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Abstract
In this work, we argue for the importance of an on-
line evaluation budget for a reliable comparison
of deep offline RL algorithms. First, we delin-
eate that the online evaluation budget is problem-
dependent, where some problems allow for less
but others for more. And second, we demonstrate
that the preference between algorithms is budget-
dependent across a diverse range of decision-
making domains such as Robotics, Finance, and
Energy Management. Following the points above,
we suggest reporting the performance of deep
offline RL algorithms under varying online eval-
uation budgets. To facilitate this, we propose to
use a reporting tool from the NLP field, Expected
Validation Performance. This technique makes it
possible to reliably estimate expected maximum
performance under different budgets while not
requiring any additional computation beyond hy-
perparameter search. By employing this tool, we
also show that Behavioral Cloning is often more
favorable to offline RL algorithms when working
within a limited budget.

1. Introduction
In recent years, significant success has been achieved in ap-
plying Reinforcement Learning (RL) to different real-world
scenarios (Chen et al., 2019; Tang et al., 2019; Gauci et al.,
2019). Offline Reinforcement Learning (ORL) (Levine
et al., 2020) is pioneering a real-world adaptation of RL,
focusing on algorithms that can learn a policy from a fixed,
previously recorded dataset, without having to interact with
the environment during training. Many recent community
efforts were focused on advanced benchmarks (Fu et al.,
2021a; Gulcehre et al., 2021) and nuanced algorithm com-
parisons (Brandfonbrener et al., 2021a; Qin et al., 2021).
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However, it is widely recognized that even deep online RL is
plagued with evaluation issues, such as insufficient account
for statistical variability (Agarwal et al., 2022), or sensitivity
to the choice of hyperparameters (Henderson et al., 2018).
The latter problem is one of the reasons why the results of
many deep RL methods are usually reported for a narrow
range of values.

When it comes to deep ORL algorithms, the choice of hyper-
parameters also plays a major role in the final performance
(Wu et al., 2019). While many in the community note that
the whole training and evaluation pipeline needs improve-
ment (Fu et al., 2021b), the comparisons of new deep ORL
algorithms are still mostly done through online performance
reports on the best set of hyperparameters (Kostrikov et al.,
2021; Fujimoto & Gu, 2021).

In this paper, we argue that the hyperparameter search
should not be ignored in the deep offline RL setting, demon-
strating that the conclusions about the algorithms change
when we control for the number of trained policies deployed
online1. To this end, we introduce the notion of an online
budget, i.e. the number of policies deployed online, and
suggest to use an entire pipeline similar to the one in (Paine
et al., 2020) for reporting results: training, offline selec-
tion, and online evaluation, but one where the selection is
done by uniform sampling. As we will demonstrate, this
decision allows us to re-use the Expected Validations Per-
formance (EVP) (Dodge et al., 2019) technique from the
NLP field to get reliable estimates of expected maximum
performance under different online budgets from just one
round of hyperparameter search.

Our Contributions Here, we list the main contributions of
our work:

• We demonstrate that the preference between deep of-
fline RL algorithms is budget-dependent. We stress
that this is more critical for offline settings than for
online ones, and that current evaluation methodology
does not account for such dependence.

• We propose to use Expected Validation Performance
(Dodge et al., 2019), a technique actively employed

1Code is available at tinkoff-ai.github.io/eop

https://tinkoff-ai.github.io/eop/
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Figure 1. Left: A widespreaded approach for reporting deep offline RL results, commonly known as online policy selection. Right: Full
deep offline RL evaluation pipeline. We argue for reporting results under the second pipeline with varying sizes of the online evaluation
budget B. Note that selecting hyperparameters that perform best overall on the online policy selection tasks from the same domain (Fu
et al., 2021a; Gulcehre et al., 2021) can also be put to the right pipeline as a special case.

in NLP, for reliable comparison of deep offline RL
algorithms under varying online evaluation budgets.
To stress the online nature of comparison (in opposi-
tion to validation), we refer to it as Expected Online
Performance (EOP). This tool can take the both major
components of deep offline RL into account: the offline
policy selection (OPS) method as well as online evalu-
ation budget. Furthermore, it can be applied without
additional computational expenses.

• Using the proposed tool, we also demonstrate that Be-
havioral Cloning (Pomerleau, 1991) is often more fa-
vorable under a limited evaluation budget.

• In addition, EOP can be applied to comparisons of OPS
methods. Using EOP, we illustrate that their preference
is also budget-dependent.

In the end, we also discuss how the proposed solution relates
to the recently introduced Active-OPS (Konyushkova et al.,
2021) and deployment-constrainted RL setup (Matsushima
et al., 2020).

2. Background
2.1. Offline RL

Reinforcement learning (RL) is a framework for solving
sequential decision-making problems. It is typically for-
mulated as a Markov Decision Process (MDP) over a 5-
tuple (S,A, P, r, γ), with action space A, state space S,
transition dynamics P , reward function r, and discount
factor γ. The goal of the learning agent is to obtain a pol-
icy π(s, a) that maximizes the expected discounted return
Eπ[

∑∞
t=0 γ

trt+1] through interaction with the MDP.

In Offline RL, also known as Batch RL, instead of obtaining
data and learning via environment interactions, the agent
solely relies on a static dataset D that was collected under

some unknown behavioral policy (or a mixture of policies)
πµ. This setting is considered more challenging, as the agent
loses its ability for exploration (Levine et al., 2020) and is
faced with the problem of extrapolation error – being unable
to correct its estimation inaccuracies when selected actions
are not present in the training dataset (Fujimoto et al., 2019).

2.2. Offline RL Evaluation

Training and evaluation of deep offline RL algorithms is
still in active development, and various authors approach it
in different ways by simplifying the genuine offline setting
(Gulcehre et al., 2021). At the core of the simplification
are two primary issues: (1) unlimited amount of online
evaluations available, and therefore (2) sidestepping offline
policy selection. For example, it is common to report the
maximum performance for the best set of hyperparameters
(Figure 1, Left). Moreover, in many cases, the number of
search trials is not made explicit (Kumar et al., 2020).

To eliminate these simplifications, we adhere to a more gen-
eral setup for training and evaluating offline RL algorithms
similar to Paine et al. (2020) in order to satisfy hard offline
constraints (Figure 1, Right).

First, the dataset D is randomly split trajectory-wise into
training DT and validation DV subsets accordingly. Then
a sequence of hyperparameter assignments (h1, h2, ..., hN )
is sampled for running an algorithm of interest, resulting
in a sequence of policies (π1, π2, ..., πN ). Note that at this
stage, we do not know how good these policies are.

Then, B ≤ N of policies are arbitrarily chosen for on-
line evaluation, which we refer to as an online evaluation
budget. In the most restricted offline RL setting, B = 1.
However, the generalization to B > 1 is justified by the
online evaluation budget being conditioned on the relevant
decision-making problem and the available resources.

To choose policies for online evaluation, offline policy se-
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Table 1. Best final performance of deep offline RL algorithms if they were evaluated under a different number of policies deployed
online for Hopper-v3 environment. This table highlights that the usage of different online evaluation budgets (B) may lead to different
conclusions on preference between algorithms. N is the total number of hyperparameters evaluated for a specific algorithm.

Algorithm B = 1 B = 2 B = 3 B = 4 B = 8 B = 15 B = 30 Final N

BC 1794 2057 2179 - - - - 2179 3
CQL 1773 1954 2072 2161 2391 2603 2832 2832 30
PLAS 1475 1833 1996 2096 2316 2507 - 2507 15
BCQ 1325 1605 1742 1826 1986 - - 2062 12
CRR 1013 1339 1477 1545 1636 - - 1668 12
BREMEN 883 1148 1318 1439 1691 - - 1795 12
MOPO 11 18 24 30 46 63 78 78 30

lection (OPS) methods can be used. In specific domains,
like recommender systems, policies can be picked based on
established offline metrics, e.g. Recall, computed on the
validation DV dataset (Xin et al., 2020). However, such
metrics do not always exist, and it is often necessary to rely
on general methods (Voloshin et al., 2020; Fu et al., 2021b)
or proxy tasks (Fu et al., 2021a; Gulcehre et al., 2021).

3. Online Evaluation Budget Matters
As can be seen in Figure 1, Left, using online policy se-
lection makes the evaluation budget B equivalent to the
number of hyperparameter search trials N . On the other
hand, Fu et al. (2021a); Gulcehre et al. (2021) search for
the best set of hyperparameters using proxy tasks, but the
online evaluation budget on the target task is B = 1.

Meanwhile, there is a whole spectrum of values in-between
that could be relevant not only for a specific problem, but for
a specific context. By context we mean a certain space of
resources (computational resources, robotics hardware, time
constraints, online testing capacity). Here, a practitioner
may work on the same problem, but have a lower or bigger
amount of resources available for online evaluation.

Therefore, a natural question to ask when analysing results
of deep ORL algorithms is “Will the conclusions about
the algorithms change, if I have a lower or higher online
evaluation budget than the one reported in the paper?”. Un-
fortunately, current evaluation and report methodologies do
not provide an answer, and the dependence between varied
online evaluation budget and the resulting performance of
the algorithms is left unreported.

To address this issue independently, it is necessary to access
detailed experimental results showing which hyperparam-
eters resulted in which performance. While some authors
open-source such data (Qin et al., 2021), it is not a common
practice to do so.

To demonstrate that the conclusions about algorithm prefer-

ence are dependent on the available online evaluation bud-
get, we rely on open-sourced2 results by Qin et al. (2021).
For each algorithm in Table 1, we compute the expected
maximum performance under uniform policy selection (i.e.
the policies are chosen at random) given a specific online
evaluation budget B. The final column is what would be
reported in the paper, demonstrating that CQL (Kumar et al.,
2020) significantly outperforms its competitors. However,
in budgets up to 4, Behavioral Cloning performs the best.
Also, note that the preference between CRR (Wang et al.,
2020) and BREMEN (Matsushima et al., 2020) is reversed
starting from the budget of 8.

4. Accounting for the Budget
In the previous section, we demonstrated multiple model
comparisons where authors would have reached a different
conclusion if they had used a smaller (or bigger) online
evaluation budget. To resolve this issue, we use a tool
from the NLP field, Expected Validation Performance (EVP)
(Dodge et al., 2019), that can be adapted for enhancing the
quality of experimental reports in a deep ORL setting.

4.1. Expected Online Performance

Here, we give a detailed description for EVP, reframed for
an offline RL setting, and with the computational budget
replaced by an online evaluation budget (typically, B ≪ N ).
We refer to this approach as Expected Online Performance
(EOP).

Having all N policies evaluated online after hyperparame-
ter search, we want an estimate of the expected maximum
performance, given that we could deploy only 1 ≤ B ≤ N
policies out of N .

2Note that there is a discrepancy in open-sourced and reported
results. There is additional data on CRR and BREMEN, but data
on MB-PPO is not provided.
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Figure 2. Expected Online Performance graphs under uniform offline policy selection on Qin et al. (2021) data. The proposed EOP
graph clearly demonstrates that preference between algorithms is budget-dependent. Furthermore, it highlights that BC is often more
favorable to offline RL algorithms under limited online evaluation budgets. The X-axis denotes the number of policies deployed online,
and Y-axis refers to the normalized performance. Note that the number of estimates for a concrete algorithm is upper-bounded by the total
number of hyperparameter assignments (N ) evaluated for this algorithm. Shadowed area represents one standard deviation.

The parameters of interest to us are θ1,...,θB , where

θb := E[max(V (π1), ..., V (πb))] = E[V(b:b)] (1)

for 1 ≤ b ≤ B and V is an random variable (RV) represent-
ing the result of online evaluation. In other words, θb is the
expected value of the bth order statistic for a sample of size
b. The ith order statistic V(i:b) is an RV representing the ith

smallest value if the RVs were sorted.

Originally, EVP operates over one stage – hyperparameter
value selection. But in an ORL setting, there is also a second
stage – policy selection (see Figure 1, Right). To account
for this discrepancy, we note that uniformly sampled hyper-
parameter values and then uniformly sampled policies result
in the probability of a policy being selected for online evalu-
ation proportional to the probability of its hyperparameters
being used. Virtually, that makes θb be based on a sample
size b drawn independent and identically distributed.

In this case, the estimator proposed in Dodge et al. (2019)
can be readily applied. The derivation is similar to Tang
et al. (2020):

Pr[V(b:b) < v] = Pr[V (π1) ≤ v ∧ ... ∧ V (πb) ≤ v]

=

b∏
i=1

Pr[V (πi) ≤ v],
(2)

which we denote as F b(v). Then

θb = E[V(b:b)] =

∫ inf

− inf

vdF b(v). (3)

Without loss of generality, assume V (π1) ≤ ... ≤ V (πN ).
To approximate the Cumulative Distribution Function
(CDF), use Empirical Cumulative Distribution Function
(ECDF)

F̂ b
N (v) = (

1

N

N∑
i=1

I[V (πi) ≤ v])b (4)

To arrive at the final estimator, replace CDF with an ECDF
in Equation 3

θ̂b =

∫ inf

− inf

vdF̂ b
N (v) (5)

which, by definition, evaluates to

θ̂b =
1

N

N∑
i=1

V (πi)(F̂
b
N (V (πi))− F̂ b

N (V (πi−1)) (6)

To summarize, θ̂b corresponds to the estimated expected
maximum performance given that (1) hyperparameters were
randomly sampled from a pre-defined grid, (2) we could de-
ploy 1 ≤ b ≤ B policies out of N for online evaluation, and
(3) these b policies were picked by uniform policy selection.

The major advantage of this estimator is that, if our evalu-
ation methodology satisfies all three conditions described
above, then the computation within a single round of hyper-
parameter search is sufficient to construct a reliable estimate
of expected online performance for different values of b,
without requiring any further experimentation (Dodge et al.,
2019). Moreover, for a compact presentation, we can plot a
graph over the entire range of values for b, demonstrating
the dependence between the final performance and online
evaluation budget (Figure 2).

Note, that there are alternative estimators for the quantity of
interest (Tang et al., 2020). However, Dodge et al. (2022)
compared different approaches for estimating the expected
maximum and found that the employed estimator (Dodge
et al., 2019) is favored amongst existing approaches in terms
of both MSE criterion and a percent of incorrect conclu-
sions.
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Figure 3. Expected Online Performance graphs under uniform offline policy selection. The proposed EOP graph clearly demonstrates
that preference between algorithms is budget dependent. Furthermore, it highlights that BC is often more favorable to offline RL
algorithms under limited online evaluation budgets. Shadowed area represents one standard deviation.

4.2. Target Metric

The target metric can be represented by any convenient mea-
sure used in literature, e.g., absolute policy performance
or policy performance normalized by an expert (Fu et al.,
2021a). In our case studies (Section 5), we rely on a modi-
fied version of the latter. The main motivation behind this
modification is that the original metric is normalized by
the value provided by a domain-specific expert (Fu et al.,
2021a). However, the final results of offline RL algorithms
are highly dependent on training data, and expecting to
achieve expert performance while training on data from
weak policies can be too optimistic. Therefore, we normal-
ize by the performance of the best policy (as there can be
multiple) that collected the training data.

4.3. Online Evaluation Budget

The original EVP makes it possible to use various quan-
tities as an argument to the target metric, e.g. number of
hyperparameters enumerated or training time. Similarly, for
EOP in the deep ORL setting, several options can be used,
such as the number of trajectories, number of timesteps, or
number of policies. We suggest using the latter option, and
equate the online evaluation budget B with the number of
policies deployed for online evaluation. This choice pro-
vides researchers with the flexibility of defining their own
amount of computation for getting reliable estimates for
policy values.

4.4. Beyond Uniform Policy Selection

In Section 4.1 we outlined an estimator of expected maxi-
mum performance under varied online evaluation budgets.
Although, an assumption was made that besides randomly
sampled hyperparameters, the policies are also selected uni-
formly. However, comparing deep ORL methods with dif-
ferent OPS methods is also of interest.

Since the policies selected under an arbitrary strategy (e.g.

Fitted-Q Evaluation (Le et al., 2019)) are generally not
i.i.d, the plug-in estimator derived above would be invalid.
However, one can still estimate the parameters of interest
using a vanilla average estimator.

θ̂b =
1

M

M∑
r=1

max(V r
1 , ..., V

r
b ) (7)

where M is a number of hyperparameter search rounds with
offline policy selection, V r

i corresponds to an RV represent-
ing the result of online evaluation for the ith selected policy
in round r. Note that this estimator loses the appealing
computational side of EVP, and requires multiple runs of
hyperparameter search with offline policy selection. This
makes it more expensive in terms of computing time.

In one of our case studies (Section 5.3), we demonstrate
how one could use EOP for comparing not only deep ORL
algorithms, but OPS methods as well.

5. Case Studies
To further demonstrate the use of the proposed technique
and to identify whether online evaluation budget changes
the preference between deep ORL algorithms besides the
environment analyzed in Section 3, we consider several
case studies covering a range of decision-making problems:
robotics, finances, and energy management.

5.1. NeoRL, Robotic Tasks

Continuing the closer look at the results presented in Qin
et al. (2021) from Section 3, we build Expected Online
Performance graphs for other robotics environments (Fig-
ure 2). This once again confirms that the preference is
budget-dependent. Moreover, this is consistent across envi-
ronments, dataset sizes, and policy levels (for a complete set
of graphs, check the Appendix). There are many cases when
the conclusion changes with a budget. For example, in the
Walker-2d environment, CQL is clearly preferred to PLAS
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(a) CQL, CityLearn, Low-10000
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(b) TD3+BC, CityLearn, Low-10000
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Figure 4. Inverse of Normalized Regret@K over varied online evaluation budgets. The suggested method can also be used for
comparing offline policy selection methods. A similar pattern emerges – preference for OPS methods is also budget-dependent.
Furthermore, uniform policy selection can be competitive under low budgets, and action difference performs reasonably well across a
range of environments, dataset sizes, and policy levels. Shadowed area represents one standard deviation.

(Zhou et al., 2020), but only up to the 9-10 policies avail-
able for online evaluation. Another example can be seen in
Figure 2b for the Hopper environment: Behavioral Cloning
significantly outperforms its competitiors at low budgets,
but loses to PLAS at higher ones. The same holds for the
HalfCheetah environment, where CQL starts to prevail at
higher budgets.

As the online budget is upper-bound by the total number
of enumerated hyperparameters, it is clear (Figure 2) that
different algorithms were tuned more or less excessively.
This results in more optimistic results for one algorithm,
and in more pessimistic for another. Consider BCQ (Le
et al., 2019) in Figure 2a. It is tuned up to 13 hyperparam-
eter assignments showing the best result, but as long as a
competing algorithm, PLAS, is tuned for 14 and more as-
signments, it starts to outperform BCQ. An even more vivid
example is depicted in Figure 2c, where MOPO (Yu et al.,
2020) starts to outperform both BREMEN and CRR at 2x
more hyperparameters tested. Note that reporting just one
policy value (either using online policy selection or proxy
tasks) hides this issue.

5.2. NeoRL and Other Domains

To validate that our findings hold outside of the open-
sourced experimental results provided by Qin et al. (2021),
and to cover a wider range of decision-making problems, we
benchmark CQL (Kumar et al., 2020), TD3+BC (Fujimoto
& Gu, 2021), and BC on the CityLearn (Vázquez-Canteli
et al., 2019), FinRL (Liu et al., 2020), and Industrial Bench-
mark (Hein et al., 2017) environments3. In addition, we
make sure that the hyperparameter search budgets are equal
for all the algorithms to avoid the issue described in the
previous section. The hyperparameter grids were deferred
to the Appendix B.2. We average mean returns over 100

3Detailed descriptions of the environments and algorithms used
can be found in the Appendix B.2, B.3.

evaluation trajectories and 3 seeds.

In Figure 3, we see that Behavioral Cloning is quite compet-
itive against both CQL and TD3+BC under limited online
evaluation budgets. This akin to the results we observed
in robotics environments (Figure 2), suggesting that BC is
often more preferable in restricted settings to deep ORL
algorithms.

5.3. Offline Policy Selection

As the EOP incorporates offline policy selection, we can
also use it to compare how well OPS methods perform
against each other. To do so, we use inverse of normalized
Regret@K (in our case at B) as a target metric. This allows
us to answer the following question: ”If we were able to
run policies corresponding to k hyperparameter settings in
the actual environment and get reliable estimates for their
values that way, how far would the best in the set we picked
be from the best of all hyperparameter settings considered?”
(Paine et al., 2020). But instead of reporting one value of
k as in Paine et al. (2020), we can easily report on all the
values of B. Moreover, the estimator outlined in Section
4.1 can be used for presenting the results of uniform policy
selection.

We do not aim to benchmark and compare the entire myriad
of offline policy selection approaches, but rather to demon-
strate how one can use the proposed tool for such purposes.
To do so, we test several methods on the environments from
the previous section, namely V (s0) using FQE, TD-Error,
and Action Difference (Le et al., 2019; Hussenot et al.,
2021).

The results can be found in Figure 4. First, we observe
a pattern similar to the one described in Sections 3, 5.1,
5.2: preference between offline policy selection methods is
also budget-dependent. Therefore, it is not enough to report
the result of such methods under just one selected thresh-
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old. Second, there is no clear winner among all setups, as
even TD-Error may sometimes perform good (Figure 4a, for
more – check the Appendix). However, Action Difference
often performs reasonably well across many dataset sizes
and policy levels in Industrial Benchmark and CityLearn
environments (Figures 4a, 4b). We hypothesize that such a
selection method can serve as a post-training conservative
regularizator (i.e. picking policies that are more similar
to the behavioral ones), but that requires further investiga-
tion. And the last notable observation is that uniform policy
selection can be competitive to other considered methods,
especially when the online evaluation budget is limited.
Sometimes it can even perform the best among the entire
set of methods (Figure 4a).

6. Related Work
To the best of our knowledge, the closest concept to our work
is deployment-constrained RL (Matsushima et al., 2020; Su
et al., 2021). The core idea of this setting is to consider the
number of policies deployed online and to reuse the data
for iterative training from such deployments. Matsushima
et al. (2020); Su et al. (2021) propose new algorithms that
are especially suited for this setting, claiming that they are
more deployment-efficient. However, they also relied on
an extensive hyperparameter search reporting for the best
set of hyperparameters. This hides the actual number of
policies evaluated online, while our approach prevents that.
An interesting direction for future work would be to adapt
the EOP for this iterative setting as well.

Konyushkova et al. (2021) formulated a new problem, which
is an extension to OPS, Active Offline Policy Selection (A-
OPS). The major difference is to allow for an OPS method
to have a feedback loop from newly trained policies de-
ployed online, and re-adjust which policy should be run
next. While this is an important step forward, EOP can
actually subsume A-OPS as one of the OPS methods, since
sequential policy testing is allowed. Furthermore, our paper
aims to consolidate all the parts of a deep ORL pipeline,
while Konyushkova et al. (2021) focuses on a new problem.

Recently, Agarwal et al. (2022) scrutinized the evaluation
methodology of deep RL algorithms, and advocated for
a set of statistical tools to be employed for more reliable
comparison. However, Agarwal et al. (2022) focuses on
reliable evaluation after hyperparameter tuning, while our
work highlights its importance in offline deep RL setting,
and argues that results should be reported under varied hy-
perparameter tuning capacity when comparing deep ORL
algorithms.

Brandfonbrener et al. (2021b) noted the extensive online
evaluation budgets used in recent works on deep ORL. To ad-
dress this issue, comparison between algorithms was made

under a small hyperparameter tuning budget (B = 4). How-
ever, evaluating only under a limited budget may not be
enough. Our paper demonstrates that the preference be-
tween algorithms can be budget-dependent, requiring evalu-
ation under various budgets.

There is a sizeable body of work on Offline Policy Evalua-
tion (Voloshin et al., 2020; Fu et al., 2021b) and, specifically,
on Offline Policy Selection (Paine et al., 2020; Hussenot
et al., 2021; Yang et al., 2020). This work does not aim to
compare or benchmark these types of methods, but to pro-
vide a procedure for comparing deep ORL algorithms with
OPS (and promote the usage of simple uniform selection)
for achieving reliable conclusions. In addition, we demon-
strate that a similar pattern, online-budget dependence, is
relevant for OPS methods as well.

Behavioral Cloning is typically reported in deep ORL papers
as a baseline, and many papers claim to beat this baseline
(Kumar et al., 2020; Fujimoto & Gu, 2021; Kumar et al.,
2019; Le et al., 2019; Wang et al., 2020; Wu et al., 2019).
However, when considering learning from human demon-
strations, Mandlekar et al. (2021) demonstrated the supe-
riority of BC over deep ORL algorithms, especially when
recurrence is employed in network architecture. Reinforc-
ing the effectiveness of BC, this work suggests that BC is
preferable not only in settings with human demonstrations,
but across a diverse range of decision-making problems,
given that the online evaluation budget is severely limited.

7. Closing Remarks
Motivation: While a lot of RL community efforts are fo-
cused on offline RL datasets’ general evaluation, this paper
questions the methods’ performance under the entire spec-
trum of their hyperparameters and available resources. As
different problems and contexts may allow for different on-
line evaluation budgets, we argue that they can also make
different optimal solutions possible within these constraints.
We hope that the proposed evaluation technique and our
findings will encourage the ORL community to report per-
formance results under different online evaluation budgets.

Limitations: Although this work emphasizes the impor-
tance of several online evaluations, it does not investigate
the possible evaluation risks. Many real-world applications
have critical corner cases, especially in the autonomous driv-
ing, healthcare, and finance domains (Riccio et al., 2020).
We note that the EOP has limited applicability in such risk-
sensitive scenarios due to its focus on maximum perfor-
mance.

Opportunities: EOP proposes a unified methodology for
finding the best-performing setup under different online
budget constraints. Unlike Deep Learning domains, the
deep ORL evaluation is still in active development. The
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possibility of having a standard performance evaluation
report opens avenues for adopting more precise methods
for different tasks and contexts or creating online budget-
dependent ORL algorithms.

8. Conclusion
A lot of community effort was recently devoted to develop-
ing new algorithms and datasets, while noting that the whole
evaluation pipeline is still to be improved upon (Fu et al.,
2021a; Gulcehre et al., 2021). In this work, we demonstrated
(Section 3) one of the problems with such pipelines, and
proposed a technique named EOP (Section 4.1) to address
it when presenting the results of deep ORL algorithms. Sev-
eral empirical results were found (Section 5): (1) Behavioral
Cloning is often more favorable under a limited evaluation
budget, (2) Online Policy Selection method preferences are
also budget-dependent.
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A. Target Metrics
A.1. Performance Normalized by the Best Policy in

Training Data

Vnormalized(π) =
V (π)− V (πbest)

V (πbest)

where πbest is the best performing policy of all the policies
that collected the training data. We make sure that the
performance is bigger than zero for all the environments.

A.2. Inversed Normalized Regret@K

Given the true values of all N policies,

Regret@K =
V (π)− V (πworst)

V (πbest)− V (πworst)

where π is the best performing policy among first K ranked
by a given offline policy selection method, πbest is the best
performing across all N policies, and πworst is the worst
performing across all N policies.

B. Experimental Setup in Other Domains
In Sections 5.2 and 5.3, we run an additional set of experi-
ments with deep ORL algorithms. Here, we describe them
in more details. All the resulting EOP graphs can be found
in Figures 8, 9, 10.

B.1. Multi-Level Policies and Dataset Sizes

We replicate a procedure from Qin et al. (2021) for obtaining
behavioral policies and datasets collection: we run Soft
Actor-Critic (Haarnoja et al., 2018) until convergence and
extract from 2 to 3 checkpointed policies with varying levels
of expertise: low, medium, and high.

Afterwards, these policies are used to collect datasets of
varying sizes. Similar to Qin et al. (2021), we use the 99-
999-9999 trajectories scheme. However, we do not inject
any randomization while collecting the datasets, making the
setting closer to more stringent real-life setups.

B.2. On Hyperparameters

To define the space of hyperparameters, we mimicked a
procedure common among deep learning practitioners. For
a given algorithm, we scan through relevant papers and ex-
tract values specified there. However, instead of taking spe-
cific hyperparameter assignments, we randomize across the
extracted values, as the optimal choice is largely problem-
dependent. The exact hyperparameter space can be found
in Table 5.

B.2.1. CQL

We use hyperparameter values mentioned in Kumar et al.
(2020) and Qin et al. (2021). Actor and critic networks are
the same as in Qin et al. (2021): two separate MLPs with 2
hidden layers and 256 units per layer. The implementation
can be found in the attached source code.

B.2.2. TD3+BC

For this algorithm, we rely on hyperparameters specified in
Fujimoto & Gu (2021) and also extend it with learning rates
from Kumar et al. (2020). Actor and critic networks are the
same as in Fujimoto & Gu (2021): two separate MLPs with
2 hidden layers and 256 units per layer. The implementation
can be found in the attached source code.

B.2.3. BC

The search space for Behavioral Cloning is taken from Man-
dlekar et al. (2021) and Qin et al. (2021). The network
architecture is the same as in the algorithms above. Note
that we do not use early stopping as in Qin et al. (2021), but
rather fix the number of gradient steps.

B.3. Environments, Baselines, and Datasets

For a more precise picture of the high-dimensionality of the
problems, we include the environment configurations table
from Qin et al. (2021) below.

Table 2. Environment configurations. Taken from Qin et al. (2021).

Environment
Observation

Shape
Action
Shape

Have
Done

Max
Timesteps

IB 182 3 False 1000
FinRL 181 30 False 2516

CL 74 14 False 1000

As discussed in the main text, we reproduced the proce-
dure from Qin et al. (2021) to train behavioral policies and
generate datasets. We omitted the CityLearn high-level pol-
icy since we could not match the performance reported in
Qin et al. (2021) in a reasonable amount of time. Online
performance for the policies used in the paper is in Table 3.

Table 3. Behavioral policies.

Environment
Low
Level

Medium
Level

High
Level

Industrial Benchmark -323856 -276379 -234101
CityLearn 27797 32498 -

FinRL 221 294 446
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B.4. On Offline Policy Selection methods

After sampling N hyperparameters, running an offline RL
algorithm, and obtaining N policies, B of them are se-
lected for online evaluation π1, ..., πB . Generally, the prob-
ability of being selected for each policy can be defined
as p(πi|hi, Dv, S), where hi is a tuple of hyperparameters
used for training policy πi, Dv is a validation dataset, and
S is a offline policy selection strategy.

There is a plethora of approaches to offline policy evaluation
and selection (Irpan et al., 2019; Fu et al., 2021b; Voloshin
et al., 2020). In this work, we utilize a few selection methods
already utilized in the robotics domain: those based on
value functions (Paine et al., 2020) and action distributions
(Mandlekar et al., 2021).

B.4.1. UNIFORM

Uniform Selection is an extremely simple baseline that cor-
responds to picking policies completely at random. It ig-
nores all the information regarding the validation dataset.
The probability of a policy πi being selected for online
evaluation is simply proportional to the probability of its
hyperparameters p(hi).

p(πi|hi, Dv, S = uniform) ∝ p(hi) (8)

As we demonstrated in the main text, this naive strategy
serves as a competitive baseline to other selection methods,
has good computational properties, and is strongly linked
with a comparison tool utilized in natural language process-
ing problems (Dodge et al., 2019).

B.4.2. EXPECTED INITIAL STATE VALUE

These selection methods estimate an expected value of
the target policy πi for the initial state distribution
Es0∼DV

[Q(s0, πi(s0))] and re-rank the policies accord-
ingly. The Q function can be reused from a training process
(e.g. a critic from Conservative Q-Learning) – V (s0) using
Critic, or be refitted using Fitted-Q Evaluation (Le et al.,
2019) – we refer to it as V (s0) using FQE. These methods
were found to be superior to others in simulated robotic
tasks (Paine et al., 2020).

B.4.3. TEMPORAL DIFFERENCE ERROR

This approach uses an average of the temporal difference
across all transition tuples (s, a, r, s

′
) in the validation

dataset E(s,a,r,s′ )∼DV
[r + γQ(s

′
, πi(s

′
))−Q(s, a)]. The

lower the error for a policy, the higher its rank. Note that
this method is rather indicative of the critics’ quality and
was shown to perform poorly (Paine et al., 2020). However,
we still include it to obtain more evidence in novel environ-
ments (as far as we know, this approach was not tested for

our set of environments) and to probe its ability to extract
policies that improve over the baseline rather than try to find
the best one.

B.4.4. ACTION DIFFERENCE

This method measures how good a trained policy πi matches
the behavioral policy πµ by estimating an average expected
difference in action E(s,a)∼DV

[(πi(s)−a)2]. The lower the
discrepancy, the higher the trained policy is ranked. This
method is expected to result in finding policies close to
the behavioral, with no sudden drop in performance at the
expense of lower expected improvement.

B.5. Computational Resources

The experiments were run on a computational cluster with
14x NVIDIA Tesla V100, 256GB RAM, and Intel(R)
Xeon(R) Gold 6154 CPU @ 3.00GHz (72 cores) for 13
days.

C. Why Spearman’s Rank Correlation Can Be
Misleading for Offline Policy Selection
Methods

In Section 5.3, we demonstrated how the proposed approach
can be used for comparing OPS methods using Regret@K
metric, highlighting that the preference between these meth-
ods is budget-dependent.

However, it may be pointed out that this is not really needed,
as Spearman’s rank correlation is usually representative
of the ranking quality for such methods. Here, we show
how it can fail by giving two examples in Table 4. The
second ranking is what we usually want in offline RL setting
– getting the best policy with the least amount of online
executions as possible. However, its rank correlation is
significantly lower than for the first ranking.

Table 4. An example where Spearman’s rank correlation coefficient
is not representative of the desiderata in deep ORL setting.

TRUE RANKING RANKING#1 RANKING#2

1 5 1
2 4 2
3 3 10
4 2 9
5 1 8
6 6 7
7 7 6
8 8 5
9 9 4
10 10 3

SPEARMAN’S RHO 0.76 -0.02
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Table 5. Hyperparameters search space.

Algorithms Search Space

CQL

variant ∈ {H, ρ}
α ∈ {5, 10}

τ ∈ {−1, 2, 5, 10}
approximate-max backup ∈ {True, False}

actor alpha tuning ∈ {True, False}
actor learning rate ∈ {3e− 5, 3e− 4, 1e− 4, 1e− 3}

critic learning rate ∈ {3e− 4, 1e− 4, 1e− 3}
tau ∈ {5e− 3, 1e− 2}
batch size ∈ {256, 512}

γ ∈ [0.9, 1.0]
number of gradient steps ∈ {3e5}

TD3+BC

α ∈ {1.0, 2.0, 2.5, 3.0, 4.0}
actor learning rate ∈ {3e− 5, 3e− 4, 1e− 4, 1e− 3}

critic learning rate ∈ {3e− 4, 1e− 4, 1e− 3}
tau ∈ {5e− 3, 1e− 2}
batch size ∈ {256, 512}

γ ∈ [0.9, 1.0]
number of gradient steps ∈ {3e5}

BC

num modes in gaussian mixture model ∈ {1, 5, 10, 100}
learning rate ∈ {1e− 3, 3e− 4, 1e− 4}

batch size ∈ {256, 512}
number of gradient steps ∈ {2e5}

Spearman’s Rho may punish what we typically care about
more (the left side of the ranking), and appraise what we
care about less (the right side of the ranking). Meanwhile,
usage of Regret@K graphs helps to avoid this problem,
capturing the left side.
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(b) High-Level Policy, 1000
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(d) Medium-Level Policy, 10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 30
Policies Evaluated Online

-100%

-80%

-60%

-40%

-20%

0%

+20%

+40%

Ex
pe

ct
ed

 O
nl

in
e 

Pe
rf

or
m

an
ce

BC
BCQ
BREMEN
CQL
CRR
MOPO
PLAS
Behavioral Policy

(e) Medium-Level Policy, 1000
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(f) Medium-Level Policy, 100
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(g) Low-Level Policy, 10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 30
Policies Evaluated Online

-100%

-75%

-50%

-25%

0%

+25%

+50%

+75%

+100%

Ex
pe

ct
ed

 O
nl

in
e 

Pe
rf

or
m

an
ce

BC
BCQ
BREMEN
CQL
CRR
MOPO
PLAS
Behavioral Policy

(h) Low-Level Policy, 1000
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Figure 5. Expected Online Performance under uniform policy selection. Walker2d-v3, a robotic task from Qin et al. (2021), the
graphs are computed using their open-sourced online evaluations for different hyperparameter assignments.
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(a) High-Level Policy, 10000
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(b) High-Level Policy, 1000
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(c) High-Level Policy, 100
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(d) Medium-Level Policy, 10000
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(e) Medium-Level Policy, 1000
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(f) Medium-Level Policy, 100
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(g) Low-Level Policy, 10000
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(h) Low-Level Policy, 1000
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Figure 6. Expected Online Performance under uniform policy selection. Hopper-v3, a robotic task from Qin et al. (2021), the graphs
are computed using their open-sourced online evaluations for different hyperparameter assignments.
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(a) High-Level Policy, 10000
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(b) High-Level Policy, 1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 30
Policies Evaluated Online

-100%

-80%

-60%

-40%

-20%

0%

+20%

Ex
pe

ct
ed

 O
nl

in
e 

Pe
rf

or
m

an
ce

BC
BCQ
BREMEN
CQL
CRR
MOPO
PLAS
Behavioral Policy

(c) High-Level Policy, 100
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(d) Medium-Level Policy, 10000
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(e) Medium-Level Policy, 1000
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(f) Medium-Level Policy, 100
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(g) Low-Level Policy, 10000
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(h) Low-Level Policy, 1000
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Figure 7. Expected Online Performance under uniform policy selection. HalfCheetah-v3, a robotic task from Qin et al. (2021), the
graphs are computed using their open-sourced online evaluations for different hyperparameter assignments.
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(a) High-Level Policy, 999
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(b) Medium-Level Policy, 999
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(c) Low-Level Policy, 999
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(d) High-Level Policy, 99
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(e) Medium-Level Policy, 99
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(f) Low-Level Policy, 99

Figure 8. Expected Online Performance under uniform policy selection. FinRL, one of our experiments, comparing CQL, TD3+BC,
and BC under equal amounts of online evaluation budgets.
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(a) Medium-Level Policy, 9999
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(b) Medium-Level Policy, 999
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(c) Medium-Level Policy, 99
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(d) Low-Level Policy, 9999
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(e) Low-Level Policy, 999
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(f) Low-Level Policy, 99

Figure 9. Expected Online Performance under uniform policy selection. CityLearn, one of our experiments, comparing CQL,
TD3+BC, and BC under equal amounts of online evaluation budgets.
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(a) High-Level Policy, 9999
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(b) High-Level Policy, 999
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(c) High-Level Policy, 99
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(d) Medium-Level Policy, 9999
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(e) Medium-Level Policy, 999
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(f) Medium-Level Policy, 99
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(g) Low-Level Policy, 9999
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(h) Low-Level Policy, 999
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Figure 10. Expected Online Performance under uniform policy selection. Industrial Benchmark, one of our experiments, comparing
CQL, TD3+BC, and BC under equal amounts of online evaluation budgets.
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(a) High-Level Policy, 999
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(b) Medium-Level Policy, 999
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(c) Low-Level Policy, 999
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(d) High-Level Policy, 99

1 2 3 4 5 6 7 8 9 10
Policies Evaluated Online

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
ed

 N
or

m
al

iz
ed

 R
eg

re
t

Uniform
Action Difference
TD-Error
V(s0) using FQE

(e) Medium-Level Policy, 99
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(f) Low-Level Policy, 99

Figure 11. CQL, FinRL. Inversed Normalized Regret under different offline policy selection methods using EOP graph. The shaded
area represents one standard deviation
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(a) Medium-Level Policy, 9999
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(b) Medium-Level Policy, 999
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(c) Medium-Level Policy, 99
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(d) Low-Level Policy, 9999
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(e) Low-Level Policy, 999
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(f) Low-Level Policy, 99

Figure 12. CQL, CityLearn. Inversed Normalized Regret under different offline policy selection methods using EOP graph. The
shaded area represents one standard deviation



Showing Your Offline Reinforcement Learning Work

1 2 3 4 5 6 7 8 9 10
Policies Evaluated Online

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
ve

rs
ed

 N
or

m
al

iz
ed

 R
eg

re
t

Uniform
Action Difference
TD-Error
V(s0) using FQE

(a) High-Level Policy, 9999
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(b) High-Level Policy, 999
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(c) High-Level Policy, 99
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(d) Medium-Level Policy, 9999
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(e) Medium-Level Policy, 999
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(f) Medium-Level Policy, 99
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(g) Low-Level Policy, 9999
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(h) Low-Level Policy, 999
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(i) Low-Level Policy, 99

Figure 13. CQL, Industrial Benchmark. Inversed Normalized Regret under different offline policy selection methods using EOP
graph. The shaded area represents one standard deviation
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(c) Low-Level Policy, 999
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(d) High-Level Policy, 99
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(e) Medium-Level Policy, 99
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(f) Low-Level Policy, 99

Figure 14. TD3+BC, FinRL. Inversed Normalized Regret under different offline policy selection methods using EOP graph. The
shaded area represents one standard deviation
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(a) Medium-Level Policy, 9999
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(b) Medium-Level Policy, 999
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(c) Medium-Level Policy, 99

1 2 3 4 5 6 7 8 9 10
Policies Evaluated Online

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
ed

 N
or

m
al

iz
ed

 R
eg

re
t

Uniform
Action Difference
TD-Error
V(s0) using FQE

(d) Low-Level Policy, 9999

1 2 3 4 5 6 7 8 9 10
Policies Evaluated Online

0.2

0.4

0.6

0.8

1.0

In
ve

rs
ed

 N
or

m
al

iz
ed

 R
eg

re
t

Uniform
Action Difference
TD-Error
V(s0) using FQE

(e) Low-Level Policy, 999
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Figure 15. TD3+BC, CityLearn. Inversed Normalized Regret under different offline policy selection methods using EOP graph.
The shaded area represents one standard deviation
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(a) High-Level Policy, 9999
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(c) High-Level Policy, 99

1 2 3 4 5 6 7 8 9 10
Policies Evaluated Online

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
ed

 N
or

m
al

iz
ed

 R
eg

re
t

Uniform
Action Difference
TD-Error
V(s0) using FQE
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(f) Medium-Level Policy, 99
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(g) Low-Level Policy, 9999
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(h) Low-Level Policy, 999
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Figure 16. TD3+BC, Industrial Benchmark. Inversed Normalized Regret under different offline policy selection methods using
EOP graph. The shaded area represents one standard deviation
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(a) High-Level Policy, 999
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(b) Medium-Level Policy, 999
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(c) Low-Level Policy, 999
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(d) High-Level Policy, 99
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(e) Medium-Level Policy, 99
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(f) Low-Level Policy, 99

Figure 17. BC, FinRL. Inversed Normalized Regret under different offline policy selection methods using EOP graph. The shaded
area represents one standard deviation
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(a) Medium-Level Policy, 9999

1 2 3 4 5 6 7 8 9 10
Policies Evaluated Online

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
ed

 N
or

m
al

iz
ed

 R
eg

re
t

Uniform
Action Difference
V(s0) using FQE

(b) Medium-Level Policy, 999

1 2 3 4 5 6 7 8 9 10
Policies Evaluated Online

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
ed

 N
or

m
al

iz
ed

 R
eg

re
t

Uniform
Action Difference
V(s0) using FQE

(c) Medium-Level Policy, 99
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(e) Low-Level Policy, 999
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(f) Low-Level Policy, 99

Figure 18. BC, CityLearn. Inversed Normalized Regret under different offline policy selection methods using EOP graph. The
shaded area represents one standard deviation
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(a) High-Level Policy, 9999
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(b) High-Level Policy, 999
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(c) High-Level Policy, 99
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(d) Medium-Level Policy, 9999
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(e) Medium-Level Policy, 999
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(f) Medium-Level Policy, 99
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(g) Low-Level Policy, 9999
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(h) Low-Level Policy, 999
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Figure 19. BC, Industrial Benchmark. Inversed Normalized Regret under different offline policy selection methods using EOP
graph. The shaded area represents one standard deviation


