) = pm(z). Moreover, if pθ(z) satisfy
the minimal representation condition that η has one-to-one correspondence with m, then natural gradient ∇̃ηL(η) with to
respect to the natural parameters η, can be represented as

∇̃ηL(η) = ∇mL(m).

In the case that pθ(Z) is the Gaussian distribution N(Z; θ) with θ = {µ,Σ} that satisfies the condition of the previous
statement, pθ(Z) has the other parameterization of η = [η1, η2] and m = [m1,m2] as

η1 = Σ−1µ , η2 = −1

2
Σ−1

m1 = µ , m2 = µµT +Σ

Then, ∇mL(m) with respect to m is calculated as

∇m1
L(m) = ∇µL(θ)− 2 [∇ΣL(θ)]µ

∇m2
L(m) = ∇ΣL(θ).

Proof. See the proof of Theorem 1 in (Khan & Nielsen, 2018) and the proof of Appendix B.1 in (Khan & Lin, 2017).

Lemma E.9. Given the loss L(θ) parameterized by Gaussian density parameter θ = {µ,Σ} with pθ(Z) = N(Z; θ), the
natural gradient update for µ and Σ can be obtained as

µ(t+1) = µ(t) + βΣ(t+1)∇µL(θ)
Σ−1(t+1) = Σ−1(t) + β

(
− 2∇Σ(t)L(θ)

)
where (t) denotes the t-th iteration and β is a learning rate.

Proof. See the proof of Theorem 1 in (Khan et al., 2018).

Proposition E.10. Let µ(t)
q and σ

(t)
q be the t-th iterated parameters of N(µq, σ

2
q ) which is q-th component distribution for

q(S). The natural gradient of L̂J w.r.t µq and σq in log domain, i.e. ∇̃log µq L̂J and ∇̃log σq L̂J , can be approximated as

∇̃log µq
L̂J ≈

(
σ
(t+1)
q

µ
(t)
q

)2

◦ ∇log µq
L̂J , ∇̃log σq

L̂J ≈ 1

2
∇log σq

L̂J

under the condition
∣∣∣ (σ(t+1)

q

µ
(t)
q

)2

◦ ∇log µq
L̂J

∣∣∣ < 1 and
∣∣∣∇log σq

L̂J

∣∣∣ < 1 in element-wise sense

Proof. When applying the result of Lemma E.9 with the diagonal covariance matrix Σ = Diag(σ2
q ), we obtain the following

update rule as

µt+1 = µt + βσ2
t+1 ◦ ∇µL , σ−2

t+1 = σ−2
t + β

(
− 2∇σ2L

)
,
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where ◦ denotes the element-wise product. After we transform the results of Lemma 6 in logarithm domain, we linearly
approximate logµt+1 as

logµt+1 = log
(
µt + βσ2

t+1 ◦ ∇µL
)

= logµt + log
(
1 + βµ−1

t σ2
t+1 ◦ ∇µL

)
= logµt + log

(
1 + β

σ2
t+1

µ2
t

◦ ∇log µL
)

= logµt +

∞∑
t=1

(−1)t+1

t

(
β
σ2
t+1

µ2
t

◦ ∇log µL
)t

= logµt + β
σ2
t+1

µ2
t

◦ ∇log µL+O
((

β
σ2
t+1

µ2
t

◦ ∇log µL
)2)

≈ logµt + β
(σ2

t+1

µ2
t

◦ ∇log µL
)
.

In the third equality, we employ ∇µL = 1
µt
∇log µL obtained by chain rule. In the fourth equality, assuming the learning

rate satisfies |β| < 1, we assume
∣∣∣σ2

t+1

µ2
t
∇log µL

∣∣∣ < 1 and employ the maclaurin series of log (1 + x) =
∑∞

t=1
(−1)t+1

t xt for

x ∈ (−1, 1]. We approximate log σ−2
t+1 as

log σ−2
t+1 = log

(
σ−2
t − 2β∇σ2L

)
= log σ−2

t + log
(
1− 2βσ2

t∇σ2L
)

= log σ−2
t + log

(
1 + β(−2σ2

t )
0.5

σ2
t

∇log σL
)

= log σ−2
t +

∞∑
t=1

(−1)t+1

t

(
− β∇log σL

)t
= log σ−2

t +−β∇log σL+O
((

− β∇log σL
)
2
)

≈ log σ−2
t +−β∇log σL.

In the third equality, we use ∇σ2L = 0.5
σ2
t
∇log σL. In the fourth equality, we assume

∣∣∣∇log σL
∣∣∣ < 1 and apply the maclaurin

series of log (1 + x) as well. Considering the iterative update rule of logµt and log σt with the learning rate β, we can think
of the approximate natural gradient for the logµ and log σ as

∇̃log µL ≈
σ2
t+1

µ2
t

∇log µL , ∇̃log σL ≈ 1

2
∇log σL.



Efficient Approximate Inference for Stationary Kernel on Frequency Domain

F. Limitations
• We observe that employing the weighted sampling of Proposition 3.3 for the SVSS directly might degrade the parameter

inference by SVSS; when one of weight parameters is extremely larger than other weight parameters, i.e. wq ≫
w1, .., wq−1, wq+1, .., wQ, the majority of spectral points are sampled from only a single mixture component, i.e.,
mq=M , and m1=..=mq−1=mq+1=..=mQ=0. This hinders the parameters of other mixture components from being
trained. Thus, we use the practical implementation for the weighted sampling approach as described in Appendix A.2.
Although the proposed strategy is proven to be effective empirically, we have not provided the theoretical foundation to
justify the modification.

• We observe that employing the natural gradient of Proposition 3.4 accelerates the convergence of the parameter estimation
due to the effective use of the local geometric information using the Fisher Information matrix. However, the optimized
parameters do not occasionally produce the robust prediction performance on the test set; as more iterations are allowed
for training the parameters by SVSS-Ng or SVSS-WsNg, the RMSE and MNLL for the prediction on test set tend to be
degraded compared to SVSS or SVSS-Ws, respectively. In the future study, we plan to develop a more robust natural
gradient-based optimization scheme so that the trained parameters enable the model to predict the test set accurately.

• In the large-scale UCI benchmark regression task, we observe that the exact prediction using KSM (X,X) with the
parameters estimated by SVSS and its variants shows the comparable test RMSE compared to the VFE using SM kernel,
the benchmark approximate inference for GP. However, its MNLL on test set, that represents the quality of predictive
uncertainty estimation, tends to be slightly degraded to that of VFE. This problem should be tackled so that the SVSS
replaces the VFE by employing the advantage of the SVSS that using SVSS takes less training time compared to VFE
generally.


