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Abstract
Learning the tail behavior of a distribution is a
notoriously difficult problem. By definition, the
number of samples from the tail is small, and deep
generative models, such as normalizing flows,
tend to concentrate on learning the body of the dis-
tribution. In this paper, we focus on improving the
ability of normalizing flows to correctly capture
the tail behavior and, thus, form more accurate
models. We prove that the marginal tailedness
of an autoregressive flow can be controlled via
the tailedness of the marginals of its base dis-
tribution. This theoretical insight leads us to a
novel type of flows based on flexible base dis-
tributions and data-driven linear layers. An em-
pirical analysis shows that the proposed method
improves on the accuracy—especially on the tails
of the distribution—and is able to generate heavy-
tailed data. We demonstrate its application on a
weather and climate example, in which capturing
the tail behavior is essential.

1. Introduction
Heavy-tailed distributions are known to occur in various
applications in biology, finance, climate, and many other
fields. Quantities with a heavy-tailed distribution are, for ex-
ample, the length of protein sequences in genomes (Koonin
et al., 2006), returns of stocks (Gabaix et al., 2003), or the
occurence and impacts of weather and climate events (Katz,
2002). In these applications, heavy-tailed events are often
the most substantial samples and hence, ignoring them—
thinking of underestimating a maximum flood level or the
loss of a financial crisis—would yield to crucial model fail-
ures. From a theoretical point of view, heavy-tailed distri-
butions emerge from several circumstances, including the
limiting distribution in the generalized central limit theorem,
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of a multiplicative process, or as the limit of an extremal pro-
cess (Nair et al., 2013). Further, many distributions that arise
from a functional relationship, such as the ratio of two stan-
dard normal distributed random variables, are heavy-tailed,
highlighting their importance for models that incorporate
known physical relationships among quantities. Given the
frequency of occurrence and their potential impact, develop-
ing generative models that allow to learn heavy-tailed distri-
butions are an urgent task to solve. We approach this task
by providing important theoretical groundings regarding the
expressiveness of Normalizing Flows (NFs) for heavy-tailed
data.

Normalizing Flows (Rippel & Adams, 2013; Tabak &
Turner, 2013; Dinh et al., 2015; Rezende & Mohamed,
2015) are a popular class of deep generative models. Despite
their success in learning tractable distributions where both
sampling and density evaluation can be efficient and exact,
their ability to model heavy-tailed distributions is known
to be limited. Jaini et al. (2020) identified the problem that
autoregressive affine NFs are unable to map a light-tailed
distribution to a heavy-tailed distribution. They propose to
solve this issue by replacing the Gaussian base distribution
by a multivariate t-distribution with one learnable degree
of freedom, leading to a model referred to as Tail-Adaptive
Flows (TAF).

Contributions In this paper, we extend the work of Jaini
et al. (2020) in multiple ways: First, while TAF allows to
model distributions with a heavy-tailed Euclidean norm, we
show that modeling multivariate distributions, where some
of the marginals are heavy- and some are light-tailed, still
poses a problem. More precisely, we identify the problem
that an autoregressive affine NF using a base distribution
with solely heavy-tailed marginals (such as TAF) is only
able to provide a target distribution with just heavy-tailed
marginals as well. Consequently, such a NF is not capable
of learning distributions with mixed marginal tail behavior.
Second, to solve the problem, we derive a theoretical result
that states conditions under which the marginal tailedness
of the base distribution is preserved. Third, we turn these
theoretical insights into a novel modification of autoregres-
sive NFs, which allows to model the marginal tail behavior.
Since the proposed model preserves marginal tailedness, we
call it marginal tail-adaptive flow (mTAF). The proposed
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Figure 1. An Overview of mTAF. In a first step, we apply estimators from extreme value theory to classify the marginals as heavy- or
light-tailed. This classification defines a flexible base distribution consisting of marginal Gaussians and marginal t-distributions with
flexible degree of freedom, as illustrated by Step 2 of this figure. Further, we rearrange the marginals such that the first dl marginals are
light-tailed, whereas the remaining marginals are heavy-tailed. mTAF is then constructed using several flow-layers as visualized in Step 3:
we employ a triangular mapping, followed by a 2-group permutation scheme, which can be generalized to general 2-group linearities
(Section 3.3). At the end, we restore the original ordering using the inverse of the permutation employed in Step 2. Using Theorem 3.4,
we prove that mTAFs are marginally tail-adaptive (Corollary 3.5).

method combines estimators from extreme value theory, a
flexible base distribution, and a novel data-driven type of
linearities as illustrated in Figure 1. Furthermore, we notice
that the autoregressive layers in Neural Spline Flows (NSFs
(Durkan et al., 2019)), which are a SOTA architecture, are
linear in their tails and, therefore, that we can apply all the-
ory derived by Jaini et al. (2020) and presented in this paper
for neural spline layers. We introduce a simple modification
on the LU-layers that ensures that NSF preserve the full
marginal tailedness structure of the base distribution. Lastly,
we present a generalized and more flexible version of mTAF,
which we call generalized Tail-Adaptive Flow (gTAF). Our
theory is backed up by an experimental analysis demonstrat-
ing the superior performance of the proposed methods in
learning the tails, especially when it comes to generating
synthetic tail samples. Finally, we apply mTAF and gTAF
on a climate example to generate heavy-tailed weather data.

Notational Conventions In the following, we will denote
random variables by bold letters, such as x, and its real-
isations by non-bold letters, x. We use this notation for
multivariate and for univariate random variables. Further,

we denote the jth component of x by xj , and x≤j or x<j are
the first j or j−1 components of x, respectively. We denote
the random variable representing the base distribution by z
and the random variable representing the target distribution
by x. Further, for notational convenience, we denote the
probability density functions (PDFs) of x and z by p and q.
Finally, we assume that both random variables x and z have
continuous and positive density on RD, i.e p(x), q(z) > 0
for all x, z ∈ RD, where D is the dimensionality of x and
z.

2. Background
In this section, we give a brief introduction to heavy-tailed
distributions and present needed background knowledge
about normalizing flows.

2.1. Heavy-tailed Distributions

Heavy-tailed distributions are distributions that have heavier
tails (i.e. decay slower) than the exponential distribution.
Loosely speaking, slowly decaying tails allow to model dis-
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tributions that generate samples, which differ by a large
magnitude from the rest of the samples. For a univari-
ate random variable x we define heavy-tailedness via its
moment-generating function1:

Definition 2.1 (Heavy-Tailed Random Variables). Consider
a random variable x ∈ R with PDF p. We say that x is
heavy-tailed if and only if

∀λ > 0 : Ex

[
eλx
]

=∞ .

The function mp(λ) := Ex[exp(λx)] is known as the
moment-generating function of x. Random variables that
are not heavy-tailed are said to be light-tailed.

Note that this definition is, strictly speaking, merely a def-
inition for heavy right tails. We say a random variable
x ∈ R has heavy left tails if −x has heavy tails according
to Definition 2.1. For simplicity of derivations and w.l.o.g.,
we proceed with this definition but the derived results can
analogously be applied to left tails.

We can assess the degree of tailedness of a distribution.
While there are many equivalent notions of the so called
tail index, the most straight-forward definition is via the
existence of moments:

Definition 2.2 (Tail Index). A random variable x ∈ R with
PDF p is said to have tail index2 α if it holds that

Ex[|x|β ]

{
<∞ , if β < α ,

=∞ , if β > α .

Since the tail index is tightly related to the decay rate of the
PDF, it enables us to assess the degree of heavy-tailedness
of a random variable. Therefore, estimation of the tail index
became an important objective in extreme value theory and
statistical risk assessment (see e.g. Embrechts et al., 2013).
Since the existence of the moment does not depend on the
“body” of x but only on the tails of x (see Proposition A.1 in
Section A.1 in the Appendix), estimating the tail index by
fitting a full parametric model to all data e.g. via likelihood
maximization leads to a biased estimator. Instead, semi-
parametric estimators have been developed, which aim to
fit a distribution only on the tails. Popular methods for
tail estimation include the Hill estimator (Hill, 1975), the
moment estimator (Dekkers et al., 1989), and kernel-based
estimators (Csorgo et al., 1985). In Section C.1 of the

1One can readily show that this definition is equivalent to the
definition, which compares the tails of x to the tails of an exponen-
tial distribution. See Section 1 in Nair et al. (2013).

2Notice that the notion of a tail index is only valid for regularly
varying random variables, which are a subclass of heavy-tailed
random variables. For the purpose of this work, it is sufficient to
consider regularly varying random variables. More details can be
found in Nair et al. (2013).

Appendix, we discuss these tail estimators and review some
practical issues with these.

An example of a heavy–tailed distribution is the standard-
ized t-distribution, which has parameter ν > 0 referred to
as the degree of freedom and a density function given by

p(x) :=
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

)(1 +
x2

ν

)− ν+1
2 , x ∈ R ,

where Γ is the Gamma function. It is known that the t-
distribution has tail index ν (see e.g. Kirkby et al. (2019)
for a detailed reference).

In the multivariate setting, there exist various definitions of
heavy-tailedness. For instance Resnick (2004) make use of
a definition based on multivariate regular variation. Jaini
et al. (2020) define a multivariate random variable x to be
heavy-tailed if the `2-norm is heavy-tailed, a property which
we refer to as `2-heavy-tailed, and which is formally defined
as follows:
Definition 2.3 (`2-Heavy-Tailed). Let x ∈ RD be a multi-
variate random variable. Then, we call x `2-heavy-tailed if
‖x‖ is univariately heavy-tailed according to Definition 2.1,
where ‖ · ‖ denotes the `2-norm. Otherwise, we call x
`2-light-tailed.

2.2. Normalizing Flows

The fundamental idea behind NFs is based on the change-of-
variables formula for probability density functions (PDFs)
given in the following theorem.
Theorem 2.4 (Change-of-Variables). Consider random
variables x, z ∈ RD and a diffeomorphic map T : RD →
RD such that x = T (z). Then, it holds that the PDF of x
satisfies

p(x) = q
(
T−1(x)

)∣∣det JT−1(x)
∣∣ ∀x ∈ RD , (1)

where JT−1(x) is the Jacobian of T−1 evaluated at x ∈
RD.

This formula allows us to evaluate the possibly intractable
PDF of x if we can evaluate both, the PDF of z and
T−1(x), and efficiently calculate the Jacobian-determinant
det JT−1(x). As T maps z to x, we denote the distribution
of z and x as the base and the target distribution, respec-
tively.

To model the PDF of x using NFs, it is common to set
the base distribution to a standard normal distribution (i.e.,
z ∼ N (0, I)) and to employ likelihood maximization to
learn a parameterized transformation

Tθ := T
(L)
θ ◦ · · · ◦ T (1)

θ ,

which, yet, remains tractable and diffeomorphic. Masked
autoregressive flows (MAFs (Papamakarios et al., 2017)) are
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one popular architecture3, which employ transformations
T = (T1, . . . , TD)> of the form

Tj(z) := µj(z<j)+exp(σj(z<j))zj for j ∈ {1, . . . , D} ,
(2)

where µj and σj are neural networks, which obtain the
first j − 1 components of z as input and output a scalar.
Composing several transformations of the form (2), we ob-
tain the MAF. The autoregressive form in (2) allows us to
efficiently evaluate the Jacobian-Determinant due to the tri-
angular form of JT (x), which is why autoregressive NFs are
also referred to as triangular flows. By shuffling the ordering
of the components, i.e. applying a permutation after each
autoregressive transformation, we are able to form more
diverse causal dependencies, leading to more expressive
models. It has been shown that replacing the permutations
by more general invertible layers can further improve the
estimation performance (Oliva et al., 2018). In summary
MAFs consist of multiple consecutive layers T (l)

θ ◦ P (l),
where P (l) ∈ RD×D is some linear layer. Other examples
for triangular flows include NAF (Huang et al., 2018), and
NSF (Durkan et al., 2019), where the latter substitutes the
affine transformation (2) by a rational of two splines. Fur-
ther types of NFs include invertible ResNets (Jacobsen et al.,
2018; Behrmann et al., 2019; Chen et al., 2019), continuous
flows (Chen et al., 2018; Grathwohl et al., 2019), and many
more (Kobyzev et al., 2020).

Tail-Adaptive Flows. Jaini et al. (2020) investigated the
ability of triangular flows to learn heavy-tailed distributions.
The authors have shown that if a triangular affine flow trans-
forms a `2-light-tailed distribution, such as the multivariate
Gaussian distribution, to a `2-heavy-tailed target distribu-
tion, then Tθ cannot be Lipschitz continuous. And more
explicitly, it holds the following.

Theorem 2.5. (Jaini et al., 2020) Let z be a `2-light-tailed
random variable and T be an affine triangular flow such that
Tj(z≤j) = µj(z<j) + σj(z<j)zj for all j. If σj is bounded
above and µj is Lipschitz for all j, then the transformed
variable x is also `2-light-tailed.

Furthermore, the authors prove that any triangular mapping
from an elliptical distribution to a heavier-tailed elliptical
distribution must have an unbounded Jacobian-determinant.
These results illuminate that learning a heavy-tailed distri-
bution using NFs leads to non-Lipschitz transformations
and unbounded Jacobians, which inevitably affects training
robustness (Behrmann et al., 2021). Motivated by these re-
sult, Jaini et al. (2020) propose Tail-Adaptive Flows (TAF),
which replace the Gaussian base distribution by a multivari-
ate t-distribution with one learnable degree of freedom.

3Stricly speaking, (2) shows the transformations of an IAF
(Kingma et al., 2016). However, MAF and IAF are theoretically
equivalent, the differences lie only in their architectures.

3. Learning the correct marginal Tail
Behavior with mTAF

In this section, we present a simple extension to triangular
affine flows that allows to model distributions with a flex-
ible tail behavior. We start by presenting our theoretical
results in Section 3.1. Motivated by these results, we pro-
pose marginally Tail-Adaptive Flow (mTAF) in Section 3.2,
which we apply to NSFs in Section 3.3. Lastly, we present
a more flexible relaxation of mTAF, which we call general-
ized Tail-Adaptive Flow (gTAF) in Section 3.4.

3.1. The Necessity of a flexible Base Distribution

In this work, we investigate the tailedness of NFs more thor-
oughly through the lense of marginal tailedness, i.e. we con-
sider the univariate tailedness of the marginal distributions
of xj .Therefore, we introduce the following definitions:
Definition 3.1 (j-heavy-tailed, mixed-tailed, fully heavy–
tailed, equal Tail Behavior). We call a random variable
x ∈ RD j-heavy-tailed if its jth marginal xj is heavy-tailed
according to Definition 2.1. Otherwise, we call x j-light-
tailed. x is said to be mixed-tailed if there exists j1, j2 such
that x is j1-heavy-tailed and j2-light-tailed. Further, we
say that x is fully heavy-tailed if x is j-heavy-tailed for all
j ∈ {1, . . . , D}. We define two random variables x and z
to have equal tail behavior if it holds for all j that

x is j–heavy–tailed ⇔ z is j–heavy–tailed .

We found the following relation to Definition 2.3.
Proposition 3.2 (j-heavy-tailedness induces
`2-heavy-tailedness). Assume that x is j-heavy-tailed for
any j. Then, x is also `2-heavy-tailed.

The proof can be found in Section A.1 in the Appendix. The
proposition shows that j-heavy-tailedness is a more spe-
cific notion of multivariate heavy-tailedness than `2-heavy-
tailedness, which allows a narrow inspection of the tail
behavior. More precisely, the new notion allows us to dif-
ferentiate between fully heavy-tailed random variables and
mixed-tailed random variables, which are both `2-heavy-
tailed. The first result states that, under mild technical con-
ditions, fully heavy-tailedness of the base distribution is
preserved by triangular affine maps.
Proposition 3.3 (Triangular affine Maps preserve fully
heavy-tailedness). Let z be a fully heavy-tailed random vari-
able that satisfies Assumption A.64 and let T be a a triangu-
lar affine map, that is, Tj(zj , z<j) = µj(z<j) + σj(z<j)zj
with σj > 0. Then, it holds that T (z) is also fully heavy-
tailed.

We provide a formal proof in Section A.2 of the Appendix.
Assumption A.6 is a mild condition on the decay rate of

4This Assumption can be found in Section A.2 in the Appendix.
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the copula density of z. In Section A.3 of the Appendix,
we explain this condition in more detail and give various
examples.

It is clear that permuting the marginals does not change
the heavy-tailedness. Hence, by iterative application of
Proposition 3.3, we deduce that affine triangular flows that
employ permutation layers and a fully heavy-tailed base
distribution are unable to model mixed tailed distributions.
Implicitly, Proposition 3.3 states that a Lipschitz normal-
izing flow as proposed by Jaini et al. (2020) is not able to
model mixed-tailed distributions. The following theorem
provides sufficient conditions under which a flow is able to
model mixed-tailed distributions, which guides us towards
a marginally tail-adaptive flow architecture.

Theorem 3.4 (Learning the correct Tail Behavior). Con-
sider a random-variable z that is j-light-tailed for j ∈
{1, . . . , dl} for some dl < D and j-heavy-tailed for j ∈
{dl + 1, . . . , D}. Then, under the same conditions as in
Theorem 2.5 and Proposition 3.3, it holds that z and T (z)
have the same tail behavior.

Proof. Since the result combines Theorem 2.5 and Propo-
sition 3.3 in an evident fashion, we just quickly present a
sketch of the proof. First, let us consider j ≤ dl. Then it
holds for the moment-generating function of xj that

mxj (λ) =

∫
RD

eλTj(z≤j)q(z)dz

=

∫
Rj
eλTj(z≤j)p≤j(z≤j)dz≤j ,

which has been shown to be bounded for some λ > 0 (see
the proof of Theorem 2.5 in Jaini et al. (2020)). Therefore, x
is j-light-tailed for all j ≤ dl. In the case j > dl, we notice5

that the proof for heavy-tailedness of Tj(z≤j) involves just
the heavy-tailedness of zj and not of any other component
of z<j . Hence, if zj is heavy-tailed, then xj = Tj(z≤j)
is also heavy-tailed, regardless of z<j . Therefore, x is j-
heavy-tailed for all j > dl, which completes the proof. Note
that in general we cannot deduce the latter conclusion for
light-tailed marginals, i.e. if zj is light-tailed, this does not
mean that xj is also light-tailed. This is only the case, if all
z<j are light-tailed as well.

3.2. Marginally Tail-Adaptive Flow (mTAF)

Our main result, Theorem 3.4, prompts that if we maintain
an ordering of the marginals such that the first marginals
are light-tailed and the following are heavy-tailed in each
flow step, we retain the marginal tail behavior of the base
distribution in the estimated target distribution. This finding
motivates the novel NF proposed in this paper. The proposed

5For details, we refer to the proof of Proposition 3.3 in the
Appendix.

approach combines research findings from extreme value
theory (Embrechts et al., 2013; Nair et al., 2013), recent
findings about normalizing flows (Jaini et al., 2020; Alexan-
derson & Henter, 2020; Laszkiewicz et al., 2021), and the
results presented herein. The proposed mTAFs consists of
three steps that are depicted in Figure 1 and described in the
following:

Step 1: Estimating the marginal tail indices and defin-
ing the marginal distributions. For each marginal, i.e. for
the marginal distribution qj of each xj , j = 1, . . . , D, we
assess heavy- or light-tailedness using tail estimators. If
the marginal is predicted to be light-tailed, we set the corre-
sponding marginal base distribution to be standard normal
distributed zj ∼ N (0, 1). Otherwise we set the marginal to
the standardized t-distribution with the estimated degree of
freedom, i.e. zj ∼ tν̂j , where ν̂j is the Hill double-bootstrap
estimator (Danielsson et al., 2001; Qi, 2008). We present all
the details about the tail-assessment scheme in Section C.1.

Step 2: Defining the base distribution. We construct the
base distribution as the mean-field approximation of the
marginals, i.e. z has the density q(z) :=

∏D
j=1 qj(zj) with

marginal densities qj defined in step 1. Further, to satisfy
the assumptions of Theorem 3.4, we need to permute the
marginals such that it holds zj ∼ N (0, 1) for j ≤ dl and
zj ∼ tν̂j for j > dl. We apply the same permutation
to restructure our data according to the base components.
To account for tail index estimation errors and for more
flexible learning, one can make the tail indices (i.e. the
degrees of freedom of each t-distribution) learnable. That
is, we initialize the degree of freedom of the jth marginal
with ν̂j but adapt the parameter together with the network
parameters throughout training.

Step 3: A data-driven permutation scheme. Recall, that
vanilla autoregressive flows employ a permutation step af-
ter each transformation to enhance the mixing of variables.
However, purely random permutations might lead to a viola-
tion on the ordering of marginals, which is necessary to en-
sure Theorem 3.4. Therefore, we permute only within the set
of heavy-tailed marginals and within the set of light-tailed
marginals, to ensure the validity of Theorem 3.4. Within
these groups one can choose any permutation scheme. We
generalize this result for LU-layers in Section 3.3.

Without loss of generality, we assume that the first dl com-
ponents of z are light-tailed and the remaining D − dl com-
ponents are heavy-tailed6. Then, the training objective is
to optimize for flow parameters θ̂ and degrees of freedom

6Otherwise we permute the marginals as described in Step 2.
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ν̂ = [ν̂dl+1, . . . , ν̂D] to maximize the log-likelihood

L(θ̂, ν̂;X) =

N∑
j=1

{
dl∑
i=1

log π
(
T−1

θ̂

(
x(j)

)
i

)

+

D∑
i=dl+1

log tν̂i

(
T−1

θ̂

(
x(j)

)
i

)
− log detJTθ̂

(
x(j)

)}

where X := (x(1), . . . x(N)) is the data, and π and tν̂ are
the PDF of the standard normal distribution and the standard
t-distribution with ν̂ degrees of freedom, respectively.

When applying our theoretical results presented in the pre-
vious section to the proposed mTAF, we can show that it
fulfills the desired tail-preserving property, as formalized by
the following corollary:

Corollary 3.5 (Marginally tail-adaptive). Under the same
assumptions as in Theorem 2.5 and in Proposition 3.3,
mTAFs are marginally tail-adaptive, that is, z and x = T (z)
have the same tail behavior.

3.3. Marginal Tail-Adaptive Neural Spline Flows

Recent findings on NFs lead to significant improvements of
their performance, such as employing LU-Layers instead
of permutations (Kingma & Dhariwal, 2018; Oliva et al.,
2018) and more expressive autoregressive layers. One of
the current SOTA NFs, which combine both improvements,
are NSFs (Durkan et al., 2019). In this section we apply the
theory from the previous sections to NSFs with a modified
version of the LU-Layers, while retaining their computa-
tional benefits.

First, let us provide sufficient conditions under which linear
layers preserve the marginal tail behavior:7

Theorem 3.6. Let z be a random variable that is j-light-
tailed for j ∈ {1, . . . , dl} and j-heavy-tailed for j ∈ {dl +
1, . . . , D}. Further, consider a block-diagonal invertible
matrix

W =

(
A 0
B C

)
(3)

with A ∈ Rdl×dl , B ∈ R(D−dl)×dl , CinR(D−dl)×(D−dl)

and 0 is a zero matrix of size d× (D− dl). Then, it follows
that Wz and z have equal tail behavior.

As a special case of Lemma B.3, we can invert a block-
diagonal matrix(

A 0
B C

)−1

=

(
A−1 0

−C−1BA−1 C−1

)
. (4)

Further, the log-determinant of W is given by

log det(W ) = log det(A) + log det(C) . (5)

7The proof is presented in Section B.1.

Therefore, as long as log-determinant computation and in-
version ofA and C are efficient, we can efficiently employ a
block-diagional matrix as a flow layer. Luckily, both is given
if we parameterize A and C using the LU-decomposition,
whereas B can be an arbitrary matrix.

Moreover, NSFs make use of monotonic rational-quadratic
splines to define the autoregressive layers. These splines
are defined within some interval [−b, b] and are linearily
extended outside this interval. Hence, the autoregressive
NSF layers are in fact affine linear in their tails, which in
turn means that we can apply all the theory from the previous
sections on NSFs as well (compare with Lemma A.2).

In summary, NSF with linear layers according to the block-
form (3) preserve the marginal tailedness of the base dis-
tribution. We want to highlight that even though each au-
toregressive NSF layer is linear outside [−b, b], this does
not mean that the whole flow is linear outside [−b, b]. This
is because the (modified) LU-layers in between can map
a component in and out of [−b, b], leading to a non-trivial
mapping outside that interval.

3.4. Generalized Tail-Adaptive Flows

Even though being theoretically founded, we introduce a
more flexible relaxation of mTAF, which we call general-
ized TAF (gTAF): We drop the structural restrictions on
the linearities and set the base distribution to a mean-field
approximation of t-distributions with different trainable de-
grees of freedom. Therefore, gTAF is a compromise be-
tween the theoretically stronger mTAF and TAF. Note that
since tν

ν→∞−−−−→ N (0, 1) we are able to approximately model
heavy- as well as light-tailed marginals. Further, since LU-
layers are trainable as well, gTAF is able to approximate
mTAF arbitrary well by learning a structure as in (3).

Theorem 3.7. Let T : RD → RD be almost surely con-
tinuous. Further, let z = (z1, . . . , zD) be the mTAF base
distribution with dl Gaussian marginals and let zν be the
gTAF base distribution with marginals

zν,j ∼

{
tν(0, 1) for j ≤ dl
zj for j > dl

.

Then, it holds that T (zν)
ν→∞−−−−→D T (z), where→D denotes

convergence in distribution.

Hence, when fixing the flow T , gTAF converges to the
mTAF solution as the light-tailed degrees of freedom tend
to∞. We provide a proof in Section A.4.

4. Experimental Analysis
To investigate the benefits of the derived methods, we per-
form an empirical analysis on synthetic data (Section 4.1)
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Table 1. Average test loss, Area under log-log plot, and tVaR (lower is better for each metric) in the setting ν = 2 and dh ∈ {1, 4}. The
copula model serves as an oracle baseline.

dh 1 4

L Areal Areah tVaRl tVaRh L Areal Areah tVaRl tVaRh

vanilla 10.25 0.25 4.19 0.60 29.56 8.98 0.25 4.30 0.54 28.55
TAF 10.15 0.37 3.55 0.78 4.21 8.69 0.42 4.05 0.89 4.36
gTAF 10.12 0.55 3.24 1.16 2.67 8.57 0.50 3.38 0.98 5.55
mTAF 10.11 0.26 2.22 0.59 2.94 8.55 0.25 2.60 0.57 6.74

copula 9.75 0.20 1.23 0.45 2.22 9.75 0.19 1.43 0.46 3.49

to understand the behavior and benefits of mTAF and gTAF
in comparison to other flows models. In Section 4.2, we
demonstrate how we can exhibit the heavy-tailed behavior
of the model to sample new extremes in weather and climate
example. We provide a PyTorch implementation and the
code for all experiments, which can be accessed through our
public git repository8.

4.1. Synthetic Experiments

In this series of experiments, we compare the performance
of 4 different NSFs: vanilla flow (i.e. z ∼ N (0, I)), TAF
(i.e. z ∼ tν̂(0, I)), gTAF, and mTAF with fixed degrees of
freedom. The data is generated by a 8-dimensional Gaussian
copula with dh ∈ {1, 4} heavy-tailed marginals with tail
index ν = 2. Details about the data generation can be found
in Section C.2. As an oracle baseline, we fit a Gaussian
copula to the data. To measure the overall fit of the model,
we track the negative log-likelihood loss L. Since it is well-
known that a good likelihood fit is not equivalent to high
sampling quality (Theis et al., 2015), we take a closer on
the samples in the tails of the distribution by considering
the following three metrics.9

1. Tail Value at Risk (tVaRα), also known as expected
shortfall, which is the expectation of the quantile func-
tion given that we consider a quantile level larger than
α. By calculating the absolute difference between
tVaRα based on the data distribution and based on
synthetic samples generated by the flow, we obtain the
tVaR-difference.

2. Area under log-log plot Area, which can be inter-
preted as a reweighted version of tVaR that puts more
weight on the extremes.

3. Synthetic Tail Estimates are the marginal tail estima-
tors based on synthetic data generated by the flow. Ide-
ally, we expect the NF to generate samples according

8https://github.com/MikeLasz/marginalTailAdaptiveFlow
9All metrics are formally defined in Section C.3.

to the true tail-index.

We measure tVaR-differences componentwise and average
over all heavy-tailed and light-tailed components to obtain
tVaRh and tVaRl, respectively. The same applies for Area.

We fit each model 25 times to 3 different synthetic distribu-
tions and summarize the numeric results in Table 110. It is
no surprise that vanilla performs well for light-tailed com-
ponents but suffers on capturing the tails of the heavy-tailed
distributions. In the setting dh = 1, we observe the same
behavior for TAF, which could be attributed to having only
one joint tail parameter ν to model the seven light-tailed
and one heavy-tailed marginal. mTAF does not always per-
form best but it manages to find a good balance between
the fit on the light-tailed, as well as heavy-tailed compo-
nents. This is demonstrated more clearly when considering
the tail estimation indices of the marginals (Figure 2). In
this figure, we summarize the estimated marginal tail be-
havior of the learned model in a confusion matrix. While
most of the generated marginals are classified as light-tailed
for vanilla and TAF, mTAF is able to recover the marginal
tail behavior almost perfectly. We make similar observa-
tions in the other settings and when using MAFs instead of
NSFs (Section C.3). We extend our analysis by providing a
50-dimensional example in Section C.3.

L H
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d 97.7% 96.3%

2.3% 3.7%
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L
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d 86.7% 79.3%

13.3% 20.7%

L H
Actual

L
HGe
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te
d 76.3% 8.0%

23.7% 92.0%

L H
Actual

L
HGe

ne
ra

te
d 97.3% 0.0%

2.7% 100.0%

Figure 2. Marginal tail estimation based on synthetic flow samples
for dh = 4, ν = 2 of vanilla, TAF, gTAF, and mTAF (from left to
right). We classify marginals whose tail estimator is less than 10
as heavy-tailed, otherwise it is classified as light-tailed.

10Standard deviations for one synthetic distribution are shown
in Table 3.
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4.2. Modeling Climate Data

180

200

220

240

260

280

300

Dr
y-

bu
lb

 a
ir 

te
m

pe
ra

tu
re

 in
 K

0

200

400

600

800

1000

At
m

os
ph

er
ic 

pr
es

su
re

 in
 P

a

0 20 40 60 80 100 120 140
Atmospheric level

0

2

4

6

8

10

12

14

16

Cl
ou

d 
op

tic
al

 d
ep

th

 0 - 25 %
25 - 50 %
50 - 100 %

Figure 3. Synthetic flow samples using mTAF, where we clipped
the lower-values of the cloud-optical depth at 0. The corresponding
negative log-likelihood is −2121.46. The profiles are ordered
using band depth statistics Pintado & Romo (2009) and the shaded
areas represent standard deviations.

We demonstrate the benefits of the proposed methods on
an example, in which tail modeling is crucial: we apply
mTAF to generate new data following the distribution of
the EUMETSAT Numerical Weather Prediction Satellite
Application Facility (NWP-SAF) dataset (Eresmaa & Mc-

Nally, 2014). The data set consists of 25 000 measurements
of 3 meteorological quantities, measured on different atmo-
spheric levels. Considering each measurement in each atmo-
spheric level, we obtain a 412-dimensional dataset, which
we visualize in Figure 9 in the Appendix. We train a vanilla,
TAF, gTAF, and mTAF model using NSFs to fit the weather
data. All architectural details are listed in Section C.4.

Qualitatively, all generated profile lines appear reasonable,
see Figure 3 and Section C.4. From a quantitative perspec-
tive, we observe that mTAF achieves the smallest negative
log-likelihood loss, as displayed in Table 2. We extend
the quantitative analysis by investigating 1-dimensional ran-
dom projections of the data and flow samples11. To do so,
we follow the same procedure as Meyer et al. (2021), i.e.
we generate random weights w1, . . . , w100 ∼ U([0, 1]412)

and generate 100 random 1-dimensional data sets X(j)
flow :=

{〈wj , T (zi)〉 : zi ∼ z} and X(j)
data := {〈wj , xi〉 : xi ∈

X}. For each j, we can compare statistics such as the
means, standard deviations, and quantiles of X(j)

flow and
X

(j)
data, which we visualize in Figure 4. While all meth-

ods are able to fit the mean very well, only mTAF generates
data that obeys the same standard deviation and extreme
quantiles.

More details and further comparisons are provided in Sec-
tion C.4.

5. Limitations and Extensions
Our theoretical findings from Section 3 provide a solid foun-
dation on learning heavy-tailed generative models. Nonethe-
less, there exist limitations that are worth being addressed
in future works.

Asymmetric Tail Behavior is a widespread property of
real distributions in which only one of the tails (lower or
upper tail) is heavy-tailed whereas the other is light-tailed.
For instance the cloud optical depth in the climate example
(Section 4.2) has just heavy upper tails since cloud-optical
depth cannot drop below 0. One way to potentially solve
this issue would be to allow for even more flexible base
distributions using composite models (see for instance Abu
Bakar et al. (2015) and the references therein). Recently,
COMET Flows (McDonald et al., 2022) employed those
composite models to learn the lower tail, the upper tail,
and the body of each marginal separately to improve on
the performance of a variant of copula flows (Wiese et al.,

11Note that in contrast to the synthetic experiments, this data has
much more dimensions. Quantities such as the Area under log-log
plot depend on the rare tail-samples, and hence, its estimation
requires many samples. This requirement is further emphasized
in the high-dimensional setting, which is why we resort to these
1-dimensional projections.
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Table 2. Average test loss on the NWP-SAF dataset. We average over 25 trials per model and show the standard deviations in brackets.

vanilla TAF gTAF mTAF

L −2101.91(±9.44) −2110.56(±7.87) −2113.48(±7.93) −2121.38(±10.91)
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(a) Mean.
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Figure 4. Statistics from 1-dimensional random projections of the data and flow samples. Each point represents the statistic
(S(Xdata(j)), S(Xflow(j))), which are calculated using the random weight wj ∼ U([0, 1]412). In the ideal case, all points lie on
the dotted diagional line.

2019).

Tail Dependencies are a popular property investigated in
areas such as financial risk analysis, and which quantify the
dependency of two marginals given that a tail event occurred.
More precisely, we define the tail dependency between the
marginals xi, xj as

λi,j = lim
u→1−

P
(
xj > F−1

j (u)|xi > F−1
i (u)

)
,

where F−1
j and F−1

i are the quantile functions of xj and
xi, respectively. There is a large body of theoretical works
revolving around copulae to model tail dependencies (Joe,
2014). Hence, a possible extension might be to replace the
mean field assumption in the base distribution by a copula
distribution, i.e. by dependent marginals with PDF

q(z) = c
(
F1(z1), . . . , FD(zD)

) D∏
j=1

qj(zj) ,

where Fj are the CDFs and qj are the marginal PDFs of xj
for each j.

6. Conclusion
In this work, we deepen the mathematical understanding of
the tail behavior of autoregressive normalizing flows. We
note that the distribution we want to model may have heavy-
as well as light-tailed marginals, and we prove that standard
normalizing flows are not able to learn such distributions.
Our developed theory shows how the marginal tail behavior
of the target distribution of the flow relates to the tail be-
havior of its base distribution. Based on these theoretical

findings we propose a new algorithm, which we refer to as
mTAF. In particular, we initialize a base distribution based
on statistical tail estimates of the target, and employ struc-
tured linearities that guarantee the correct tail behavior of
the target distribution. Importantly, we extend our theory to
Neural Spline Flows and provide a modification that casts
them marginally tail-adaptive. Lastly, as a trade-off between
the theoretically founded mTAF and the less restricted lin-
earities in standard normalizing flows, we present a more
flexible relaxation of mTAF called gTAF, which is able to
converge to mTAF as a special case. An in-depth empirical
analysis with heavy- and light-tailed marginals shows that
mTAF and gTAF are superior in terms of estimation perfor-
mance, especially when it comes to learning a heavy tail
of a distribution. In contrast to standard normalizing flows,
only gTAF and mTAF are able to reliably generate samples
that follow the desired tail behavior.

In summary, we believe that the theoretical soundness and
the ability to faithfully generate extreme samples is a major
strength of gTAF and mTAF, which are both crucial prop-
erties in various applications such as finance, climate and
related areas.
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A. Theory and Proofs
In this Section, we derive and prove our theoretical results. We start by presenting some preliminary results in Sec-
tion A.1, which help us providing the proof of our main result in Section A.2. In Section A.3, we illuminate the technical
Assumption A.6 and provide examples and intuitions.

A.1. Preliminary theoretical Results

Proposition A.1. Let x ∈ R be a random variable. Then, it holds that x has tail index less or equal than α iff. for any
β > α and any C > 0 it is ∫

|x|>C
|x|βp(x)dx =∞ .

Proof. Let us first assume that x has tail index at most α. Then, according to Definition 2.2, we know that for any β > α
and C > 0

∞ = Ex[|x|β ] =

∫
R
|x|βp(x)dx =

∫
|x|≤C

|x|βp(x)dx+

∫
|x|>C

|x|βp(x)dx

≤ Cβ
∫
|x|≤C

p(x)dx+

∫
|x|>C

|x|βp(x)dx .

Since we assume p to be continuous, we can bound p on the compact interval [−C,C], and hence, the first above integral
must be bounded. Therefore, it is ∫

|x|>C
|x|βp(x)dx =∞ .

To prove the back-direction, let us consider a β > α and C > 0. Very similarly to the forward-proof, we can now see that

∞ =

∫
|x|>C

|x|βp(x)dx

= Cβ
∫
|x|≤C

p(x)dx+

∫
|x|>C

|x|βp(x)dx

= Ex

[
|x|β

]
,

where the second equality follows from the finiteness of the integral. Since this follows for any β > α, x must have tail
index α or less.

This simple result demonstrates that the tail index, as indicated by the name, depends on the tail of the distribution, i.e. on
the PDFs behavior for large values |x| > C. This fact motivates why maximum likelihood estimations of the tail index,
which depend on the whole distribution are biased. For more elaborate details, we refer to Section 9 in Nair et al. (2013).

In a similar fashion to the previous result, the next technical lemma states that unboundedness of the moment-generating
function is due to the unboundedness of the integrand for tail events, i.e. for z > z∗. This little lemma turns out to be useful
in the proof of Proposition 3.3.

Lemma A.2. Let z ∈ R be heavy-tailed. Then it holds for any z∗ ∈ R and λ > 0 that∫
z>z∗

eλzpz(z)dz =∞ .
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Proof. Since z ∈ R is heavy-tailed, we know that for all λ > 0

∞ = mz(λ) =

∫
R
eλzpz(z)dz

=

∫
z≤z∗

eλzpz(z)dz +

∫
z>z∗

eλzpz(z)dz

≤ Fz(z∗)eλz
∗

+

∫
z>z∗

eλzpz(z)dz ,

where Fz is the CDF of z. The last inequality follows from the fact that exp(λz) is monotonic increasing in z. Since the
first summand is bounded, it follows that the second summand must be unbounded. This completes the proof.

Recall that in Proposition 3.2 we state that j-heavy-tailedness induces `2-heavy-tailedness. In the following, we provide a
formal proof of this result.

Proof of Proposition 3.2. For this proof, we employ the equivalent definition of heavy-tailedness of xj via the decay rate of
its distribution function (see e.g. Lemma 1.1. in Nair et al. (2013)), i.e.

lim sup
xj→∞

1− Fj(xj)
e−λxj

=∞ for all λ > 0 , (6)

where Fj is the CDF of xj . Since xj ≤ ‖x‖ for all x ∈ RD, we can conclude that Fj(a) ≥ F‖x‖(a) for a ∈ R. Therefore,

1− F‖x‖(a)

e−λa
≥

1− Fxj (a)

e−λa
→∞ for a→∞ .

According to the equivalent definition in (6), ‖x‖ is heavy-tailed, which proves that x is `2-heavy-tailed.

The following is a well-known implication of the change of variables formula and the integration rule by substitution, which
we are going to apply in the subsequent proofs.

Lemma A.3 (Substitution in the Moment-Generating Function). Let T be a diffeomorphism such that T (z) = x for some
random variables x, z ∈ RD. Then, we can rewrite∫

RD
eλxp(x)dx =

∫
RD

eλT (z)q(z)dz .

For completeness, we give a brief proof of this result.

Proof. Using the change of variables formula, see (1), we can write∫
RD

eλxp(x)dx =

∫
RD

eλxq
(
T−1(x)

)∣∣det JT−1(x)

∣∣dx .

Now, we can rewrite exp(λx) = exp(λT
(
T−1(x)

)
and substitute z = T−1. Integration by substitution completes the

proof.

Next, we present how we can use copulae to reformulate a multivariate PDF. [Copula] A copula is a multivariate distribution
with cumulative distribution function (CDF) C : [0, 1]D → [0, 1] that has standard uniform marginals, i.e. the marginals Cj
of C satisfy Cj ∼ U [0, 1].

Theorem A.4 (Sklar’s Theorem). Taken from Hofert et al. (2018).

1. For any D-dimensional CDF F with marginal CDFs F1, . . . , FD, there exists a copula C such that

F (z) = C
(
F1(z1), . . . , FD(zD)

)
(7)



Marginal Tail-Adaptive Normalizing Flows

for all z ∈ RD. The copula is uniquely defined on U :=
∏D
j=1 Im(Fj), where Im(Fj) is the image of Fj . For all

u ∈ U it is given by
C(u) = F

(
F←1 (u1), . . . , F←D (uD)

)
,

where F←j are the right-inverses of Fj .

2. Conversely, given any D-dimensional copula C and marginal CDFs F1, . . . FD, a function F as defined in (7) is a
D-dimensional CDF with marginals F1, . . . , FD.

Therefore, if F is absolutely continuous, we can differentiate (7) to obtain the PDF of z

q(z) = c
(
F1(z1), . . . , FD(zD)

) D∏
j=1

qj(zj) ,

where c denotes the PDF of the copula C.

Lastly, we present the following asymptotic behavior of the inverse CDF of a standard Gaussian distribution, which we use
in Section A.3 to explain Assumption A.6.

Lemma A.5 (Asymptotic Behavior12 of Φ−1(1− y)). Denote by Φ the CDF of a standard Gaussian distribution. Then, it
holds for the inverse of Φ that

Φ−1(1− y) ∼
√
−2 log(y) for y → 0 .

Proof. First, we note that

Φ(x) =
1

2
+

1

2
erf

(
x√
2

)
∼ 1− 1

x
√

2
e−x

2/2 ,

which is a well-known asymptotic (Liu et al., 2012). Here, erf denotes the error-function. Rearranging terms gives

log
(
1− Φ(x)

)
∼ − log

(
x
√

2π
)
− x2

2
∼ −x

2

2
as x→∞ .

Finally, we can invert the above asymptotic equation to obtain

Φ−1(y) =
√
−2 log(1− y) for y → 1

or equivalently
Φ−1(1− y) =

√
−2 log(y) for y → 0 .

A.2. Proof of the Main Result

The proof of Proposition 3.3 relies on lower-bounding the moment-generating function of each marginal xj . In order to
derive such a bound of a multivariate integral, we rewrite the joint distributions q≤j using their copula densities:

q≤j(z≤j) = cj
(
F1(z1), . . . , Fj(zj)

)∏
i<j

qi(zi)

for any j ∈ {1, . . . , D} and for corresponding copula density cj . Our proof relies on the following technical condition on
the decay rate of the copula densities.

Assumption A.6 (Bounding the Marginal Decay Rate of the Copula Densities). For all j ∈ {1, . . . , D} and λ > 0 there
exists a compact set S ⊂ Rj−1 with positive (Lebesgue-)mass, a constant z∗j > 0, a scaling constant s > 0, and a function
f(z<j) < λσ(z<j) for z<j ∈ S such that

cj
(
F1(z1), . . . , Fj(zj)

)
≥ se−f(z<j)zj for zj > z∗j and z<j ∈ S , (8)

where cj is the copula density of q≤j
12The idea of the proof is due to (https://math.stackexchange.com/users/491644/maxim)
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This assumption sets a bound on the decay rate of the copula density with respect to zj . We clarify this assumption in
Section A.3 with additional examples.

Now, we set all preliminaries to prove Proposition 3.3.

Proof of Proposition 3.3. We start by considering the case j = 1. In this case it is x1 = µ+ σz1 and therefore

mx1(λ) =

∫
R
eλx1p1(x1)dx1

=

∫
R
eλ(µ1+σ1z1)q1(z1)dz1 (Lemma A.3)

= eλµ1

∫
R
eλσ1z1q1(z1)dz1 .

Defining λ′ := λσ1 > 0, we can see that the last integral is unbounded due to the heavy-tailedness of z1, see Definition 2.1.
Therefore, mx1(λ) =∞ for all λ > 0, which proves the heavy-tailedness of x1.
Next, we consider the case j > 1. Again, we examine the moment-generating function of xj . Define the jth canonical basis
vector vj := (0, . . . , 0, 1, 0, . . . , 0)>. Then,13

mxj (λ) = mv>j x =

∫
RD

eλv
>
j xp(x)dx (LOTUS)

=

∫
RD

eλTj(zj ,z<j)q(z)dz (Lemma A.3)

=

∫
Rj
eλµ(z<j)+λσ(z<j)zjq≤j(z≤j)dz≤j

=

∫
Rj−1

eλµ(z<j)

∫
R
eλσ(z<j)zjq≤j(z≤j)dzjdz<j . (9)

Using Sklar’s Theorem (Theorem A.4), we can write any joint PDF as the product of marginals and a copula density cj such
that

q≤j(z≤j) = cj
(
F1(z1), . . . , Fj(zj)

)∏
i<j

qi(zi) . (10)

We plug (10) into (9) to obtain

mxj (λ) =

∫
Rj−1

eλµ(z<j)q<j(z<j)

∫
R
eλσ(z<j)zjcj

(
F1(z1), . . . , Fj(zj)

)
qj(zj)dzjdz<j

≥
∫
S
eλµ(z<j)q<j(z<j)

∫
zj>z∗j

eλσ(z<j)zjcj
(
F1(z1), . . . , Fj(zj)

)
qj(zj)dzjdz<j , (11)

since all quantities within the integral are positive. Using Assumption A.6, we can bound the inner integral of the above
equation, which we denote by A(z<j), and get

A(z<j) ≥ s
∫
zj>z∗j

e(λσ(z<j)−f(z<j))zjqj(zj)dzj

= s

∫
zj>z∗j

eλ
′zjqj(zj)dzj (define λ′ := λ− σ(z<j)− f(z<j) )

=∞ for all z<j ∈ S ,

due to the heavy-tailedness of zj and Lemma A.2. Since S is compact, µ and q are both continuous, and q is positive, we
deduce that exp(λµ(z<j))q<j(z<j) is lower-bounded (by a constant larger than 0) in S. Therefore, employing (11) and
using that S has positive mass, we can lower-bound the moment-generating function by∞, which proves the heavy-tailedness
of xj . In summary, x is j-heavy-tailed for all j ∈ {1, . . . , D}.

13Note that for the sake of clarity, we leave out the index j in µj and σj .
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A.3. Notes on Assumption A.6

Assumption 1 might look troublesome at first sight, but we will illustrate in this section that the condition is indeed very
reasonable. We will show how to verify it in simple examples, and we will introduce a simpler, more intuitive sufficient
condition for it.

First of all, let us present a restricted but more intuitive version of Assumption A.6.

Assumption A.7 (Simplification of Assumption A.6). For all j ∈ {1, . . . , D} and λ > 0 it holds for S := [a, b]j−1 that
there exist constants z∗j and s > 0 such that

c
(
F1(z1), . . . , Fj(zj)

)
≥ se−(λσ−ε)zj for zj > z∗j and z<j ∈ S , (12)

where cj is the copula density of q≤j , λσ is a lower bound of λσ(z<j), ε > 0 is small such that λσ − ε > 0.

Let us summarize the simplifications that we make in Assumption A.7. First of all, we restricted S to be a closed cube
[a, b]j−1, which is obviously a specific instant of a compact set with positive mass. Further, we assumed σ to be continuous,
and thus, λσ(z<j) must be lower-bounded in S. This allows us to replace the function f by the constant λσ − ε for arbitrary
small ε > 0.

After giving this simplified sufficient condition, we provide some intuition by presenting some examples where As-
sumption A.7 holds true. [Independent Variables] Consider a random variable z with independent components, i.e.
q(z) =

∏D
j=1 qj(zj). Then, the associated copula is the independence copula (Figure 5), which is a uniform random distri-

bution on [0, 1]D. Therefore it is c
(
F1(z1), . . . , FD(zD)

)
= 1 for all z ∈ RD and Assumption A.7 follows immediately

since s exp(−(λσ − ε)zj) → 0 for zj → ∞. [Bounded Copula Density] Consider a lower-bounded copula density, i.e.
there exists a lower bound a > 0 such that

c(u1, . . . , uD) ≥ a for all u ∈ [0, 1]D .

Again, the validity of Assumption A.7 in this setting is clear. Furthermore, this assumption is obviously not limited to
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(a) Independence copula: c(z1, z2) = 1.
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(b) Gaussian copula with correlation ρ12 = 0.7 .

Figure 5. Two 2-dimensional Copula densities.

bounded copula densities but also holds for copula densities that converge to 0 but whose decay rate in zj is lower-bounded
by (12). To visualize the intuition, consider the 2-dimensional copula density of a Gaussian copula in Figure 5. Imagine
fixing S such that F1(z1) ∈ [0.5, 0.75], which is compact for continuous F1. Then (12) bounds the decay rate within the
“tube” [0.5, 0.75] if we consider z2 →∞, i.e. if F2(z2)→ 1. Next, we show how we can formally prove the assumption for
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Gaussian copulae. Recall, the Gaussian copula with correlation matrix R ∈ RD×D has density function

c(u) =
1√

detR
exp

(
−1

2

(
Φ−1(u1), . . .Φ−1(uD)

)(
R−1 − I

)(
Φ−1(u1), . . .Φ−1(uD)

)>)
, (13)

where I ∈ RD×D is the identity matrix, Φ−1 is the inverse CDF of the univariate standard Gaussian distribution, and
u ∈ [0, 1]D. In the following, we consider Assumption A.7 for j = D.

Note that S is assumed to be a compact set, therefore Fj(zj) are all upper and lower-bounded by some value for z<j ∈ S.
This makes all polynomials of them also bounded. Hence, we can find constants a′, b′, c′ such that we can lower-bound the
term within the exponential in (13) by

−1

2

(
a′Φ−1

(
FD(zD)

)2
+ b′Φ−1

(
FD(zD)

)
+ c′ .

Plugging the above into (13) gives

c
(
F1(z1), . . . , FD(zD)

)
≥ 1√

detR
exp

(
−1

2

(
a′Φ−1

(
FD(zD)

)2
+ b′Φ−1

(
FD(zD)

)
+ c′

)

∝ exp

(
−aΦ−1

(
FD(zD)

)2
+ bΦ−1

(
FD(zD)

))
(for some a, b)

≥ exp

(
−|a|Φ−1

(
FD(zD)

)2
+ |b|Φ−1

(
FD(zD)

))
≥ exp

(
−|a|Φ−1

(
FD(zD)

)2)
, (14)

where the last line applies if Φ−1
(
FD(zD)

)
≥ 0, which is satisfied if z∗ is large enough14.

Next, we use the asymptotic relation from Lemma A.5

Φ−1
(
FD(zD)

)
∼
√
−2 log

(
1− FD(zD)

)
.

Hence, for each ε > 0 there exists a z∗ large enough such that∣∣∣∣ Φ−1
(
FD(zD)

)√
−2 log

(
1− FD(zD)

) − 1

∣∣∣∣ < ε ,

which can be rearranged to

Φ−1
(
FD(zD)

)
<
√
−2 log

(
1− FD(zD)

)
(1 + ε) .

Plugging the above into (14), we obtain

c
(
F1(z1), . . . , FD(zD)

)
≥ exp

(
2|a|(1 + ε)2 log

(
1− FD(zD)

))
=
(
1− FD(zD)

)2ã
, (15)

where we define ã := 2|a|(1 + ε)2. Hence, we are left to lower-bound (15), which we can do for a range of heavy-tailed
marginal distributions such as:

1. Pareto distribution: The Pareto distribution with shape parameter α has CDF

F (z) = 1− 1

z

α

.

14for instance if z∗ is larger than the median of zD
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Therefore, (
1− FD(zD)

)2ã
=

1

zD

2|a|α

= exp
(
−2ãα log(zD)

)
≥ exp

(
−2ãαzD

)
for zD ≥ e.

2. Scale invariant distributions: Following the same argument as above, each distribution with CDF

F (z) = 1− bz−α for z > z∗ (16)

for constants b, α, z∗ > 0 satisfies the bound(
1− FD(zD)

)2ã ≥ b exp
(
−2ãαzD

)
.

Each distribution with CDF as in (16) is a scale-invariant distribution (see e.g. Theorem 2.1 in Nair et al. (2013)).

3. Exponentially decaying distributions: Every distribution that satisfies the bound

F (z) ≤ 1− exp(z)−α

for z > z∗ and α > 0. In this case, we can again show that Assumption A.6 is valid:(
1− FD(zD)

)2ã ≥ exp(−2ãαzD) .

Lastly, we want to emphasize that Corollary 3.5 is derived by an iterative application of Theorem 3.4. Therefore, Assump-
tion A.6 must hold for all “flow steps”, i.e. if T = T (L) ◦ · · · ◦ T (1), we need to ensure validity of Assumption A.6 for
z(0) := z, z(1) := T (1)(z), z(2) := T (2) ◦T (1)(z), . . . , z(L−1) := T (L−1) ◦ · · · ◦T (1)(z). In Example A.3, we show that
this assumption holds true for z(0) since we define our base distribution under the mean-field assumption. Furthermore,
we conjecture that if we apply a Lipschitz-continuous diffeomorphism on a random variable with bounded copula density,
then the transformed random variable must also have a bounded copula density. Hence, Assumption A.6 would be valid for
all “flow steps” (see Example A.3) when starting with a mean-field base distribution q(z) =

∏D
j=1 qj(zj). However, this

conjecture needs to be studied in further research.

A.4. Proof of Theorem 3.7

Proof. We proceed in two steps: First, we show that zν
ν→∞−−−−→D z by applying the Cramér-Wold Theorem. Second, we use

the Continuous-Mapping Theorem to finish the proof. All used theorems can be found, for instance, in Van der Vaart (2000).

Step 1. By the Cramér-Wold Theorem, it is sufficient to show that for every v ∈ RD it is

v>zν =

D∑
j=1

vjzν,j
ν→∞−−−−→D

D∑
j=1

vjzj = v>z .

We prove this convergence via the convergence of the characteristic function. Since zν,j are independent for all j ∈
{1, . . . , D}, it is

ϕv>zν (t) = ϕzν,1(v1t) · · ·ϕzν,dl (vdlt)ϕzdl+1
(vdl+1t) · · ·ϕzD (vDt)

→ ϕz1(v1t) · · ·ϕzdl (vdlt)ϕzdl+1
(vdl+1t) · · ·ϕzD (vDt)

= ϕv>z(t) ∀t ∈ R ,

where the convergence follows from the convergence tν
ν→∞−−−−→D N (0, 1) and Levy’s Continuity Theorem. The last equality

follows since the marginals are independent. Using Levy’s Continuity Theorem once more, we conclude that

v>zν
ν→∞−−−−→D v>z .

Hence, we can apply Cramér-Wold to obtain the convergence zν
ν→∞−−−−→D z.
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Step 2. We apply the Continuous Mapping Theorem to obtain the convergence result.

B. Data-Driven LU-Layers
One of the major reason for recent improvements of NFs is due to the generalization of the permutation layers to more
general invertible linear layers (Oliva et al., 2018). One type of these general invertible linear layers are based on the
LU-decomposition, which were essential building blocks for many SOTA NFs, such as in Kingma & Dhariwal (2018);
Durkan et al. (2019). Therefore, it is important to address whether we can generalize our theory from Section 3.2 of the
main paper to the more expressive LU-Layers. In this section we provide supplementary materials to Section 3.3 to show
that we are indeed able to generalize to LU-Layers, while retaining their computational benefits. First, in Section B.1 we
derive sufficient conditions under which linear layers preserve the marginal tail behaviour. In Section B.2 we present an
efficient way to implement a tail-preserving LU-type invertible layer.

B.1. Marginal Tail Behavior under Linear Transformations

In this section, we assume without loss of generality that the components of z are ordered such that z is j-light-tailed for
j ∈ {1, . . . , dl} and j-heavy-tailed for j ∈ {dl + 1, . . . , D}. Our goal is to find conditions for a matrix W under which z
and Wz have equal tail-behavior.

Theorem B.1. Let z be a random variable that is j-light-tailed for j ∈ {1, . . . , dl} and j-heavy-tailed for j ∈ {dl +
1, . . . , D}. Further, consider a diagonal invertible block-matrix

W =

(
A 0
B C

)
, (17)

with A ∈ Rdl×dl , B ∈ R(D−dl)×dl , C ∈ R(D−dl)×(D−dl) and 0 is a zero matrix of size dl × (D − dl). Then, it follows
that Wz and z have equal tail behavior.

Before heading into the proof, we introduce the following useful lemma:

Lemma B.2. Let 0 < λ∗ be a scalar such that Ez[exp(λ∗z)] <∞ for some univariate random variable z. Then, it holds
that Ez[exp(λz)] <∞ for all 0 < λ ≤ λ∗.

Proof. Consider 0 < λ ≤ λ∗. Then, we can split the expectation

Ez

[
eλz
]

=

∫
(−∞,0]

q(z)eλzdz +

∫
(0,∞)

q(z)eλzdz

≤
∫

(−∞,0]

q(z)e0dz +

∫
(0,∞)

q(z)eλ
∗zdz .

The first integral is upper-bounded by 1, and the second integral can be upper-bounded by the integral over the same
integrand on R, which is bounded by definition of per assumption. Hence, Ez[exp(λz)] <∞ for all 0 < λ ≤ λ∗.

Now we are ready to prove Theorem B.1.

Proof. The idea of the proof is to show that a linear combination of k (non-degenerate) random variables z1, . . . , zk is
light-tailed if and only if all z1, . . . , zk are light-tailed. We do this via algebraic induction, i.e. we show that

1. azj is light-tailed iff. zj is light-tailed for some scalar a ∈ R;

2. z1 + z2 is light-tailed iff. z1 and z2 are both light-tailed.

For an arbitrary linear combination random variables, we can iterate through 1. and 2. to prove that the linear combination is
light-tailed if and only if each component is light-tailed.
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1. Let us assume that zj is light-tailed. Therefore it exists some λ∗ ∈ R such that Ezj [exp(λ∗zj)] <∞. Further, for the
moment-generating function of azj it is

Eazj
[
eλx] =

∫
R
pzj (zj)e

λazjdx <∞

for λ := λ∗/a, where the first equality follows from the LOTUS. The other direction of the equivalence follows analogously.
2. Consider z1 and z2 with joint PDF q(z1, z2). Since both random variables are light-tailed, there exist λ1 and λ2 such that
their moment-generating function is bounded. Then, it is for λ := 0.5 min{λ1, λ2}

Ez1+z2

[
eλz
]

=

∫
R

∫
R
eλ(z1+z2)q(z1, z2)dz1dz2 (LOTUS)

=

∫
R

∫ 0

−∞
eλ(z1+z2)q(z1, z2)dz1dz2 +

∫
R

∫ ∞
0

eλ(z1+z2)q(z1, z2)dz1dz2

≤
∫
R
eλz2q(z2)dz2 +

∫
R

(∫ min{0,z2}

0

eλ(z1+z2)q(z1, z2)dz1

+

∫ ∞
max{0,z2}

eλ(z1+z2)q(z1, z2)dz1

)
dz2 ,

where the last line follows by replacing z2 in the first integral by 0, which is an upper bound for z2. Using the definition of λ
and Lemma B.2, we see that the first integral is bounded by some constant c1. Using the monotonicity of the integrands
once more, we get

Ez1+z2

[
eλz
]
≤ c1 +

∫
R

(∫ min{0,z2}

0

e2λz2q(z1, z2)dz1 +

∫ ∞
max{0,z2}

e2λz1q(z1, z2)dz1

)
dz2

≤ c1 +

∫
R
e2λz2q(z2)dz2 +

∫
e2λz1q(z1)dz1 ,

which follows by upper-bounding the integral from 0 to min{0, z2} and the integral from max{0, z2} by the integrals
over R, respectively. Using Lemma B.2 and the definition of λ once more, we can find constants c2 and c3 that bound
the remaining integrals. Hence, we conclude that Ez1+z2 <∞, which proves the backward direction of 2. To prove the
forward direction, we show that if z1 and z2 are not both light-tailed (i.e at least of them is heavy-tailed), than z1 + z2 is not
light-tailed. Without loss of generality, we assume z2 to be heavy-tailed. Then, we can write

Ez1+z2

[
eλz
]

=

∫
R

∫
R
eλ(z1+z2)q(z1, z2)dz1dz2

=

∫
R

(∫ 0

−∞
eλ(z1+z2)q(z1, z2)dz1 +

∫ ∞
0

eλ(z1+z2)q(z1, z2)dz1

)
dz2

≥
∫
R

(∫ 0

−∞
eλ(z1+z2)q(z1, z2)dz1 +

∫ ∞
0

eλ(z2)q(z1, z2)dz1

)
dz2 . (18)

Note that we can lower-bound the last inner integral by∫ ∞
0

eλz2q(z1, z2)dz1 = eλz2q(z2)− eλz2
∫ 0

−∞
q(z1, z2)dz1 ≥ −eλz2

∫ 0

−∞
q(z1, z2)dz1 .

Plugging this bound into (18) gives us

Ez1+z2

[
eλz
]
≥
∫
R
eλz2q(z2)dz2 =∞ ∀λ > 0 ,

which is due to the heavy-tailedness of z2. Therefore, z1 + z2 must also be heavy-tailed. This proves the equivalence in 2.
Finally, we note that due to the block-triangular form of A the first dl components of x := Az, i.e. x1, . . . ,xdl are linear



Marginal Tail-Adaptive Normalizing Flows

combinations of light-tailed components z1, . . . , zdl , which implies the light-tailedness of x1, . . . ,xdl . The remaining
D − dl components of x are linear combinations containing at least one heavy-tailed component zj with j ∈ {dl, . . . , D}
and are therefore again heavy-tailed15. This completes the proof.

B.2. Implementation of Data-Driven LU-Layers

In the previous section, we have seen that in order to retain the tail behavior, the block-matrix form given in (17) is
sufficient. In this section, we give more details on an efficient parameterization leading to fast inversion and log-determinant
computations. It is well-known that under mild conditions the inversion of block-matrices is efficiently solvable.

Lemma B.3 (Inversion of Block-Matrices). Consider invertible square matrices A ∈ Rdl×dl , D ∈ Rdh×dh and arbitrary
matrices B ∈ Rdl×dh , C ∈ Rdh×dl for some dl, dh ∈ N. Then it holds that(

A B
C D

)−1

=

(
(A−BD−1C)−1 0

−D−1C(A−BD−1C)−1 D−1

)(
I −BD−1

0 I

)
.

As a special case, it is (
A 0
B C

)−1

=

(
A−1 0

−C−1BA−1 C−1

)
(19)

for invertible square matrices A ∈ Rdl×dl , C ∈ Rdh×dh and arbitrary matrix B ∈ Rdh×dl .

Lemma B.3 is a standard result that can be found in many linear algebra text books (see e.g. Gallier (2011)).

Furthermore, we can compute the determinant of a diagonal block-matrix W as defined in (17) as

det(W ) = det(A) det(C) . (20)

Now, let us summarize the expensive computations in (19) and (20) that both need to be efficient in NFs. The computations
involve inversions of A and C, only forward computations of B, and the computation of det(A) and det(C). Hence,
we propose to parameterize A and C using a LU-decomposition for both matrices, which leads to efficient inverse16 and
log-determinant computations. We do not make any restrictions on B and parameterize it by a standard unconstrained linear
layer. We provide a PyTorch implementation of this modified tail-preserving LU-layer, which can be accessed through our
public git repository.

C. Algorithms and computational Details
C.1. Tail Estimation

Many heavy-tailed distributions can be characterized by their tail index, which include the set of regularly varying
distributions,17 such as the t-distribution, the Pareto distribution, and many more. However, as already shown in Section 2.1,
the tail index does not depend on the body of the distribution, and hence, non-tail samples must typically be discarded for
tail index estimation. Although a variety of estimators for the tail index exist, such as the Hill estimator (Hill, 1975), the
moment estimator (Dekkers et al., 1989), and kernel-based estimators (Csorgo et al., 1985), none of them is considered to be
as superior in all settings. A major issue of all mentioned estimators is that they are based on a threshold defining the tail,
i.e. the user needs to input statements of the form “the k largest samples are considered to be tail events”. Even though
there exist some strategies to find k, there is none working robustly in all settings. In fact, one can construct simple counter
examples for all estimators that lead to failures of tail estimation. This is due to undesired properties of the estimators, such
as the lack of translation invariance of the Hills estimator (while the tail index clearly is location invariant). We refer to
Section 9 in Nair et al. (2013) for a detailed text book treatment of tail index estimation. In summary, robust tail estimation
is still considered as an unsolved problem, which forces practitioners to consider multiple estimators to make a well-founded
decision. Furthermore, we note that the Hills estimator can only be applied for regularly varying distributions, which

15Note that this argument assumes that D has no empty rows, which is implicitly assume due to the invertibility of A. Compare with
Equation ref(Algosection).

16which can be guaranteed by restricting the diagonal elements of the upper diagonal matrix in the LU-decomposition.
17see Section 2 in (Nair et al., 2013) for further details
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Algorithm 1 Marginal Tail Estimation
tail.est← [ ]
for j in {1, . . . , D} do

marginal← Data val[:, j]
moments← moments est(|marginal|) {0 if |marginal| is estimated to be light-tailed}
kernel← kernel est(|marginal|) {0 if |marginal| is estimated to be light-tailed}
if moments==kernel==0 then

tail est.append(0) {light-tailed if moments and kernel estimate a light-tailed marginal}
else

hill← hills est(|marginal|)
if hill> 10 then

tail est.append(0) {light-tailed if hills estimator predicts high tail index}
else

tail est.append(hill)
end if

end if
end for
tail est

excludes the application of the Hills estimator to classify light-tailed distributions. In contrast, the moments and the kernel
estimator can both be applied to identify heavy-tailed marginals and to assess a tail index.

To implement the tail assessment scheme, see Step 1 of the proposed method in Section 3.2, we found that Algorithm 1
works fine in classifying the correct tail behavior and giving a decent initialization for the tail indices. That is, we use the
moments double-bootstrap estimator (Draisma et al., 1999) and the kernel-type double-bootstrap estimator (Groeneboom
et al., 2003) to assess heavy-tailedness of the data distribution. If both estimators predict a light-tailed distribution, we set
the corresponding marginal base distribution to be standard normal distributed, otherwise we set it to a the standardized
t-distribution, i.e. zj ∼ tv̂j , where v̂j is the Hill double-bootstrap estimator (Danielsson et al., 2001; Qi, 2008). We reused
the code by Voitalov et al. (2019), which implements all tail estimation procedures18 from our Algorithm. Notice that we
clip the tail index by 10, i.e. the algorithm classifies marginals with a tail index larger than 10 as light-tailed, which prevents
a too restrictive set of allowed permutations, see Step 3 in Section 3.2. To illustrate this argument, consider the following
simple example. Assume that we estimate all except of one marginal to be heavy-tailed. Then, the first component of the
flow is never allowed to permute with other components, since they are classified as heavy-tailed. Hence, the mixing of the
first component would be severely restricted. Further, since large tail indices indicate a less heavy-tailed distribution, it is
reasonable to clip the tail index at some threshold.

C.2. Synthetic Data Generation

The generation of the synthetic distribution consists of 3 steps: 1. Generating the marginal distributions, 2. Defining a
copula distribution, 3. Combining the marginal and the copula to obtain a multivariate joint distribution.

Generating the marginal distributions. The first two marginals are defined to be Gaussians. The following marginals
are a 2-mixtures of Gaussians and a mixtures of three Gaussians. The last dh ∈ {1, 4} components are a mixture of two
t-distributions and the remaining marginals are again mixtures of two Gaussians. All mixtures have equal weight for each
mixture component and all means and standard-deviations are randomized. Means are constructed by uniformly sampling
from [−4, 4], whereas standard-deviations are sampled from [1, 2].

Defining a copula distribution. Recall, a Gaussian copula (13) is parameterized by a correlation matrix R. To generate
R, we randomly sample 16 different pairs (i, j) ∈ {1, . . . , 8}2 with i 6= j and set the corresponding entry of the correlation
matrix Ri,j := 0.25. The diagonals of R are set to 1.

18including the hyperparameter selection (Danielsson et al., 2001; Qi, 2008; Draisma et al., 1999; Groeneboom et al., 2003)



Marginal Tail-Adaptive Normalizing Flows

Obtaining a joint distribution. Lastly, we combine the marginals with the Gaussian copula using Sklar’s Theorem A.4.
This gives us a multivariate distribution with specified and complex marginals with a dependency structure given by the
copula, see Joe (2014) for more details on the induced dependencies.

To construct the training, test, and validation sets 15.000, 75 000, and 10 000 samples from this distribution are sampled,
respectively.

In the setting D = 50, we apply a similar procedure but with dh = 10 heavy-tailed components and with the first 40
marginals being 2-mixtures of Gaussians, the remaining 10 marginals being 2-mixtures t-distributions. We define the
dependency-structure by randomly selecting 200 pairs (i, j) ∈ {1, . . . , 50}2 with i 6= j and set Ri,j = 0.25 again. Training,
validation, and test sets consists of 50 000, 10 000, and 75 000 samples, respectively.

C.3. Synthetic Experiments

In all synthetic experiments, we used a NSF with 5 layers and corresponding LU-linearities. mTAF employs the modified
LU-linearities from Section 3.3. In the NSF layers, we used conditioner ResNets with 2 hidden layers with 30 or 200 hidden
neurons in the case D = 8 and D = 50, respectively and ReLU activations. Further, we used NSF layers with 3 bins and set
the tail-bound to 2. We optimized the network using Adam with 5 000 or 20 000 train steps in the case D = 8 and D = 50,
respectively, with a learning rate of 1e− 5 and a weight decay of 1e− 6. To fit the Gaussian copula baseline, we use the
default settings of the copulas (Patki et al., 2016) library.

To assess the sample quality on the tail of the distribution, we consider 3 metrics.

1. Tail Value at Risk for some level α, which is defined by

tVaRα := tVaRα(F ) :=
1

1− α

∫ 1

α

F−1(u)du

for some CDF F . tVaRα is a well-known metric and is widely used in finance (McNeil et al., 2015). We plug in
the marginal empirical CDFs F̂data and F̂flow, i.e. the empirical CDFs based on the data and on synthetic samples,
respectively, and calculate the absolute difference between these quantities. The resulting metric is the marginal
tVaR-difference for the level α. We set α = 0.95 in all our experiments.

2. Area under log-log plot is defined by

Area :=

n∑
i=1

∣∣∣∣log F̄−1
data

( i
n

)
− log F̄−1

flow

( i
n

)∣∣∣∣ log
i+ 1

i
,

where F̄−1
data, F̄

−1
flow denote the inverse empirical complementary CDFs given by the test data and the flow samples,

respectively.

3. Synthetic Tail Estimates, where the tail-assessment is similar to the on described in Algorithm 1. We can then assess
the similarity between the tail estimators based on the data and the tail estimators based on synthetically generated flow
samples.

Setting D=8 In our experimental study, we generated 3 synthetic distributions per setting as explained in Section C.2 and
fit each model 25 times to each synthetic distribution. While it is reasonable to compare the averaged metrics over all 75
runs, investigating the standard deviation over all runs might be misleading since the metrics could be centered around
different values for each synthetic distribution. For this reason, it is more insightful to compare standard deviations over
runs where the target distribution is fixed, which we present in Table 3. In Table 4 we present the numeric results of the
synthetic experiments for a larger tail index, i.e. a less extreme setting. In this setting, we observe that gTAF tends to
perform slightly worse for light-tailed components, while achieving good results for heavy-tailed components. Note that
in this case, the performance of mTAF degrades, which might be attributed to the less flexible structure of its linearities.
When replacing the NSF-layers by MAF-layers, we observe that the MAF fails to converge for a vanilla base distribution.
Again, mTAF strikes a balance between fitting heavy- and light-tailed marginals but the overall performance is better in
the case of NSF-layers—especially for the heavy-tailed marginals. We conjecture that this is due to the linearity of the
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Table 3. Standard deviations corresponding to the experiments shown in Table 1, i.e. in the setting ν = 2 and dh ∈ {1, 4}, for one target
distribution.

dh 1 4

L Areal Areah tVaRl tVaRh L Areal Areah tVaRl tVaRh

vanilla 0.02 0.02 0.12 0.16 3.74 0.03 0.03 0.14 0.13 1.75
TAF 0.00 0.03 0.20 0.12 2.38 0.01 0.06 0.12 0.22 1.15
gTAF 0.01 0.06 0.26 0.17 1.30 0.01 0.06 0.14 0.20 0.64
mTAF 0.01 0.03 0.21 0.10 1.41 0.01 0.03 0.20 0.18 1.32

Table 4. Average test loss, Area under log-log plot, and tVaR (lower is better for each metric) in the setting ν = 3 and dh ∈ {1, 4}. The
copula model serves as an oracle baseline.

dh 1 4

L Areal Areah tVaRl tVaRh L Areal Areah tVaRl tVaRh

vanilla 10.82 0.25 2.77 0.55 12.06 10.55 0.23 2.64 0.58 9.98
TAF 10.79 0.36 2.78 0.79 1.49 10.46 0.38 2.95 0.93 2.36
gTAF 10.77 0.55 1.11 1.27 2.82 10.38 0.50 1.13 1.00 2.56
mTAF 10.76 0.33 2.03 1.05 7.36 10.38 0.34 1.54 1.09 5.02

copula 9.76 0.20 0.79 0.45 1.82 9.76 0.19 0.91 0.46 1.62

tails of each NSF-layer19, which leads to a better generalization for those low-sample regions. Therefore, we continue the
following experiments using the NSF architecture. Furthermore, we investigate the tail indices of the generated samples by
constructing confusion matrices similar to those in Figure 2, which we present in Figure 6. We observe a similar behavior,
that is, while vanilla and TAF produce mainly marginals with light-tailed marginals, gTAF is able to produce much better
samples with heavy-tailed marginals. Again, mTAF produces marginals whose marginal tail behavior almost perfectly fits
the true tail behavior. For further visual inspection of the generated marginals, we consider QQ-plots of the heavy-tailed
components in Figure 7 and Figure 8. In both cases, vanilla and TAF—and sometimes in gTAF—we observe humps in the
tails, which surrogate a bad sampling performance in their tails. mTAF does not have these, which is in accordance to our
findings derived from Figure 2 and 6.

Setting D=50 Table 6 compares the quantitative metrics for our synthetic experiments in the case D = 50. In this case,
we generate 3 synthetic distributions as explained in Section C.2 and fit each model 5 times. We observe that mTAF clearly
outperforms vanilla and TAF in terms of Area, while the flexibility in gTAF allows it to perform almost on par with the
oracle copula baseline. Considering the metrics that account for the tail fit of the heavy-tailed components, we surprisingly
observe that gTAF even outperforms the oracle copula model. However, considering the light-tailed components, gTAF
performs a bit worse, which is not surprising since gTAF models each marginal distribution by a t-distribution.

C.4. Climate Data

In this section, we provide more details on the employed architectures of mTAF on the NWP-SAF dataset, which we
visualize in Figure 9. Furthermore, we present a more in-depth discussion about the results.

We consider each quantity (i.e. dry-bulb air temperature, atmospheric pressure, and cloud optical depth) at each atmospheric
level as one component, leading to a 412-dimensional dataset. Recall that mTAF requires a classification into light- and
heavy-tailed marginals that lead to a reordering of the initial marginals, which we do as follows. This dataset—similar
to other time-series-like datasets—gives us a natural autoregressive ordering, which we make use of in our permutation
step. This leads to the initial permutation (compare with Step 2 in Figure 1 and Section 3.2), in which the first components

19This does not mean that the whole flow is linear in its tails since tail samples can be linearily mapped in and out of the bins, leading a
non-linear mapping.
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Table 5. Average test loss, Area under log-log plot, and tVaR (lower is better for each metric) in the setting ν = 2 and dh ∈ {1, 4} when
using a MAF.

dh 1 4

L Areal Areah tVaRl tVaRh L Areal Areah tVaRl tVaRh

vanilla >1e6 0.82 4.88 2.76 8.67 >1e6 0.95 5.97 3.78 9.93
TAF 10.63 1.09 4.68 3.88 8.00 9.97 1.12 5.90 4.28 9.42
gTAF 10.60 1.26 3.78 4.71 2.91 9.84 1.32 4.89 5.29 4.22
mTAF 10.55 0.77 4.00 2.51 3.08 9.81 0.48 5.01 1.32 4.49

Table 6. Average test loss, Area under log-log plot, and tVaR (lower is better for each metric) in the setting D = 50, ν ∈ {2, 3}, and
dh = 10. The copula model serves as an oracle baseline.

ν 2 3

L Areal Areah tVaRl tVaRh L Areal Areah tVaRl tVaRh

vanilla 58.59 0.29 3.38 0.45 24.61 62.59 0.30 1.71 0.43 6.38
TAF 58.12 0.67 3.02 1.20 3.19 62.47 0.57 2.02 0.96 2.15
gTAF 58.05 0.94 0.58 1.23 1.16 62.42 0.61 0.51 0.96 0.99
mTAF 58.17 0.39 2.30 0.84 4.20 62.60 0.30 1.32 0.46 2.86

copula 57.23 0.21 1.04 0.42 2.50 56.73 0.20 0.66 0.41 1.33

are given by light-tailed components of the dry-bulb air temperature, followed by the reversed atmospheric pressure
and the cloud-optical depth. However, in contrast to our synthetic experiments, where the selection of the heavy-tailed
components was more or less trivial, this task is more complicated in a time series with highly dependent features. What we
found works best in practice, is to deliberately choose a large set of heavy-tailed components according to Table 7, while
making the degree of freedom learnable. Furthermore, we implemented all NFs—vanilla, TAF, gTAF, and mTAF—using 5
autoregressive NSF layers with LU-linearities and their modified versions from Section 3.3. The conditioner networks in the
NSF-layers have 2 hidden layers with 100 hidden neurons in each layer, we set the tail-bounds to 2.5, and each spline uses 3
bins. We apply Batch-Norm after each NSF-layer. We optimize for 20 000 steps using the Adam optimizer with a learning
rate of 1e-4 and a learning rate of 0.01 for the tail indices and scheduled the rates using cosine annealing.

We plot synthetic samples from the remaining flows in Figure 10.
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Figure 6. Marginal tail estimation based on synthetic flow samples of vanilla, TAF, gTAF, and mTAF (from left to right) for varying tail
index ν and number of heavy-tailed components dh. We classify marginals whose tail estimator is less than 10 as heavy-tailed, otherwise
it is classified as light-tailed.
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Figure 7. QQ-plots for the 8th heavy-tailed marginal in the setting ν = 2 and dh = 1. The QQ-plots correspond to samples generated by
vanilla, TAF, gTAF, and mTAF, respectively.
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Figure 8. QQ-plots for the last 4 heavy-tailed marginals in the setting ν = 2 and dh = 4. The rows of QQ-plots correspond to samples
generated by vanilla, TAF, gTAF, and mTAF, respectively. Each marginal in depicted in one column.

Table 7. Components (i.e. measurements at a specific atmospheric level), which we manually select as heavy-tailed based on Figure 9.

MEASUREMENT LIGHT-TAILED HEAVY-TAILED

DRY-BULB AIR TEMPERATURE IN K 1 - 79 80 - 137
ATMOSPHERIC PRESSURE IN HPA 1 - 99 100 - 137
CLOUD OPTICAL DEPTH 1 - 57 58 - 137
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Figure 9. Real profiles from the NWP-SAF dataset. We used the implementation by Meyer et al. (2021) to generate the figure. The profiles
are ordered using band depth statistics (Pintado & Romo, 2009).
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Figure 10. Synthetic flow samples using vanilla, TAF, and gTAF (from left to right), where we clipped the lower-values of the cloud-optical
depth at 0. The corresponding negative log-likelihoods are −2094.35, −2117.48, −2121.65, respectively. We used the implementation
by Meyer et al. (2021) to generate the figure. The profiles are ordered using band depth statistics (Pintado & Romo, 2009) and the shaded
areas represent standard deviations.


