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Abstract
In recent work, it has been shown that reinforce-
ment learning (RL) is capable of solving a variety
of problems at sometimes super-human perform-
ance levels. But despite continued advances in
the field, applying RL to complex real-world con-
trol and optimisation problems has proven difficult.
In this contribution, we demonstrate how to suc-
cessfully apply RL to the optimisation of a highly
complex real-world machine – specifically a linear
particle accelerator – in an only partially observ-
able setting and without requiring training on the
real machine. Our method outperforms conven-
tional optimisation algorithms in both the achieved
result and time taken as well as already achieving
close to human-level performance. We expect that
such automation of machine optimisation will push
the limits of operability, increase machine avail-
ability and lead to a paradigm shift in how such
machines are operated, ultimately facilitating ad-
vances in a variety of fields, such as science and
medicine among many others.

1. Introduction
Reinforcement learning (RL) has been shown in various
contributions as a potent method for solving complex tasks
at super-human performance levels that were previously
thought beyond the ability of computers (Silver et al., 2016;
Badia et al., 2020). Furthermore, RL methods promise to
find solutions faster for problems previously solved using
classical optimisation algorithms by moving exploration
from run time to design time. The application of RL to com-
plex real-world tasks has however proven challenging (Irpan,
2018; Dulac-Arnold et al., 2019) for reasons such as the
complexity of real-world tasks and sample efficiency.
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Particle accelerators are an excellent example of a high-
impact real-world application where RL can make a mean-
ingful difference. Among the most advanced machines of
our time, particle accelerators find use in many applications
such as fundamental physics research, cancer treatment, the
development of vaccines and drugs as well as the devel-
opment and production of novel materials enabling for ex-
ample for carbon-neutral transportation. These applications
place strict requirements on the electron or photon beam de-
livered by the accelerator. Tuning accelerators to fulfil these
requirements has historically been a challenging and diffi-
cult to automate task. As a result, accelerators continue to
be tuned mostly manually by experienced human operators.
Manual tuning is a lengthy process with hundreds of hours a
year spent on tuning and therefore not available for product-
ive operation at some facilities. Furthermore, the quality of
the machine setup after tuning depends significantly on the
operators’ experience, limiting their reproducibility. Effect-
ive automation of accelerator tuning and optimisation has
the potential to allow for faster tuning, make results easier
to reproduce and possibly push the limits of accelerator op-
erability. With the help of capable methods such as RL it is
hoped that steps can be taken toward autonomous accelerat-
ors (Eichler et al., 2021) where operators no longer adjust
actuators until a machine setup is achieved, but can instead
define a desired setup that is then autonomously configured.

In this work, we demonstrate the application of RL to a real-
world optimisation problem from a tuning task performed in
regular operation of a linear particle accelerator. We show
the trained RL agent’s ability to solve the highly non-linear
task under partial observability. Our solution achieves bet-
ter results than classical optimisation algorithms and close
to those achieved by experienced human operators. The
RL agents manage to achieve these results in just a few
steps, taking less time than human operators to perform the
optimisation despite the RL agents being limited by slow
hardware present on the particular real machine considered
in this contribution. These excellent results are achieved on
the real accelerator, using a 5-dimensional continuous ac-
tion space, having trained fully in simulation and therefore
without requiring any machine time for training. The trans-
fer from simulation to machine is enabled by the inclusion
of model errors into the simulation for a robust RL agent.
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In the following, we summarise related work in Section 2.
Then we give a brief introduction to RL in Section 3. In Sec-
tion 4, we present our approach to applying RL to particle
accelerator optimisation. Before concluding this work in
Section 6, we present our results and compare them to clas-
sical optimisation in Section 5.

2. Related Work
The autonomous optimisation of particle accelerators dur-
ing their operation is an active field of research (Eichler
et al., 2021). Black-box optimisation algorithms in partic-
ular are applied to such problems both in research as well
as in day-to-day operations. The software package Ocelot
Optimizer (Tomin et al., 2016) for use in the control room
streamlines the application of optimisation algorithms to
accelerators and is regularly used in the operation of various
facilities.

Because the hardware of particle accelerators may be slow
to react, sample-efficiency is a key focus of research into
the autonomous optimisation of accelerators. As a result,
Bayesian Optimisation has found particular interest in the
community and has been applied successfully to a variety
of accelerator optimisation problems (McIntire et al., 2016;
Hanuka et al., 2019; Kirschner et al., 2019; Shalloo et al.,
2020; Duris et al., 2020). These optimisation methods are
however often limited by either their speed or the complexity
of the problems they can handle.

In an effort to improve the speed of classical optimisers on
particle accelerators, other works explore the use of machine
learning (ML) to aid the optimisation by fitting surrogate
models to data from the real accelerator and performing
optimisation on the latter (Edelen et al., 2020; Ivanov &
Agapov, 2020).

The use of RL for autonomous particle accelerator optimisa-
tion is a young and fast growing research field. In (St. John
et al., 2021), a Deep Q-Learning (DQN) agent is trained
to act on a discretised continuous one-dimensional action
space to regulate a gradient magnet power supply (GMPS)
disturbed by environmental factors and improve its output
stability. Using an artificial neural network (ANN) surrog-
ate model for training and evaluation, the authors demon-
strate that the RL performs better than an existing propor-
tional–integral–derivative (PID) controller. In (Bruchon
et al., 2020), two RL agents are trained on a real machine to
attain and recover, respectively, high levels of self-amplified
spontaneous emission (SASE) intensity at the FERMI free-
electron laser at Elettra Sincrotrone. A high-dimensional
highly observed and linear orbit correction problem with lin-
ear dynamics is solved with sample-efficient training of RL
agents on a real accelerator in (Kain et al., 2020). In (Pang
et al., 2020), continuous RL is used to optimise amplitude

and phase settings of a drift tube linac (DTL) for optimal
transmission of the beam in 3- and 5-dimensional continu-
ous actions spaces, with 85 % and 21 % of the optimisations
succeeding after up to 700 steps in simulation.

Outside of the accelerator community, there has been suc-
cessful work on the sim2real transfer of simulation-trained
ML systems exploring domain randomisation to train an
object detector on randomly rendered images such that the
real-world image appears as just another random image
variation (Tobin et al., 2017). The concept of domain ran-
domisation has also been applied to RL, where robot hands
where trained to solve a Rubik’s Cube from randomised im-
age observations in simulation and then successfully applied
in the real world (OpenAI et al., 2019). Most recently, a
sim2real transfer in RL was successfully demonstrated on a
more practical physical real-world application of controlling
the plasma in a tokamak reactor (Degrave et al., 2022).

Compared to prior work on RL for accelerators, we con-
sider a higher complexity problem both in terms of action
space dimensionality and the underlying dynamics. We
further successfully implement a sim2real transfer from a
simulation-trained agent to the real accelerator with the help
of domain randomisation, where prior works were either
only evaluated in simulation or using a surrogate model,
or used expensive beam time for training on the real accel-
erator. In addition, we are – to our knowledge – the first
to compare the performance of an RL agent in accelerator
optimisation directly to that of an expert human operator.

3. Reinforcement Learning
Reinforcement learning (RL) is a subfield of ML, where
an agent is trained to iteratively solve a given task by max-
imising a cumulative reward R, the sum of immediate re-
wards rt received in each step. In order to solve the task,
the agent is provided an observation ot . The agent can use
this observation to compute the next action at to take on the
environment E . In response to the action, the environment
returns a new observation ot¯1 and a reward rt¯1. The itera-
tion, illustrated in Figure 1, is repeated indefinitely or until
some terminal condition is met. Formally, we aim to solve
a Markov decision process (MDP) by querying the agent’s
policy …µ for the next action at ˘ …µ (ot ) and then perform-
ing this action on the environment that is currently in some
internal state st as ot¯1,rt¯1 ˘ Est (at ) to receive the next
observation and reward. Many real-world problems are only
partially observable, meaning that the internal state st is
not fully reflected in the observation ot . In such a partially
observable Markov decision process (POMDP) the Markov-
property is not fulfilled and it may not be possible to predict
the next observation ot¯1 from a current observation-action
pair (ot , at ).
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Figure 1.Flowchart of theRL loop. Based on the observationot
of the environment, the agent chooses an actiona t . As a result of
the action, the environment transitions to a new internal statest Å1
and emits the next observationot Å1 and rewardr t Å1.

The goal of training anRL agent is to �nd the optimal
policy parametersµ¤ that maximise the cumulative reward
over all states of the environment. This is done by re-
peatedly letting the agent act on the environment and using
the reward as a training signal to adapt the policy para-
meters via, for example, policy gradient or value-based
RL training algorithms such as Proximal Policy Optimisa-
tion (PPO) (Schulman et al., 2017) or Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2015).

4. Our Approach

Applying RL to optimisation problems on real-world ma-
chines requires the formulation of an optimisation problem
as well as its translation to anRL problem. In the following
we �rst introduce the problem setup and the correspond-
ing optimisation problem in Section 4.1, followed by our
RL-based solution of the problem. In developing this con-
tribution, a number of challenges with the application to
real-world machines in general have been addressed.

4.1. Experimental Area

In this contribution, we consider the optimisation of the
transverse electron beam parameters in the Experimental
Area (EA) section of the S-band radio frequency electron
linear accelerator ARES (Panofski et al., 2021) at DESY in
Hamburg, Germany. TheEA is located downstream of the
gun section and accelerating structures, where the electron
beam is generated and accelerated to an energy of up to
about150 MeV, and ends with an experimental chamber
that houses a variety of experiments. TheEA is followed
downstream by the second half of the accelerator. Both the
experimental chamber as well the downstream section of
the accelerator place stringent requirements on the beam
properties at the end of theEA in order to enable state-of-
the-art experiments.

The goal of this work is to optimise the transverse beam
propertiesb Æ

¡
¹ x , ¹ y ,¾x ,¾y

¢
on a diagnostic screenS to-

ward the end of theEA, just upstream of the experimental
chamber. Here, the properties¹ x and¹ y are the position
of the beam, and¾x and¾y are the beam size inx- and

Figure 2.Illustration of the Experimental Area (EA) showing the
components relevant for this contribution. The electron beam
is indicated by the blue envelope. The beam enters theEA as
indicated from the left.

y-direction within the transverse plane. They are calculated
as the mean and standard deviation of the electrons in the
beam, respectively. The electron beam is observed using a
diagnostic screen made from a scintillating crystal material
that emits light at an intensity corresponding to the number
of impacting electrons. The image of the screen captured by
a CCD camera allows the calculation of the position and size
of the electron beam in the transverse plane of the screenS.

An arrangement of �ve magnets installed in theEA, three
quadrupole magnets and two dipole magnets, may be used
to manipulate the beam position and size. Quadrupole mag-
nets act much like lenses in that they focus or defocus the
beam. As a result of the quadrupole geometry, the effect is
always reversed in thex- andy-planes, i.e. focusing inx
means defocusing iny and vice versa. The magnitude of
the focusing effect of a quadrupole is given by itsstrength
k . The dipole magnets, so-calledcorrectors, de�ect within
a plane according to their own orientation by some de�ec-
tion angle®. In theEA there is a vertical and a horizontal
corrector de�ecting the beam in the vertical and horizontal
plane, respectively. Figure 2 shows a simpli�ed overview of
the relevant components and their arrangement in the EA.

Depending on the experiment, different requirements are
placed on the beam. We therefore consider in this con-
tribution the problem of optimising the actuator settings
x Æ

¡
kQ1 ,kQ2 ,kQ3 ,®Cv ,®Ch

¢
to adjust the transverse para-

meters of the beam on screenS to any set of beam para-
metersb0 chosen by the operator as required for the present
experiment. This problem can be formulated as an optim-
isation problem

x¤ Æargminx D
¡
b,b0¢

to �nd a vector of optimal actuator settingsx that minimise
the differenceD between the observed beam parametersb
and the desired beam parametersb0.


